1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(cpu_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(cpu_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, cpu_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * This utility function is for doing register extension with an 1318 * optional shift. You will likely want to pass a temporary for the 1319 * destination register. See DecodeRegExtend() in the ARM ARM. 1320 */ 1321 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1322 int option, unsigned int shift) 1323 { 1324 int extsize = extract32(option, 0, 2); 1325 bool is_signed = extract32(option, 2, 1); 1326 1327 if (is_signed) { 1328 switch (extsize) { 1329 case 0: 1330 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1331 break; 1332 case 1: 1333 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1334 break; 1335 case 2: 1336 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1337 break; 1338 case 3: 1339 tcg_gen_mov_i64(tcg_out, tcg_in); 1340 break; 1341 } 1342 } else { 1343 switch (extsize) { 1344 case 0: 1345 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1346 break; 1347 case 1: 1348 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1349 break; 1350 case 2: 1351 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1352 break; 1353 case 3: 1354 tcg_gen_mov_i64(tcg_out, tcg_in); 1355 break; 1356 } 1357 } 1358 1359 if (shift) { 1360 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1361 } 1362 } 1363 1364 static inline void gen_check_sp_alignment(DisasContext *s) 1365 { 1366 /* The AArch64 architecture mandates that (if enabled via PSTATE 1367 * or SCTLR bits) there is a check that SP is 16-aligned on every 1368 * SP-relative load or store (with an exception generated if it is not). 1369 * In line with general QEMU practice regarding misaligned accesses, 1370 * we omit these checks for the sake of guest program performance. 1371 * This function is provided as a hook so we can more easily add these 1372 * checks in future (possibly as a "favour catching guest program bugs 1373 * over speed" user selectable option). 1374 */ 1375 } 1376 1377 /* 1378 * This provides a simple table based table lookup decoder. It is 1379 * intended to be used when the relevant bits for decode are too 1380 * awkwardly placed and switch/if based logic would be confusing and 1381 * deeply nested. Since it's a linear search through the table, tables 1382 * should be kept small. 1383 * 1384 * It returns the first handler where insn & mask == pattern, or 1385 * NULL if there is no match. 1386 * The table is terminated by an empty mask (i.e. 0) 1387 */ 1388 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1389 uint32_t insn) 1390 { 1391 const AArch64DecodeTable *tptr = table; 1392 1393 while (tptr->mask) { 1394 if ((insn & tptr->mask) == tptr->pattern) { 1395 return tptr->disas_fn; 1396 } 1397 tptr++; 1398 } 1399 return NULL; 1400 } 1401 1402 /* 1403 * The instruction disassembly implemented here matches 1404 * the instruction encoding classifications in chapter C4 1405 * of the ARM Architecture Reference Manual (DDI0487B_a); 1406 * classification names and decode diagrams here should generally 1407 * match up with those in the manual. 1408 */ 1409 1410 static bool trans_B(DisasContext *s, arg_i *a) 1411 { 1412 reset_btype(s); 1413 gen_goto_tb(s, 0, a->imm); 1414 return true; 1415 } 1416 1417 static bool trans_BL(DisasContext *s, arg_i *a) 1418 { 1419 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1420 reset_btype(s); 1421 gen_goto_tb(s, 0, a->imm); 1422 return true; 1423 } 1424 1425 1426 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1427 { 1428 DisasLabel match; 1429 TCGv_i64 tcg_cmp; 1430 1431 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1432 reset_btype(s); 1433 1434 match = gen_disas_label(s); 1435 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1436 tcg_cmp, 0, match.label); 1437 gen_goto_tb(s, 0, 4); 1438 set_disas_label(s, match); 1439 gen_goto_tb(s, 1, a->imm); 1440 return true; 1441 } 1442 1443 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = tcg_temp_new_i64(); 1449 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1450 1451 reset_btype(s); 1452 1453 match = gen_disas_label(s); 1454 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1455 tcg_cmp, 0, match.label); 1456 gen_goto_tb(s, 0, 4); 1457 set_disas_label(s, match); 1458 gen_goto_tb(s, 1, a->imm); 1459 return true; 1460 } 1461 1462 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1463 { 1464 /* BC.cond is only present with FEAT_HBC */ 1465 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1466 return false; 1467 } 1468 reset_btype(s); 1469 if (a->cond < 0x0e) { 1470 /* genuinely conditional branches */ 1471 DisasLabel match = gen_disas_label(s); 1472 arm_gen_test_cc(a->cond, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 } else { 1477 /* 0xe and 0xf are both "always" conditions */ 1478 gen_goto_tb(s, 0, a->imm); 1479 } 1480 return true; 1481 } 1482 1483 static void set_btype_for_br(DisasContext *s, int rn) 1484 { 1485 if (dc_isar_feature(aa64_bti, s)) { 1486 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1487 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1488 } 1489 } 1490 1491 static void set_btype_for_blr(DisasContext *s) 1492 { 1493 if (dc_isar_feature(aa64_bti, s)) { 1494 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1495 set_btype(s, 2); 1496 } 1497 } 1498 1499 static bool trans_BR(DisasContext *s, arg_r *a) 1500 { 1501 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1502 set_btype_for_br(s, a->rn); 1503 s->base.is_jmp = DISAS_JUMP; 1504 return true; 1505 } 1506 1507 static bool trans_BLR(DisasContext *s, arg_r *a) 1508 { 1509 TCGv_i64 dst = cpu_reg(s, a->rn); 1510 TCGv_i64 lr = cpu_reg(s, 30); 1511 if (dst == lr) { 1512 TCGv_i64 tmp = tcg_temp_new_i64(); 1513 tcg_gen_mov_i64(tmp, dst); 1514 dst = tmp; 1515 } 1516 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1517 gen_a64_set_pc(s, dst); 1518 set_btype_for_blr(s); 1519 s->base.is_jmp = DISAS_JUMP; 1520 return true; 1521 } 1522 1523 static bool trans_RET(DisasContext *s, arg_r *a) 1524 { 1525 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1526 s->base.is_jmp = DISAS_JUMP; 1527 return true; 1528 } 1529 1530 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1531 TCGv_i64 modifier, bool use_key_a) 1532 { 1533 TCGv_i64 truedst; 1534 /* 1535 * Return the branch target for a BRAA/RETA/etc, which is either 1536 * just the destination dst, or that value with the pauth check 1537 * done and the code removed from the high bits. 1538 */ 1539 if (!s->pauth_active) { 1540 return dst; 1541 } 1542 1543 truedst = tcg_temp_new_i64(); 1544 if (use_key_a) { 1545 gen_helper_autia_combined(truedst, cpu_env, dst, modifier); 1546 } else { 1547 gen_helper_autib_combined(truedst, cpu_env, dst, modifier); 1548 } 1549 return truedst; 1550 } 1551 1552 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1553 { 1554 TCGv_i64 dst; 1555 1556 if (!dc_isar_feature(aa64_pauth, s)) { 1557 return false; 1558 } 1559 1560 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1561 gen_a64_set_pc(s, dst); 1562 set_btype_for_br(s, a->rn); 1563 s->base.is_jmp = DISAS_JUMP; 1564 return true; 1565 } 1566 1567 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1568 { 1569 TCGv_i64 dst, lr; 1570 1571 if (!dc_isar_feature(aa64_pauth, s)) { 1572 return false; 1573 } 1574 1575 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1576 lr = cpu_reg(s, 30); 1577 if (dst == lr) { 1578 TCGv_i64 tmp = tcg_temp_new_i64(); 1579 tcg_gen_mov_i64(tmp, dst); 1580 dst = tmp; 1581 } 1582 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1583 gen_a64_set_pc(s, dst); 1584 set_btype_for_blr(s); 1585 s->base.is_jmp = DISAS_JUMP; 1586 return true; 1587 } 1588 1589 static bool trans_RETA(DisasContext *s, arg_reta *a) 1590 { 1591 TCGv_i64 dst; 1592 1593 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1594 gen_a64_set_pc(s, dst); 1595 s->base.is_jmp = DISAS_JUMP; 1596 return true; 1597 } 1598 1599 static bool trans_BRA(DisasContext *s, arg_bra *a) 1600 { 1601 TCGv_i64 dst; 1602 1603 if (!dc_isar_feature(aa64_pauth, s)) { 1604 return false; 1605 } 1606 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1607 gen_a64_set_pc(s, dst); 1608 set_btype_for_br(s, a->rn); 1609 s->base.is_jmp = DISAS_JUMP; 1610 return true; 1611 } 1612 1613 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1614 { 1615 TCGv_i64 dst, lr; 1616 1617 if (!dc_isar_feature(aa64_pauth, s)) { 1618 return false; 1619 } 1620 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1621 lr = cpu_reg(s, 30); 1622 if (dst == lr) { 1623 TCGv_i64 tmp = tcg_temp_new_i64(); 1624 tcg_gen_mov_i64(tmp, dst); 1625 dst = tmp; 1626 } 1627 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1628 gen_a64_set_pc(s, dst); 1629 set_btype_for_blr(s); 1630 s->base.is_jmp = DISAS_JUMP; 1631 return true; 1632 } 1633 1634 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1635 { 1636 TCGv_i64 dst; 1637 1638 if (s->current_el == 0) { 1639 return false; 1640 } 1641 if (s->fgt_eret) { 1642 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1643 return true; 1644 } 1645 dst = tcg_temp_new_i64(); 1646 tcg_gen_ld_i64(dst, cpu_env, 1647 offsetof(CPUARMState, elr_el[s->current_el])); 1648 1649 translator_io_start(&s->base); 1650 1651 gen_helper_exception_return(cpu_env, dst); 1652 /* Must exit loop to check un-masked IRQs */ 1653 s->base.is_jmp = DISAS_EXIT; 1654 return true; 1655 } 1656 1657 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1658 { 1659 TCGv_i64 dst; 1660 1661 if (!dc_isar_feature(aa64_pauth, s)) { 1662 return false; 1663 } 1664 if (s->current_el == 0) { 1665 return false; 1666 } 1667 /* The FGT trap takes precedence over an auth trap. */ 1668 if (s->fgt_eret) { 1669 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1670 return true; 1671 } 1672 dst = tcg_temp_new_i64(); 1673 tcg_gen_ld_i64(dst, cpu_env, 1674 offsetof(CPUARMState, elr_el[s->current_el])); 1675 1676 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1677 1678 translator_io_start(&s->base); 1679 1680 gen_helper_exception_return(cpu_env, dst); 1681 /* Must exit loop to check un-masked IRQs */ 1682 s->base.is_jmp = DISAS_EXIT; 1683 return true; 1684 } 1685 1686 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1687 { 1688 return true; 1689 } 1690 1691 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1692 { 1693 /* 1694 * When running in MTTCG we don't generate jumps to the yield and 1695 * WFE helpers as it won't affect the scheduling of other vCPUs. 1696 * If we wanted to more completely model WFE/SEV so we don't busy 1697 * spin unnecessarily we would need to do something more involved. 1698 */ 1699 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1700 s->base.is_jmp = DISAS_YIELD; 1701 } 1702 return true; 1703 } 1704 1705 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1706 { 1707 s->base.is_jmp = DISAS_WFI; 1708 return true; 1709 } 1710 1711 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1712 { 1713 /* 1714 * When running in MTTCG we don't generate jumps to the yield and 1715 * WFE helpers as it won't affect the scheduling of other vCPUs. 1716 * If we wanted to more completely model WFE/SEV so we don't busy 1717 * spin unnecessarily we would need to do something more involved. 1718 */ 1719 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1720 s->base.is_jmp = DISAS_WFE; 1721 } 1722 return true; 1723 } 1724 1725 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1726 { 1727 if (s->pauth_active) { 1728 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1734 { 1735 if (s->pauth_active) { 1736 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1737 } 1738 return true; 1739 } 1740 1741 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1742 { 1743 if (s->pauth_active) { 1744 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1745 } 1746 return true; 1747 } 1748 1749 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1750 { 1751 if (s->pauth_active) { 1752 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1753 } 1754 return true; 1755 } 1756 1757 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1758 { 1759 if (s->pauth_active) { 1760 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1761 } 1762 return true; 1763 } 1764 1765 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1766 { 1767 /* Without RAS, we must implement this as NOP. */ 1768 if (dc_isar_feature(aa64_ras, s)) { 1769 /* 1770 * QEMU does not have a source of physical SErrors, 1771 * so we are only concerned with virtual SErrors. 1772 * The pseudocode in the ARM for this case is 1773 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1774 * AArch64.vESBOperation(); 1775 * Most of the condition can be evaluated at translation time. 1776 * Test for EL2 present, and defer test for SEL2 to runtime. 1777 */ 1778 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1779 gen_helper_vesb(cpu_env); 1780 } 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1794 { 1795 if (s->pauth_active) { 1796 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1797 } 1798 return true; 1799 } 1800 1801 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1802 { 1803 if (s->pauth_active) { 1804 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1805 } 1806 return true; 1807 } 1808 1809 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1810 { 1811 if (s->pauth_active) { 1812 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1813 } 1814 return true; 1815 } 1816 1817 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1818 { 1819 if (s->pauth_active) { 1820 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1821 } 1822 return true; 1823 } 1824 1825 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1826 { 1827 if (s->pauth_active) { 1828 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1829 } 1830 return true; 1831 } 1832 1833 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1834 { 1835 if (s->pauth_active) { 1836 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1837 } 1838 return true; 1839 } 1840 1841 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1842 { 1843 if (s->pauth_active) { 1844 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1845 } 1846 return true; 1847 } 1848 1849 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1850 { 1851 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1852 return true; 1853 } 1854 1855 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1856 { 1857 /* We handle DSB and DMB the same way */ 1858 TCGBar bar; 1859 1860 switch (a->types) { 1861 case 1: /* MBReqTypes_Reads */ 1862 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1863 break; 1864 case 2: /* MBReqTypes_Writes */ 1865 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1866 break; 1867 default: /* MBReqTypes_All */ 1868 bar = TCG_BAR_SC | TCG_MO_ALL; 1869 break; 1870 } 1871 tcg_gen_mb(bar); 1872 return true; 1873 } 1874 1875 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1876 { 1877 /* 1878 * We need to break the TB after this insn to execute 1879 * self-modifying code correctly and also to take 1880 * any pending interrupts immediately. 1881 */ 1882 reset_btype(s); 1883 gen_goto_tb(s, 0, 4); 1884 return true; 1885 } 1886 1887 static bool trans_SB(DisasContext *s, arg_SB *a) 1888 { 1889 if (!dc_isar_feature(aa64_sb, s)) { 1890 return false; 1891 } 1892 /* 1893 * TODO: There is no speculation barrier opcode for TCG; 1894 * MB and end the TB instead. 1895 */ 1896 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1897 gen_goto_tb(s, 0, 4); 1898 return true; 1899 } 1900 1901 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1902 { 1903 if (!dc_isar_feature(aa64_condm_4, s)) { 1904 return false; 1905 } 1906 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1907 return true; 1908 } 1909 1910 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1911 { 1912 TCGv_i32 z; 1913 1914 if (!dc_isar_feature(aa64_condm_5, s)) { 1915 return false; 1916 } 1917 1918 z = tcg_temp_new_i32(); 1919 1920 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1921 1922 /* 1923 * (!C & !Z) << 31 1924 * (!(C | Z)) << 31 1925 * ~((C | Z) << 31) 1926 * ~-(C | Z) 1927 * (C | Z) - 1 1928 */ 1929 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1930 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1931 1932 /* !(Z & C) */ 1933 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1934 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1935 1936 /* (!C & Z) << 31 -> -(Z & ~C) */ 1937 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1938 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1939 1940 /* C | Z */ 1941 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1942 1943 return true; 1944 } 1945 1946 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1947 { 1948 if (!dc_isar_feature(aa64_condm_5, s)) { 1949 return false; 1950 } 1951 1952 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1953 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1954 1955 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1956 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1957 1958 tcg_gen_movi_i32(cpu_NF, 0); 1959 tcg_gen_movi_i32(cpu_VF, 0); 1960 1961 return true; 1962 } 1963 1964 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1965 { 1966 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1967 return false; 1968 } 1969 if (a->imm & 1) { 1970 set_pstate_bits(PSTATE_UAO); 1971 } else { 1972 clear_pstate_bits(PSTATE_UAO); 1973 } 1974 gen_rebuild_hflags(s); 1975 s->base.is_jmp = DISAS_TOO_MANY; 1976 return true; 1977 } 1978 1979 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1980 { 1981 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1982 return false; 1983 } 1984 if (a->imm & 1) { 1985 set_pstate_bits(PSTATE_PAN); 1986 } else { 1987 clear_pstate_bits(PSTATE_PAN); 1988 } 1989 gen_rebuild_hflags(s); 1990 s->base.is_jmp = DISAS_TOO_MANY; 1991 return true; 1992 } 1993 1994 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1995 { 1996 if (s->current_el == 0) { 1997 return false; 1998 } 1999 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2000 s->base.is_jmp = DISAS_TOO_MANY; 2001 return true; 2002 } 2003 2004 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2005 { 2006 if (!dc_isar_feature(aa64_ssbs, s)) { 2007 return false; 2008 } 2009 if (a->imm & 1) { 2010 set_pstate_bits(PSTATE_SSBS); 2011 } else { 2012 clear_pstate_bits(PSTATE_SSBS); 2013 } 2014 /* Don't need to rebuild hflags since SSBS is a nop */ 2015 s->base.is_jmp = DISAS_TOO_MANY; 2016 return true; 2017 } 2018 2019 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2020 { 2021 if (!dc_isar_feature(aa64_dit, s)) { 2022 return false; 2023 } 2024 if (a->imm & 1) { 2025 set_pstate_bits(PSTATE_DIT); 2026 } else { 2027 clear_pstate_bits(PSTATE_DIT); 2028 } 2029 /* There's no need to rebuild hflags because DIT is a nop */ 2030 s->base.is_jmp = DISAS_TOO_MANY; 2031 return true; 2032 } 2033 2034 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2035 { 2036 if (dc_isar_feature(aa64_mte, s)) { 2037 /* Full MTE is enabled -- set the TCO bit as directed. */ 2038 if (a->imm & 1) { 2039 set_pstate_bits(PSTATE_TCO); 2040 } else { 2041 clear_pstate_bits(PSTATE_TCO); 2042 } 2043 gen_rebuild_hflags(s); 2044 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2045 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2046 return true; 2047 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2048 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2049 return true; 2050 } else { 2051 /* Insn not present */ 2052 return false; 2053 } 2054 } 2055 2056 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2057 { 2058 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm)); 2059 s->base.is_jmp = DISAS_TOO_MANY; 2060 return true; 2061 } 2062 2063 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2064 { 2065 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm)); 2066 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2067 s->base.is_jmp = DISAS_UPDATE_EXIT; 2068 return true; 2069 } 2070 2071 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2072 { 2073 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2074 return false; 2075 } 2076 if (sme_access_check(s)) { 2077 int old = s->pstate_sm | (s->pstate_za << 1); 2078 int new = a->imm * 3; 2079 2080 if ((old ^ new) & a->mask) { 2081 /* At least one bit changes. */ 2082 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2083 tcg_constant_i32(a->mask)); 2084 s->base.is_jmp = DISAS_TOO_MANY; 2085 } 2086 } 2087 return true; 2088 } 2089 2090 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2091 { 2092 TCGv_i32 tmp = tcg_temp_new_i32(); 2093 TCGv_i32 nzcv = tcg_temp_new_i32(); 2094 2095 /* build bit 31, N */ 2096 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2097 /* build bit 30, Z */ 2098 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2099 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2100 /* build bit 29, C */ 2101 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2102 /* build bit 28, V */ 2103 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2104 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2105 /* generate result */ 2106 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2107 } 2108 2109 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2110 { 2111 TCGv_i32 nzcv = tcg_temp_new_i32(); 2112 2113 /* take NZCV from R[t] */ 2114 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2115 2116 /* bit 31, N */ 2117 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2118 /* bit 30, Z */ 2119 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2120 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2121 /* bit 29, C */ 2122 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2123 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2124 /* bit 28, V */ 2125 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2126 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2127 } 2128 2129 static void gen_sysreg_undef(DisasContext *s, bool isread, 2130 uint8_t op0, uint8_t op1, uint8_t op2, 2131 uint8_t crn, uint8_t crm, uint8_t rt) 2132 { 2133 /* 2134 * Generate code to emit an UNDEF with correct syndrome 2135 * information for a failed system register access. 2136 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2137 * but if FEAT_IDST is implemented then read accesses to registers 2138 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2139 * syndrome. 2140 */ 2141 uint32_t syndrome; 2142 2143 if (isread && dc_isar_feature(aa64_ids, s) && 2144 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2145 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2146 } else { 2147 syndrome = syn_uncategorized(); 2148 } 2149 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2150 } 2151 2152 /* MRS - move from system register 2153 * MSR (register) - move to system register 2154 * SYS 2155 * SYSL 2156 * These are all essentially the same insn in 'read' and 'write' 2157 * versions, with varying op0 fields. 2158 */ 2159 static void handle_sys(DisasContext *s, bool isread, 2160 unsigned int op0, unsigned int op1, unsigned int op2, 2161 unsigned int crn, unsigned int crm, unsigned int rt) 2162 { 2163 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2164 crn, crm, op0, op1, op2); 2165 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2166 bool need_exit_tb = false; 2167 TCGv_ptr tcg_ri = NULL; 2168 TCGv_i64 tcg_rt; 2169 uint32_t syndrome; 2170 2171 if (crn == 11 || crn == 15) { 2172 /* 2173 * Check for TIDCP trap, which must take precedence over 2174 * the UNDEF for "no such register" etc. 2175 */ 2176 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2177 switch (s->current_el) { 2178 case 0: 2179 if (dc_isar_feature(aa64_tidcp1, s)) { 2180 gen_helper_tidcp_el0(cpu_env, tcg_constant_i32(syndrome)); 2181 } 2182 break; 2183 case 1: 2184 gen_helper_tidcp_el1(cpu_env, tcg_constant_i32(syndrome)); 2185 break; 2186 } 2187 } 2188 2189 if (!ri) { 2190 /* Unknown register; this might be a guest error or a QEMU 2191 * unimplemented feature. 2192 */ 2193 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2194 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2195 isread ? "read" : "write", op0, op1, crn, crm, op2); 2196 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2197 return; 2198 } 2199 2200 /* Check access permissions */ 2201 if (!cp_access_ok(s->current_el, ri, isread)) { 2202 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2203 return; 2204 } 2205 2206 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2207 /* Emit code to perform further access permissions checks at 2208 * runtime; this may result in an exception. 2209 */ 2210 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2211 gen_a64_update_pc(s, 0); 2212 tcg_ri = tcg_temp_new_ptr(); 2213 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2214 tcg_constant_i32(key), 2215 tcg_constant_i32(syndrome), 2216 tcg_constant_i32(isread)); 2217 } else if (ri->type & ARM_CP_RAISES_EXC) { 2218 /* 2219 * The readfn or writefn might raise an exception; 2220 * synchronize the CPU state in case it does. 2221 */ 2222 gen_a64_update_pc(s, 0); 2223 } 2224 2225 /* Handle special cases first */ 2226 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2227 case 0: 2228 break; 2229 case ARM_CP_NOP: 2230 return; 2231 case ARM_CP_NZCV: 2232 tcg_rt = cpu_reg(s, rt); 2233 if (isread) { 2234 gen_get_nzcv(tcg_rt); 2235 } else { 2236 gen_set_nzcv(tcg_rt); 2237 } 2238 return; 2239 case ARM_CP_CURRENTEL: 2240 /* Reads as current EL value from pstate, which is 2241 * guaranteed to be constant by the tb flags. 2242 */ 2243 tcg_rt = cpu_reg(s, rt); 2244 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2245 return; 2246 case ARM_CP_DC_ZVA: 2247 /* Writes clear the aligned block of memory which rt points into. */ 2248 if (s->mte_active[0]) { 2249 int desc = 0; 2250 2251 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2252 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2253 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2254 2255 tcg_rt = tcg_temp_new_i64(); 2256 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2257 tcg_constant_i32(desc), cpu_reg(s, rt)); 2258 } else { 2259 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2260 } 2261 gen_helper_dc_zva(cpu_env, tcg_rt); 2262 return; 2263 case ARM_CP_DC_GVA: 2264 { 2265 TCGv_i64 clean_addr, tag; 2266 2267 /* 2268 * DC_GVA, like DC_ZVA, requires that we supply the original 2269 * pointer for an invalid page. Probe that address first. 2270 */ 2271 tcg_rt = cpu_reg(s, rt); 2272 clean_addr = clean_data_tbi(s, tcg_rt); 2273 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2274 2275 if (s->ata[0]) { 2276 /* Extract the tag from the register to match STZGM. */ 2277 tag = tcg_temp_new_i64(); 2278 tcg_gen_shri_i64(tag, tcg_rt, 56); 2279 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2280 } 2281 } 2282 return; 2283 case ARM_CP_DC_GZVA: 2284 { 2285 TCGv_i64 clean_addr, tag; 2286 2287 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2288 tcg_rt = cpu_reg(s, rt); 2289 clean_addr = clean_data_tbi(s, tcg_rt); 2290 gen_helper_dc_zva(cpu_env, clean_addr); 2291 2292 if (s->ata[0]) { 2293 /* Extract the tag from the register to match STZGM. */ 2294 tag = tcg_temp_new_i64(); 2295 tcg_gen_shri_i64(tag, tcg_rt, 56); 2296 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2297 } 2298 } 2299 return; 2300 default: 2301 g_assert_not_reached(); 2302 } 2303 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2304 return; 2305 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2306 return; 2307 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2308 return; 2309 } 2310 2311 if (ri->type & ARM_CP_IO) { 2312 /* I/O operations must end the TB here (whether read or write) */ 2313 need_exit_tb = translator_io_start(&s->base); 2314 } 2315 2316 tcg_rt = cpu_reg(s, rt); 2317 2318 if (isread) { 2319 if (ri->type & ARM_CP_CONST) { 2320 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2321 } else if (ri->readfn) { 2322 if (!tcg_ri) { 2323 tcg_ri = gen_lookup_cp_reg(key); 2324 } 2325 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2326 } else { 2327 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2328 } 2329 } else { 2330 if (ri->type & ARM_CP_CONST) { 2331 /* If not forbidden by access permissions, treat as WI */ 2332 return; 2333 } else if (ri->writefn) { 2334 if (!tcg_ri) { 2335 tcg_ri = gen_lookup_cp_reg(key); 2336 } 2337 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2338 } else { 2339 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2340 } 2341 } 2342 2343 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2344 /* 2345 * A write to any coprocessor register that ends a TB 2346 * must rebuild the hflags for the next TB. 2347 */ 2348 gen_rebuild_hflags(s); 2349 /* 2350 * We default to ending the TB on a coprocessor register write, 2351 * but allow this to be suppressed by the register definition 2352 * (usually only necessary to work around guest bugs). 2353 */ 2354 need_exit_tb = true; 2355 } 2356 if (need_exit_tb) { 2357 s->base.is_jmp = DISAS_UPDATE_EXIT; 2358 } 2359 } 2360 2361 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2362 { 2363 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2364 return true; 2365 } 2366 2367 static bool trans_SVC(DisasContext *s, arg_i *a) 2368 { 2369 /* 2370 * For SVC, HVC and SMC we advance the single-step state 2371 * machine before taking the exception. This is architecturally 2372 * mandated, to ensure that single-stepping a system call 2373 * instruction works properly. 2374 */ 2375 uint32_t syndrome = syn_aa64_svc(a->imm); 2376 if (s->fgt_svc) { 2377 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2378 return true; 2379 } 2380 gen_ss_advance(s); 2381 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2382 return true; 2383 } 2384 2385 static bool trans_HVC(DisasContext *s, arg_i *a) 2386 { 2387 if (s->current_el == 0) { 2388 unallocated_encoding(s); 2389 return true; 2390 } 2391 /* 2392 * The pre HVC helper handles cases when HVC gets trapped 2393 * as an undefined insn by runtime configuration. 2394 */ 2395 gen_a64_update_pc(s, 0); 2396 gen_helper_pre_hvc(cpu_env); 2397 /* Architecture requires ss advance before we do the actual work */ 2398 gen_ss_advance(s); 2399 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2); 2400 return true; 2401 } 2402 2403 static bool trans_SMC(DisasContext *s, arg_i *a) 2404 { 2405 if (s->current_el == 0) { 2406 unallocated_encoding(s); 2407 return true; 2408 } 2409 gen_a64_update_pc(s, 0); 2410 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2411 /* Architecture requires ss advance before we do the actual work */ 2412 gen_ss_advance(s); 2413 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2414 return true; 2415 } 2416 2417 static bool trans_BRK(DisasContext *s, arg_i *a) 2418 { 2419 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2420 return true; 2421 } 2422 2423 static bool trans_HLT(DisasContext *s, arg_i *a) 2424 { 2425 /* 2426 * HLT. This has two purposes. 2427 * Architecturally, it is an external halting debug instruction. 2428 * Since QEMU doesn't implement external debug, we treat this as 2429 * it is required for halting debug disabled: it will UNDEF. 2430 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2431 */ 2432 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2433 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2434 } else { 2435 unallocated_encoding(s); 2436 } 2437 return true; 2438 } 2439 2440 /* 2441 * Load/Store exclusive instructions are implemented by remembering 2442 * the value/address loaded, and seeing if these are the same 2443 * when the store is performed. This is not actually the architecturally 2444 * mandated semantics, but it works for typical guest code sequences 2445 * and avoids having to monitor regular stores. 2446 * 2447 * The store exclusive uses the atomic cmpxchg primitives to avoid 2448 * races in multi-threaded linux-user and when MTTCG softmmu is 2449 * enabled. 2450 */ 2451 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2452 int size, bool is_pair) 2453 { 2454 int idx = get_mem_index(s); 2455 TCGv_i64 dirty_addr, clean_addr; 2456 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2457 2458 s->is_ldex = true; 2459 dirty_addr = cpu_reg_sp(s, rn); 2460 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2461 2462 g_assert(size <= 3); 2463 if (is_pair) { 2464 g_assert(size >= 2); 2465 if (size == 2) { 2466 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2467 if (s->be_data == MO_LE) { 2468 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2469 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2470 } else { 2471 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2472 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2473 } 2474 } else { 2475 TCGv_i128 t16 = tcg_temp_new_i128(); 2476 2477 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2478 2479 if (s->be_data == MO_LE) { 2480 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2481 cpu_exclusive_high, t16); 2482 } else { 2483 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2484 cpu_exclusive_val, t16); 2485 } 2486 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2487 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2488 } 2489 } else { 2490 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2491 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2492 } 2493 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2494 } 2495 2496 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2497 int rn, int size, int is_pair) 2498 { 2499 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2500 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2501 * [addr] = {Rt}; 2502 * if (is_pair) { 2503 * [addr + datasize] = {Rt2}; 2504 * } 2505 * {Rd} = 0; 2506 * } else { 2507 * {Rd} = 1; 2508 * } 2509 * env->exclusive_addr = -1; 2510 */ 2511 TCGLabel *fail_label = gen_new_label(); 2512 TCGLabel *done_label = gen_new_label(); 2513 TCGv_i64 tmp, clean_addr; 2514 MemOp memop; 2515 2516 /* 2517 * FIXME: We are out of spec here. We have recorded only the address 2518 * from load_exclusive, not the entire range, and we assume that the 2519 * size of the access on both sides match. The architecture allows the 2520 * store to be smaller than the load, so long as the stored bytes are 2521 * within the range recorded by the load. 2522 */ 2523 2524 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2525 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2526 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2527 2528 /* 2529 * The write, and any associated faults, only happen if the virtual 2530 * and physical addresses pass the exclusive monitor check. These 2531 * faults are exceedingly unlikely, because normally the guest uses 2532 * the exact same address register for the load_exclusive, and we 2533 * would have recognized these faults there. 2534 * 2535 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2536 * unaligned 4-byte write within the range of an aligned 8-byte load. 2537 * With LSE2, the store would need to cross a 16-byte boundary when the 2538 * load did not, which would mean the store is outside the range 2539 * recorded for the monitor, which would have failed a corrected monitor 2540 * check above. For now, we assume no size change and retain the 2541 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2542 * 2543 * It is possible to trigger an MTE fault, by performing the load with 2544 * a virtual address with a valid tag and performing the store with the 2545 * same virtual address and a different invalid tag. 2546 */ 2547 memop = size + is_pair; 2548 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2549 memop |= MO_ALIGN; 2550 } 2551 memop = finalize_memop(s, memop); 2552 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2553 2554 tmp = tcg_temp_new_i64(); 2555 if (is_pair) { 2556 if (size == 2) { 2557 if (s->be_data == MO_LE) { 2558 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2559 } else { 2560 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2561 } 2562 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2563 cpu_exclusive_val, tmp, 2564 get_mem_index(s), memop); 2565 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2566 } else { 2567 TCGv_i128 t16 = tcg_temp_new_i128(); 2568 TCGv_i128 c16 = tcg_temp_new_i128(); 2569 TCGv_i64 a, b; 2570 2571 if (s->be_data == MO_LE) { 2572 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2573 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2574 cpu_exclusive_high); 2575 } else { 2576 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2577 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2578 cpu_exclusive_val); 2579 } 2580 2581 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2582 get_mem_index(s), memop); 2583 2584 a = tcg_temp_new_i64(); 2585 b = tcg_temp_new_i64(); 2586 if (s->be_data == MO_LE) { 2587 tcg_gen_extr_i128_i64(a, b, t16); 2588 } else { 2589 tcg_gen_extr_i128_i64(b, a, t16); 2590 } 2591 2592 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2593 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2594 tcg_gen_or_i64(tmp, a, b); 2595 2596 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2597 } 2598 } else { 2599 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2600 cpu_reg(s, rt), get_mem_index(s), memop); 2601 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2602 } 2603 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2604 tcg_gen_br(done_label); 2605 2606 gen_set_label(fail_label); 2607 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2608 gen_set_label(done_label); 2609 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2610 } 2611 2612 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2613 int rn, int size) 2614 { 2615 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2616 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2617 int memidx = get_mem_index(s); 2618 TCGv_i64 clean_addr; 2619 MemOp memop; 2620 2621 if (rn == 31) { 2622 gen_check_sp_alignment(s); 2623 } 2624 memop = check_atomic_align(s, rn, size); 2625 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2626 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2627 memidx, memop); 2628 } 2629 2630 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2631 int rn, int size) 2632 { 2633 TCGv_i64 s1 = cpu_reg(s, rs); 2634 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2635 TCGv_i64 t1 = cpu_reg(s, rt); 2636 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2637 TCGv_i64 clean_addr; 2638 int memidx = get_mem_index(s); 2639 MemOp memop; 2640 2641 if (rn == 31) { 2642 gen_check_sp_alignment(s); 2643 } 2644 2645 /* This is a single atomic access, despite the "pair". */ 2646 memop = check_atomic_align(s, rn, size + 1); 2647 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2648 2649 if (size == 2) { 2650 TCGv_i64 cmp = tcg_temp_new_i64(); 2651 TCGv_i64 val = tcg_temp_new_i64(); 2652 2653 if (s->be_data == MO_LE) { 2654 tcg_gen_concat32_i64(val, t1, t2); 2655 tcg_gen_concat32_i64(cmp, s1, s2); 2656 } else { 2657 tcg_gen_concat32_i64(val, t2, t1); 2658 tcg_gen_concat32_i64(cmp, s2, s1); 2659 } 2660 2661 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2662 2663 if (s->be_data == MO_LE) { 2664 tcg_gen_extr32_i64(s1, s2, cmp); 2665 } else { 2666 tcg_gen_extr32_i64(s2, s1, cmp); 2667 } 2668 } else { 2669 TCGv_i128 cmp = tcg_temp_new_i128(); 2670 TCGv_i128 val = tcg_temp_new_i128(); 2671 2672 if (s->be_data == MO_LE) { 2673 tcg_gen_concat_i64_i128(val, t1, t2); 2674 tcg_gen_concat_i64_i128(cmp, s1, s2); 2675 } else { 2676 tcg_gen_concat_i64_i128(val, t2, t1); 2677 tcg_gen_concat_i64_i128(cmp, s2, s1); 2678 } 2679 2680 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2681 2682 if (s->be_data == MO_LE) { 2683 tcg_gen_extr_i128_i64(s1, s2, cmp); 2684 } else { 2685 tcg_gen_extr_i128_i64(s2, s1, cmp); 2686 } 2687 } 2688 } 2689 2690 /* 2691 * Compute the ISS.SF bit for syndrome information if an exception 2692 * is taken on a load or store. This indicates whether the instruction 2693 * is accessing a 32-bit or 64-bit register. This logic is derived 2694 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2695 */ 2696 static bool ldst_iss_sf(int size, bool sign, bool ext) 2697 { 2698 2699 if (sign) { 2700 /* 2701 * Signed loads are 64 bit results if we are not going to 2702 * do a zero-extend from 32 to 64 after the load. 2703 * (For a store, sign and ext are always false.) 2704 */ 2705 return !ext; 2706 } else { 2707 /* Unsigned loads/stores work at the specified size */ 2708 return size == MO_64; 2709 } 2710 } 2711 2712 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2713 { 2714 if (a->rn == 31) { 2715 gen_check_sp_alignment(s); 2716 } 2717 if (a->lasr) { 2718 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2719 } 2720 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2721 return true; 2722 } 2723 2724 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2725 { 2726 if (a->rn == 31) { 2727 gen_check_sp_alignment(s); 2728 } 2729 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2730 if (a->lasr) { 2731 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2732 } 2733 return true; 2734 } 2735 2736 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2737 { 2738 TCGv_i64 clean_addr; 2739 MemOp memop; 2740 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2741 2742 /* 2743 * StoreLORelease is the same as Store-Release for QEMU, but 2744 * needs the feature-test. 2745 */ 2746 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2747 return false; 2748 } 2749 /* Generate ISS for non-exclusive accesses including LASR. */ 2750 if (a->rn == 31) { 2751 gen_check_sp_alignment(s); 2752 } 2753 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2754 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2755 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2756 true, a->rn != 31, memop); 2757 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2758 iss_sf, a->lasr); 2759 return true; 2760 } 2761 2762 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2763 { 2764 TCGv_i64 clean_addr; 2765 MemOp memop; 2766 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2767 2768 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2769 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2770 return false; 2771 } 2772 /* Generate ISS for non-exclusive accesses including LASR. */ 2773 if (a->rn == 31) { 2774 gen_check_sp_alignment(s); 2775 } 2776 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2777 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2778 false, a->rn != 31, memop); 2779 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2780 a->rt, iss_sf, a->lasr); 2781 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2782 return true; 2783 } 2784 2785 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2786 { 2787 if (a->rn == 31) { 2788 gen_check_sp_alignment(s); 2789 } 2790 if (a->lasr) { 2791 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2792 } 2793 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2794 return true; 2795 } 2796 2797 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2798 { 2799 if (a->rn == 31) { 2800 gen_check_sp_alignment(s); 2801 } 2802 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2803 if (a->lasr) { 2804 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2805 } 2806 return true; 2807 } 2808 2809 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2810 { 2811 if (!dc_isar_feature(aa64_atomics, s)) { 2812 return false; 2813 } 2814 if (((a->rt | a->rs) & 1) != 0) { 2815 return false; 2816 } 2817 2818 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2819 return true; 2820 } 2821 2822 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2823 { 2824 if (!dc_isar_feature(aa64_atomics, s)) { 2825 return false; 2826 } 2827 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2828 return true; 2829 } 2830 2831 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2832 { 2833 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2834 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2835 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2836 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2837 2838 gen_pc_plus_diff(s, clean_addr, a->imm); 2839 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2840 false, true, a->rt, iss_sf, false); 2841 return true; 2842 } 2843 2844 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2845 { 2846 /* Load register (literal), vector version */ 2847 TCGv_i64 clean_addr; 2848 MemOp memop; 2849 2850 if (!fp_access_check(s)) { 2851 return true; 2852 } 2853 memop = finalize_memop_asimd(s, a->sz); 2854 clean_addr = tcg_temp_new_i64(); 2855 gen_pc_plus_diff(s, clean_addr, a->imm); 2856 do_fp_ld(s, a->rt, clean_addr, memop); 2857 return true; 2858 } 2859 2860 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2861 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2862 uint64_t offset, bool is_store, MemOp mop) 2863 { 2864 if (a->rn == 31) { 2865 gen_check_sp_alignment(s); 2866 } 2867 2868 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2869 if (!a->p) { 2870 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2871 } 2872 2873 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2874 (a->w || a->rn != 31), 2 << a->sz, mop); 2875 } 2876 2877 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2878 TCGv_i64 dirty_addr, uint64_t offset) 2879 { 2880 if (a->w) { 2881 if (a->p) { 2882 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2883 } 2884 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2885 } 2886 } 2887 2888 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2889 { 2890 uint64_t offset = a->imm << a->sz; 2891 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2892 MemOp mop = finalize_memop(s, a->sz); 2893 2894 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2895 tcg_rt = cpu_reg(s, a->rt); 2896 tcg_rt2 = cpu_reg(s, a->rt2); 2897 /* 2898 * We built mop above for the single logical access -- rebuild it 2899 * now for the paired operation. 2900 * 2901 * With LSE2, non-sign-extending pairs are treated atomically if 2902 * aligned, and if unaligned one of the pair will be completely 2903 * within a 16-byte block and that element will be atomic. 2904 * Otherwise each element is separately atomic. 2905 * In all cases, issue one operation with the correct atomicity. 2906 */ 2907 mop = a->sz + 1; 2908 if (s->align_mem) { 2909 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2910 } 2911 mop = finalize_memop_pair(s, mop); 2912 if (a->sz == 2) { 2913 TCGv_i64 tmp = tcg_temp_new_i64(); 2914 2915 if (s->be_data == MO_LE) { 2916 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2917 } else { 2918 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2919 } 2920 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2921 } else { 2922 TCGv_i128 tmp = tcg_temp_new_i128(); 2923 2924 if (s->be_data == MO_LE) { 2925 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 2926 } else { 2927 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 2928 } 2929 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 2930 } 2931 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2932 return true; 2933 } 2934 2935 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 2936 { 2937 uint64_t offset = a->imm << a->sz; 2938 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2939 MemOp mop = finalize_memop(s, a->sz); 2940 2941 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2942 tcg_rt = cpu_reg(s, a->rt); 2943 tcg_rt2 = cpu_reg(s, a->rt2); 2944 2945 /* 2946 * We built mop above for the single logical access -- rebuild it 2947 * now for the paired operation. 2948 * 2949 * With LSE2, non-sign-extending pairs are treated atomically if 2950 * aligned, and if unaligned one of the pair will be completely 2951 * within a 16-byte block and that element will be atomic. 2952 * Otherwise each element is separately atomic. 2953 * In all cases, issue one operation with the correct atomicity. 2954 * 2955 * This treats sign-extending loads like zero-extending loads, 2956 * since that reuses the most code below. 2957 */ 2958 mop = a->sz + 1; 2959 if (s->align_mem) { 2960 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2961 } 2962 mop = finalize_memop_pair(s, mop); 2963 if (a->sz == 2) { 2964 int o2 = s->be_data == MO_LE ? 32 : 0; 2965 int o1 = o2 ^ 32; 2966 2967 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2968 if (a->sign) { 2969 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2970 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2971 } else { 2972 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2973 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2974 } 2975 } else { 2976 TCGv_i128 tmp = tcg_temp_new_i128(); 2977 2978 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2979 if (s->be_data == MO_LE) { 2980 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2981 } else { 2982 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2983 } 2984 } 2985 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2986 return true; 2987 } 2988 2989 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 2990 { 2991 uint64_t offset = a->imm << a->sz; 2992 TCGv_i64 clean_addr, dirty_addr; 2993 MemOp mop; 2994 2995 if (!fp_access_check(s)) { 2996 return true; 2997 } 2998 2999 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3000 mop = finalize_memop_asimd(s, a->sz); 3001 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3002 do_fp_st(s, a->rt, clean_addr, mop); 3003 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3004 do_fp_st(s, a->rt2, clean_addr, mop); 3005 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3006 return true; 3007 } 3008 3009 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3010 { 3011 uint64_t offset = a->imm << a->sz; 3012 TCGv_i64 clean_addr, dirty_addr; 3013 MemOp mop; 3014 3015 if (!fp_access_check(s)) { 3016 return true; 3017 } 3018 3019 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3020 mop = finalize_memop_asimd(s, a->sz); 3021 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3022 do_fp_ld(s, a->rt, clean_addr, mop); 3023 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3024 do_fp_ld(s, a->rt2, clean_addr, mop); 3025 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3026 return true; 3027 } 3028 3029 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3030 { 3031 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3032 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3033 MemOp mop; 3034 TCGv_i128 tmp; 3035 3036 /* STGP only comes in one size. */ 3037 tcg_debug_assert(a->sz == MO_64); 3038 3039 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3040 return false; 3041 } 3042 3043 if (a->rn == 31) { 3044 gen_check_sp_alignment(s); 3045 } 3046 3047 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3048 if (!a->p) { 3049 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3050 } 3051 3052 clean_addr = clean_data_tbi(s, dirty_addr); 3053 tcg_rt = cpu_reg(s, a->rt); 3054 tcg_rt2 = cpu_reg(s, a->rt2); 3055 3056 /* 3057 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3058 * and one tag operation. We implement it as one single aligned 16-byte 3059 * memory operation for convenience. Note that the alignment ensures 3060 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3061 */ 3062 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3063 3064 tmp = tcg_temp_new_i128(); 3065 if (s->be_data == MO_LE) { 3066 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3067 } else { 3068 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3069 } 3070 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3071 3072 /* Perform the tag store, if tag access enabled. */ 3073 if (s->ata[0]) { 3074 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3075 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3076 } else { 3077 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3078 } 3079 } 3080 3081 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3082 return true; 3083 } 3084 3085 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3086 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3087 uint64_t offset, bool is_store, MemOp mop) 3088 { 3089 int memidx; 3090 3091 if (a->rn == 31) { 3092 gen_check_sp_alignment(s); 3093 } 3094 3095 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3096 if (!a->p) { 3097 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3098 } 3099 memidx = get_a64_user_mem_index(s, a->unpriv); 3100 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3101 a->w || a->rn != 31, 3102 mop, a->unpriv, memidx); 3103 } 3104 3105 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3106 TCGv_i64 dirty_addr, uint64_t offset) 3107 { 3108 if (a->w) { 3109 if (a->p) { 3110 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3111 } 3112 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3113 } 3114 } 3115 3116 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3117 { 3118 bool iss_sf, iss_valid = !a->w; 3119 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3120 int memidx = get_a64_user_mem_index(s, a->unpriv); 3121 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3122 3123 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3124 3125 tcg_rt = cpu_reg(s, a->rt); 3126 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3127 3128 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3129 iss_valid, a->rt, iss_sf, false); 3130 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3131 return true; 3132 } 3133 3134 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3135 { 3136 bool iss_sf, iss_valid = !a->w; 3137 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3138 int memidx = get_a64_user_mem_index(s, a->unpriv); 3139 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3140 3141 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3142 3143 tcg_rt = cpu_reg(s, a->rt); 3144 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3145 3146 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3147 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3148 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3149 return true; 3150 } 3151 3152 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3153 { 3154 TCGv_i64 clean_addr, dirty_addr; 3155 MemOp mop; 3156 3157 if (!fp_access_check(s)) { 3158 return true; 3159 } 3160 mop = finalize_memop_asimd(s, a->sz); 3161 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3162 do_fp_st(s, a->rt, clean_addr, mop); 3163 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3164 return true; 3165 } 3166 3167 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3168 { 3169 TCGv_i64 clean_addr, dirty_addr; 3170 MemOp mop; 3171 3172 if (!fp_access_check(s)) { 3173 return true; 3174 } 3175 mop = finalize_memop_asimd(s, a->sz); 3176 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3177 do_fp_ld(s, a->rt, clean_addr, mop); 3178 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3179 return true; 3180 } 3181 3182 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3183 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3184 bool is_store, MemOp memop) 3185 { 3186 TCGv_i64 tcg_rm; 3187 3188 if (a->rn == 31) { 3189 gen_check_sp_alignment(s); 3190 } 3191 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3192 3193 tcg_rm = read_cpu_reg(s, a->rm, 1); 3194 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3195 3196 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3197 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3198 } 3199 3200 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3201 { 3202 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3203 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3204 MemOp memop; 3205 3206 if (extract32(a->opt, 1, 1) == 0) { 3207 return false; 3208 } 3209 3210 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3211 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3214 a->ext, true, a->rt, iss_sf, false); 3215 return true; 3216 } 3217 3218 static bool trans_STR(DisasContext *s, arg_ldst *a) 3219 { 3220 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3221 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3222 MemOp memop; 3223 3224 if (extract32(a->opt, 1, 1) == 0) { 3225 return false; 3226 } 3227 3228 memop = finalize_memop(s, a->sz); 3229 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3230 tcg_rt = cpu_reg(s, a->rt); 3231 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3232 return true; 3233 } 3234 3235 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3236 { 3237 TCGv_i64 clean_addr, dirty_addr; 3238 MemOp memop; 3239 3240 if (extract32(a->opt, 1, 1) == 0) { 3241 return false; 3242 } 3243 3244 if (!fp_access_check(s)) { 3245 return true; 3246 } 3247 3248 memop = finalize_memop_asimd(s, a->sz); 3249 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3250 do_fp_ld(s, a->rt, clean_addr, memop); 3251 return true; 3252 } 3253 3254 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3255 { 3256 TCGv_i64 clean_addr, dirty_addr; 3257 MemOp memop; 3258 3259 if (extract32(a->opt, 1, 1) == 0) { 3260 return false; 3261 } 3262 3263 if (!fp_access_check(s)) { 3264 return true; 3265 } 3266 3267 memop = finalize_memop_asimd(s, a->sz); 3268 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3269 do_fp_st(s, a->rt, clean_addr, memop); 3270 return true; 3271 } 3272 3273 3274 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3275 int sign, bool invert) 3276 { 3277 MemOp mop = a->sz | sign; 3278 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3279 3280 if (a->rn == 31) { 3281 gen_check_sp_alignment(s); 3282 } 3283 mop = check_atomic_align(s, a->rn, mop); 3284 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3285 a->rn != 31, mop); 3286 tcg_rs = read_cpu_reg(s, a->rs, true); 3287 tcg_rt = cpu_reg(s, a->rt); 3288 if (invert) { 3289 tcg_gen_not_i64(tcg_rs, tcg_rs); 3290 } 3291 /* 3292 * The tcg atomic primitives are all full barriers. Therefore we 3293 * can ignore the Acquire and Release bits of this instruction. 3294 */ 3295 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3296 3297 if (mop & MO_SIGN) { 3298 switch (a->sz) { 3299 case MO_8: 3300 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3301 break; 3302 case MO_16: 3303 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3304 break; 3305 case MO_32: 3306 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3307 break; 3308 case MO_64: 3309 break; 3310 default: 3311 g_assert_not_reached(); 3312 } 3313 } 3314 return true; 3315 } 3316 3317 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3318 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3319 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3320 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3321 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3322 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3323 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3324 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3325 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3326 3327 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3328 { 3329 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3330 TCGv_i64 clean_addr; 3331 MemOp mop; 3332 3333 if (!dc_isar_feature(aa64_atomics, s) || 3334 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3335 return false; 3336 } 3337 if (a->rn == 31) { 3338 gen_check_sp_alignment(s); 3339 } 3340 mop = check_atomic_align(s, a->rn, a->sz); 3341 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3342 a->rn != 31, mop); 3343 /* 3344 * LDAPR* are a special case because they are a simple load, not a 3345 * fetch-and-do-something op. 3346 * The architectural consistency requirements here are weaker than 3347 * full load-acquire (we only need "load-acquire processor consistent"), 3348 * but we choose to implement them as full LDAQ. 3349 */ 3350 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3351 true, a->rt, iss_sf, true); 3352 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3353 return true; 3354 } 3355 3356 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3357 { 3358 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3359 MemOp memop; 3360 3361 /* Load with pointer authentication */ 3362 if (!dc_isar_feature(aa64_pauth, s)) { 3363 return false; 3364 } 3365 3366 if (a->rn == 31) { 3367 gen_check_sp_alignment(s); 3368 } 3369 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3370 3371 if (s->pauth_active) { 3372 if (!a->m) { 3373 gen_helper_autda_combined(dirty_addr, cpu_env, dirty_addr, 3374 tcg_constant_i64(0)); 3375 } else { 3376 gen_helper_autdb_combined(dirty_addr, cpu_env, dirty_addr, 3377 tcg_constant_i64(0)); 3378 } 3379 } 3380 3381 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3382 3383 memop = finalize_memop(s, MO_64); 3384 3385 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3386 clean_addr = gen_mte_check1(s, dirty_addr, false, 3387 a->w || a->rn != 31, memop); 3388 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3391 /* extend */ false, /* iss_valid */ !a->w, 3392 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3393 3394 if (a->w) { 3395 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3396 } 3397 return true; 3398 } 3399 3400 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3401 { 3402 TCGv_i64 clean_addr, dirty_addr; 3403 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3404 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3405 3406 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3407 return false; 3408 } 3409 3410 if (a->rn == 31) { 3411 gen_check_sp_alignment(s); 3412 } 3413 3414 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3415 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3416 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3417 clean_addr = clean_data_tbi(s, dirty_addr); 3418 3419 /* 3420 * Load-AcquirePC semantics; we implement as the slightly more 3421 * restrictive Load-Acquire. 3422 */ 3423 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3424 a->rt, iss_sf, true); 3425 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3426 return true; 3427 } 3428 3429 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3430 { 3431 TCGv_i64 clean_addr, dirty_addr; 3432 MemOp mop = a->sz; 3433 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3434 3435 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3436 return false; 3437 } 3438 3439 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3440 3441 if (a->rn == 31) { 3442 gen_check_sp_alignment(s); 3443 } 3444 3445 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3446 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3447 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3448 clean_addr = clean_data_tbi(s, dirty_addr); 3449 3450 /* Store-Release semantics */ 3451 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3452 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3453 return true; 3454 } 3455 3456 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3457 { 3458 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3459 MemOp endian, align, mop; 3460 3461 int total; /* total bytes */ 3462 int elements; /* elements per vector */ 3463 int r; 3464 int size = a->sz; 3465 3466 if (!a->p && a->rm != 0) { 3467 /* For non-postindexed accesses the Rm field must be 0 */ 3468 return false; 3469 } 3470 if (size == 3 && !a->q && a->selem != 1) { 3471 return false; 3472 } 3473 if (!fp_access_check(s)) { 3474 return true; 3475 } 3476 3477 if (a->rn == 31) { 3478 gen_check_sp_alignment(s); 3479 } 3480 3481 /* For our purposes, bytes are always little-endian. */ 3482 endian = s->be_data; 3483 if (size == 0) { 3484 endian = MO_LE; 3485 } 3486 3487 total = a->rpt * a->selem * (a->q ? 16 : 8); 3488 tcg_rn = cpu_reg_sp(s, a->rn); 3489 3490 /* 3491 * Issue the MTE check vs the logical repeat count, before we 3492 * promote consecutive little-endian elements below. 3493 */ 3494 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3495 finalize_memop_asimd(s, size)); 3496 3497 /* 3498 * Consecutive little-endian elements from a single register 3499 * can be promoted to a larger little-endian operation. 3500 */ 3501 align = MO_ALIGN; 3502 if (a->selem == 1 && endian == MO_LE) { 3503 align = pow2_align(size); 3504 size = 3; 3505 } 3506 if (!s->align_mem) { 3507 align = 0; 3508 } 3509 mop = endian | size | align; 3510 3511 elements = (a->q ? 16 : 8) >> size; 3512 tcg_ebytes = tcg_constant_i64(1 << size); 3513 for (r = 0; r < a->rpt; r++) { 3514 int e; 3515 for (e = 0; e < elements; e++) { 3516 int xs; 3517 for (xs = 0; xs < a->selem; xs++) { 3518 int tt = (a->rt + r + xs) % 32; 3519 do_vec_ld(s, tt, e, clean_addr, mop); 3520 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3521 } 3522 } 3523 } 3524 3525 /* 3526 * For non-quad operations, setting a slice of the low 64 bits of 3527 * the register clears the high 64 bits (in the ARM ARM pseudocode 3528 * this is implicit in the fact that 'rval' is a 64 bit wide 3529 * variable). For quad operations, we might still need to zero 3530 * the high bits of SVE. 3531 */ 3532 for (r = 0; r < a->rpt * a->selem; r++) { 3533 int tt = (a->rt + r) % 32; 3534 clear_vec_high(s, a->q, tt); 3535 } 3536 3537 if (a->p) { 3538 if (a->rm == 31) { 3539 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3540 } else { 3541 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3542 } 3543 } 3544 return true; 3545 } 3546 3547 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3548 { 3549 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3550 MemOp endian, align, mop; 3551 3552 int total; /* total bytes */ 3553 int elements; /* elements per vector */ 3554 int r; 3555 int size = a->sz; 3556 3557 if (!a->p && a->rm != 0) { 3558 /* For non-postindexed accesses the Rm field must be 0 */ 3559 return false; 3560 } 3561 if (size == 3 && !a->q && a->selem != 1) { 3562 return false; 3563 } 3564 if (!fp_access_check(s)) { 3565 return true; 3566 } 3567 3568 if (a->rn == 31) { 3569 gen_check_sp_alignment(s); 3570 } 3571 3572 /* For our purposes, bytes are always little-endian. */ 3573 endian = s->be_data; 3574 if (size == 0) { 3575 endian = MO_LE; 3576 } 3577 3578 total = a->rpt * a->selem * (a->q ? 16 : 8); 3579 tcg_rn = cpu_reg_sp(s, a->rn); 3580 3581 /* 3582 * Issue the MTE check vs the logical repeat count, before we 3583 * promote consecutive little-endian elements below. 3584 */ 3585 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3586 finalize_memop_asimd(s, size)); 3587 3588 /* 3589 * Consecutive little-endian elements from a single register 3590 * can be promoted to a larger little-endian operation. 3591 */ 3592 align = MO_ALIGN; 3593 if (a->selem == 1 && endian == MO_LE) { 3594 align = pow2_align(size); 3595 size = 3; 3596 } 3597 if (!s->align_mem) { 3598 align = 0; 3599 } 3600 mop = endian | size | align; 3601 3602 elements = (a->q ? 16 : 8) >> size; 3603 tcg_ebytes = tcg_constant_i64(1 << size); 3604 for (r = 0; r < a->rpt; r++) { 3605 int e; 3606 for (e = 0; e < elements; e++) { 3607 int xs; 3608 for (xs = 0; xs < a->selem; xs++) { 3609 int tt = (a->rt + r + xs) % 32; 3610 do_vec_st(s, tt, e, clean_addr, mop); 3611 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3612 } 3613 } 3614 } 3615 3616 if (a->p) { 3617 if (a->rm == 31) { 3618 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3619 } else { 3620 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3621 } 3622 } 3623 return true; 3624 } 3625 3626 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3627 { 3628 int xs, total, rt; 3629 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3630 MemOp mop; 3631 3632 if (!a->p && a->rm != 0) { 3633 return false; 3634 } 3635 if (!fp_access_check(s)) { 3636 return true; 3637 } 3638 3639 if (a->rn == 31) { 3640 gen_check_sp_alignment(s); 3641 } 3642 3643 total = a->selem << a->scale; 3644 tcg_rn = cpu_reg_sp(s, a->rn); 3645 3646 mop = finalize_memop_asimd(s, a->scale); 3647 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3648 total, mop); 3649 3650 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3651 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3652 do_vec_st(s, rt, a->index, clean_addr, mop); 3653 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3654 } 3655 3656 if (a->p) { 3657 if (a->rm == 31) { 3658 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3659 } else { 3660 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3661 } 3662 } 3663 return true; 3664 } 3665 3666 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3667 { 3668 int xs, total, rt; 3669 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3670 MemOp mop; 3671 3672 if (!a->p && a->rm != 0) { 3673 return false; 3674 } 3675 if (!fp_access_check(s)) { 3676 return true; 3677 } 3678 3679 if (a->rn == 31) { 3680 gen_check_sp_alignment(s); 3681 } 3682 3683 total = a->selem << a->scale; 3684 tcg_rn = cpu_reg_sp(s, a->rn); 3685 3686 mop = finalize_memop_asimd(s, a->scale); 3687 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3688 total, mop); 3689 3690 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3691 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3692 do_vec_ld(s, rt, a->index, clean_addr, mop); 3693 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3707 { 3708 int xs, total, rt; 3709 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3710 MemOp mop; 3711 3712 if (!a->p && a->rm != 0) { 3713 return false; 3714 } 3715 if (!fp_access_check(s)) { 3716 return true; 3717 } 3718 3719 if (a->rn == 31) { 3720 gen_check_sp_alignment(s); 3721 } 3722 3723 total = a->selem << a->scale; 3724 tcg_rn = cpu_reg_sp(s, a->rn); 3725 3726 mop = finalize_memop_asimd(s, a->scale); 3727 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3728 total, mop); 3729 3730 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3731 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3732 /* Load and replicate to all elements */ 3733 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3734 3735 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3736 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3737 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3738 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3739 } 3740 3741 if (a->p) { 3742 if (a->rm == 31) { 3743 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3744 } else { 3745 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3746 } 3747 } 3748 return true; 3749 } 3750 3751 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3752 { 3753 TCGv_i64 addr, clean_addr, tcg_rt; 3754 int size = 4 << s->dcz_blocksize; 3755 3756 if (!dc_isar_feature(aa64_mte, s)) { 3757 return false; 3758 } 3759 if (s->current_el == 0) { 3760 return false; 3761 } 3762 3763 if (a->rn == 31) { 3764 gen_check_sp_alignment(s); 3765 } 3766 3767 addr = read_cpu_reg_sp(s, a->rn, true); 3768 tcg_gen_addi_i64(addr, addr, a->imm); 3769 tcg_rt = cpu_reg(s, a->rt); 3770 3771 if (s->ata[0]) { 3772 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 3773 } 3774 /* 3775 * The non-tags portion of STZGM is mostly like DC_ZVA, 3776 * except the alignment happens before the access. 3777 */ 3778 clean_addr = clean_data_tbi(s, addr); 3779 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3780 gen_helper_dc_zva(cpu_env, clean_addr); 3781 return true; 3782 } 3783 3784 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3785 { 3786 TCGv_i64 addr, clean_addr, tcg_rt; 3787 3788 if (!dc_isar_feature(aa64_mte, s)) { 3789 return false; 3790 } 3791 if (s->current_el == 0) { 3792 return false; 3793 } 3794 3795 if (a->rn == 31) { 3796 gen_check_sp_alignment(s); 3797 } 3798 3799 addr = read_cpu_reg_sp(s, a->rn, true); 3800 tcg_gen_addi_i64(addr, addr, a->imm); 3801 tcg_rt = cpu_reg(s, a->rt); 3802 3803 if (s->ata[0]) { 3804 gen_helper_stgm(cpu_env, addr, tcg_rt); 3805 } else { 3806 MMUAccessType acc = MMU_DATA_STORE; 3807 int size = 4 << s->gm_blocksize; 3808 3809 clean_addr = clean_data_tbi(s, addr); 3810 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3811 gen_probe_access(s, clean_addr, acc, size); 3812 } 3813 return true; 3814 } 3815 3816 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3817 { 3818 TCGv_i64 addr, clean_addr, tcg_rt; 3819 3820 if (!dc_isar_feature(aa64_mte, s)) { 3821 return false; 3822 } 3823 if (s->current_el == 0) { 3824 return false; 3825 } 3826 3827 if (a->rn == 31) { 3828 gen_check_sp_alignment(s); 3829 } 3830 3831 addr = read_cpu_reg_sp(s, a->rn, true); 3832 tcg_gen_addi_i64(addr, addr, a->imm); 3833 tcg_rt = cpu_reg(s, a->rt); 3834 3835 if (s->ata[0]) { 3836 gen_helper_ldgm(tcg_rt, cpu_env, addr); 3837 } else { 3838 MMUAccessType acc = MMU_DATA_LOAD; 3839 int size = 4 << s->gm_blocksize; 3840 3841 clean_addr = clean_data_tbi(s, addr); 3842 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3843 gen_probe_access(s, clean_addr, acc, size); 3844 /* The result tags are zeros. */ 3845 tcg_gen_movi_i64(tcg_rt, 0); 3846 } 3847 return true; 3848 } 3849 3850 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3851 { 3852 TCGv_i64 addr, clean_addr, tcg_rt; 3853 3854 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3855 return false; 3856 } 3857 3858 if (a->rn == 31) { 3859 gen_check_sp_alignment(s); 3860 } 3861 3862 addr = read_cpu_reg_sp(s, a->rn, true); 3863 if (!a->p) { 3864 /* pre-index or signed offset */ 3865 tcg_gen_addi_i64(addr, addr, a->imm); 3866 } 3867 3868 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3869 tcg_rt = cpu_reg(s, a->rt); 3870 if (s->ata[0]) { 3871 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 3872 } else { 3873 /* 3874 * Tag access disabled: we must check for aborts on the load 3875 * load from [rn+offset], and then insert a 0 tag into rt. 3876 */ 3877 clean_addr = clean_data_tbi(s, addr); 3878 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3879 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3880 } 3881 3882 if (a->w) { 3883 /* pre-index or post-index */ 3884 if (a->p) { 3885 /* post-index */ 3886 tcg_gen_addi_i64(addr, addr, a->imm); 3887 } 3888 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3889 } 3890 return true; 3891 } 3892 3893 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3894 { 3895 TCGv_i64 addr, tcg_rt; 3896 3897 if (a->rn == 31) { 3898 gen_check_sp_alignment(s); 3899 } 3900 3901 addr = read_cpu_reg_sp(s, a->rn, true); 3902 if (!a->p) { 3903 /* pre-index or signed offset */ 3904 tcg_gen_addi_i64(addr, addr, a->imm); 3905 } 3906 tcg_rt = cpu_reg_sp(s, a->rt); 3907 if (!s->ata[0]) { 3908 /* 3909 * For STG and ST2G, we need to check alignment and probe memory. 3910 * TODO: For STZG and STZ2G, we could rely on the stores below, 3911 * at least for system mode; user-only won't enforce alignment. 3912 */ 3913 if (is_pair) { 3914 gen_helper_st2g_stub(cpu_env, addr); 3915 } else { 3916 gen_helper_stg_stub(cpu_env, addr); 3917 } 3918 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3919 if (is_pair) { 3920 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 3921 } else { 3922 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 3923 } 3924 } else { 3925 if (is_pair) { 3926 gen_helper_st2g(cpu_env, addr, tcg_rt); 3927 } else { 3928 gen_helper_stg(cpu_env, addr, tcg_rt); 3929 } 3930 } 3931 3932 if (is_zero) { 3933 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 3934 TCGv_i64 zero64 = tcg_constant_i64(0); 3935 TCGv_i128 zero128 = tcg_temp_new_i128(); 3936 int mem_index = get_mem_index(s); 3937 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 3938 3939 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 3940 3941 /* This is 1 or 2 atomic 16-byte operations. */ 3942 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3943 if (is_pair) { 3944 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 3945 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3946 } 3947 } 3948 3949 if (a->w) { 3950 /* pre-index or post-index */ 3951 if (a->p) { 3952 /* post-index */ 3953 tcg_gen_addi_i64(addr, addr, a->imm); 3954 } 3955 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3956 } 3957 return true; 3958 } 3959 3960 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 3961 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 3962 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 3963 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 3964 3965 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 3966 3967 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 3968 bool is_setg, SetFn fn) 3969 { 3970 int memidx; 3971 uint32_t syndrome, desc = 0; 3972 3973 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 3974 return false; 3975 } 3976 3977 /* 3978 * UNPREDICTABLE cases: we choose to UNDEF, which allows 3979 * us to pull this check before the CheckMOPSEnabled() test 3980 * (which we do in the helper function) 3981 */ 3982 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 3983 a->rd == 31 || a->rn == 31) { 3984 return false; 3985 } 3986 3987 memidx = get_a64_user_mem_index(s, a->unpriv); 3988 3989 /* 3990 * We pass option_a == true, matching our implementation; 3991 * we pass wrong_option == false: helper function may set that bit. 3992 */ 3993 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 3994 is_epilogue, false, true, a->rd, a->rs, a->rn); 3995 3996 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 3997 /* We may need to do MTE tag checking, so assemble the descriptor */ 3998 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 3999 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4000 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4001 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4002 } 4003 /* The helper function always needs the memidx even with MTE disabled */ 4004 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4005 4006 /* 4007 * The helper needs the register numbers, but since they're in 4008 * the syndrome anyway, we let it extract them from there rather 4009 * than passing in an extra three integer arguments. 4010 */ 4011 fn(cpu_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4012 return true; 4013 } 4014 4015 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4016 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4017 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4018 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4019 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4020 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4021 4022 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4023 4024 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4025 { 4026 int rmemidx, wmemidx; 4027 uint32_t syndrome, rdesc = 0, wdesc = 0; 4028 bool wunpriv = extract32(a->options, 0, 1); 4029 bool runpriv = extract32(a->options, 1, 1); 4030 4031 /* 4032 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4033 * us to pull this check before the CheckMOPSEnabled() test 4034 * (which we do in the helper function) 4035 */ 4036 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4037 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4038 return false; 4039 } 4040 4041 rmemidx = get_a64_user_mem_index(s, runpriv); 4042 wmemidx = get_a64_user_mem_index(s, wunpriv); 4043 4044 /* 4045 * We pass option_a == true, matching our implementation; 4046 * we pass wrong_option == false: helper function may set that bit. 4047 */ 4048 syndrome = syn_mop(false, false, a->options, is_epilogue, 4049 false, true, a->rd, a->rs, a->rn); 4050 4051 /* If we need to do MTE tag checking, assemble the descriptors */ 4052 if (s->mte_active[runpriv]) { 4053 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4054 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4055 } 4056 if (s->mte_active[wunpriv]) { 4057 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4058 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4059 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4060 } 4061 /* The helper function needs these parts of the descriptor regardless */ 4062 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4063 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4064 4065 /* 4066 * The helper needs the register numbers, but since they're in 4067 * the syndrome anyway, we let it extract them from there rather 4068 * than passing in an extra three integer arguments. 4069 */ 4070 fn(cpu_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4071 tcg_constant_i32(rdesc)); 4072 return true; 4073 } 4074 4075 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4076 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4077 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4078 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4079 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4080 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4081 4082 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4083 4084 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4085 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4086 { 4087 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4088 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4089 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4090 4091 fn(tcg_rd, tcg_rn, tcg_imm); 4092 if (!a->sf) { 4093 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4094 } 4095 return true; 4096 } 4097 4098 /* 4099 * PC-rel. addressing 4100 */ 4101 4102 static bool trans_ADR(DisasContext *s, arg_ri *a) 4103 { 4104 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4105 return true; 4106 } 4107 4108 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4109 { 4110 int64_t offset = (int64_t)a->imm << 12; 4111 4112 /* The page offset is ok for CF_PCREL. */ 4113 offset -= s->pc_curr & 0xfff; 4114 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4115 return true; 4116 } 4117 4118 /* 4119 * Add/subtract (immediate) 4120 */ 4121 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4122 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4123 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4124 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4125 4126 /* 4127 * Add/subtract (immediate, with tags) 4128 */ 4129 4130 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4131 bool sub_op) 4132 { 4133 TCGv_i64 tcg_rn, tcg_rd; 4134 int imm; 4135 4136 imm = a->uimm6 << LOG2_TAG_GRANULE; 4137 if (sub_op) { 4138 imm = -imm; 4139 } 4140 4141 tcg_rn = cpu_reg_sp(s, a->rn); 4142 tcg_rd = cpu_reg_sp(s, a->rd); 4143 4144 if (s->ata[0]) { 4145 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4146 tcg_constant_i32(imm), 4147 tcg_constant_i32(a->uimm4)); 4148 } else { 4149 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4150 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4151 } 4152 return true; 4153 } 4154 4155 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4156 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4157 4158 /* The input should be a value in the bottom e bits (with higher 4159 * bits zero); returns that value replicated into every element 4160 * of size e in a 64 bit integer. 4161 */ 4162 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4163 { 4164 assert(e != 0); 4165 while (e < 64) { 4166 mask |= mask << e; 4167 e *= 2; 4168 } 4169 return mask; 4170 } 4171 4172 /* 4173 * Logical (immediate) 4174 */ 4175 4176 /* 4177 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4178 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4179 * value (ie should cause a guest UNDEF exception), and true if they are 4180 * valid, in which case the decoded bit pattern is written to result. 4181 */ 4182 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4183 unsigned int imms, unsigned int immr) 4184 { 4185 uint64_t mask; 4186 unsigned e, levels, s, r; 4187 int len; 4188 4189 assert(immn < 2 && imms < 64 && immr < 64); 4190 4191 /* The bit patterns we create here are 64 bit patterns which 4192 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4193 * 64 bits each. Each element contains the same value: a run 4194 * of between 1 and e-1 non-zero bits, rotated within the 4195 * element by between 0 and e-1 bits. 4196 * 4197 * The element size and run length are encoded into immn (1 bit) 4198 * and imms (6 bits) as follows: 4199 * 64 bit elements: immn = 1, imms = <length of run - 1> 4200 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4201 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4202 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4203 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4204 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4205 * Notice that immn = 0, imms = 11111x is the only combination 4206 * not covered by one of the above options; this is reserved. 4207 * Further, <length of run - 1> all-ones is a reserved pattern. 4208 * 4209 * In all cases the rotation is by immr % e (and immr is 6 bits). 4210 */ 4211 4212 /* First determine the element size */ 4213 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4214 if (len < 1) { 4215 /* This is the immn == 0, imms == 0x11111x case */ 4216 return false; 4217 } 4218 e = 1 << len; 4219 4220 levels = e - 1; 4221 s = imms & levels; 4222 r = immr & levels; 4223 4224 if (s == levels) { 4225 /* <length of run - 1> mustn't be all-ones. */ 4226 return false; 4227 } 4228 4229 /* Create the value of one element: s+1 set bits rotated 4230 * by r within the element (which is e bits wide)... 4231 */ 4232 mask = MAKE_64BIT_MASK(0, s + 1); 4233 if (r) { 4234 mask = (mask >> r) | (mask << (e - r)); 4235 mask &= MAKE_64BIT_MASK(0, e); 4236 } 4237 /* ...then replicate the element over the whole 64 bit value */ 4238 mask = bitfield_replicate(mask, e); 4239 *result = mask; 4240 return true; 4241 } 4242 4243 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4244 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4245 { 4246 TCGv_i64 tcg_rd, tcg_rn; 4247 uint64_t imm; 4248 4249 /* Some immediate field values are reserved. */ 4250 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4251 extract32(a->dbm, 0, 6), 4252 extract32(a->dbm, 6, 6))) { 4253 return false; 4254 } 4255 if (!a->sf) { 4256 imm &= 0xffffffffull; 4257 } 4258 4259 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4260 tcg_rn = cpu_reg(s, a->rn); 4261 4262 fn(tcg_rd, tcg_rn, imm); 4263 if (set_cc) { 4264 gen_logic_CC(a->sf, tcg_rd); 4265 } 4266 if (!a->sf) { 4267 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4268 } 4269 return true; 4270 } 4271 4272 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4273 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4274 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4275 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4276 4277 /* 4278 * Move wide (immediate) 4279 */ 4280 4281 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4282 { 4283 int pos = a->hw << 4; 4284 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4285 return true; 4286 } 4287 4288 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4289 { 4290 int pos = a->hw << 4; 4291 uint64_t imm = a->imm; 4292 4293 imm = ~(imm << pos); 4294 if (!a->sf) { 4295 imm = (uint32_t)imm; 4296 } 4297 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4298 return true; 4299 } 4300 4301 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4302 { 4303 int pos = a->hw << 4; 4304 TCGv_i64 tcg_rd, tcg_im; 4305 4306 tcg_rd = cpu_reg(s, a->rd); 4307 tcg_im = tcg_constant_i64(a->imm); 4308 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4309 if (!a->sf) { 4310 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4311 } 4312 return true; 4313 } 4314 4315 /* 4316 * Bitfield 4317 */ 4318 4319 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4320 { 4321 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4322 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4323 unsigned int bitsize = a->sf ? 64 : 32; 4324 unsigned int ri = a->immr; 4325 unsigned int si = a->imms; 4326 unsigned int pos, len; 4327 4328 if (si >= ri) { 4329 /* Wd<s-r:0> = Wn<s:r> */ 4330 len = (si - ri) + 1; 4331 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4332 if (!a->sf) { 4333 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4334 } 4335 } else { 4336 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4337 len = si + 1; 4338 pos = (bitsize - ri) & (bitsize - 1); 4339 4340 if (len < ri) { 4341 /* 4342 * Sign extend the destination field from len to fill the 4343 * balance of the word. Let the deposit below insert all 4344 * of those sign bits. 4345 */ 4346 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4347 len = ri; 4348 } 4349 4350 /* 4351 * We start with zero, and we haven't modified any bits outside 4352 * bitsize, therefore no final zero-extension is unneeded for !sf. 4353 */ 4354 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4355 } 4356 return true; 4357 } 4358 4359 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4360 { 4361 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4362 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4363 unsigned int bitsize = a->sf ? 64 : 32; 4364 unsigned int ri = a->immr; 4365 unsigned int si = a->imms; 4366 unsigned int pos, len; 4367 4368 tcg_rd = cpu_reg(s, a->rd); 4369 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4370 4371 if (si >= ri) { 4372 /* Wd<s-r:0> = Wn<s:r> */ 4373 len = (si - ri) + 1; 4374 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4375 } else { 4376 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4377 len = si + 1; 4378 pos = (bitsize - ri) & (bitsize - 1); 4379 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4380 } 4381 return true; 4382 } 4383 4384 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4385 { 4386 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4387 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4388 unsigned int bitsize = a->sf ? 64 : 32; 4389 unsigned int ri = a->immr; 4390 unsigned int si = a->imms; 4391 unsigned int pos, len; 4392 4393 tcg_rd = cpu_reg(s, a->rd); 4394 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4395 4396 if (si >= ri) { 4397 /* Wd<s-r:0> = Wn<s:r> */ 4398 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4399 len = (si - ri) + 1; 4400 pos = 0; 4401 } else { 4402 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4403 len = si + 1; 4404 pos = (bitsize - ri) & (bitsize - 1); 4405 } 4406 4407 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4408 if (!a->sf) { 4409 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4410 } 4411 return true; 4412 } 4413 4414 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4415 { 4416 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4417 4418 tcg_rd = cpu_reg(s, a->rd); 4419 4420 if (unlikely(a->imm == 0)) { 4421 /* 4422 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4423 * so an extract from bit 0 is a special case. 4424 */ 4425 if (a->sf) { 4426 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4427 } else { 4428 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4429 } 4430 } else { 4431 tcg_rm = cpu_reg(s, a->rm); 4432 tcg_rn = cpu_reg(s, a->rn); 4433 4434 if (a->sf) { 4435 /* Specialization to ROR happens in EXTRACT2. */ 4436 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4437 } else { 4438 TCGv_i32 t0 = tcg_temp_new_i32(); 4439 4440 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4441 if (a->rm == a->rn) { 4442 tcg_gen_rotri_i32(t0, t0, a->imm); 4443 } else { 4444 TCGv_i32 t1 = tcg_temp_new_i32(); 4445 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4446 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4447 } 4448 tcg_gen_extu_i32_i64(tcg_rd, t0); 4449 } 4450 } 4451 return true; 4452 } 4453 4454 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4455 * Note that it is the caller's responsibility to ensure that the 4456 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4457 * mandated semantics for out of range shifts. 4458 */ 4459 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4460 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4461 { 4462 switch (shift_type) { 4463 case A64_SHIFT_TYPE_LSL: 4464 tcg_gen_shl_i64(dst, src, shift_amount); 4465 break; 4466 case A64_SHIFT_TYPE_LSR: 4467 tcg_gen_shr_i64(dst, src, shift_amount); 4468 break; 4469 case A64_SHIFT_TYPE_ASR: 4470 if (!sf) { 4471 tcg_gen_ext32s_i64(dst, src); 4472 } 4473 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4474 break; 4475 case A64_SHIFT_TYPE_ROR: 4476 if (sf) { 4477 tcg_gen_rotr_i64(dst, src, shift_amount); 4478 } else { 4479 TCGv_i32 t0, t1; 4480 t0 = tcg_temp_new_i32(); 4481 t1 = tcg_temp_new_i32(); 4482 tcg_gen_extrl_i64_i32(t0, src); 4483 tcg_gen_extrl_i64_i32(t1, shift_amount); 4484 tcg_gen_rotr_i32(t0, t0, t1); 4485 tcg_gen_extu_i32_i64(dst, t0); 4486 } 4487 break; 4488 default: 4489 assert(FALSE); /* all shift types should be handled */ 4490 break; 4491 } 4492 4493 if (!sf) { /* zero extend final result */ 4494 tcg_gen_ext32u_i64(dst, dst); 4495 } 4496 } 4497 4498 /* Shift a TCGv src by immediate, put result in dst. 4499 * The shift amount must be in range (this should always be true as the 4500 * relevant instructions will UNDEF on bad shift immediates). 4501 */ 4502 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4503 enum a64_shift_type shift_type, unsigned int shift_i) 4504 { 4505 assert(shift_i < (sf ? 64 : 32)); 4506 4507 if (shift_i == 0) { 4508 tcg_gen_mov_i64(dst, src); 4509 } else { 4510 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4511 } 4512 } 4513 4514 /* Logical (shifted register) 4515 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4516 * +----+-----+-----------+-------+---+------+--------+------+------+ 4517 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4518 * +----+-----+-----------+-------+---+------+--------+------+------+ 4519 */ 4520 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4521 { 4522 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4523 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4524 4525 sf = extract32(insn, 31, 1); 4526 opc = extract32(insn, 29, 2); 4527 shift_type = extract32(insn, 22, 2); 4528 invert = extract32(insn, 21, 1); 4529 rm = extract32(insn, 16, 5); 4530 shift_amount = extract32(insn, 10, 6); 4531 rn = extract32(insn, 5, 5); 4532 rd = extract32(insn, 0, 5); 4533 4534 if (!sf && (shift_amount & (1 << 5))) { 4535 unallocated_encoding(s); 4536 return; 4537 } 4538 4539 tcg_rd = cpu_reg(s, rd); 4540 4541 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4542 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4543 * register-register MOV and MVN, so it is worth special casing. 4544 */ 4545 tcg_rm = cpu_reg(s, rm); 4546 if (invert) { 4547 tcg_gen_not_i64(tcg_rd, tcg_rm); 4548 if (!sf) { 4549 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4550 } 4551 } else { 4552 if (sf) { 4553 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4554 } else { 4555 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4556 } 4557 } 4558 return; 4559 } 4560 4561 tcg_rm = read_cpu_reg(s, rm, sf); 4562 4563 if (shift_amount) { 4564 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4565 } 4566 4567 tcg_rn = cpu_reg(s, rn); 4568 4569 switch (opc | (invert << 2)) { 4570 case 0: /* AND */ 4571 case 3: /* ANDS */ 4572 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4573 break; 4574 case 1: /* ORR */ 4575 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4576 break; 4577 case 2: /* EOR */ 4578 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4579 break; 4580 case 4: /* BIC */ 4581 case 7: /* BICS */ 4582 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4583 break; 4584 case 5: /* ORN */ 4585 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4586 break; 4587 case 6: /* EON */ 4588 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4589 break; 4590 default: 4591 assert(FALSE); 4592 break; 4593 } 4594 4595 if (!sf) { 4596 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4597 } 4598 4599 if (opc == 3) { 4600 gen_logic_CC(sf, tcg_rd); 4601 } 4602 } 4603 4604 /* 4605 * Add/subtract (extended register) 4606 * 4607 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4608 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4609 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4610 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4611 * 4612 * sf: 0 -> 32bit, 1 -> 64bit 4613 * op: 0 -> add , 1 -> sub 4614 * S: 1 -> set flags 4615 * opt: 00 4616 * option: extension type (see DecodeRegExtend) 4617 * imm3: optional shift to Rm 4618 * 4619 * Rd = Rn + LSL(extend(Rm), amount) 4620 */ 4621 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4622 { 4623 int rd = extract32(insn, 0, 5); 4624 int rn = extract32(insn, 5, 5); 4625 int imm3 = extract32(insn, 10, 3); 4626 int option = extract32(insn, 13, 3); 4627 int rm = extract32(insn, 16, 5); 4628 int opt = extract32(insn, 22, 2); 4629 bool setflags = extract32(insn, 29, 1); 4630 bool sub_op = extract32(insn, 30, 1); 4631 bool sf = extract32(insn, 31, 1); 4632 4633 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4634 TCGv_i64 tcg_rd; 4635 TCGv_i64 tcg_result; 4636 4637 if (imm3 > 4 || opt != 0) { 4638 unallocated_encoding(s); 4639 return; 4640 } 4641 4642 /* non-flag setting ops may use SP */ 4643 if (!setflags) { 4644 tcg_rd = cpu_reg_sp(s, rd); 4645 } else { 4646 tcg_rd = cpu_reg(s, rd); 4647 } 4648 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4649 4650 tcg_rm = read_cpu_reg(s, rm, sf); 4651 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4652 4653 tcg_result = tcg_temp_new_i64(); 4654 4655 if (!setflags) { 4656 if (sub_op) { 4657 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4658 } else { 4659 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4660 } 4661 } else { 4662 if (sub_op) { 4663 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4664 } else { 4665 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4666 } 4667 } 4668 4669 if (sf) { 4670 tcg_gen_mov_i64(tcg_rd, tcg_result); 4671 } else { 4672 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4673 } 4674 } 4675 4676 /* 4677 * Add/subtract (shifted register) 4678 * 4679 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4680 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4681 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4682 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4683 * 4684 * sf: 0 -> 32bit, 1 -> 64bit 4685 * op: 0 -> add , 1 -> sub 4686 * S: 1 -> set flags 4687 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4688 * imm6: Shift amount to apply to Rm before the add/sub 4689 */ 4690 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4691 { 4692 int rd = extract32(insn, 0, 5); 4693 int rn = extract32(insn, 5, 5); 4694 int imm6 = extract32(insn, 10, 6); 4695 int rm = extract32(insn, 16, 5); 4696 int shift_type = extract32(insn, 22, 2); 4697 bool setflags = extract32(insn, 29, 1); 4698 bool sub_op = extract32(insn, 30, 1); 4699 bool sf = extract32(insn, 31, 1); 4700 4701 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4702 TCGv_i64 tcg_rn, tcg_rm; 4703 TCGv_i64 tcg_result; 4704 4705 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4706 unallocated_encoding(s); 4707 return; 4708 } 4709 4710 tcg_rn = read_cpu_reg(s, rn, sf); 4711 tcg_rm = read_cpu_reg(s, rm, sf); 4712 4713 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4714 4715 tcg_result = tcg_temp_new_i64(); 4716 4717 if (!setflags) { 4718 if (sub_op) { 4719 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4720 } else { 4721 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4722 } 4723 } else { 4724 if (sub_op) { 4725 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4726 } else { 4727 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4728 } 4729 } 4730 4731 if (sf) { 4732 tcg_gen_mov_i64(tcg_rd, tcg_result); 4733 } else { 4734 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4735 } 4736 } 4737 4738 /* Data-processing (3 source) 4739 * 4740 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4741 * +--+------+-----------+------+------+----+------+------+------+ 4742 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4743 * +--+------+-----------+------+------+----+------+------+------+ 4744 */ 4745 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4746 { 4747 int rd = extract32(insn, 0, 5); 4748 int rn = extract32(insn, 5, 5); 4749 int ra = extract32(insn, 10, 5); 4750 int rm = extract32(insn, 16, 5); 4751 int op_id = (extract32(insn, 29, 3) << 4) | 4752 (extract32(insn, 21, 3) << 1) | 4753 extract32(insn, 15, 1); 4754 bool sf = extract32(insn, 31, 1); 4755 bool is_sub = extract32(op_id, 0, 1); 4756 bool is_high = extract32(op_id, 2, 1); 4757 bool is_signed = false; 4758 TCGv_i64 tcg_op1; 4759 TCGv_i64 tcg_op2; 4760 TCGv_i64 tcg_tmp; 4761 4762 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4763 switch (op_id) { 4764 case 0x42: /* SMADDL */ 4765 case 0x43: /* SMSUBL */ 4766 case 0x44: /* SMULH */ 4767 is_signed = true; 4768 break; 4769 case 0x0: /* MADD (32bit) */ 4770 case 0x1: /* MSUB (32bit) */ 4771 case 0x40: /* MADD (64bit) */ 4772 case 0x41: /* MSUB (64bit) */ 4773 case 0x4a: /* UMADDL */ 4774 case 0x4b: /* UMSUBL */ 4775 case 0x4c: /* UMULH */ 4776 break; 4777 default: 4778 unallocated_encoding(s); 4779 return; 4780 } 4781 4782 if (is_high) { 4783 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4784 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4785 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4786 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4787 4788 if (is_signed) { 4789 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4790 } else { 4791 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4792 } 4793 return; 4794 } 4795 4796 tcg_op1 = tcg_temp_new_i64(); 4797 tcg_op2 = tcg_temp_new_i64(); 4798 tcg_tmp = tcg_temp_new_i64(); 4799 4800 if (op_id < 0x42) { 4801 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4802 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4803 } else { 4804 if (is_signed) { 4805 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4806 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4807 } else { 4808 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4809 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4810 } 4811 } 4812 4813 if (ra == 31 && !is_sub) { 4814 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4815 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4816 } else { 4817 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4818 if (is_sub) { 4819 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4820 } else { 4821 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4822 } 4823 } 4824 4825 if (!sf) { 4826 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4827 } 4828 } 4829 4830 /* Add/subtract (with carry) 4831 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4832 * +--+--+--+------------------------+------+-------------+------+-----+ 4833 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4834 * +--+--+--+------------------------+------+-------------+------+-----+ 4835 */ 4836 4837 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4838 { 4839 unsigned int sf, op, setflags, rm, rn, rd; 4840 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4841 4842 sf = extract32(insn, 31, 1); 4843 op = extract32(insn, 30, 1); 4844 setflags = extract32(insn, 29, 1); 4845 rm = extract32(insn, 16, 5); 4846 rn = extract32(insn, 5, 5); 4847 rd = extract32(insn, 0, 5); 4848 4849 tcg_rd = cpu_reg(s, rd); 4850 tcg_rn = cpu_reg(s, rn); 4851 4852 if (op) { 4853 tcg_y = tcg_temp_new_i64(); 4854 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4855 } else { 4856 tcg_y = cpu_reg(s, rm); 4857 } 4858 4859 if (setflags) { 4860 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4861 } else { 4862 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4863 } 4864 } 4865 4866 /* 4867 * Rotate right into flags 4868 * 31 30 29 21 15 10 5 4 0 4869 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4870 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4871 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4872 */ 4873 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4874 { 4875 int mask = extract32(insn, 0, 4); 4876 int o2 = extract32(insn, 4, 1); 4877 int rn = extract32(insn, 5, 5); 4878 int imm6 = extract32(insn, 15, 6); 4879 int sf_op_s = extract32(insn, 29, 3); 4880 TCGv_i64 tcg_rn; 4881 TCGv_i32 nzcv; 4882 4883 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4884 unallocated_encoding(s); 4885 return; 4886 } 4887 4888 tcg_rn = read_cpu_reg(s, rn, 1); 4889 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4890 4891 nzcv = tcg_temp_new_i32(); 4892 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4893 4894 if (mask & 8) { /* N */ 4895 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4896 } 4897 if (mask & 4) { /* Z */ 4898 tcg_gen_not_i32(cpu_ZF, nzcv); 4899 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4900 } 4901 if (mask & 2) { /* C */ 4902 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4903 } 4904 if (mask & 1) { /* V */ 4905 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4906 } 4907 } 4908 4909 /* 4910 * Evaluate into flags 4911 * 31 30 29 21 15 14 10 5 4 0 4912 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4913 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4914 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4915 */ 4916 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4917 { 4918 int o3_mask = extract32(insn, 0, 5); 4919 int rn = extract32(insn, 5, 5); 4920 int o2 = extract32(insn, 15, 6); 4921 int sz = extract32(insn, 14, 1); 4922 int sf_op_s = extract32(insn, 29, 3); 4923 TCGv_i32 tmp; 4924 int shift; 4925 4926 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4927 !dc_isar_feature(aa64_condm_4, s)) { 4928 unallocated_encoding(s); 4929 return; 4930 } 4931 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4932 4933 tmp = tcg_temp_new_i32(); 4934 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4935 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4936 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4937 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4938 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4939 } 4940 4941 /* Conditional compare (immediate / register) 4942 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4943 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4944 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4945 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4946 * [1] y [0] [0] 4947 */ 4948 static void disas_cc(DisasContext *s, uint32_t insn) 4949 { 4950 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4951 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4952 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4953 DisasCompare c; 4954 4955 if (!extract32(insn, 29, 1)) { 4956 unallocated_encoding(s); 4957 return; 4958 } 4959 if (insn & (1 << 10 | 1 << 4)) { 4960 unallocated_encoding(s); 4961 return; 4962 } 4963 sf = extract32(insn, 31, 1); 4964 op = extract32(insn, 30, 1); 4965 is_imm = extract32(insn, 11, 1); 4966 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 4967 cond = extract32(insn, 12, 4); 4968 rn = extract32(insn, 5, 5); 4969 nzcv = extract32(insn, 0, 4); 4970 4971 /* Set T0 = !COND. */ 4972 tcg_t0 = tcg_temp_new_i32(); 4973 arm_test_cc(&c, cond); 4974 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 4975 4976 /* Load the arguments for the new comparison. */ 4977 if (is_imm) { 4978 tcg_y = tcg_temp_new_i64(); 4979 tcg_gen_movi_i64(tcg_y, y); 4980 } else { 4981 tcg_y = cpu_reg(s, y); 4982 } 4983 tcg_rn = cpu_reg(s, rn); 4984 4985 /* Set the flags for the new comparison. */ 4986 tcg_tmp = tcg_temp_new_i64(); 4987 if (op) { 4988 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4989 } else { 4990 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4991 } 4992 4993 /* If COND was false, force the flags to #nzcv. Compute two masks 4994 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 4995 * For tcg hosts that support ANDC, we can make do with just T1. 4996 * In either case, allow the tcg optimizer to delete any unused mask. 4997 */ 4998 tcg_t1 = tcg_temp_new_i32(); 4999 tcg_t2 = tcg_temp_new_i32(); 5000 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5001 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5002 5003 if (nzcv & 8) { /* N */ 5004 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5005 } else { 5006 if (TCG_TARGET_HAS_andc_i32) { 5007 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5008 } else { 5009 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5010 } 5011 } 5012 if (nzcv & 4) { /* Z */ 5013 if (TCG_TARGET_HAS_andc_i32) { 5014 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5015 } else { 5016 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5017 } 5018 } else { 5019 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5020 } 5021 if (nzcv & 2) { /* C */ 5022 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5023 } else { 5024 if (TCG_TARGET_HAS_andc_i32) { 5025 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5026 } else { 5027 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5028 } 5029 } 5030 if (nzcv & 1) { /* V */ 5031 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5032 } else { 5033 if (TCG_TARGET_HAS_andc_i32) { 5034 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5035 } else { 5036 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5037 } 5038 } 5039 } 5040 5041 /* Conditional select 5042 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5043 * +----+----+---+-----------------+------+------+-----+------+------+ 5044 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5045 * +----+----+---+-----------------+------+------+-----+------+------+ 5046 */ 5047 static void disas_cond_select(DisasContext *s, uint32_t insn) 5048 { 5049 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5050 TCGv_i64 tcg_rd, zero; 5051 DisasCompare64 c; 5052 5053 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5054 /* S == 1 or op2<1> == 1 */ 5055 unallocated_encoding(s); 5056 return; 5057 } 5058 sf = extract32(insn, 31, 1); 5059 else_inv = extract32(insn, 30, 1); 5060 rm = extract32(insn, 16, 5); 5061 cond = extract32(insn, 12, 4); 5062 else_inc = extract32(insn, 10, 1); 5063 rn = extract32(insn, 5, 5); 5064 rd = extract32(insn, 0, 5); 5065 5066 tcg_rd = cpu_reg(s, rd); 5067 5068 a64_test_cc(&c, cond); 5069 zero = tcg_constant_i64(0); 5070 5071 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5072 /* CSET & CSETM. */ 5073 if (else_inv) { 5074 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5075 tcg_rd, c.value, zero); 5076 } else { 5077 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5078 tcg_rd, c.value, zero); 5079 } 5080 } else { 5081 TCGv_i64 t_true = cpu_reg(s, rn); 5082 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5083 if (else_inv && else_inc) { 5084 tcg_gen_neg_i64(t_false, t_false); 5085 } else if (else_inv) { 5086 tcg_gen_not_i64(t_false, t_false); 5087 } else if (else_inc) { 5088 tcg_gen_addi_i64(t_false, t_false, 1); 5089 } 5090 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5091 } 5092 5093 if (!sf) { 5094 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5095 } 5096 } 5097 5098 static void handle_clz(DisasContext *s, unsigned int sf, 5099 unsigned int rn, unsigned int rd) 5100 { 5101 TCGv_i64 tcg_rd, tcg_rn; 5102 tcg_rd = cpu_reg(s, rd); 5103 tcg_rn = cpu_reg(s, rn); 5104 5105 if (sf) { 5106 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5107 } else { 5108 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5109 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5110 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5111 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5112 } 5113 } 5114 5115 static void handle_cls(DisasContext *s, unsigned int sf, 5116 unsigned int rn, unsigned int rd) 5117 { 5118 TCGv_i64 tcg_rd, tcg_rn; 5119 tcg_rd = cpu_reg(s, rd); 5120 tcg_rn = cpu_reg(s, rn); 5121 5122 if (sf) { 5123 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5124 } else { 5125 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5126 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5127 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5128 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5129 } 5130 } 5131 5132 static void handle_rbit(DisasContext *s, unsigned int sf, 5133 unsigned int rn, unsigned int rd) 5134 { 5135 TCGv_i64 tcg_rd, tcg_rn; 5136 tcg_rd = cpu_reg(s, rd); 5137 tcg_rn = cpu_reg(s, rn); 5138 5139 if (sf) { 5140 gen_helper_rbit64(tcg_rd, tcg_rn); 5141 } else { 5142 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5143 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5144 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5145 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5146 } 5147 } 5148 5149 /* REV with sf==1, opcode==3 ("REV64") */ 5150 static void handle_rev64(DisasContext *s, unsigned int sf, 5151 unsigned int rn, unsigned int rd) 5152 { 5153 if (!sf) { 5154 unallocated_encoding(s); 5155 return; 5156 } 5157 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5158 } 5159 5160 /* REV with sf==0, opcode==2 5161 * REV32 (sf==1, opcode==2) 5162 */ 5163 static void handle_rev32(DisasContext *s, unsigned int sf, 5164 unsigned int rn, unsigned int rd) 5165 { 5166 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5167 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5168 5169 if (sf) { 5170 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5171 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5172 } else { 5173 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5174 } 5175 } 5176 5177 /* REV16 (opcode==1) */ 5178 static void handle_rev16(DisasContext *s, unsigned int sf, 5179 unsigned int rn, unsigned int rd) 5180 { 5181 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5182 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5183 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5184 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5185 5186 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5187 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5188 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5189 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5190 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5191 } 5192 5193 /* Data-processing (1 source) 5194 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5195 * +----+---+---+-----------------+---------+--------+------+------+ 5196 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5197 * +----+---+---+-----------------+---------+--------+------+------+ 5198 */ 5199 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5200 { 5201 unsigned int sf, opcode, opcode2, rn, rd; 5202 TCGv_i64 tcg_rd; 5203 5204 if (extract32(insn, 29, 1)) { 5205 unallocated_encoding(s); 5206 return; 5207 } 5208 5209 sf = extract32(insn, 31, 1); 5210 opcode = extract32(insn, 10, 6); 5211 opcode2 = extract32(insn, 16, 5); 5212 rn = extract32(insn, 5, 5); 5213 rd = extract32(insn, 0, 5); 5214 5215 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5216 5217 switch (MAP(sf, opcode2, opcode)) { 5218 case MAP(0, 0x00, 0x00): /* RBIT */ 5219 case MAP(1, 0x00, 0x00): 5220 handle_rbit(s, sf, rn, rd); 5221 break; 5222 case MAP(0, 0x00, 0x01): /* REV16 */ 5223 case MAP(1, 0x00, 0x01): 5224 handle_rev16(s, sf, rn, rd); 5225 break; 5226 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5227 case MAP(1, 0x00, 0x02): 5228 handle_rev32(s, sf, rn, rd); 5229 break; 5230 case MAP(1, 0x00, 0x03): /* REV64 */ 5231 handle_rev64(s, sf, rn, rd); 5232 break; 5233 case MAP(0, 0x00, 0x04): /* CLZ */ 5234 case MAP(1, 0x00, 0x04): 5235 handle_clz(s, sf, rn, rd); 5236 break; 5237 case MAP(0, 0x00, 0x05): /* CLS */ 5238 case MAP(1, 0x00, 0x05): 5239 handle_cls(s, sf, rn, rd); 5240 break; 5241 case MAP(1, 0x01, 0x00): /* PACIA */ 5242 if (s->pauth_active) { 5243 tcg_rd = cpu_reg(s, rd); 5244 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5245 } else if (!dc_isar_feature(aa64_pauth, s)) { 5246 goto do_unallocated; 5247 } 5248 break; 5249 case MAP(1, 0x01, 0x01): /* PACIB */ 5250 if (s->pauth_active) { 5251 tcg_rd = cpu_reg(s, rd); 5252 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5253 } else if (!dc_isar_feature(aa64_pauth, s)) { 5254 goto do_unallocated; 5255 } 5256 break; 5257 case MAP(1, 0x01, 0x02): /* PACDA */ 5258 if (s->pauth_active) { 5259 tcg_rd = cpu_reg(s, rd); 5260 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5261 } else if (!dc_isar_feature(aa64_pauth, s)) { 5262 goto do_unallocated; 5263 } 5264 break; 5265 case MAP(1, 0x01, 0x03): /* PACDB */ 5266 if (s->pauth_active) { 5267 tcg_rd = cpu_reg(s, rd); 5268 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5269 } else if (!dc_isar_feature(aa64_pauth, s)) { 5270 goto do_unallocated; 5271 } 5272 break; 5273 case MAP(1, 0x01, 0x04): /* AUTIA */ 5274 if (s->pauth_active) { 5275 tcg_rd = cpu_reg(s, rd); 5276 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5277 } else if (!dc_isar_feature(aa64_pauth, s)) { 5278 goto do_unallocated; 5279 } 5280 break; 5281 case MAP(1, 0x01, 0x05): /* AUTIB */ 5282 if (s->pauth_active) { 5283 tcg_rd = cpu_reg(s, rd); 5284 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5285 } else if (!dc_isar_feature(aa64_pauth, s)) { 5286 goto do_unallocated; 5287 } 5288 break; 5289 case MAP(1, 0x01, 0x06): /* AUTDA */ 5290 if (s->pauth_active) { 5291 tcg_rd = cpu_reg(s, rd); 5292 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5293 } else if (!dc_isar_feature(aa64_pauth, s)) { 5294 goto do_unallocated; 5295 } 5296 break; 5297 case MAP(1, 0x01, 0x07): /* AUTDB */ 5298 if (s->pauth_active) { 5299 tcg_rd = cpu_reg(s, rd); 5300 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5301 } else if (!dc_isar_feature(aa64_pauth, s)) { 5302 goto do_unallocated; 5303 } 5304 break; 5305 case MAP(1, 0x01, 0x08): /* PACIZA */ 5306 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5307 goto do_unallocated; 5308 } else if (s->pauth_active) { 5309 tcg_rd = cpu_reg(s, rd); 5310 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5311 } 5312 break; 5313 case MAP(1, 0x01, 0x09): /* PACIZB */ 5314 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5315 goto do_unallocated; 5316 } else if (s->pauth_active) { 5317 tcg_rd = cpu_reg(s, rd); 5318 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5319 } 5320 break; 5321 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5322 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5323 goto do_unallocated; 5324 } else if (s->pauth_active) { 5325 tcg_rd = cpu_reg(s, rd); 5326 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5327 } 5328 break; 5329 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5330 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5331 goto do_unallocated; 5332 } else if (s->pauth_active) { 5333 tcg_rd = cpu_reg(s, rd); 5334 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5335 } 5336 break; 5337 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5338 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5339 goto do_unallocated; 5340 } else if (s->pauth_active) { 5341 tcg_rd = cpu_reg(s, rd); 5342 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5343 } 5344 break; 5345 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5346 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5347 goto do_unallocated; 5348 } else if (s->pauth_active) { 5349 tcg_rd = cpu_reg(s, rd); 5350 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5351 } 5352 break; 5353 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5354 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5355 goto do_unallocated; 5356 } else if (s->pauth_active) { 5357 tcg_rd = cpu_reg(s, rd); 5358 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5359 } 5360 break; 5361 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5362 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5363 goto do_unallocated; 5364 } else if (s->pauth_active) { 5365 tcg_rd = cpu_reg(s, rd); 5366 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5367 } 5368 break; 5369 case MAP(1, 0x01, 0x10): /* XPACI */ 5370 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5371 goto do_unallocated; 5372 } else if (s->pauth_active) { 5373 tcg_rd = cpu_reg(s, rd); 5374 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5375 } 5376 break; 5377 case MAP(1, 0x01, 0x11): /* XPACD */ 5378 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5379 goto do_unallocated; 5380 } else if (s->pauth_active) { 5381 tcg_rd = cpu_reg(s, rd); 5382 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5383 } 5384 break; 5385 default: 5386 do_unallocated: 5387 unallocated_encoding(s); 5388 break; 5389 } 5390 5391 #undef MAP 5392 } 5393 5394 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5395 unsigned int rm, unsigned int rn, unsigned int rd) 5396 { 5397 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5398 tcg_rd = cpu_reg(s, rd); 5399 5400 if (!sf && is_signed) { 5401 tcg_n = tcg_temp_new_i64(); 5402 tcg_m = tcg_temp_new_i64(); 5403 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5404 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5405 } else { 5406 tcg_n = read_cpu_reg(s, rn, sf); 5407 tcg_m = read_cpu_reg(s, rm, sf); 5408 } 5409 5410 if (is_signed) { 5411 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5412 } else { 5413 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5414 } 5415 5416 if (!sf) { /* zero extend final result */ 5417 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5418 } 5419 } 5420 5421 /* LSLV, LSRV, ASRV, RORV */ 5422 static void handle_shift_reg(DisasContext *s, 5423 enum a64_shift_type shift_type, unsigned int sf, 5424 unsigned int rm, unsigned int rn, unsigned int rd) 5425 { 5426 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5427 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5428 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5429 5430 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5431 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5432 } 5433 5434 /* CRC32[BHWX], CRC32C[BHWX] */ 5435 static void handle_crc32(DisasContext *s, 5436 unsigned int sf, unsigned int sz, bool crc32c, 5437 unsigned int rm, unsigned int rn, unsigned int rd) 5438 { 5439 TCGv_i64 tcg_acc, tcg_val; 5440 TCGv_i32 tcg_bytes; 5441 5442 if (!dc_isar_feature(aa64_crc32, s) 5443 || (sf == 1 && sz != 3) 5444 || (sf == 0 && sz == 3)) { 5445 unallocated_encoding(s); 5446 return; 5447 } 5448 5449 if (sz == 3) { 5450 tcg_val = cpu_reg(s, rm); 5451 } else { 5452 uint64_t mask; 5453 switch (sz) { 5454 case 0: 5455 mask = 0xFF; 5456 break; 5457 case 1: 5458 mask = 0xFFFF; 5459 break; 5460 case 2: 5461 mask = 0xFFFFFFFF; 5462 break; 5463 default: 5464 g_assert_not_reached(); 5465 } 5466 tcg_val = tcg_temp_new_i64(); 5467 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5468 } 5469 5470 tcg_acc = cpu_reg(s, rn); 5471 tcg_bytes = tcg_constant_i32(1 << sz); 5472 5473 if (crc32c) { 5474 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5475 } else { 5476 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5477 } 5478 } 5479 5480 /* Data-processing (2 source) 5481 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5482 * +----+---+---+-----------------+------+--------+------+------+ 5483 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5484 * +----+---+---+-----------------+------+--------+------+------+ 5485 */ 5486 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5487 { 5488 unsigned int sf, rm, opcode, rn, rd, setflag; 5489 sf = extract32(insn, 31, 1); 5490 setflag = extract32(insn, 29, 1); 5491 rm = extract32(insn, 16, 5); 5492 opcode = extract32(insn, 10, 6); 5493 rn = extract32(insn, 5, 5); 5494 rd = extract32(insn, 0, 5); 5495 5496 if (setflag && opcode != 0) { 5497 unallocated_encoding(s); 5498 return; 5499 } 5500 5501 switch (opcode) { 5502 case 0: /* SUBP(S) */ 5503 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5504 goto do_unallocated; 5505 } else { 5506 TCGv_i64 tcg_n, tcg_m, tcg_d; 5507 5508 tcg_n = read_cpu_reg_sp(s, rn, true); 5509 tcg_m = read_cpu_reg_sp(s, rm, true); 5510 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5511 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5512 tcg_d = cpu_reg(s, rd); 5513 5514 if (setflag) { 5515 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5516 } else { 5517 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5518 } 5519 } 5520 break; 5521 case 2: /* UDIV */ 5522 handle_div(s, false, sf, rm, rn, rd); 5523 break; 5524 case 3: /* SDIV */ 5525 handle_div(s, true, sf, rm, rn, rd); 5526 break; 5527 case 4: /* IRG */ 5528 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5529 goto do_unallocated; 5530 } 5531 if (s->ata[0]) { 5532 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5533 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5534 } else { 5535 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5536 cpu_reg_sp(s, rn)); 5537 } 5538 break; 5539 case 5: /* GMI */ 5540 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5541 goto do_unallocated; 5542 } else { 5543 TCGv_i64 t = tcg_temp_new_i64(); 5544 5545 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5546 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5547 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5548 } 5549 break; 5550 case 8: /* LSLV */ 5551 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5552 break; 5553 case 9: /* LSRV */ 5554 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5555 break; 5556 case 10: /* ASRV */ 5557 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5558 break; 5559 case 11: /* RORV */ 5560 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5561 break; 5562 case 12: /* PACGA */ 5563 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5564 goto do_unallocated; 5565 } 5566 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5567 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5568 break; 5569 case 16: 5570 case 17: 5571 case 18: 5572 case 19: 5573 case 20: 5574 case 21: 5575 case 22: 5576 case 23: /* CRC32 */ 5577 { 5578 int sz = extract32(opcode, 0, 2); 5579 bool crc32c = extract32(opcode, 2, 1); 5580 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5581 break; 5582 } 5583 default: 5584 do_unallocated: 5585 unallocated_encoding(s); 5586 break; 5587 } 5588 } 5589 5590 /* 5591 * Data processing - register 5592 * 31 30 29 28 25 21 20 16 10 0 5593 * +--+---+--+---+-------+-----+-------+-------+---------+ 5594 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5595 * +--+---+--+---+-------+-----+-------+-------+---------+ 5596 */ 5597 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5598 { 5599 int op0 = extract32(insn, 30, 1); 5600 int op1 = extract32(insn, 28, 1); 5601 int op2 = extract32(insn, 21, 4); 5602 int op3 = extract32(insn, 10, 6); 5603 5604 if (!op1) { 5605 if (op2 & 8) { 5606 if (op2 & 1) { 5607 /* Add/sub (extended register) */ 5608 disas_add_sub_ext_reg(s, insn); 5609 } else { 5610 /* Add/sub (shifted register) */ 5611 disas_add_sub_reg(s, insn); 5612 } 5613 } else { 5614 /* Logical (shifted register) */ 5615 disas_logic_reg(s, insn); 5616 } 5617 return; 5618 } 5619 5620 switch (op2) { 5621 case 0x0: 5622 switch (op3) { 5623 case 0x00: /* Add/subtract (with carry) */ 5624 disas_adc_sbc(s, insn); 5625 break; 5626 5627 case 0x01: /* Rotate right into flags */ 5628 case 0x21: 5629 disas_rotate_right_into_flags(s, insn); 5630 break; 5631 5632 case 0x02: /* Evaluate into flags */ 5633 case 0x12: 5634 case 0x22: 5635 case 0x32: 5636 disas_evaluate_into_flags(s, insn); 5637 break; 5638 5639 default: 5640 goto do_unallocated; 5641 } 5642 break; 5643 5644 case 0x2: /* Conditional compare */ 5645 disas_cc(s, insn); /* both imm and reg forms */ 5646 break; 5647 5648 case 0x4: /* Conditional select */ 5649 disas_cond_select(s, insn); 5650 break; 5651 5652 case 0x6: /* Data-processing */ 5653 if (op0) { /* (1 source) */ 5654 disas_data_proc_1src(s, insn); 5655 } else { /* (2 source) */ 5656 disas_data_proc_2src(s, insn); 5657 } 5658 break; 5659 case 0x8 ... 0xf: /* (3 source) */ 5660 disas_data_proc_3src(s, insn); 5661 break; 5662 5663 default: 5664 do_unallocated: 5665 unallocated_encoding(s); 5666 break; 5667 } 5668 } 5669 5670 static void handle_fp_compare(DisasContext *s, int size, 5671 unsigned int rn, unsigned int rm, 5672 bool cmp_with_zero, bool signal_all_nans) 5673 { 5674 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5675 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5676 5677 if (size == MO_64) { 5678 TCGv_i64 tcg_vn, tcg_vm; 5679 5680 tcg_vn = read_fp_dreg(s, rn); 5681 if (cmp_with_zero) { 5682 tcg_vm = tcg_constant_i64(0); 5683 } else { 5684 tcg_vm = read_fp_dreg(s, rm); 5685 } 5686 if (signal_all_nans) { 5687 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5688 } else { 5689 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5690 } 5691 } else { 5692 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5693 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5694 5695 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5696 if (cmp_with_zero) { 5697 tcg_gen_movi_i32(tcg_vm, 0); 5698 } else { 5699 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5700 } 5701 5702 switch (size) { 5703 case MO_32: 5704 if (signal_all_nans) { 5705 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5706 } else { 5707 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5708 } 5709 break; 5710 case MO_16: 5711 if (signal_all_nans) { 5712 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5713 } else { 5714 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5715 } 5716 break; 5717 default: 5718 g_assert_not_reached(); 5719 } 5720 } 5721 5722 gen_set_nzcv(tcg_flags); 5723 } 5724 5725 /* Floating point compare 5726 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5727 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5728 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5729 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5730 */ 5731 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5732 { 5733 unsigned int mos, type, rm, op, rn, opc, op2r; 5734 int size; 5735 5736 mos = extract32(insn, 29, 3); 5737 type = extract32(insn, 22, 2); 5738 rm = extract32(insn, 16, 5); 5739 op = extract32(insn, 14, 2); 5740 rn = extract32(insn, 5, 5); 5741 opc = extract32(insn, 3, 2); 5742 op2r = extract32(insn, 0, 3); 5743 5744 if (mos || op || op2r) { 5745 unallocated_encoding(s); 5746 return; 5747 } 5748 5749 switch (type) { 5750 case 0: 5751 size = MO_32; 5752 break; 5753 case 1: 5754 size = MO_64; 5755 break; 5756 case 3: 5757 size = MO_16; 5758 if (dc_isar_feature(aa64_fp16, s)) { 5759 break; 5760 } 5761 /* fallthru */ 5762 default: 5763 unallocated_encoding(s); 5764 return; 5765 } 5766 5767 if (!fp_access_check(s)) { 5768 return; 5769 } 5770 5771 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5772 } 5773 5774 /* Floating point conditional compare 5775 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5776 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5777 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5778 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5779 */ 5780 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5781 { 5782 unsigned int mos, type, rm, cond, rn, op, nzcv; 5783 TCGLabel *label_continue = NULL; 5784 int size; 5785 5786 mos = extract32(insn, 29, 3); 5787 type = extract32(insn, 22, 2); 5788 rm = extract32(insn, 16, 5); 5789 cond = extract32(insn, 12, 4); 5790 rn = extract32(insn, 5, 5); 5791 op = extract32(insn, 4, 1); 5792 nzcv = extract32(insn, 0, 4); 5793 5794 if (mos) { 5795 unallocated_encoding(s); 5796 return; 5797 } 5798 5799 switch (type) { 5800 case 0: 5801 size = MO_32; 5802 break; 5803 case 1: 5804 size = MO_64; 5805 break; 5806 case 3: 5807 size = MO_16; 5808 if (dc_isar_feature(aa64_fp16, s)) { 5809 break; 5810 } 5811 /* fallthru */ 5812 default: 5813 unallocated_encoding(s); 5814 return; 5815 } 5816 5817 if (!fp_access_check(s)) { 5818 return; 5819 } 5820 5821 if (cond < 0x0e) { /* not always */ 5822 TCGLabel *label_match = gen_new_label(); 5823 label_continue = gen_new_label(); 5824 arm_gen_test_cc(cond, label_match); 5825 /* nomatch: */ 5826 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5827 tcg_gen_br(label_continue); 5828 gen_set_label(label_match); 5829 } 5830 5831 handle_fp_compare(s, size, rn, rm, false, op); 5832 5833 if (cond < 0x0e) { 5834 gen_set_label(label_continue); 5835 } 5836 } 5837 5838 /* Floating point conditional select 5839 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5840 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5841 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5842 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5843 */ 5844 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5845 { 5846 unsigned int mos, type, rm, cond, rn, rd; 5847 TCGv_i64 t_true, t_false; 5848 DisasCompare64 c; 5849 MemOp sz; 5850 5851 mos = extract32(insn, 29, 3); 5852 type = extract32(insn, 22, 2); 5853 rm = extract32(insn, 16, 5); 5854 cond = extract32(insn, 12, 4); 5855 rn = extract32(insn, 5, 5); 5856 rd = extract32(insn, 0, 5); 5857 5858 if (mos) { 5859 unallocated_encoding(s); 5860 return; 5861 } 5862 5863 switch (type) { 5864 case 0: 5865 sz = MO_32; 5866 break; 5867 case 1: 5868 sz = MO_64; 5869 break; 5870 case 3: 5871 sz = MO_16; 5872 if (dc_isar_feature(aa64_fp16, s)) { 5873 break; 5874 } 5875 /* fallthru */ 5876 default: 5877 unallocated_encoding(s); 5878 return; 5879 } 5880 5881 if (!fp_access_check(s)) { 5882 return; 5883 } 5884 5885 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5886 t_true = tcg_temp_new_i64(); 5887 t_false = tcg_temp_new_i64(); 5888 read_vec_element(s, t_true, rn, 0, sz); 5889 read_vec_element(s, t_false, rm, 0, sz); 5890 5891 a64_test_cc(&c, cond); 5892 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5893 t_true, t_false); 5894 5895 /* Note that sregs & hregs write back zeros to the high bits, 5896 and we've already done the zero-extension. */ 5897 write_fp_dreg(s, rd, t_true); 5898 } 5899 5900 /* Floating-point data-processing (1 source) - half precision */ 5901 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5902 { 5903 TCGv_ptr fpst = NULL; 5904 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5905 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5906 5907 switch (opcode) { 5908 case 0x0: /* FMOV */ 5909 tcg_gen_mov_i32(tcg_res, tcg_op); 5910 break; 5911 case 0x1: /* FABS */ 5912 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5913 break; 5914 case 0x2: /* FNEG */ 5915 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5916 break; 5917 case 0x3: /* FSQRT */ 5918 fpst = fpstatus_ptr(FPST_FPCR_F16); 5919 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5920 break; 5921 case 0x8: /* FRINTN */ 5922 case 0x9: /* FRINTP */ 5923 case 0xa: /* FRINTM */ 5924 case 0xb: /* FRINTZ */ 5925 case 0xc: /* FRINTA */ 5926 { 5927 TCGv_i32 tcg_rmode; 5928 5929 fpst = fpstatus_ptr(FPST_FPCR_F16); 5930 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5931 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5932 gen_restore_rmode(tcg_rmode, fpst); 5933 break; 5934 } 5935 case 0xe: /* FRINTX */ 5936 fpst = fpstatus_ptr(FPST_FPCR_F16); 5937 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5938 break; 5939 case 0xf: /* FRINTI */ 5940 fpst = fpstatus_ptr(FPST_FPCR_F16); 5941 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5942 break; 5943 default: 5944 g_assert_not_reached(); 5945 } 5946 5947 write_fp_sreg(s, rd, tcg_res); 5948 } 5949 5950 /* Floating-point data-processing (1 source) - single precision */ 5951 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5952 { 5953 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5954 TCGv_i32 tcg_op, tcg_res; 5955 TCGv_ptr fpst; 5956 int rmode = -1; 5957 5958 tcg_op = read_fp_sreg(s, rn); 5959 tcg_res = tcg_temp_new_i32(); 5960 5961 switch (opcode) { 5962 case 0x0: /* FMOV */ 5963 tcg_gen_mov_i32(tcg_res, tcg_op); 5964 goto done; 5965 case 0x1: /* FABS */ 5966 gen_helper_vfp_abss(tcg_res, tcg_op); 5967 goto done; 5968 case 0x2: /* FNEG */ 5969 gen_helper_vfp_negs(tcg_res, tcg_op); 5970 goto done; 5971 case 0x3: /* FSQRT */ 5972 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 5973 goto done; 5974 case 0x6: /* BFCVT */ 5975 gen_fpst = gen_helper_bfcvt; 5976 break; 5977 case 0x8: /* FRINTN */ 5978 case 0x9: /* FRINTP */ 5979 case 0xa: /* FRINTM */ 5980 case 0xb: /* FRINTZ */ 5981 case 0xc: /* FRINTA */ 5982 rmode = opcode & 7; 5983 gen_fpst = gen_helper_rints; 5984 break; 5985 case 0xe: /* FRINTX */ 5986 gen_fpst = gen_helper_rints_exact; 5987 break; 5988 case 0xf: /* FRINTI */ 5989 gen_fpst = gen_helper_rints; 5990 break; 5991 case 0x10: /* FRINT32Z */ 5992 rmode = FPROUNDING_ZERO; 5993 gen_fpst = gen_helper_frint32_s; 5994 break; 5995 case 0x11: /* FRINT32X */ 5996 gen_fpst = gen_helper_frint32_s; 5997 break; 5998 case 0x12: /* FRINT64Z */ 5999 rmode = FPROUNDING_ZERO; 6000 gen_fpst = gen_helper_frint64_s; 6001 break; 6002 case 0x13: /* FRINT64X */ 6003 gen_fpst = gen_helper_frint64_s; 6004 break; 6005 default: 6006 g_assert_not_reached(); 6007 } 6008 6009 fpst = fpstatus_ptr(FPST_FPCR); 6010 if (rmode >= 0) { 6011 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6012 gen_fpst(tcg_res, tcg_op, fpst); 6013 gen_restore_rmode(tcg_rmode, fpst); 6014 } else { 6015 gen_fpst(tcg_res, tcg_op, fpst); 6016 } 6017 6018 done: 6019 write_fp_sreg(s, rd, tcg_res); 6020 } 6021 6022 /* Floating-point data-processing (1 source) - double precision */ 6023 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6024 { 6025 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6026 TCGv_i64 tcg_op, tcg_res; 6027 TCGv_ptr fpst; 6028 int rmode = -1; 6029 6030 switch (opcode) { 6031 case 0x0: /* FMOV */ 6032 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6033 return; 6034 } 6035 6036 tcg_op = read_fp_dreg(s, rn); 6037 tcg_res = tcg_temp_new_i64(); 6038 6039 switch (opcode) { 6040 case 0x1: /* FABS */ 6041 gen_helper_vfp_absd(tcg_res, tcg_op); 6042 goto done; 6043 case 0x2: /* FNEG */ 6044 gen_helper_vfp_negd(tcg_res, tcg_op); 6045 goto done; 6046 case 0x3: /* FSQRT */ 6047 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6048 goto done; 6049 case 0x8: /* FRINTN */ 6050 case 0x9: /* FRINTP */ 6051 case 0xa: /* FRINTM */ 6052 case 0xb: /* FRINTZ */ 6053 case 0xc: /* FRINTA */ 6054 rmode = opcode & 7; 6055 gen_fpst = gen_helper_rintd; 6056 break; 6057 case 0xe: /* FRINTX */ 6058 gen_fpst = gen_helper_rintd_exact; 6059 break; 6060 case 0xf: /* FRINTI */ 6061 gen_fpst = gen_helper_rintd; 6062 break; 6063 case 0x10: /* FRINT32Z */ 6064 rmode = FPROUNDING_ZERO; 6065 gen_fpst = gen_helper_frint32_d; 6066 break; 6067 case 0x11: /* FRINT32X */ 6068 gen_fpst = gen_helper_frint32_d; 6069 break; 6070 case 0x12: /* FRINT64Z */ 6071 rmode = FPROUNDING_ZERO; 6072 gen_fpst = gen_helper_frint64_d; 6073 break; 6074 case 0x13: /* FRINT64X */ 6075 gen_fpst = gen_helper_frint64_d; 6076 break; 6077 default: 6078 g_assert_not_reached(); 6079 } 6080 6081 fpst = fpstatus_ptr(FPST_FPCR); 6082 if (rmode >= 0) { 6083 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6084 gen_fpst(tcg_res, tcg_op, fpst); 6085 gen_restore_rmode(tcg_rmode, fpst); 6086 } else { 6087 gen_fpst(tcg_res, tcg_op, fpst); 6088 } 6089 6090 done: 6091 write_fp_dreg(s, rd, tcg_res); 6092 } 6093 6094 static void handle_fp_fcvt(DisasContext *s, int opcode, 6095 int rd, int rn, int dtype, int ntype) 6096 { 6097 switch (ntype) { 6098 case 0x0: 6099 { 6100 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6101 if (dtype == 1) { 6102 /* Single to double */ 6103 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6104 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6105 write_fp_dreg(s, rd, tcg_rd); 6106 } else { 6107 /* Single to half */ 6108 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6109 TCGv_i32 ahp = get_ahp_flag(); 6110 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6111 6112 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6113 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6114 write_fp_sreg(s, rd, tcg_rd); 6115 } 6116 break; 6117 } 6118 case 0x1: 6119 { 6120 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6121 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6122 if (dtype == 0) { 6123 /* Double to single */ 6124 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6125 } else { 6126 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6127 TCGv_i32 ahp = get_ahp_flag(); 6128 /* Double to half */ 6129 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6130 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6131 } 6132 write_fp_sreg(s, rd, tcg_rd); 6133 break; 6134 } 6135 case 0x3: 6136 { 6137 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6138 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6139 TCGv_i32 tcg_ahp = get_ahp_flag(); 6140 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6141 if (dtype == 0) { 6142 /* Half to single */ 6143 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6144 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6145 write_fp_sreg(s, rd, tcg_rd); 6146 } else { 6147 /* Half to double */ 6148 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6149 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6150 write_fp_dreg(s, rd, tcg_rd); 6151 } 6152 break; 6153 } 6154 default: 6155 g_assert_not_reached(); 6156 } 6157 } 6158 6159 /* Floating point data-processing (1 source) 6160 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6161 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6162 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6163 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6164 */ 6165 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6166 { 6167 int mos = extract32(insn, 29, 3); 6168 int type = extract32(insn, 22, 2); 6169 int opcode = extract32(insn, 15, 6); 6170 int rn = extract32(insn, 5, 5); 6171 int rd = extract32(insn, 0, 5); 6172 6173 if (mos) { 6174 goto do_unallocated; 6175 } 6176 6177 switch (opcode) { 6178 case 0x4: case 0x5: case 0x7: 6179 { 6180 /* FCVT between half, single and double precision */ 6181 int dtype = extract32(opcode, 0, 2); 6182 if (type == 2 || dtype == type) { 6183 goto do_unallocated; 6184 } 6185 if (!fp_access_check(s)) { 6186 return; 6187 } 6188 6189 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6190 break; 6191 } 6192 6193 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6194 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6195 goto do_unallocated; 6196 } 6197 /* fall through */ 6198 case 0x0 ... 0x3: 6199 case 0x8 ... 0xc: 6200 case 0xe ... 0xf: 6201 /* 32-to-32 and 64-to-64 ops */ 6202 switch (type) { 6203 case 0: 6204 if (!fp_access_check(s)) { 6205 return; 6206 } 6207 handle_fp_1src_single(s, opcode, rd, rn); 6208 break; 6209 case 1: 6210 if (!fp_access_check(s)) { 6211 return; 6212 } 6213 handle_fp_1src_double(s, opcode, rd, rn); 6214 break; 6215 case 3: 6216 if (!dc_isar_feature(aa64_fp16, s)) { 6217 goto do_unallocated; 6218 } 6219 6220 if (!fp_access_check(s)) { 6221 return; 6222 } 6223 handle_fp_1src_half(s, opcode, rd, rn); 6224 break; 6225 default: 6226 goto do_unallocated; 6227 } 6228 break; 6229 6230 case 0x6: 6231 switch (type) { 6232 case 1: /* BFCVT */ 6233 if (!dc_isar_feature(aa64_bf16, s)) { 6234 goto do_unallocated; 6235 } 6236 if (!fp_access_check(s)) { 6237 return; 6238 } 6239 handle_fp_1src_single(s, opcode, rd, rn); 6240 break; 6241 default: 6242 goto do_unallocated; 6243 } 6244 break; 6245 6246 default: 6247 do_unallocated: 6248 unallocated_encoding(s); 6249 break; 6250 } 6251 } 6252 6253 /* Floating-point data-processing (2 source) - single precision */ 6254 static void handle_fp_2src_single(DisasContext *s, int opcode, 6255 int rd, int rn, int rm) 6256 { 6257 TCGv_i32 tcg_op1; 6258 TCGv_i32 tcg_op2; 6259 TCGv_i32 tcg_res; 6260 TCGv_ptr fpst; 6261 6262 tcg_res = tcg_temp_new_i32(); 6263 fpst = fpstatus_ptr(FPST_FPCR); 6264 tcg_op1 = read_fp_sreg(s, rn); 6265 tcg_op2 = read_fp_sreg(s, rm); 6266 6267 switch (opcode) { 6268 case 0x0: /* FMUL */ 6269 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6270 break; 6271 case 0x1: /* FDIV */ 6272 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6273 break; 6274 case 0x2: /* FADD */ 6275 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6276 break; 6277 case 0x3: /* FSUB */ 6278 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6279 break; 6280 case 0x4: /* FMAX */ 6281 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6282 break; 6283 case 0x5: /* FMIN */ 6284 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6285 break; 6286 case 0x6: /* FMAXNM */ 6287 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6288 break; 6289 case 0x7: /* FMINNM */ 6290 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6291 break; 6292 case 0x8: /* FNMUL */ 6293 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6294 gen_helper_vfp_negs(tcg_res, tcg_res); 6295 break; 6296 } 6297 6298 write_fp_sreg(s, rd, tcg_res); 6299 } 6300 6301 /* Floating-point data-processing (2 source) - double precision */ 6302 static void handle_fp_2src_double(DisasContext *s, int opcode, 6303 int rd, int rn, int rm) 6304 { 6305 TCGv_i64 tcg_op1; 6306 TCGv_i64 tcg_op2; 6307 TCGv_i64 tcg_res; 6308 TCGv_ptr fpst; 6309 6310 tcg_res = tcg_temp_new_i64(); 6311 fpst = fpstatus_ptr(FPST_FPCR); 6312 tcg_op1 = read_fp_dreg(s, rn); 6313 tcg_op2 = read_fp_dreg(s, rm); 6314 6315 switch (opcode) { 6316 case 0x0: /* FMUL */ 6317 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6318 break; 6319 case 0x1: /* FDIV */ 6320 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6321 break; 6322 case 0x2: /* FADD */ 6323 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6324 break; 6325 case 0x3: /* FSUB */ 6326 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6327 break; 6328 case 0x4: /* FMAX */ 6329 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6330 break; 6331 case 0x5: /* FMIN */ 6332 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6333 break; 6334 case 0x6: /* FMAXNM */ 6335 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6336 break; 6337 case 0x7: /* FMINNM */ 6338 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6339 break; 6340 case 0x8: /* FNMUL */ 6341 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6342 gen_helper_vfp_negd(tcg_res, tcg_res); 6343 break; 6344 } 6345 6346 write_fp_dreg(s, rd, tcg_res); 6347 } 6348 6349 /* Floating-point data-processing (2 source) - half precision */ 6350 static void handle_fp_2src_half(DisasContext *s, int opcode, 6351 int rd, int rn, int rm) 6352 { 6353 TCGv_i32 tcg_op1; 6354 TCGv_i32 tcg_op2; 6355 TCGv_i32 tcg_res; 6356 TCGv_ptr fpst; 6357 6358 tcg_res = tcg_temp_new_i32(); 6359 fpst = fpstatus_ptr(FPST_FPCR_F16); 6360 tcg_op1 = read_fp_hreg(s, rn); 6361 tcg_op2 = read_fp_hreg(s, rm); 6362 6363 switch (opcode) { 6364 case 0x0: /* FMUL */ 6365 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6366 break; 6367 case 0x1: /* FDIV */ 6368 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6369 break; 6370 case 0x2: /* FADD */ 6371 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6372 break; 6373 case 0x3: /* FSUB */ 6374 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6375 break; 6376 case 0x4: /* FMAX */ 6377 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6378 break; 6379 case 0x5: /* FMIN */ 6380 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6381 break; 6382 case 0x6: /* FMAXNM */ 6383 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6384 break; 6385 case 0x7: /* FMINNM */ 6386 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6387 break; 6388 case 0x8: /* FNMUL */ 6389 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6390 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6391 break; 6392 default: 6393 g_assert_not_reached(); 6394 } 6395 6396 write_fp_sreg(s, rd, tcg_res); 6397 } 6398 6399 /* Floating point data-processing (2 source) 6400 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6401 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6402 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6403 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6404 */ 6405 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6406 { 6407 int mos = extract32(insn, 29, 3); 6408 int type = extract32(insn, 22, 2); 6409 int rd = extract32(insn, 0, 5); 6410 int rn = extract32(insn, 5, 5); 6411 int rm = extract32(insn, 16, 5); 6412 int opcode = extract32(insn, 12, 4); 6413 6414 if (opcode > 8 || mos) { 6415 unallocated_encoding(s); 6416 return; 6417 } 6418 6419 switch (type) { 6420 case 0: 6421 if (!fp_access_check(s)) { 6422 return; 6423 } 6424 handle_fp_2src_single(s, opcode, rd, rn, rm); 6425 break; 6426 case 1: 6427 if (!fp_access_check(s)) { 6428 return; 6429 } 6430 handle_fp_2src_double(s, opcode, rd, rn, rm); 6431 break; 6432 case 3: 6433 if (!dc_isar_feature(aa64_fp16, s)) { 6434 unallocated_encoding(s); 6435 return; 6436 } 6437 if (!fp_access_check(s)) { 6438 return; 6439 } 6440 handle_fp_2src_half(s, opcode, rd, rn, rm); 6441 break; 6442 default: 6443 unallocated_encoding(s); 6444 } 6445 } 6446 6447 /* Floating-point data-processing (3 source) - single precision */ 6448 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6449 int rd, int rn, int rm, int ra) 6450 { 6451 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6452 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6453 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6454 6455 tcg_op1 = read_fp_sreg(s, rn); 6456 tcg_op2 = read_fp_sreg(s, rm); 6457 tcg_op3 = read_fp_sreg(s, ra); 6458 6459 /* These are fused multiply-add, and must be done as one 6460 * floating point operation with no rounding between the 6461 * multiplication and addition steps. 6462 * NB that doing the negations here as separate steps is 6463 * correct : an input NaN should come out with its sign bit 6464 * flipped if it is a negated-input. 6465 */ 6466 if (o1 == true) { 6467 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6468 } 6469 6470 if (o0 != o1) { 6471 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6472 } 6473 6474 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6475 6476 write_fp_sreg(s, rd, tcg_res); 6477 } 6478 6479 /* Floating-point data-processing (3 source) - double precision */ 6480 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6481 int rd, int rn, int rm, int ra) 6482 { 6483 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6484 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6485 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6486 6487 tcg_op1 = read_fp_dreg(s, rn); 6488 tcg_op2 = read_fp_dreg(s, rm); 6489 tcg_op3 = read_fp_dreg(s, ra); 6490 6491 /* These are fused multiply-add, and must be done as one 6492 * floating point operation with no rounding between the 6493 * multiplication and addition steps. 6494 * NB that doing the negations here as separate steps is 6495 * correct : an input NaN should come out with its sign bit 6496 * flipped if it is a negated-input. 6497 */ 6498 if (o1 == true) { 6499 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6500 } 6501 6502 if (o0 != o1) { 6503 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6504 } 6505 6506 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6507 6508 write_fp_dreg(s, rd, tcg_res); 6509 } 6510 6511 /* Floating-point data-processing (3 source) - half precision */ 6512 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6513 int rd, int rn, int rm, int ra) 6514 { 6515 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6516 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6517 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6518 6519 tcg_op1 = read_fp_hreg(s, rn); 6520 tcg_op2 = read_fp_hreg(s, rm); 6521 tcg_op3 = read_fp_hreg(s, ra); 6522 6523 /* These are fused multiply-add, and must be done as one 6524 * floating point operation with no rounding between the 6525 * multiplication and addition steps. 6526 * NB that doing the negations here as separate steps is 6527 * correct : an input NaN should come out with its sign bit 6528 * flipped if it is a negated-input. 6529 */ 6530 if (o1 == true) { 6531 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6532 } 6533 6534 if (o0 != o1) { 6535 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6536 } 6537 6538 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6539 6540 write_fp_sreg(s, rd, tcg_res); 6541 } 6542 6543 /* Floating point data-processing (3 source) 6544 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6545 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6546 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6547 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6548 */ 6549 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6550 { 6551 int mos = extract32(insn, 29, 3); 6552 int type = extract32(insn, 22, 2); 6553 int rd = extract32(insn, 0, 5); 6554 int rn = extract32(insn, 5, 5); 6555 int ra = extract32(insn, 10, 5); 6556 int rm = extract32(insn, 16, 5); 6557 bool o0 = extract32(insn, 15, 1); 6558 bool o1 = extract32(insn, 21, 1); 6559 6560 if (mos) { 6561 unallocated_encoding(s); 6562 return; 6563 } 6564 6565 switch (type) { 6566 case 0: 6567 if (!fp_access_check(s)) { 6568 return; 6569 } 6570 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6571 break; 6572 case 1: 6573 if (!fp_access_check(s)) { 6574 return; 6575 } 6576 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6577 break; 6578 case 3: 6579 if (!dc_isar_feature(aa64_fp16, s)) { 6580 unallocated_encoding(s); 6581 return; 6582 } 6583 if (!fp_access_check(s)) { 6584 return; 6585 } 6586 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6587 break; 6588 default: 6589 unallocated_encoding(s); 6590 } 6591 } 6592 6593 /* Floating point immediate 6594 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6595 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6596 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6597 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6598 */ 6599 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6600 { 6601 int rd = extract32(insn, 0, 5); 6602 int imm5 = extract32(insn, 5, 5); 6603 int imm8 = extract32(insn, 13, 8); 6604 int type = extract32(insn, 22, 2); 6605 int mos = extract32(insn, 29, 3); 6606 uint64_t imm; 6607 MemOp sz; 6608 6609 if (mos || imm5) { 6610 unallocated_encoding(s); 6611 return; 6612 } 6613 6614 switch (type) { 6615 case 0: 6616 sz = MO_32; 6617 break; 6618 case 1: 6619 sz = MO_64; 6620 break; 6621 case 3: 6622 sz = MO_16; 6623 if (dc_isar_feature(aa64_fp16, s)) { 6624 break; 6625 } 6626 /* fallthru */ 6627 default: 6628 unallocated_encoding(s); 6629 return; 6630 } 6631 6632 if (!fp_access_check(s)) { 6633 return; 6634 } 6635 6636 imm = vfp_expand_imm(sz, imm8); 6637 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6638 } 6639 6640 /* Handle floating point <=> fixed point conversions. Note that we can 6641 * also deal with fp <=> integer conversions as a special case (scale == 64) 6642 * OPTME: consider handling that special case specially or at least skipping 6643 * the call to scalbn in the helpers for zero shifts. 6644 */ 6645 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6646 bool itof, int rmode, int scale, int sf, int type) 6647 { 6648 bool is_signed = !(opcode & 1); 6649 TCGv_ptr tcg_fpstatus; 6650 TCGv_i32 tcg_shift, tcg_single; 6651 TCGv_i64 tcg_double; 6652 6653 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6654 6655 tcg_shift = tcg_constant_i32(64 - scale); 6656 6657 if (itof) { 6658 TCGv_i64 tcg_int = cpu_reg(s, rn); 6659 if (!sf) { 6660 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6661 6662 if (is_signed) { 6663 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6664 } else { 6665 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6666 } 6667 6668 tcg_int = tcg_extend; 6669 } 6670 6671 switch (type) { 6672 case 1: /* float64 */ 6673 tcg_double = tcg_temp_new_i64(); 6674 if (is_signed) { 6675 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6676 tcg_shift, tcg_fpstatus); 6677 } else { 6678 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6679 tcg_shift, tcg_fpstatus); 6680 } 6681 write_fp_dreg(s, rd, tcg_double); 6682 break; 6683 6684 case 0: /* float32 */ 6685 tcg_single = tcg_temp_new_i32(); 6686 if (is_signed) { 6687 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6688 tcg_shift, tcg_fpstatus); 6689 } else { 6690 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6691 tcg_shift, tcg_fpstatus); 6692 } 6693 write_fp_sreg(s, rd, tcg_single); 6694 break; 6695 6696 case 3: /* float16 */ 6697 tcg_single = tcg_temp_new_i32(); 6698 if (is_signed) { 6699 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6700 tcg_shift, tcg_fpstatus); 6701 } else { 6702 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6703 tcg_shift, tcg_fpstatus); 6704 } 6705 write_fp_sreg(s, rd, tcg_single); 6706 break; 6707 6708 default: 6709 g_assert_not_reached(); 6710 } 6711 } else { 6712 TCGv_i64 tcg_int = cpu_reg(s, rd); 6713 TCGv_i32 tcg_rmode; 6714 6715 if (extract32(opcode, 2, 1)) { 6716 /* There are too many rounding modes to all fit into rmode, 6717 * so FCVTA[US] is a special case. 6718 */ 6719 rmode = FPROUNDING_TIEAWAY; 6720 } 6721 6722 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6723 6724 switch (type) { 6725 case 1: /* float64 */ 6726 tcg_double = read_fp_dreg(s, rn); 6727 if (is_signed) { 6728 if (!sf) { 6729 gen_helper_vfp_tosld(tcg_int, tcg_double, 6730 tcg_shift, tcg_fpstatus); 6731 } else { 6732 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6733 tcg_shift, tcg_fpstatus); 6734 } 6735 } else { 6736 if (!sf) { 6737 gen_helper_vfp_tould(tcg_int, tcg_double, 6738 tcg_shift, tcg_fpstatus); 6739 } else { 6740 gen_helper_vfp_touqd(tcg_int, tcg_double, 6741 tcg_shift, tcg_fpstatus); 6742 } 6743 } 6744 if (!sf) { 6745 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6746 } 6747 break; 6748 6749 case 0: /* float32 */ 6750 tcg_single = read_fp_sreg(s, rn); 6751 if (sf) { 6752 if (is_signed) { 6753 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6754 tcg_shift, tcg_fpstatus); 6755 } else { 6756 gen_helper_vfp_touqs(tcg_int, tcg_single, 6757 tcg_shift, tcg_fpstatus); 6758 } 6759 } else { 6760 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6761 if (is_signed) { 6762 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6763 tcg_shift, tcg_fpstatus); 6764 } else { 6765 gen_helper_vfp_touls(tcg_dest, tcg_single, 6766 tcg_shift, tcg_fpstatus); 6767 } 6768 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6769 } 6770 break; 6771 6772 case 3: /* float16 */ 6773 tcg_single = read_fp_sreg(s, rn); 6774 if (sf) { 6775 if (is_signed) { 6776 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6777 tcg_shift, tcg_fpstatus); 6778 } else { 6779 gen_helper_vfp_touqh(tcg_int, tcg_single, 6780 tcg_shift, tcg_fpstatus); 6781 } 6782 } else { 6783 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6784 if (is_signed) { 6785 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6786 tcg_shift, tcg_fpstatus); 6787 } else { 6788 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6789 tcg_shift, tcg_fpstatus); 6790 } 6791 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6792 } 6793 break; 6794 6795 default: 6796 g_assert_not_reached(); 6797 } 6798 6799 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6800 } 6801 } 6802 6803 /* Floating point <-> fixed point conversions 6804 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6805 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6806 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6807 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6808 */ 6809 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6810 { 6811 int rd = extract32(insn, 0, 5); 6812 int rn = extract32(insn, 5, 5); 6813 int scale = extract32(insn, 10, 6); 6814 int opcode = extract32(insn, 16, 3); 6815 int rmode = extract32(insn, 19, 2); 6816 int type = extract32(insn, 22, 2); 6817 bool sbit = extract32(insn, 29, 1); 6818 bool sf = extract32(insn, 31, 1); 6819 bool itof; 6820 6821 if (sbit || (!sf && scale < 32)) { 6822 unallocated_encoding(s); 6823 return; 6824 } 6825 6826 switch (type) { 6827 case 0: /* float32 */ 6828 case 1: /* float64 */ 6829 break; 6830 case 3: /* float16 */ 6831 if (dc_isar_feature(aa64_fp16, s)) { 6832 break; 6833 } 6834 /* fallthru */ 6835 default: 6836 unallocated_encoding(s); 6837 return; 6838 } 6839 6840 switch ((rmode << 3) | opcode) { 6841 case 0x2: /* SCVTF */ 6842 case 0x3: /* UCVTF */ 6843 itof = true; 6844 break; 6845 case 0x18: /* FCVTZS */ 6846 case 0x19: /* FCVTZU */ 6847 itof = false; 6848 break; 6849 default: 6850 unallocated_encoding(s); 6851 return; 6852 } 6853 6854 if (!fp_access_check(s)) { 6855 return; 6856 } 6857 6858 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6859 } 6860 6861 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6862 { 6863 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6864 * without conversion. 6865 */ 6866 6867 if (itof) { 6868 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6869 TCGv_i64 tmp; 6870 6871 switch (type) { 6872 case 0: 6873 /* 32 bit */ 6874 tmp = tcg_temp_new_i64(); 6875 tcg_gen_ext32u_i64(tmp, tcg_rn); 6876 write_fp_dreg(s, rd, tmp); 6877 break; 6878 case 1: 6879 /* 64 bit */ 6880 write_fp_dreg(s, rd, tcg_rn); 6881 break; 6882 case 2: 6883 /* 64 bit to top half. */ 6884 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6885 clear_vec_high(s, true, rd); 6886 break; 6887 case 3: 6888 /* 16 bit */ 6889 tmp = tcg_temp_new_i64(); 6890 tcg_gen_ext16u_i64(tmp, tcg_rn); 6891 write_fp_dreg(s, rd, tmp); 6892 break; 6893 default: 6894 g_assert_not_reached(); 6895 } 6896 } else { 6897 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6898 6899 switch (type) { 6900 case 0: 6901 /* 32 bit */ 6902 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6903 break; 6904 case 1: 6905 /* 64 bit */ 6906 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6907 break; 6908 case 2: 6909 /* 64 bits from top half */ 6910 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6911 break; 6912 case 3: 6913 /* 16 bit */ 6914 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6915 break; 6916 default: 6917 g_assert_not_reached(); 6918 } 6919 } 6920 } 6921 6922 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6923 { 6924 TCGv_i64 t = read_fp_dreg(s, rn); 6925 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6926 6927 gen_helper_fjcvtzs(t, t, fpstatus); 6928 6929 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6930 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6931 tcg_gen_movi_i32(cpu_CF, 0); 6932 tcg_gen_movi_i32(cpu_NF, 0); 6933 tcg_gen_movi_i32(cpu_VF, 0); 6934 } 6935 6936 /* Floating point <-> integer conversions 6937 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6938 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6939 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6940 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6941 */ 6942 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6943 { 6944 int rd = extract32(insn, 0, 5); 6945 int rn = extract32(insn, 5, 5); 6946 int opcode = extract32(insn, 16, 3); 6947 int rmode = extract32(insn, 19, 2); 6948 int type = extract32(insn, 22, 2); 6949 bool sbit = extract32(insn, 29, 1); 6950 bool sf = extract32(insn, 31, 1); 6951 bool itof = false; 6952 6953 if (sbit) { 6954 goto do_unallocated; 6955 } 6956 6957 switch (opcode) { 6958 case 2: /* SCVTF */ 6959 case 3: /* UCVTF */ 6960 itof = true; 6961 /* fallthru */ 6962 case 4: /* FCVTAS */ 6963 case 5: /* FCVTAU */ 6964 if (rmode != 0) { 6965 goto do_unallocated; 6966 } 6967 /* fallthru */ 6968 case 0: /* FCVT[NPMZ]S */ 6969 case 1: /* FCVT[NPMZ]U */ 6970 switch (type) { 6971 case 0: /* float32 */ 6972 case 1: /* float64 */ 6973 break; 6974 case 3: /* float16 */ 6975 if (!dc_isar_feature(aa64_fp16, s)) { 6976 goto do_unallocated; 6977 } 6978 break; 6979 default: 6980 goto do_unallocated; 6981 } 6982 if (!fp_access_check(s)) { 6983 return; 6984 } 6985 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 6986 break; 6987 6988 default: 6989 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 6990 case 0b01100110: /* FMOV half <-> 32-bit int */ 6991 case 0b01100111: 6992 case 0b11100110: /* FMOV half <-> 64-bit int */ 6993 case 0b11100111: 6994 if (!dc_isar_feature(aa64_fp16, s)) { 6995 goto do_unallocated; 6996 } 6997 /* fallthru */ 6998 case 0b00000110: /* FMOV 32-bit */ 6999 case 0b00000111: 7000 case 0b10100110: /* FMOV 64-bit */ 7001 case 0b10100111: 7002 case 0b11001110: /* FMOV top half of 128-bit */ 7003 case 0b11001111: 7004 if (!fp_access_check(s)) { 7005 return; 7006 } 7007 itof = opcode & 1; 7008 handle_fmov(s, rd, rn, type, itof); 7009 break; 7010 7011 case 0b00111110: /* FJCVTZS */ 7012 if (!dc_isar_feature(aa64_jscvt, s)) { 7013 goto do_unallocated; 7014 } else if (fp_access_check(s)) { 7015 handle_fjcvtzs(s, rd, rn); 7016 } 7017 break; 7018 7019 default: 7020 do_unallocated: 7021 unallocated_encoding(s); 7022 return; 7023 } 7024 break; 7025 } 7026 } 7027 7028 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7029 * 31 30 29 28 25 24 0 7030 * +---+---+---+---------+-----------------------------+ 7031 * | | 0 | | 1 1 1 1 | | 7032 * +---+---+---+---------+-----------------------------+ 7033 */ 7034 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7035 { 7036 if (extract32(insn, 24, 1)) { 7037 /* Floating point data-processing (3 source) */ 7038 disas_fp_3src(s, insn); 7039 } else if (extract32(insn, 21, 1) == 0) { 7040 /* Floating point to fixed point conversions */ 7041 disas_fp_fixed_conv(s, insn); 7042 } else { 7043 switch (extract32(insn, 10, 2)) { 7044 case 1: 7045 /* Floating point conditional compare */ 7046 disas_fp_ccomp(s, insn); 7047 break; 7048 case 2: 7049 /* Floating point data-processing (2 source) */ 7050 disas_fp_2src(s, insn); 7051 break; 7052 case 3: 7053 /* Floating point conditional select */ 7054 disas_fp_csel(s, insn); 7055 break; 7056 case 0: 7057 switch (ctz32(extract32(insn, 12, 4))) { 7058 case 0: /* [15:12] == xxx1 */ 7059 /* Floating point immediate */ 7060 disas_fp_imm(s, insn); 7061 break; 7062 case 1: /* [15:12] == xx10 */ 7063 /* Floating point compare */ 7064 disas_fp_compare(s, insn); 7065 break; 7066 case 2: /* [15:12] == x100 */ 7067 /* Floating point data-processing (1 source) */ 7068 disas_fp_1src(s, insn); 7069 break; 7070 case 3: /* [15:12] == 1000 */ 7071 unallocated_encoding(s); 7072 break; 7073 default: /* [15:12] == 0000 */ 7074 /* Floating point <-> integer conversions */ 7075 disas_fp_int_conv(s, insn); 7076 break; 7077 } 7078 break; 7079 } 7080 } 7081 } 7082 7083 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7084 int pos) 7085 { 7086 /* Extract 64 bits from the middle of two concatenated 64 bit 7087 * vector register slices left:right. The extracted bits start 7088 * at 'pos' bits into the right (least significant) side. 7089 * We return the result in tcg_right, and guarantee not to 7090 * trash tcg_left. 7091 */ 7092 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7093 assert(pos > 0 && pos < 64); 7094 7095 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7096 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7097 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7098 } 7099 7100 /* EXT 7101 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7102 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7103 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7104 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7105 */ 7106 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7107 { 7108 int is_q = extract32(insn, 30, 1); 7109 int op2 = extract32(insn, 22, 2); 7110 int imm4 = extract32(insn, 11, 4); 7111 int rm = extract32(insn, 16, 5); 7112 int rn = extract32(insn, 5, 5); 7113 int rd = extract32(insn, 0, 5); 7114 int pos = imm4 << 3; 7115 TCGv_i64 tcg_resl, tcg_resh; 7116 7117 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7118 unallocated_encoding(s); 7119 return; 7120 } 7121 7122 if (!fp_access_check(s)) { 7123 return; 7124 } 7125 7126 tcg_resh = tcg_temp_new_i64(); 7127 tcg_resl = tcg_temp_new_i64(); 7128 7129 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7130 * either extracting 128 bits from a 128:128 concatenation, or 7131 * extracting 64 bits from a 64:64 concatenation. 7132 */ 7133 if (!is_q) { 7134 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7135 if (pos != 0) { 7136 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7137 do_ext64(s, tcg_resh, tcg_resl, pos); 7138 } 7139 } else { 7140 TCGv_i64 tcg_hh; 7141 typedef struct { 7142 int reg; 7143 int elt; 7144 } EltPosns; 7145 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7146 EltPosns *elt = eltposns; 7147 7148 if (pos >= 64) { 7149 elt++; 7150 pos -= 64; 7151 } 7152 7153 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7154 elt++; 7155 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7156 elt++; 7157 if (pos != 0) { 7158 do_ext64(s, tcg_resh, tcg_resl, pos); 7159 tcg_hh = tcg_temp_new_i64(); 7160 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7161 do_ext64(s, tcg_hh, tcg_resh, pos); 7162 } 7163 } 7164 7165 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7166 if (is_q) { 7167 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7168 } 7169 clear_vec_high(s, is_q, rd); 7170 } 7171 7172 /* TBL/TBX 7173 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7174 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7175 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7176 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7177 */ 7178 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7179 { 7180 int op2 = extract32(insn, 22, 2); 7181 int is_q = extract32(insn, 30, 1); 7182 int rm = extract32(insn, 16, 5); 7183 int rn = extract32(insn, 5, 5); 7184 int rd = extract32(insn, 0, 5); 7185 int is_tbx = extract32(insn, 12, 1); 7186 int len = (extract32(insn, 13, 2) + 1) * 16; 7187 7188 if (op2 != 0) { 7189 unallocated_encoding(s); 7190 return; 7191 } 7192 7193 if (!fp_access_check(s)) { 7194 return; 7195 } 7196 7197 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7198 vec_full_reg_offset(s, rm), cpu_env, 7199 is_q ? 16 : 8, vec_full_reg_size(s), 7200 (len << 6) | (is_tbx << 5) | rn, 7201 gen_helper_simd_tblx); 7202 } 7203 7204 /* ZIP/UZP/TRN 7205 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7206 * +---+---+-------------+------+---+------+---+------------------+------+ 7207 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7208 * +---+---+-------------+------+---+------+---+------------------+------+ 7209 */ 7210 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7211 { 7212 int rd = extract32(insn, 0, 5); 7213 int rn = extract32(insn, 5, 5); 7214 int rm = extract32(insn, 16, 5); 7215 int size = extract32(insn, 22, 2); 7216 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7217 * bit 2 indicates 1 vs 2 variant of the insn. 7218 */ 7219 int opcode = extract32(insn, 12, 2); 7220 bool part = extract32(insn, 14, 1); 7221 bool is_q = extract32(insn, 30, 1); 7222 int esize = 8 << size; 7223 int i; 7224 int datasize = is_q ? 128 : 64; 7225 int elements = datasize / esize; 7226 TCGv_i64 tcg_res[2], tcg_ele; 7227 7228 if (opcode == 0 || (size == 3 && !is_q)) { 7229 unallocated_encoding(s); 7230 return; 7231 } 7232 7233 if (!fp_access_check(s)) { 7234 return; 7235 } 7236 7237 tcg_res[0] = tcg_temp_new_i64(); 7238 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7239 tcg_ele = tcg_temp_new_i64(); 7240 7241 for (i = 0; i < elements; i++) { 7242 int o, w; 7243 7244 switch (opcode) { 7245 case 1: /* UZP1/2 */ 7246 { 7247 int midpoint = elements / 2; 7248 if (i < midpoint) { 7249 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7250 } else { 7251 read_vec_element(s, tcg_ele, rm, 7252 2 * (i - midpoint) + part, size); 7253 } 7254 break; 7255 } 7256 case 2: /* TRN1/2 */ 7257 if (i & 1) { 7258 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7259 } else { 7260 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7261 } 7262 break; 7263 case 3: /* ZIP1/2 */ 7264 { 7265 int base = part * elements / 2; 7266 if (i & 1) { 7267 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7268 } else { 7269 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7270 } 7271 break; 7272 } 7273 default: 7274 g_assert_not_reached(); 7275 } 7276 7277 w = (i * esize) / 64; 7278 o = (i * esize) % 64; 7279 if (o == 0) { 7280 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7281 } else { 7282 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7283 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7284 } 7285 } 7286 7287 for (i = 0; i <= is_q; ++i) { 7288 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7289 } 7290 clear_vec_high(s, is_q, rd); 7291 } 7292 7293 /* 7294 * do_reduction_op helper 7295 * 7296 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7297 * important for correct NaN propagation that we do these 7298 * operations in exactly the order specified by the pseudocode. 7299 * 7300 * This is a recursive function, TCG temps should be freed by the 7301 * calling function once it is done with the values. 7302 */ 7303 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7304 int esize, int size, int vmap, TCGv_ptr fpst) 7305 { 7306 if (esize == size) { 7307 int element; 7308 MemOp msize = esize == 16 ? MO_16 : MO_32; 7309 TCGv_i32 tcg_elem; 7310 7311 /* We should have one register left here */ 7312 assert(ctpop8(vmap) == 1); 7313 element = ctz32(vmap); 7314 assert(element < 8); 7315 7316 tcg_elem = tcg_temp_new_i32(); 7317 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7318 return tcg_elem; 7319 } else { 7320 int bits = size / 2; 7321 int shift = ctpop8(vmap) / 2; 7322 int vmap_lo = (vmap >> shift) & vmap; 7323 int vmap_hi = (vmap & ~vmap_lo); 7324 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7325 7326 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7327 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7328 tcg_res = tcg_temp_new_i32(); 7329 7330 switch (fpopcode) { 7331 case 0x0c: /* fmaxnmv half-precision */ 7332 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7333 break; 7334 case 0x0f: /* fmaxv half-precision */ 7335 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7336 break; 7337 case 0x1c: /* fminnmv half-precision */ 7338 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7339 break; 7340 case 0x1f: /* fminv half-precision */ 7341 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7342 break; 7343 case 0x2c: /* fmaxnmv */ 7344 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7345 break; 7346 case 0x2f: /* fmaxv */ 7347 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7348 break; 7349 case 0x3c: /* fminnmv */ 7350 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7351 break; 7352 case 0x3f: /* fminv */ 7353 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7354 break; 7355 default: 7356 g_assert_not_reached(); 7357 } 7358 return tcg_res; 7359 } 7360 } 7361 7362 /* AdvSIMD across lanes 7363 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7364 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7365 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7366 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7367 */ 7368 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7369 { 7370 int rd = extract32(insn, 0, 5); 7371 int rn = extract32(insn, 5, 5); 7372 int size = extract32(insn, 22, 2); 7373 int opcode = extract32(insn, 12, 5); 7374 bool is_q = extract32(insn, 30, 1); 7375 bool is_u = extract32(insn, 29, 1); 7376 bool is_fp = false; 7377 bool is_min = false; 7378 int esize; 7379 int elements; 7380 int i; 7381 TCGv_i64 tcg_res, tcg_elt; 7382 7383 switch (opcode) { 7384 case 0x1b: /* ADDV */ 7385 if (is_u) { 7386 unallocated_encoding(s); 7387 return; 7388 } 7389 /* fall through */ 7390 case 0x3: /* SADDLV, UADDLV */ 7391 case 0xa: /* SMAXV, UMAXV */ 7392 case 0x1a: /* SMINV, UMINV */ 7393 if (size == 3 || (size == 2 && !is_q)) { 7394 unallocated_encoding(s); 7395 return; 7396 } 7397 break; 7398 case 0xc: /* FMAXNMV, FMINNMV */ 7399 case 0xf: /* FMAXV, FMINV */ 7400 /* Bit 1 of size field encodes min vs max and the actual size 7401 * depends on the encoding of the U bit. If not set (and FP16 7402 * enabled) then we do half-precision float instead of single 7403 * precision. 7404 */ 7405 is_min = extract32(size, 1, 1); 7406 is_fp = true; 7407 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7408 size = 1; 7409 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7410 unallocated_encoding(s); 7411 return; 7412 } else { 7413 size = 2; 7414 } 7415 break; 7416 default: 7417 unallocated_encoding(s); 7418 return; 7419 } 7420 7421 if (!fp_access_check(s)) { 7422 return; 7423 } 7424 7425 esize = 8 << size; 7426 elements = (is_q ? 128 : 64) / esize; 7427 7428 tcg_res = tcg_temp_new_i64(); 7429 tcg_elt = tcg_temp_new_i64(); 7430 7431 /* These instructions operate across all lanes of a vector 7432 * to produce a single result. We can guarantee that a 64 7433 * bit intermediate is sufficient: 7434 * + for [US]ADDLV the maximum element size is 32 bits, and 7435 * the result type is 64 bits 7436 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7437 * same as the element size, which is 32 bits at most 7438 * For the integer operations we can choose to work at 64 7439 * or 32 bits and truncate at the end; for simplicity 7440 * we use 64 bits always. The floating point 7441 * ops do require 32 bit intermediates, though. 7442 */ 7443 if (!is_fp) { 7444 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7445 7446 for (i = 1; i < elements; i++) { 7447 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7448 7449 switch (opcode) { 7450 case 0x03: /* SADDLV / UADDLV */ 7451 case 0x1b: /* ADDV */ 7452 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7453 break; 7454 case 0x0a: /* SMAXV / UMAXV */ 7455 if (is_u) { 7456 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7457 } else { 7458 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7459 } 7460 break; 7461 case 0x1a: /* SMINV / UMINV */ 7462 if (is_u) { 7463 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7464 } else { 7465 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7466 } 7467 break; 7468 default: 7469 g_assert_not_reached(); 7470 } 7471 7472 } 7473 } else { 7474 /* Floating point vector reduction ops which work across 32 7475 * bit (single) or 16 bit (half-precision) intermediates. 7476 * Note that correct NaN propagation requires that we do these 7477 * operations in exactly the order specified by the pseudocode. 7478 */ 7479 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7480 int fpopcode = opcode | is_min << 4 | is_u << 5; 7481 int vmap = (1 << elements) - 1; 7482 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7483 (is_q ? 128 : 64), vmap, fpst); 7484 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7485 } 7486 7487 /* Now truncate the result to the width required for the final output */ 7488 if (opcode == 0x03) { 7489 /* SADDLV, UADDLV: result is 2*esize */ 7490 size++; 7491 } 7492 7493 switch (size) { 7494 case 0: 7495 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7496 break; 7497 case 1: 7498 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7499 break; 7500 case 2: 7501 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7502 break; 7503 case 3: 7504 break; 7505 default: 7506 g_assert_not_reached(); 7507 } 7508 7509 write_fp_dreg(s, rd, tcg_res); 7510 } 7511 7512 /* DUP (Element, Vector) 7513 * 7514 * 31 30 29 21 20 16 15 10 9 5 4 0 7515 * +---+---+-------------------+--------+-------------+------+------+ 7516 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7517 * +---+---+-------------------+--------+-------------+------+------+ 7518 * 7519 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7520 */ 7521 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7522 int imm5) 7523 { 7524 int size = ctz32(imm5); 7525 int index; 7526 7527 if (size > 3 || (size == 3 && !is_q)) { 7528 unallocated_encoding(s); 7529 return; 7530 } 7531 7532 if (!fp_access_check(s)) { 7533 return; 7534 } 7535 7536 index = imm5 >> (size + 1); 7537 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7538 vec_reg_offset(s, rn, index, size), 7539 is_q ? 16 : 8, vec_full_reg_size(s)); 7540 } 7541 7542 /* DUP (element, scalar) 7543 * 31 21 20 16 15 10 9 5 4 0 7544 * +-----------------------+--------+-------------+------+------+ 7545 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7546 * +-----------------------+--------+-------------+------+------+ 7547 */ 7548 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7549 int imm5) 7550 { 7551 int size = ctz32(imm5); 7552 int index; 7553 TCGv_i64 tmp; 7554 7555 if (size > 3) { 7556 unallocated_encoding(s); 7557 return; 7558 } 7559 7560 if (!fp_access_check(s)) { 7561 return; 7562 } 7563 7564 index = imm5 >> (size + 1); 7565 7566 /* This instruction just extracts the specified element and 7567 * zero-extends it into the bottom of the destination register. 7568 */ 7569 tmp = tcg_temp_new_i64(); 7570 read_vec_element(s, tmp, rn, index, size); 7571 write_fp_dreg(s, rd, tmp); 7572 } 7573 7574 /* DUP (General) 7575 * 7576 * 31 30 29 21 20 16 15 10 9 5 4 0 7577 * +---+---+-------------------+--------+-------------+------+------+ 7578 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7579 * +---+---+-------------------+--------+-------------+------+------+ 7580 * 7581 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7582 */ 7583 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7584 int imm5) 7585 { 7586 int size = ctz32(imm5); 7587 uint32_t dofs, oprsz, maxsz; 7588 7589 if (size > 3 || ((size == 3) && !is_q)) { 7590 unallocated_encoding(s); 7591 return; 7592 } 7593 7594 if (!fp_access_check(s)) { 7595 return; 7596 } 7597 7598 dofs = vec_full_reg_offset(s, rd); 7599 oprsz = is_q ? 16 : 8; 7600 maxsz = vec_full_reg_size(s); 7601 7602 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7603 } 7604 7605 /* INS (Element) 7606 * 7607 * 31 21 20 16 15 14 11 10 9 5 4 0 7608 * +-----------------------+--------+------------+---+------+------+ 7609 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7610 * +-----------------------+--------+------------+---+------+------+ 7611 * 7612 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7613 * index: encoded in imm5<4:size+1> 7614 */ 7615 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7616 int imm4, int imm5) 7617 { 7618 int size = ctz32(imm5); 7619 int src_index, dst_index; 7620 TCGv_i64 tmp; 7621 7622 if (size > 3) { 7623 unallocated_encoding(s); 7624 return; 7625 } 7626 7627 if (!fp_access_check(s)) { 7628 return; 7629 } 7630 7631 dst_index = extract32(imm5, 1+size, 5); 7632 src_index = extract32(imm4, size, 4); 7633 7634 tmp = tcg_temp_new_i64(); 7635 7636 read_vec_element(s, tmp, rn, src_index, size); 7637 write_vec_element(s, tmp, rd, dst_index, size); 7638 7639 /* INS is considered a 128-bit write for SVE. */ 7640 clear_vec_high(s, true, rd); 7641 } 7642 7643 7644 /* INS (General) 7645 * 7646 * 31 21 20 16 15 10 9 5 4 0 7647 * +-----------------------+--------+-------------+------+------+ 7648 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7649 * +-----------------------+--------+-------------+------+------+ 7650 * 7651 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7652 * index: encoded in imm5<4:size+1> 7653 */ 7654 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7655 { 7656 int size = ctz32(imm5); 7657 int idx; 7658 7659 if (size > 3) { 7660 unallocated_encoding(s); 7661 return; 7662 } 7663 7664 if (!fp_access_check(s)) { 7665 return; 7666 } 7667 7668 idx = extract32(imm5, 1 + size, 4 - size); 7669 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7670 7671 /* INS is considered a 128-bit write for SVE. */ 7672 clear_vec_high(s, true, rd); 7673 } 7674 7675 /* 7676 * UMOV (General) 7677 * SMOV (General) 7678 * 7679 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7680 * +---+---+-------------------+--------+-------------+------+------+ 7681 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7682 * +---+---+-------------------+--------+-------------+------+------+ 7683 * 7684 * U: unsigned when set 7685 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7686 */ 7687 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7688 int rn, int rd, int imm5) 7689 { 7690 int size = ctz32(imm5); 7691 int element; 7692 TCGv_i64 tcg_rd; 7693 7694 /* Check for UnallocatedEncodings */ 7695 if (is_signed) { 7696 if (size > 2 || (size == 2 && !is_q)) { 7697 unallocated_encoding(s); 7698 return; 7699 } 7700 } else { 7701 if (size > 3 7702 || (size < 3 && is_q) 7703 || (size == 3 && !is_q)) { 7704 unallocated_encoding(s); 7705 return; 7706 } 7707 } 7708 7709 if (!fp_access_check(s)) { 7710 return; 7711 } 7712 7713 element = extract32(imm5, 1+size, 4); 7714 7715 tcg_rd = cpu_reg(s, rd); 7716 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7717 if (is_signed && !is_q) { 7718 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7719 } 7720 } 7721 7722 /* AdvSIMD copy 7723 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7724 * +---+---+----+-----------------+------+---+------+---+------+------+ 7725 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7726 * +---+---+----+-----------------+------+---+------+---+------+------+ 7727 */ 7728 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7729 { 7730 int rd = extract32(insn, 0, 5); 7731 int rn = extract32(insn, 5, 5); 7732 int imm4 = extract32(insn, 11, 4); 7733 int op = extract32(insn, 29, 1); 7734 int is_q = extract32(insn, 30, 1); 7735 int imm5 = extract32(insn, 16, 5); 7736 7737 if (op) { 7738 if (is_q) { 7739 /* INS (element) */ 7740 handle_simd_inse(s, rd, rn, imm4, imm5); 7741 } else { 7742 unallocated_encoding(s); 7743 } 7744 } else { 7745 switch (imm4) { 7746 case 0: 7747 /* DUP (element - vector) */ 7748 handle_simd_dupe(s, is_q, rd, rn, imm5); 7749 break; 7750 case 1: 7751 /* DUP (general) */ 7752 handle_simd_dupg(s, is_q, rd, rn, imm5); 7753 break; 7754 case 3: 7755 if (is_q) { 7756 /* INS (general) */ 7757 handle_simd_insg(s, rd, rn, imm5); 7758 } else { 7759 unallocated_encoding(s); 7760 } 7761 break; 7762 case 5: 7763 case 7: 7764 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7765 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7766 break; 7767 default: 7768 unallocated_encoding(s); 7769 break; 7770 } 7771 } 7772 } 7773 7774 /* AdvSIMD modified immediate 7775 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7776 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7777 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7778 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7779 * 7780 * There are a number of operations that can be carried out here: 7781 * MOVI - move (shifted) imm into register 7782 * MVNI - move inverted (shifted) imm into register 7783 * ORR - bitwise OR of (shifted) imm with register 7784 * BIC - bitwise clear of (shifted) imm with register 7785 * With ARMv8.2 we also have: 7786 * FMOV half-precision 7787 */ 7788 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7789 { 7790 int rd = extract32(insn, 0, 5); 7791 int cmode = extract32(insn, 12, 4); 7792 int o2 = extract32(insn, 11, 1); 7793 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7794 bool is_neg = extract32(insn, 29, 1); 7795 bool is_q = extract32(insn, 30, 1); 7796 uint64_t imm = 0; 7797 7798 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7799 /* Check for FMOV (vector, immediate) - half-precision */ 7800 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7801 unallocated_encoding(s); 7802 return; 7803 } 7804 } 7805 7806 if (!fp_access_check(s)) { 7807 return; 7808 } 7809 7810 if (cmode == 15 && o2 && !is_neg) { 7811 /* FMOV (vector, immediate) - half-precision */ 7812 imm = vfp_expand_imm(MO_16, abcdefgh); 7813 /* now duplicate across the lanes */ 7814 imm = dup_const(MO_16, imm); 7815 } else { 7816 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7817 } 7818 7819 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7820 /* MOVI or MVNI, with MVNI negation handled above. */ 7821 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7822 vec_full_reg_size(s), imm); 7823 } else { 7824 /* ORR or BIC, with BIC negation to AND handled above. */ 7825 if (is_neg) { 7826 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7827 } else { 7828 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7829 } 7830 } 7831 } 7832 7833 /* AdvSIMD scalar copy 7834 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7835 * +-----+----+-----------------+------+---+------+---+------+------+ 7836 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7837 * +-----+----+-----------------+------+---+------+---+------+------+ 7838 */ 7839 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7840 { 7841 int rd = extract32(insn, 0, 5); 7842 int rn = extract32(insn, 5, 5); 7843 int imm4 = extract32(insn, 11, 4); 7844 int imm5 = extract32(insn, 16, 5); 7845 int op = extract32(insn, 29, 1); 7846 7847 if (op != 0 || imm4 != 0) { 7848 unallocated_encoding(s); 7849 return; 7850 } 7851 7852 /* DUP (element, scalar) */ 7853 handle_simd_dupes(s, rd, rn, imm5); 7854 } 7855 7856 /* AdvSIMD scalar pairwise 7857 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7858 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7859 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7860 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7861 */ 7862 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7863 { 7864 int u = extract32(insn, 29, 1); 7865 int size = extract32(insn, 22, 2); 7866 int opcode = extract32(insn, 12, 5); 7867 int rn = extract32(insn, 5, 5); 7868 int rd = extract32(insn, 0, 5); 7869 TCGv_ptr fpst; 7870 7871 /* For some ops (the FP ones), size[1] is part of the encoding. 7872 * For ADDP strictly it is not but size[1] is always 1 for valid 7873 * encodings. 7874 */ 7875 opcode |= (extract32(size, 1, 1) << 5); 7876 7877 switch (opcode) { 7878 case 0x3b: /* ADDP */ 7879 if (u || size != 3) { 7880 unallocated_encoding(s); 7881 return; 7882 } 7883 if (!fp_access_check(s)) { 7884 return; 7885 } 7886 7887 fpst = NULL; 7888 break; 7889 case 0xc: /* FMAXNMP */ 7890 case 0xd: /* FADDP */ 7891 case 0xf: /* FMAXP */ 7892 case 0x2c: /* FMINNMP */ 7893 case 0x2f: /* FMINP */ 7894 /* FP op, size[0] is 32 or 64 bit*/ 7895 if (!u) { 7896 if (!dc_isar_feature(aa64_fp16, s)) { 7897 unallocated_encoding(s); 7898 return; 7899 } else { 7900 size = MO_16; 7901 } 7902 } else { 7903 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7904 } 7905 7906 if (!fp_access_check(s)) { 7907 return; 7908 } 7909 7910 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7911 break; 7912 default: 7913 unallocated_encoding(s); 7914 return; 7915 } 7916 7917 if (size == MO_64) { 7918 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7919 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7920 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7921 7922 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7923 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7924 7925 switch (opcode) { 7926 case 0x3b: /* ADDP */ 7927 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7928 break; 7929 case 0xc: /* FMAXNMP */ 7930 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7931 break; 7932 case 0xd: /* FADDP */ 7933 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7934 break; 7935 case 0xf: /* FMAXP */ 7936 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7937 break; 7938 case 0x2c: /* FMINNMP */ 7939 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7940 break; 7941 case 0x2f: /* FMINP */ 7942 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7943 break; 7944 default: 7945 g_assert_not_reached(); 7946 } 7947 7948 write_fp_dreg(s, rd, tcg_res); 7949 } else { 7950 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7951 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7952 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7953 7954 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7955 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7956 7957 if (size == MO_16) { 7958 switch (opcode) { 7959 case 0xc: /* FMAXNMP */ 7960 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7961 break; 7962 case 0xd: /* FADDP */ 7963 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 7964 break; 7965 case 0xf: /* FMAXP */ 7966 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 7967 break; 7968 case 0x2c: /* FMINNMP */ 7969 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7970 break; 7971 case 0x2f: /* FMINP */ 7972 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 7973 break; 7974 default: 7975 g_assert_not_reached(); 7976 } 7977 } else { 7978 switch (opcode) { 7979 case 0xc: /* FMAXNMP */ 7980 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 7981 break; 7982 case 0xd: /* FADDP */ 7983 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 7984 break; 7985 case 0xf: /* FMAXP */ 7986 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 7987 break; 7988 case 0x2c: /* FMINNMP */ 7989 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 7990 break; 7991 case 0x2f: /* FMINP */ 7992 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 7993 break; 7994 default: 7995 g_assert_not_reached(); 7996 } 7997 } 7998 7999 write_fp_sreg(s, rd, tcg_res); 8000 } 8001 } 8002 8003 /* 8004 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8005 * 8006 * This code is handles the common shifting code and is used by both 8007 * the vector and scalar code. 8008 */ 8009 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8010 TCGv_i64 tcg_rnd, bool accumulate, 8011 bool is_u, int size, int shift) 8012 { 8013 bool extended_result = false; 8014 bool round = tcg_rnd != NULL; 8015 int ext_lshift = 0; 8016 TCGv_i64 tcg_src_hi; 8017 8018 if (round && size == 3) { 8019 extended_result = true; 8020 ext_lshift = 64 - shift; 8021 tcg_src_hi = tcg_temp_new_i64(); 8022 } else if (shift == 64) { 8023 if (!accumulate && is_u) { 8024 /* result is zero */ 8025 tcg_gen_movi_i64(tcg_res, 0); 8026 return; 8027 } 8028 } 8029 8030 /* Deal with the rounding step */ 8031 if (round) { 8032 if (extended_result) { 8033 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8034 if (!is_u) { 8035 /* take care of sign extending tcg_res */ 8036 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8037 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8038 tcg_src, tcg_src_hi, 8039 tcg_rnd, tcg_zero); 8040 } else { 8041 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8042 tcg_src, tcg_zero, 8043 tcg_rnd, tcg_zero); 8044 } 8045 } else { 8046 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8047 } 8048 } 8049 8050 /* Now do the shift right */ 8051 if (round && extended_result) { 8052 /* extended case, >64 bit precision required */ 8053 if (ext_lshift == 0) { 8054 /* special case, only high bits matter */ 8055 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8056 } else { 8057 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8058 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8059 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8060 } 8061 } else { 8062 if (is_u) { 8063 if (shift == 64) { 8064 /* essentially shifting in 64 zeros */ 8065 tcg_gen_movi_i64(tcg_src, 0); 8066 } else { 8067 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8068 } 8069 } else { 8070 if (shift == 64) { 8071 /* effectively extending the sign-bit */ 8072 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8073 } else { 8074 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8075 } 8076 } 8077 } 8078 8079 if (accumulate) { 8080 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8081 } else { 8082 tcg_gen_mov_i64(tcg_res, tcg_src); 8083 } 8084 } 8085 8086 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8087 static void handle_scalar_simd_shri(DisasContext *s, 8088 bool is_u, int immh, int immb, 8089 int opcode, int rn, int rd) 8090 { 8091 const int size = 3; 8092 int immhb = immh << 3 | immb; 8093 int shift = 2 * (8 << size) - immhb; 8094 bool accumulate = false; 8095 bool round = false; 8096 bool insert = false; 8097 TCGv_i64 tcg_rn; 8098 TCGv_i64 tcg_rd; 8099 TCGv_i64 tcg_round; 8100 8101 if (!extract32(immh, 3, 1)) { 8102 unallocated_encoding(s); 8103 return; 8104 } 8105 8106 if (!fp_access_check(s)) { 8107 return; 8108 } 8109 8110 switch (opcode) { 8111 case 0x02: /* SSRA / USRA (accumulate) */ 8112 accumulate = true; 8113 break; 8114 case 0x04: /* SRSHR / URSHR (rounding) */ 8115 round = true; 8116 break; 8117 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8118 accumulate = round = true; 8119 break; 8120 case 0x08: /* SRI */ 8121 insert = true; 8122 break; 8123 } 8124 8125 if (round) { 8126 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8127 } else { 8128 tcg_round = NULL; 8129 } 8130 8131 tcg_rn = read_fp_dreg(s, rn); 8132 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8133 8134 if (insert) { 8135 /* shift count same as element size is valid but does nothing; 8136 * special case to avoid potential shift by 64. 8137 */ 8138 int esize = 8 << size; 8139 if (shift != esize) { 8140 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8141 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8142 } 8143 } else { 8144 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8145 accumulate, is_u, size, shift); 8146 } 8147 8148 write_fp_dreg(s, rd, tcg_rd); 8149 } 8150 8151 /* SHL/SLI - Scalar shift left */ 8152 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8153 int immh, int immb, int opcode, 8154 int rn, int rd) 8155 { 8156 int size = 32 - clz32(immh) - 1; 8157 int immhb = immh << 3 | immb; 8158 int shift = immhb - (8 << size); 8159 TCGv_i64 tcg_rn; 8160 TCGv_i64 tcg_rd; 8161 8162 if (!extract32(immh, 3, 1)) { 8163 unallocated_encoding(s); 8164 return; 8165 } 8166 8167 if (!fp_access_check(s)) { 8168 return; 8169 } 8170 8171 tcg_rn = read_fp_dreg(s, rn); 8172 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8173 8174 if (insert) { 8175 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8176 } else { 8177 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8178 } 8179 8180 write_fp_dreg(s, rd, tcg_rd); 8181 } 8182 8183 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8184 * (signed/unsigned) narrowing */ 8185 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8186 bool is_u_shift, bool is_u_narrow, 8187 int immh, int immb, int opcode, 8188 int rn, int rd) 8189 { 8190 int immhb = immh << 3 | immb; 8191 int size = 32 - clz32(immh) - 1; 8192 int esize = 8 << size; 8193 int shift = (2 * esize) - immhb; 8194 int elements = is_scalar ? 1 : (64 / esize); 8195 bool round = extract32(opcode, 0, 1); 8196 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8197 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8198 TCGv_i32 tcg_rd_narrowed; 8199 TCGv_i64 tcg_final; 8200 8201 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8202 { gen_helper_neon_narrow_sat_s8, 8203 gen_helper_neon_unarrow_sat8 }, 8204 { gen_helper_neon_narrow_sat_s16, 8205 gen_helper_neon_unarrow_sat16 }, 8206 { gen_helper_neon_narrow_sat_s32, 8207 gen_helper_neon_unarrow_sat32 }, 8208 { NULL, NULL }, 8209 }; 8210 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8211 gen_helper_neon_narrow_sat_u8, 8212 gen_helper_neon_narrow_sat_u16, 8213 gen_helper_neon_narrow_sat_u32, 8214 NULL 8215 }; 8216 NeonGenNarrowEnvFn *narrowfn; 8217 8218 int i; 8219 8220 assert(size < 4); 8221 8222 if (extract32(immh, 3, 1)) { 8223 unallocated_encoding(s); 8224 return; 8225 } 8226 8227 if (!fp_access_check(s)) { 8228 return; 8229 } 8230 8231 if (is_u_shift) { 8232 narrowfn = unsigned_narrow_fns[size]; 8233 } else { 8234 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8235 } 8236 8237 tcg_rn = tcg_temp_new_i64(); 8238 tcg_rd = tcg_temp_new_i64(); 8239 tcg_rd_narrowed = tcg_temp_new_i32(); 8240 tcg_final = tcg_temp_new_i64(); 8241 8242 if (round) { 8243 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8244 } else { 8245 tcg_round = NULL; 8246 } 8247 8248 for (i = 0; i < elements; i++) { 8249 read_vec_element(s, tcg_rn, rn, i, ldop); 8250 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8251 false, is_u_shift, size+1, shift); 8252 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8253 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8254 if (i == 0) { 8255 tcg_gen_mov_i64(tcg_final, tcg_rd); 8256 } else { 8257 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8258 } 8259 } 8260 8261 if (!is_q) { 8262 write_vec_element(s, tcg_final, rd, 0, MO_64); 8263 } else { 8264 write_vec_element(s, tcg_final, rd, 1, MO_64); 8265 } 8266 clear_vec_high(s, is_q, rd); 8267 } 8268 8269 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8270 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8271 bool src_unsigned, bool dst_unsigned, 8272 int immh, int immb, int rn, int rd) 8273 { 8274 int immhb = immh << 3 | immb; 8275 int size = 32 - clz32(immh) - 1; 8276 int shift = immhb - (8 << size); 8277 int pass; 8278 8279 assert(immh != 0); 8280 assert(!(scalar && is_q)); 8281 8282 if (!scalar) { 8283 if (!is_q && extract32(immh, 3, 1)) { 8284 unallocated_encoding(s); 8285 return; 8286 } 8287 8288 /* Since we use the variable-shift helpers we must 8289 * replicate the shift count into each element of 8290 * the tcg_shift value. 8291 */ 8292 switch (size) { 8293 case 0: 8294 shift |= shift << 8; 8295 /* fall through */ 8296 case 1: 8297 shift |= shift << 16; 8298 break; 8299 case 2: 8300 case 3: 8301 break; 8302 default: 8303 g_assert_not_reached(); 8304 } 8305 } 8306 8307 if (!fp_access_check(s)) { 8308 return; 8309 } 8310 8311 if (size == 3) { 8312 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8313 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8314 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8315 { NULL, gen_helper_neon_qshl_u64 }, 8316 }; 8317 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8318 int maxpass = is_q ? 2 : 1; 8319 8320 for (pass = 0; pass < maxpass; pass++) { 8321 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8322 8323 read_vec_element(s, tcg_op, rn, pass, MO_64); 8324 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8325 write_vec_element(s, tcg_op, rd, pass, MO_64); 8326 } 8327 clear_vec_high(s, is_q, rd); 8328 } else { 8329 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8330 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8331 { 8332 { gen_helper_neon_qshl_s8, 8333 gen_helper_neon_qshl_s16, 8334 gen_helper_neon_qshl_s32 }, 8335 { gen_helper_neon_qshlu_s8, 8336 gen_helper_neon_qshlu_s16, 8337 gen_helper_neon_qshlu_s32 } 8338 }, { 8339 { NULL, NULL, NULL }, 8340 { gen_helper_neon_qshl_u8, 8341 gen_helper_neon_qshl_u16, 8342 gen_helper_neon_qshl_u32 } 8343 } 8344 }; 8345 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8346 MemOp memop = scalar ? size : MO_32; 8347 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8348 8349 for (pass = 0; pass < maxpass; pass++) { 8350 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8351 8352 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8353 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8354 if (scalar) { 8355 switch (size) { 8356 case 0: 8357 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8358 break; 8359 case 1: 8360 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8361 break; 8362 case 2: 8363 break; 8364 default: 8365 g_assert_not_reached(); 8366 } 8367 write_fp_sreg(s, rd, tcg_op); 8368 } else { 8369 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8370 } 8371 } 8372 8373 if (!scalar) { 8374 clear_vec_high(s, is_q, rd); 8375 } 8376 } 8377 } 8378 8379 /* Common vector code for handling integer to FP conversion */ 8380 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8381 int elements, int is_signed, 8382 int fracbits, int size) 8383 { 8384 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8385 TCGv_i32 tcg_shift = NULL; 8386 8387 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8388 int pass; 8389 8390 if (fracbits || size == MO_64) { 8391 tcg_shift = tcg_constant_i32(fracbits); 8392 } 8393 8394 if (size == MO_64) { 8395 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8396 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8397 8398 for (pass = 0; pass < elements; pass++) { 8399 read_vec_element(s, tcg_int64, rn, pass, mop); 8400 8401 if (is_signed) { 8402 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8403 tcg_shift, tcg_fpst); 8404 } else { 8405 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8406 tcg_shift, tcg_fpst); 8407 } 8408 if (elements == 1) { 8409 write_fp_dreg(s, rd, tcg_double); 8410 } else { 8411 write_vec_element(s, tcg_double, rd, pass, MO_64); 8412 } 8413 } 8414 } else { 8415 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8416 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8417 8418 for (pass = 0; pass < elements; pass++) { 8419 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8420 8421 switch (size) { 8422 case MO_32: 8423 if (fracbits) { 8424 if (is_signed) { 8425 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8426 tcg_shift, tcg_fpst); 8427 } else { 8428 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8429 tcg_shift, tcg_fpst); 8430 } 8431 } else { 8432 if (is_signed) { 8433 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8434 } else { 8435 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8436 } 8437 } 8438 break; 8439 case MO_16: 8440 if (fracbits) { 8441 if (is_signed) { 8442 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8443 tcg_shift, tcg_fpst); 8444 } else { 8445 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8446 tcg_shift, tcg_fpst); 8447 } 8448 } else { 8449 if (is_signed) { 8450 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8451 } else { 8452 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8453 } 8454 } 8455 break; 8456 default: 8457 g_assert_not_reached(); 8458 } 8459 8460 if (elements == 1) { 8461 write_fp_sreg(s, rd, tcg_float); 8462 } else { 8463 write_vec_element_i32(s, tcg_float, rd, pass, size); 8464 } 8465 } 8466 } 8467 8468 clear_vec_high(s, elements << size == 16, rd); 8469 } 8470 8471 /* UCVTF/SCVTF - Integer to FP conversion */ 8472 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8473 bool is_q, bool is_u, 8474 int immh, int immb, int opcode, 8475 int rn, int rd) 8476 { 8477 int size, elements, fracbits; 8478 int immhb = immh << 3 | immb; 8479 8480 if (immh & 8) { 8481 size = MO_64; 8482 if (!is_scalar && !is_q) { 8483 unallocated_encoding(s); 8484 return; 8485 } 8486 } else if (immh & 4) { 8487 size = MO_32; 8488 } else if (immh & 2) { 8489 size = MO_16; 8490 if (!dc_isar_feature(aa64_fp16, s)) { 8491 unallocated_encoding(s); 8492 return; 8493 } 8494 } else { 8495 /* immh == 0 would be a failure of the decode logic */ 8496 g_assert(immh == 1); 8497 unallocated_encoding(s); 8498 return; 8499 } 8500 8501 if (is_scalar) { 8502 elements = 1; 8503 } else { 8504 elements = (8 << is_q) >> size; 8505 } 8506 fracbits = (16 << size) - immhb; 8507 8508 if (!fp_access_check(s)) { 8509 return; 8510 } 8511 8512 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8513 } 8514 8515 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8516 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8517 bool is_q, bool is_u, 8518 int immh, int immb, int rn, int rd) 8519 { 8520 int immhb = immh << 3 | immb; 8521 int pass, size, fracbits; 8522 TCGv_ptr tcg_fpstatus; 8523 TCGv_i32 tcg_rmode, tcg_shift; 8524 8525 if (immh & 0x8) { 8526 size = MO_64; 8527 if (!is_scalar && !is_q) { 8528 unallocated_encoding(s); 8529 return; 8530 } 8531 } else if (immh & 0x4) { 8532 size = MO_32; 8533 } else if (immh & 0x2) { 8534 size = MO_16; 8535 if (!dc_isar_feature(aa64_fp16, s)) { 8536 unallocated_encoding(s); 8537 return; 8538 } 8539 } else { 8540 /* Should have split out AdvSIMD modified immediate earlier. */ 8541 assert(immh == 1); 8542 unallocated_encoding(s); 8543 return; 8544 } 8545 8546 if (!fp_access_check(s)) { 8547 return; 8548 } 8549 8550 assert(!(is_scalar && is_q)); 8551 8552 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8553 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8554 fracbits = (16 << size) - immhb; 8555 tcg_shift = tcg_constant_i32(fracbits); 8556 8557 if (size == MO_64) { 8558 int maxpass = is_scalar ? 1 : 2; 8559 8560 for (pass = 0; pass < maxpass; pass++) { 8561 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8562 8563 read_vec_element(s, tcg_op, rn, pass, MO_64); 8564 if (is_u) { 8565 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8566 } else { 8567 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8568 } 8569 write_vec_element(s, tcg_op, rd, pass, MO_64); 8570 } 8571 clear_vec_high(s, is_q, rd); 8572 } else { 8573 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8574 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8575 8576 switch (size) { 8577 case MO_16: 8578 if (is_u) { 8579 fn = gen_helper_vfp_touhh; 8580 } else { 8581 fn = gen_helper_vfp_toshh; 8582 } 8583 break; 8584 case MO_32: 8585 if (is_u) { 8586 fn = gen_helper_vfp_touls; 8587 } else { 8588 fn = gen_helper_vfp_tosls; 8589 } 8590 break; 8591 default: 8592 g_assert_not_reached(); 8593 } 8594 8595 for (pass = 0; pass < maxpass; pass++) { 8596 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8597 8598 read_vec_element_i32(s, tcg_op, rn, pass, size); 8599 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8600 if (is_scalar) { 8601 write_fp_sreg(s, rd, tcg_op); 8602 } else { 8603 write_vec_element_i32(s, tcg_op, rd, pass, size); 8604 } 8605 } 8606 if (!is_scalar) { 8607 clear_vec_high(s, is_q, rd); 8608 } 8609 } 8610 8611 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8612 } 8613 8614 /* AdvSIMD scalar shift by immediate 8615 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8616 * +-----+---+-------------+------+------+--------+---+------+------+ 8617 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8618 * +-----+---+-------------+------+------+--------+---+------+------+ 8619 * 8620 * This is the scalar version so it works on a fixed sized registers 8621 */ 8622 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8623 { 8624 int rd = extract32(insn, 0, 5); 8625 int rn = extract32(insn, 5, 5); 8626 int opcode = extract32(insn, 11, 5); 8627 int immb = extract32(insn, 16, 3); 8628 int immh = extract32(insn, 19, 4); 8629 bool is_u = extract32(insn, 29, 1); 8630 8631 if (immh == 0) { 8632 unallocated_encoding(s); 8633 return; 8634 } 8635 8636 switch (opcode) { 8637 case 0x08: /* SRI */ 8638 if (!is_u) { 8639 unallocated_encoding(s); 8640 return; 8641 } 8642 /* fall through */ 8643 case 0x00: /* SSHR / USHR */ 8644 case 0x02: /* SSRA / USRA */ 8645 case 0x04: /* SRSHR / URSHR */ 8646 case 0x06: /* SRSRA / URSRA */ 8647 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8648 break; 8649 case 0x0a: /* SHL / SLI */ 8650 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8651 break; 8652 case 0x1c: /* SCVTF, UCVTF */ 8653 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8654 opcode, rn, rd); 8655 break; 8656 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8657 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8658 if (!is_u) { 8659 unallocated_encoding(s); 8660 return; 8661 } 8662 handle_vec_simd_sqshrn(s, true, false, false, true, 8663 immh, immb, opcode, rn, rd); 8664 break; 8665 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8666 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8667 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8668 immh, immb, opcode, rn, rd); 8669 break; 8670 case 0xc: /* SQSHLU */ 8671 if (!is_u) { 8672 unallocated_encoding(s); 8673 return; 8674 } 8675 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8676 break; 8677 case 0xe: /* SQSHL, UQSHL */ 8678 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8679 break; 8680 case 0x1f: /* FCVTZS, FCVTZU */ 8681 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8682 break; 8683 default: 8684 unallocated_encoding(s); 8685 break; 8686 } 8687 } 8688 8689 /* AdvSIMD scalar three different 8690 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8691 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8692 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8693 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8694 */ 8695 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8696 { 8697 bool is_u = extract32(insn, 29, 1); 8698 int size = extract32(insn, 22, 2); 8699 int opcode = extract32(insn, 12, 4); 8700 int rm = extract32(insn, 16, 5); 8701 int rn = extract32(insn, 5, 5); 8702 int rd = extract32(insn, 0, 5); 8703 8704 if (is_u) { 8705 unallocated_encoding(s); 8706 return; 8707 } 8708 8709 switch (opcode) { 8710 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8711 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8712 case 0xd: /* SQDMULL, SQDMULL2 */ 8713 if (size == 0 || size == 3) { 8714 unallocated_encoding(s); 8715 return; 8716 } 8717 break; 8718 default: 8719 unallocated_encoding(s); 8720 return; 8721 } 8722 8723 if (!fp_access_check(s)) { 8724 return; 8725 } 8726 8727 if (size == 2) { 8728 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8729 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8730 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8731 8732 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8733 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8734 8735 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8736 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8737 8738 switch (opcode) { 8739 case 0xd: /* SQDMULL, SQDMULL2 */ 8740 break; 8741 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8742 tcg_gen_neg_i64(tcg_res, tcg_res); 8743 /* fall through */ 8744 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8745 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8746 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8747 tcg_res, tcg_op1); 8748 break; 8749 default: 8750 g_assert_not_reached(); 8751 } 8752 8753 write_fp_dreg(s, rd, tcg_res); 8754 } else { 8755 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8756 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8757 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8758 8759 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8760 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8761 8762 switch (opcode) { 8763 case 0xd: /* SQDMULL, SQDMULL2 */ 8764 break; 8765 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8766 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8767 /* fall through */ 8768 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8769 { 8770 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8771 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8772 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8773 tcg_res, tcg_op3); 8774 break; 8775 } 8776 default: 8777 g_assert_not_reached(); 8778 } 8779 8780 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8781 write_fp_dreg(s, rd, tcg_res); 8782 } 8783 } 8784 8785 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8786 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8787 { 8788 /* Handle 64x64->64 opcodes which are shared between the scalar 8789 * and vector 3-same groups. We cover every opcode where size == 3 8790 * is valid in either the three-reg-same (integer, not pairwise) 8791 * or scalar-three-reg-same groups. 8792 */ 8793 TCGCond cond; 8794 8795 switch (opcode) { 8796 case 0x1: /* SQADD */ 8797 if (u) { 8798 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8799 } else { 8800 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8801 } 8802 break; 8803 case 0x5: /* SQSUB */ 8804 if (u) { 8805 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8806 } else { 8807 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8808 } 8809 break; 8810 case 0x6: /* CMGT, CMHI */ 8811 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8812 do_cmop: 8813 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8814 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8815 break; 8816 case 0x7: /* CMGE, CMHS */ 8817 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8818 goto do_cmop; 8819 case 0x11: /* CMTST, CMEQ */ 8820 if (u) { 8821 cond = TCG_COND_EQ; 8822 goto do_cmop; 8823 } 8824 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8825 break; 8826 case 0x8: /* SSHL, USHL */ 8827 if (u) { 8828 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8829 } else { 8830 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8831 } 8832 break; 8833 case 0x9: /* SQSHL, UQSHL */ 8834 if (u) { 8835 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8836 } else { 8837 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8838 } 8839 break; 8840 case 0xa: /* SRSHL, URSHL */ 8841 if (u) { 8842 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8843 } else { 8844 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8845 } 8846 break; 8847 case 0xb: /* SQRSHL, UQRSHL */ 8848 if (u) { 8849 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8850 } else { 8851 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8852 } 8853 break; 8854 case 0x10: /* ADD, SUB */ 8855 if (u) { 8856 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8857 } else { 8858 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8859 } 8860 break; 8861 default: 8862 g_assert_not_reached(); 8863 } 8864 } 8865 8866 /* Handle the 3-same-operands float operations; shared by the scalar 8867 * and vector encodings. The caller must filter out any encodings 8868 * not allocated for the encoding it is dealing with. 8869 */ 8870 static void handle_3same_float(DisasContext *s, int size, int elements, 8871 int fpopcode, int rd, int rn, int rm) 8872 { 8873 int pass; 8874 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8875 8876 for (pass = 0; pass < elements; pass++) { 8877 if (size) { 8878 /* Double */ 8879 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8880 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8881 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8882 8883 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8884 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8885 8886 switch (fpopcode) { 8887 case 0x39: /* FMLS */ 8888 /* As usual for ARM, separate negation for fused multiply-add */ 8889 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8890 /* fall through */ 8891 case 0x19: /* FMLA */ 8892 read_vec_element(s, tcg_res, rd, pass, MO_64); 8893 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8894 tcg_res, fpst); 8895 break; 8896 case 0x18: /* FMAXNM */ 8897 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8898 break; 8899 case 0x1a: /* FADD */ 8900 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8901 break; 8902 case 0x1b: /* FMULX */ 8903 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8904 break; 8905 case 0x1c: /* FCMEQ */ 8906 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8907 break; 8908 case 0x1e: /* FMAX */ 8909 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8910 break; 8911 case 0x1f: /* FRECPS */ 8912 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8913 break; 8914 case 0x38: /* FMINNM */ 8915 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8916 break; 8917 case 0x3a: /* FSUB */ 8918 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8919 break; 8920 case 0x3e: /* FMIN */ 8921 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8922 break; 8923 case 0x3f: /* FRSQRTS */ 8924 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8925 break; 8926 case 0x5b: /* FMUL */ 8927 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8928 break; 8929 case 0x5c: /* FCMGE */ 8930 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8931 break; 8932 case 0x5d: /* FACGE */ 8933 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8934 break; 8935 case 0x5f: /* FDIV */ 8936 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8937 break; 8938 case 0x7a: /* FABD */ 8939 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8940 gen_helper_vfp_absd(tcg_res, tcg_res); 8941 break; 8942 case 0x7c: /* FCMGT */ 8943 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8944 break; 8945 case 0x7d: /* FACGT */ 8946 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8947 break; 8948 default: 8949 g_assert_not_reached(); 8950 } 8951 8952 write_vec_element(s, tcg_res, rd, pass, MO_64); 8953 } else { 8954 /* Single */ 8955 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8956 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8957 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8958 8959 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 8960 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 8961 8962 switch (fpopcode) { 8963 case 0x39: /* FMLS */ 8964 /* As usual for ARM, separate negation for fused multiply-add */ 8965 gen_helper_vfp_negs(tcg_op1, tcg_op1); 8966 /* fall through */ 8967 case 0x19: /* FMLA */ 8968 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8969 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 8970 tcg_res, fpst); 8971 break; 8972 case 0x1a: /* FADD */ 8973 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8974 break; 8975 case 0x1b: /* FMULX */ 8976 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 8977 break; 8978 case 0x1c: /* FCMEQ */ 8979 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8980 break; 8981 case 0x1e: /* FMAX */ 8982 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8983 break; 8984 case 0x1f: /* FRECPS */ 8985 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8986 break; 8987 case 0x18: /* FMAXNM */ 8988 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8989 break; 8990 case 0x38: /* FMINNM */ 8991 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8992 break; 8993 case 0x3a: /* FSUB */ 8994 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8995 break; 8996 case 0x3e: /* FMIN */ 8997 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8998 break; 8999 case 0x3f: /* FRSQRTS */ 9000 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9001 break; 9002 case 0x5b: /* FMUL */ 9003 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9004 break; 9005 case 0x5c: /* FCMGE */ 9006 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9007 break; 9008 case 0x5d: /* FACGE */ 9009 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9010 break; 9011 case 0x5f: /* FDIV */ 9012 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9013 break; 9014 case 0x7a: /* FABD */ 9015 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9016 gen_helper_vfp_abss(tcg_res, tcg_res); 9017 break; 9018 case 0x7c: /* FCMGT */ 9019 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9020 break; 9021 case 0x7d: /* FACGT */ 9022 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9023 break; 9024 default: 9025 g_assert_not_reached(); 9026 } 9027 9028 if (elements == 1) { 9029 /* scalar single so clear high part */ 9030 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9031 9032 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9033 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9034 } else { 9035 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9036 } 9037 } 9038 } 9039 9040 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9041 } 9042 9043 /* AdvSIMD scalar three same 9044 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9045 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9046 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9047 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9048 */ 9049 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9050 { 9051 int rd = extract32(insn, 0, 5); 9052 int rn = extract32(insn, 5, 5); 9053 int opcode = extract32(insn, 11, 5); 9054 int rm = extract32(insn, 16, 5); 9055 int size = extract32(insn, 22, 2); 9056 bool u = extract32(insn, 29, 1); 9057 TCGv_i64 tcg_rd; 9058 9059 if (opcode >= 0x18) { 9060 /* Floating point: U, size[1] and opcode indicate operation */ 9061 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9062 switch (fpopcode) { 9063 case 0x1b: /* FMULX */ 9064 case 0x1f: /* FRECPS */ 9065 case 0x3f: /* FRSQRTS */ 9066 case 0x5d: /* FACGE */ 9067 case 0x7d: /* FACGT */ 9068 case 0x1c: /* FCMEQ */ 9069 case 0x5c: /* FCMGE */ 9070 case 0x7c: /* FCMGT */ 9071 case 0x7a: /* FABD */ 9072 break; 9073 default: 9074 unallocated_encoding(s); 9075 return; 9076 } 9077 9078 if (!fp_access_check(s)) { 9079 return; 9080 } 9081 9082 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9083 return; 9084 } 9085 9086 switch (opcode) { 9087 case 0x1: /* SQADD, UQADD */ 9088 case 0x5: /* SQSUB, UQSUB */ 9089 case 0x9: /* SQSHL, UQSHL */ 9090 case 0xb: /* SQRSHL, UQRSHL */ 9091 break; 9092 case 0x8: /* SSHL, USHL */ 9093 case 0xa: /* SRSHL, URSHL */ 9094 case 0x6: /* CMGT, CMHI */ 9095 case 0x7: /* CMGE, CMHS */ 9096 case 0x11: /* CMTST, CMEQ */ 9097 case 0x10: /* ADD, SUB (vector) */ 9098 if (size != 3) { 9099 unallocated_encoding(s); 9100 return; 9101 } 9102 break; 9103 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9104 if (size != 1 && size != 2) { 9105 unallocated_encoding(s); 9106 return; 9107 } 9108 break; 9109 default: 9110 unallocated_encoding(s); 9111 return; 9112 } 9113 9114 if (!fp_access_check(s)) { 9115 return; 9116 } 9117 9118 tcg_rd = tcg_temp_new_i64(); 9119 9120 if (size == 3) { 9121 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9122 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9123 9124 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9125 } else { 9126 /* Do a single operation on the lowest element in the vector. 9127 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9128 * no side effects for all these operations. 9129 * OPTME: special-purpose helpers would avoid doing some 9130 * unnecessary work in the helper for the 8 and 16 bit cases. 9131 */ 9132 NeonGenTwoOpEnvFn *genenvfn; 9133 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9134 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9135 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9136 9137 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9138 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9139 9140 switch (opcode) { 9141 case 0x1: /* SQADD, UQADD */ 9142 { 9143 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9144 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9145 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9146 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9147 }; 9148 genenvfn = fns[size][u]; 9149 break; 9150 } 9151 case 0x5: /* SQSUB, UQSUB */ 9152 { 9153 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9154 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9155 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9156 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9157 }; 9158 genenvfn = fns[size][u]; 9159 break; 9160 } 9161 case 0x9: /* SQSHL, UQSHL */ 9162 { 9163 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9164 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9165 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9166 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9167 }; 9168 genenvfn = fns[size][u]; 9169 break; 9170 } 9171 case 0xb: /* SQRSHL, UQRSHL */ 9172 { 9173 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9174 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9175 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9176 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9177 }; 9178 genenvfn = fns[size][u]; 9179 break; 9180 } 9181 case 0x16: /* SQDMULH, SQRDMULH */ 9182 { 9183 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9184 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9185 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9186 }; 9187 assert(size == 1 || size == 2); 9188 genenvfn = fns[size - 1][u]; 9189 break; 9190 } 9191 default: 9192 g_assert_not_reached(); 9193 } 9194 9195 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9196 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9197 } 9198 9199 write_fp_dreg(s, rd, tcg_rd); 9200 } 9201 9202 /* AdvSIMD scalar three same FP16 9203 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9204 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9205 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9206 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9207 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9208 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9209 */ 9210 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9211 uint32_t insn) 9212 { 9213 int rd = extract32(insn, 0, 5); 9214 int rn = extract32(insn, 5, 5); 9215 int opcode = extract32(insn, 11, 3); 9216 int rm = extract32(insn, 16, 5); 9217 bool u = extract32(insn, 29, 1); 9218 bool a = extract32(insn, 23, 1); 9219 int fpopcode = opcode | (a << 3) | (u << 4); 9220 TCGv_ptr fpst; 9221 TCGv_i32 tcg_op1; 9222 TCGv_i32 tcg_op2; 9223 TCGv_i32 tcg_res; 9224 9225 switch (fpopcode) { 9226 case 0x03: /* FMULX */ 9227 case 0x04: /* FCMEQ (reg) */ 9228 case 0x07: /* FRECPS */ 9229 case 0x0f: /* FRSQRTS */ 9230 case 0x14: /* FCMGE (reg) */ 9231 case 0x15: /* FACGE */ 9232 case 0x1a: /* FABD */ 9233 case 0x1c: /* FCMGT (reg) */ 9234 case 0x1d: /* FACGT */ 9235 break; 9236 default: 9237 unallocated_encoding(s); 9238 return; 9239 } 9240 9241 if (!dc_isar_feature(aa64_fp16, s)) { 9242 unallocated_encoding(s); 9243 } 9244 9245 if (!fp_access_check(s)) { 9246 return; 9247 } 9248 9249 fpst = fpstatus_ptr(FPST_FPCR_F16); 9250 9251 tcg_op1 = read_fp_hreg(s, rn); 9252 tcg_op2 = read_fp_hreg(s, rm); 9253 tcg_res = tcg_temp_new_i32(); 9254 9255 switch (fpopcode) { 9256 case 0x03: /* FMULX */ 9257 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9258 break; 9259 case 0x04: /* FCMEQ (reg) */ 9260 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9261 break; 9262 case 0x07: /* FRECPS */ 9263 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9264 break; 9265 case 0x0f: /* FRSQRTS */ 9266 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9267 break; 9268 case 0x14: /* FCMGE (reg) */ 9269 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9270 break; 9271 case 0x15: /* FACGE */ 9272 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9273 break; 9274 case 0x1a: /* FABD */ 9275 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9276 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9277 break; 9278 case 0x1c: /* FCMGT (reg) */ 9279 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9280 break; 9281 case 0x1d: /* FACGT */ 9282 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9283 break; 9284 default: 9285 g_assert_not_reached(); 9286 } 9287 9288 write_fp_sreg(s, rd, tcg_res); 9289 } 9290 9291 /* AdvSIMD scalar three same extra 9292 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9293 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9294 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9295 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9296 */ 9297 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9298 uint32_t insn) 9299 { 9300 int rd = extract32(insn, 0, 5); 9301 int rn = extract32(insn, 5, 5); 9302 int opcode = extract32(insn, 11, 4); 9303 int rm = extract32(insn, 16, 5); 9304 int size = extract32(insn, 22, 2); 9305 bool u = extract32(insn, 29, 1); 9306 TCGv_i32 ele1, ele2, ele3; 9307 TCGv_i64 res; 9308 bool feature; 9309 9310 switch (u * 16 + opcode) { 9311 case 0x10: /* SQRDMLAH (vector) */ 9312 case 0x11: /* SQRDMLSH (vector) */ 9313 if (size != 1 && size != 2) { 9314 unallocated_encoding(s); 9315 return; 9316 } 9317 feature = dc_isar_feature(aa64_rdm, s); 9318 break; 9319 default: 9320 unallocated_encoding(s); 9321 return; 9322 } 9323 if (!feature) { 9324 unallocated_encoding(s); 9325 return; 9326 } 9327 if (!fp_access_check(s)) { 9328 return; 9329 } 9330 9331 /* Do a single operation on the lowest element in the vector. 9332 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9333 * with no side effects for all these operations. 9334 * OPTME: special-purpose helpers would avoid doing some 9335 * unnecessary work in the helper for the 16 bit cases. 9336 */ 9337 ele1 = tcg_temp_new_i32(); 9338 ele2 = tcg_temp_new_i32(); 9339 ele3 = tcg_temp_new_i32(); 9340 9341 read_vec_element_i32(s, ele1, rn, 0, size); 9342 read_vec_element_i32(s, ele2, rm, 0, size); 9343 read_vec_element_i32(s, ele3, rd, 0, size); 9344 9345 switch (opcode) { 9346 case 0x0: /* SQRDMLAH */ 9347 if (size == 1) { 9348 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9349 } else { 9350 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9351 } 9352 break; 9353 case 0x1: /* SQRDMLSH */ 9354 if (size == 1) { 9355 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9356 } else { 9357 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9358 } 9359 break; 9360 default: 9361 g_assert_not_reached(); 9362 } 9363 9364 res = tcg_temp_new_i64(); 9365 tcg_gen_extu_i32_i64(res, ele3); 9366 write_fp_dreg(s, rd, res); 9367 } 9368 9369 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9370 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9371 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9372 { 9373 /* Handle 64->64 opcodes which are shared between the scalar and 9374 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9375 * is valid in either group and also the double-precision fp ops. 9376 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9377 * requires them. 9378 */ 9379 TCGCond cond; 9380 9381 switch (opcode) { 9382 case 0x4: /* CLS, CLZ */ 9383 if (u) { 9384 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9385 } else { 9386 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9387 } 9388 break; 9389 case 0x5: /* NOT */ 9390 /* This opcode is shared with CNT and RBIT but we have earlier 9391 * enforced that size == 3 if and only if this is the NOT insn. 9392 */ 9393 tcg_gen_not_i64(tcg_rd, tcg_rn); 9394 break; 9395 case 0x7: /* SQABS, SQNEG */ 9396 if (u) { 9397 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9398 } else { 9399 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9400 } 9401 break; 9402 case 0xa: /* CMLT */ 9403 cond = TCG_COND_LT; 9404 do_cmop: 9405 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9406 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9407 break; 9408 case 0x8: /* CMGT, CMGE */ 9409 cond = u ? TCG_COND_GE : TCG_COND_GT; 9410 goto do_cmop; 9411 case 0x9: /* CMEQ, CMLE */ 9412 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9413 goto do_cmop; 9414 case 0xb: /* ABS, NEG */ 9415 if (u) { 9416 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9417 } else { 9418 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9419 } 9420 break; 9421 case 0x2f: /* FABS */ 9422 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9423 break; 9424 case 0x6f: /* FNEG */ 9425 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9426 break; 9427 case 0x7f: /* FSQRT */ 9428 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9429 break; 9430 case 0x1a: /* FCVTNS */ 9431 case 0x1b: /* FCVTMS */ 9432 case 0x1c: /* FCVTAS */ 9433 case 0x3a: /* FCVTPS */ 9434 case 0x3b: /* FCVTZS */ 9435 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9436 break; 9437 case 0x5a: /* FCVTNU */ 9438 case 0x5b: /* FCVTMU */ 9439 case 0x5c: /* FCVTAU */ 9440 case 0x7a: /* FCVTPU */ 9441 case 0x7b: /* FCVTZU */ 9442 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9443 break; 9444 case 0x18: /* FRINTN */ 9445 case 0x19: /* FRINTM */ 9446 case 0x38: /* FRINTP */ 9447 case 0x39: /* FRINTZ */ 9448 case 0x58: /* FRINTA */ 9449 case 0x79: /* FRINTI */ 9450 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9451 break; 9452 case 0x59: /* FRINTX */ 9453 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9454 break; 9455 case 0x1e: /* FRINT32Z */ 9456 case 0x5e: /* FRINT32X */ 9457 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9458 break; 9459 case 0x1f: /* FRINT64Z */ 9460 case 0x5f: /* FRINT64X */ 9461 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9462 break; 9463 default: 9464 g_assert_not_reached(); 9465 } 9466 } 9467 9468 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9469 bool is_scalar, bool is_u, bool is_q, 9470 int size, int rn, int rd) 9471 { 9472 bool is_double = (size == MO_64); 9473 TCGv_ptr fpst; 9474 9475 if (!fp_access_check(s)) { 9476 return; 9477 } 9478 9479 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9480 9481 if (is_double) { 9482 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9483 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9484 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9485 NeonGenTwoDoubleOpFn *genfn; 9486 bool swap = false; 9487 int pass; 9488 9489 switch (opcode) { 9490 case 0x2e: /* FCMLT (zero) */ 9491 swap = true; 9492 /* fallthrough */ 9493 case 0x2c: /* FCMGT (zero) */ 9494 genfn = gen_helper_neon_cgt_f64; 9495 break; 9496 case 0x2d: /* FCMEQ (zero) */ 9497 genfn = gen_helper_neon_ceq_f64; 9498 break; 9499 case 0x6d: /* FCMLE (zero) */ 9500 swap = true; 9501 /* fall through */ 9502 case 0x6c: /* FCMGE (zero) */ 9503 genfn = gen_helper_neon_cge_f64; 9504 break; 9505 default: 9506 g_assert_not_reached(); 9507 } 9508 9509 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9510 read_vec_element(s, tcg_op, rn, pass, MO_64); 9511 if (swap) { 9512 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9513 } else { 9514 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9515 } 9516 write_vec_element(s, tcg_res, rd, pass, MO_64); 9517 } 9518 9519 clear_vec_high(s, !is_scalar, rd); 9520 } else { 9521 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9522 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9523 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9524 NeonGenTwoSingleOpFn *genfn; 9525 bool swap = false; 9526 int pass, maxpasses; 9527 9528 if (size == MO_16) { 9529 switch (opcode) { 9530 case 0x2e: /* FCMLT (zero) */ 9531 swap = true; 9532 /* fall through */ 9533 case 0x2c: /* FCMGT (zero) */ 9534 genfn = gen_helper_advsimd_cgt_f16; 9535 break; 9536 case 0x2d: /* FCMEQ (zero) */ 9537 genfn = gen_helper_advsimd_ceq_f16; 9538 break; 9539 case 0x6d: /* FCMLE (zero) */ 9540 swap = true; 9541 /* fall through */ 9542 case 0x6c: /* FCMGE (zero) */ 9543 genfn = gen_helper_advsimd_cge_f16; 9544 break; 9545 default: 9546 g_assert_not_reached(); 9547 } 9548 } else { 9549 switch (opcode) { 9550 case 0x2e: /* FCMLT (zero) */ 9551 swap = true; 9552 /* fall through */ 9553 case 0x2c: /* FCMGT (zero) */ 9554 genfn = gen_helper_neon_cgt_f32; 9555 break; 9556 case 0x2d: /* FCMEQ (zero) */ 9557 genfn = gen_helper_neon_ceq_f32; 9558 break; 9559 case 0x6d: /* FCMLE (zero) */ 9560 swap = true; 9561 /* fall through */ 9562 case 0x6c: /* FCMGE (zero) */ 9563 genfn = gen_helper_neon_cge_f32; 9564 break; 9565 default: 9566 g_assert_not_reached(); 9567 } 9568 } 9569 9570 if (is_scalar) { 9571 maxpasses = 1; 9572 } else { 9573 int vector_size = 8 << is_q; 9574 maxpasses = vector_size >> size; 9575 } 9576 9577 for (pass = 0; pass < maxpasses; pass++) { 9578 read_vec_element_i32(s, tcg_op, rn, pass, size); 9579 if (swap) { 9580 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9581 } else { 9582 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9583 } 9584 if (is_scalar) { 9585 write_fp_sreg(s, rd, tcg_res); 9586 } else { 9587 write_vec_element_i32(s, tcg_res, rd, pass, size); 9588 } 9589 } 9590 9591 if (!is_scalar) { 9592 clear_vec_high(s, is_q, rd); 9593 } 9594 } 9595 } 9596 9597 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9598 bool is_scalar, bool is_u, bool is_q, 9599 int size, int rn, int rd) 9600 { 9601 bool is_double = (size == 3); 9602 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9603 9604 if (is_double) { 9605 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9606 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9607 int pass; 9608 9609 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9610 read_vec_element(s, tcg_op, rn, pass, MO_64); 9611 switch (opcode) { 9612 case 0x3d: /* FRECPE */ 9613 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9614 break; 9615 case 0x3f: /* FRECPX */ 9616 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9617 break; 9618 case 0x7d: /* FRSQRTE */ 9619 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9620 break; 9621 default: 9622 g_assert_not_reached(); 9623 } 9624 write_vec_element(s, tcg_res, rd, pass, MO_64); 9625 } 9626 clear_vec_high(s, !is_scalar, rd); 9627 } else { 9628 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9629 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9630 int pass, maxpasses; 9631 9632 if (is_scalar) { 9633 maxpasses = 1; 9634 } else { 9635 maxpasses = is_q ? 4 : 2; 9636 } 9637 9638 for (pass = 0; pass < maxpasses; pass++) { 9639 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9640 9641 switch (opcode) { 9642 case 0x3c: /* URECPE */ 9643 gen_helper_recpe_u32(tcg_res, tcg_op); 9644 break; 9645 case 0x3d: /* FRECPE */ 9646 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9647 break; 9648 case 0x3f: /* FRECPX */ 9649 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9650 break; 9651 case 0x7d: /* FRSQRTE */ 9652 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9653 break; 9654 default: 9655 g_assert_not_reached(); 9656 } 9657 9658 if (is_scalar) { 9659 write_fp_sreg(s, rd, tcg_res); 9660 } else { 9661 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9662 } 9663 } 9664 if (!is_scalar) { 9665 clear_vec_high(s, is_q, rd); 9666 } 9667 } 9668 } 9669 9670 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9671 int opcode, bool u, bool is_q, 9672 int size, int rn, int rd) 9673 { 9674 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9675 * in the source becomes a size element in the destination). 9676 */ 9677 int pass; 9678 TCGv_i32 tcg_res[2]; 9679 int destelt = is_q ? 2 : 0; 9680 int passes = scalar ? 1 : 2; 9681 9682 if (scalar) { 9683 tcg_res[1] = tcg_constant_i32(0); 9684 } 9685 9686 for (pass = 0; pass < passes; pass++) { 9687 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9688 NeonGenNarrowFn *genfn = NULL; 9689 NeonGenNarrowEnvFn *genenvfn = NULL; 9690 9691 if (scalar) { 9692 read_vec_element(s, tcg_op, rn, pass, size + 1); 9693 } else { 9694 read_vec_element(s, tcg_op, rn, pass, MO_64); 9695 } 9696 tcg_res[pass] = tcg_temp_new_i32(); 9697 9698 switch (opcode) { 9699 case 0x12: /* XTN, SQXTUN */ 9700 { 9701 static NeonGenNarrowFn * const xtnfns[3] = { 9702 gen_helper_neon_narrow_u8, 9703 gen_helper_neon_narrow_u16, 9704 tcg_gen_extrl_i64_i32, 9705 }; 9706 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9707 gen_helper_neon_unarrow_sat8, 9708 gen_helper_neon_unarrow_sat16, 9709 gen_helper_neon_unarrow_sat32, 9710 }; 9711 if (u) { 9712 genenvfn = sqxtunfns[size]; 9713 } else { 9714 genfn = xtnfns[size]; 9715 } 9716 break; 9717 } 9718 case 0x14: /* SQXTN, UQXTN */ 9719 { 9720 static NeonGenNarrowEnvFn * const fns[3][2] = { 9721 { gen_helper_neon_narrow_sat_s8, 9722 gen_helper_neon_narrow_sat_u8 }, 9723 { gen_helper_neon_narrow_sat_s16, 9724 gen_helper_neon_narrow_sat_u16 }, 9725 { gen_helper_neon_narrow_sat_s32, 9726 gen_helper_neon_narrow_sat_u32 }, 9727 }; 9728 genenvfn = fns[size][u]; 9729 break; 9730 } 9731 case 0x16: /* FCVTN, FCVTN2 */ 9732 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9733 if (size == 2) { 9734 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9735 } else { 9736 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9737 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9738 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9739 TCGv_i32 ahp = get_ahp_flag(); 9740 9741 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9742 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9743 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9744 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9745 } 9746 break; 9747 case 0x36: /* BFCVTN, BFCVTN2 */ 9748 { 9749 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9750 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9751 } 9752 break; 9753 case 0x56: /* FCVTXN, FCVTXN2 */ 9754 /* 64 bit to 32 bit float conversion 9755 * with von Neumann rounding (round to odd) 9756 */ 9757 assert(size == 2); 9758 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9759 break; 9760 default: 9761 g_assert_not_reached(); 9762 } 9763 9764 if (genfn) { 9765 genfn(tcg_res[pass], tcg_op); 9766 } else if (genenvfn) { 9767 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9768 } 9769 } 9770 9771 for (pass = 0; pass < 2; pass++) { 9772 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9773 } 9774 clear_vec_high(s, is_q, rd); 9775 } 9776 9777 /* Remaining saturating accumulating ops */ 9778 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9779 bool is_q, int size, int rn, int rd) 9780 { 9781 bool is_double = (size == 3); 9782 9783 if (is_double) { 9784 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9785 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9786 int pass; 9787 9788 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9789 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9790 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9791 9792 if (is_u) { /* USQADD */ 9793 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9794 } else { /* SUQADD */ 9795 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9796 } 9797 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9798 } 9799 clear_vec_high(s, !is_scalar, rd); 9800 } else { 9801 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9802 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9803 int pass, maxpasses; 9804 9805 if (is_scalar) { 9806 maxpasses = 1; 9807 } else { 9808 maxpasses = is_q ? 4 : 2; 9809 } 9810 9811 for (pass = 0; pass < maxpasses; pass++) { 9812 if (is_scalar) { 9813 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9814 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9815 } else { 9816 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9817 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9818 } 9819 9820 if (is_u) { /* USQADD */ 9821 switch (size) { 9822 case 0: 9823 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9824 break; 9825 case 1: 9826 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9827 break; 9828 case 2: 9829 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9830 break; 9831 default: 9832 g_assert_not_reached(); 9833 } 9834 } else { /* SUQADD */ 9835 switch (size) { 9836 case 0: 9837 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9838 break; 9839 case 1: 9840 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9841 break; 9842 case 2: 9843 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9844 break; 9845 default: 9846 g_assert_not_reached(); 9847 } 9848 } 9849 9850 if (is_scalar) { 9851 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9852 } 9853 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9854 } 9855 clear_vec_high(s, is_q, rd); 9856 } 9857 } 9858 9859 /* AdvSIMD scalar two reg misc 9860 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9861 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9862 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9863 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9864 */ 9865 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9866 { 9867 int rd = extract32(insn, 0, 5); 9868 int rn = extract32(insn, 5, 5); 9869 int opcode = extract32(insn, 12, 5); 9870 int size = extract32(insn, 22, 2); 9871 bool u = extract32(insn, 29, 1); 9872 bool is_fcvt = false; 9873 int rmode; 9874 TCGv_i32 tcg_rmode; 9875 TCGv_ptr tcg_fpstatus; 9876 9877 switch (opcode) { 9878 case 0x3: /* USQADD / SUQADD*/ 9879 if (!fp_access_check(s)) { 9880 return; 9881 } 9882 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9883 return; 9884 case 0x7: /* SQABS / SQNEG */ 9885 break; 9886 case 0xa: /* CMLT */ 9887 if (u) { 9888 unallocated_encoding(s); 9889 return; 9890 } 9891 /* fall through */ 9892 case 0x8: /* CMGT, CMGE */ 9893 case 0x9: /* CMEQ, CMLE */ 9894 case 0xb: /* ABS, NEG */ 9895 if (size != 3) { 9896 unallocated_encoding(s); 9897 return; 9898 } 9899 break; 9900 case 0x12: /* SQXTUN */ 9901 if (!u) { 9902 unallocated_encoding(s); 9903 return; 9904 } 9905 /* fall through */ 9906 case 0x14: /* SQXTN, UQXTN */ 9907 if (size == 3) { 9908 unallocated_encoding(s); 9909 return; 9910 } 9911 if (!fp_access_check(s)) { 9912 return; 9913 } 9914 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9915 return; 9916 case 0xc ... 0xf: 9917 case 0x16 ... 0x1d: 9918 case 0x1f: 9919 /* Floating point: U, size[1] and opcode indicate operation; 9920 * size[0] indicates single or double precision. 9921 */ 9922 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9923 size = extract32(size, 0, 1) ? 3 : 2; 9924 switch (opcode) { 9925 case 0x2c: /* FCMGT (zero) */ 9926 case 0x2d: /* FCMEQ (zero) */ 9927 case 0x2e: /* FCMLT (zero) */ 9928 case 0x6c: /* FCMGE (zero) */ 9929 case 0x6d: /* FCMLE (zero) */ 9930 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9931 return; 9932 case 0x1d: /* SCVTF */ 9933 case 0x5d: /* UCVTF */ 9934 { 9935 bool is_signed = (opcode == 0x1d); 9936 if (!fp_access_check(s)) { 9937 return; 9938 } 9939 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9940 return; 9941 } 9942 case 0x3d: /* FRECPE */ 9943 case 0x3f: /* FRECPX */ 9944 case 0x7d: /* FRSQRTE */ 9945 if (!fp_access_check(s)) { 9946 return; 9947 } 9948 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9949 return; 9950 case 0x1a: /* FCVTNS */ 9951 case 0x1b: /* FCVTMS */ 9952 case 0x3a: /* FCVTPS */ 9953 case 0x3b: /* FCVTZS */ 9954 case 0x5a: /* FCVTNU */ 9955 case 0x5b: /* FCVTMU */ 9956 case 0x7a: /* FCVTPU */ 9957 case 0x7b: /* FCVTZU */ 9958 is_fcvt = true; 9959 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 9960 break; 9961 case 0x1c: /* FCVTAS */ 9962 case 0x5c: /* FCVTAU */ 9963 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 9964 is_fcvt = true; 9965 rmode = FPROUNDING_TIEAWAY; 9966 break; 9967 case 0x56: /* FCVTXN, FCVTXN2 */ 9968 if (size == 2) { 9969 unallocated_encoding(s); 9970 return; 9971 } 9972 if (!fp_access_check(s)) { 9973 return; 9974 } 9975 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 9976 return; 9977 default: 9978 unallocated_encoding(s); 9979 return; 9980 } 9981 break; 9982 default: 9983 unallocated_encoding(s); 9984 return; 9985 } 9986 9987 if (!fp_access_check(s)) { 9988 return; 9989 } 9990 9991 if (is_fcvt) { 9992 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 9993 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9994 } else { 9995 tcg_fpstatus = NULL; 9996 tcg_rmode = NULL; 9997 } 9998 9999 if (size == 3) { 10000 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10001 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10002 10003 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10004 write_fp_dreg(s, rd, tcg_rd); 10005 } else { 10006 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10007 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10008 10009 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10010 10011 switch (opcode) { 10012 case 0x7: /* SQABS, SQNEG */ 10013 { 10014 NeonGenOneOpEnvFn *genfn; 10015 static NeonGenOneOpEnvFn * const fns[3][2] = { 10016 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10017 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10018 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10019 }; 10020 genfn = fns[size][u]; 10021 genfn(tcg_rd, cpu_env, tcg_rn); 10022 break; 10023 } 10024 case 0x1a: /* FCVTNS */ 10025 case 0x1b: /* FCVTMS */ 10026 case 0x1c: /* FCVTAS */ 10027 case 0x3a: /* FCVTPS */ 10028 case 0x3b: /* FCVTZS */ 10029 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10030 tcg_fpstatus); 10031 break; 10032 case 0x5a: /* FCVTNU */ 10033 case 0x5b: /* FCVTMU */ 10034 case 0x5c: /* FCVTAU */ 10035 case 0x7a: /* FCVTPU */ 10036 case 0x7b: /* FCVTZU */ 10037 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10038 tcg_fpstatus); 10039 break; 10040 default: 10041 g_assert_not_reached(); 10042 } 10043 10044 write_fp_sreg(s, rd, tcg_rd); 10045 } 10046 10047 if (is_fcvt) { 10048 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10049 } 10050 } 10051 10052 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10053 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10054 int immh, int immb, int opcode, int rn, int rd) 10055 { 10056 int size = 32 - clz32(immh) - 1; 10057 int immhb = immh << 3 | immb; 10058 int shift = 2 * (8 << size) - immhb; 10059 GVecGen2iFn *gvec_fn; 10060 10061 if (extract32(immh, 3, 1) && !is_q) { 10062 unallocated_encoding(s); 10063 return; 10064 } 10065 tcg_debug_assert(size <= 3); 10066 10067 if (!fp_access_check(s)) { 10068 return; 10069 } 10070 10071 switch (opcode) { 10072 case 0x02: /* SSRA / USRA (accumulate) */ 10073 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10074 break; 10075 10076 case 0x08: /* SRI */ 10077 gvec_fn = gen_gvec_sri; 10078 break; 10079 10080 case 0x00: /* SSHR / USHR */ 10081 if (is_u) { 10082 if (shift == 8 << size) { 10083 /* Shift count the same size as element size produces zero. */ 10084 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10085 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10086 return; 10087 } 10088 gvec_fn = tcg_gen_gvec_shri; 10089 } else { 10090 /* Shift count the same size as element size produces all sign. */ 10091 if (shift == 8 << size) { 10092 shift -= 1; 10093 } 10094 gvec_fn = tcg_gen_gvec_sari; 10095 } 10096 break; 10097 10098 case 0x04: /* SRSHR / URSHR (rounding) */ 10099 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10100 break; 10101 10102 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10103 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10104 break; 10105 10106 default: 10107 g_assert_not_reached(); 10108 } 10109 10110 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10111 } 10112 10113 /* SHL/SLI - Vector shift left */ 10114 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10115 int immh, int immb, int opcode, int rn, int rd) 10116 { 10117 int size = 32 - clz32(immh) - 1; 10118 int immhb = immh << 3 | immb; 10119 int shift = immhb - (8 << size); 10120 10121 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10122 assert(size >= 0 && size <= 3); 10123 10124 if (extract32(immh, 3, 1) && !is_q) { 10125 unallocated_encoding(s); 10126 return; 10127 } 10128 10129 if (!fp_access_check(s)) { 10130 return; 10131 } 10132 10133 if (insert) { 10134 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10135 } else { 10136 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10137 } 10138 } 10139 10140 /* USHLL/SHLL - Vector shift left with widening */ 10141 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10142 int immh, int immb, int opcode, int rn, int rd) 10143 { 10144 int size = 32 - clz32(immh) - 1; 10145 int immhb = immh << 3 | immb; 10146 int shift = immhb - (8 << size); 10147 int dsize = 64; 10148 int esize = 8 << size; 10149 int elements = dsize/esize; 10150 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10151 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10152 int i; 10153 10154 if (size >= 3) { 10155 unallocated_encoding(s); 10156 return; 10157 } 10158 10159 if (!fp_access_check(s)) { 10160 return; 10161 } 10162 10163 /* For the LL variants the store is larger than the load, 10164 * so if rd == rn we would overwrite parts of our input. 10165 * So load everything right now and use shifts in the main loop. 10166 */ 10167 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10168 10169 for (i = 0; i < elements; i++) { 10170 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10171 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10172 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10173 write_vec_element(s, tcg_rd, rd, i, size + 1); 10174 } 10175 } 10176 10177 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10178 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10179 int immh, int immb, int opcode, int rn, int rd) 10180 { 10181 int immhb = immh << 3 | immb; 10182 int size = 32 - clz32(immh) - 1; 10183 int dsize = 64; 10184 int esize = 8 << size; 10185 int elements = dsize/esize; 10186 int shift = (2 * esize) - immhb; 10187 bool round = extract32(opcode, 0, 1); 10188 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10189 TCGv_i64 tcg_round; 10190 int i; 10191 10192 if (extract32(immh, 3, 1)) { 10193 unallocated_encoding(s); 10194 return; 10195 } 10196 10197 if (!fp_access_check(s)) { 10198 return; 10199 } 10200 10201 tcg_rn = tcg_temp_new_i64(); 10202 tcg_rd = tcg_temp_new_i64(); 10203 tcg_final = tcg_temp_new_i64(); 10204 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10205 10206 if (round) { 10207 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10208 } else { 10209 tcg_round = NULL; 10210 } 10211 10212 for (i = 0; i < elements; i++) { 10213 read_vec_element(s, tcg_rn, rn, i, size+1); 10214 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10215 false, true, size+1, shift); 10216 10217 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10218 } 10219 10220 if (!is_q) { 10221 write_vec_element(s, tcg_final, rd, 0, MO_64); 10222 } else { 10223 write_vec_element(s, tcg_final, rd, 1, MO_64); 10224 } 10225 10226 clear_vec_high(s, is_q, rd); 10227 } 10228 10229 10230 /* AdvSIMD shift by immediate 10231 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10232 * +---+---+---+-------------+------+------+--------+---+------+------+ 10233 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10234 * +---+---+---+-------------+------+------+--------+---+------+------+ 10235 */ 10236 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10237 { 10238 int rd = extract32(insn, 0, 5); 10239 int rn = extract32(insn, 5, 5); 10240 int opcode = extract32(insn, 11, 5); 10241 int immb = extract32(insn, 16, 3); 10242 int immh = extract32(insn, 19, 4); 10243 bool is_u = extract32(insn, 29, 1); 10244 bool is_q = extract32(insn, 30, 1); 10245 10246 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10247 assert(immh != 0); 10248 10249 switch (opcode) { 10250 case 0x08: /* SRI */ 10251 if (!is_u) { 10252 unallocated_encoding(s); 10253 return; 10254 } 10255 /* fall through */ 10256 case 0x00: /* SSHR / USHR */ 10257 case 0x02: /* SSRA / USRA (accumulate) */ 10258 case 0x04: /* SRSHR / URSHR (rounding) */ 10259 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10260 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10261 break; 10262 case 0x0a: /* SHL / SLI */ 10263 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10264 break; 10265 case 0x10: /* SHRN */ 10266 case 0x11: /* RSHRN / SQRSHRUN */ 10267 if (is_u) { 10268 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10269 opcode, rn, rd); 10270 } else { 10271 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10272 } 10273 break; 10274 case 0x12: /* SQSHRN / UQSHRN */ 10275 case 0x13: /* SQRSHRN / UQRSHRN */ 10276 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10277 opcode, rn, rd); 10278 break; 10279 case 0x14: /* SSHLL / USHLL */ 10280 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10281 break; 10282 case 0x1c: /* SCVTF / UCVTF */ 10283 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10284 opcode, rn, rd); 10285 break; 10286 case 0xc: /* SQSHLU */ 10287 if (!is_u) { 10288 unallocated_encoding(s); 10289 return; 10290 } 10291 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10292 break; 10293 case 0xe: /* SQSHL, UQSHL */ 10294 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10295 break; 10296 case 0x1f: /* FCVTZS/ FCVTZU */ 10297 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10298 return; 10299 default: 10300 unallocated_encoding(s); 10301 return; 10302 } 10303 } 10304 10305 /* Generate code to do a "long" addition or subtraction, ie one done in 10306 * TCGv_i64 on vector lanes twice the width specified by size. 10307 */ 10308 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10309 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10310 { 10311 static NeonGenTwo64OpFn * const fns[3][2] = { 10312 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10313 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10314 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10315 }; 10316 NeonGenTwo64OpFn *genfn; 10317 assert(size < 3); 10318 10319 genfn = fns[size][is_sub]; 10320 genfn(tcg_res, tcg_op1, tcg_op2); 10321 } 10322 10323 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10324 int opcode, int rd, int rn, int rm) 10325 { 10326 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10327 TCGv_i64 tcg_res[2]; 10328 int pass, accop; 10329 10330 tcg_res[0] = tcg_temp_new_i64(); 10331 tcg_res[1] = tcg_temp_new_i64(); 10332 10333 /* Does this op do an adding accumulate, a subtracting accumulate, 10334 * or no accumulate at all? 10335 */ 10336 switch (opcode) { 10337 case 5: 10338 case 8: 10339 case 9: 10340 accop = 1; 10341 break; 10342 case 10: 10343 case 11: 10344 accop = -1; 10345 break; 10346 default: 10347 accop = 0; 10348 break; 10349 } 10350 10351 if (accop != 0) { 10352 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10353 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10354 } 10355 10356 /* size == 2 means two 32x32->64 operations; this is worth special 10357 * casing because we can generally handle it inline. 10358 */ 10359 if (size == 2) { 10360 for (pass = 0; pass < 2; pass++) { 10361 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10362 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10363 TCGv_i64 tcg_passres; 10364 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10365 10366 int elt = pass + is_q * 2; 10367 10368 read_vec_element(s, tcg_op1, rn, elt, memop); 10369 read_vec_element(s, tcg_op2, rm, elt, memop); 10370 10371 if (accop == 0) { 10372 tcg_passres = tcg_res[pass]; 10373 } else { 10374 tcg_passres = tcg_temp_new_i64(); 10375 } 10376 10377 switch (opcode) { 10378 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10379 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10380 break; 10381 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10382 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10383 break; 10384 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10385 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10386 { 10387 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10388 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10389 10390 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10391 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10392 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10393 tcg_passres, 10394 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10395 break; 10396 } 10397 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10398 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10399 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10400 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10401 break; 10402 case 9: /* SQDMLAL, SQDMLAL2 */ 10403 case 11: /* SQDMLSL, SQDMLSL2 */ 10404 case 13: /* SQDMULL, SQDMULL2 */ 10405 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10406 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10407 tcg_passres, tcg_passres); 10408 break; 10409 default: 10410 g_assert_not_reached(); 10411 } 10412 10413 if (opcode == 9 || opcode == 11) { 10414 /* saturating accumulate ops */ 10415 if (accop < 0) { 10416 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10417 } 10418 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10419 tcg_res[pass], tcg_passres); 10420 } else if (accop > 0) { 10421 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10422 } else if (accop < 0) { 10423 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10424 } 10425 } 10426 } else { 10427 /* size 0 or 1, generally helper functions */ 10428 for (pass = 0; pass < 2; pass++) { 10429 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10430 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10431 TCGv_i64 tcg_passres; 10432 int elt = pass + is_q * 2; 10433 10434 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10435 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10436 10437 if (accop == 0) { 10438 tcg_passres = tcg_res[pass]; 10439 } else { 10440 tcg_passres = tcg_temp_new_i64(); 10441 } 10442 10443 switch (opcode) { 10444 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10445 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10446 { 10447 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10448 static NeonGenWidenFn * const widenfns[2][2] = { 10449 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10450 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10451 }; 10452 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10453 10454 widenfn(tcg_op2_64, tcg_op2); 10455 widenfn(tcg_passres, tcg_op1); 10456 gen_neon_addl(size, (opcode == 2), tcg_passres, 10457 tcg_passres, tcg_op2_64); 10458 break; 10459 } 10460 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10461 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10462 if (size == 0) { 10463 if (is_u) { 10464 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10465 } else { 10466 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10467 } 10468 } else { 10469 if (is_u) { 10470 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10471 } else { 10472 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10473 } 10474 } 10475 break; 10476 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10477 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10478 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10479 if (size == 0) { 10480 if (is_u) { 10481 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10482 } else { 10483 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10484 } 10485 } else { 10486 if (is_u) { 10487 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10488 } else { 10489 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10490 } 10491 } 10492 break; 10493 case 9: /* SQDMLAL, SQDMLAL2 */ 10494 case 11: /* SQDMLSL, SQDMLSL2 */ 10495 case 13: /* SQDMULL, SQDMULL2 */ 10496 assert(size == 1); 10497 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10498 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10499 tcg_passres, tcg_passres); 10500 break; 10501 default: 10502 g_assert_not_reached(); 10503 } 10504 10505 if (accop != 0) { 10506 if (opcode == 9 || opcode == 11) { 10507 /* saturating accumulate ops */ 10508 if (accop < 0) { 10509 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10510 } 10511 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10512 tcg_res[pass], 10513 tcg_passres); 10514 } else { 10515 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10516 tcg_res[pass], tcg_passres); 10517 } 10518 } 10519 } 10520 } 10521 10522 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10523 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10524 } 10525 10526 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10527 int opcode, int rd, int rn, int rm) 10528 { 10529 TCGv_i64 tcg_res[2]; 10530 int part = is_q ? 2 : 0; 10531 int pass; 10532 10533 for (pass = 0; pass < 2; pass++) { 10534 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10535 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10536 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10537 static NeonGenWidenFn * const widenfns[3][2] = { 10538 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10539 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10540 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10541 }; 10542 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10543 10544 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10545 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10546 widenfn(tcg_op2_wide, tcg_op2); 10547 tcg_res[pass] = tcg_temp_new_i64(); 10548 gen_neon_addl(size, (opcode == 3), 10549 tcg_res[pass], tcg_op1, tcg_op2_wide); 10550 } 10551 10552 for (pass = 0; pass < 2; pass++) { 10553 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10554 } 10555 } 10556 10557 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10558 { 10559 tcg_gen_addi_i64(in, in, 1U << 31); 10560 tcg_gen_extrh_i64_i32(res, in); 10561 } 10562 10563 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10564 int opcode, int rd, int rn, int rm) 10565 { 10566 TCGv_i32 tcg_res[2]; 10567 int part = is_q ? 2 : 0; 10568 int pass; 10569 10570 for (pass = 0; pass < 2; pass++) { 10571 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10572 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10573 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10574 static NeonGenNarrowFn * const narrowfns[3][2] = { 10575 { gen_helper_neon_narrow_high_u8, 10576 gen_helper_neon_narrow_round_high_u8 }, 10577 { gen_helper_neon_narrow_high_u16, 10578 gen_helper_neon_narrow_round_high_u16 }, 10579 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10580 }; 10581 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10582 10583 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10584 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10585 10586 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10587 10588 tcg_res[pass] = tcg_temp_new_i32(); 10589 gennarrow(tcg_res[pass], tcg_wideres); 10590 } 10591 10592 for (pass = 0; pass < 2; pass++) { 10593 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10594 } 10595 clear_vec_high(s, is_q, rd); 10596 } 10597 10598 /* AdvSIMD three different 10599 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10600 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10601 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10602 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10603 */ 10604 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10605 { 10606 /* Instructions in this group fall into three basic classes 10607 * (in each case with the operation working on each element in 10608 * the input vectors): 10609 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10610 * 128 bit input) 10611 * (2) wide 64 x 128 -> 128 10612 * (3) narrowing 128 x 128 -> 64 10613 * Here we do initial decode, catch unallocated cases and 10614 * dispatch to separate functions for each class. 10615 */ 10616 int is_q = extract32(insn, 30, 1); 10617 int is_u = extract32(insn, 29, 1); 10618 int size = extract32(insn, 22, 2); 10619 int opcode = extract32(insn, 12, 4); 10620 int rm = extract32(insn, 16, 5); 10621 int rn = extract32(insn, 5, 5); 10622 int rd = extract32(insn, 0, 5); 10623 10624 switch (opcode) { 10625 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10626 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10627 /* 64 x 128 -> 128 */ 10628 if (size == 3) { 10629 unallocated_encoding(s); 10630 return; 10631 } 10632 if (!fp_access_check(s)) { 10633 return; 10634 } 10635 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10636 break; 10637 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10638 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10639 /* 128 x 128 -> 64 */ 10640 if (size == 3) { 10641 unallocated_encoding(s); 10642 return; 10643 } 10644 if (!fp_access_check(s)) { 10645 return; 10646 } 10647 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10648 break; 10649 case 14: /* PMULL, PMULL2 */ 10650 if (is_u) { 10651 unallocated_encoding(s); 10652 return; 10653 } 10654 switch (size) { 10655 case 0: /* PMULL.P8 */ 10656 if (!fp_access_check(s)) { 10657 return; 10658 } 10659 /* The Q field specifies lo/hi half input for this insn. */ 10660 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10661 gen_helper_neon_pmull_h); 10662 break; 10663 10664 case 3: /* PMULL.P64 */ 10665 if (!dc_isar_feature(aa64_pmull, s)) { 10666 unallocated_encoding(s); 10667 return; 10668 } 10669 if (!fp_access_check(s)) { 10670 return; 10671 } 10672 /* The Q field specifies lo/hi half input for this insn. */ 10673 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10674 gen_helper_gvec_pmull_q); 10675 break; 10676 10677 default: 10678 unallocated_encoding(s); 10679 break; 10680 } 10681 return; 10682 case 9: /* SQDMLAL, SQDMLAL2 */ 10683 case 11: /* SQDMLSL, SQDMLSL2 */ 10684 case 13: /* SQDMULL, SQDMULL2 */ 10685 if (is_u || size == 0) { 10686 unallocated_encoding(s); 10687 return; 10688 } 10689 /* fall through */ 10690 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10691 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10692 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10693 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10694 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10695 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10696 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10697 /* 64 x 64 -> 128 */ 10698 if (size == 3) { 10699 unallocated_encoding(s); 10700 return; 10701 } 10702 if (!fp_access_check(s)) { 10703 return; 10704 } 10705 10706 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10707 break; 10708 default: 10709 /* opcode 15 not allocated */ 10710 unallocated_encoding(s); 10711 break; 10712 } 10713 } 10714 10715 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10716 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10717 { 10718 int rd = extract32(insn, 0, 5); 10719 int rn = extract32(insn, 5, 5); 10720 int rm = extract32(insn, 16, 5); 10721 int size = extract32(insn, 22, 2); 10722 bool is_u = extract32(insn, 29, 1); 10723 bool is_q = extract32(insn, 30, 1); 10724 10725 if (!fp_access_check(s)) { 10726 return; 10727 } 10728 10729 switch (size + 4 * is_u) { 10730 case 0: /* AND */ 10731 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10732 return; 10733 case 1: /* BIC */ 10734 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10735 return; 10736 case 2: /* ORR */ 10737 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10738 return; 10739 case 3: /* ORN */ 10740 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10741 return; 10742 case 4: /* EOR */ 10743 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10744 return; 10745 10746 case 5: /* BSL bitwise select */ 10747 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10748 return; 10749 case 6: /* BIT, bitwise insert if true */ 10750 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10751 return; 10752 case 7: /* BIF, bitwise insert if false */ 10753 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10754 return; 10755 10756 default: 10757 g_assert_not_reached(); 10758 } 10759 } 10760 10761 /* Pairwise op subgroup of C3.6.16. 10762 * 10763 * This is called directly or via the handle_3same_float for float pairwise 10764 * operations where the opcode and size are calculated differently. 10765 */ 10766 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10767 int size, int rn, int rm, int rd) 10768 { 10769 TCGv_ptr fpst; 10770 int pass; 10771 10772 /* Floating point operations need fpst */ 10773 if (opcode >= 0x58) { 10774 fpst = fpstatus_ptr(FPST_FPCR); 10775 } else { 10776 fpst = NULL; 10777 } 10778 10779 if (!fp_access_check(s)) { 10780 return; 10781 } 10782 10783 /* These operations work on the concatenated rm:rn, with each pair of 10784 * adjacent elements being operated on to produce an element in the result. 10785 */ 10786 if (size == 3) { 10787 TCGv_i64 tcg_res[2]; 10788 10789 for (pass = 0; pass < 2; pass++) { 10790 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10791 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10792 int passreg = (pass == 0) ? rn : rm; 10793 10794 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10795 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10796 tcg_res[pass] = tcg_temp_new_i64(); 10797 10798 switch (opcode) { 10799 case 0x17: /* ADDP */ 10800 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10801 break; 10802 case 0x58: /* FMAXNMP */ 10803 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10804 break; 10805 case 0x5a: /* FADDP */ 10806 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10807 break; 10808 case 0x5e: /* FMAXP */ 10809 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10810 break; 10811 case 0x78: /* FMINNMP */ 10812 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10813 break; 10814 case 0x7e: /* FMINP */ 10815 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10816 break; 10817 default: 10818 g_assert_not_reached(); 10819 } 10820 } 10821 10822 for (pass = 0; pass < 2; pass++) { 10823 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10824 } 10825 } else { 10826 int maxpass = is_q ? 4 : 2; 10827 TCGv_i32 tcg_res[4]; 10828 10829 for (pass = 0; pass < maxpass; pass++) { 10830 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10831 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10832 NeonGenTwoOpFn *genfn = NULL; 10833 int passreg = pass < (maxpass / 2) ? rn : rm; 10834 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10835 10836 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10837 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10838 tcg_res[pass] = tcg_temp_new_i32(); 10839 10840 switch (opcode) { 10841 case 0x17: /* ADDP */ 10842 { 10843 static NeonGenTwoOpFn * const fns[3] = { 10844 gen_helper_neon_padd_u8, 10845 gen_helper_neon_padd_u16, 10846 tcg_gen_add_i32, 10847 }; 10848 genfn = fns[size]; 10849 break; 10850 } 10851 case 0x14: /* SMAXP, UMAXP */ 10852 { 10853 static NeonGenTwoOpFn * const fns[3][2] = { 10854 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10855 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10856 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10857 }; 10858 genfn = fns[size][u]; 10859 break; 10860 } 10861 case 0x15: /* SMINP, UMINP */ 10862 { 10863 static NeonGenTwoOpFn * const fns[3][2] = { 10864 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10865 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10866 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10867 }; 10868 genfn = fns[size][u]; 10869 break; 10870 } 10871 /* The FP operations are all on single floats (32 bit) */ 10872 case 0x58: /* FMAXNMP */ 10873 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10874 break; 10875 case 0x5a: /* FADDP */ 10876 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10877 break; 10878 case 0x5e: /* FMAXP */ 10879 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10880 break; 10881 case 0x78: /* FMINNMP */ 10882 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10883 break; 10884 case 0x7e: /* FMINP */ 10885 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10886 break; 10887 default: 10888 g_assert_not_reached(); 10889 } 10890 10891 /* FP ops called directly, otherwise call now */ 10892 if (genfn) { 10893 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10894 } 10895 } 10896 10897 for (pass = 0; pass < maxpass; pass++) { 10898 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10899 } 10900 clear_vec_high(s, is_q, rd); 10901 } 10902 } 10903 10904 /* Floating point op subgroup of C3.6.16. */ 10905 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10906 { 10907 /* For floating point ops, the U, size[1] and opcode bits 10908 * together indicate the operation. size[0] indicates single 10909 * or double. 10910 */ 10911 int fpopcode = extract32(insn, 11, 5) 10912 | (extract32(insn, 23, 1) << 5) 10913 | (extract32(insn, 29, 1) << 6); 10914 int is_q = extract32(insn, 30, 1); 10915 int size = extract32(insn, 22, 1); 10916 int rm = extract32(insn, 16, 5); 10917 int rn = extract32(insn, 5, 5); 10918 int rd = extract32(insn, 0, 5); 10919 10920 int datasize = is_q ? 128 : 64; 10921 int esize = 32 << size; 10922 int elements = datasize / esize; 10923 10924 if (size == 1 && !is_q) { 10925 unallocated_encoding(s); 10926 return; 10927 } 10928 10929 switch (fpopcode) { 10930 case 0x58: /* FMAXNMP */ 10931 case 0x5a: /* FADDP */ 10932 case 0x5e: /* FMAXP */ 10933 case 0x78: /* FMINNMP */ 10934 case 0x7e: /* FMINP */ 10935 if (size && !is_q) { 10936 unallocated_encoding(s); 10937 return; 10938 } 10939 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10940 rn, rm, rd); 10941 return; 10942 case 0x1b: /* FMULX */ 10943 case 0x1f: /* FRECPS */ 10944 case 0x3f: /* FRSQRTS */ 10945 case 0x5d: /* FACGE */ 10946 case 0x7d: /* FACGT */ 10947 case 0x19: /* FMLA */ 10948 case 0x39: /* FMLS */ 10949 case 0x18: /* FMAXNM */ 10950 case 0x1a: /* FADD */ 10951 case 0x1c: /* FCMEQ */ 10952 case 0x1e: /* FMAX */ 10953 case 0x38: /* FMINNM */ 10954 case 0x3a: /* FSUB */ 10955 case 0x3e: /* FMIN */ 10956 case 0x5b: /* FMUL */ 10957 case 0x5c: /* FCMGE */ 10958 case 0x5f: /* FDIV */ 10959 case 0x7a: /* FABD */ 10960 case 0x7c: /* FCMGT */ 10961 if (!fp_access_check(s)) { 10962 return; 10963 } 10964 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 10965 return; 10966 10967 case 0x1d: /* FMLAL */ 10968 case 0x3d: /* FMLSL */ 10969 case 0x59: /* FMLAL2 */ 10970 case 0x79: /* FMLSL2 */ 10971 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10972 unallocated_encoding(s); 10973 return; 10974 } 10975 if (fp_access_check(s)) { 10976 int is_s = extract32(insn, 23, 1); 10977 int is_2 = extract32(insn, 29, 1); 10978 int data = (is_2 << 1) | is_s; 10979 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10980 vec_full_reg_offset(s, rn), 10981 vec_full_reg_offset(s, rm), cpu_env, 10982 is_q ? 16 : 8, vec_full_reg_size(s), 10983 data, gen_helper_gvec_fmlal_a64); 10984 } 10985 return; 10986 10987 default: 10988 unallocated_encoding(s); 10989 return; 10990 } 10991 } 10992 10993 /* Integer op subgroup of C3.6.16. */ 10994 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10995 { 10996 int is_q = extract32(insn, 30, 1); 10997 int u = extract32(insn, 29, 1); 10998 int size = extract32(insn, 22, 2); 10999 int opcode = extract32(insn, 11, 5); 11000 int rm = extract32(insn, 16, 5); 11001 int rn = extract32(insn, 5, 5); 11002 int rd = extract32(insn, 0, 5); 11003 int pass; 11004 TCGCond cond; 11005 11006 switch (opcode) { 11007 case 0x13: /* MUL, PMUL */ 11008 if (u && size != 0) { 11009 unallocated_encoding(s); 11010 return; 11011 } 11012 /* fall through */ 11013 case 0x0: /* SHADD, UHADD */ 11014 case 0x2: /* SRHADD, URHADD */ 11015 case 0x4: /* SHSUB, UHSUB */ 11016 case 0xc: /* SMAX, UMAX */ 11017 case 0xd: /* SMIN, UMIN */ 11018 case 0xe: /* SABD, UABD */ 11019 case 0xf: /* SABA, UABA */ 11020 case 0x12: /* MLA, MLS */ 11021 if (size == 3) { 11022 unallocated_encoding(s); 11023 return; 11024 } 11025 break; 11026 case 0x16: /* SQDMULH, SQRDMULH */ 11027 if (size == 0 || size == 3) { 11028 unallocated_encoding(s); 11029 return; 11030 } 11031 break; 11032 default: 11033 if (size == 3 && !is_q) { 11034 unallocated_encoding(s); 11035 return; 11036 } 11037 break; 11038 } 11039 11040 if (!fp_access_check(s)) { 11041 return; 11042 } 11043 11044 switch (opcode) { 11045 case 0x01: /* SQADD, UQADD */ 11046 if (u) { 11047 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11048 } else { 11049 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11050 } 11051 return; 11052 case 0x05: /* SQSUB, UQSUB */ 11053 if (u) { 11054 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11055 } else { 11056 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11057 } 11058 return; 11059 case 0x08: /* SSHL, USHL */ 11060 if (u) { 11061 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11062 } else { 11063 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11064 } 11065 return; 11066 case 0x0c: /* SMAX, UMAX */ 11067 if (u) { 11068 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11069 } else { 11070 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11071 } 11072 return; 11073 case 0x0d: /* SMIN, UMIN */ 11074 if (u) { 11075 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11076 } else { 11077 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11078 } 11079 return; 11080 case 0xe: /* SABD, UABD */ 11081 if (u) { 11082 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11083 } else { 11084 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11085 } 11086 return; 11087 case 0xf: /* SABA, UABA */ 11088 if (u) { 11089 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11090 } else { 11091 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11092 } 11093 return; 11094 case 0x10: /* ADD, SUB */ 11095 if (u) { 11096 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11097 } else { 11098 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11099 } 11100 return; 11101 case 0x13: /* MUL, PMUL */ 11102 if (!u) { /* MUL */ 11103 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11104 } else { /* PMUL */ 11105 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11106 } 11107 return; 11108 case 0x12: /* MLA, MLS */ 11109 if (u) { 11110 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11111 } else { 11112 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11113 } 11114 return; 11115 case 0x16: /* SQDMULH, SQRDMULH */ 11116 { 11117 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11118 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11119 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11120 }; 11121 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11122 } 11123 return; 11124 case 0x11: 11125 if (!u) { /* CMTST */ 11126 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11127 return; 11128 } 11129 /* else CMEQ */ 11130 cond = TCG_COND_EQ; 11131 goto do_gvec_cmp; 11132 case 0x06: /* CMGT, CMHI */ 11133 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11134 goto do_gvec_cmp; 11135 case 0x07: /* CMGE, CMHS */ 11136 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11137 do_gvec_cmp: 11138 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11139 vec_full_reg_offset(s, rn), 11140 vec_full_reg_offset(s, rm), 11141 is_q ? 16 : 8, vec_full_reg_size(s)); 11142 return; 11143 } 11144 11145 if (size == 3) { 11146 assert(is_q); 11147 for (pass = 0; pass < 2; pass++) { 11148 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11149 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11150 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11151 11152 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11153 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11154 11155 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11156 11157 write_vec_element(s, tcg_res, rd, pass, MO_64); 11158 } 11159 } else { 11160 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11161 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11162 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11163 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11164 NeonGenTwoOpFn *genfn = NULL; 11165 NeonGenTwoOpEnvFn *genenvfn = NULL; 11166 11167 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11168 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11169 11170 switch (opcode) { 11171 case 0x0: /* SHADD, UHADD */ 11172 { 11173 static NeonGenTwoOpFn * const fns[3][2] = { 11174 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11175 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11176 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11177 }; 11178 genfn = fns[size][u]; 11179 break; 11180 } 11181 case 0x2: /* SRHADD, URHADD */ 11182 { 11183 static NeonGenTwoOpFn * const fns[3][2] = { 11184 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11185 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11186 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11187 }; 11188 genfn = fns[size][u]; 11189 break; 11190 } 11191 case 0x4: /* SHSUB, UHSUB */ 11192 { 11193 static NeonGenTwoOpFn * const fns[3][2] = { 11194 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11195 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11196 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11197 }; 11198 genfn = fns[size][u]; 11199 break; 11200 } 11201 case 0x9: /* SQSHL, UQSHL */ 11202 { 11203 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11204 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11205 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11206 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11207 }; 11208 genenvfn = fns[size][u]; 11209 break; 11210 } 11211 case 0xa: /* SRSHL, URSHL */ 11212 { 11213 static NeonGenTwoOpFn * const fns[3][2] = { 11214 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11215 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11216 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11217 }; 11218 genfn = fns[size][u]; 11219 break; 11220 } 11221 case 0xb: /* SQRSHL, UQRSHL */ 11222 { 11223 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11224 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11225 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11226 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11227 }; 11228 genenvfn = fns[size][u]; 11229 break; 11230 } 11231 default: 11232 g_assert_not_reached(); 11233 } 11234 11235 if (genenvfn) { 11236 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11237 } else { 11238 genfn(tcg_res, tcg_op1, tcg_op2); 11239 } 11240 11241 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11242 } 11243 } 11244 clear_vec_high(s, is_q, rd); 11245 } 11246 11247 /* AdvSIMD three same 11248 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11249 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11250 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11251 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11252 */ 11253 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11254 { 11255 int opcode = extract32(insn, 11, 5); 11256 11257 switch (opcode) { 11258 case 0x3: /* logic ops */ 11259 disas_simd_3same_logic(s, insn); 11260 break; 11261 case 0x17: /* ADDP */ 11262 case 0x14: /* SMAXP, UMAXP */ 11263 case 0x15: /* SMINP, UMINP */ 11264 { 11265 /* Pairwise operations */ 11266 int is_q = extract32(insn, 30, 1); 11267 int u = extract32(insn, 29, 1); 11268 int size = extract32(insn, 22, 2); 11269 int rm = extract32(insn, 16, 5); 11270 int rn = extract32(insn, 5, 5); 11271 int rd = extract32(insn, 0, 5); 11272 if (opcode == 0x17) { 11273 if (u || (size == 3 && !is_q)) { 11274 unallocated_encoding(s); 11275 return; 11276 } 11277 } else { 11278 if (size == 3) { 11279 unallocated_encoding(s); 11280 return; 11281 } 11282 } 11283 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11284 break; 11285 } 11286 case 0x18 ... 0x31: 11287 /* floating point ops, sz[1] and U are part of opcode */ 11288 disas_simd_3same_float(s, insn); 11289 break; 11290 default: 11291 disas_simd_3same_int(s, insn); 11292 break; 11293 } 11294 } 11295 11296 /* 11297 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11298 * 11299 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11300 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11301 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11302 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11303 * 11304 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11305 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11306 * 11307 */ 11308 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11309 { 11310 int opcode = extract32(insn, 11, 3); 11311 int u = extract32(insn, 29, 1); 11312 int a = extract32(insn, 23, 1); 11313 int is_q = extract32(insn, 30, 1); 11314 int rm = extract32(insn, 16, 5); 11315 int rn = extract32(insn, 5, 5); 11316 int rd = extract32(insn, 0, 5); 11317 /* 11318 * For these floating point ops, the U, a and opcode bits 11319 * together indicate the operation. 11320 */ 11321 int fpopcode = opcode | (a << 3) | (u << 4); 11322 int datasize = is_q ? 128 : 64; 11323 int elements = datasize / 16; 11324 bool pairwise; 11325 TCGv_ptr fpst; 11326 int pass; 11327 11328 switch (fpopcode) { 11329 case 0x0: /* FMAXNM */ 11330 case 0x1: /* FMLA */ 11331 case 0x2: /* FADD */ 11332 case 0x3: /* FMULX */ 11333 case 0x4: /* FCMEQ */ 11334 case 0x6: /* FMAX */ 11335 case 0x7: /* FRECPS */ 11336 case 0x8: /* FMINNM */ 11337 case 0x9: /* FMLS */ 11338 case 0xa: /* FSUB */ 11339 case 0xe: /* FMIN */ 11340 case 0xf: /* FRSQRTS */ 11341 case 0x13: /* FMUL */ 11342 case 0x14: /* FCMGE */ 11343 case 0x15: /* FACGE */ 11344 case 0x17: /* FDIV */ 11345 case 0x1a: /* FABD */ 11346 case 0x1c: /* FCMGT */ 11347 case 0x1d: /* FACGT */ 11348 pairwise = false; 11349 break; 11350 case 0x10: /* FMAXNMP */ 11351 case 0x12: /* FADDP */ 11352 case 0x16: /* FMAXP */ 11353 case 0x18: /* FMINNMP */ 11354 case 0x1e: /* FMINP */ 11355 pairwise = true; 11356 break; 11357 default: 11358 unallocated_encoding(s); 11359 return; 11360 } 11361 11362 if (!dc_isar_feature(aa64_fp16, s)) { 11363 unallocated_encoding(s); 11364 return; 11365 } 11366 11367 if (!fp_access_check(s)) { 11368 return; 11369 } 11370 11371 fpst = fpstatus_ptr(FPST_FPCR_F16); 11372 11373 if (pairwise) { 11374 int maxpass = is_q ? 8 : 4; 11375 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11376 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11377 TCGv_i32 tcg_res[8]; 11378 11379 for (pass = 0; pass < maxpass; pass++) { 11380 int passreg = pass < (maxpass / 2) ? rn : rm; 11381 int passelt = (pass << 1) & (maxpass - 1); 11382 11383 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11384 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11385 tcg_res[pass] = tcg_temp_new_i32(); 11386 11387 switch (fpopcode) { 11388 case 0x10: /* FMAXNMP */ 11389 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11390 fpst); 11391 break; 11392 case 0x12: /* FADDP */ 11393 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11394 break; 11395 case 0x16: /* FMAXP */ 11396 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11397 break; 11398 case 0x18: /* FMINNMP */ 11399 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11400 fpst); 11401 break; 11402 case 0x1e: /* FMINP */ 11403 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11404 break; 11405 default: 11406 g_assert_not_reached(); 11407 } 11408 } 11409 11410 for (pass = 0; pass < maxpass; pass++) { 11411 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11412 } 11413 } else { 11414 for (pass = 0; pass < elements; pass++) { 11415 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11416 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11417 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11418 11419 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11420 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11421 11422 switch (fpopcode) { 11423 case 0x0: /* FMAXNM */ 11424 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11425 break; 11426 case 0x1: /* FMLA */ 11427 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11428 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11429 fpst); 11430 break; 11431 case 0x2: /* FADD */ 11432 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11433 break; 11434 case 0x3: /* FMULX */ 11435 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11436 break; 11437 case 0x4: /* FCMEQ */ 11438 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11439 break; 11440 case 0x6: /* FMAX */ 11441 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11442 break; 11443 case 0x7: /* FRECPS */ 11444 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11445 break; 11446 case 0x8: /* FMINNM */ 11447 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11448 break; 11449 case 0x9: /* FMLS */ 11450 /* As usual for ARM, separate negation for fused multiply-add */ 11451 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11452 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11453 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11454 fpst); 11455 break; 11456 case 0xa: /* FSUB */ 11457 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11458 break; 11459 case 0xe: /* FMIN */ 11460 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11461 break; 11462 case 0xf: /* FRSQRTS */ 11463 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11464 break; 11465 case 0x13: /* FMUL */ 11466 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11467 break; 11468 case 0x14: /* FCMGE */ 11469 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11470 break; 11471 case 0x15: /* FACGE */ 11472 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11473 break; 11474 case 0x17: /* FDIV */ 11475 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11476 break; 11477 case 0x1a: /* FABD */ 11478 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11479 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11480 break; 11481 case 0x1c: /* FCMGT */ 11482 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11483 break; 11484 case 0x1d: /* FACGT */ 11485 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11486 break; 11487 default: 11488 g_assert_not_reached(); 11489 } 11490 11491 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11492 } 11493 } 11494 11495 clear_vec_high(s, is_q, rd); 11496 } 11497 11498 /* AdvSIMD three same extra 11499 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11500 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11501 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11502 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11503 */ 11504 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11505 { 11506 int rd = extract32(insn, 0, 5); 11507 int rn = extract32(insn, 5, 5); 11508 int opcode = extract32(insn, 11, 4); 11509 int rm = extract32(insn, 16, 5); 11510 int size = extract32(insn, 22, 2); 11511 bool u = extract32(insn, 29, 1); 11512 bool is_q = extract32(insn, 30, 1); 11513 bool feature; 11514 int rot; 11515 11516 switch (u * 16 + opcode) { 11517 case 0x10: /* SQRDMLAH (vector) */ 11518 case 0x11: /* SQRDMLSH (vector) */ 11519 if (size != 1 && size != 2) { 11520 unallocated_encoding(s); 11521 return; 11522 } 11523 feature = dc_isar_feature(aa64_rdm, s); 11524 break; 11525 case 0x02: /* SDOT (vector) */ 11526 case 0x12: /* UDOT (vector) */ 11527 if (size != MO_32) { 11528 unallocated_encoding(s); 11529 return; 11530 } 11531 feature = dc_isar_feature(aa64_dp, s); 11532 break; 11533 case 0x03: /* USDOT */ 11534 if (size != MO_32) { 11535 unallocated_encoding(s); 11536 return; 11537 } 11538 feature = dc_isar_feature(aa64_i8mm, s); 11539 break; 11540 case 0x04: /* SMMLA */ 11541 case 0x14: /* UMMLA */ 11542 case 0x05: /* USMMLA */ 11543 if (!is_q || size != MO_32) { 11544 unallocated_encoding(s); 11545 return; 11546 } 11547 feature = dc_isar_feature(aa64_i8mm, s); 11548 break; 11549 case 0x18: /* FCMLA, #0 */ 11550 case 0x19: /* FCMLA, #90 */ 11551 case 0x1a: /* FCMLA, #180 */ 11552 case 0x1b: /* FCMLA, #270 */ 11553 case 0x1c: /* FCADD, #90 */ 11554 case 0x1e: /* FCADD, #270 */ 11555 if (size == 0 11556 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11557 || (size == 3 && !is_q)) { 11558 unallocated_encoding(s); 11559 return; 11560 } 11561 feature = dc_isar_feature(aa64_fcma, s); 11562 break; 11563 case 0x1d: /* BFMMLA */ 11564 if (size != MO_16 || !is_q) { 11565 unallocated_encoding(s); 11566 return; 11567 } 11568 feature = dc_isar_feature(aa64_bf16, s); 11569 break; 11570 case 0x1f: 11571 switch (size) { 11572 case 1: /* BFDOT */ 11573 case 3: /* BFMLAL{B,T} */ 11574 feature = dc_isar_feature(aa64_bf16, s); 11575 break; 11576 default: 11577 unallocated_encoding(s); 11578 return; 11579 } 11580 break; 11581 default: 11582 unallocated_encoding(s); 11583 return; 11584 } 11585 if (!feature) { 11586 unallocated_encoding(s); 11587 return; 11588 } 11589 if (!fp_access_check(s)) { 11590 return; 11591 } 11592 11593 switch (opcode) { 11594 case 0x0: /* SQRDMLAH (vector) */ 11595 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11596 return; 11597 11598 case 0x1: /* SQRDMLSH (vector) */ 11599 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11600 return; 11601 11602 case 0x2: /* SDOT / UDOT */ 11603 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11604 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11605 return; 11606 11607 case 0x3: /* USDOT */ 11608 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11609 return; 11610 11611 case 0x04: /* SMMLA, UMMLA */ 11612 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11613 u ? gen_helper_gvec_ummla_b 11614 : gen_helper_gvec_smmla_b); 11615 return; 11616 case 0x05: /* USMMLA */ 11617 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11618 return; 11619 11620 case 0x8: /* FCMLA, #0 */ 11621 case 0x9: /* FCMLA, #90 */ 11622 case 0xa: /* FCMLA, #180 */ 11623 case 0xb: /* FCMLA, #270 */ 11624 rot = extract32(opcode, 0, 2); 11625 switch (size) { 11626 case 1: 11627 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11628 gen_helper_gvec_fcmlah); 11629 break; 11630 case 2: 11631 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11632 gen_helper_gvec_fcmlas); 11633 break; 11634 case 3: 11635 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11636 gen_helper_gvec_fcmlad); 11637 break; 11638 default: 11639 g_assert_not_reached(); 11640 } 11641 return; 11642 11643 case 0xc: /* FCADD, #90 */ 11644 case 0xe: /* FCADD, #270 */ 11645 rot = extract32(opcode, 1, 1); 11646 switch (size) { 11647 case 1: 11648 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11649 gen_helper_gvec_fcaddh); 11650 break; 11651 case 2: 11652 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11653 gen_helper_gvec_fcadds); 11654 break; 11655 case 3: 11656 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11657 gen_helper_gvec_fcaddd); 11658 break; 11659 default: 11660 g_assert_not_reached(); 11661 } 11662 return; 11663 11664 case 0xd: /* BFMMLA */ 11665 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11666 return; 11667 case 0xf: 11668 switch (size) { 11669 case 1: /* BFDOT */ 11670 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11671 break; 11672 case 3: /* BFMLAL{B,T} */ 11673 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11674 gen_helper_gvec_bfmlal); 11675 break; 11676 default: 11677 g_assert_not_reached(); 11678 } 11679 return; 11680 11681 default: 11682 g_assert_not_reached(); 11683 } 11684 } 11685 11686 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11687 int size, int rn, int rd) 11688 { 11689 /* Handle 2-reg-misc ops which are widening (so each size element 11690 * in the source becomes a 2*size element in the destination. 11691 * The only instruction like this is FCVTL. 11692 */ 11693 int pass; 11694 11695 if (size == 3) { 11696 /* 32 -> 64 bit fp conversion */ 11697 TCGv_i64 tcg_res[2]; 11698 int srcelt = is_q ? 2 : 0; 11699 11700 for (pass = 0; pass < 2; pass++) { 11701 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11702 tcg_res[pass] = tcg_temp_new_i64(); 11703 11704 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11705 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11706 } 11707 for (pass = 0; pass < 2; pass++) { 11708 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11709 } 11710 } else { 11711 /* 16 -> 32 bit fp conversion */ 11712 int srcelt = is_q ? 4 : 0; 11713 TCGv_i32 tcg_res[4]; 11714 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11715 TCGv_i32 ahp = get_ahp_flag(); 11716 11717 for (pass = 0; pass < 4; pass++) { 11718 tcg_res[pass] = tcg_temp_new_i32(); 11719 11720 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11721 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11722 fpst, ahp); 11723 } 11724 for (pass = 0; pass < 4; pass++) { 11725 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11726 } 11727 } 11728 } 11729 11730 static void handle_rev(DisasContext *s, int opcode, bool u, 11731 bool is_q, int size, int rn, int rd) 11732 { 11733 int op = (opcode << 1) | u; 11734 int opsz = op + size; 11735 int grp_size = 3 - opsz; 11736 int dsize = is_q ? 128 : 64; 11737 int i; 11738 11739 if (opsz >= 3) { 11740 unallocated_encoding(s); 11741 return; 11742 } 11743 11744 if (!fp_access_check(s)) { 11745 return; 11746 } 11747 11748 if (size == 0) { 11749 /* Special case bytes, use bswap op on each group of elements */ 11750 int groups = dsize / (8 << grp_size); 11751 11752 for (i = 0; i < groups; i++) { 11753 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11754 11755 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11756 switch (grp_size) { 11757 case MO_16: 11758 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11759 break; 11760 case MO_32: 11761 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11762 break; 11763 case MO_64: 11764 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11765 break; 11766 default: 11767 g_assert_not_reached(); 11768 } 11769 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11770 } 11771 clear_vec_high(s, is_q, rd); 11772 } else { 11773 int revmask = (1 << grp_size) - 1; 11774 int esize = 8 << size; 11775 int elements = dsize / esize; 11776 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11777 TCGv_i64 tcg_rd[2]; 11778 11779 for (i = 0; i < 2; i++) { 11780 tcg_rd[i] = tcg_temp_new_i64(); 11781 tcg_gen_movi_i64(tcg_rd[i], 0); 11782 } 11783 11784 for (i = 0; i < elements; i++) { 11785 int e_rev = (i & 0xf) ^ revmask; 11786 int w = (e_rev * esize) / 64; 11787 int o = (e_rev * esize) % 64; 11788 11789 read_vec_element(s, tcg_rn, rn, i, size); 11790 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11791 } 11792 11793 for (i = 0; i < 2; i++) { 11794 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11795 } 11796 clear_vec_high(s, true, rd); 11797 } 11798 } 11799 11800 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11801 bool is_q, int size, int rn, int rd) 11802 { 11803 /* Implement the pairwise operations from 2-misc: 11804 * SADDLP, UADDLP, SADALP, UADALP. 11805 * These all add pairs of elements in the input to produce a 11806 * double-width result element in the output (possibly accumulating). 11807 */ 11808 bool accum = (opcode == 0x6); 11809 int maxpass = is_q ? 2 : 1; 11810 int pass; 11811 TCGv_i64 tcg_res[2]; 11812 11813 if (size == 2) { 11814 /* 32 + 32 -> 64 op */ 11815 MemOp memop = size + (u ? 0 : MO_SIGN); 11816 11817 for (pass = 0; pass < maxpass; pass++) { 11818 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11819 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11820 11821 tcg_res[pass] = tcg_temp_new_i64(); 11822 11823 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11824 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11825 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11826 if (accum) { 11827 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11828 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11829 } 11830 } 11831 } else { 11832 for (pass = 0; pass < maxpass; pass++) { 11833 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11834 NeonGenOne64OpFn *genfn; 11835 static NeonGenOne64OpFn * const fns[2][2] = { 11836 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11837 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11838 }; 11839 11840 genfn = fns[size][u]; 11841 11842 tcg_res[pass] = tcg_temp_new_i64(); 11843 11844 read_vec_element(s, tcg_op, rn, pass, MO_64); 11845 genfn(tcg_res[pass], tcg_op); 11846 11847 if (accum) { 11848 read_vec_element(s, tcg_op, rd, pass, MO_64); 11849 if (size == 0) { 11850 gen_helper_neon_addl_u16(tcg_res[pass], 11851 tcg_res[pass], tcg_op); 11852 } else { 11853 gen_helper_neon_addl_u32(tcg_res[pass], 11854 tcg_res[pass], tcg_op); 11855 } 11856 } 11857 } 11858 } 11859 if (!is_q) { 11860 tcg_res[1] = tcg_constant_i64(0); 11861 } 11862 for (pass = 0; pass < 2; pass++) { 11863 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11864 } 11865 } 11866 11867 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11868 { 11869 /* Implement SHLL and SHLL2 */ 11870 int pass; 11871 int part = is_q ? 2 : 0; 11872 TCGv_i64 tcg_res[2]; 11873 11874 for (pass = 0; pass < 2; pass++) { 11875 static NeonGenWidenFn * const widenfns[3] = { 11876 gen_helper_neon_widen_u8, 11877 gen_helper_neon_widen_u16, 11878 tcg_gen_extu_i32_i64, 11879 }; 11880 NeonGenWidenFn *widenfn = widenfns[size]; 11881 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11882 11883 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11884 tcg_res[pass] = tcg_temp_new_i64(); 11885 widenfn(tcg_res[pass], tcg_op); 11886 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11887 } 11888 11889 for (pass = 0; pass < 2; pass++) { 11890 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11891 } 11892 } 11893 11894 /* AdvSIMD two reg misc 11895 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11896 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11897 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11898 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11899 */ 11900 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11901 { 11902 int size = extract32(insn, 22, 2); 11903 int opcode = extract32(insn, 12, 5); 11904 bool u = extract32(insn, 29, 1); 11905 bool is_q = extract32(insn, 30, 1); 11906 int rn = extract32(insn, 5, 5); 11907 int rd = extract32(insn, 0, 5); 11908 bool need_fpstatus = false; 11909 int rmode = -1; 11910 TCGv_i32 tcg_rmode; 11911 TCGv_ptr tcg_fpstatus; 11912 11913 switch (opcode) { 11914 case 0x0: /* REV64, REV32 */ 11915 case 0x1: /* REV16 */ 11916 handle_rev(s, opcode, u, is_q, size, rn, rd); 11917 return; 11918 case 0x5: /* CNT, NOT, RBIT */ 11919 if (u && size == 0) { 11920 /* NOT */ 11921 break; 11922 } else if (u && size == 1) { 11923 /* RBIT */ 11924 break; 11925 } else if (!u && size == 0) { 11926 /* CNT */ 11927 break; 11928 } 11929 unallocated_encoding(s); 11930 return; 11931 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11932 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11933 if (size == 3) { 11934 unallocated_encoding(s); 11935 return; 11936 } 11937 if (!fp_access_check(s)) { 11938 return; 11939 } 11940 11941 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11942 return; 11943 case 0x4: /* CLS, CLZ */ 11944 if (size == 3) { 11945 unallocated_encoding(s); 11946 return; 11947 } 11948 break; 11949 case 0x2: /* SADDLP, UADDLP */ 11950 case 0x6: /* SADALP, UADALP */ 11951 if (size == 3) { 11952 unallocated_encoding(s); 11953 return; 11954 } 11955 if (!fp_access_check(s)) { 11956 return; 11957 } 11958 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11959 return; 11960 case 0x13: /* SHLL, SHLL2 */ 11961 if (u == 0 || size == 3) { 11962 unallocated_encoding(s); 11963 return; 11964 } 11965 if (!fp_access_check(s)) { 11966 return; 11967 } 11968 handle_shll(s, is_q, size, rn, rd); 11969 return; 11970 case 0xa: /* CMLT */ 11971 if (u == 1) { 11972 unallocated_encoding(s); 11973 return; 11974 } 11975 /* fall through */ 11976 case 0x8: /* CMGT, CMGE */ 11977 case 0x9: /* CMEQ, CMLE */ 11978 case 0xb: /* ABS, NEG */ 11979 if (size == 3 && !is_q) { 11980 unallocated_encoding(s); 11981 return; 11982 } 11983 break; 11984 case 0x3: /* SUQADD, USQADD */ 11985 if (size == 3 && !is_q) { 11986 unallocated_encoding(s); 11987 return; 11988 } 11989 if (!fp_access_check(s)) { 11990 return; 11991 } 11992 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11993 return; 11994 case 0x7: /* SQABS, SQNEG */ 11995 if (size == 3 && !is_q) { 11996 unallocated_encoding(s); 11997 return; 11998 } 11999 break; 12000 case 0xc ... 0xf: 12001 case 0x16 ... 0x1f: 12002 { 12003 /* Floating point: U, size[1] and opcode indicate operation; 12004 * size[0] indicates single or double precision. 12005 */ 12006 int is_double = extract32(size, 0, 1); 12007 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12008 size = is_double ? 3 : 2; 12009 switch (opcode) { 12010 case 0x2f: /* FABS */ 12011 case 0x6f: /* FNEG */ 12012 if (size == 3 && !is_q) { 12013 unallocated_encoding(s); 12014 return; 12015 } 12016 break; 12017 case 0x1d: /* SCVTF */ 12018 case 0x5d: /* UCVTF */ 12019 { 12020 bool is_signed = (opcode == 0x1d) ? true : false; 12021 int elements = is_double ? 2 : is_q ? 4 : 2; 12022 if (is_double && !is_q) { 12023 unallocated_encoding(s); 12024 return; 12025 } 12026 if (!fp_access_check(s)) { 12027 return; 12028 } 12029 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12030 return; 12031 } 12032 case 0x2c: /* FCMGT (zero) */ 12033 case 0x2d: /* FCMEQ (zero) */ 12034 case 0x2e: /* FCMLT (zero) */ 12035 case 0x6c: /* FCMGE (zero) */ 12036 case 0x6d: /* FCMLE (zero) */ 12037 if (size == 3 && !is_q) { 12038 unallocated_encoding(s); 12039 return; 12040 } 12041 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12042 return; 12043 case 0x7f: /* FSQRT */ 12044 if (size == 3 && !is_q) { 12045 unallocated_encoding(s); 12046 return; 12047 } 12048 break; 12049 case 0x1a: /* FCVTNS */ 12050 case 0x1b: /* FCVTMS */ 12051 case 0x3a: /* FCVTPS */ 12052 case 0x3b: /* FCVTZS */ 12053 case 0x5a: /* FCVTNU */ 12054 case 0x5b: /* FCVTMU */ 12055 case 0x7a: /* FCVTPU */ 12056 case 0x7b: /* FCVTZU */ 12057 need_fpstatus = true; 12058 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12059 if (size == 3 && !is_q) { 12060 unallocated_encoding(s); 12061 return; 12062 } 12063 break; 12064 case 0x5c: /* FCVTAU */ 12065 case 0x1c: /* FCVTAS */ 12066 need_fpstatus = true; 12067 rmode = FPROUNDING_TIEAWAY; 12068 if (size == 3 && !is_q) { 12069 unallocated_encoding(s); 12070 return; 12071 } 12072 break; 12073 case 0x3c: /* URECPE */ 12074 if (size == 3) { 12075 unallocated_encoding(s); 12076 return; 12077 } 12078 /* fall through */ 12079 case 0x3d: /* FRECPE */ 12080 case 0x7d: /* FRSQRTE */ 12081 if (size == 3 && !is_q) { 12082 unallocated_encoding(s); 12083 return; 12084 } 12085 if (!fp_access_check(s)) { 12086 return; 12087 } 12088 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12089 return; 12090 case 0x56: /* FCVTXN, FCVTXN2 */ 12091 if (size == 2) { 12092 unallocated_encoding(s); 12093 return; 12094 } 12095 /* fall through */ 12096 case 0x16: /* FCVTN, FCVTN2 */ 12097 /* handle_2misc_narrow does a 2*size -> size operation, but these 12098 * instructions encode the source size rather than dest size. 12099 */ 12100 if (!fp_access_check(s)) { 12101 return; 12102 } 12103 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12104 return; 12105 case 0x36: /* BFCVTN, BFCVTN2 */ 12106 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12107 unallocated_encoding(s); 12108 return; 12109 } 12110 if (!fp_access_check(s)) { 12111 return; 12112 } 12113 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12114 return; 12115 case 0x17: /* FCVTL, FCVTL2 */ 12116 if (!fp_access_check(s)) { 12117 return; 12118 } 12119 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12120 return; 12121 case 0x18: /* FRINTN */ 12122 case 0x19: /* FRINTM */ 12123 case 0x38: /* FRINTP */ 12124 case 0x39: /* FRINTZ */ 12125 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12126 /* fall through */ 12127 case 0x59: /* FRINTX */ 12128 case 0x79: /* FRINTI */ 12129 need_fpstatus = true; 12130 if (size == 3 && !is_q) { 12131 unallocated_encoding(s); 12132 return; 12133 } 12134 break; 12135 case 0x58: /* FRINTA */ 12136 rmode = FPROUNDING_TIEAWAY; 12137 need_fpstatus = true; 12138 if (size == 3 && !is_q) { 12139 unallocated_encoding(s); 12140 return; 12141 } 12142 break; 12143 case 0x7c: /* URSQRTE */ 12144 if (size == 3) { 12145 unallocated_encoding(s); 12146 return; 12147 } 12148 break; 12149 case 0x1e: /* FRINT32Z */ 12150 case 0x1f: /* FRINT64Z */ 12151 rmode = FPROUNDING_ZERO; 12152 /* fall through */ 12153 case 0x5e: /* FRINT32X */ 12154 case 0x5f: /* FRINT64X */ 12155 need_fpstatus = true; 12156 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12157 unallocated_encoding(s); 12158 return; 12159 } 12160 break; 12161 default: 12162 unallocated_encoding(s); 12163 return; 12164 } 12165 break; 12166 } 12167 default: 12168 unallocated_encoding(s); 12169 return; 12170 } 12171 12172 if (!fp_access_check(s)) { 12173 return; 12174 } 12175 12176 if (need_fpstatus || rmode >= 0) { 12177 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12178 } else { 12179 tcg_fpstatus = NULL; 12180 } 12181 if (rmode >= 0) { 12182 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12183 } else { 12184 tcg_rmode = NULL; 12185 } 12186 12187 switch (opcode) { 12188 case 0x5: 12189 if (u && size == 0) { /* NOT */ 12190 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12191 return; 12192 } 12193 break; 12194 case 0x8: /* CMGT, CMGE */ 12195 if (u) { 12196 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12197 } else { 12198 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12199 } 12200 return; 12201 case 0x9: /* CMEQ, CMLE */ 12202 if (u) { 12203 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12204 } else { 12205 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12206 } 12207 return; 12208 case 0xa: /* CMLT */ 12209 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12210 return; 12211 case 0xb: 12212 if (u) { /* ABS, NEG */ 12213 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12214 } else { 12215 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12216 } 12217 return; 12218 } 12219 12220 if (size == 3) { 12221 /* All 64-bit element operations can be shared with scalar 2misc */ 12222 int pass; 12223 12224 /* Coverity claims (size == 3 && !is_q) has been eliminated 12225 * from all paths leading to here. 12226 */ 12227 tcg_debug_assert(is_q); 12228 for (pass = 0; pass < 2; pass++) { 12229 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12230 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12231 12232 read_vec_element(s, tcg_op, rn, pass, MO_64); 12233 12234 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12235 tcg_rmode, tcg_fpstatus); 12236 12237 write_vec_element(s, tcg_res, rd, pass, MO_64); 12238 } 12239 } else { 12240 int pass; 12241 12242 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12243 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12244 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12245 12246 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12247 12248 if (size == 2) { 12249 /* Special cases for 32 bit elements */ 12250 switch (opcode) { 12251 case 0x4: /* CLS */ 12252 if (u) { 12253 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12254 } else { 12255 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12256 } 12257 break; 12258 case 0x7: /* SQABS, SQNEG */ 12259 if (u) { 12260 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12261 } else { 12262 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12263 } 12264 break; 12265 case 0x2f: /* FABS */ 12266 gen_helper_vfp_abss(tcg_res, tcg_op); 12267 break; 12268 case 0x6f: /* FNEG */ 12269 gen_helper_vfp_negs(tcg_res, tcg_op); 12270 break; 12271 case 0x7f: /* FSQRT */ 12272 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12273 break; 12274 case 0x1a: /* FCVTNS */ 12275 case 0x1b: /* FCVTMS */ 12276 case 0x1c: /* FCVTAS */ 12277 case 0x3a: /* FCVTPS */ 12278 case 0x3b: /* FCVTZS */ 12279 gen_helper_vfp_tosls(tcg_res, tcg_op, 12280 tcg_constant_i32(0), tcg_fpstatus); 12281 break; 12282 case 0x5a: /* FCVTNU */ 12283 case 0x5b: /* FCVTMU */ 12284 case 0x5c: /* FCVTAU */ 12285 case 0x7a: /* FCVTPU */ 12286 case 0x7b: /* FCVTZU */ 12287 gen_helper_vfp_touls(tcg_res, tcg_op, 12288 tcg_constant_i32(0), tcg_fpstatus); 12289 break; 12290 case 0x18: /* FRINTN */ 12291 case 0x19: /* FRINTM */ 12292 case 0x38: /* FRINTP */ 12293 case 0x39: /* FRINTZ */ 12294 case 0x58: /* FRINTA */ 12295 case 0x79: /* FRINTI */ 12296 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12297 break; 12298 case 0x59: /* FRINTX */ 12299 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12300 break; 12301 case 0x7c: /* URSQRTE */ 12302 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12303 break; 12304 case 0x1e: /* FRINT32Z */ 12305 case 0x5e: /* FRINT32X */ 12306 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12307 break; 12308 case 0x1f: /* FRINT64Z */ 12309 case 0x5f: /* FRINT64X */ 12310 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12311 break; 12312 default: 12313 g_assert_not_reached(); 12314 } 12315 } else { 12316 /* Use helpers for 8 and 16 bit elements */ 12317 switch (opcode) { 12318 case 0x5: /* CNT, RBIT */ 12319 /* For these two insns size is part of the opcode specifier 12320 * (handled earlier); they always operate on byte elements. 12321 */ 12322 if (u) { 12323 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12324 } else { 12325 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12326 } 12327 break; 12328 case 0x7: /* SQABS, SQNEG */ 12329 { 12330 NeonGenOneOpEnvFn *genfn; 12331 static NeonGenOneOpEnvFn * const fns[2][2] = { 12332 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12333 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12334 }; 12335 genfn = fns[size][u]; 12336 genfn(tcg_res, cpu_env, tcg_op); 12337 break; 12338 } 12339 case 0x4: /* CLS, CLZ */ 12340 if (u) { 12341 if (size == 0) { 12342 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12343 } else { 12344 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12345 } 12346 } else { 12347 if (size == 0) { 12348 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12349 } else { 12350 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12351 } 12352 } 12353 break; 12354 default: 12355 g_assert_not_reached(); 12356 } 12357 } 12358 12359 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12360 } 12361 } 12362 clear_vec_high(s, is_q, rd); 12363 12364 if (tcg_rmode) { 12365 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12366 } 12367 } 12368 12369 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12370 * 12371 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12372 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12373 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12374 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12375 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12376 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12377 * 12378 * This actually covers two groups where scalar access is governed by 12379 * bit 28. A bunch of the instructions (float to integral) only exist 12380 * in the vector form and are un-allocated for the scalar decode. Also 12381 * in the scalar decode Q is always 1. 12382 */ 12383 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12384 { 12385 int fpop, opcode, a, u; 12386 int rn, rd; 12387 bool is_q; 12388 bool is_scalar; 12389 bool only_in_vector = false; 12390 12391 int pass; 12392 TCGv_i32 tcg_rmode = NULL; 12393 TCGv_ptr tcg_fpstatus = NULL; 12394 bool need_fpst = true; 12395 int rmode = -1; 12396 12397 if (!dc_isar_feature(aa64_fp16, s)) { 12398 unallocated_encoding(s); 12399 return; 12400 } 12401 12402 rd = extract32(insn, 0, 5); 12403 rn = extract32(insn, 5, 5); 12404 12405 a = extract32(insn, 23, 1); 12406 u = extract32(insn, 29, 1); 12407 is_scalar = extract32(insn, 28, 1); 12408 is_q = extract32(insn, 30, 1); 12409 12410 opcode = extract32(insn, 12, 5); 12411 fpop = deposit32(opcode, 5, 1, a); 12412 fpop = deposit32(fpop, 6, 1, u); 12413 12414 switch (fpop) { 12415 case 0x1d: /* SCVTF */ 12416 case 0x5d: /* UCVTF */ 12417 { 12418 int elements; 12419 12420 if (is_scalar) { 12421 elements = 1; 12422 } else { 12423 elements = (is_q ? 8 : 4); 12424 } 12425 12426 if (!fp_access_check(s)) { 12427 return; 12428 } 12429 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12430 return; 12431 } 12432 break; 12433 case 0x2c: /* FCMGT (zero) */ 12434 case 0x2d: /* FCMEQ (zero) */ 12435 case 0x2e: /* FCMLT (zero) */ 12436 case 0x6c: /* FCMGE (zero) */ 12437 case 0x6d: /* FCMLE (zero) */ 12438 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12439 return; 12440 case 0x3d: /* FRECPE */ 12441 case 0x3f: /* FRECPX */ 12442 break; 12443 case 0x18: /* FRINTN */ 12444 only_in_vector = true; 12445 rmode = FPROUNDING_TIEEVEN; 12446 break; 12447 case 0x19: /* FRINTM */ 12448 only_in_vector = true; 12449 rmode = FPROUNDING_NEGINF; 12450 break; 12451 case 0x38: /* FRINTP */ 12452 only_in_vector = true; 12453 rmode = FPROUNDING_POSINF; 12454 break; 12455 case 0x39: /* FRINTZ */ 12456 only_in_vector = true; 12457 rmode = FPROUNDING_ZERO; 12458 break; 12459 case 0x58: /* FRINTA */ 12460 only_in_vector = true; 12461 rmode = FPROUNDING_TIEAWAY; 12462 break; 12463 case 0x59: /* FRINTX */ 12464 case 0x79: /* FRINTI */ 12465 only_in_vector = true; 12466 /* current rounding mode */ 12467 break; 12468 case 0x1a: /* FCVTNS */ 12469 rmode = FPROUNDING_TIEEVEN; 12470 break; 12471 case 0x1b: /* FCVTMS */ 12472 rmode = FPROUNDING_NEGINF; 12473 break; 12474 case 0x1c: /* FCVTAS */ 12475 rmode = FPROUNDING_TIEAWAY; 12476 break; 12477 case 0x3a: /* FCVTPS */ 12478 rmode = FPROUNDING_POSINF; 12479 break; 12480 case 0x3b: /* FCVTZS */ 12481 rmode = FPROUNDING_ZERO; 12482 break; 12483 case 0x5a: /* FCVTNU */ 12484 rmode = FPROUNDING_TIEEVEN; 12485 break; 12486 case 0x5b: /* FCVTMU */ 12487 rmode = FPROUNDING_NEGINF; 12488 break; 12489 case 0x5c: /* FCVTAU */ 12490 rmode = FPROUNDING_TIEAWAY; 12491 break; 12492 case 0x7a: /* FCVTPU */ 12493 rmode = FPROUNDING_POSINF; 12494 break; 12495 case 0x7b: /* FCVTZU */ 12496 rmode = FPROUNDING_ZERO; 12497 break; 12498 case 0x2f: /* FABS */ 12499 case 0x6f: /* FNEG */ 12500 need_fpst = false; 12501 break; 12502 case 0x7d: /* FRSQRTE */ 12503 case 0x7f: /* FSQRT (vector) */ 12504 break; 12505 default: 12506 unallocated_encoding(s); 12507 return; 12508 } 12509 12510 12511 /* Check additional constraints for the scalar encoding */ 12512 if (is_scalar) { 12513 if (!is_q) { 12514 unallocated_encoding(s); 12515 return; 12516 } 12517 /* FRINTxx is only in the vector form */ 12518 if (only_in_vector) { 12519 unallocated_encoding(s); 12520 return; 12521 } 12522 } 12523 12524 if (!fp_access_check(s)) { 12525 return; 12526 } 12527 12528 if (rmode >= 0 || need_fpst) { 12529 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12530 } 12531 12532 if (rmode >= 0) { 12533 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12534 } 12535 12536 if (is_scalar) { 12537 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12538 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12539 12540 switch (fpop) { 12541 case 0x1a: /* FCVTNS */ 12542 case 0x1b: /* FCVTMS */ 12543 case 0x1c: /* FCVTAS */ 12544 case 0x3a: /* FCVTPS */ 12545 case 0x3b: /* FCVTZS */ 12546 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12547 break; 12548 case 0x3d: /* FRECPE */ 12549 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12550 break; 12551 case 0x3f: /* FRECPX */ 12552 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12553 break; 12554 case 0x5a: /* FCVTNU */ 12555 case 0x5b: /* FCVTMU */ 12556 case 0x5c: /* FCVTAU */ 12557 case 0x7a: /* FCVTPU */ 12558 case 0x7b: /* FCVTZU */ 12559 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12560 break; 12561 case 0x6f: /* FNEG */ 12562 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12563 break; 12564 case 0x7d: /* FRSQRTE */ 12565 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12566 break; 12567 default: 12568 g_assert_not_reached(); 12569 } 12570 12571 /* limit any sign extension going on */ 12572 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12573 write_fp_sreg(s, rd, tcg_res); 12574 } else { 12575 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12576 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12577 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12578 12579 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12580 12581 switch (fpop) { 12582 case 0x1a: /* FCVTNS */ 12583 case 0x1b: /* FCVTMS */ 12584 case 0x1c: /* FCVTAS */ 12585 case 0x3a: /* FCVTPS */ 12586 case 0x3b: /* FCVTZS */ 12587 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12588 break; 12589 case 0x3d: /* FRECPE */ 12590 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12591 break; 12592 case 0x5a: /* FCVTNU */ 12593 case 0x5b: /* FCVTMU */ 12594 case 0x5c: /* FCVTAU */ 12595 case 0x7a: /* FCVTPU */ 12596 case 0x7b: /* FCVTZU */ 12597 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12598 break; 12599 case 0x18: /* FRINTN */ 12600 case 0x19: /* FRINTM */ 12601 case 0x38: /* FRINTP */ 12602 case 0x39: /* FRINTZ */ 12603 case 0x58: /* FRINTA */ 12604 case 0x79: /* FRINTI */ 12605 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12606 break; 12607 case 0x59: /* FRINTX */ 12608 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12609 break; 12610 case 0x2f: /* FABS */ 12611 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12612 break; 12613 case 0x6f: /* FNEG */ 12614 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12615 break; 12616 case 0x7d: /* FRSQRTE */ 12617 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12618 break; 12619 case 0x7f: /* FSQRT */ 12620 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12621 break; 12622 default: 12623 g_assert_not_reached(); 12624 } 12625 12626 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12627 } 12628 12629 clear_vec_high(s, is_q, rd); 12630 } 12631 12632 if (tcg_rmode) { 12633 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12634 } 12635 } 12636 12637 /* AdvSIMD scalar x indexed element 12638 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12639 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12640 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12641 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12642 * AdvSIMD vector x indexed element 12643 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12644 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12645 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12646 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12647 */ 12648 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12649 { 12650 /* This encoding has two kinds of instruction: 12651 * normal, where we perform elt x idxelt => elt for each 12652 * element in the vector 12653 * long, where we perform elt x idxelt and generate a result of 12654 * double the width of the input element 12655 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12656 */ 12657 bool is_scalar = extract32(insn, 28, 1); 12658 bool is_q = extract32(insn, 30, 1); 12659 bool u = extract32(insn, 29, 1); 12660 int size = extract32(insn, 22, 2); 12661 int l = extract32(insn, 21, 1); 12662 int m = extract32(insn, 20, 1); 12663 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12664 int rm = extract32(insn, 16, 4); 12665 int opcode = extract32(insn, 12, 4); 12666 int h = extract32(insn, 11, 1); 12667 int rn = extract32(insn, 5, 5); 12668 int rd = extract32(insn, 0, 5); 12669 bool is_long = false; 12670 int is_fp = 0; 12671 bool is_fp16 = false; 12672 int index; 12673 TCGv_ptr fpst; 12674 12675 switch (16 * u + opcode) { 12676 case 0x08: /* MUL */ 12677 case 0x10: /* MLA */ 12678 case 0x14: /* MLS */ 12679 if (is_scalar) { 12680 unallocated_encoding(s); 12681 return; 12682 } 12683 break; 12684 case 0x02: /* SMLAL, SMLAL2 */ 12685 case 0x12: /* UMLAL, UMLAL2 */ 12686 case 0x06: /* SMLSL, SMLSL2 */ 12687 case 0x16: /* UMLSL, UMLSL2 */ 12688 case 0x0a: /* SMULL, SMULL2 */ 12689 case 0x1a: /* UMULL, UMULL2 */ 12690 if (is_scalar) { 12691 unallocated_encoding(s); 12692 return; 12693 } 12694 is_long = true; 12695 break; 12696 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12697 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12698 case 0x0b: /* SQDMULL, SQDMULL2 */ 12699 is_long = true; 12700 break; 12701 case 0x0c: /* SQDMULH */ 12702 case 0x0d: /* SQRDMULH */ 12703 break; 12704 case 0x01: /* FMLA */ 12705 case 0x05: /* FMLS */ 12706 case 0x09: /* FMUL */ 12707 case 0x19: /* FMULX */ 12708 is_fp = 1; 12709 break; 12710 case 0x1d: /* SQRDMLAH */ 12711 case 0x1f: /* SQRDMLSH */ 12712 if (!dc_isar_feature(aa64_rdm, s)) { 12713 unallocated_encoding(s); 12714 return; 12715 } 12716 break; 12717 case 0x0e: /* SDOT */ 12718 case 0x1e: /* UDOT */ 12719 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12720 unallocated_encoding(s); 12721 return; 12722 } 12723 break; 12724 case 0x0f: 12725 switch (size) { 12726 case 0: /* SUDOT */ 12727 case 2: /* USDOT */ 12728 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12729 unallocated_encoding(s); 12730 return; 12731 } 12732 size = MO_32; 12733 break; 12734 case 1: /* BFDOT */ 12735 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12736 unallocated_encoding(s); 12737 return; 12738 } 12739 size = MO_32; 12740 break; 12741 case 3: /* BFMLAL{B,T} */ 12742 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12743 unallocated_encoding(s); 12744 return; 12745 } 12746 /* can't set is_fp without other incorrect size checks */ 12747 size = MO_16; 12748 break; 12749 default: 12750 unallocated_encoding(s); 12751 return; 12752 } 12753 break; 12754 case 0x11: /* FCMLA #0 */ 12755 case 0x13: /* FCMLA #90 */ 12756 case 0x15: /* FCMLA #180 */ 12757 case 0x17: /* FCMLA #270 */ 12758 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12759 unallocated_encoding(s); 12760 return; 12761 } 12762 is_fp = 2; 12763 break; 12764 case 0x00: /* FMLAL */ 12765 case 0x04: /* FMLSL */ 12766 case 0x18: /* FMLAL2 */ 12767 case 0x1c: /* FMLSL2 */ 12768 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12769 unallocated_encoding(s); 12770 return; 12771 } 12772 size = MO_16; 12773 /* is_fp, but we pass cpu_env not fp_status. */ 12774 break; 12775 default: 12776 unallocated_encoding(s); 12777 return; 12778 } 12779 12780 switch (is_fp) { 12781 case 1: /* normal fp */ 12782 /* convert insn encoded size to MemOp size */ 12783 switch (size) { 12784 case 0: /* half-precision */ 12785 size = MO_16; 12786 is_fp16 = true; 12787 break; 12788 case MO_32: /* single precision */ 12789 case MO_64: /* double precision */ 12790 break; 12791 default: 12792 unallocated_encoding(s); 12793 return; 12794 } 12795 break; 12796 12797 case 2: /* complex fp */ 12798 /* Each indexable element is a complex pair. */ 12799 size += 1; 12800 switch (size) { 12801 case MO_32: 12802 if (h && !is_q) { 12803 unallocated_encoding(s); 12804 return; 12805 } 12806 is_fp16 = true; 12807 break; 12808 case MO_64: 12809 break; 12810 default: 12811 unallocated_encoding(s); 12812 return; 12813 } 12814 break; 12815 12816 default: /* integer */ 12817 switch (size) { 12818 case MO_8: 12819 case MO_64: 12820 unallocated_encoding(s); 12821 return; 12822 } 12823 break; 12824 } 12825 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12826 unallocated_encoding(s); 12827 return; 12828 } 12829 12830 /* Given MemOp size, adjust register and indexing. */ 12831 switch (size) { 12832 case MO_16: 12833 index = h << 2 | l << 1 | m; 12834 break; 12835 case MO_32: 12836 index = h << 1 | l; 12837 rm |= m << 4; 12838 break; 12839 case MO_64: 12840 if (l || !is_q) { 12841 unallocated_encoding(s); 12842 return; 12843 } 12844 index = h; 12845 rm |= m << 4; 12846 break; 12847 default: 12848 g_assert_not_reached(); 12849 } 12850 12851 if (!fp_access_check(s)) { 12852 return; 12853 } 12854 12855 if (is_fp) { 12856 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12857 } else { 12858 fpst = NULL; 12859 } 12860 12861 switch (16 * u + opcode) { 12862 case 0x0e: /* SDOT */ 12863 case 0x1e: /* UDOT */ 12864 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12865 u ? gen_helper_gvec_udot_idx_b 12866 : gen_helper_gvec_sdot_idx_b); 12867 return; 12868 case 0x0f: 12869 switch (extract32(insn, 22, 2)) { 12870 case 0: /* SUDOT */ 12871 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12872 gen_helper_gvec_sudot_idx_b); 12873 return; 12874 case 1: /* BFDOT */ 12875 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12876 gen_helper_gvec_bfdot_idx); 12877 return; 12878 case 2: /* USDOT */ 12879 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12880 gen_helper_gvec_usdot_idx_b); 12881 return; 12882 case 3: /* BFMLAL{B,T} */ 12883 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12884 gen_helper_gvec_bfmlal_idx); 12885 return; 12886 } 12887 g_assert_not_reached(); 12888 case 0x11: /* FCMLA #0 */ 12889 case 0x13: /* FCMLA #90 */ 12890 case 0x15: /* FCMLA #180 */ 12891 case 0x17: /* FCMLA #270 */ 12892 { 12893 int rot = extract32(insn, 13, 2); 12894 int data = (index << 2) | rot; 12895 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12896 vec_full_reg_offset(s, rn), 12897 vec_full_reg_offset(s, rm), 12898 vec_full_reg_offset(s, rd), fpst, 12899 is_q ? 16 : 8, vec_full_reg_size(s), data, 12900 size == MO_64 12901 ? gen_helper_gvec_fcmlas_idx 12902 : gen_helper_gvec_fcmlah_idx); 12903 } 12904 return; 12905 12906 case 0x00: /* FMLAL */ 12907 case 0x04: /* FMLSL */ 12908 case 0x18: /* FMLAL2 */ 12909 case 0x1c: /* FMLSL2 */ 12910 { 12911 int is_s = extract32(opcode, 2, 1); 12912 int is_2 = u; 12913 int data = (index << 2) | (is_2 << 1) | is_s; 12914 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12915 vec_full_reg_offset(s, rn), 12916 vec_full_reg_offset(s, rm), cpu_env, 12917 is_q ? 16 : 8, vec_full_reg_size(s), 12918 data, gen_helper_gvec_fmlal_idx_a64); 12919 } 12920 return; 12921 12922 case 0x08: /* MUL */ 12923 if (!is_long && !is_scalar) { 12924 static gen_helper_gvec_3 * const fns[3] = { 12925 gen_helper_gvec_mul_idx_h, 12926 gen_helper_gvec_mul_idx_s, 12927 gen_helper_gvec_mul_idx_d, 12928 }; 12929 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12930 vec_full_reg_offset(s, rn), 12931 vec_full_reg_offset(s, rm), 12932 is_q ? 16 : 8, vec_full_reg_size(s), 12933 index, fns[size - 1]); 12934 return; 12935 } 12936 break; 12937 12938 case 0x10: /* MLA */ 12939 if (!is_long && !is_scalar) { 12940 static gen_helper_gvec_4 * const fns[3] = { 12941 gen_helper_gvec_mla_idx_h, 12942 gen_helper_gvec_mla_idx_s, 12943 gen_helper_gvec_mla_idx_d, 12944 }; 12945 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12946 vec_full_reg_offset(s, rn), 12947 vec_full_reg_offset(s, rm), 12948 vec_full_reg_offset(s, rd), 12949 is_q ? 16 : 8, vec_full_reg_size(s), 12950 index, fns[size - 1]); 12951 return; 12952 } 12953 break; 12954 12955 case 0x14: /* MLS */ 12956 if (!is_long && !is_scalar) { 12957 static gen_helper_gvec_4 * const fns[3] = { 12958 gen_helper_gvec_mls_idx_h, 12959 gen_helper_gvec_mls_idx_s, 12960 gen_helper_gvec_mls_idx_d, 12961 }; 12962 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12963 vec_full_reg_offset(s, rn), 12964 vec_full_reg_offset(s, rm), 12965 vec_full_reg_offset(s, rd), 12966 is_q ? 16 : 8, vec_full_reg_size(s), 12967 index, fns[size - 1]); 12968 return; 12969 } 12970 break; 12971 } 12972 12973 if (size == 3) { 12974 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12975 int pass; 12976 12977 assert(is_fp && is_q && !is_long); 12978 12979 read_vec_element(s, tcg_idx, rm, index, MO_64); 12980 12981 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12982 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12983 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12984 12985 read_vec_element(s, tcg_op, rn, pass, MO_64); 12986 12987 switch (16 * u + opcode) { 12988 case 0x05: /* FMLS */ 12989 /* As usual for ARM, separate negation for fused multiply-add */ 12990 gen_helper_vfp_negd(tcg_op, tcg_op); 12991 /* fall through */ 12992 case 0x01: /* FMLA */ 12993 read_vec_element(s, tcg_res, rd, pass, MO_64); 12994 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 12995 break; 12996 case 0x09: /* FMUL */ 12997 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 12998 break; 12999 case 0x19: /* FMULX */ 13000 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13001 break; 13002 default: 13003 g_assert_not_reached(); 13004 } 13005 13006 write_vec_element(s, tcg_res, rd, pass, MO_64); 13007 } 13008 13009 clear_vec_high(s, !is_scalar, rd); 13010 } else if (!is_long) { 13011 /* 32 bit floating point, or 16 or 32 bit integer. 13012 * For the 16 bit scalar case we use the usual Neon helpers and 13013 * rely on the fact that 0 op 0 == 0 with no side effects. 13014 */ 13015 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13016 int pass, maxpasses; 13017 13018 if (is_scalar) { 13019 maxpasses = 1; 13020 } else { 13021 maxpasses = is_q ? 4 : 2; 13022 } 13023 13024 read_vec_element_i32(s, tcg_idx, rm, index, size); 13025 13026 if (size == 1 && !is_scalar) { 13027 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13028 * the index into both halves of the 32 bit tcg_idx and then use 13029 * the usual Neon helpers. 13030 */ 13031 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13032 } 13033 13034 for (pass = 0; pass < maxpasses; pass++) { 13035 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13036 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13037 13038 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13039 13040 switch (16 * u + opcode) { 13041 case 0x08: /* MUL */ 13042 case 0x10: /* MLA */ 13043 case 0x14: /* MLS */ 13044 { 13045 static NeonGenTwoOpFn * const fns[2][2] = { 13046 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13047 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13048 }; 13049 NeonGenTwoOpFn *genfn; 13050 bool is_sub = opcode == 0x4; 13051 13052 if (size == 1) { 13053 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13054 } else { 13055 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13056 } 13057 if (opcode == 0x8) { 13058 break; 13059 } 13060 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13061 genfn = fns[size - 1][is_sub]; 13062 genfn(tcg_res, tcg_op, tcg_res); 13063 break; 13064 } 13065 case 0x05: /* FMLS */ 13066 case 0x01: /* FMLA */ 13067 read_vec_element_i32(s, tcg_res, rd, pass, 13068 is_scalar ? size : MO_32); 13069 switch (size) { 13070 case 1: 13071 if (opcode == 0x5) { 13072 /* As usual for ARM, separate negation for fused 13073 * multiply-add */ 13074 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13075 } 13076 if (is_scalar) { 13077 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13078 tcg_res, fpst); 13079 } else { 13080 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13081 tcg_res, fpst); 13082 } 13083 break; 13084 case 2: 13085 if (opcode == 0x5) { 13086 /* As usual for ARM, separate negation for 13087 * fused multiply-add */ 13088 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13089 } 13090 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13091 tcg_res, fpst); 13092 break; 13093 default: 13094 g_assert_not_reached(); 13095 } 13096 break; 13097 case 0x09: /* FMUL */ 13098 switch (size) { 13099 case 1: 13100 if (is_scalar) { 13101 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13102 tcg_idx, fpst); 13103 } else { 13104 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13105 tcg_idx, fpst); 13106 } 13107 break; 13108 case 2: 13109 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13110 break; 13111 default: 13112 g_assert_not_reached(); 13113 } 13114 break; 13115 case 0x19: /* FMULX */ 13116 switch (size) { 13117 case 1: 13118 if (is_scalar) { 13119 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13120 tcg_idx, fpst); 13121 } else { 13122 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13123 tcg_idx, fpst); 13124 } 13125 break; 13126 case 2: 13127 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13128 break; 13129 default: 13130 g_assert_not_reached(); 13131 } 13132 break; 13133 case 0x0c: /* SQDMULH */ 13134 if (size == 1) { 13135 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13136 tcg_op, tcg_idx); 13137 } else { 13138 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13139 tcg_op, tcg_idx); 13140 } 13141 break; 13142 case 0x0d: /* SQRDMULH */ 13143 if (size == 1) { 13144 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13145 tcg_op, tcg_idx); 13146 } else { 13147 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13148 tcg_op, tcg_idx); 13149 } 13150 break; 13151 case 0x1d: /* SQRDMLAH */ 13152 read_vec_element_i32(s, tcg_res, rd, pass, 13153 is_scalar ? size : MO_32); 13154 if (size == 1) { 13155 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13156 tcg_op, tcg_idx, tcg_res); 13157 } else { 13158 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13159 tcg_op, tcg_idx, tcg_res); 13160 } 13161 break; 13162 case 0x1f: /* SQRDMLSH */ 13163 read_vec_element_i32(s, tcg_res, rd, pass, 13164 is_scalar ? size : MO_32); 13165 if (size == 1) { 13166 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13167 tcg_op, tcg_idx, tcg_res); 13168 } else { 13169 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13170 tcg_op, tcg_idx, tcg_res); 13171 } 13172 break; 13173 default: 13174 g_assert_not_reached(); 13175 } 13176 13177 if (is_scalar) { 13178 write_fp_sreg(s, rd, tcg_res); 13179 } else { 13180 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13181 } 13182 } 13183 13184 clear_vec_high(s, is_q, rd); 13185 } else { 13186 /* long ops: 16x16->32 or 32x32->64 */ 13187 TCGv_i64 tcg_res[2]; 13188 int pass; 13189 bool satop = extract32(opcode, 0, 1); 13190 MemOp memop = MO_32; 13191 13192 if (satop || !u) { 13193 memop |= MO_SIGN; 13194 } 13195 13196 if (size == 2) { 13197 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13198 13199 read_vec_element(s, tcg_idx, rm, index, memop); 13200 13201 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13202 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13203 TCGv_i64 tcg_passres; 13204 int passelt; 13205 13206 if (is_scalar) { 13207 passelt = 0; 13208 } else { 13209 passelt = pass + (is_q * 2); 13210 } 13211 13212 read_vec_element(s, tcg_op, rn, passelt, memop); 13213 13214 tcg_res[pass] = tcg_temp_new_i64(); 13215 13216 if (opcode == 0xa || opcode == 0xb) { 13217 /* Non-accumulating ops */ 13218 tcg_passres = tcg_res[pass]; 13219 } else { 13220 tcg_passres = tcg_temp_new_i64(); 13221 } 13222 13223 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13224 13225 if (satop) { 13226 /* saturating, doubling */ 13227 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13228 tcg_passres, tcg_passres); 13229 } 13230 13231 if (opcode == 0xa || opcode == 0xb) { 13232 continue; 13233 } 13234 13235 /* Accumulating op: handle accumulate step */ 13236 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13237 13238 switch (opcode) { 13239 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13240 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13241 break; 13242 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13243 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13244 break; 13245 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13246 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13247 /* fall through */ 13248 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13249 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13250 tcg_res[pass], 13251 tcg_passres); 13252 break; 13253 default: 13254 g_assert_not_reached(); 13255 } 13256 } 13257 13258 clear_vec_high(s, !is_scalar, rd); 13259 } else { 13260 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13261 13262 assert(size == 1); 13263 read_vec_element_i32(s, tcg_idx, rm, index, size); 13264 13265 if (!is_scalar) { 13266 /* The simplest way to handle the 16x16 indexed ops is to 13267 * duplicate the index into both halves of the 32 bit tcg_idx 13268 * and then use the usual Neon helpers. 13269 */ 13270 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13271 } 13272 13273 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13274 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13275 TCGv_i64 tcg_passres; 13276 13277 if (is_scalar) { 13278 read_vec_element_i32(s, tcg_op, rn, pass, size); 13279 } else { 13280 read_vec_element_i32(s, tcg_op, rn, 13281 pass + (is_q * 2), MO_32); 13282 } 13283 13284 tcg_res[pass] = tcg_temp_new_i64(); 13285 13286 if (opcode == 0xa || opcode == 0xb) { 13287 /* Non-accumulating ops */ 13288 tcg_passres = tcg_res[pass]; 13289 } else { 13290 tcg_passres = tcg_temp_new_i64(); 13291 } 13292 13293 if (memop & MO_SIGN) { 13294 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13295 } else { 13296 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13297 } 13298 if (satop) { 13299 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13300 tcg_passres, tcg_passres); 13301 } 13302 13303 if (opcode == 0xa || opcode == 0xb) { 13304 continue; 13305 } 13306 13307 /* Accumulating op: handle accumulate step */ 13308 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13309 13310 switch (opcode) { 13311 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13312 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13313 tcg_passres); 13314 break; 13315 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13316 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13317 tcg_passres); 13318 break; 13319 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13320 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13321 /* fall through */ 13322 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13323 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13324 tcg_res[pass], 13325 tcg_passres); 13326 break; 13327 default: 13328 g_assert_not_reached(); 13329 } 13330 } 13331 13332 if (is_scalar) { 13333 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13334 } 13335 } 13336 13337 if (is_scalar) { 13338 tcg_res[1] = tcg_constant_i64(0); 13339 } 13340 13341 for (pass = 0; pass < 2; pass++) { 13342 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13343 } 13344 } 13345 } 13346 13347 /* Crypto AES 13348 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13349 * +-----------------+------+-----------+--------+-----+------+------+ 13350 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13351 * +-----------------+------+-----------+--------+-----+------+------+ 13352 */ 13353 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13354 { 13355 int size = extract32(insn, 22, 2); 13356 int opcode = extract32(insn, 12, 5); 13357 int rn = extract32(insn, 5, 5); 13358 int rd = extract32(insn, 0, 5); 13359 gen_helper_gvec_2 *genfn2 = NULL; 13360 gen_helper_gvec_3 *genfn3 = NULL; 13361 13362 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13363 unallocated_encoding(s); 13364 return; 13365 } 13366 13367 switch (opcode) { 13368 case 0x4: /* AESE */ 13369 genfn3 = gen_helper_crypto_aese; 13370 break; 13371 case 0x6: /* AESMC */ 13372 genfn2 = gen_helper_crypto_aesmc; 13373 break; 13374 case 0x5: /* AESD */ 13375 genfn3 = gen_helper_crypto_aesd; 13376 break; 13377 case 0x7: /* AESIMC */ 13378 genfn2 = gen_helper_crypto_aesimc; 13379 break; 13380 default: 13381 unallocated_encoding(s); 13382 return; 13383 } 13384 13385 if (!fp_access_check(s)) { 13386 return; 13387 } 13388 if (genfn2) { 13389 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13390 } else { 13391 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13392 } 13393 } 13394 13395 /* Crypto three-reg SHA 13396 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13397 * +-----------------+------+---+------+---+--------+-----+------+------+ 13398 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13399 * +-----------------+------+---+------+---+--------+-----+------+------+ 13400 */ 13401 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13402 { 13403 int size = extract32(insn, 22, 2); 13404 int opcode = extract32(insn, 12, 3); 13405 int rm = extract32(insn, 16, 5); 13406 int rn = extract32(insn, 5, 5); 13407 int rd = extract32(insn, 0, 5); 13408 gen_helper_gvec_3 *genfn; 13409 bool feature; 13410 13411 if (size != 0) { 13412 unallocated_encoding(s); 13413 return; 13414 } 13415 13416 switch (opcode) { 13417 case 0: /* SHA1C */ 13418 genfn = gen_helper_crypto_sha1c; 13419 feature = dc_isar_feature(aa64_sha1, s); 13420 break; 13421 case 1: /* SHA1P */ 13422 genfn = gen_helper_crypto_sha1p; 13423 feature = dc_isar_feature(aa64_sha1, s); 13424 break; 13425 case 2: /* SHA1M */ 13426 genfn = gen_helper_crypto_sha1m; 13427 feature = dc_isar_feature(aa64_sha1, s); 13428 break; 13429 case 3: /* SHA1SU0 */ 13430 genfn = gen_helper_crypto_sha1su0; 13431 feature = dc_isar_feature(aa64_sha1, s); 13432 break; 13433 case 4: /* SHA256H */ 13434 genfn = gen_helper_crypto_sha256h; 13435 feature = dc_isar_feature(aa64_sha256, s); 13436 break; 13437 case 5: /* SHA256H2 */ 13438 genfn = gen_helper_crypto_sha256h2; 13439 feature = dc_isar_feature(aa64_sha256, s); 13440 break; 13441 case 6: /* SHA256SU1 */ 13442 genfn = gen_helper_crypto_sha256su1; 13443 feature = dc_isar_feature(aa64_sha256, s); 13444 break; 13445 default: 13446 unallocated_encoding(s); 13447 return; 13448 } 13449 13450 if (!feature) { 13451 unallocated_encoding(s); 13452 return; 13453 } 13454 13455 if (!fp_access_check(s)) { 13456 return; 13457 } 13458 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13459 } 13460 13461 /* Crypto two-reg SHA 13462 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13463 * +-----------------+------+-----------+--------+-----+------+------+ 13464 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13465 * +-----------------+------+-----------+--------+-----+------+------+ 13466 */ 13467 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13468 { 13469 int size = extract32(insn, 22, 2); 13470 int opcode = extract32(insn, 12, 5); 13471 int rn = extract32(insn, 5, 5); 13472 int rd = extract32(insn, 0, 5); 13473 gen_helper_gvec_2 *genfn; 13474 bool feature; 13475 13476 if (size != 0) { 13477 unallocated_encoding(s); 13478 return; 13479 } 13480 13481 switch (opcode) { 13482 case 0: /* SHA1H */ 13483 feature = dc_isar_feature(aa64_sha1, s); 13484 genfn = gen_helper_crypto_sha1h; 13485 break; 13486 case 1: /* SHA1SU1 */ 13487 feature = dc_isar_feature(aa64_sha1, s); 13488 genfn = gen_helper_crypto_sha1su1; 13489 break; 13490 case 2: /* SHA256SU0 */ 13491 feature = dc_isar_feature(aa64_sha256, s); 13492 genfn = gen_helper_crypto_sha256su0; 13493 break; 13494 default: 13495 unallocated_encoding(s); 13496 return; 13497 } 13498 13499 if (!feature) { 13500 unallocated_encoding(s); 13501 return; 13502 } 13503 13504 if (!fp_access_check(s)) { 13505 return; 13506 } 13507 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13508 } 13509 13510 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13511 { 13512 tcg_gen_rotli_i64(d, m, 1); 13513 tcg_gen_xor_i64(d, d, n); 13514 } 13515 13516 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13517 { 13518 tcg_gen_rotli_vec(vece, d, m, 1); 13519 tcg_gen_xor_vec(vece, d, d, n); 13520 } 13521 13522 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13523 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13524 { 13525 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13526 static const GVecGen3 op = { 13527 .fni8 = gen_rax1_i64, 13528 .fniv = gen_rax1_vec, 13529 .opt_opc = vecop_list, 13530 .fno = gen_helper_crypto_rax1, 13531 .vece = MO_64, 13532 }; 13533 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13534 } 13535 13536 /* Crypto three-reg SHA512 13537 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13538 * +-----------------------+------+---+---+-----+--------+------+------+ 13539 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13540 * +-----------------------+------+---+---+-----+--------+------+------+ 13541 */ 13542 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13543 { 13544 int opcode = extract32(insn, 10, 2); 13545 int o = extract32(insn, 14, 1); 13546 int rm = extract32(insn, 16, 5); 13547 int rn = extract32(insn, 5, 5); 13548 int rd = extract32(insn, 0, 5); 13549 bool feature; 13550 gen_helper_gvec_3 *oolfn = NULL; 13551 GVecGen3Fn *gvecfn = NULL; 13552 13553 if (o == 0) { 13554 switch (opcode) { 13555 case 0: /* SHA512H */ 13556 feature = dc_isar_feature(aa64_sha512, s); 13557 oolfn = gen_helper_crypto_sha512h; 13558 break; 13559 case 1: /* SHA512H2 */ 13560 feature = dc_isar_feature(aa64_sha512, s); 13561 oolfn = gen_helper_crypto_sha512h2; 13562 break; 13563 case 2: /* SHA512SU1 */ 13564 feature = dc_isar_feature(aa64_sha512, s); 13565 oolfn = gen_helper_crypto_sha512su1; 13566 break; 13567 case 3: /* RAX1 */ 13568 feature = dc_isar_feature(aa64_sha3, s); 13569 gvecfn = gen_gvec_rax1; 13570 break; 13571 default: 13572 g_assert_not_reached(); 13573 } 13574 } else { 13575 switch (opcode) { 13576 case 0: /* SM3PARTW1 */ 13577 feature = dc_isar_feature(aa64_sm3, s); 13578 oolfn = gen_helper_crypto_sm3partw1; 13579 break; 13580 case 1: /* SM3PARTW2 */ 13581 feature = dc_isar_feature(aa64_sm3, s); 13582 oolfn = gen_helper_crypto_sm3partw2; 13583 break; 13584 case 2: /* SM4EKEY */ 13585 feature = dc_isar_feature(aa64_sm4, s); 13586 oolfn = gen_helper_crypto_sm4ekey; 13587 break; 13588 default: 13589 unallocated_encoding(s); 13590 return; 13591 } 13592 } 13593 13594 if (!feature) { 13595 unallocated_encoding(s); 13596 return; 13597 } 13598 13599 if (!fp_access_check(s)) { 13600 return; 13601 } 13602 13603 if (oolfn) { 13604 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13605 } else { 13606 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13607 } 13608 } 13609 13610 /* Crypto two-reg SHA512 13611 * 31 12 11 10 9 5 4 0 13612 * +-----------------------------------------+--------+------+------+ 13613 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13614 * +-----------------------------------------+--------+------+------+ 13615 */ 13616 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13617 { 13618 int opcode = extract32(insn, 10, 2); 13619 int rn = extract32(insn, 5, 5); 13620 int rd = extract32(insn, 0, 5); 13621 bool feature; 13622 13623 switch (opcode) { 13624 case 0: /* SHA512SU0 */ 13625 feature = dc_isar_feature(aa64_sha512, s); 13626 break; 13627 case 1: /* SM4E */ 13628 feature = dc_isar_feature(aa64_sm4, s); 13629 break; 13630 default: 13631 unallocated_encoding(s); 13632 return; 13633 } 13634 13635 if (!feature) { 13636 unallocated_encoding(s); 13637 return; 13638 } 13639 13640 if (!fp_access_check(s)) { 13641 return; 13642 } 13643 13644 switch (opcode) { 13645 case 0: /* SHA512SU0 */ 13646 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13647 break; 13648 case 1: /* SM4E */ 13649 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13650 break; 13651 default: 13652 g_assert_not_reached(); 13653 } 13654 } 13655 13656 /* Crypto four-register 13657 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13658 * +-------------------+-----+------+---+------+------+------+ 13659 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13660 * +-------------------+-----+------+---+------+------+------+ 13661 */ 13662 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13663 { 13664 int op0 = extract32(insn, 21, 2); 13665 int rm = extract32(insn, 16, 5); 13666 int ra = extract32(insn, 10, 5); 13667 int rn = extract32(insn, 5, 5); 13668 int rd = extract32(insn, 0, 5); 13669 bool feature; 13670 13671 switch (op0) { 13672 case 0: /* EOR3 */ 13673 case 1: /* BCAX */ 13674 feature = dc_isar_feature(aa64_sha3, s); 13675 break; 13676 case 2: /* SM3SS1 */ 13677 feature = dc_isar_feature(aa64_sm3, s); 13678 break; 13679 default: 13680 unallocated_encoding(s); 13681 return; 13682 } 13683 13684 if (!feature) { 13685 unallocated_encoding(s); 13686 return; 13687 } 13688 13689 if (!fp_access_check(s)) { 13690 return; 13691 } 13692 13693 if (op0 < 2) { 13694 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13695 int pass; 13696 13697 tcg_op1 = tcg_temp_new_i64(); 13698 tcg_op2 = tcg_temp_new_i64(); 13699 tcg_op3 = tcg_temp_new_i64(); 13700 tcg_res[0] = tcg_temp_new_i64(); 13701 tcg_res[1] = tcg_temp_new_i64(); 13702 13703 for (pass = 0; pass < 2; pass++) { 13704 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13705 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13706 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13707 13708 if (op0 == 0) { 13709 /* EOR3 */ 13710 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13711 } else { 13712 /* BCAX */ 13713 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13714 } 13715 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13716 } 13717 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13718 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13719 } else { 13720 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13721 13722 tcg_op1 = tcg_temp_new_i32(); 13723 tcg_op2 = tcg_temp_new_i32(); 13724 tcg_op3 = tcg_temp_new_i32(); 13725 tcg_res = tcg_temp_new_i32(); 13726 tcg_zero = tcg_constant_i32(0); 13727 13728 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13729 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13730 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13731 13732 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13733 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13734 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13735 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13736 13737 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13738 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13739 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13740 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13741 } 13742 } 13743 13744 /* Crypto XAR 13745 * 31 21 20 16 15 10 9 5 4 0 13746 * +-----------------------+------+--------+------+------+ 13747 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13748 * +-----------------------+------+--------+------+------+ 13749 */ 13750 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13751 { 13752 int rm = extract32(insn, 16, 5); 13753 int imm6 = extract32(insn, 10, 6); 13754 int rn = extract32(insn, 5, 5); 13755 int rd = extract32(insn, 0, 5); 13756 13757 if (!dc_isar_feature(aa64_sha3, s)) { 13758 unallocated_encoding(s); 13759 return; 13760 } 13761 13762 if (!fp_access_check(s)) { 13763 return; 13764 } 13765 13766 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13767 vec_full_reg_offset(s, rn), 13768 vec_full_reg_offset(s, rm), imm6, 16, 13769 vec_full_reg_size(s)); 13770 } 13771 13772 /* Crypto three-reg imm2 13773 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13774 * +-----------------------+------+-----+------+--------+------+------+ 13775 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13776 * +-----------------------+------+-----+------+--------+------+------+ 13777 */ 13778 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13779 { 13780 static gen_helper_gvec_3 * const fns[4] = { 13781 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13782 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13783 }; 13784 int opcode = extract32(insn, 10, 2); 13785 int imm2 = extract32(insn, 12, 2); 13786 int rm = extract32(insn, 16, 5); 13787 int rn = extract32(insn, 5, 5); 13788 int rd = extract32(insn, 0, 5); 13789 13790 if (!dc_isar_feature(aa64_sm3, s)) { 13791 unallocated_encoding(s); 13792 return; 13793 } 13794 13795 if (!fp_access_check(s)) { 13796 return; 13797 } 13798 13799 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13800 } 13801 13802 /* C3.6 Data processing - SIMD, inc Crypto 13803 * 13804 * As the decode gets a little complex we are using a table based 13805 * approach for this part of the decode. 13806 */ 13807 static const AArch64DecodeTable data_proc_simd[] = { 13808 /* pattern , mask , fn */ 13809 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13810 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13811 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13812 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13813 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13814 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13815 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13816 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13817 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13818 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13819 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13820 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13821 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13822 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13823 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13824 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13825 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13826 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13827 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13828 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13829 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13830 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13831 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13832 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13833 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13834 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13835 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13836 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13837 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13838 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13839 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13840 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13841 { 0x00000000, 0x00000000, NULL } 13842 }; 13843 13844 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13845 { 13846 /* Note that this is called with all non-FP cases from 13847 * table C3-6 so it must UNDEF for entries not specifically 13848 * allocated to instructions in that table. 13849 */ 13850 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13851 if (fn) { 13852 fn(s, insn); 13853 } else { 13854 unallocated_encoding(s); 13855 } 13856 } 13857 13858 /* C3.6 Data processing - SIMD and floating point */ 13859 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13860 { 13861 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13862 disas_data_proc_fp(s, insn); 13863 } else { 13864 /* SIMD, including crypto */ 13865 disas_data_proc_simd(s, insn); 13866 } 13867 } 13868 13869 static bool trans_OK(DisasContext *s, arg_OK *a) 13870 { 13871 return true; 13872 } 13873 13874 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13875 { 13876 s->is_nonstreaming = true; 13877 return true; 13878 } 13879 13880 /** 13881 * is_guarded_page: 13882 * @env: The cpu environment 13883 * @s: The DisasContext 13884 * 13885 * Return true if the page is guarded. 13886 */ 13887 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13888 { 13889 uint64_t addr = s->base.pc_first; 13890 #ifdef CONFIG_USER_ONLY 13891 return page_get_flags(addr) & PAGE_BTI; 13892 #else 13893 CPUTLBEntryFull *full; 13894 void *host; 13895 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13896 int flags; 13897 13898 /* 13899 * We test this immediately after reading an insn, which means 13900 * that the TLB entry must be present and valid, and thus this 13901 * access will never raise an exception. 13902 */ 13903 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13904 false, &host, &full, 0); 13905 assert(!(flags & TLB_INVALID_MASK)); 13906 13907 return full->guarded; 13908 #endif 13909 } 13910 13911 /** 13912 * btype_destination_ok: 13913 * @insn: The instruction at the branch destination 13914 * @bt: SCTLR_ELx.BT 13915 * @btype: PSTATE.BTYPE, and is non-zero 13916 * 13917 * On a guarded page, there are a limited number of insns 13918 * that may be present at the branch target: 13919 * - branch target identifiers, 13920 * - paciasp, pacibsp, 13921 * - BRK insn 13922 * - HLT insn 13923 * Anything else causes a Branch Target Exception. 13924 * 13925 * Return true if the branch is compatible, false to raise BTITRAP. 13926 */ 13927 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13928 { 13929 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13930 /* HINT space */ 13931 switch (extract32(insn, 5, 7)) { 13932 case 0b011001: /* PACIASP */ 13933 case 0b011011: /* PACIBSP */ 13934 /* 13935 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13936 * with btype == 3. Otherwise all btype are ok. 13937 */ 13938 return !bt || btype != 3; 13939 case 0b100000: /* BTI */ 13940 /* Not compatible with any btype. */ 13941 return false; 13942 case 0b100010: /* BTI c */ 13943 /* Not compatible with btype == 3 */ 13944 return btype != 3; 13945 case 0b100100: /* BTI j */ 13946 /* Not compatible with btype == 2 */ 13947 return btype != 2; 13948 case 0b100110: /* BTI jc */ 13949 /* Compatible with any btype. */ 13950 return true; 13951 } 13952 } else { 13953 switch (insn & 0xffe0001fu) { 13954 case 0xd4200000u: /* BRK */ 13955 case 0xd4400000u: /* HLT */ 13956 /* Give priority to the breakpoint exception. */ 13957 return true; 13958 } 13959 } 13960 return false; 13961 } 13962 13963 /* C3.1 A64 instruction index by encoding */ 13964 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13965 { 13966 switch (extract32(insn, 25, 4)) { 13967 case 0x5: 13968 case 0xd: /* Data processing - register */ 13969 disas_data_proc_reg(s, insn); 13970 break; 13971 case 0x7: 13972 case 0xf: /* Data processing - SIMD and floating point */ 13973 disas_data_proc_simd_fp(s, insn); 13974 break; 13975 default: 13976 unallocated_encoding(s); 13977 break; 13978 } 13979 } 13980 13981 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13982 CPUState *cpu) 13983 { 13984 DisasContext *dc = container_of(dcbase, DisasContext, base); 13985 CPUARMState *env = cpu->env_ptr; 13986 ARMCPU *arm_cpu = env_archcpu(env); 13987 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13988 int bound, core_mmu_idx; 13989 13990 dc->isar = &arm_cpu->isar; 13991 dc->condjmp = 0; 13992 dc->pc_save = dc->base.pc_first; 13993 dc->aarch64 = true; 13994 dc->thumb = false; 13995 dc->sctlr_b = 0; 13996 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13997 dc->condexec_mask = 0; 13998 dc->condexec_cond = 0; 13999 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14000 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14001 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14002 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14003 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14004 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14005 #if !defined(CONFIG_USER_ONLY) 14006 dc->user = (dc->current_el == 0); 14007 #endif 14008 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14009 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14010 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14011 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14012 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14013 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14014 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14015 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14016 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14017 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14018 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14019 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14020 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14021 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14022 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 14023 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 14024 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14025 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14026 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14027 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14028 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14029 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14030 dc->vec_len = 0; 14031 dc->vec_stride = 0; 14032 dc->cp_regs = arm_cpu->cp_regs; 14033 dc->features = env->features; 14034 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14035 dc->gm_blocksize = arm_cpu->gm_blocksize; 14036 14037 #ifdef CONFIG_USER_ONLY 14038 /* In sve_probe_page, we assume TBI is enabled. */ 14039 tcg_debug_assert(dc->tbid & 1); 14040 #endif 14041 14042 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14043 14044 /* Single step state. The code-generation logic here is: 14045 * SS_ACTIVE == 0: 14046 * generate code with no special handling for single-stepping (except 14047 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14048 * this happens anyway because those changes are all system register or 14049 * PSTATE writes). 14050 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14051 * emit code for one insn 14052 * emit code to clear PSTATE.SS 14053 * emit code to generate software step exception for completed step 14054 * end TB (as usual for having generated an exception) 14055 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14056 * emit code to generate a software step exception 14057 * end the TB 14058 */ 14059 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14060 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14061 dc->is_ldex = false; 14062 14063 /* Bound the number of insns to execute to those left on the page. */ 14064 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14065 14066 /* If architectural single step active, limit to 1. */ 14067 if (dc->ss_active) { 14068 bound = 1; 14069 } 14070 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14071 } 14072 14073 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14074 { 14075 } 14076 14077 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14078 { 14079 DisasContext *dc = container_of(dcbase, DisasContext, base); 14080 target_ulong pc_arg = dc->base.pc_next; 14081 14082 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14083 pc_arg &= ~TARGET_PAGE_MASK; 14084 } 14085 tcg_gen_insn_start(pc_arg, 0, 0); 14086 dc->insn_start = tcg_last_op(); 14087 } 14088 14089 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14090 { 14091 DisasContext *s = container_of(dcbase, DisasContext, base); 14092 CPUARMState *env = cpu->env_ptr; 14093 uint64_t pc = s->base.pc_next; 14094 uint32_t insn; 14095 14096 /* Singlestep exceptions have the highest priority. */ 14097 if (s->ss_active && !s->pstate_ss) { 14098 /* Singlestep state is Active-pending. 14099 * If we're in this state at the start of a TB then either 14100 * a) we just took an exception to an EL which is being debugged 14101 * and this is the first insn in the exception handler 14102 * b) debug exceptions were masked and we just unmasked them 14103 * without changing EL (eg by clearing PSTATE.D) 14104 * In either case we're going to take a swstep exception in the 14105 * "did not step an insn" case, and so the syndrome ISV and EX 14106 * bits should be zero. 14107 */ 14108 assert(s->base.num_insns == 1); 14109 gen_swstep_exception(s, 0, 0); 14110 s->base.is_jmp = DISAS_NORETURN; 14111 s->base.pc_next = pc + 4; 14112 return; 14113 } 14114 14115 if (pc & 3) { 14116 /* 14117 * PC alignment fault. This has priority over the instruction abort 14118 * that we would receive from a translation fault via arm_ldl_code. 14119 * This should only be possible after an indirect branch, at the 14120 * start of the TB. 14121 */ 14122 assert(s->base.num_insns == 1); 14123 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14124 s->base.is_jmp = DISAS_NORETURN; 14125 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14126 return; 14127 } 14128 14129 s->pc_curr = pc; 14130 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14131 s->insn = insn; 14132 s->base.pc_next = pc + 4; 14133 14134 s->fp_access_checked = false; 14135 s->sve_access_checked = false; 14136 14137 if (s->pstate_il) { 14138 /* 14139 * Illegal execution state. This has priority over BTI 14140 * exceptions, but comes after instruction abort exceptions. 14141 */ 14142 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14143 return; 14144 } 14145 14146 if (dc_isar_feature(aa64_bti, s)) { 14147 if (s->base.num_insns == 1) { 14148 /* 14149 * At the first insn of the TB, compute s->guarded_page. 14150 * We delayed computing this until successfully reading 14151 * the first insn of the TB, above. This (mostly) ensures 14152 * that the softmmu tlb entry has been populated, and the 14153 * page table GP bit is available. 14154 * 14155 * Note that we need to compute this even if btype == 0, 14156 * because this value is used for BR instructions later 14157 * where ENV is not available. 14158 */ 14159 s->guarded_page = is_guarded_page(env, s); 14160 14161 /* First insn can have btype set to non-zero. */ 14162 tcg_debug_assert(s->btype >= 0); 14163 14164 /* 14165 * Note that the Branch Target Exception has fairly high 14166 * priority -- below debugging exceptions but above most 14167 * everything else. This allows us to handle this now 14168 * instead of waiting until the insn is otherwise decoded. 14169 */ 14170 if (s->btype != 0 14171 && s->guarded_page 14172 && !btype_destination_ok(insn, s->bt, s->btype)) { 14173 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14174 return; 14175 } 14176 } else { 14177 /* Not the first insn: btype must be 0. */ 14178 tcg_debug_assert(s->btype == 0); 14179 } 14180 } 14181 14182 s->is_nonstreaming = false; 14183 if (s->sme_trap_nonstreaming) { 14184 disas_sme_fa64(s, insn); 14185 } 14186 14187 if (!disas_a64(s, insn) && 14188 !disas_sme(s, insn) && 14189 !disas_sve(s, insn)) { 14190 disas_a64_legacy(s, insn); 14191 } 14192 14193 /* 14194 * After execution of most insns, btype is reset to 0. 14195 * Note that we set btype == -1 when the insn sets btype. 14196 */ 14197 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14198 reset_btype(s); 14199 } 14200 } 14201 14202 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14203 { 14204 DisasContext *dc = container_of(dcbase, DisasContext, base); 14205 14206 if (unlikely(dc->ss_active)) { 14207 /* Note that this means single stepping WFI doesn't halt the CPU. 14208 * For conditional branch insns this is harmless unreachable code as 14209 * gen_goto_tb() has already handled emitting the debug exception 14210 * (and thus a tb-jump is not possible when singlestepping). 14211 */ 14212 switch (dc->base.is_jmp) { 14213 default: 14214 gen_a64_update_pc(dc, 4); 14215 /* fall through */ 14216 case DISAS_EXIT: 14217 case DISAS_JUMP: 14218 gen_step_complete_exception(dc); 14219 break; 14220 case DISAS_NORETURN: 14221 break; 14222 } 14223 } else { 14224 switch (dc->base.is_jmp) { 14225 case DISAS_NEXT: 14226 case DISAS_TOO_MANY: 14227 gen_goto_tb(dc, 1, 4); 14228 break; 14229 default: 14230 case DISAS_UPDATE_EXIT: 14231 gen_a64_update_pc(dc, 4); 14232 /* fall through */ 14233 case DISAS_EXIT: 14234 tcg_gen_exit_tb(NULL, 0); 14235 break; 14236 case DISAS_UPDATE_NOCHAIN: 14237 gen_a64_update_pc(dc, 4); 14238 /* fall through */ 14239 case DISAS_JUMP: 14240 tcg_gen_lookup_and_goto_ptr(); 14241 break; 14242 case DISAS_NORETURN: 14243 case DISAS_SWI: 14244 break; 14245 case DISAS_WFE: 14246 gen_a64_update_pc(dc, 4); 14247 gen_helper_wfe(cpu_env); 14248 break; 14249 case DISAS_YIELD: 14250 gen_a64_update_pc(dc, 4); 14251 gen_helper_yield(cpu_env); 14252 break; 14253 case DISAS_WFI: 14254 /* 14255 * This is a special case because we don't want to just halt 14256 * the CPU if trying to debug across a WFI. 14257 */ 14258 gen_a64_update_pc(dc, 4); 14259 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14260 /* 14261 * The helper doesn't necessarily throw an exception, but we 14262 * must go back to the main loop to check for interrupts anyway. 14263 */ 14264 tcg_gen_exit_tb(NULL, 0); 14265 break; 14266 } 14267 } 14268 } 14269 14270 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14271 CPUState *cpu, FILE *logfile) 14272 { 14273 DisasContext *dc = container_of(dcbase, DisasContext, base); 14274 14275 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14276 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14277 } 14278 14279 const TranslatorOps aarch64_translator_ops = { 14280 .init_disas_context = aarch64_tr_init_disas_context, 14281 .tb_start = aarch64_tr_tb_start, 14282 .insn_start = aarch64_tr_insn_start, 14283 .translate_insn = aarch64_tr_translate_insn, 14284 .tb_stop = aarch64_tr_tb_stop, 14285 .disas_log = aarch64_tr_disas_log, 14286 }; 14287