1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg-op.h" 24 #include "tcg/tcg-op-gvec.h" 25 #include "qemu/log.h" 26 #include "arm_ldst.h" 27 #include "translate.h" 28 #include "internals.h" 29 #include "qemu/host-utils.h" 30 #include "semihosting/semihost.h" 31 #include "exec/gen-icount.h" 32 #include "exec/helper-proto.h" 33 #include "exec/helper-gen.h" 34 #include "exec/log.h" 35 #include "cpregs.h" 36 #include "translate-a64.h" 37 #include "qemu/atomic128.h" 38 39 static TCGv_i64 cpu_X[32]; 40 static TCGv_i64 cpu_pc; 41 42 /* Load/store exclusive handling */ 43 static TCGv_i64 cpu_exclusive_high; 44 45 static const char *regnames[] = { 46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 50 }; 51 52 enum a64_shift_type { 53 A64_SHIFT_TYPE_LSL = 0, 54 A64_SHIFT_TYPE_LSR = 1, 55 A64_SHIFT_TYPE_ASR = 2, 56 A64_SHIFT_TYPE_ROR = 3 57 }; 58 59 /* 60 * Include the generated decoders. 61 */ 62 63 #include "decode-sme-fa64.c.inc" 64 #include "decode-a64.c.inc" 65 66 /* Table based decoder typedefs - used when the relevant bits for decode 67 * are too awkwardly scattered across the instruction (eg SIMD). 68 */ 69 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 70 71 typedef struct AArch64DecodeTable { 72 uint32_t pattern; 73 uint32_t mask; 74 AArch64DecodeFn *disas_fn; 75 } AArch64DecodeTable; 76 77 /* initialize TCG globals. */ 78 void a64_translate_init(void) 79 { 80 int i; 81 82 cpu_pc = tcg_global_mem_new_i64(cpu_env, 83 offsetof(CPUARMState, pc), 84 "pc"); 85 for (i = 0; i < 32; i++) { 86 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 87 offsetof(CPUARMState, xregs[i]), 88 regnames[i]); 89 } 90 91 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 92 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 93 } 94 95 /* 96 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 97 */ 98 static int get_a64_user_mem_index(DisasContext *s) 99 { 100 /* 101 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 102 * which is the usual mmu_idx for this cpu state. 103 */ 104 ARMMMUIdx useridx = s->mmu_idx; 105 106 if (s->unpriv) { 107 /* 108 * We have pre-computed the condition for AccType_UNPRIV. 109 * Therefore we should never get here with a mmu_idx for 110 * which we do not know the corresponding user mmu_idx. 111 */ 112 switch (useridx) { 113 case ARMMMUIdx_E10_1: 114 case ARMMMUIdx_E10_1_PAN: 115 useridx = ARMMMUIdx_E10_0; 116 break; 117 case ARMMMUIdx_E20_2: 118 case ARMMMUIdx_E20_2_PAN: 119 useridx = ARMMMUIdx_E20_0; 120 break; 121 default: 122 g_assert_not_reached(); 123 } 124 } 125 return arm_to_core_mmu_idx(useridx); 126 } 127 128 static void set_btype_raw(int val) 129 { 130 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 131 offsetof(CPUARMState, btype)); 132 } 133 134 static void set_btype(DisasContext *s, int val) 135 { 136 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 137 tcg_debug_assert(val >= 1 && val <= 3); 138 set_btype_raw(val); 139 s->btype = -1; 140 } 141 142 static void reset_btype(DisasContext *s) 143 { 144 if (s->btype != 0) { 145 set_btype_raw(0); 146 s->btype = 0; 147 } 148 } 149 150 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 151 { 152 assert(s->pc_save != -1); 153 if (tb_cflags(s->base.tb) & CF_PCREL) { 154 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 155 } else { 156 tcg_gen_movi_i64(dest, s->pc_curr + diff); 157 } 158 } 159 160 void gen_a64_update_pc(DisasContext *s, target_long diff) 161 { 162 gen_pc_plus_diff(s, cpu_pc, diff); 163 s->pc_save = s->pc_curr + diff; 164 } 165 166 /* 167 * Handle Top Byte Ignore (TBI) bits. 168 * 169 * If address tagging is enabled via the TCR TBI bits: 170 * + for EL2 and EL3 there is only one TBI bit, and if it is set 171 * then the address is zero-extended, clearing bits [63:56] 172 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 173 * and TBI1 controls addressses with bit 55 == 1. 174 * If the appropriate TBI bit is set for the address then 175 * the address is sign-extended from bit 55 into bits [63:56] 176 * 177 * Here We have concatenated TBI{1,0} into tbi. 178 */ 179 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 180 TCGv_i64 src, int tbi) 181 { 182 if (tbi == 0) { 183 /* Load unmodified address */ 184 tcg_gen_mov_i64(dst, src); 185 } else if (!regime_has_2_ranges(s->mmu_idx)) { 186 /* Force tag byte to all zero */ 187 tcg_gen_extract_i64(dst, src, 0, 56); 188 } else { 189 /* Sign-extend from bit 55. */ 190 tcg_gen_sextract_i64(dst, src, 0, 56); 191 192 switch (tbi) { 193 case 1: 194 /* tbi0 but !tbi1: only use the extension if positive */ 195 tcg_gen_and_i64(dst, dst, src); 196 break; 197 case 2: 198 /* !tbi0 but tbi1: only use the extension if negative */ 199 tcg_gen_or_i64(dst, dst, src); 200 break; 201 case 3: 202 /* tbi0 and tbi1: always use the extension */ 203 break; 204 default: 205 g_assert_not_reached(); 206 } 207 } 208 } 209 210 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 211 { 212 /* 213 * If address tagging is enabled for instructions via the TCR TBI bits, 214 * then loading an address into the PC will clear out any tag. 215 */ 216 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 217 s->pc_save = -1; 218 } 219 220 /* 221 * Handle MTE and/or TBI. 222 * 223 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 224 * for the tag to be present in the FAR_ELx register. But for user-only 225 * mode we do not have a TLB with which to implement this, so we must 226 * remove the top byte now. 227 * 228 * Always return a fresh temporary that we can increment independently 229 * of the write-back address. 230 */ 231 232 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 233 { 234 TCGv_i64 clean = tcg_temp_new_i64(); 235 #ifdef CONFIG_USER_ONLY 236 gen_top_byte_ignore(s, clean, addr, s->tbid); 237 #else 238 tcg_gen_mov_i64(clean, addr); 239 #endif 240 return clean; 241 } 242 243 /* Insert a zero tag into src, with the result at dst. */ 244 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 245 { 246 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 247 } 248 249 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 250 MMUAccessType acc, int log2_size) 251 { 252 gen_helper_probe_access(cpu_env, ptr, 253 tcg_constant_i32(acc), 254 tcg_constant_i32(get_mem_index(s)), 255 tcg_constant_i32(1 << log2_size)); 256 } 257 258 /* 259 * For MTE, check a single logical or atomic access. This probes a single 260 * address, the exact one specified. The size and alignment of the access 261 * is not relevant to MTE, per se, but watchpoints do require the size, 262 * and we want to recognize those before making any other changes to state. 263 */ 264 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 265 bool is_write, bool tag_checked, 266 int log2_size, bool is_unpriv, 267 int core_idx) 268 { 269 if (tag_checked && s->mte_active[is_unpriv]) { 270 TCGv_i64 ret; 271 int desc = 0; 272 273 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 274 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 275 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 276 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 277 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 278 279 ret = tcg_temp_new_i64(); 280 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 281 282 return ret; 283 } 284 return clean_data_tbi(s, addr); 285 } 286 287 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int log2_size) 289 { 290 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 291 false, get_mem_index(s)); 292 } 293 294 /* 295 * For MTE, check multiple logical sequential accesses. 296 */ 297 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 298 bool tag_checked, int size) 299 { 300 if (tag_checked && s->mte_active[0]) { 301 TCGv_i64 ret; 302 int desc = 0; 303 304 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 305 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 306 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 307 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 308 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 309 310 ret = tcg_temp_new_i64(); 311 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 312 313 return ret; 314 } 315 return clean_data_tbi(s, addr); 316 } 317 318 typedef struct DisasCompare64 { 319 TCGCond cond; 320 TCGv_i64 value; 321 } DisasCompare64; 322 323 static void a64_test_cc(DisasCompare64 *c64, int cc) 324 { 325 DisasCompare c32; 326 327 arm_test_cc(&c32, cc); 328 329 /* 330 * Sign-extend the 32-bit value so that the GE/LT comparisons work 331 * properly. The NE/EQ comparisons are also fine with this choice. 332 */ 333 c64->cond = c32.cond; 334 c64->value = tcg_temp_new_i64(); 335 tcg_gen_ext_i32_i64(c64->value, c32.value); 336 } 337 338 static void gen_rebuild_hflags(DisasContext *s) 339 { 340 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 341 } 342 343 static void gen_exception_internal(int excp) 344 { 345 assert(excp_is_internal(excp)); 346 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 347 } 348 349 static void gen_exception_internal_insn(DisasContext *s, int excp) 350 { 351 gen_a64_update_pc(s, 0); 352 gen_exception_internal(excp); 353 s->base.is_jmp = DISAS_NORETURN; 354 } 355 356 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 357 { 358 gen_a64_update_pc(s, 0); 359 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 360 s->base.is_jmp = DISAS_NORETURN; 361 } 362 363 static void gen_step_complete_exception(DisasContext *s) 364 { 365 /* We just completed step of an insn. Move from Active-not-pending 366 * to Active-pending, and then also take the swstep exception. 367 * This corresponds to making the (IMPDEF) choice to prioritize 368 * swstep exceptions over asynchronous exceptions taken to an exception 369 * level where debug is disabled. This choice has the advantage that 370 * we do not need to maintain internal state corresponding to the 371 * ISV/EX syndrome bits between completion of the step and generation 372 * of the exception, and our syndrome information is always correct. 373 */ 374 gen_ss_advance(s); 375 gen_swstep_exception(s, 1, s->is_ldex); 376 s->base.is_jmp = DISAS_NORETURN; 377 } 378 379 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 380 { 381 if (s->ss_active) { 382 return false; 383 } 384 return translator_use_goto_tb(&s->base, dest); 385 } 386 387 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 388 { 389 if (use_goto_tb(s, s->pc_curr + diff)) { 390 /* 391 * For pcrel, the pc must always be up-to-date on entry to 392 * the linked TB, so that it can use simple additions for all 393 * further adjustments. For !pcrel, the linked TB is compiled 394 * to know its full virtual address, so we can delay the 395 * update to pc to the unlinked path. A long chain of links 396 * can thus avoid many updates to the PC. 397 */ 398 if (tb_cflags(s->base.tb) & CF_PCREL) { 399 gen_a64_update_pc(s, diff); 400 tcg_gen_goto_tb(n); 401 } else { 402 tcg_gen_goto_tb(n); 403 gen_a64_update_pc(s, diff); 404 } 405 tcg_gen_exit_tb(s->base.tb, n); 406 s->base.is_jmp = DISAS_NORETURN; 407 } else { 408 gen_a64_update_pc(s, diff); 409 if (s->ss_active) { 410 gen_step_complete_exception(s); 411 } else { 412 tcg_gen_lookup_and_goto_ptr(); 413 s->base.is_jmp = DISAS_NORETURN; 414 } 415 } 416 } 417 418 /* 419 * Register access functions 420 * 421 * These functions are used for directly accessing a register in where 422 * changes to the final register value are likely to be made. If you 423 * need to use a register for temporary calculation (e.g. index type 424 * operations) use the read_* form. 425 * 426 * B1.2.1 Register mappings 427 * 428 * In instruction register encoding 31 can refer to ZR (zero register) or 429 * the SP (stack pointer) depending on context. In QEMU's case we map SP 430 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 431 * This is the point of the _sp forms. 432 */ 433 TCGv_i64 cpu_reg(DisasContext *s, int reg) 434 { 435 if (reg == 31) { 436 TCGv_i64 t = tcg_temp_new_i64(); 437 tcg_gen_movi_i64(t, 0); 438 return t; 439 } else { 440 return cpu_X[reg]; 441 } 442 } 443 444 /* register access for when 31 == SP */ 445 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 446 { 447 return cpu_X[reg]; 448 } 449 450 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 451 * representing the register contents. This TCGv is an auto-freed 452 * temporary so it need not be explicitly freed, and may be modified. 453 */ 454 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 455 { 456 TCGv_i64 v = tcg_temp_new_i64(); 457 if (reg != 31) { 458 if (sf) { 459 tcg_gen_mov_i64(v, cpu_X[reg]); 460 } else { 461 tcg_gen_ext32u_i64(v, cpu_X[reg]); 462 } 463 } else { 464 tcg_gen_movi_i64(v, 0); 465 } 466 return v; 467 } 468 469 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 470 { 471 TCGv_i64 v = tcg_temp_new_i64(); 472 if (sf) { 473 tcg_gen_mov_i64(v, cpu_X[reg]); 474 } else { 475 tcg_gen_ext32u_i64(v, cpu_X[reg]); 476 } 477 return v; 478 } 479 480 /* Return the offset into CPUARMState of a slice (from 481 * the least significant end) of FP register Qn (ie 482 * Dn, Sn, Hn or Bn). 483 * (Note that this is not the same mapping as for A32; see cpu.h) 484 */ 485 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 486 { 487 return vec_reg_offset(s, regno, 0, size); 488 } 489 490 /* Offset of the high half of the 128 bit vector Qn */ 491 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 492 { 493 return vec_reg_offset(s, regno, 1, MO_64); 494 } 495 496 /* Convenience accessors for reading and writing single and double 497 * FP registers. Writing clears the upper parts of the associated 498 * 128 bit vector register, as required by the architecture. 499 * Note that unlike the GP register accessors, the values returned 500 * by the read functions must be manually freed. 501 */ 502 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 503 { 504 TCGv_i64 v = tcg_temp_new_i64(); 505 506 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 507 return v; 508 } 509 510 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 511 { 512 TCGv_i32 v = tcg_temp_new_i32(); 513 514 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 515 return v; 516 } 517 518 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 519 { 520 TCGv_i32 v = tcg_temp_new_i32(); 521 522 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 523 return v; 524 } 525 526 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 527 * If SVE is not enabled, then there are only 128 bits in the vector. 528 */ 529 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 530 { 531 unsigned ofs = fp_reg_offset(s, rd, MO_64); 532 unsigned vsz = vec_full_reg_size(s); 533 534 /* Nop move, with side effect of clearing the tail. */ 535 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 536 } 537 538 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 539 { 540 unsigned ofs = fp_reg_offset(s, reg, MO_64); 541 542 tcg_gen_st_i64(v, cpu_env, ofs); 543 clear_vec_high(s, false, reg); 544 } 545 546 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 547 { 548 TCGv_i64 tmp = tcg_temp_new_i64(); 549 550 tcg_gen_extu_i32_i64(tmp, v); 551 write_fp_dreg(s, reg, tmp); 552 } 553 554 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 555 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 556 GVecGen2Fn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 2-operand + immediate AdvSIMD vector operation using 563 * an expander function. 564 */ 565 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 566 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 567 { 568 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 569 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 570 } 571 572 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 573 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 574 GVecGen3Fn *gvec_fn, int vece) 575 { 576 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 577 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 578 } 579 580 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 581 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 582 int rx, GVecGen4Fn *gvec_fn, int vece) 583 { 584 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 585 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 586 is_q ? 16 : 8, vec_full_reg_size(s)); 587 } 588 589 /* Expand a 2-operand operation using an out-of-line helper. */ 590 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 591 int rn, int data, gen_helper_gvec_2 *fn) 592 { 593 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 594 vec_full_reg_offset(s, rn), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand operation using an out-of-line helper. */ 599 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 600 int rn, int rm, int data, gen_helper_gvec_3 *fn) 601 { 602 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 603 vec_full_reg_offset(s, rn), 604 vec_full_reg_offset(s, rm), 605 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 606 } 607 608 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 609 * an out-of-line helper. 610 */ 611 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 612 int rm, bool is_fp16, int data, 613 gen_helper_gvec_3_ptr *fn) 614 { 615 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 616 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 617 vec_full_reg_offset(s, rn), 618 vec_full_reg_offset(s, rm), fpst, 619 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 620 } 621 622 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 623 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 624 int rm, gen_helper_gvec_3_ptr *fn) 625 { 626 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 627 628 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 629 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), qc_ptr, 632 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 633 } 634 635 /* Expand a 4-operand operation using an out-of-line helper. */ 636 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 637 int rm, int ra, int data, gen_helper_gvec_4 *fn) 638 { 639 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 640 vec_full_reg_offset(s, rn), 641 vec_full_reg_offset(s, rm), 642 vec_full_reg_offset(s, ra), 643 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 644 } 645 646 /* 647 * Expand a 4-operand + fpstatus pointer + simd data value operation using 648 * an out-of-line helper. 649 */ 650 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 651 int rm, int ra, bool is_fp16, int data, 652 gen_helper_gvec_4_ptr *fn) 653 { 654 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 655 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 656 vec_full_reg_offset(s, rn), 657 vec_full_reg_offset(s, rm), 658 vec_full_reg_offset(s, ra), fpst, 659 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 660 } 661 662 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 663 * than the 32 bit equivalent. 664 */ 665 static inline void gen_set_NZ64(TCGv_i64 result) 666 { 667 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 668 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 669 } 670 671 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 672 static inline void gen_logic_CC(int sf, TCGv_i64 result) 673 { 674 if (sf) { 675 gen_set_NZ64(result); 676 } else { 677 tcg_gen_extrl_i64_i32(cpu_ZF, result); 678 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 679 } 680 tcg_gen_movi_i32(cpu_CF, 0); 681 tcg_gen_movi_i32(cpu_VF, 0); 682 } 683 684 /* dest = T0 + T1; compute C, N, V and Z flags */ 685 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 686 { 687 if (sf) { 688 TCGv_i64 result, flag, tmp; 689 result = tcg_temp_new_i64(); 690 flag = tcg_temp_new_i64(); 691 tmp = tcg_temp_new_i64(); 692 693 tcg_gen_movi_i64(tmp, 0); 694 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 695 696 tcg_gen_extrl_i64_i32(cpu_CF, flag); 697 698 gen_set_NZ64(result); 699 700 tcg_gen_xor_i64(flag, result, t0); 701 tcg_gen_xor_i64(tmp, t0, t1); 702 tcg_gen_andc_i64(flag, flag, tmp); 703 tcg_gen_extrh_i64_i32(cpu_VF, flag); 704 705 tcg_gen_mov_i64(dest, result); 706 } else { 707 /* 32 bit arithmetic */ 708 TCGv_i32 t0_32 = tcg_temp_new_i32(); 709 TCGv_i32 t1_32 = tcg_temp_new_i32(); 710 TCGv_i32 tmp = tcg_temp_new_i32(); 711 712 tcg_gen_movi_i32(tmp, 0); 713 tcg_gen_extrl_i64_i32(t0_32, t0); 714 tcg_gen_extrl_i64_i32(t1_32, t1); 715 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 716 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 717 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 718 tcg_gen_xor_i32(tmp, t0_32, t1_32); 719 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 720 tcg_gen_extu_i32_i64(dest, cpu_NF); 721 } 722 } 723 724 /* dest = T0 - T1; compute C, N, V and Z flags */ 725 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 726 { 727 if (sf) { 728 /* 64 bit arithmetic */ 729 TCGv_i64 result, flag, tmp; 730 731 result = tcg_temp_new_i64(); 732 flag = tcg_temp_new_i64(); 733 tcg_gen_sub_i64(result, t0, t1); 734 735 gen_set_NZ64(result); 736 737 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 738 tcg_gen_extrl_i64_i32(cpu_CF, flag); 739 740 tcg_gen_xor_i64(flag, result, t0); 741 tmp = tcg_temp_new_i64(); 742 tcg_gen_xor_i64(tmp, t0, t1); 743 tcg_gen_and_i64(flag, flag, tmp); 744 tcg_gen_extrh_i64_i32(cpu_VF, flag); 745 tcg_gen_mov_i64(dest, result); 746 } else { 747 /* 32 bit arithmetic */ 748 TCGv_i32 t0_32 = tcg_temp_new_i32(); 749 TCGv_i32 t1_32 = tcg_temp_new_i32(); 750 TCGv_i32 tmp; 751 752 tcg_gen_extrl_i64_i32(t0_32, t0); 753 tcg_gen_extrl_i64_i32(t1_32, t1); 754 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 755 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 756 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 757 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 758 tmp = tcg_temp_new_i32(); 759 tcg_gen_xor_i32(tmp, t0_32, t1_32); 760 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 761 tcg_gen_extu_i32_i64(dest, cpu_NF); 762 } 763 } 764 765 /* dest = T0 + T1 + CF; do not compute flags. */ 766 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 767 { 768 TCGv_i64 flag = tcg_temp_new_i64(); 769 tcg_gen_extu_i32_i64(flag, cpu_CF); 770 tcg_gen_add_i64(dest, t0, t1); 771 tcg_gen_add_i64(dest, dest, flag); 772 773 if (!sf) { 774 tcg_gen_ext32u_i64(dest, dest); 775 } 776 } 777 778 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 779 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 780 { 781 if (sf) { 782 TCGv_i64 result = tcg_temp_new_i64(); 783 TCGv_i64 cf_64 = tcg_temp_new_i64(); 784 TCGv_i64 vf_64 = tcg_temp_new_i64(); 785 TCGv_i64 tmp = tcg_temp_new_i64(); 786 TCGv_i64 zero = tcg_constant_i64(0); 787 788 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 789 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 790 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 791 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 792 gen_set_NZ64(result); 793 794 tcg_gen_xor_i64(vf_64, result, t0); 795 tcg_gen_xor_i64(tmp, t0, t1); 796 tcg_gen_andc_i64(vf_64, vf_64, tmp); 797 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 798 799 tcg_gen_mov_i64(dest, result); 800 } else { 801 TCGv_i32 t0_32 = tcg_temp_new_i32(); 802 TCGv_i32 t1_32 = tcg_temp_new_i32(); 803 TCGv_i32 tmp = tcg_temp_new_i32(); 804 TCGv_i32 zero = tcg_constant_i32(0); 805 806 tcg_gen_extrl_i64_i32(t0_32, t0); 807 tcg_gen_extrl_i64_i32(t1_32, t1); 808 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 809 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 810 811 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 812 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 813 tcg_gen_xor_i32(tmp, t0_32, t1_32); 814 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 815 tcg_gen_extu_i32_i64(dest, cpu_NF); 816 } 817 } 818 819 /* 820 * Load/Store generators 821 */ 822 823 /* 824 * Store from GPR register to memory. 825 */ 826 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 827 TCGv_i64 tcg_addr, MemOp memop, int memidx, 828 bool iss_valid, 829 unsigned int iss_srt, 830 bool iss_sf, bool iss_ar) 831 { 832 memop = finalize_memop(s, memop); 833 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 834 835 if (iss_valid) { 836 uint32_t syn; 837 838 syn = syn_data_abort_with_iss(0, 839 (memop & MO_SIZE), 840 false, 841 iss_srt, 842 iss_sf, 843 iss_ar, 844 0, 0, 0, 0, 0, false); 845 disas_set_insn_syndrome(s, syn); 846 } 847 } 848 849 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 850 TCGv_i64 tcg_addr, MemOp memop, 851 bool iss_valid, 852 unsigned int iss_srt, 853 bool iss_sf, bool iss_ar) 854 { 855 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 856 iss_valid, iss_srt, iss_sf, iss_ar); 857 } 858 859 /* 860 * Load from memory to GPR register 861 */ 862 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 863 MemOp memop, bool extend, int memidx, 864 bool iss_valid, unsigned int iss_srt, 865 bool iss_sf, bool iss_ar) 866 { 867 memop = finalize_memop(s, memop); 868 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 869 870 if (extend && (memop & MO_SIGN)) { 871 g_assert((memop & MO_SIZE) <= MO_32); 872 tcg_gen_ext32u_i64(dest, dest); 873 } 874 875 if (iss_valid) { 876 uint32_t syn; 877 878 syn = syn_data_abort_with_iss(0, 879 (memop & MO_SIZE), 880 (memop & MO_SIGN) != 0, 881 iss_srt, 882 iss_sf, 883 iss_ar, 884 0, 0, 0, 0, 0, false); 885 disas_set_insn_syndrome(s, syn); 886 } 887 } 888 889 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 890 MemOp memop, bool extend, 891 bool iss_valid, unsigned int iss_srt, 892 bool iss_sf, bool iss_ar) 893 { 894 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 895 iss_valid, iss_srt, iss_sf, iss_ar); 896 } 897 898 /* 899 * Store from FP register to memory 900 */ 901 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 902 { 903 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 904 TCGv_i64 tmplo = tcg_temp_new_i64(); 905 MemOp mop; 906 907 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 908 909 if (size < 4) { 910 mop = finalize_memop(s, size); 911 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 912 } else { 913 bool be = s->be_data == MO_BE; 914 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); 915 TCGv_i64 tmphi = tcg_temp_new_i64(); 916 917 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 918 919 mop = s->be_data | MO_UQ; 920 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 921 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 922 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 923 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr, 924 get_mem_index(s), mop); 925 } 926 } 927 928 /* 929 * Load from memory to FP register 930 */ 931 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 932 { 933 /* This always zero-extends and writes to a full 128 bit wide vector */ 934 TCGv_i64 tmplo = tcg_temp_new_i64(); 935 TCGv_i64 tmphi = NULL; 936 MemOp mop; 937 938 if (size < 4) { 939 mop = finalize_memop(s, size); 940 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 941 } else { 942 bool be = s->be_data == MO_BE; 943 TCGv_i64 tcg_hiaddr; 944 945 tmphi = tcg_temp_new_i64(); 946 tcg_hiaddr = tcg_temp_new_i64(); 947 948 mop = s->be_data | MO_UQ; 949 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 950 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 951 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 952 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr, 953 get_mem_index(s), mop); 954 } 955 956 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 957 958 if (tmphi) { 959 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 960 } 961 clear_vec_high(s, tmphi != NULL, destidx); 962 } 963 964 /* 965 * Vector load/store helpers. 966 * 967 * The principal difference between this and a FP load is that we don't 968 * zero extend as we are filling a partial chunk of the vector register. 969 * These functions don't support 128 bit loads/stores, which would be 970 * normal load/store operations. 971 * 972 * The _i32 versions are useful when operating on 32 bit quantities 973 * (eg for floating point single or using Neon helper functions). 974 */ 975 976 /* Get value of an element within a vector register */ 977 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 978 int element, MemOp memop) 979 { 980 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 981 switch ((unsigned)memop) { 982 case MO_8: 983 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 984 break; 985 case MO_16: 986 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 987 break; 988 case MO_32: 989 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 990 break; 991 case MO_8|MO_SIGN: 992 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 993 break; 994 case MO_16|MO_SIGN: 995 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 996 break; 997 case MO_32|MO_SIGN: 998 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 999 break; 1000 case MO_64: 1001 case MO_64|MO_SIGN: 1002 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1003 break; 1004 default: 1005 g_assert_not_reached(); 1006 } 1007 } 1008 1009 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1010 int element, MemOp memop) 1011 { 1012 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1013 switch (memop) { 1014 case MO_8: 1015 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1016 break; 1017 case MO_16: 1018 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1019 break; 1020 case MO_8|MO_SIGN: 1021 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1022 break; 1023 case MO_16|MO_SIGN: 1024 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1025 break; 1026 case MO_32: 1027 case MO_32|MO_SIGN: 1028 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1029 break; 1030 default: 1031 g_assert_not_reached(); 1032 } 1033 } 1034 1035 /* Set value of an element within a vector register */ 1036 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1037 int element, MemOp memop) 1038 { 1039 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1040 switch (memop) { 1041 case MO_8: 1042 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1043 break; 1044 case MO_16: 1045 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1046 break; 1047 case MO_32: 1048 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1049 break; 1050 case MO_64: 1051 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1052 break; 1053 default: 1054 g_assert_not_reached(); 1055 } 1056 } 1057 1058 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1059 int destidx, int element, MemOp memop) 1060 { 1061 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1062 switch (memop) { 1063 case MO_8: 1064 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1065 break; 1066 case MO_16: 1067 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1068 break; 1069 case MO_32: 1070 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1071 break; 1072 default: 1073 g_assert_not_reached(); 1074 } 1075 } 1076 1077 /* Store from vector register to memory */ 1078 static void do_vec_st(DisasContext *s, int srcidx, int element, 1079 TCGv_i64 tcg_addr, MemOp mop) 1080 { 1081 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1082 1083 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1084 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1085 } 1086 1087 /* Load from memory to vector register */ 1088 static void do_vec_ld(DisasContext *s, int destidx, int element, 1089 TCGv_i64 tcg_addr, MemOp mop) 1090 { 1091 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1092 1093 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1094 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1095 } 1096 1097 /* Check that FP/Neon access is enabled. If it is, return 1098 * true. If not, emit code to generate an appropriate exception, 1099 * and return false; the caller should not emit any code for 1100 * the instruction. Note that this check must happen after all 1101 * unallocated-encoding checks (otherwise the syndrome information 1102 * for the resulting exception will be incorrect). 1103 */ 1104 static bool fp_access_check_only(DisasContext *s) 1105 { 1106 if (s->fp_excp_el) { 1107 assert(!s->fp_access_checked); 1108 s->fp_access_checked = true; 1109 1110 gen_exception_insn_el(s, 0, EXCP_UDEF, 1111 syn_fp_access_trap(1, 0xe, false, 0), 1112 s->fp_excp_el); 1113 return false; 1114 } 1115 s->fp_access_checked = true; 1116 return true; 1117 } 1118 1119 static bool fp_access_check(DisasContext *s) 1120 { 1121 if (!fp_access_check_only(s)) { 1122 return false; 1123 } 1124 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1125 gen_exception_insn(s, 0, EXCP_UDEF, 1126 syn_smetrap(SME_ET_Streaming, false)); 1127 return false; 1128 } 1129 return true; 1130 } 1131 1132 /* 1133 * Check that SVE access is enabled. If it is, return true. 1134 * If not, emit code to generate an appropriate exception and return false. 1135 * This function corresponds to CheckSVEEnabled(). 1136 */ 1137 bool sve_access_check(DisasContext *s) 1138 { 1139 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1140 assert(dc_isar_feature(aa64_sme, s)); 1141 if (!sme_sm_enabled_check(s)) { 1142 goto fail_exit; 1143 } 1144 } else if (s->sve_excp_el) { 1145 gen_exception_insn_el(s, 0, EXCP_UDEF, 1146 syn_sve_access_trap(), s->sve_excp_el); 1147 goto fail_exit; 1148 } 1149 s->sve_access_checked = true; 1150 return fp_access_check(s); 1151 1152 fail_exit: 1153 /* Assert that we only raise one exception per instruction. */ 1154 assert(!s->sve_access_checked); 1155 s->sve_access_checked = true; 1156 return false; 1157 } 1158 1159 /* 1160 * Check that SME access is enabled, raise an exception if not. 1161 * Note that this function corresponds to CheckSMEAccess and is 1162 * only used directly for cpregs. 1163 */ 1164 static bool sme_access_check(DisasContext *s) 1165 { 1166 if (s->sme_excp_el) { 1167 gen_exception_insn_el(s, 0, EXCP_UDEF, 1168 syn_smetrap(SME_ET_AccessTrap, false), 1169 s->sme_excp_el); 1170 return false; 1171 } 1172 return true; 1173 } 1174 1175 /* This function corresponds to CheckSMEEnabled. */ 1176 bool sme_enabled_check(DisasContext *s) 1177 { 1178 /* 1179 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1180 * to be zero when fp_excp_el has priority. This is because we need 1181 * sme_excp_el by itself for cpregs access checks. 1182 */ 1183 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1184 s->fp_access_checked = true; 1185 return sme_access_check(s); 1186 } 1187 return fp_access_check_only(s); 1188 } 1189 1190 /* Common subroutine for CheckSMEAnd*Enabled. */ 1191 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1192 { 1193 if (!sme_enabled_check(s)) { 1194 return false; 1195 } 1196 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1197 gen_exception_insn(s, 0, EXCP_UDEF, 1198 syn_smetrap(SME_ET_NotStreaming, false)); 1199 return false; 1200 } 1201 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_InactiveZA, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * This utility function is for doing register extension with an 1211 * optional shift. You will likely want to pass a temporary for the 1212 * destination register. See DecodeRegExtend() in the ARM ARM. 1213 */ 1214 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1215 int option, unsigned int shift) 1216 { 1217 int extsize = extract32(option, 0, 2); 1218 bool is_signed = extract32(option, 2, 1); 1219 1220 if (is_signed) { 1221 switch (extsize) { 1222 case 0: 1223 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1224 break; 1225 case 1: 1226 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1227 break; 1228 case 2: 1229 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1230 break; 1231 case 3: 1232 tcg_gen_mov_i64(tcg_out, tcg_in); 1233 break; 1234 } 1235 } else { 1236 switch (extsize) { 1237 case 0: 1238 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1239 break; 1240 case 1: 1241 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1242 break; 1243 case 2: 1244 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1245 break; 1246 case 3: 1247 tcg_gen_mov_i64(tcg_out, tcg_in); 1248 break; 1249 } 1250 } 1251 1252 if (shift) { 1253 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1254 } 1255 } 1256 1257 static inline void gen_check_sp_alignment(DisasContext *s) 1258 { 1259 /* The AArch64 architecture mandates that (if enabled via PSTATE 1260 * or SCTLR bits) there is a check that SP is 16-aligned on every 1261 * SP-relative load or store (with an exception generated if it is not). 1262 * In line with general QEMU practice regarding misaligned accesses, 1263 * we omit these checks for the sake of guest program performance. 1264 * This function is provided as a hook so we can more easily add these 1265 * checks in future (possibly as a "favour catching guest program bugs 1266 * over speed" user selectable option). 1267 */ 1268 } 1269 1270 /* 1271 * This provides a simple table based table lookup decoder. It is 1272 * intended to be used when the relevant bits for decode are too 1273 * awkwardly placed and switch/if based logic would be confusing and 1274 * deeply nested. Since it's a linear search through the table, tables 1275 * should be kept small. 1276 * 1277 * It returns the first handler where insn & mask == pattern, or 1278 * NULL if there is no match. 1279 * The table is terminated by an empty mask (i.e. 0) 1280 */ 1281 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1282 uint32_t insn) 1283 { 1284 const AArch64DecodeTable *tptr = table; 1285 1286 while (tptr->mask) { 1287 if ((insn & tptr->mask) == tptr->pattern) { 1288 return tptr->disas_fn; 1289 } 1290 tptr++; 1291 } 1292 return NULL; 1293 } 1294 1295 /* 1296 * The instruction disassembly implemented here matches 1297 * the instruction encoding classifications in chapter C4 1298 * of the ARM Architecture Reference Manual (DDI0487B_a); 1299 * classification names and decode diagrams here should generally 1300 * match up with those in the manual. 1301 */ 1302 1303 /* Unconditional branch (immediate) 1304 * 31 30 26 25 0 1305 * +----+-----------+-------------------------------------+ 1306 * | op | 0 0 1 0 1 | imm26 | 1307 * +----+-----------+-------------------------------------+ 1308 */ 1309 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) 1310 { 1311 int64_t diff = sextract32(insn, 0, 26) * 4; 1312 1313 if (insn & (1U << 31)) { 1314 /* BL Branch with link */ 1315 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1316 } 1317 1318 /* B Branch / BL Branch with link */ 1319 reset_btype(s); 1320 gen_goto_tb(s, 0, diff); 1321 } 1322 1323 /* Compare and branch (immediate) 1324 * 31 30 25 24 23 5 4 0 1325 * +----+-------------+----+---------------------+--------+ 1326 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | 1327 * +----+-------------+----+---------------------+--------+ 1328 */ 1329 static void disas_comp_b_imm(DisasContext *s, uint32_t insn) 1330 { 1331 unsigned int sf, op, rt; 1332 int64_t diff; 1333 DisasLabel match; 1334 TCGv_i64 tcg_cmp; 1335 1336 sf = extract32(insn, 31, 1); 1337 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ 1338 rt = extract32(insn, 0, 5); 1339 diff = sextract32(insn, 5, 19) * 4; 1340 1341 tcg_cmp = read_cpu_reg(s, rt, sf); 1342 reset_btype(s); 1343 1344 match = gen_disas_label(s); 1345 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1346 tcg_cmp, 0, match.label); 1347 gen_goto_tb(s, 0, 4); 1348 set_disas_label(s, match); 1349 gen_goto_tb(s, 1, diff); 1350 } 1351 1352 /* Test and branch (immediate) 1353 * 31 30 25 24 23 19 18 5 4 0 1354 * +----+-------------+----+-------+-------------+------+ 1355 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | 1356 * +----+-------------+----+-------+-------------+------+ 1357 */ 1358 static void disas_test_b_imm(DisasContext *s, uint32_t insn) 1359 { 1360 unsigned int bit_pos, op, rt; 1361 int64_t diff; 1362 DisasLabel match; 1363 TCGv_i64 tcg_cmp; 1364 1365 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); 1366 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ 1367 diff = sextract32(insn, 5, 14) * 4; 1368 rt = extract32(insn, 0, 5); 1369 1370 tcg_cmp = tcg_temp_new_i64(); 1371 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); 1372 1373 reset_btype(s); 1374 1375 match = gen_disas_label(s); 1376 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1377 tcg_cmp, 0, match.label); 1378 gen_goto_tb(s, 0, 4); 1379 set_disas_label(s, match); 1380 gen_goto_tb(s, 1, diff); 1381 } 1382 1383 /* Conditional branch (immediate) 1384 * 31 25 24 23 5 4 3 0 1385 * +---------------+----+---------------------+----+------+ 1386 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | 1387 * +---------------+----+---------------------+----+------+ 1388 */ 1389 static void disas_cond_b_imm(DisasContext *s, uint32_t insn) 1390 { 1391 unsigned int cond; 1392 int64_t diff; 1393 1394 if ((insn & (1 << 4)) || (insn & (1 << 24))) { 1395 unallocated_encoding(s); 1396 return; 1397 } 1398 diff = sextract32(insn, 5, 19) * 4; 1399 cond = extract32(insn, 0, 4); 1400 1401 reset_btype(s); 1402 if (cond < 0x0e) { 1403 /* genuinely conditional branches */ 1404 DisasLabel match = gen_disas_label(s); 1405 arm_gen_test_cc(cond, match.label); 1406 gen_goto_tb(s, 0, 4); 1407 set_disas_label(s, match); 1408 gen_goto_tb(s, 1, diff); 1409 } else { 1410 /* 0xe and 0xf are both "always" conditions */ 1411 gen_goto_tb(s, 0, diff); 1412 } 1413 } 1414 1415 /* HINT instruction group, including various allocated HINTs */ 1416 static void handle_hint(DisasContext *s, uint32_t insn, 1417 unsigned int op1, unsigned int op2, unsigned int crm) 1418 { 1419 unsigned int selector = crm << 3 | op2; 1420 1421 if (op1 != 3) { 1422 unallocated_encoding(s); 1423 return; 1424 } 1425 1426 switch (selector) { 1427 case 0b00000: /* NOP */ 1428 break; 1429 case 0b00011: /* WFI */ 1430 s->base.is_jmp = DISAS_WFI; 1431 break; 1432 case 0b00001: /* YIELD */ 1433 /* When running in MTTCG we don't generate jumps to the yield and 1434 * WFE helpers as it won't affect the scheduling of other vCPUs. 1435 * If we wanted to more completely model WFE/SEV so we don't busy 1436 * spin unnecessarily we would need to do something more involved. 1437 */ 1438 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1439 s->base.is_jmp = DISAS_YIELD; 1440 } 1441 break; 1442 case 0b00010: /* WFE */ 1443 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1444 s->base.is_jmp = DISAS_WFE; 1445 } 1446 break; 1447 case 0b00100: /* SEV */ 1448 case 0b00101: /* SEVL */ 1449 case 0b00110: /* DGH */ 1450 /* we treat all as NOP at least for now */ 1451 break; 1452 case 0b00111: /* XPACLRI */ 1453 if (s->pauth_active) { 1454 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1455 } 1456 break; 1457 case 0b01000: /* PACIA1716 */ 1458 if (s->pauth_active) { 1459 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1460 } 1461 break; 1462 case 0b01010: /* PACIB1716 */ 1463 if (s->pauth_active) { 1464 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1465 } 1466 break; 1467 case 0b01100: /* AUTIA1716 */ 1468 if (s->pauth_active) { 1469 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1470 } 1471 break; 1472 case 0b01110: /* AUTIB1716 */ 1473 if (s->pauth_active) { 1474 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1475 } 1476 break; 1477 case 0b10000: /* ESB */ 1478 /* Without RAS, we must implement this as NOP. */ 1479 if (dc_isar_feature(aa64_ras, s)) { 1480 /* 1481 * QEMU does not have a source of physical SErrors, 1482 * so we are only concerned with virtual SErrors. 1483 * The pseudocode in the ARM for this case is 1484 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1485 * AArch64.vESBOperation(); 1486 * Most of the condition can be evaluated at translation time. 1487 * Test for EL2 present, and defer test for SEL2 to runtime. 1488 */ 1489 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1490 gen_helper_vesb(cpu_env); 1491 } 1492 } 1493 break; 1494 case 0b11000: /* PACIAZ */ 1495 if (s->pauth_active) { 1496 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1497 tcg_constant_i64(0)); 1498 } 1499 break; 1500 case 0b11001: /* PACIASP */ 1501 if (s->pauth_active) { 1502 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1503 } 1504 break; 1505 case 0b11010: /* PACIBZ */ 1506 if (s->pauth_active) { 1507 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1508 tcg_constant_i64(0)); 1509 } 1510 break; 1511 case 0b11011: /* PACIBSP */ 1512 if (s->pauth_active) { 1513 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1514 } 1515 break; 1516 case 0b11100: /* AUTIAZ */ 1517 if (s->pauth_active) { 1518 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1519 tcg_constant_i64(0)); 1520 } 1521 break; 1522 case 0b11101: /* AUTIASP */ 1523 if (s->pauth_active) { 1524 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1525 } 1526 break; 1527 case 0b11110: /* AUTIBZ */ 1528 if (s->pauth_active) { 1529 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1530 tcg_constant_i64(0)); 1531 } 1532 break; 1533 case 0b11111: /* AUTIBSP */ 1534 if (s->pauth_active) { 1535 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1536 } 1537 break; 1538 default: 1539 /* default specified as NOP equivalent */ 1540 break; 1541 } 1542 } 1543 1544 static void gen_clrex(DisasContext *s, uint32_t insn) 1545 { 1546 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1547 } 1548 1549 /* CLREX, DSB, DMB, ISB */ 1550 static void handle_sync(DisasContext *s, uint32_t insn, 1551 unsigned int op1, unsigned int op2, unsigned int crm) 1552 { 1553 TCGBar bar; 1554 1555 if (op1 != 3) { 1556 unallocated_encoding(s); 1557 return; 1558 } 1559 1560 switch (op2) { 1561 case 2: /* CLREX */ 1562 gen_clrex(s, insn); 1563 return; 1564 case 4: /* DSB */ 1565 case 5: /* DMB */ 1566 switch (crm & 3) { 1567 case 1: /* MBReqTypes_Reads */ 1568 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1569 break; 1570 case 2: /* MBReqTypes_Writes */ 1571 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1572 break; 1573 default: /* MBReqTypes_All */ 1574 bar = TCG_BAR_SC | TCG_MO_ALL; 1575 break; 1576 } 1577 tcg_gen_mb(bar); 1578 return; 1579 case 6: /* ISB */ 1580 /* We need to break the TB after this insn to execute 1581 * a self-modified code correctly and also to take 1582 * any pending interrupts immediately. 1583 */ 1584 reset_btype(s); 1585 gen_goto_tb(s, 0, 4); 1586 return; 1587 1588 case 7: /* SB */ 1589 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1590 goto do_unallocated; 1591 } 1592 /* 1593 * TODO: There is no speculation barrier opcode for TCG; 1594 * MB and end the TB instead. 1595 */ 1596 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1597 gen_goto_tb(s, 0, 4); 1598 return; 1599 1600 default: 1601 do_unallocated: 1602 unallocated_encoding(s); 1603 return; 1604 } 1605 } 1606 1607 static void gen_xaflag(void) 1608 { 1609 TCGv_i32 z = tcg_temp_new_i32(); 1610 1611 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1612 1613 /* 1614 * (!C & !Z) << 31 1615 * (!(C | Z)) << 31 1616 * ~((C | Z) << 31) 1617 * ~-(C | Z) 1618 * (C | Z) - 1 1619 */ 1620 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1621 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1622 1623 /* !(Z & C) */ 1624 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1625 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1626 1627 /* (!C & Z) << 31 -> -(Z & ~C) */ 1628 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1629 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1630 1631 /* C | Z */ 1632 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1633 } 1634 1635 static void gen_axflag(void) 1636 { 1637 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1638 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1639 1640 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1641 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1642 1643 tcg_gen_movi_i32(cpu_NF, 0); 1644 tcg_gen_movi_i32(cpu_VF, 0); 1645 } 1646 1647 /* MSR (immediate) - move immediate to processor state field */ 1648 static void handle_msr_i(DisasContext *s, uint32_t insn, 1649 unsigned int op1, unsigned int op2, unsigned int crm) 1650 { 1651 int op = op1 << 3 | op2; 1652 1653 /* End the TB by default, chaining is ok. */ 1654 s->base.is_jmp = DISAS_TOO_MANY; 1655 1656 switch (op) { 1657 case 0x00: /* CFINV */ 1658 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1659 goto do_unallocated; 1660 } 1661 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1662 s->base.is_jmp = DISAS_NEXT; 1663 break; 1664 1665 case 0x01: /* XAFlag */ 1666 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1667 goto do_unallocated; 1668 } 1669 gen_xaflag(); 1670 s->base.is_jmp = DISAS_NEXT; 1671 break; 1672 1673 case 0x02: /* AXFlag */ 1674 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1675 goto do_unallocated; 1676 } 1677 gen_axflag(); 1678 s->base.is_jmp = DISAS_NEXT; 1679 break; 1680 1681 case 0x03: /* UAO */ 1682 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1683 goto do_unallocated; 1684 } 1685 if (crm & 1) { 1686 set_pstate_bits(PSTATE_UAO); 1687 } else { 1688 clear_pstate_bits(PSTATE_UAO); 1689 } 1690 gen_rebuild_hflags(s); 1691 break; 1692 1693 case 0x04: /* PAN */ 1694 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1695 goto do_unallocated; 1696 } 1697 if (crm & 1) { 1698 set_pstate_bits(PSTATE_PAN); 1699 } else { 1700 clear_pstate_bits(PSTATE_PAN); 1701 } 1702 gen_rebuild_hflags(s); 1703 break; 1704 1705 case 0x05: /* SPSel */ 1706 if (s->current_el == 0) { 1707 goto do_unallocated; 1708 } 1709 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1710 break; 1711 1712 case 0x19: /* SSBS */ 1713 if (!dc_isar_feature(aa64_ssbs, s)) { 1714 goto do_unallocated; 1715 } 1716 if (crm & 1) { 1717 set_pstate_bits(PSTATE_SSBS); 1718 } else { 1719 clear_pstate_bits(PSTATE_SSBS); 1720 } 1721 /* Don't need to rebuild hflags since SSBS is a nop */ 1722 break; 1723 1724 case 0x1a: /* DIT */ 1725 if (!dc_isar_feature(aa64_dit, s)) { 1726 goto do_unallocated; 1727 } 1728 if (crm & 1) { 1729 set_pstate_bits(PSTATE_DIT); 1730 } else { 1731 clear_pstate_bits(PSTATE_DIT); 1732 } 1733 /* There's no need to rebuild hflags because DIT is a nop */ 1734 break; 1735 1736 case 0x1e: /* DAIFSet */ 1737 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1738 break; 1739 1740 case 0x1f: /* DAIFClear */ 1741 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1742 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1743 s->base.is_jmp = DISAS_UPDATE_EXIT; 1744 break; 1745 1746 case 0x1c: /* TCO */ 1747 if (dc_isar_feature(aa64_mte, s)) { 1748 /* Full MTE is enabled -- set the TCO bit as directed. */ 1749 if (crm & 1) { 1750 set_pstate_bits(PSTATE_TCO); 1751 } else { 1752 clear_pstate_bits(PSTATE_TCO); 1753 } 1754 gen_rebuild_hflags(s); 1755 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1756 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1757 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1758 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1759 s->base.is_jmp = DISAS_NEXT; 1760 } else { 1761 goto do_unallocated; 1762 } 1763 break; 1764 1765 case 0x1b: /* SVCR* */ 1766 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1767 goto do_unallocated; 1768 } 1769 if (sme_access_check(s)) { 1770 int old = s->pstate_sm | (s->pstate_za << 1); 1771 int new = (crm & 1) * 3; 1772 int msk = (crm >> 1) & 3; 1773 1774 if ((old ^ new) & msk) { 1775 /* At least one bit changes. */ 1776 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1777 tcg_constant_i32(msk)); 1778 } else { 1779 s->base.is_jmp = DISAS_NEXT; 1780 } 1781 } 1782 break; 1783 1784 default: 1785 do_unallocated: 1786 unallocated_encoding(s); 1787 return; 1788 } 1789 } 1790 1791 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1792 { 1793 TCGv_i32 tmp = tcg_temp_new_i32(); 1794 TCGv_i32 nzcv = tcg_temp_new_i32(); 1795 1796 /* build bit 31, N */ 1797 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1798 /* build bit 30, Z */ 1799 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1800 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1801 /* build bit 29, C */ 1802 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1803 /* build bit 28, V */ 1804 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1805 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1806 /* generate result */ 1807 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1808 } 1809 1810 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1811 { 1812 TCGv_i32 nzcv = tcg_temp_new_i32(); 1813 1814 /* take NZCV from R[t] */ 1815 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1816 1817 /* bit 31, N */ 1818 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1819 /* bit 30, Z */ 1820 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1821 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1822 /* bit 29, C */ 1823 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1824 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1825 /* bit 28, V */ 1826 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1827 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1828 } 1829 1830 static void gen_sysreg_undef(DisasContext *s, bool isread, 1831 uint8_t op0, uint8_t op1, uint8_t op2, 1832 uint8_t crn, uint8_t crm, uint8_t rt) 1833 { 1834 /* 1835 * Generate code to emit an UNDEF with correct syndrome 1836 * information for a failed system register access. 1837 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1838 * but if FEAT_IDST is implemented then read accesses to registers 1839 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1840 * syndrome. 1841 */ 1842 uint32_t syndrome; 1843 1844 if (isread && dc_isar_feature(aa64_ids, s) && 1845 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 1846 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1847 } else { 1848 syndrome = syn_uncategorized(); 1849 } 1850 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 1851 } 1852 1853 /* MRS - move from system register 1854 * MSR (register) - move to system register 1855 * SYS 1856 * SYSL 1857 * These are all essentially the same insn in 'read' and 'write' 1858 * versions, with varying op0 fields. 1859 */ 1860 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 1861 unsigned int op0, unsigned int op1, unsigned int op2, 1862 unsigned int crn, unsigned int crm, unsigned int rt) 1863 { 1864 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 1865 crn, crm, op0, op1, op2); 1866 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 1867 TCGv_ptr tcg_ri = NULL; 1868 TCGv_i64 tcg_rt; 1869 1870 if (!ri) { 1871 /* Unknown register; this might be a guest error or a QEMU 1872 * unimplemented feature. 1873 */ 1874 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 1875 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 1876 isread ? "read" : "write", op0, op1, crn, crm, op2); 1877 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1878 return; 1879 } 1880 1881 /* Check access permissions */ 1882 if (!cp_access_ok(s->current_el, ri, isread)) { 1883 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1884 return; 1885 } 1886 1887 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 1888 /* Emit code to perform further access permissions checks at 1889 * runtime; this may result in an exception. 1890 */ 1891 uint32_t syndrome; 1892 1893 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1894 gen_a64_update_pc(s, 0); 1895 tcg_ri = tcg_temp_new_ptr(); 1896 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 1897 tcg_constant_i32(key), 1898 tcg_constant_i32(syndrome), 1899 tcg_constant_i32(isread)); 1900 } else if (ri->type & ARM_CP_RAISES_EXC) { 1901 /* 1902 * The readfn or writefn might raise an exception; 1903 * synchronize the CPU state in case it does. 1904 */ 1905 gen_a64_update_pc(s, 0); 1906 } 1907 1908 /* Handle special cases first */ 1909 switch (ri->type & ARM_CP_SPECIAL_MASK) { 1910 case 0: 1911 break; 1912 case ARM_CP_NOP: 1913 return; 1914 case ARM_CP_NZCV: 1915 tcg_rt = cpu_reg(s, rt); 1916 if (isread) { 1917 gen_get_nzcv(tcg_rt); 1918 } else { 1919 gen_set_nzcv(tcg_rt); 1920 } 1921 return; 1922 case ARM_CP_CURRENTEL: 1923 /* Reads as current EL value from pstate, which is 1924 * guaranteed to be constant by the tb flags. 1925 */ 1926 tcg_rt = cpu_reg(s, rt); 1927 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 1928 return; 1929 case ARM_CP_DC_ZVA: 1930 /* Writes clear the aligned block of memory which rt points into. */ 1931 if (s->mte_active[0]) { 1932 int desc = 0; 1933 1934 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 1935 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 1936 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 1937 1938 tcg_rt = tcg_temp_new_i64(); 1939 gen_helper_mte_check_zva(tcg_rt, cpu_env, 1940 tcg_constant_i32(desc), cpu_reg(s, rt)); 1941 } else { 1942 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 1943 } 1944 gen_helper_dc_zva(cpu_env, tcg_rt); 1945 return; 1946 case ARM_CP_DC_GVA: 1947 { 1948 TCGv_i64 clean_addr, tag; 1949 1950 /* 1951 * DC_GVA, like DC_ZVA, requires that we supply the original 1952 * pointer for an invalid page. Probe that address first. 1953 */ 1954 tcg_rt = cpu_reg(s, rt); 1955 clean_addr = clean_data_tbi(s, tcg_rt); 1956 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 1957 1958 if (s->ata) { 1959 /* Extract the tag from the register to match STZGM. */ 1960 tag = tcg_temp_new_i64(); 1961 tcg_gen_shri_i64(tag, tcg_rt, 56); 1962 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1963 } 1964 } 1965 return; 1966 case ARM_CP_DC_GZVA: 1967 { 1968 TCGv_i64 clean_addr, tag; 1969 1970 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 1971 tcg_rt = cpu_reg(s, rt); 1972 clean_addr = clean_data_tbi(s, tcg_rt); 1973 gen_helper_dc_zva(cpu_env, clean_addr); 1974 1975 if (s->ata) { 1976 /* Extract the tag from the register to match STZGM. */ 1977 tag = tcg_temp_new_i64(); 1978 tcg_gen_shri_i64(tag, tcg_rt, 56); 1979 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1980 } 1981 } 1982 return; 1983 default: 1984 g_assert_not_reached(); 1985 } 1986 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 1987 return; 1988 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 1989 return; 1990 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 1991 return; 1992 } 1993 1994 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 1995 gen_io_start(); 1996 } 1997 1998 tcg_rt = cpu_reg(s, rt); 1999 2000 if (isread) { 2001 if (ri->type & ARM_CP_CONST) { 2002 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2003 } else if (ri->readfn) { 2004 if (!tcg_ri) { 2005 tcg_ri = gen_lookup_cp_reg(key); 2006 } 2007 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2008 } else { 2009 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2010 } 2011 } else { 2012 if (ri->type & ARM_CP_CONST) { 2013 /* If not forbidden by access permissions, treat as WI */ 2014 return; 2015 } else if (ri->writefn) { 2016 if (!tcg_ri) { 2017 tcg_ri = gen_lookup_cp_reg(key); 2018 } 2019 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2020 } else { 2021 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2022 } 2023 } 2024 2025 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2026 /* I/O operations must end the TB here (whether read or write) */ 2027 s->base.is_jmp = DISAS_UPDATE_EXIT; 2028 } 2029 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2030 /* 2031 * A write to any coprocessor regiser that ends a TB 2032 * must rebuild the hflags for the next TB. 2033 */ 2034 gen_rebuild_hflags(s); 2035 /* 2036 * We default to ending the TB on a coprocessor register write, 2037 * but allow this to be suppressed by the register definition 2038 * (usually only necessary to work around guest bugs). 2039 */ 2040 s->base.is_jmp = DISAS_UPDATE_EXIT; 2041 } 2042 } 2043 2044 /* System 2045 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2046 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2047 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2048 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2049 */ 2050 static void disas_system(DisasContext *s, uint32_t insn) 2051 { 2052 unsigned int l, op0, op1, crn, crm, op2, rt; 2053 l = extract32(insn, 21, 1); 2054 op0 = extract32(insn, 19, 2); 2055 op1 = extract32(insn, 16, 3); 2056 crn = extract32(insn, 12, 4); 2057 crm = extract32(insn, 8, 4); 2058 op2 = extract32(insn, 5, 3); 2059 rt = extract32(insn, 0, 5); 2060 2061 if (op0 == 0) { 2062 if (l || rt != 31) { 2063 unallocated_encoding(s); 2064 return; 2065 } 2066 switch (crn) { 2067 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2068 handle_hint(s, insn, op1, op2, crm); 2069 break; 2070 case 3: /* CLREX, DSB, DMB, ISB */ 2071 handle_sync(s, insn, op1, op2, crm); 2072 break; 2073 case 4: /* MSR (immediate) */ 2074 handle_msr_i(s, insn, op1, op2, crm); 2075 break; 2076 default: 2077 unallocated_encoding(s); 2078 break; 2079 } 2080 return; 2081 } 2082 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2083 } 2084 2085 /* Exception generation 2086 * 2087 * 31 24 23 21 20 5 4 2 1 0 2088 * +-----------------+-----+------------------------+-----+----+ 2089 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2090 * +-----------------------+------------------------+----------+ 2091 */ 2092 static void disas_exc(DisasContext *s, uint32_t insn) 2093 { 2094 int opc = extract32(insn, 21, 3); 2095 int op2_ll = extract32(insn, 0, 5); 2096 int imm16 = extract32(insn, 5, 16); 2097 uint32_t syndrome; 2098 2099 switch (opc) { 2100 case 0: 2101 /* For SVC, HVC and SMC we advance the single-step state 2102 * machine before taking the exception. This is architecturally 2103 * mandated, to ensure that single-stepping a system call 2104 * instruction works properly. 2105 */ 2106 switch (op2_ll) { 2107 case 1: /* SVC */ 2108 syndrome = syn_aa64_svc(imm16); 2109 if (s->fgt_svc) { 2110 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2111 break; 2112 } 2113 gen_ss_advance(s); 2114 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2115 break; 2116 case 2: /* HVC */ 2117 if (s->current_el == 0) { 2118 unallocated_encoding(s); 2119 break; 2120 } 2121 /* The pre HVC helper handles cases when HVC gets trapped 2122 * as an undefined insn by runtime configuration. 2123 */ 2124 gen_a64_update_pc(s, 0); 2125 gen_helper_pre_hvc(cpu_env); 2126 gen_ss_advance(s); 2127 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2128 break; 2129 case 3: /* SMC */ 2130 if (s->current_el == 0) { 2131 unallocated_encoding(s); 2132 break; 2133 } 2134 gen_a64_update_pc(s, 0); 2135 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2136 gen_ss_advance(s); 2137 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2138 break; 2139 default: 2140 unallocated_encoding(s); 2141 break; 2142 } 2143 break; 2144 case 1: 2145 if (op2_ll != 0) { 2146 unallocated_encoding(s); 2147 break; 2148 } 2149 /* BRK */ 2150 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2151 break; 2152 case 2: 2153 if (op2_ll != 0) { 2154 unallocated_encoding(s); 2155 break; 2156 } 2157 /* HLT. This has two purposes. 2158 * Architecturally, it is an external halting debug instruction. 2159 * Since QEMU doesn't implement external debug, we treat this as 2160 * it is required for halting debug disabled: it will UNDEF. 2161 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2162 */ 2163 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2164 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2165 } else { 2166 unallocated_encoding(s); 2167 } 2168 break; 2169 case 5: 2170 if (op2_ll < 1 || op2_ll > 3) { 2171 unallocated_encoding(s); 2172 break; 2173 } 2174 /* DCPS1, DCPS2, DCPS3 */ 2175 unallocated_encoding(s); 2176 break; 2177 default: 2178 unallocated_encoding(s); 2179 break; 2180 } 2181 } 2182 2183 /* Unconditional branch (register) 2184 * 31 25 24 21 20 16 15 10 9 5 4 0 2185 * +---------------+-------+-------+-------+------+-------+ 2186 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | 2187 * +---------------+-------+-------+-------+------+-------+ 2188 */ 2189 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) 2190 { 2191 unsigned int opc, op2, op3, rn, op4; 2192 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */ 2193 TCGv_i64 dst; 2194 TCGv_i64 modifier; 2195 2196 opc = extract32(insn, 21, 4); 2197 op2 = extract32(insn, 16, 5); 2198 op3 = extract32(insn, 10, 6); 2199 rn = extract32(insn, 5, 5); 2200 op4 = extract32(insn, 0, 5); 2201 2202 if (op2 != 0x1f) { 2203 goto do_unallocated; 2204 } 2205 2206 switch (opc) { 2207 case 0: /* BR */ 2208 case 1: /* BLR */ 2209 case 2: /* RET */ 2210 btype_mod = opc; 2211 switch (op3) { 2212 case 0: 2213 /* BR, BLR, RET */ 2214 if (op4 != 0) { 2215 goto do_unallocated; 2216 } 2217 dst = cpu_reg(s, rn); 2218 break; 2219 2220 case 2: 2221 case 3: 2222 if (!dc_isar_feature(aa64_pauth, s)) { 2223 goto do_unallocated; 2224 } 2225 if (opc == 2) { 2226 /* RETAA, RETAB */ 2227 if (rn != 0x1f || op4 != 0x1f) { 2228 goto do_unallocated; 2229 } 2230 rn = 30; 2231 modifier = cpu_X[31]; 2232 } else { 2233 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */ 2234 if (op4 != 0x1f) { 2235 goto do_unallocated; 2236 } 2237 modifier = tcg_constant_i64(0); 2238 } 2239 if (s->pauth_active) { 2240 dst = tcg_temp_new_i64(); 2241 if (op3 == 2) { 2242 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2243 } else { 2244 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2245 } 2246 } else { 2247 dst = cpu_reg(s, rn); 2248 } 2249 break; 2250 2251 default: 2252 goto do_unallocated; 2253 } 2254 /* BLR also needs to load return address */ 2255 if (opc == 1) { 2256 TCGv_i64 lr = cpu_reg(s, 30); 2257 if (dst == lr) { 2258 TCGv_i64 tmp = tcg_temp_new_i64(); 2259 tcg_gen_mov_i64(tmp, dst); 2260 dst = tmp; 2261 } 2262 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2263 } 2264 gen_a64_set_pc(s, dst); 2265 break; 2266 2267 case 8: /* BRAA */ 2268 case 9: /* BLRAA */ 2269 if (!dc_isar_feature(aa64_pauth, s)) { 2270 goto do_unallocated; 2271 } 2272 if ((op3 & ~1) != 2) { 2273 goto do_unallocated; 2274 } 2275 btype_mod = opc & 1; 2276 if (s->pauth_active) { 2277 dst = tcg_temp_new_i64(); 2278 modifier = cpu_reg_sp(s, op4); 2279 if (op3 == 2) { 2280 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2281 } else { 2282 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2283 } 2284 } else { 2285 dst = cpu_reg(s, rn); 2286 } 2287 /* BLRAA also needs to load return address */ 2288 if (opc == 9) { 2289 TCGv_i64 lr = cpu_reg(s, 30); 2290 if (dst == lr) { 2291 TCGv_i64 tmp = tcg_temp_new_i64(); 2292 tcg_gen_mov_i64(tmp, dst); 2293 dst = tmp; 2294 } 2295 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2296 } 2297 gen_a64_set_pc(s, dst); 2298 break; 2299 2300 case 4: /* ERET */ 2301 if (s->current_el == 0) { 2302 goto do_unallocated; 2303 } 2304 switch (op3) { 2305 case 0: /* ERET */ 2306 if (op4 != 0) { 2307 goto do_unallocated; 2308 } 2309 if (s->fgt_eret) { 2310 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2311 return; 2312 } 2313 dst = tcg_temp_new_i64(); 2314 tcg_gen_ld_i64(dst, cpu_env, 2315 offsetof(CPUARMState, elr_el[s->current_el])); 2316 break; 2317 2318 case 2: /* ERETAA */ 2319 case 3: /* ERETAB */ 2320 if (!dc_isar_feature(aa64_pauth, s)) { 2321 goto do_unallocated; 2322 } 2323 if (rn != 0x1f || op4 != 0x1f) { 2324 goto do_unallocated; 2325 } 2326 /* The FGT trap takes precedence over an auth trap. */ 2327 if (s->fgt_eret) { 2328 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2329 return; 2330 } 2331 dst = tcg_temp_new_i64(); 2332 tcg_gen_ld_i64(dst, cpu_env, 2333 offsetof(CPUARMState, elr_el[s->current_el])); 2334 if (s->pauth_active) { 2335 modifier = cpu_X[31]; 2336 if (op3 == 2) { 2337 gen_helper_autia(dst, cpu_env, dst, modifier); 2338 } else { 2339 gen_helper_autib(dst, cpu_env, dst, modifier); 2340 } 2341 } 2342 break; 2343 2344 default: 2345 goto do_unallocated; 2346 } 2347 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 2348 gen_io_start(); 2349 } 2350 2351 gen_helper_exception_return(cpu_env, dst); 2352 /* Must exit loop to check un-masked IRQs */ 2353 s->base.is_jmp = DISAS_EXIT; 2354 return; 2355 2356 case 5: /* DRPS */ 2357 if (op3 != 0 || op4 != 0 || rn != 0x1f) { 2358 goto do_unallocated; 2359 } else { 2360 unallocated_encoding(s); 2361 } 2362 return; 2363 2364 default: 2365 do_unallocated: 2366 unallocated_encoding(s); 2367 return; 2368 } 2369 2370 switch (btype_mod) { 2371 case 0: /* BR */ 2372 if (dc_isar_feature(aa64_bti, s)) { 2373 /* BR to {x16,x17} or !guard -> 1, else 3. */ 2374 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 2375 } 2376 break; 2377 2378 case 1: /* BLR */ 2379 if (dc_isar_feature(aa64_bti, s)) { 2380 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 2381 set_btype(s, 2); 2382 } 2383 break; 2384 2385 default: /* RET or none of the above. */ 2386 /* BTYPE will be set to 0 by normal end-of-insn processing. */ 2387 break; 2388 } 2389 2390 s->base.is_jmp = DISAS_JUMP; 2391 } 2392 2393 /* Branches, exception generating and system instructions */ 2394 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2395 { 2396 switch (extract32(insn, 25, 7)) { 2397 case 0x0a: case 0x0b: 2398 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ 2399 disas_uncond_b_imm(s, insn); 2400 break; 2401 case 0x1a: case 0x5a: /* Compare & branch (immediate) */ 2402 disas_comp_b_imm(s, insn); 2403 break; 2404 case 0x1b: case 0x5b: /* Test & branch (immediate) */ 2405 disas_test_b_imm(s, insn); 2406 break; 2407 case 0x2a: /* Conditional branch (immediate) */ 2408 disas_cond_b_imm(s, insn); 2409 break; 2410 case 0x6a: /* Exception generation / System */ 2411 if (insn & (1 << 24)) { 2412 if (extract32(insn, 22, 2) == 0) { 2413 disas_system(s, insn); 2414 } else { 2415 unallocated_encoding(s); 2416 } 2417 } else { 2418 disas_exc(s, insn); 2419 } 2420 break; 2421 case 0x6b: /* Unconditional branch (register) */ 2422 disas_uncond_b_reg(s, insn); 2423 break; 2424 default: 2425 unallocated_encoding(s); 2426 break; 2427 } 2428 } 2429 2430 /* 2431 * Load/Store exclusive instructions are implemented by remembering 2432 * the value/address loaded, and seeing if these are the same 2433 * when the store is performed. This is not actually the architecturally 2434 * mandated semantics, but it works for typical guest code sequences 2435 * and avoids having to monitor regular stores. 2436 * 2437 * The store exclusive uses the atomic cmpxchg primitives to avoid 2438 * races in multi-threaded linux-user and when MTTCG softmmu is 2439 * enabled. 2440 */ 2441 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2442 TCGv_i64 addr, int size, bool is_pair) 2443 { 2444 int idx = get_mem_index(s); 2445 MemOp memop = s->be_data; 2446 2447 g_assert(size <= 3); 2448 if (is_pair) { 2449 g_assert(size >= 2); 2450 if (size == 2) { 2451 /* The pair must be single-copy atomic for the doubleword. */ 2452 memop |= MO_64 | MO_ALIGN; 2453 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2454 if (s->be_data == MO_LE) { 2455 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2456 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2457 } else { 2458 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2459 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2460 } 2461 } else { 2462 /* The pair must be single-copy atomic for *each* doubleword, not 2463 the entire quadword, however it must be quadword aligned. */ 2464 memop |= MO_64; 2465 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, 2466 memop | MO_ALIGN_16); 2467 2468 TCGv_i64 addr2 = tcg_temp_new_i64(); 2469 tcg_gen_addi_i64(addr2, addr, 8); 2470 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); 2471 2472 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2473 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2474 } 2475 } else { 2476 memop |= size | MO_ALIGN; 2477 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2478 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2479 } 2480 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2481 } 2482 2483 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2484 TCGv_i64 addr, int size, int is_pair) 2485 { 2486 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2487 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2488 * [addr] = {Rt}; 2489 * if (is_pair) { 2490 * [addr + datasize] = {Rt2}; 2491 * } 2492 * {Rd} = 0; 2493 * } else { 2494 * {Rd} = 1; 2495 * } 2496 * env->exclusive_addr = -1; 2497 */ 2498 TCGLabel *fail_label = gen_new_label(); 2499 TCGLabel *done_label = gen_new_label(); 2500 TCGv_i64 tmp; 2501 2502 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2503 2504 tmp = tcg_temp_new_i64(); 2505 if (is_pair) { 2506 if (size == 2) { 2507 if (s->be_data == MO_LE) { 2508 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2509 } else { 2510 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2511 } 2512 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2513 cpu_exclusive_val, tmp, 2514 get_mem_index(s), 2515 MO_64 | MO_ALIGN | s->be_data); 2516 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2517 } else { 2518 TCGv_i128 t16 = tcg_temp_new_i128(); 2519 TCGv_i128 c16 = tcg_temp_new_i128(); 2520 TCGv_i64 a, b; 2521 2522 if (s->be_data == MO_LE) { 2523 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2524 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2525 cpu_exclusive_high); 2526 } else { 2527 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2528 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2529 cpu_exclusive_val); 2530 } 2531 2532 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2533 get_mem_index(s), 2534 MO_128 | MO_ALIGN | s->be_data); 2535 2536 a = tcg_temp_new_i64(); 2537 b = tcg_temp_new_i64(); 2538 if (s->be_data == MO_LE) { 2539 tcg_gen_extr_i128_i64(a, b, t16); 2540 } else { 2541 tcg_gen_extr_i128_i64(b, a, t16); 2542 } 2543 2544 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2545 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2546 tcg_gen_or_i64(tmp, a, b); 2547 2548 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2549 } 2550 } else { 2551 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2552 cpu_reg(s, rt), get_mem_index(s), 2553 size | MO_ALIGN | s->be_data); 2554 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2555 } 2556 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2557 tcg_gen_br(done_label); 2558 2559 gen_set_label(fail_label); 2560 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2561 gen_set_label(done_label); 2562 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2563 } 2564 2565 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2566 int rn, int size) 2567 { 2568 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2569 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2570 int memidx = get_mem_index(s); 2571 TCGv_i64 clean_addr; 2572 2573 if (rn == 31) { 2574 gen_check_sp_alignment(s); 2575 } 2576 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2577 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2578 size | MO_ALIGN | s->be_data); 2579 } 2580 2581 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2582 int rn, int size) 2583 { 2584 TCGv_i64 s1 = cpu_reg(s, rs); 2585 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2586 TCGv_i64 t1 = cpu_reg(s, rt); 2587 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2588 TCGv_i64 clean_addr; 2589 int memidx = get_mem_index(s); 2590 2591 if (rn == 31) { 2592 gen_check_sp_alignment(s); 2593 } 2594 2595 /* This is a single atomic access, despite the "pair". */ 2596 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2597 2598 if (size == 2) { 2599 TCGv_i64 cmp = tcg_temp_new_i64(); 2600 TCGv_i64 val = tcg_temp_new_i64(); 2601 2602 if (s->be_data == MO_LE) { 2603 tcg_gen_concat32_i64(val, t1, t2); 2604 tcg_gen_concat32_i64(cmp, s1, s2); 2605 } else { 2606 tcg_gen_concat32_i64(val, t2, t1); 2607 tcg_gen_concat32_i64(cmp, s2, s1); 2608 } 2609 2610 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2611 MO_64 | MO_ALIGN | s->be_data); 2612 2613 if (s->be_data == MO_LE) { 2614 tcg_gen_extr32_i64(s1, s2, cmp); 2615 } else { 2616 tcg_gen_extr32_i64(s2, s1, cmp); 2617 } 2618 } else { 2619 TCGv_i128 cmp = tcg_temp_new_i128(); 2620 TCGv_i128 val = tcg_temp_new_i128(); 2621 2622 if (s->be_data == MO_LE) { 2623 tcg_gen_concat_i64_i128(val, t1, t2); 2624 tcg_gen_concat_i64_i128(cmp, s1, s2); 2625 } else { 2626 tcg_gen_concat_i64_i128(val, t2, t1); 2627 tcg_gen_concat_i64_i128(cmp, s2, s1); 2628 } 2629 2630 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2631 MO_128 | MO_ALIGN | s->be_data); 2632 2633 if (s->be_data == MO_LE) { 2634 tcg_gen_extr_i128_i64(s1, s2, cmp); 2635 } else { 2636 tcg_gen_extr_i128_i64(s2, s1, cmp); 2637 } 2638 } 2639 } 2640 2641 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2642 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2643 */ 2644 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2645 { 2646 int opc0 = extract32(opc, 0, 1); 2647 int regsize; 2648 2649 if (is_signed) { 2650 regsize = opc0 ? 32 : 64; 2651 } else { 2652 regsize = size == 3 ? 64 : 32; 2653 } 2654 return regsize == 64; 2655 } 2656 2657 /* Load/store exclusive 2658 * 2659 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2660 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2661 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2662 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2663 * 2664 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2665 * L: 0 -> store, 1 -> load 2666 * o2: 0 -> exclusive, 1 -> not 2667 * o1: 0 -> single register, 1 -> register pair 2668 * o0: 1 -> load-acquire/store-release, 0 -> not 2669 */ 2670 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2671 { 2672 int rt = extract32(insn, 0, 5); 2673 int rn = extract32(insn, 5, 5); 2674 int rt2 = extract32(insn, 10, 5); 2675 int rs = extract32(insn, 16, 5); 2676 int is_lasr = extract32(insn, 15, 1); 2677 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2678 int size = extract32(insn, 30, 2); 2679 TCGv_i64 clean_addr; 2680 2681 switch (o2_L_o1_o0) { 2682 case 0x0: /* STXR */ 2683 case 0x1: /* STLXR */ 2684 if (rn == 31) { 2685 gen_check_sp_alignment(s); 2686 } 2687 if (is_lasr) { 2688 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2689 } 2690 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2691 true, rn != 31, size); 2692 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2693 return; 2694 2695 case 0x4: /* LDXR */ 2696 case 0x5: /* LDAXR */ 2697 if (rn == 31) { 2698 gen_check_sp_alignment(s); 2699 } 2700 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2701 false, rn != 31, size); 2702 s->is_ldex = true; 2703 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2704 if (is_lasr) { 2705 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2706 } 2707 return; 2708 2709 case 0x8: /* STLLR */ 2710 if (!dc_isar_feature(aa64_lor, s)) { 2711 break; 2712 } 2713 /* StoreLORelease is the same as Store-Release for QEMU. */ 2714 /* fall through */ 2715 case 0x9: /* STLR */ 2716 /* Generate ISS for non-exclusive accesses including LASR. */ 2717 if (rn == 31) { 2718 gen_check_sp_alignment(s); 2719 } 2720 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2721 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2722 true, rn != 31, size); 2723 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2724 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2725 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2726 return; 2727 2728 case 0xc: /* LDLAR */ 2729 if (!dc_isar_feature(aa64_lor, s)) { 2730 break; 2731 } 2732 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2733 /* fall through */ 2734 case 0xd: /* LDAR */ 2735 /* Generate ISS for non-exclusive accesses including LASR. */ 2736 if (rn == 31) { 2737 gen_check_sp_alignment(s); 2738 } 2739 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2740 false, rn != 31, size); 2741 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2742 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2743 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2744 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2745 return; 2746 2747 case 0x2: case 0x3: /* CASP / STXP */ 2748 if (size & 2) { /* STXP / STLXP */ 2749 if (rn == 31) { 2750 gen_check_sp_alignment(s); 2751 } 2752 if (is_lasr) { 2753 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2754 } 2755 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2756 true, rn != 31, size); 2757 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2758 return; 2759 } 2760 if (rt2 == 31 2761 && ((rt | rs) & 1) == 0 2762 && dc_isar_feature(aa64_atomics, s)) { 2763 /* CASP / CASPL */ 2764 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2765 return; 2766 } 2767 break; 2768 2769 case 0x6: case 0x7: /* CASPA / LDXP */ 2770 if (size & 2) { /* LDXP / LDAXP */ 2771 if (rn == 31) { 2772 gen_check_sp_alignment(s); 2773 } 2774 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2775 false, rn != 31, size); 2776 s->is_ldex = true; 2777 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2778 if (is_lasr) { 2779 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2780 } 2781 return; 2782 } 2783 if (rt2 == 31 2784 && ((rt | rs) & 1) == 0 2785 && dc_isar_feature(aa64_atomics, s)) { 2786 /* CASPA / CASPAL */ 2787 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2788 return; 2789 } 2790 break; 2791 2792 case 0xa: /* CAS */ 2793 case 0xb: /* CASL */ 2794 case 0xe: /* CASA */ 2795 case 0xf: /* CASAL */ 2796 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2797 gen_compare_and_swap(s, rs, rt, rn, size); 2798 return; 2799 } 2800 break; 2801 } 2802 unallocated_encoding(s); 2803 } 2804 2805 /* 2806 * Load register (literal) 2807 * 2808 * 31 30 29 27 26 25 24 23 5 4 0 2809 * +-----+-------+---+-----+-------------------+-------+ 2810 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2811 * +-----+-------+---+-----+-------------------+-------+ 2812 * 2813 * V: 1 -> vector (simd/fp) 2814 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2815 * 10-> 32 bit signed, 11 -> prefetch 2816 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2817 */ 2818 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2819 { 2820 int rt = extract32(insn, 0, 5); 2821 int64_t imm = sextract32(insn, 5, 19) << 2; 2822 bool is_vector = extract32(insn, 26, 1); 2823 int opc = extract32(insn, 30, 2); 2824 bool is_signed = false; 2825 int size = 2; 2826 TCGv_i64 tcg_rt, clean_addr; 2827 2828 if (is_vector) { 2829 if (opc == 3) { 2830 unallocated_encoding(s); 2831 return; 2832 } 2833 size = 2 + opc; 2834 if (!fp_access_check(s)) { 2835 return; 2836 } 2837 } else { 2838 if (opc == 3) { 2839 /* PRFM (literal) : prefetch */ 2840 return; 2841 } 2842 size = 2 + extract32(opc, 0, 1); 2843 is_signed = extract32(opc, 1, 1); 2844 } 2845 2846 tcg_rt = cpu_reg(s, rt); 2847 2848 clean_addr = tcg_temp_new_i64(); 2849 gen_pc_plus_diff(s, clean_addr, imm); 2850 if (is_vector) { 2851 do_fp_ld(s, rt, clean_addr, size); 2852 } else { 2853 /* Only unsigned 32bit loads target 32bit registers. */ 2854 bool iss_sf = opc != 0; 2855 2856 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2857 false, true, rt, iss_sf, false); 2858 } 2859 } 2860 2861 /* 2862 * LDNP (Load Pair - non-temporal hint) 2863 * LDP (Load Pair - non vector) 2864 * LDPSW (Load Pair Signed Word - non vector) 2865 * STNP (Store Pair - non-temporal hint) 2866 * STP (Store Pair - non vector) 2867 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2868 * LDP (Load Pair of SIMD&FP) 2869 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2870 * STP (Store Pair of SIMD&FP) 2871 * 2872 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2873 * +-----+-------+---+---+-------+---+-----------------------------+ 2874 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2875 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2876 * 2877 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2878 * LDPSW/STGP 01 2879 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2880 * V: 0 -> GPR, 1 -> Vector 2881 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2882 * 10 -> signed offset, 11 -> pre-index 2883 * L: 0 -> Store 1 -> Load 2884 * 2885 * Rt, Rt2 = GPR or SIMD registers to be stored 2886 * Rn = general purpose register containing address 2887 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2888 */ 2889 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2890 { 2891 int rt = extract32(insn, 0, 5); 2892 int rn = extract32(insn, 5, 5); 2893 int rt2 = extract32(insn, 10, 5); 2894 uint64_t offset = sextract64(insn, 15, 7); 2895 int index = extract32(insn, 23, 2); 2896 bool is_vector = extract32(insn, 26, 1); 2897 bool is_load = extract32(insn, 22, 1); 2898 int opc = extract32(insn, 30, 2); 2899 2900 bool is_signed = false; 2901 bool postindex = false; 2902 bool wback = false; 2903 bool set_tag = false; 2904 2905 TCGv_i64 clean_addr, dirty_addr; 2906 2907 int size; 2908 2909 if (opc == 3) { 2910 unallocated_encoding(s); 2911 return; 2912 } 2913 2914 if (is_vector) { 2915 size = 2 + opc; 2916 } else if (opc == 1 && !is_load) { 2917 /* STGP */ 2918 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2919 unallocated_encoding(s); 2920 return; 2921 } 2922 size = 3; 2923 set_tag = true; 2924 } else { 2925 size = 2 + extract32(opc, 1, 1); 2926 is_signed = extract32(opc, 0, 1); 2927 if (!is_load && is_signed) { 2928 unallocated_encoding(s); 2929 return; 2930 } 2931 } 2932 2933 switch (index) { 2934 case 1: /* post-index */ 2935 postindex = true; 2936 wback = true; 2937 break; 2938 case 0: 2939 /* signed offset with "non-temporal" hint. Since we don't emulate 2940 * caches we don't care about hints to the cache system about 2941 * data access patterns, and handle this identically to plain 2942 * signed offset. 2943 */ 2944 if (is_signed) { 2945 /* There is no non-temporal-hint version of LDPSW */ 2946 unallocated_encoding(s); 2947 return; 2948 } 2949 postindex = false; 2950 break; 2951 case 2: /* signed offset, rn not updated */ 2952 postindex = false; 2953 break; 2954 case 3: /* pre-index */ 2955 postindex = false; 2956 wback = true; 2957 break; 2958 } 2959 2960 if (is_vector && !fp_access_check(s)) { 2961 return; 2962 } 2963 2964 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2965 2966 if (rn == 31) { 2967 gen_check_sp_alignment(s); 2968 } 2969 2970 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2971 if (!postindex) { 2972 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2973 } 2974 2975 if (set_tag) { 2976 if (!s->ata) { 2977 /* 2978 * TODO: We could rely on the stores below, at least for 2979 * system mode, if we arrange to add MO_ALIGN_16. 2980 */ 2981 gen_helper_stg_stub(cpu_env, dirty_addr); 2982 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2983 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2984 } else { 2985 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2986 } 2987 } 2988 2989 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2990 (wback || rn != 31) && !set_tag, 2 << size); 2991 2992 if (is_vector) { 2993 if (is_load) { 2994 do_fp_ld(s, rt, clean_addr, size); 2995 } else { 2996 do_fp_st(s, rt, clean_addr, size); 2997 } 2998 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2999 if (is_load) { 3000 do_fp_ld(s, rt2, clean_addr, size); 3001 } else { 3002 do_fp_st(s, rt2, clean_addr, size); 3003 } 3004 } else { 3005 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3006 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3007 3008 if (is_load) { 3009 TCGv_i64 tmp = tcg_temp_new_i64(); 3010 3011 /* Do not modify tcg_rt before recognizing any exception 3012 * from the second load. 3013 */ 3014 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 3015 false, false, 0, false, false); 3016 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3017 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 3018 false, false, 0, false, false); 3019 3020 tcg_gen_mov_i64(tcg_rt, tmp); 3021 } else { 3022 do_gpr_st(s, tcg_rt, clean_addr, size, 3023 false, 0, false, false); 3024 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3025 do_gpr_st(s, tcg_rt2, clean_addr, size, 3026 false, 0, false, false); 3027 } 3028 } 3029 3030 if (wback) { 3031 if (postindex) { 3032 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3033 } 3034 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3035 } 3036 } 3037 3038 /* 3039 * Load/store (immediate post-indexed) 3040 * Load/store (immediate pre-indexed) 3041 * Load/store (unscaled immediate) 3042 * 3043 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3044 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3045 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3046 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3047 * 3048 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3049 10 -> unprivileged 3050 * V = 0 -> non-vector 3051 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3052 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3053 */ 3054 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3055 int opc, 3056 int size, 3057 int rt, 3058 bool is_vector) 3059 { 3060 int rn = extract32(insn, 5, 5); 3061 int imm9 = sextract32(insn, 12, 9); 3062 int idx = extract32(insn, 10, 2); 3063 bool is_signed = false; 3064 bool is_store = false; 3065 bool is_extended = false; 3066 bool is_unpriv = (idx == 2); 3067 bool iss_valid; 3068 bool post_index; 3069 bool writeback; 3070 int memidx; 3071 3072 TCGv_i64 clean_addr, dirty_addr; 3073 3074 if (is_vector) { 3075 size |= (opc & 2) << 1; 3076 if (size > 4 || is_unpriv) { 3077 unallocated_encoding(s); 3078 return; 3079 } 3080 is_store = ((opc & 1) == 0); 3081 if (!fp_access_check(s)) { 3082 return; 3083 } 3084 } else { 3085 if (size == 3 && opc == 2) { 3086 /* PRFM - prefetch */ 3087 if (idx != 0) { 3088 unallocated_encoding(s); 3089 return; 3090 } 3091 return; 3092 } 3093 if (opc == 3 && size > 1) { 3094 unallocated_encoding(s); 3095 return; 3096 } 3097 is_store = (opc == 0); 3098 is_signed = extract32(opc, 1, 1); 3099 is_extended = (size < 3) && extract32(opc, 0, 1); 3100 } 3101 3102 switch (idx) { 3103 case 0: 3104 case 2: 3105 post_index = false; 3106 writeback = false; 3107 break; 3108 case 1: 3109 post_index = true; 3110 writeback = true; 3111 break; 3112 case 3: 3113 post_index = false; 3114 writeback = true; 3115 break; 3116 default: 3117 g_assert_not_reached(); 3118 } 3119 3120 iss_valid = !is_vector && !writeback; 3121 3122 if (rn == 31) { 3123 gen_check_sp_alignment(s); 3124 } 3125 3126 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3127 if (!post_index) { 3128 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3129 } 3130 3131 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3132 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3133 writeback || rn != 31, 3134 size, is_unpriv, memidx); 3135 3136 if (is_vector) { 3137 if (is_store) { 3138 do_fp_st(s, rt, clean_addr, size); 3139 } else { 3140 do_fp_ld(s, rt, clean_addr, size); 3141 } 3142 } else { 3143 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3144 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3145 3146 if (is_store) { 3147 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3148 iss_valid, rt, iss_sf, false); 3149 } else { 3150 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3151 is_extended, memidx, 3152 iss_valid, rt, iss_sf, false); 3153 } 3154 } 3155 3156 if (writeback) { 3157 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3158 if (post_index) { 3159 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3160 } 3161 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3162 } 3163 } 3164 3165 /* 3166 * Load/store (register offset) 3167 * 3168 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3169 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3170 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3171 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3172 * 3173 * For non-vector: 3174 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3175 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3176 * For vector: 3177 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3178 * opc<0>: 0 -> store, 1 -> load 3179 * V: 1 -> vector/simd 3180 * opt: extend encoding (see DecodeRegExtend) 3181 * S: if S=1 then scale (essentially index by sizeof(size)) 3182 * Rt: register to transfer into/out of 3183 * Rn: address register or SP for base 3184 * Rm: offset register or ZR for offset 3185 */ 3186 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3187 int opc, 3188 int size, 3189 int rt, 3190 bool is_vector) 3191 { 3192 int rn = extract32(insn, 5, 5); 3193 int shift = extract32(insn, 12, 1); 3194 int rm = extract32(insn, 16, 5); 3195 int opt = extract32(insn, 13, 3); 3196 bool is_signed = false; 3197 bool is_store = false; 3198 bool is_extended = false; 3199 3200 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3201 3202 if (extract32(opt, 1, 1) == 0) { 3203 unallocated_encoding(s); 3204 return; 3205 } 3206 3207 if (is_vector) { 3208 size |= (opc & 2) << 1; 3209 if (size > 4) { 3210 unallocated_encoding(s); 3211 return; 3212 } 3213 is_store = !extract32(opc, 0, 1); 3214 if (!fp_access_check(s)) { 3215 return; 3216 } 3217 } else { 3218 if (size == 3 && opc == 2) { 3219 /* PRFM - prefetch */ 3220 return; 3221 } 3222 if (opc == 3 && size > 1) { 3223 unallocated_encoding(s); 3224 return; 3225 } 3226 is_store = (opc == 0); 3227 is_signed = extract32(opc, 1, 1); 3228 is_extended = (size < 3) && extract32(opc, 0, 1); 3229 } 3230 3231 if (rn == 31) { 3232 gen_check_sp_alignment(s); 3233 } 3234 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3235 3236 tcg_rm = read_cpu_reg(s, rm, 1); 3237 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3238 3239 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3240 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3241 3242 if (is_vector) { 3243 if (is_store) { 3244 do_fp_st(s, rt, clean_addr, size); 3245 } else { 3246 do_fp_ld(s, rt, clean_addr, size); 3247 } 3248 } else { 3249 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3250 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3251 if (is_store) { 3252 do_gpr_st(s, tcg_rt, clean_addr, size, 3253 true, rt, iss_sf, false); 3254 } else { 3255 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3256 is_extended, true, rt, iss_sf, false); 3257 } 3258 } 3259 } 3260 3261 /* 3262 * Load/store (unsigned immediate) 3263 * 3264 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3265 * +----+-------+---+-----+-----+------------+-------+------+ 3266 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3267 * +----+-------+---+-----+-----+------------+-------+------+ 3268 * 3269 * For non-vector: 3270 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3271 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3272 * For vector: 3273 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3274 * opc<0>: 0 -> store, 1 -> load 3275 * Rn: base address register (inc SP) 3276 * Rt: target register 3277 */ 3278 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3279 int opc, 3280 int size, 3281 int rt, 3282 bool is_vector) 3283 { 3284 int rn = extract32(insn, 5, 5); 3285 unsigned int imm12 = extract32(insn, 10, 12); 3286 unsigned int offset; 3287 3288 TCGv_i64 clean_addr, dirty_addr; 3289 3290 bool is_store; 3291 bool is_signed = false; 3292 bool is_extended = false; 3293 3294 if (is_vector) { 3295 size |= (opc & 2) << 1; 3296 if (size > 4) { 3297 unallocated_encoding(s); 3298 return; 3299 } 3300 is_store = !extract32(opc, 0, 1); 3301 if (!fp_access_check(s)) { 3302 return; 3303 } 3304 } else { 3305 if (size == 3 && opc == 2) { 3306 /* PRFM - prefetch */ 3307 return; 3308 } 3309 if (opc == 3 && size > 1) { 3310 unallocated_encoding(s); 3311 return; 3312 } 3313 is_store = (opc == 0); 3314 is_signed = extract32(opc, 1, 1); 3315 is_extended = (size < 3) && extract32(opc, 0, 1); 3316 } 3317 3318 if (rn == 31) { 3319 gen_check_sp_alignment(s); 3320 } 3321 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3322 offset = imm12 << size; 3323 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3324 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3325 3326 if (is_vector) { 3327 if (is_store) { 3328 do_fp_st(s, rt, clean_addr, size); 3329 } else { 3330 do_fp_ld(s, rt, clean_addr, size); 3331 } 3332 } else { 3333 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3334 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3335 if (is_store) { 3336 do_gpr_st(s, tcg_rt, clean_addr, size, 3337 true, rt, iss_sf, false); 3338 } else { 3339 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3340 is_extended, true, rt, iss_sf, false); 3341 } 3342 } 3343 } 3344 3345 /* Atomic memory operations 3346 * 3347 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3348 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3349 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3350 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3351 * 3352 * Rt: the result register 3353 * Rn: base address or SP 3354 * Rs: the source register for the operation 3355 * V: vector flag (always 0 as of v8.3) 3356 * A: acquire flag 3357 * R: release flag 3358 */ 3359 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3360 int size, int rt, bool is_vector) 3361 { 3362 int rs = extract32(insn, 16, 5); 3363 int rn = extract32(insn, 5, 5); 3364 int o3_opc = extract32(insn, 12, 4); 3365 bool r = extract32(insn, 22, 1); 3366 bool a = extract32(insn, 23, 1); 3367 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3368 AtomicThreeOpFn *fn = NULL; 3369 MemOp mop = s->be_data | size | MO_ALIGN; 3370 3371 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3372 unallocated_encoding(s); 3373 return; 3374 } 3375 switch (o3_opc) { 3376 case 000: /* LDADD */ 3377 fn = tcg_gen_atomic_fetch_add_i64; 3378 break; 3379 case 001: /* LDCLR */ 3380 fn = tcg_gen_atomic_fetch_and_i64; 3381 break; 3382 case 002: /* LDEOR */ 3383 fn = tcg_gen_atomic_fetch_xor_i64; 3384 break; 3385 case 003: /* LDSET */ 3386 fn = tcg_gen_atomic_fetch_or_i64; 3387 break; 3388 case 004: /* LDSMAX */ 3389 fn = tcg_gen_atomic_fetch_smax_i64; 3390 mop |= MO_SIGN; 3391 break; 3392 case 005: /* LDSMIN */ 3393 fn = tcg_gen_atomic_fetch_smin_i64; 3394 mop |= MO_SIGN; 3395 break; 3396 case 006: /* LDUMAX */ 3397 fn = tcg_gen_atomic_fetch_umax_i64; 3398 break; 3399 case 007: /* LDUMIN */ 3400 fn = tcg_gen_atomic_fetch_umin_i64; 3401 break; 3402 case 010: /* SWP */ 3403 fn = tcg_gen_atomic_xchg_i64; 3404 break; 3405 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3406 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3407 rs != 31 || a != 1 || r != 0) { 3408 unallocated_encoding(s); 3409 return; 3410 } 3411 break; 3412 default: 3413 unallocated_encoding(s); 3414 return; 3415 } 3416 3417 if (rn == 31) { 3418 gen_check_sp_alignment(s); 3419 } 3420 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3421 3422 if (o3_opc == 014) { 3423 /* 3424 * LDAPR* are a special case because they are a simple load, not a 3425 * fetch-and-do-something op. 3426 * The architectural consistency requirements here are weaker than 3427 * full load-acquire (we only need "load-acquire processor consistent"), 3428 * but we choose to implement them as full LDAQ. 3429 */ 3430 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3431 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3432 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3433 return; 3434 } 3435 3436 tcg_rs = read_cpu_reg(s, rs, true); 3437 tcg_rt = cpu_reg(s, rt); 3438 3439 if (o3_opc == 1) { /* LDCLR */ 3440 tcg_gen_not_i64(tcg_rs, tcg_rs); 3441 } 3442 3443 /* The tcg atomic primitives are all full barriers. Therefore we 3444 * can ignore the Acquire and Release bits of this instruction. 3445 */ 3446 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3447 3448 if ((mop & MO_SIGN) && size != MO_64) { 3449 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3450 } 3451 } 3452 3453 /* 3454 * PAC memory operations 3455 * 3456 * 31 30 27 26 24 22 21 12 11 10 5 0 3457 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3458 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3459 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3460 * 3461 * Rt: the result register 3462 * Rn: base address or SP 3463 * V: vector flag (always 0 as of v8.3) 3464 * M: clear for key DA, set for key DB 3465 * W: pre-indexing flag 3466 * S: sign for imm9. 3467 */ 3468 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3469 int size, int rt, bool is_vector) 3470 { 3471 int rn = extract32(insn, 5, 5); 3472 bool is_wback = extract32(insn, 11, 1); 3473 bool use_key_a = !extract32(insn, 23, 1); 3474 int offset; 3475 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3476 3477 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3478 unallocated_encoding(s); 3479 return; 3480 } 3481 3482 if (rn == 31) { 3483 gen_check_sp_alignment(s); 3484 } 3485 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3486 3487 if (s->pauth_active) { 3488 if (use_key_a) { 3489 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3490 tcg_constant_i64(0)); 3491 } else { 3492 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3493 tcg_constant_i64(0)); 3494 } 3495 } 3496 3497 /* Form the 10-bit signed, scaled offset. */ 3498 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3499 offset = sextract32(offset << size, 0, 10 + size); 3500 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3501 3502 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3503 clean_addr = gen_mte_check1(s, dirty_addr, false, 3504 is_wback || rn != 31, size); 3505 3506 tcg_rt = cpu_reg(s, rt); 3507 do_gpr_ld(s, tcg_rt, clean_addr, size, 3508 /* extend */ false, /* iss_valid */ !is_wback, 3509 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3510 3511 if (is_wback) { 3512 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3513 } 3514 } 3515 3516 /* 3517 * LDAPR/STLR (unscaled immediate) 3518 * 3519 * 31 30 24 22 21 12 10 5 0 3520 * +------+-------------+-----+---+--------+-----+----+-----+ 3521 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3522 * +------+-------------+-----+---+--------+-----+----+-----+ 3523 * 3524 * Rt: source or destination register 3525 * Rn: base register 3526 * imm9: unscaled immediate offset 3527 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3528 * size: size of load/store 3529 */ 3530 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3531 { 3532 int rt = extract32(insn, 0, 5); 3533 int rn = extract32(insn, 5, 5); 3534 int offset = sextract32(insn, 12, 9); 3535 int opc = extract32(insn, 22, 2); 3536 int size = extract32(insn, 30, 2); 3537 TCGv_i64 clean_addr, dirty_addr; 3538 bool is_store = false; 3539 bool extend = false; 3540 bool iss_sf; 3541 MemOp mop; 3542 3543 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3544 unallocated_encoding(s); 3545 return; 3546 } 3547 3548 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3549 mop = size | MO_ALIGN; 3550 3551 switch (opc) { 3552 case 0: /* STLURB */ 3553 is_store = true; 3554 break; 3555 case 1: /* LDAPUR* */ 3556 break; 3557 case 2: /* LDAPURS* 64-bit variant */ 3558 if (size == 3) { 3559 unallocated_encoding(s); 3560 return; 3561 } 3562 mop |= MO_SIGN; 3563 break; 3564 case 3: /* LDAPURS* 32-bit variant */ 3565 if (size > 1) { 3566 unallocated_encoding(s); 3567 return; 3568 } 3569 mop |= MO_SIGN; 3570 extend = true; /* zero-extend 32->64 after signed load */ 3571 break; 3572 default: 3573 g_assert_not_reached(); 3574 } 3575 3576 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3577 3578 if (rn == 31) { 3579 gen_check_sp_alignment(s); 3580 } 3581 3582 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3583 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3584 clean_addr = clean_data_tbi(s, dirty_addr); 3585 3586 if (is_store) { 3587 /* Store-Release semantics */ 3588 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3589 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3590 } else { 3591 /* 3592 * Load-AcquirePC semantics; we implement as the slightly more 3593 * restrictive Load-Acquire. 3594 */ 3595 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3596 extend, true, rt, iss_sf, true); 3597 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3598 } 3599 } 3600 3601 /* Load/store register (all forms) */ 3602 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3603 { 3604 int rt = extract32(insn, 0, 5); 3605 int opc = extract32(insn, 22, 2); 3606 bool is_vector = extract32(insn, 26, 1); 3607 int size = extract32(insn, 30, 2); 3608 3609 switch (extract32(insn, 24, 2)) { 3610 case 0: 3611 if (extract32(insn, 21, 1) == 0) { 3612 /* Load/store register (unscaled immediate) 3613 * Load/store immediate pre/post-indexed 3614 * Load/store register unprivileged 3615 */ 3616 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3617 return; 3618 } 3619 switch (extract32(insn, 10, 2)) { 3620 case 0: 3621 disas_ldst_atomic(s, insn, size, rt, is_vector); 3622 return; 3623 case 2: 3624 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3625 return; 3626 default: 3627 disas_ldst_pac(s, insn, size, rt, is_vector); 3628 return; 3629 } 3630 break; 3631 case 1: 3632 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3633 return; 3634 } 3635 unallocated_encoding(s); 3636 } 3637 3638 /* AdvSIMD load/store multiple structures 3639 * 3640 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3641 * +---+---+---------------+---+-------------+--------+------+------+------+ 3642 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3643 * +---+---+---------------+---+-------------+--------+------+------+------+ 3644 * 3645 * AdvSIMD load/store multiple structures (post-indexed) 3646 * 3647 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3648 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3649 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3650 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3651 * 3652 * Rt: first (or only) SIMD&FP register to be transferred 3653 * Rn: base address or SP 3654 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3655 */ 3656 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3657 { 3658 int rt = extract32(insn, 0, 5); 3659 int rn = extract32(insn, 5, 5); 3660 int rm = extract32(insn, 16, 5); 3661 int size = extract32(insn, 10, 2); 3662 int opcode = extract32(insn, 12, 4); 3663 bool is_store = !extract32(insn, 22, 1); 3664 bool is_postidx = extract32(insn, 23, 1); 3665 bool is_q = extract32(insn, 30, 1); 3666 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3667 MemOp endian, align, mop; 3668 3669 int total; /* total bytes */ 3670 int elements; /* elements per vector */ 3671 int rpt; /* num iterations */ 3672 int selem; /* structure elements */ 3673 int r; 3674 3675 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3676 unallocated_encoding(s); 3677 return; 3678 } 3679 3680 if (!is_postidx && rm != 0) { 3681 unallocated_encoding(s); 3682 return; 3683 } 3684 3685 /* From the shared decode logic */ 3686 switch (opcode) { 3687 case 0x0: 3688 rpt = 1; 3689 selem = 4; 3690 break; 3691 case 0x2: 3692 rpt = 4; 3693 selem = 1; 3694 break; 3695 case 0x4: 3696 rpt = 1; 3697 selem = 3; 3698 break; 3699 case 0x6: 3700 rpt = 3; 3701 selem = 1; 3702 break; 3703 case 0x7: 3704 rpt = 1; 3705 selem = 1; 3706 break; 3707 case 0x8: 3708 rpt = 1; 3709 selem = 2; 3710 break; 3711 case 0xa: 3712 rpt = 2; 3713 selem = 1; 3714 break; 3715 default: 3716 unallocated_encoding(s); 3717 return; 3718 } 3719 3720 if (size == 3 && !is_q && selem != 1) { 3721 /* reserved */ 3722 unallocated_encoding(s); 3723 return; 3724 } 3725 3726 if (!fp_access_check(s)) { 3727 return; 3728 } 3729 3730 if (rn == 31) { 3731 gen_check_sp_alignment(s); 3732 } 3733 3734 /* For our purposes, bytes are always little-endian. */ 3735 endian = s->be_data; 3736 if (size == 0) { 3737 endian = MO_LE; 3738 } 3739 3740 total = rpt * selem * (is_q ? 16 : 8); 3741 tcg_rn = cpu_reg_sp(s, rn); 3742 3743 /* 3744 * Issue the MTE check vs the logical repeat count, before we 3745 * promote consecutive little-endian elements below. 3746 */ 3747 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3748 total); 3749 3750 /* 3751 * Consecutive little-endian elements from a single register 3752 * can be promoted to a larger little-endian operation. 3753 */ 3754 align = MO_ALIGN; 3755 if (selem == 1 && endian == MO_LE) { 3756 align = pow2_align(size); 3757 size = 3; 3758 } 3759 if (!s->align_mem) { 3760 align = 0; 3761 } 3762 mop = endian | size | align; 3763 3764 elements = (is_q ? 16 : 8) >> size; 3765 tcg_ebytes = tcg_constant_i64(1 << size); 3766 for (r = 0; r < rpt; r++) { 3767 int e; 3768 for (e = 0; e < elements; e++) { 3769 int xs; 3770 for (xs = 0; xs < selem; xs++) { 3771 int tt = (rt + r + xs) % 32; 3772 if (is_store) { 3773 do_vec_st(s, tt, e, clean_addr, mop); 3774 } else { 3775 do_vec_ld(s, tt, e, clean_addr, mop); 3776 } 3777 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3778 } 3779 } 3780 } 3781 3782 if (!is_store) { 3783 /* For non-quad operations, setting a slice of the low 3784 * 64 bits of the register clears the high 64 bits (in 3785 * the ARM ARM pseudocode this is implicit in the fact 3786 * that 'rval' is a 64 bit wide variable). 3787 * For quad operations, we might still need to zero the 3788 * high bits of SVE. 3789 */ 3790 for (r = 0; r < rpt * selem; r++) { 3791 int tt = (rt + r) % 32; 3792 clear_vec_high(s, is_q, tt); 3793 } 3794 } 3795 3796 if (is_postidx) { 3797 if (rm == 31) { 3798 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3799 } else { 3800 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3801 } 3802 } 3803 } 3804 3805 /* AdvSIMD load/store single structure 3806 * 3807 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3808 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3809 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3810 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3811 * 3812 * AdvSIMD load/store single structure (post-indexed) 3813 * 3814 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3815 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3816 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3817 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3818 * 3819 * Rt: first (or only) SIMD&FP register to be transferred 3820 * Rn: base address or SP 3821 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3822 * index = encoded in Q:S:size dependent on size 3823 * 3824 * lane_size = encoded in R, opc 3825 * transfer width = encoded in opc, S, size 3826 */ 3827 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3828 { 3829 int rt = extract32(insn, 0, 5); 3830 int rn = extract32(insn, 5, 5); 3831 int rm = extract32(insn, 16, 5); 3832 int size = extract32(insn, 10, 2); 3833 int S = extract32(insn, 12, 1); 3834 int opc = extract32(insn, 13, 3); 3835 int R = extract32(insn, 21, 1); 3836 int is_load = extract32(insn, 22, 1); 3837 int is_postidx = extract32(insn, 23, 1); 3838 int is_q = extract32(insn, 30, 1); 3839 3840 int scale = extract32(opc, 1, 2); 3841 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3842 bool replicate = false; 3843 int index = is_q << 3 | S << 2 | size; 3844 int xs, total; 3845 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3846 MemOp mop; 3847 3848 if (extract32(insn, 31, 1)) { 3849 unallocated_encoding(s); 3850 return; 3851 } 3852 if (!is_postidx && rm != 0) { 3853 unallocated_encoding(s); 3854 return; 3855 } 3856 3857 switch (scale) { 3858 case 3: 3859 if (!is_load || S) { 3860 unallocated_encoding(s); 3861 return; 3862 } 3863 scale = size; 3864 replicate = true; 3865 break; 3866 case 0: 3867 break; 3868 case 1: 3869 if (extract32(size, 0, 1)) { 3870 unallocated_encoding(s); 3871 return; 3872 } 3873 index >>= 1; 3874 break; 3875 case 2: 3876 if (extract32(size, 1, 1)) { 3877 unallocated_encoding(s); 3878 return; 3879 } 3880 if (!extract32(size, 0, 1)) { 3881 index >>= 2; 3882 } else { 3883 if (S) { 3884 unallocated_encoding(s); 3885 return; 3886 } 3887 index >>= 3; 3888 scale = 3; 3889 } 3890 break; 3891 default: 3892 g_assert_not_reached(); 3893 } 3894 3895 if (!fp_access_check(s)) { 3896 return; 3897 } 3898 3899 if (rn == 31) { 3900 gen_check_sp_alignment(s); 3901 } 3902 3903 total = selem << scale; 3904 tcg_rn = cpu_reg_sp(s, rn); 3905 3906 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3907 total); 3908 mop = finalize_memop(s, scale); 3909 3910 tcg_ebytes = tcg_constant_i64(1 << scale); 3911 for (xs = 0; xs < selem; xs++) { 3912 if (replicate) { 3913 /* Load and replicate to all elements */ 3914 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3915 3916 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3917 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3918 (is_q + 1) * 8, vec_full_reg_size(s), 3919 tcg_tmp); 3920 } else { 3921 /* Load/store one element per register */ 3922 if (is_load) { 3923 do_vec_ld(s, rt, index, clean_addr, mop); 3924 } else { 3925 do_vec_st(s, rt, index, clean_addr, mop); 3926 } 3927 } 3928 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3929 rt = (rt + 1) % 32; 3930 } 3931 3932 if (is_postidx) { 3933 if (rm == 31) { 3934 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3935 } else { 3936 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3937 } 3938 } 3939 } 3940 3941 /* 3942 * Load/Store memory tags 3943 * 3944 * 31 30 29 24 22 21 12 10 5 0 3945 * +-----+-------------+-----+---+------+-----+------+------+ 3946 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3947 * +-----+-------------+-----+---+------+-----+------+------+ 3948 */ 3949 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3950 { 3951 int rt = extract32(insn, 0, 5); 3952 int rn = extract32(insn, 5, 5); 3953 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3954 int op2 = extract32(insn, 10, 2); 3955 int op1 = extract32(insn, 22, 2); 3956 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3957 int index = 0; 3958 TCGv_i64 addr, clean_addr, tcg_rt; 3959 3960 /* We checked insn bits [29:24,21] in the caller. */ 3961 if (extract32(insn, 30, 2) != 3) { 3962 goto do_unallocated; 3963 } 3964 3965 /* 3966 * @index is a tri-state variable which has 3 states: 3967 * < 0 : post-index, writeback 3968 * = 0 : signed offset 3969 * > 0 : pre-index, writeback 3970 */ 3971 switch (op1) { 3972 case 0: 3973 if (op2 != 0) { 3974 /* STG */ 3975 index = op2 - 2; 3976 } else { 3977 /* STZGM */ 3978 if (s->current_el == 0 || offset != 0) { 3979 goto do_unallocated; 3980 } 3981 is_mult = is_zero = true; 3982 } 3983 break; 3984 case 1: 3985 if (op2 != 0) { 3986 /* STZG */ 3987 is_zero = true; 3988 index = op2 - 2; 3989 } else { 3990 /* LDG */ 3991 is_load = true; 3992 } 3993 break; 3994 case 2: 3995 if (op2 != 0) { 3996 /* ST2G */ 3997 is_pair = true; 3998 index = op2 - 2; 3999 } else { 4000 /* STGM */ 4001 if (s->current_el == 0 || offset != 0) { 4002 goto do_unallocated; 4003 } 4004 is_mult = true; 4005 } 4006 break; 4007 case 3: 4008 if (op2 != 0) { 4009 /* STZ2G */ 4010 is_pair = is_zero = true; 4011 index = op2 - 2; 4012 } else { 4013 /* LDGM */ 4014 if (s->current_el == 0 || offset != 0) { 4015 goto do_unallocated; 4016 } 4017 is_mult = is_load = true; 4018 } 4019 break; 4020 4021 default: 4022 do_unallocated: 4023 unallocated_encoding(s); 4024 return; 4025 } 4026 4027 if (is_mult 4028 ? !dc_isar_feature(aa64_mte, s) 4029 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4030 goto do_unallocated; 4031 } 4032 4033 if (rn == 31) { 4034 gen_check_sp_alignment(s); 4035 } 4036 4037 addr = read_cpu_reg_sp(s, rn, true); 4038 if (index >= 0) { 4039 /* pre-index or signed offset */ 4040 tcg_gen_addi_i64(addr, addr, offset); 4041 } 4042 4043 if (is_mult) { 4044 tcg_rt = cpu_reg(s, rt); 4045 4046 if (is_zero) { 4047 int size = 4 << s->dcz_blocksize; 4048 4049 if (s->ata) { 4050 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4051 } 4052 /* 4053 * The non-tags portion of STZGM is mostly like DC_ZVA, 4054 * except the alignment happens before the access. 4055 */ 4056 clean_addr = clean_data_tbi(s, addr); 4057 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4058 gen_helper_dc_zva(cpu_env, clean_addr); 4059 } else if (s->ata) { 4060 if (is_load) { 4061 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4062 } else { 4063 gen_helper_stgm(cpu_env, addr, tcg_rt); 4064 } 4065 } else { 4066 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4067 int size = 4 << GMID_EL1_BS; 4068 4069 clean_addr = clean_data_tbi(s, addr); 4070 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4071 gen_probe_access(s, clean_addr, acc, size); 4072 4073 if (is_load) { 4074 /* The result tags are zeros. */ 4075 tcg_gen_movi_i64(tcg_rt, 0); 4076 } 4077 } 4078 return; 4079 } 4080 4081 if (is_load) { 4082 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4083 tcg_rt = cpu_reg(s, rt); 4084 if (s->ata) { 4085 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4086 } else { 4087 clean_addr = clean_data_tbi(s, addr); 4088 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4089 gen_address_with_allocation_tag0(tcg_rt, addr); 4090 } 4091 } else { 4092 tcg_rt = cpu_reg_sp(s, rt); 4093 if (!s->ata) { 4094 /* 4095 * For STG and ST2G, we need to check alignment and probe memory. 4096 * TODO: For STZG and STZ2G, we could rely on the stores below, 4097 * at least for system mode; user-only won't enforce alignment. 4098 */ 4099 if (is_pair) { 4100 gen_helper_st2g_stub(cpu_env, addr); 4101 } else { 4102 gen_helper_stg_stub(cpu_env, addr); 4103 } 4104 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4105 if (is_pair) { 4106 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4107 } else { 4108 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4109 } 4110 } else { 4111 if (is_pair) { 4112 gen_helper_st2g(cpu_env, addr, tcg_rt); 4113 } else { 4114 gen_helper_stg(cpu_env, addr, tcg_rt); 4115 } 4116 } 4117 } 4118 4119 if (is_zero) { 4120 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4121 TCGv_i64 tcg_zero = tcg_constant_i64(0); 4122 int mem_index = get_mem_index(s); 4123 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE; 4124 4125 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, 4126 MO_UQ | MO_ALIGN_16); 4127 for (i = 8; i < n; i += 8) { 4128 tcg_gen_addi_i64(clean_addr, clean_addr, 8); 4129 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ); 4130 } 4131 } 4132 4133 if (index != 0) { 4134 /* pre-index or post-index */ 4135 if (index < 0) { 4136 /* post-index */ 4137 tcg_gen_addi_i64(addr, addr, offset); 4138 } 4139 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4140 } 4141 } 4142 4143 /* Loads and stores */ 4144 static void disas_ldst(DisasContext *s, uint32_t insn) 4145 { 4146 switch (extract32(insn, 24, 6)) { 4147 case 0x08: /* Load/store exclusive */ 4148 disas_ldst_excl(s, insn); 4149 break; 4150 case 0x18: case 0x1c: /* Load register (literal) */ 4151 disas_ld_lit(s, insn); 4152 break; 4153 case 0x28: case 0x29: 4154 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4155 disas_ldst_pair(s, insn); 4156 break; 4157 case 0x38: case 0x39: 4158 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4159 disas_ldst_reg(s, insn); 4160 break; 4161 case 0x0c: /* AdvSIMD load/store multiple structures */ 4162 disas_ldst_multiple_struct(s, insn); 4163 break; 4164 case 0x0d: /* AdvSIMD load/store single structure */ 4165 disas_ldst_single_struct(s, insn); 4166 break; 4167 case 0x19: 4168 if (extract32(insn, 21, 1) != 0) { 4169 disas_ldst_tag(s, insn); 4170 } else if (extract32(insn, 10, 2) == 0) { 4171 disas_ldst_ldapr_stlr(s, insn); 4172 } else { 4173 unallocated_encoding(s); 4174 } 4175 break; 4176 default: 4177 unallocated_encoding(s); 4178 break; 4179 } 4180 } 4181 4182 /* 4183 * PC-rel. addressing 4184 */ 4185 4186 static bool trans_ADR(DisasContext *s, arg_ri *a) 4187 { 4188 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4189 return true; 4190 } 4191 4192 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4193 { 4194 int64_t offset = (int64_t)a->imm << 12; 4195 4196 /* The page offset is ok for CF_PCREL. */ 4197 offset -= s->pc_curr & 0xfff; 4198 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4199 return true; 4200 } 4201 4202 /* 4203 * Add/subtract (immediate) 4204 * 4205 * 31 30 29 28 23 22 21 10 9 5 4 0 4206 * +--+--+--+-------------+--+-------------+-----+-----+ 4207 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd | 4208 * +--+--+--+-------------+--+-------------+-----+-----+ 4209 * 4210 * sf: 0 -> 32bit, 1 -> 64bit 4211 * op: 0 -> add , 1 -> sub 4212 * S: 1 -> set flags 4213 * sh: 1 -> LSL imm by 12 4214 */ 4215 static void disas_add_sub_imm(DisasContext *s, uint32_t insn) 4216 { 4217 int rd = extract32(insn, 0, 5); 4218 int rn = extract32(insn, 5, 5); 4219 uint64_t imm = extract32(insn, 10, 12); 4220 bool shift = extract32(insn, 22, 1); 4221 bool setflags = extract32(insn, 29, 1); 4222 bool sub_op = extract32(insn, 30, 1); 4223 bool is_64bit = extract32(insn, 31, 1); 4224 4225 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 4226 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd); 4227 TCGv_i64 tcg_result; 4228 4229 if (shift) { 4230 imm <<= 12; 4231 } 4232 4233 tcg_result = tcg_temp_new_i64(); 4234 if (!setflags) { 4235 if (sub_op) { 4236 tcg_gen_subi_i64(tcg_result, tcg_rn, imm); 4237 } else { 4238 tcg_gen_addi_i64(tcg_result, tcg_rn, imm); 4239 } 4240 } else { 4241 TCGv_i64 tcg_imm = tcg_constant_i64(imm); 4242 if (sub_op) { 4243 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4244 } else { 4245 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4246 } 4247 } 4248 4249 if (is_64bit) { 4250 tcg_gen_mov_i64(tcg_rd, tcg_result); 4251 } else { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4253 } 4254 } 4255 4256 /* 4257 * Add/subtract (immediate, with tags) 4258 * 4259 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0 4260 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4261 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd | 4262 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4263 * 4264 * op: 0 -> add, 1 -> sub 4265 */ 4266 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn) 4267 { 4268 int rd = extract32(insn, 0, 5); 4269 int rn = extract32(insn, 5, 5); 4270 int uimm4 = extract32(insn, 10, 4); 4271 int uimm6 = extract32(insn, 16, 6); 4272 bool sub_op = extract32(insn, 30, 1); 4273 TCGv_i64 tcg_rn, tcg_rd; 4274 int imm; 4275 4276 /* Test all of sf=1, S=0, o2=0, o3=0. */ 4277 if ((insn & 0xa040c000u) != 0x80000000u || 4278 !dc_isar_feature(aa64_mte_insn_reg, s)) { 4279 unallocated_encoding(s); 4280 return; 4281 } 4282 4283 imm = uimm6 << LOG2_TAG_GRANULE; 4284 if (sub_op) { 4285 imm = -imm; 4286 } 4287 4288 tcg_rn = cpu_reg_sp(s, rn); 4289 tcg_rd = cpu_reg_sp(s, rd); 4290 4291 if (s->ata) { 4292 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4293 tcg_constant_i32(imm), 4294 tcg_constant_i32(uimm4)); 4295 } else { 4296 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4297 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4298 } 4299 } 4300 4301 /* The input should be a value in the bottom e bits (with higher 4302 * bits zero); returns that value replicated into every element 4303 * of size e in a 64 bit integer. 4304 */ 4305 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4306 { 4307 assert(e != 0); 4308 while (e < 64) { 4309 mask |= mask << e; 4310 e *= 2; 4311 } 4312 return mask; 4313 } 4314 4315 /* Return a value with the bottom len bits set (where 0 < len <= 64) */ 4316 static inline uint64_t bitmask64(unsigned int length) 4317 { 4318 assert(length > 0 && length <= 64); 4319 return ~0ULL >> (64 - length); 4320 } 4321 4322 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we 4323 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4324 * value (ie should cause a guest UNDEF exception), and true if they are 4325 * valid, in which case the decoded bit pattern is written to result. 4326 */ 4327 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4328 unsigned int imms, unsigned int immr) 4329 { 4330 uint64_t mask; 4331 unsigned e, levels, s, r; 4332 int len; 4333 4334 assert(immn < 2 && imms < 64 && immr < 64); 4335 4336 /* The bit patterns we create here are 64 bit patterns which 4337 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4338 * 64 bits each. Each element contains the same value: a run 4339 * of between 1 and e-1 non-zero bits, rotated within the 4340 * element by between 0 and e-1 bits. 4341 * 4342 * The element size and run length are encoded into immn (1 bit) 4343 * and imms (6 bits) as follows: 4344 * 64 bit elements: immn = 1, imms = <length of run - 1> 4345 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4346 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4347 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4348 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4349 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4350 * Notice that immn = 0, imms = 11111x is the only combination 4351 * not covered by one of the above options; this is reserved. 4352 * Further, <length of run - 1> all-ones is a reserved pattern. 4353 * 4354 * In all cases the rotation is by immr % e (and immr is 6 bits). 4355 */ 4356 4357 /* First determine the element size */ 4358 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4359 if (len < 1) { 4360 /* This is the immn == 0, imms == 0x11111x case */ 4361 return false; 4362 } 4363 e = 1 << len; 4364 4365 levels = e - 1; 4366 s = imms & levels; 4367 r = immr & levels; 4368 4369 if (s == levels) { 4370 /* <length of run - 1> mustn't be all-ones. */ 4371 return false; 4372 } 4373 4374 /* Create the value of one element: s+1 set bits rotated 4375 * by r within the element (which is e bits wide)... 4376 */ 4377 mask = bitmask64(s + 1); 4378 if (r) { 4379 mask = (mask >> r) | (mask << (e - r)); 4380 mask &= bitmask64(e); 4381 } 4382 /* ...then replicate the element over the whole 64 bit value */ 4383 mask = bitfield_replicate(mask, e); 4384 *result = mask; 4385 return true; 4386 } 4387 4388 /* Logical (immediate) 4389 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4390 * +----+-----+-------------+---+------+------+------+------+ 4391 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd | 4392 * +----+-----+-------------+---+------+------+------+------+ 4393 */ 4394 static void disas_logic_imm(DisasContext *s, uint32_t insn) 4395 { 4396 unsigned int sf, opc, is_n, immr, imms, rn, rd; 4397 TCGv_i64 tcg_rd, tcg_rn; 4398 uint64_t wmask; 4399 bool is_and = false; 4400 4401 sf = extract32(insn, 31, 1); 4402 opc = extract32(insn, 29, 2); 4403 is_n = extract32(insn, 22, 1); 4404 immr = extract32(insn, 16, 6); 4405 imms = extract32(insn, 10, 6); 4406 rn = extract32(insn, 5, 5); 4407 rd = extract32(insn, 0, 5); 4408 4409 if (!sf && is_n) { 4410 unallocated_encoding(s); 4411 return; 4412 } 4413 4414 if (opc == 0x3) { /* ANDS */ 4415 tcg_rd = cpu_reg(s, rd); 4416 } else { 4417 tcg_rd = cpu_reg_sp(s, rd); 4418 } 4419 tcg_rn = cpu_reg(s, rn); 4420 4421 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) { 4422 /* some immediate field values are reserved */ 4423 unallocated_encoding(s); 4424 return; 4425 } 4426 4427 if (!sf) { 4428 wmask &= 0xffffffff; 4429 } 4430 4431 switch (opc) { 4432 case 0x3: /* ANDS */ 4433 case 0x0: /* AND */ 4434 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask); 4435 is_and = true; 4436 break; 4437 case 0x1: /* ORR */ 4438 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask); 4439 break; 4440 case 0x2: /* EOR */ 4441 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask); 4442 break; 4443 default: 4444 assert(FALSE); /* must handle all above */ 4445 break; 4446 } 4447 4448 if (!sf && !is_and) { 4449 /* zero extend final result; we know we can skip this for AND 4450 * since the immediate had the high 32 bits clear. 4451 */ 4452 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4453 } 4454 4455 if (opc == 3) { /* ANDS */ 4456 gen_logic_CC(sf, tcg_rd); 4457 } 4458 } 4459 4460 /* 4461 * Move wide (immediate) 4462 * 4463 * 31 30 29 28 23 22 21 20 5 4 0 4464 * +--+-----+-------------+-----+----------------+------+ 4465 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd | 4466 * +--+-----+-------------+-----+----------------+------+ 4467 * 4468 * sf: 0 -> 32 bit, 1 -> 64 bit 4469 * opc: 00 -> N, 10 -> Z, 11 -> K 4470 * hw: shift/16 (0,16, and sf only 32, 48) 4471 */ 4472 static void disas_movw_imm(DisasContext *s, uint32_t insn) 4473 { 4474 int rd = extract32(insn, 0, 5); 4475 uint64_t imm = extract32(insn, 5, 16); 4476 int sf = extract32(insn, 31, 1); 4477 int opc = extract32(insn, 29, 2); 4478 int pos = extract32(insn, 21, 2) << 4; 4479 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4480 4481 if (!sf && (pos >= 32)) { 4482 unallocated_encoding(s); 4483 return; 4484 } 4485 4486 switch (opc) { 4487 case 0: /* MOVN */ 4488 case 2: /* MOVZ */ 4489 imm <<= pos; 4490 if (opc == 0) { 4491 imm = ~imm; 4492 } 4493 if (!sf) { 4494 imm &= 0xffffffffu; 4495 } 4496 tcg_gen_movi_i64(tcg_rd, imm); 4497 break; 4498 case 3: /* MOVK */ 4499 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16); 4500 if (!sf) { 4501 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4502 } 4503 break; 4504 default: 4505 unallocated_encoding(s); 4506 break; 4507 } 4508 } 4509 4510 /* Bitfield 4511 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4512 * +----+-----+-------------+---+------+------+------+------+ 4513 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd | 4514 * +----+-----+-------------+---+------+------+------+------+ 4515 */ 4516 static void disas_bitfield(DisasContext *s, uint32_t insn) 4517 { 4518 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len; 4519 TCGv_i64 tcg_rd, tcg_tmp; 4520 4521 sf = extract32(insn, 31, 1); 4522 opc = extract32(insn, 29, 2); 4523 n = extract32(insn, 22, 1); 4524 ri = extract32(insn, 16, 6); 4525 si = extract32(insn, 10, 6); 4526 rn = extract32(insn, 5, 5); 4527 rd = extract32(insn, 0, 5); 4528 bitsize = sf ? 64 : 32; 4529 4530 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) { 4531 unallocated_encoding(s); 4532 return; 4533 } 4534 4535 tcg_rd = cpu_reg(s, rd); 4536 4537 /* Suppress the zero-extend for !sf. Since RI and SI are constrained 4538 to be smaller than bitsize, we'll never reference data outside the 4539 low 32-bits anyway. */ 4540 tcg_tmp = read_cpu_reg(s, rn, 1); 4541 4542 /* Recognize simple(r) extractions. */ 4543 if (si >= ri) { 4544 /* Wd<s-r:0> = Wn<s:r> */ 4545 len = (si - ri) + 1; 4546 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */ 4547 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4548 goto done; 4549 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */ 4550 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4551 return; 4552 } 4553 /* opc == 1, BFXIL fall through to deposit */ 4554 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4555 pos = 0; 4556 } else { 4557 /* Handle the ri > si case with a deposit 4558 * Wd<32+s-r,32-r> = Wn<s:0> 4559 */ 4560 len = si + 1; 4561 pos = (bitsize - ri) & (bitsize - 1); 4562 } 4563 4564 if (opc == 0 && len < ri) { 4565 /* SBFM: sign extend the destination field from len to fill 4566 the balance of the word. Let the deposit below insert all 4567 of those sign bits. */ 4568 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4569 len = ri; 4570 } 4571 4572 if (opc == 1) { /* BFM, BFXIL */ 4573 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4574 } else { 4575 /* SBFM or UBFM: We start with zero, and we haven't modified 4576 any bits outside bitsize, therefore the zero-extension 4577 below is unneeded. */ 4578 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4579 return; 4580 } 4581 4582 done: 4583 if (!sf) { /* zero extend final result */ 4584 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4585 } 4586 } 4587 4588 /* Extract 4589 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0 4590 * +----+------+-------------+---+----+------+--------+------+------+ 4591 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd | 4592 * +----+------+-------------+---+----+------+--------+------+------+ 4593 */ 4594 static void disas_extract(DisasContext *s, uint32_t insn) 4595 { 4596 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0; 4597 4598 sf = extract32(insn, 31, 1); 4599 n = extract32(insn, 22, 1); 4600 rm = extract32(insn, 16, 5); 4601 imm = extract32(insn, 10, 6); 4602 rn = extract32(insn, 5, 5); 4603 rd = extract32(insn, 0, 5); 4604 op21 = extract32(insn, 29, 2); 4605 op0 = extract32(insn, 21, 1); 4606 bitsize = sf ? 64 : 32; 4607 4608 if (sf != n || op21 || op0 || imm >= bitsize) { 4609 unallocated_encoding(s); 4610 } else { 4611 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4612 4613 tcg_rd = cpu_reg(s, rd); 4614 4615 if (unlikely(imm == 0)) { 4616 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4617 * so an extract from bit 0 is a special case. 4618 */ 4619 if (sf) { 4620 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm)); 4621 } else { 4622 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm)); 4623 } 4624 } else { 4625 tcg_rm = cpu_reg(s, rm); 4626 tcg_rn = cpu_reg(s, rn); 4627 4628 if (sf) { 4629 /* Specialization to ROR happens in EXTRACT2. */ 4630 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm); 4631 } else { 4632 TCGv_i32 t0 = tcg_temp_new_i32(); 4633 4634 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4635 if (rm == rn) { 4636 tcg_gen_rotri_i32(t0, t0, imm); 4637 } else { 4638 TCGv_i32 t1 = tcg_temp_new_i32(); 4639 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4640 tcg_gen_extract2_i32(t0, t0, t1, imm); 4641 } 4642 tcg_gen_extu_i32_i64(tcg_rd, t0); 4643 } 4644 } 4645 } 4646 } 4647 4648 /* Data processing - immediate */ 4649 static void disas_data_proc_imm(DisasContext *s, uint32_t insn) 4650 { 4651 switch (extract32(insn, 23, 6)) { 4652 case 0x22: /* Add/subtract (immediate) */ 4653 disas_add_sub_imm(s, insn); 4654 break; 4655 case 0x23: /* Add/subtract (immediate, with tags) */ 4656 disas_add_sub_imm_with_tags(s, insn); 4657 break; 4658 case 0x24: /* Logical (immediate) */ 4659 disas_logic_imm(s, insn); 4660 break; 4661 case 0x25: /* Move wide (immediate) */ 4662 disas_movw_imm(s, insn); 4663 break; 4664 case 0x26: /* Bitfield */ 4665 disas_bitfield(s, insn); 4666 break; 4667 case 0x27: /* Extract */ 4668 disas_extract(s, insn); 4669 break; 4670 default: 4671 unallocated_encoding(s); 4672 break; 4673 } 4674 } 4675 4676 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4677 * Note that it is the caller's responsibility to ensure that the 4678 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4679 * mandated semantics for out of range shifts. 4680 */ 4681 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4682 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4683 { 4684 switch (shift_type) { 4685 case A64_SHIFT_TYPE_LSL: 4686 tcg_gen_shl_i64(dst, src, shift_amount); 4687 break; 4688 case A64_SHIFT_TYPE_LSR: 4689 tcg_gen_shr_i64(dst, src, shift_amount); 4690 break; 4691 case A64_SHIFT_TYPE_ASR: 4692 if (!sf) { 4693 tcg_gen_ext32s_i64(dst, src); 4694 } 4695 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4696 break; 4697 case A64_SHIFT_TYPE_ROR: 4698 if (sf) { 4699 tcg_gen_rotr_i64(dst, src, shift_amount); 4700 } else { 4701 TCGv_i32 t0, t1; 4702 t0 = tcg_temp_new_i32(); 4703 t1 = tcg_temp_new_i32(); 4704 tcg_gen_extrl_i64_i32(t0, src); 4705 tcg_gen_extrl_i64_i32(t1, shift_amount); 4706 tcg_gen_rotr_i32(t0, t0, t1); 4707 tcg_gen_extu_i32_i64(dst, t0); 4708 } 4709 break; 4710 default: 4711 assert(FALSE); /* all shift types should be handled */ 4712 break; 4713 } 4714 4715 if (!sf) { /* zero extend final result */ 4716 tcg_gen_ext32u_i64(dst, dst); 4717 } 4718 } 4719 4720 /* Shift a TCGv src by immediate, put result in dst. 4721 * The shift amount must be in range (this should always be true as the 4722 * relevant instructions will UNDEF on bad shift immediates). 4723 */ 4724 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4725 enum a64_shift_type shift_type, unsigned int shift_i) 4726 { 4727 assert(shift_i < (sf ? 64 : 32)); 4728 4729 if (shift_i == 0) { 4730 tcg_gen_mov_i64(dst, src); 4731 } else { 4732 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4733 } 4734 } 4735 4736 /* Logical (shifted register) 4737 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4738 * +----+-----+-----------+-------+---+------+--------+------+------+ 4739 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4740 * +----+-----+-----------+-------+---+------+--------+------+------+ 4741 */ 4742 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4743 { 4744 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4745 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4746 4747 sf = extract32(insn, 31, 1); 4748 opc = extract32(insn, 29, 2); 4749 shift_type = extract32(insn, 22, 2); 4750 invert = extract32(insn, 21, 1); 4751 rm = extract32(insn, 16, 5); 4752 shift_amount = extract32(insn, 10, 6); 4753 rn = extract32(insn, 5, 5); 4754 rd = extract32(insn, 0, 5); 4755 4756 if (!sf && (shift_amount & (1 << 5))) { 4757 unallocated_encoding(s); 4758 return; 4759 } 4760 4761 tcg_rd = cpu_reg(s, rd); 4762 4763 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4764 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4765 * register-register MOV and MVN, so it is worth special casing. 4766 */ 4767 tcg_rm = cpu_reg(s, rm); 4768 if (invert) { 4769 tcg_gen_not_i64(tcg_rd, tcg_rm); 4770 if (!sf) { 4771 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4772 } 4773 } else { 4774 if (sf) { 4775 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4776 } else { 4777 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4778 } 4779 } 4780 return; 4781 } 4782 4783 tcg_rm = read_cpu_reg(s, rm, sf); 4784 4785 if (shift_amount) { 4786 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4787 } 4788 4789 tcg_rn = cpu_reg(s, rn); 4790 4791 switch (opc | (invert << 2)) { 4792 case 0: /* AND */ 4793 case 3: /* ANDS */ 4794 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4795 break; 4796 case 1: /* ORR */ 4797 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4798 break; 4799 case 2: /* EOR */ 4800 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4801 break; 4802 case 4: /* BIC */ 4803 case 7: /* BICS */ 4804 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4805 break; 4806 case 5: /* ORN */ 4807 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4808 break; 4809 case 6: /* EON */ 4810 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4811 break; 4812 default: 4813 assert(FALSE); 4814 break; 4815 } 4816 4817 if (!sf) { 4818 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4819 } 4820 4821 if (opc == 3) { 4822 gen_logic_CC(sf, tcg_rd); 4823 } 4824 } 4825 4826 /* 4827 * Add/subtract (extended register) 4828 * 4829 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4830 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4831 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4832 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4833 * 4834 * sf: 0 -> 32bit, 1 -> 64bit 4835 * op: 0 -> add , 1 -> sub 4836 * S: 1 -> set flags 4837 * opt: 00 4838 * option: extension type (see DecodeRegExtend) 4839 * imm3: optional shift to Rm 4840 * 4841 * Rd = Rn + LSL(extend(Rm), amount) 4842 */ 4843 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4844 { 4845 int rd = extract32(insn, 0, 5); 4846 int rn = extract32(insn, 5, 5); 4847 int imm3 = extract32(insn, 10, 3); 4848 int option = extract32(insn, 13, 3); 4849 int rm = extract32(insn, 16, 5); 4850 int opt = extract32(insn, 22, 2); 4851 bool setflags = extract32(insn, 29, 1); 4852 bool sub_op = extract32(insn, 30, 1); 4853 bool sf = extract32(insn, 31, 1); 4854 4855 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4856 TCGv_i64 tcg_rd; 4857 TCGv_i64 tcg_result; 4858 4859 if (imm3 > 4 || opt != 0) { 4860 unallocated_encoding(s); 4861 return; 4862 } 4863 4864 /* non-flag setting ops may use SP */ 4865 if (!setflags) { 4866 tcg_rd = cpu_reg_sp(s, rd); 4867 } else { 4868 tcg_rd = cpu_reg(s, rd); 4869 } 4870 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4871 4872 tcg_rm = read_cpu_reg(s, rm, sf); 4873 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4874 4875 tcg_result = tcg_temp_new_i64(); 4876 4877 if (!setflags) { 4878 if (sub_op) { 4879 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4880 } else { 4881 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4882 } 4883 } else { 4884 if (sub_op) { 4885 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4886 } else { 4887 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4888 } 4889 } 4890 4891 if (sf) { 4892 tcg_gen_mov_i64(tcg_rd, tcg_result); 4893 } else { 4894 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4895 } 4896 } 4897 4898 /* 4899 * Add/subtract (shifted register) 4900 * 4901 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4902 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4903 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4904 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4905 * 4906 * sf: 0 -> 32bit, 1 -> 64bit 4907 * op: 0 -> add , 1 -> sub 4908 * S: 1 -> set flags 4909 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4910 * imm6: Shift amount to apply to Rm before the add/sub 4911 */ 4912 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4913 { 4914 int rd = extract32(insn, 0, 5); 4915 int rn = extract32(insn, 5, 5); 4916 int imm6 = extract32(insn, 10, 6); 4917 int rm = extract32(insn, 16, 5); 4918 int shift_type = extract32(insn, 22, 2); 4919 bool setflags = extract32(insn, 29, 1); 4920 bool sub_op = extract32(insn, 30, 1); 4921 bool sf = extract32(insn, 31, 1); 4922 4923 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4924 TCGv_i64 tcg_rn, tcg_rm; 4925 TCGv_i64 tcg_result; 4926 4927 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4928 unallocated_encoding(s); 4929 return; 4930 } 4931 4932 tcg_rn = read_cpu_reg(s, rn, sf); 4933 tcg_rm = read_cpu_reg(s, rm, sf); 4934 4935 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4936 4937 tcg_result = tcg_temp_new_i64(); 4938 4939 if (!setflags) { 4940 if (sub_op) { 4941 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4942 } else { 4943 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4944 } 4945 } else { 4946 if (sub_op) { 4947 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4948 } else { 4949 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4950 } 4951 } 4952 4953 if (sf) { 4954 tcg_gen_mov_i64(tcg_rd, tcg_result); 4955 } else { 4956 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4957 } 4958 } 4959 4960 /* Data-processing (3 source) 4961 * 4962 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4963 * +--+------+-----------+------+------+----+------+------+------+ 4964 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4965 * +--+------+-----------+------+------+----+------+------+------+ 4966 */ 4967 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4968 { 4969 int rd = extract32(insn, 0, 5); 4970 int rn = extract32(insn, 5, 5); 4971 int ra = extract32(insn, 10, 5); 4972 int rm = extract32(insn, 16, 5); 4973 int op_id = (extract32(insn, 29, 3) << 4) | 4974 (extract32(insn, 21, 3) << 1) | 4975 extract32(insn, 15, 1); 4976 bool sf = extract32(insn, 31, 1); 4977 bool is_sub = extract32(op_id, 0, 1); 4978 bool is_high = extract32(op_id, 2, 1); 4979 bool is_signed = false; 4980 TCGv_i64 tcg_op1; 4981 TCGv_i64 tcg_op2; 4982 TCGv_i64 tcg_tmp; 4983 4984 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4985 switch (op_id) { 4986 case 0x42: /* SMADDL */ 4987 case 0x43: /* SMSUBL */ 4988 case 0x44: /* SMULH */ 4989 is_signed = true; 4990 break; 4991 case 0x0: /* MADD (32bit) */ 4992 case 0x1: /* MSUB (32bit) */ 4993 case 0x40: /* MADD (64bit) */ 4994 case 0x41: /* MSUB (64bit) */ 4995 case 0x4a: /* UMADDL */ 4996 case 0x4b: /* UMSUBL */ 4997 case 0x4c: /* UMULH */ 4998 break; 4999 default: 5000 unallocated_encoding(s); 5001 return; 5002 } 5003 5004 if (is_high) { 5005 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5006 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5007 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5008 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5009 5010 if (is_signed) { 5011 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5012 } else { 5013 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5014 } 5015 return; 5016 } 5017 5018 tcg_op1 = tcg_temp_new_i64(); 5019 tcg_op2 = tcg_temp_new_i64(); 5020 tcg_tmp = tcg_temp_new_i64(); 5021 5022 if (op_id < 0x42) { 5023 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5024 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5025 } else { 5026 if (is_signed) { 5027 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5028 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5029 } else { 5030 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5031 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5032 } 5033 } 5034 5035 if (ra == 31 && !is_sub) { 5036 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5037 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5038 } else { 5039 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5040 if (is_sub) { 5041 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5042 } else { 5043 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5044 } 5045 } 5046 5047 if (!sf) { 5048 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5049 } 5050 } 5051 5052 /* Add/subtract (with carry) 5053 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5054 * +--+--+--+------------------------+------+-------------+------+-----+ 5055 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5056 * +--+--+--+------------------------+------+-------------+------+-----+ 5057 */ 5058 5059 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5060 { 5061 unsigned int sf, op, setflags, rm, rn, rd; 5062 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5063 5064 sf = extract32(insn, 31, 1); 5065 op = extract32(insn, 30, 1); 5066 setflags = extract32(insn, 29, 1); 5067 rm = extract32(insn, 16, 5); 5068 rn = extract32(insn, 5, 5); 5069 rd = extract32(insn, 0, 5); 5070 5071 tcg_rd = cpu_reg(s, rd); 5072 tcg_rn = cpu_reg(s, rn); 5073 5074 if (op) { 5075 tcg_y = tcg_temp_new_i64(); 5076 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5077 } else { 5078 tcg_y = cpu_reg(s, rm); 5079 } 5080 5081 if (setflags) { 5082 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5083 } else { 5084 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5085 } 5086 } 5087 5088 /* 5089 * Rotate right into flags 5090 * 31 30 29 21 15 10 5 4 0 5091 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5092 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5093 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5094 */ 5095 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5096 { 5097 int mask = extract32(insn, 0, 4); 5098 int o2 = extract32(insn, 4, 1); 5099 int rn = extract32(insn, 5, 5); 5100 int imm6 = extract32(insn, 15, 6); 5101 int sf_op_s = extract32(insn, 29, 3); 5102 TCGv_i64 tcg_rn; 5103 TCGv_i32 nzcv; 5104 5105 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5106 unallocated_encoding(s); 5107 return; 5108 } 5109 5110 tcg_rn = read_cpu_reg(s, rn, 1); 5111 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5112 5113 nzcv = tcg_temp_new_i32(); 5114 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5115 5116 if (mask & 8) { /* N */ 5117 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5118 } 5119 if (mask & 4) { /* Z */ 5120 tcg_gen_not_i32(cpu_ZF, nzcv); 5121 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5122 } 5123 if (mask & 2) { /* C */ 5124 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5125 } 5126 if (mask & 1) { /* V */ 5127 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5128 } 5129 } 5130 5131 /* 5132 * Evaluate into flags 5133 * 31 30 29 21 15 14 10 5 4 0 5134 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5135 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5136 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5137 */ 5138 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5139 { 5140 int o3_mask = extract32(insn, 0, 5); 5141 int rn = extract32(insn, 5, 5); 5142 int o2 = extract32(insn, 15, 6); 5143 int sz = extract32(insn, 14, 1); 5144 int sf_op_s = extract32(insn, 29, 3); 5145 TCGv_i32 tmp; 5146 int shift; 5147 5148 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5149 !dc_isar_feature(aa64_condm_4, s)) { 5150 unallocated_encoding(s); 5151 return; 5152 } 5153 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5154 5155 tmp = tcg_temp_new_i32(); 5156 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5157 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5158 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5159 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5160 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5161 } 5162 5163 /* Conditional compare (immediate / register) 5164 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5165 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5166 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5167 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5168 * [1] y [0] [0] 5169 */ 5170 static void disas_cc(DisasContext *s, uint32_t insn) 5171 { 5172 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5173 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5174 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5175 DisasCompare c; 5176 5177 if (!extract32(insn, 29, 1)) { 5178 unallocated_encoding(s); 5179 return; 5180 } 5181 if (insn & (1 << 10 | 1 << 4)) { 5182 unallocated_encoding(s); 5183 return; 5184 } 5185 sf = extract32(insn, 31, 1); 5186 op = extract32(insn, 30, 1); 5187 is_imm = extract32(insn, 11, 1); 5188 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5189 cond = extract32(insn, 12, 4); 5190 rn = extract32(insn, 5, 5); 5191 nzcv = extract32(insn, 0, 4); 5192 5193 /* Set T0 = !COND. */ 5194 tcg_t0 = tcg_temp_new_i32(); 5195 arm_test_cc(&c, cond); 5196 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5197 5198 /* Load the arguments for the new comparison. */ 5199 if (is_imm) { 5200 tcg_y = tcg_temp_new_i64(); 5201 tcg_gen_movi_i64(tcg_y, y); 5202 } else { 5203 tcg_y = cpu_reg(s, y); 5204 } 5205 tcg_rn = cpu_reg(s, rn); 5206 5207 /* Set the flags for the new comparison. */ 5208 tcg_tmp = tcg_temp_new_i64(); 5209 if (op) { 5210 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5211 } else { 5212 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5213 } 5214 5215 /* If COND was false, force the flags to #nzcv. Compute two masks 5216 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5217 * For tcg hosts that support ANDC, we can make do with just T1. 5218 * In either case, allow the tcg optimizer to delete any unused mask. 5219 */ 5220 tcg_t1 = tcg_temp_new_i32(); 5221 tcg_t2 = tcg_temp_new_i32(); 5222 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5223 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5224 5225 if (nzcv & 8) { /* N */ 5226 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5227 } else { 5228 if (TCG_TARGET_HAS_andc_i32) { 5229 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5230 } else { 5231 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5232 } 5233 } 5234 if (nzcv & 4) { /* Z */ 5235 if (TCG_TARGET_HAS_andc_i32) { 5236 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5237 } else { 5238 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5239 } 5240 } else { 5241 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5242 } 5243 if (nzcv & 2) { /* C */ 5244 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5245 } else { 5246 if (TCG_TARGET_HAS_andc_i32) { 5247 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5248 } else { 5249 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5250 } 5251 } 5252 if (nzcv & 1) { /* V */ 5253 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5254 } else { 5255 if (TCG_TARGET_HAS_andc_i32) { 5256 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5257 } else { 5258 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5259 } 5260 } 5261 } 5262 5263 /* Conditional select 5264 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5265 * +----+----+---+-----------------+------+------+-----+------+------+ 5266 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5267 * +----+----+---+-----------------+------+------+-----+------+------+ 5268 */ 5269 static void disas_cond_select(DisasContext *s, uint32_t insn) 5270 { 5271 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5272 TCGv_i64 tcg_rd, zero; 5273 DisasCompare64 c; 5274 5275 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5276 /* S == 1 or op2<1> == 1 */ 5277 unallocated_encoding(s); 5278 return; 5279 } 5280 sf = extract32(insn, 31, 1); 5281 else_inv = extract32(insn, 30, 1); 5282 rm = extract32(insn, 16, 5); 5283 cond = extract32(insn, 12, 4); 5284 else_inc = extract32(insn, 10, 1); 5285 rn = extract32(insn, 5, 5); 5286 rd = extract32(insn, 0, 5); 5287 5288 tcg_rd = cpu_reg(s, rd); 5289 5290 a64_test_cc(&c, cond); 5291 zero = tcg_constant_i64(0); 5292 5293 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5294 /* CSET & CSETM. */ 5295 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5296 if (else_inv) { 5297 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5298 } 5299 } else { 5300 TCGv_i64 t_true = cpu_reg(s, rn); 5301 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5302 if (else_inv && else_inc) { 5303 tcg_gen_neg_i64(t_false, t_false); 5304 } else if (else_inv) { 5305 tcg_gen_not_i64(t_false, t_false); 5306 } else if (else_inc) { 5307 tcg_gen_addi_i64(t_false, t_false, 1); 5308 } 5309 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5310 } 5311 5312 if (!sf) { 5313 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5314 } 5315 } 5316 5317 static void handle_clz(DisasContext *s, unsigned int sf, 5318 unsigned int rn, unsigned int rd) 5319 { 5320 TCGv_i64 tcg_rd, tcg_rn; 5321 tcg_rd = cpu_reg(s, rd); 5322 tcg_rn = cpu_reg(s, rn); 5323 5324 if (sf) { 5325 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5326 } else { 5327 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5328 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5329 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5330 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5331 } 5332 } 5333 5334 static void handle_cls(DisasContext *s, unsigned int sf, 5335 unsigned int rn, unsigned int rd) 5336 { 5337 TCGv_i64 tcg_rd, tcg_rn; 5338 tcg_rd = cpu_reg(s, rd); 5339 tcg_rn = cpu_reg(s, rn); 5340 5341 if (sf) { 5342 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5343 } else { 5344 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5345 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5346 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5347 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5348 } 5349 } 5350 5351 static void handle_rbit(DisasContext *s, unsigned int sf, 5352 unsigned int rn, unsigned int rd) 5353 { 5354 TCGv_i64 tcg_rd, tcg_rn; 5355 tcg_rd = cpu_reg(s, rd); 5356 tcg_rn = cpu_reg(s, rn); 5357 5358 if (sf) { 5359 gen_helper_rbit64(tcg_rd, tcg_rn); 5360 } else { 5361 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5362 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5363 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5364 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5365 } 5366 } 5367 5368 /* REV with sf==1, opcode==3 ("REV64") */ 5369 static void handle_rev64(DisasContext *s, unsigned int sf, 5370 unsigned int rn, unsigned int rd) 5371 { 5372 if (!sf) { 5373 unallocated_encoding(s); 5374 return; 5375 } 5376 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5377 } 5378 5379 /* REV with sf==0, opcode==2 5380 * REV32 (sf==1, opcode==2) 5381 */ 5382 static void handle_rev32(DisasContext *s, unsigned int sf, 5383 unsigned int rn, unsigned int rd) 5384 { 5385 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5386 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5387 5388 if (sf) { 5389 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5390 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5391 } else { 5392 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5393 } 5394 } 5395 5396 /* REV16 (opcode==1) */ 5397 static void handle_rev16(DisasContext *s, unsigned int sf, 5398 unsigned int rn, unsigned int rd) 5399 { 5400 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5401 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5402 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5403 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5404 5405 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5406 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5407 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5408 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5409 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5410 } 5411 5412 /* Data-processing (1 source) 5413 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5414 * +----+---+---+-----------------+---------+--------+------+------+ 5415 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5416 * +----+---+---+-----------------+---------+--------+------+------+ 5417 */ 5418 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5419 { 5420 unsigned int sf, opcode, opcode2, rn, rd; 5421 TCGv_i64 tcg_rd; 5422 5423 if (extract32(insn, 29, 1)) { 5424 unallocated_encoding(s); 5425 return; 5426 } 5427 5428 sf = extract32(insn, 31, 1); 5429 opcode = extract32(insn, 10, 6); 5430 opcode2 = extract32(insn, 16, 5); 5431 rn = extract32(insn, 5, 5); 5432 rd = extract32(insn, 0, 5); 5433 5434 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5435 5436 switch (MAP(sf, opcode2, opcode)) { 5437 case MAP(0, 0x00, 0x00): /* RBIT */ 5438 case MAP(1, 0x00, 0x00): 5439 handle_rbit(s, sf, rn, rd); 5440 break; 5441 case MAP(0, 0x00, 0x01): /* REV16 */ 5442 case MAP(1, 0x00, 0x01): 5443 handle_rev16(s, sf, rn, rd); 5444 break; 5445 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5446 case MAP(1, 0x00, 0x02): 5447 handle_rev32(s, sf, rn, rd); 5448 break; 5449 case MAP(1, 0x00, 0x03): /* REV64 */ 5450 handle_rev64(s, sf, rn, rd); 5451 break; 5452 case MAP(0, 0x00, 0x04): /* CLZ */ 5453 case MAP(1, 0x00, 0x04): 5454 handle_clz(s, sf, rn, rd); 5455 break; 5456 case MAP(0, 0x00, 0x05): /* CLS */ 5457 case MAP(1, 0x00, 0x05): 5458 handle_cls(s, sf, rn, rd); 5459 break; 5460 case MAP(1, 0x01, 0x00): /* PACIA */ 5461 if (s->pauth_active) { 5462 tcg_rd = cpu_reg(s, rd); 5463 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5464 } else if (!dc_isar_feature(aa64_pauth, s)) { 5465 goto do_unallocated; 5466 } 5467 break; 5468 case MAP(1, 0x01, 0x01): /* PACIB */ 5469 if (s->pauth_active) { 5470 tcg_rd = cpu_reg(s, rd); 5471 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5472 } else if (!dc_isar_feature(aa64_pauth, s)) { 5473 goto do_unallocated; 5474 } 5475 break; 5476 case MAP(1, 0x01, 0x02): /* PACDA */ 5477 if (s->pauth_active) { 5478 tcg_rd = cpu_reg(s, rd); 5479 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5480 } else if (!dc_isar_feature(aa64_pauth, s)) { 5481 goto do_unallocated; 5482 } 5483 break; 5484 case MAP(1, 0x01, 0x03): /* PACDB */ 5485 if (s->pauth_active) { 5486 tcg_rd = cpu_reg(s, rd); 5487 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5488 } else if (!dc_isar_feature(aa64_pauth, s)) { 5489 goto do_unallocated; 5490 } 5491 break; 5492 case MAP(1, 0x01, 0x04): /* AUTIA */ 5493 if (s->pauth_active) { 5494 tcg_rd = cpu_reg(s, rd); 5495 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5496 } else if (!dc_isar_feature(aa64_pauth, s)) { 5497 goto do_unallocated; 5498 } 5499 break; 5500 case MAP(1, 0x01, 0x05): /* AUTIB */ 5501 if (s->pauth_active) { 5502 tcg_rd = cpu_reg(s, rd); 5503 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5504 } else if (!dc_isar_feature(aa64_pauth, s)) { 5505 goto do_unallocated; 5506 } 5507 break; 5508 case MAP(1, 0x01, 0x06): /* AUTDA */ 5509 if (s->pauth_active) { 5510 tcg_rd = cpu_reg(s, rd); 5511 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5512 } else if (!dc_isar_feature(aa64_pauth, s)) { 5513 goto do_unallocated; 5514 } 5515 break; 5516 case MAP(1, 0x01, 0x07): /* AUTDB */ 5517 if (s->pauth_active) { 5518 tcg_rd = cpu_reg(s, rd); 5519 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5520 } else if (!dc_isar_feature(aa64_pauth, s)) { 5521 goto do_unallocated; 5522 } 5523 break; 5524 case MAP(1, 0x01, 0x08): /* PACIZA */ 5525 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5526 goto do_unallocated; 5527 } else if (s->pauth_active) { 5528 tcg_rd = cpu_reg(s, rd); 5529 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5530 } 5531 break; 5532 case MAP(1, 0x01, 0x09): /* PACIZB */ 5533 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5534 goto do_unallocated; 5535 } else if (s->pauth_active) { 5536 tcg_rd = cpu_reg(s, rd); 5537 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5538 } 5539 break; 5540 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5541 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5542 goto do_unallocated; 5543 } else if (s->pauth_active) { 5544 tcg_rd = cpu_reg(s, rd); 5545 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5546 } 5547 break; 5548 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5549 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5550 goto do_unallocated; 5551 } else if (s->pauth_active) { 5552 tcg_rd = cpu_reg(s, rd); 5553 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5554 } 5555 break; 5556 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5557 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5558 goto do_unallocated; 5559 } else if (s->pauth_active) { 5560 tcg_rd = cpu_reg(s, rd); 5561 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5562 } 5563 break; 5564 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5565 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5566 goto do_unallocated; 5567 } else if (s->pauth_active) { 5568 tcg_rd = cpu_reg(s, rd); 5569 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5570 } 5571 break; 5572 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5573 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5574 goto do_unallocated; 5575 } else if (s->pauth_active) { 5576 tcg_rd = cpu_reg(s, rd); 5577 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5578 } 5579 break; 5580 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5581 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5582 goto do_unallocated; 5583 } else if (s->pauth_active) { 5584 tcg_rd = cpu_reg(s, rd); 5585 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5586 } 5587 break; 5588 case MAP(1, 0x01, 0x10): /* XPACI */ 5589 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5590 goto do_unallocated; 5591 } else if (s->pauth_active) { 5592 tcg_rd = cpu_reg(s, rd); 5593 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5594 } 5595 break; 5596 case MAP(1, 0x01, 0x11): /* XPACD */ 5597 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5598 goto do_unallocated; 5599 } else if (s->pauth_active) { 5600 tcg_rd = cpu_reg(s, rd); 5601 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5602 } 5603 break; 5604 default: 5605 do_unallocated: 5606 unallocated_encoding(s); 5607 break; 5608 } 5609 5610 #undef MAP 5611 } 5612 5613 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5614 unsigned int rm, unsigned int rn, unsigned int rd) 5615 { 5616 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5617 tcg_rd = cpu_reg(s, rd); 5618 5619 if (!sf && is_signed) { 5620 tcg_n = tcg_temp_new_i64(); 5621 tcg_m = tcg_temp_new_i64(); 5622 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5623 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5624 } else { 5625 tcg_n = read_cpu_reg(s, rn, sf); 5626 tcg_m = read_cpu_reg(s, rm, sf); 5627 } 5628 5629 if (is_signed) { 5630 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5631 } else { 5632 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5633 } 5634 5635 if (!sf) { /* zero extend final result */ 5636 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5637 } 5638 } 5639 5640 /* LSLV, LSRV, ASRV, RORV */ 5641 static void handle_shift_reg(DisasContext *s, 5642 enum a64_shift_type shift_type, unsigned int sf, 5643 unsigned int rm, unsigned int rn, unsigned int rd) 5644 { 5645 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5646 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5647 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5648 5649 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5650 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5651 } 5652 5653 /* CRC32[BHWX], CRC32C[BHWX] */ 5654 static void handle_crc32(DisasContext *s, 5655 unsigned int sf, unsigned int sz, bool crc32c, 5656 unsigned int rm, unsigned int rn, unsigned int rd) 5657 { 5658 TCGv_i64 tcg_acc, tcg_val; 5659 TCGv_i32 tcg_bytes; 5660 5661 if (!dc_isar_feature(aa64_crc32, s) 5662 || (sf == 1 && sz != 3) 5663 || (sf == 0 && sz == 3)) { 5664 unallocated_encoding(s); 5665 return; 5666 } 5667 5668 if (sz == 3) { 5669 tcg_val = cpu_reg(s, rm); 5670 } else { 5671 uint64_t mask; 5672 switch (sz) { 5673 case 0: 5674 mask = 0xFF; 5675 break; 5676 case 1: 5677 mask = 0xFFFF; 5678 break; 5679 case 2: 5680 mask = 0xFFFFFFFF; 5681 break; 5682 default: 5683 g_assert_not_reached(); 5684 } 5685 tcg_val = tcg_temp_new_i64(); 5686 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5687 } 5688 5689 tcg_acc = cpu_reg(s, rn); 5690 tcg_bytes = tcg_constant_i32(1 << sz); 5691 5692 if (crc32c) { 5693 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5694 } else { 5695 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5696 } 5697 } 5698 5699 /* Data-processing (2 source) 5700 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5701 * +----+---+---+-----------------+------+--------+------+------+ 5702 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5703 * +----+---+---+-----------------+------+--------+------+------+ 5704 */ 5705 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5706 { 5707 unsigned int sf, rm, opcode, rn, rd, setflag; 5708 sf = extract32(insn, 31, 1); 5709 setflag = extract32(insn, 29, 1); 5710 rm = extract32(insn, 16, 5); 5711 opcode = extract32(insn, 10, 6); 5712 rn = extract32(insn, 5, 5); 5713 rd = extract32(insn, 0, 5); 5714 5715 if (setflag && opcode != 0) { 5716 unallocated_encoding(s); 5717 return; 5718 } 5719 5720 switch (opcode) { 5721 case 0: /* SUBP(S) */ 5722 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5723 goto do_unallocated; 5724 } else { 5725 TCGv_i64 tcg_n, tcg_m, tcg_d; 5726 5727 tcg_n = read_cpu_reg_sp(s, rn, true); 5728 tcg_m = read_cpu_reg_sp(s, rm, true); 5729 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5730 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5731 tcg_d = cpu_reg(s, rd); 5732 5733 if (setflag) { 5734 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5735 } else { 5736 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5737 } 5738 } 5739 break; 5740 case 2: /* UDIV */ 5741 handle_div(s, false, sf, rm, rn, rd); 5742 break; 5743 case 3: /* SDIV */ 5744 handle_div(s, true, sf, rm, rn, rd); 5745 break; 5746 case 4: /* IRG */ 5747 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5748 goto do_unallocated; 5749 } 5750 if (s->ata) { 5751 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5752 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5753 } else { 5754 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5755 cpu_reg_sp(s, rn)); 5756 } 5757 break; 5758 case 5: /* GMI */ 5759 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5760 goto do_unallocated; 5761 } else { 5762 TCGv_i64 t = tcg_temp_new_i64(); 5763 5764 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5765 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5766 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5767 } 5768 break; 5769 case 8: /* LSLV */ 5770 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5771 break; 5772 case 9: /* LSRV */ 5773 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5774 break; 5775 case 10: /* ASRV */ 5776 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5777 break; 5778 case 11: /* RORV */ 5779 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5780 break; 5781 case 12: /* PACGA */ 5782 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5783 goto do_unallocated; 5784 } 5785 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5786 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5787 break; 5788 case 16: 5789 case 17: 5790 case 18: 5791 case 19: 5792 case 20: 5793 case 21: 5794 case 22: 5795 case 23: /* CRC32 */ 5796 { 5797 int sz = extract32(opcode, 0, 2); 5798 bool crc32c = extract32(opcode, 2, 1); 5799 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5800 break; 5801 } 5802 default: 5803 do_unallocated: 5804 unallocated_encoding(s); 5805 break; 5806 } 5807 } 5808 5809 /* 5810 * Data processing - register 5811 * 31 30 29 28 25 21 20 16 10 0 5812 * +--+---+--+---+-------+-----+-------+-------+---------+ 5813 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5814 * +--+---+--+---+-------+-----+-------+-------+---------+ 5815 */ 5816 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5817 { 5818 int op0 = extract32(insn, 30, 1); 5819 int op1 = extract32(insn, 28, 1); 5820 int op2 = extract32(insn, 21, 4); 5821 int op3 = extract32(insn, 10, 6); 5822 5823 if (!op1) { 5824 if (op2 & 8) { 5825 if (op2 & 1) { 5826 /* Add/sub (extended register) */ 5827 disas_add_sub_ext_reg(s, insn); 5828 } else { 5829 /* Add/sub (shifted register) */ 5830 disas_add_sub_reg(s, insn); 5831 } 5832 } else { 5833 /* Logical (shifted register) */ 5834 disas_logic_reg(s, insn); 5835 } 5836 return; 5837 } 5838 5839 switch (op2) { 5840 case 0x0: 5841 switch (op3) { 5842 case 0x00: /* Add/subtract (with carry) */ 5843 disas_adc_sbc(s, insn); 5844 break; 5845 5846 case 0x01: /* Rotate right into flags */ 5847 case 0x21: 5848 disas_rotate_right_into_flags(s, insn); 5849 break; 5850 5851 case 0x02: /* Evaluate into flags */ 5852 case 0x12: 5853 case 0x22: 5854 case 0x32: 5855 disas_evaluate_into_flags(s, insn); 5856 break; 5857 5858 default: 5859 goto do_unallocated; 5860 } 5861 break; 5862 5863 case 0x2: /* Conditional compare */ 5864 disas_cc(s, insn); /* both imm and reg forms */ 5865 break; 5866 5867 case 0x4: /* Conditional select */ 5868 disas_cond_select(s, insn); 5869 break; 5870 5871 case 0x6: /* Data-processing */ 5872 if (op0) { /* (1 source) */ 5873 disas_data_proc_1src(s, insn); 5874 } else { /* (2 source) */ 5875 disas_data_proc_2src(s, insn); 5876 } 5877 break; 5878 case 0x8 ... 0xf: /* (3 source) */ 5879 disas_data_proc_3src(s, insn); 5880 break; 5881 5882 default: 5883 do_unallocated: 5884 unallocated_encoding(s); 5885 break; 5886 } 5887 } 5888 5889 static void handle_fp_compare(DisasContext *s, int size, 5890 unsigned int rn, unsigned int rm, 5891 bool cmp_with_zero, bool signal_all_nans) 5892 { 5893 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5894 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5895 5896 if (size == MO_64) { 5897 TCGv_i64 tcg_vn, tcg_vm; 5898 5899 tcg_vn = read_fp_dreg(s, rn); 5900 if (cmp_with_zero) { 5901 tcg_vm = tcg_constant_i64(0); 5902 } else { 5903 tcg_vm = read_fp_dreg(s, rm); 5904 } 5905 if (signal_all_nans) { 5906 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5907 } else { 5908 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5909 } 5910 } else { 5911 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5912 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5913 5914 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5915 if (cmp_with_zero) { 5916 tcg_gen_movi_i32(tcg_vm, 0); 5917 } else { 5918 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5919 } 5920 5921 switch (size) { 5922 case MO_32: 5923 if (signal_all_nans) { 5924 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5925 } else { 5926 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5927 } 5928 break; 5929 case MO_16: 5930 if (signal_all_nans) { 5931 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5932 } else { 5933 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5934 } 5935 break; 5936 default: 5937 g_assert_not_reached(); 5938 } 5939 } 5940 5941 gen_set_nzcv(tcg_flags); 5942 } 5943 5944 /* Floating point compare 5945 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5946 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5947 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5948 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5949 */ 5950 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5951 { 5952 unsigned int mos, type, rm, op, rn, opc, op2r; 5953 int size; 5954 5955 mos = extract32(insn, 29, 3); 5956 type = extract32(insn, 22, 2); 5957 rm = extract32(insn, 16, 5); 5958 op = extract32(insn, 14, 2); 5959 rn = extract32(insn, 5, 5); 5960 opc = extract32(insn, 3, 2); 5961 op2r = extract32(insn, 0, 3); 5962 5963 if (mos || op || op2r) { 5964 unallocated_encoding(s); 5965 return; 5966 } 5967 5968 switch (type) { 5969 case 0: 5970 size = MO_32; 5971 break; 5972 case 1: 5973 size = MO_64; 5974 break; 5975 case 3: 5976 size = MO_16; 5977 if (dc_isar_feature(aa64_fp16, s)) { 5978 break; 5979 } 5980 /* fallthru */ 5981 default: 5982 unallocated_encoding(s); 5983 return; 5984 } 5985 5986 if (!fp_access_check(s)) { 5987 return; 5988 } 5989 5990 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5991 } 5992 5993 /* Floating point conditional compare 5994 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5995 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5996 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5997 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5998 */ 5999 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6000 { 6001 unsigned int mos, type, rm, cond, rn, op, nzcv; 6002 TCGLabel *label_continue = NULL; 6003 int size; 6004 6005 mos = extract32(insn, 29, 3); 6006 type = extract32(insn, 22, 2); 6007 rm = extract32(insn, 16, 5); 6008 cond = extract32(insn, 12, 4); 6009 rn = extract32(insn, 5, 5); 6010 op = extract32(insn, 4, 1); 6011 nzcv = extract32(insn, 0, 4); 6012 6013 if (mos) { 6014 unallocated_encoding(s); 6015 return; 6016 } 6017 6018 switch (type) { 6019 case 0: 6020 size = MO_32; 6021 break; 6022 case 1: 6023 size = MO_64; 6024 break; 6025 case 3: 6026 size = MO_16; 6027 if (dc_isar_feature(aa64_fp16, s)) { 6028 break; 6029 } 6030 /* fallthru */ 6031 default: 6032 unallocated_encoding(s); 6033 return; 6034 } 6035 6036 if (!fp_access_check(s)) { 6037 return; 6038 } 6039 6040 if (cond < 0x0e) { /* not always */ 6041 TCGLabel *label_match = gen_new_label(); 6042 label_continue = gen_new_label(); 6043 arm_gen_test_cc(cond, label_match); 6044 /* nomatch: */ 6045 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6046 tcg_gen_br(label_continue); 6047 gen_set_label(label_match); 6048 } 6049 6050 handle_fp_compare(s, size, rn, rm, false, op); 6051 6052 if (cond < 0x0e) { 6053 gen_set_label(label_continue); 6054 } 6055 } 6056 6057 /* Floating point conditional select 6058 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6059 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6060 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6061 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6062 */ 6063 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6064 { 6065 unsigned int mos, type, rm, cond, rn, rd; 6066 TCGv_i64 t_true, t_false; 6067 DisasCompare64 c; 6068 MemOp sz; 6069 6070 mos = extract32(insn, 29, 3); 6071 type = extract32(insn, 22, 2); 6072 rm = extract32(insn, 16, 5); 6073 cond = extract32(insn, 12, 4); 6074 rn = extract32(insn, 5, 5); 6075 rd = extract32(insn, 0, 5); 6076 6077 if (mos) { 6078 unallocated_encoding(s); 6079 return; 6080 } 6081 6082 switch (type) { 6083 case 0: 6084 sz = MO_32; 6085 break; 6086 case 1: 6087 sz = MO_64; 6088 break; 6089 case 3: 6090 sz = MO_16; 6091 if (dc_isar_feature(aa64_fp16, s)) { 6092 break; 6093 } 6094 /* fallthru */ 6095 default: 6096 unallocated_encoding(s); 6097 return; 6098 } 6099 6100 if (!fp_access_check(s)) { 6101 return; 6102 } 6103 6104 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6105 t_true = tcg_temp_new_i64(); 6106 t_false = tcg_temp_new_i64(); 6107 read_vec_element(s, t_true, rn, 0, sz); 6108 read_vec_element(s, t_false, rm, 0, sz); 6109 6110 a64_test_cc(&c, cond); 6111 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6112 t_true, t_false); 6113 6114 /* Note that sregs & hregs write back zeros to the high bits, 6115 and we've already done the zero-extension. */ 6116 write_fp_dreg(s, rd, t_true); 6117 } 6118 6119 /* Floating-point data-processing (1 source) - half precision */ 6120 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6121 { 6122 TCGv_ptr fpst = NULL; 6123 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6124 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6125 6126 switch (opcode) { 6127 case 0x0: /* FMOV */ 6128 tcg_gen_mov_i32(tcg_res, tcg_op); 6129 break; 6130 case 0x1: /* FABS */ 6131 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6132 break; 6133 case 0x2: /* FNEG */ 6134 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6135 break; 6136 case 0x3: /* FSQRT */ 6137 fpst = fpstatus_ptr(FPST_FPCR_F16); 6138 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6139 break; 6140 case 0x8: /* FRINTN */ 6141 case 0x9: /* FRINTP */ 6142 case 0xa: /* FRINTM */ 6143 case 0xb: /* FRINTZ */ 6144 case 0xc: /* FRINTA */ 6145 { 6146 TCGv_i32 tcg_rmode; 6147 6148 fpst = fpstatus_ptr(FPST_FPCR_F16); 6149 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6150 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6151 gen_restore_rmode(tcg_rmode, fpst); 6152 break; 6153 } 6154 case 0xe: /* FRINTX */ 6155 fpst = fpstatus_ptr(FPST_FPCR_F16); 6156 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6157 break; 6158 case 0xf: /* FRINTI */ 6159 fpst = fpstatus_ptr(FPST_FPCR_F16); 6160 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6161 break; 6162 default: 6163 g_assert_not_reached(); 6164 } 6165 6166 write_fp_sreg(s, rd, tcg_res); 6167 } 6168 6169 /* Floating-point data-processing (1 source) - single precision */ 6170 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6171 { 6172 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6173 TCGv_i32 tcg_op, tcg_res; 6174 TCGv_ptr fpst; 6175 int rmode = -1; 6176 6177 tcg_op = read_fp_sreg(s, rn); 6178 tcg_res = tcg_temp_new_i32(); 6179 6180 switch (opcode) { 6181 case 0x0: /* FMOV */ 6182 tcg_gen_mov_i32(tcg_res, tcg_op); 6183 goto done; 6184 case 0x1: /* FABS */ 6185 gen_helper_vfp_abss(tcg_res, tcg_op); 6186 goto done; 6187 case 0x2: /* FNEG */ 6188 gen_helper_vfp_negs(tcg_res, tcg_op); 6189 goto done; 6190 case 0x3: /* FSQRT */ 6191 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6192 goto done; 6193 case 0x6: /* BFCVT */ 6194 gen_fpst = gen_helper_bfcvt; 6195 break; 6196 case 0x8: /* FRINTN */ 6197 case 0x9: /* FRINTP */ 6198 case 0xa: /* FRINTM */ 6199 case 0xb: /* FRINTZ */ 6200 case 0xc: /* FRINTA */ 6201 rmode = opcode & 7; 6202 gen_fpst = gen_helper_rints; 6203 break; 6204 case 0xe: /* FRINTX */ 6205 gen_fpst = gen_helper_rints_exact; 6206 break; 6207 case 0xf: /* FRINTI */ 6208 gen_fpst = gen_helper_rints; 6209 break; 6210 case 0x10: /* FRINT32Z */ 6211 rmode = FPROUNDING_ZERO; 6212 gen_fpst = gen_helper_frint32_s; 6213 break; 6214 case 0x11: /* FRINT32X */ 6215 gen_fpst = gen_helper_frint32_s; 6216 break; 6217 case 0x12: /* FRINT64Z */ 6218 rmode = FPROUNDING_ZERO; 6219 gen_fpst = gen_helper_frint64_s; 6220 break; 6221 case 0x13: /* FRINT64X */ 6222 gen_fpst = gen_helper_frint64_s; 6223 break; 6224 default: 6225 g_assert_not_reached(); 6226 } 6227 6228 fpst = fpstatus_ptr(FPST_FPCR); 6229 if (rmode >= 0) { 6230 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6231 gen_fpst(tcg_res, tcg_op, fpst); 6232 gen_restore_rmode(tcg_rmode, fpst); 6233 } else { 6234 gen_fpst(tcg_res, tcg_op, fpst); 6235 } 6236 6237 done: 6238 write_fp_sreg(s, rd, tcg_res); 6239 } 6240 6241 /* Floating-point data-processing (1 source) - double precision */ 6242 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6243 { 6244 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6245 TCGv_i64 tcg_op, tcg_res; 6246 TCGv_ptr fpst; 6247 int rmode = -1; 6248 6249 switch (opcode) { 6250 case 0x0: /* FMOV */ 6251 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6252 return; 6253 } 6254 6255 tcg_op = read_fp_dreg(s, rn); 6256 tcg_res = tcg_temp_new_i64(); 6257 6258 switch (opcode) { 6259 case 0x1: /* FABS */ 6260 gen_helper_vfp_absd(tcg_res, tcg_op); 6261 goto done; 6262 case 0x2: /* FNEG */ 6263 gen_helper_vfp_negd(tcg_res, tcg_op); 6264 goto done; 6265 case 0x3: /* FSQRT */ 6266 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6267 goto done; 6268 case 0x8: /* FRINTN */ 6269 case 0x9: /* FRINTP */ 6270 case 0xa: /* FRINTM */ 6271 case 0xb: /* FRINTZ */ 6272 case 0xc: /* FRINTA */ 6273 rmode = opcode & 7; 6274 gen_fpst = gen_helper_rintd; 6275 break; 6276 case 0xe: /* FRINTX */ 6277 gen_fpst = gen_helper_rintd_exact; 6278 break; 6279 case 0xf: /* FRINTI */ 6280 gen_fpst = gen_helper_rintd; 6281 break; 6282 case 0x10: /* FRINT32Z */ 6283 rmode = FPROUNDING_ZERO; 6284 gen_fpst = gen_helper_frint32_d; 6285 break; 6286 case 0x11: /* FRINT32X */ 6287 gen_fpst = gen_helper_frint32_d; 6288 break; 6289 case 0x12: /* FRINT64Z */ 6290 rmode = FPROUNDING_ZERO; 6291 gen_fpst = gen_helper_frint64_d; 6292 break; 6293 case 0x13: /* FRINT64X */ 6294 gen_fpst = gen_helper_frint64_d; 6295 break; 6296 default: 6297 g_assert_not_reached(); 6298 } 6299 6300 fpst = fpstatus_ptr(FPST_FPCR); 6301 if (rmode >= 0) { 6302 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6303 gen_fpst(tcg_res, tcg_op, fpst); 6304 gen_restore_rmode(tcg_rmode, fpst); 6305 } else { 6306 gen_fpst(tcg_res, tcg_op, fpst); 6307 } 6308 6309 done: 6310 write_fp_dreg(s, rd, tcg_res); 6311 } 6312 6313 static void handle_fp_fcvt(DisasContext *s, int opcode, 6314 int rd, int rn, int dtype, int ntype) 6315 { 6316 switch (ntype) { 6317 case 0x0: 6318 { 6319 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6320 if (dtype == 1) { 6321 /* Single to double */ 6322 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6323 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6324 write_fp_dreg(s, rd, tcg_rd); 6325 } else { 6326 /* Single to half */ 6327 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6328 TCGv_i32 ahp = get_ahp_flag(); 6329 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6330 6331 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6332 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6333 write_fp_sreg(s, rd, tcg_rd); 6334 } 6335 break; 6336 } 6337 case 0x1: 6338 { 6339 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6340 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6341 if (dtype == 0) { 6342 /* Double to single */ 6343 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6344 } else { 6345 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6346 TCGv_i32 ahp = get_ahp_flag(); 6347 /* Double to half */ 6348 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6349 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6350 } 6351 write_fp_sreg(s, rd, tcg_rd); 6352 break; 6353 } 6354 case 0x3: 6355 { 6356 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6357 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6358 TCGv_i32 tcg_ahp = get_ahp_flag(); 6359 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6360 if (dtype == 0) { 6361 /* Half to single */ 6362 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6363 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6364 write_fp_sreg(s, rd, tcg_rd); 6365 } else { 6366 /* Half to double */ 6367 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6368 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6369 write_fp_dreg(s, rd, tcg_rd); 6370 } 6371 break; 6372 } 6373 default: 6374 g_assert_not_reached(); 6375 } 6376 } 6377 6378 /* Floating point data-processing (1 source) 6379 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6380 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6381 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6382 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6383 */ 6384 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6385 { 6386 int mos = extract32(insn, 29, 3); 6387 int type = extract32(insn, 22, 2); 6388 int opcode = extract32(insn, 15, 6); 6389 int rn = extract32(insn, 5, 5); 6390 int rd = extract32(insn, 0, 5); 6391 6392 if (mos) { 6393 goto do_unallocated; 6394 } 6395 6396 switch (opcode) { 6397 case 0x4: case 0x5: case 0x7: 6398 { 6399 /* FCVT between half, single and double precision */ 6400 int dtype = extract32(opcode, 0, 2); 6401 if (type == 2 || dtype == type) { 6402 goto do_unallocated; 6403 } 6404 if (!fp_access_check(s)) { 6405 return; 6406 } 6407 6408 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6409 break; 6410 } 6411 6412 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6413 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6414 goto do_unallocated; 6415 } 6416 /* fall through */ 6417 case 0x0 ... 0x3: 6418 case 0x8 ... 0xc: 6419 case 0xe ... 0xf: 6420 /* 32-to-32 and 64-to-64 ops */ 6421 switch (type) { 6422 case 0: 6423 if (!fp_access_check(s)) { 6424 return; 6425 } 6426 handle_fp_1src_single(s, opcode, rd, rn); 6427 break; 6428 case 1: 6429 if (!fp_access_check(s)) { 6430 return; 6431 } 6432 handle_fp_1src_double(s, opcode, rd, rn); 6433 break; 6434 case 3: 6435 if (!dc_isar_feature(aa64_fp16, s)) { 6436 goto do_unallocated; 6437 } 6438 6439 if (!fp_access_check(s)) { 6440 return; 6441 } 6442 handle_fp_1src_half(s, opcode, rd, rn); 6443 break; 6444 default: 6445 goto do_unallocated; 6446 } 6447 break; 6448 6449 case 0x6: 6450 switch (type) { 6451 case 1: /* BFCVT */ 6452 if (!dc_isar_feature(aa64_bf16, s)) { 6453 goto do_unallocated; 6454 } 6455 if (!fp_access_check(s)) { 6456 return; 6457 } 6458 handle_fp_1src_single(s, opcode, rd, rn); 6459 break; 6460 default: 6461 goto do_unallocated; 6462 } 6463 break; 6464 6465 default: 6466 do_unallocated: 6467 unallocated_encoding(s); 6468 break; 6469 } 6470 } 6471 6472 /* Floating-point data-processing (2 source) - single precision */ 6473 static void handle_fp_2src_single(DisasContext *s, int opcode, 6474 int rd, int rn, int rm) 6475 { 6476 TCGv_i32 tcg_op1; 6477 TCGv_i32 tcg_op2; 6478 TCGv_i32 tcg_res; 6479 TCGv_ptr fpst; 6480 6481 tcg_res = tcg_temp_new_i32(); 6482 fpst = fpstatus_ptr(FPST_FPCR); 6483 tcg_op1 = read_fp_sreg(s, rn); 6484 tcg_op2 = read_fp_sreg(s, rm); 6485 6486 switch (opcode) { 6487 case 0x0: /* FMUL */ 6488 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6489 break; 6490 case 0x1: /* FDIV */ 6491 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6492 break; 6493 case 0x2: /* FADD */ 6494 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6495 break; 6496 case 0x3: /* FSUB */ 6497 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6498 break; 6499 case 0x4: /* FMAX */ 6500 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6501 break; 6502 case 0x5: /* FMIN */ 6503 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6504 break; 6505 case 0x6: /* FMAXNM */ 6506 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6507 break; 6508 case 0x7: /* FMINNM */ 6509 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6510 break; 6511 case 0x8: /* FNMUL */ 6512 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6513 gen_helper_vfp_negs(tcg_res, tcg_res); 6514 break; 6515 } 6516 6517 write_fp_sreg(s, rd, tcg_res); 6518 } 6519 6520 /* Floating-point data-processing (2 source) - double precision */ 6521 static void handle_fp_2src_double(DisasContext *s, int opcode, 6522 int rd, int rn, int rm) 6523 { 6524 TCGv_i64 tcg_op1; 6525 TCGv_i64 tcg_op2; 6526 TCGv_i64 tcg_res; 6527 TCGv_ptr fpst; 6528 6529 tcg_res = tcg_temp_new_i64(); 6530 fpst = fpstatus_ptr(FPST_FPCR); 6531 tcg_op1 = read_fp_dreg(s, rn); 6532 tcg_op2 = read_fp_dreg(s, rm); 6533 6534 switch (opcode) { 6535 case 0x0: /* FMUL */ 6536 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6537 break; 6538 case 0x1: /* FDIV */ 6539 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6540 break; 6541 case 0x2: /* FADD */ 6542 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6543 break; 6544 case 0x3: /* FSUB */ 6545 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6546 break; 6547 case 0x4: /* FMAX */ 6548 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6549 break; 6550 case 0x5: /* FMIN */ 6551 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6552 break; 6553 case 0x6: /* FMAXNM */ 6554 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6555 break; 6556 case 0x7: /* FMINNM */ 6557 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6558 break; 6559 case 0x8: /* FNMUL */ 6560 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6561 gen_helper_vfp_negd(tcg_res, tcg_res); 6562 break; 6563 } 6564 6565 write_fp_dreg(s, rd, tcg_res); 6566 } 6567 6568 /* Floating-point data-processing (2 source) - half precision */ 6569 static void handle_fp_2src_half(DisasContext *s, int opcode, 6570 int rd, int rn, int rm) 6571 { 6572 TCGv_i32 tcg_op1; 6573 TCGv_i32 tcg_op2; 6574 TCGv_i32 tcg_res; 6575 TCGv_ptr fpst; 6576 6577 tcg_res = tcg_temp_new_i32(); 6578 fpst = fpstatus_ptr(FPST_FPCR_F16); 6579 tcg_op1 = read_fp_hreg(s, rn); 6580 tcg_op2 = read_fp_hreg(s, rm); 6581 6582 switch (opcode) { 6583 case 0x0: /* FMUL */ 6584 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6585 break; 6586 case 0x1: /* FDIV */ 6587 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6588 break; 6589 case 0x2: /* FADD */ 6590 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6591 break; 6592 case 0x3: /* FSUB */ 6593 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6594 break; 6595 case 0x4: /* FMAX */ 6596 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6597 break; 6598 case 0x5: /* FMIN */ 6599 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6600 break; 6601 case 0x6: /* FMAXNM */ 6602 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6603 break; 6604 case 0x7: /* FMINNM */ 6605 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6606 break; 6607 case 0x8: /* FNMUL */ 6608 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6609 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6610 break; 6611 default: 6612 g_assert_not_reached(); 6613 } 6614 6615 write_fp_sreg(s, rd, tcg_res); 6616 } 6617 6618 /* Floating point data-processing (2 source) 6619 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6620 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6621 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6622 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6623 */ 6624 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6625 { 6626 int mos = extract32(insn, 29, 3); 6627 int type = extract32(insn, 22, 2); 6628 int rd = extract32(insn, 0, 5); 6629 int rn = extract32(insn, 5, 5); 6630 int rm = extract32(insn, 16, 5); 6631 int opcode = extract32(insn, 12, 4); 6632 6633 if (opcode > 8 || mos) { 6634 unallocated_encoding(s); 6635 return; 6636 } 6637 6638 switch (type) { 6639 case 0: 6640 if (!fp_access_check(s)) { 6641 return; 6642 } 6643 handle_fp_2src_single(s, opcode, rd, rn, rm); 6644 break; 6645 case 1: 6646 if (!fp_access_check(s)) { 6647 return; 6648 } 6649 handle_fp_2src_double(s, opcode, rd, rn, rm); 6650 break; 6651 case 3: 6652 if (!dc_isar_feature(aa64_fp16, s)) { 6653 unallocated_encoding(s); 6654 return; 6655 } 6656 if (!fp_access_check(s)) { 6657 return; 6658 } 6659 handle_fp_2src_half(s, opcode, rd, rn, rm); 6660 break; 6661 default: 6662 unallocated_encoding(s); 6663 } 6664 } 6665 6666 /* Floating-point data-processing (3 source) - single precision */ 6667 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6668 int rd, int rn, int rm, int ra) 6669 { 6670 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6671 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6672 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6673 6674 tcg_op1 = read_fp_sreg(s, rn); 6675 tcg_op2 = read_fp_sreg(s, rm); 6676 tcg_op3 = read_fp_sreg(s, ra); 6677 6678 /* These are fused multiply-add, and must be done as one 6679 * floating point operation with no rounding between the 6680 * multiplication and addition steps. 6681 * NB that doing the negations here as separate steps is 6682 * correct : an input NaN should come out with its sign bit 6683 * flipped if it is a negated-input. 6684 */ 6685 if (o1 == true) { 6686 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6687 } 6688 6689 if (o0 != o1) { 6690 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6691 } 6692 6693 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6694 6695 write_fp_sreg(s, rd, tcg_res); 6696 } 6697 6698 /* Floating-point data-processing (3 source) - double precision */ 6699 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6700 int rd, int rn, int rm, int ra) 6701 { 6702 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6703 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6704 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6705 6706 tcg_op1 = read_fp_dreg(s, rn); 6707 tcg_op2 = read_fp_dreg(s, rm); 6708 tcg_op3 = read_fp_dreg(s, ra); 6709 6710 /* These are fused multiply-add, and must be done as one 6711 * floating point operation with no rounding between the 6712 * multiplication and addition steps. 6713 * NB that doing the negations here as separate steps is 6714 * correct : an input NaN should come out with its sign bit 6715 * flipped if it is a negated-input. 6716 */ 6717 if (o1 == true) { 6718 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6719 } 6720 6721 if (o0 != o1) { 6722 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6723 } 6724 6725 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6726 6727 write_fp_dreg(s, rd, tcg_res); 6728 } 6729 6730 /* Floating-point data-processing (3 source) - half precision */ 6731 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6732 int rd, int rn, int rm, int ra) 6733 { 6734 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6735 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6736 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6737 6738 tcg_op1 = read_fp_hreg(s, rn); 6739 tcg_op2 = read_fp_hreg(s, rm); 6740 tcg_op3 = read_fp_hreg(s, ra); 6741 6742 /* These are fused multiply-add, and must be done as one 6743 * floating point operation with no rounding between the 6744 * multiplication and addition steps. 6745 * NB that doing the negations here as separate steps is 6746 * correct : an input NaN should come out with its sign bit 6747 * flipped if it is a negated-input. 6748 */ 6749 if (o1 == true) { 6750 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6751 } 6752 6753 if (o0 != o1) { 6754 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6755 } 6756 6757 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6758 6759 write_fp_sreg(s, rd, tcg_res); 6760 } 6761 6762 /* Floating point data-processing (3 source) 6763 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6764 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6765 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6766 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6767 */ 6768 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6769 { 6770 int mos = extract32(insn, 29, 3); 6771 int type = extract32(insn, 22, 2); 6772 int rd = extract32(insn, 0, 5); 6773 int rn = extract32(insn, 5, 5); 6774 int ra = extract32(insn, 10, 5); 6775 int rm = extract32(insn, 16, 5); 6776 bool o0 = extract32(insn, 15, 1); 6777 bool o1 = extract32(insn, 21, 1); 6778 6779 if (mos) { 6780 unallocated_encoding(s); 6781 return; 6782 } 6783 6784 switch (type) { 6785 case 0: 6786 if (!fp_access_check(s)) { 6787 return; 6788 } 6789 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6790 break; 6791 case 1: 6792 if (!fp_access_check(s)) { 6793 return; 6794 } 6795 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6796 break; 6797 case 3: 6798 if (!dc_isar_feature(aa64_fp16, s)) { 6799 unallocated_encoding(s); 6800 return; 6801 } 6802 if (!fp_access_check(s)) { 6803 return; 6804 } 6805 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6806 break; 6807 default: 6808 unallocated_encoding(s); 6809 } 6810 } 6811 6812 /* Floating point immediate 6813 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6814 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6815 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6816 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6817 */ 6818 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6819 { 6820 int rd = extract32(insn, 0, 5); 6821 int imm5 = extract32(insn, 5, 5); 6822 int imm8 = extract32(insn, 13, 8); 6823 int type = extract32(insn, 22, 2); 6824 int mos = extract32(insn, 29, 3); 6825 uint64_t imm; 6826 MemOp sz; 6827 6828 if (mos || imm5) { 6829 unallocated_encoding(s); 6830 return; 6831 } 6832 6833 switch (type) { 6834 case 0: 6835 sz = MO_32; 6836 break; 6837 case 1: 6838 sz = MO_64; 6839 break; 6840 case 3: 6841 sz = MO_16; 6842 if (dc_isar_feature(aa64_fp16, s)) { 6843 break; 6844 } 6845 /* fallthru */ 6846 default: 6847 unallocated_encoding(s); 6848 return; 6849 } 6850 6851 if (!fp_access_check(s)) { 6852 return; 6853 } 6854 6855 imm = vfp_expand_imm(sz, imm8); 6856 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6857 } 6858 6859 /* Handle floating point <=> fixed point conversions. Note that we can 6860 * also deal with fp <=> integer conversions as a special case (scale == 64) 6861 * OPTME: consider handling that special case specially or at least skipping 6862 * the call to scalbn in the helpers for zero shifts. 6863 */ 6864 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6865 bool itof, int rmode, int scale, int sf, int type) 6866 { 6867 bool is_signed = !(opcode & 1); 6868 TCGv_ptr tcg_fpstatus; 6869 TCGv_i32 tcg_shift, tcg_single; 6870 TCGv_i64 tcg_double; 6871 6872 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6873 6874 tcg_shift = tcg_constant_i32(64 - scale); 6875 6876 if (itof) { 6877 TCGv_i64 tcg_int = cpu_reg(s, rn); 6878 if (!sf) { 6879 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6880 6881 if (is_signed) { 6882 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6883 } else { 6884 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6885 } 6886 6887 tcg_int = tcg_extend; 6888 } 6889 6890 switch (type) { 6891 case 1: /* float64 */ 6892 tcg_double = tcg_temp_new_i64(); 6893 if (is_signed) { 6894 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6895 tcg_shift, tcg_fpstatus); 6896 } else { 6897 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6898 tcg_shift, tcg_fpstatus); 6899 } 6900 write_fp_dreg(s, rd, tcg_double); 6901 break; 6902 6903 case 0: /* float32 */ 6904 tcg_single = tcg_temp_new_i32(); 6905 if (is_signed) { 6906 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6907 tcg_shift, tcg_fpstatus); 6908 } else { 6909 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6910 tcg_shift, tcg_fpstatus); 6911 } 6912 write_fp_sreg(s, rd, tcg_single); 6913 break; 6914 6915 case 3: /* float16 */ 6916 tcg_single = tcg_temp_new_i32(); 6917 if (is_signed) { 6918 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6919 tcg_shift, tcg_fpstatus); 6920 } else { 6921 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6922 tcg_shift, tcg_fpstatus); 6923 } 6924 write_fp_sreg(s, rd, tcg_single); 6925 break; 6926 6927 default: 6928 g_assert_not_reached(); 6929 } 6930 } else { 6931 TCGv_i64 tcg_int = cpu_reg(s, rd); 6932 TCGv_i32 tcg_rmode; 6933 6934 if (extract32(opcode, 2, 1)) { 6935 /* There are too many rounding modes to all fit into rmode, 6936 * so FCVTA[US] is a special case. 6937 */ 6938 rmode = FPROUNDING_TIEAWAY; 6939 } 6940 6941 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6942 6943 switch (type) { 6944 case 1: /* float64 */ 6945 tcg_double = read_fp_dreg(s, rn); 6946 if (is_signed) { 6947 if (!sf) { 6948 gen_helper_vfp_tosld(tcg_int, tcg_double, 6949 tcg_shift, tcg_fpstatus); 6950 } else { 6951 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6952 tcg_shift, tcg_fpstatus); 6953 } 6954 } else { 6955 if (!sf) { 6956 gen_helper_vfp_tould(tcg_int, tcg_double, 6957 tcg_shift, tcg_fpstatus); 6958 } else { 6959 gen_helper_vfp_touqd(tcg_int, tcg_double, 6960 tcg_shift, tcg_fpstatus); 6961 } 6962 } 6963 if (!sf) { 6964 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6965 } 6966 break; 6967 6968 case 0: /* float32 */ 6969 tcg_single = read_fp_sreg(s, rn); 6970 if (sf) { 6971 if (is_signed) { 6972 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6973 tcg_shift, tcg_fpstatus); 6974 } else { 6975 gen_helper_vfp_touqs(tcg_int, tcg_single, 6976 tcg_shift, tcg_fpstatus); 6977 } 6978 } else { 6979 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6980 if (is_signed) { 6981 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6982 tcg_shift, tcg_fpstatus); 6983 } else { 6984 gen_helper_vfp_touls(tcg_dest, tcg_single, 6985 tcg_shift, tcg_fpstatus); 6986 } 6987 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6988 } 6989 break; 6990 6991 case 3: /* float16 */ 6992 tcg_single = read_fp_sreg(s, rn); 6993 if (sf) { 6994 if (is_signed) { 6995 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6996 tcg_shift, tcg_fpstatus); 6997 } else { 6998 gen_helper_vfp_touqh(tcg_int, tcg_single, 6999 tcg_shift, tcg_fpstatus); 7000 } 7001 } else { 7002 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7003 if (is_signed) { 7004 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7005 tcg_shift, tcg_fpstatus); 7006 } else { 7007 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7008 tcg_shift, tcg_fpstatus); 7009 } 7010 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7011 } 7012 break; 7013 7014 default: 7015 g_assert_not_reached(); 7016 } 7017 7018 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7019 } 7020 } 7021 7022 /* Floating point <-> fixed point conversions 7023 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7024 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7025 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7026 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7027 */ 7028 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7029 { 7030 int rd = extract32(insn, 0, 5); 7031 int rn = extract32(insn, 5, 5); 7032 int scale = extract32(insn, 10, 6); 7033 int opcode = extract32(insn, 16, 3); 7034 int rmode = extract32(insn, 19, 2); 7035 int type = extract32(insn, 22, 2); 7036 bool sbit = extract32(insn, 29, 1); 7037 bool sf = extract32(insn, 31, 1); 7038 bool itof; 7039 7040 if (sbit || (!sf && scale < 32)) { 7041 unallocated_encoding(s); 7042 return; 7043 } 7044 7045 switch (type) { 7046 case 0: /* float32 */ 7047 case 1: /* float64 */ 7048 break; 7049 case 3: /* float16 */ 7050 if (dc_isar_feature(aa64_fp16, s)) { 7051 break; 7052 } 7053 /* fallthru */ 7054 default: 7055 unallocated_encoding(s); 7056 return; 7057 } 7058 7059 switch ((rmode << 3) | opcode) { 7060 case 0x2: /* SCVTF */ 7061 case 0x3: /* UCVTF */ 7062 itof = true; 7063 break; 7064 case 0x18: /* FCVTZS */ 7065 case 0x19: /* FCVTZU */ 7066 itof = false; 7067 break; 7068 default: 7069 unallocated_encoding(s); 7070 return; 7071 } 7072 7073 if (!fp_access_check(s)) { 7074 return; 7075 } 7076 7077 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7078 } 7079 7080 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7081 { 7082 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7083 * without conversion. 7084 */ 7085 7086 if (itof) { 7087 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7088 TCGv_i64 tmp; 7089 7090 switch (type) { 7091 case 0: 7092 /* 32 bit */ 7093 tmp = tcg_temp_new_i64(); 7094 tcg_gen_ext32u_i64(tmp, tcg_rn); 7095 write_fp_dreg(s, rd, tmp); 7096 break; 7097 case 1: 7098 /* 64 bit */ 7099 write_fp_dreg(s, rd, tcg_rn); 7100 break; 7101 case 2: 7102 /* 64 bit to top half. */ 7103 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7104 clear_vec_high(s, true, rd); 7105 break; 7106 case 3: 7107 /* 16 bit */ 7108 tmp = tcg_temp_new_i64(); 7109 tcg_gen_ext16u_i64(tmp, tcg_rn); 7110 write_fp_dreg(s, rd, tmp); 7111 break; 7112 default: 7113 g_assert_not_reached(); 7114 } 7115 } else { 7116 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7117 7118 switch (type) { 7119 case 0: 7120 /* 32 bit */ 7121 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7122 break; 7123 case 1: 7124 /* 64 bit */ 7125 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7126 break; 7127 case 2: 7128 /* 64 bits from top half */ 7129 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7130 break; 7131 case 3: 7132 /* 16 bit */ 7133 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7134 break; 7135 default: 7136 g_assert_not_reached(); 7137 } 7138 } 7139 } 7140 7141 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7142 { 7143 TCGv_i64 t = read_fp_dreg(s, rn); 7144 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7145 7146 gen_helper_fjcvtzs(t, t, fpstatus); 7147 7148 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7149 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7150 tcg_gen_movi_i32(cpu_CF, 0); 7151 tcg_gen_movi_i32(cpu_NF, 0); 7152 tcg_gen_movi_i32(cpu_VF, 0); 7153 } 7154 7155 /* Floating point <-> integer conversions 7156 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7157 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7158 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7159 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7160 */ 7161 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7162 { 7163 int rd = extract32(insn, 0, 5); 7164 int rn = extract32(insn, 5, 5); 7165 int opcode = extract32(insn, 16, 3); 7166 int rmode = extract32(insn, 19, 2); 7167 int type = extract32(insn, 22, 2); 7168 bool sbit = extract32(insn, 29, 1); 7169 bool sf = extract32(insn, 31, 1); 7170 bool itof = false; 7171 7172 if (sbit) { 7173 goto do_unallocated; 7174 } 7175 7176 switch (opcode) { 7177 case 2: /* SCVTF */ 7178 case 3: /* UCVTF */ 7179 itof = true; 7180 /* fallthru */ 7181 case 4: /* FCVTAS */ 7182 case 5: /* FCVTAU */ 7183 if (rmode != 0) { 7184 goto do_unallocated; 7185 } 7186 /* fallthru */ 7187 case 0: /* FCVT[NPMZ]S */ 7188 case 1: /* FCVT[NPMZ]U */ 7189 switch (type) { 7190 case 0: /* float32 */ 7191 case 1: /* float64 */ 7192 break; 7193 case 3: /* float16 */ 7194 if (!dc_isar_feature(aa64_fp16, s)) { 7195 goto do_unallocated; 7196 } 7197 break; 7198 default: 7199 goto do_unallocated; 7200 } 7201 if (!fp_access_check(s)) { 7202 return; 7203 } 7204 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7205 break; 7206 7207 default: 7208 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7209 case 0b01100110: /* FMOV half <-> 32-bit int */ 7210 case 0b01100111: 7211 case 0b11100110: /* FMOV half <-> 64-bit int */ 7212 case 0b11100111: 7213 if (!dc_isar_feature(aa64_fp16, s)) { 7214 goto do_unallocated; 7215 } 7216 /* fallthru */ 7217 case 0b00000110: /* FMOV 32-bit */ 7218 case 0b00000111: 7219 case 0b10100110: /* FMOV 64-bit */ 7220 case 0b10100111: 7221 case 0b11001110: /* FMOV top half of 128-bit */ 7222 case 0b11001111: 7223 if (!fp_access_check(s)) { 7224 return; 7225 } 7226 itof = opcode & 1; 7227 handle_fmov(s, rd, rn, type, itof); 7228 break; 7229 7230 case 0b00111110: /* FJCVTZS */ 7231 if (!dc_isar_feature(aa64_jscvt, s)) { 7232 goto do_unallocated; 7233 } else if (fp_access_check(s)) { 7234 handle_fjcvtzs(s, rd, rn); 7235 } 7236 break; 7237 7238 default: 7239 do_unallocated: 7240 unallocated_encoding(s); 7241 return; 7242 } 7243 break; 7244 } 7245 } 7246 7247 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7248 * 31 30 29 28 25 24 0 7249 * +---+---+---+---------+-----------------------------+ 7250 * | | 0 | | 1 1 1 1 | | 7251 * +---+---+---+---------+-----------------------------+ 7252 */ 7253 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7254 { 7255 if (extract32(insn, 24, 1)) { 7256 /* Floating point data-processing (3 source) */ 7257 disas_fp_3src(s, insn); 7258 } else if (extract32(insn, 21, 1) == 0) { 7259 /* Floating point to fixed point conversions */ 7260 disas_fp_fixed_conv(s, insn); 7261 } else { 7262 switch (extract32(insn, 10, 2)) { 7263 case 1: 7264 /* Floating point conditional compare */ 7265 disas_fp_ccomp(s, insn); 7266 break; 7267 case 2: 7268 /* Floating point data-processing (2 source) */ 7269 disas_fp_2src(s, insn); 7270 break; 7271 case 3: 7272 /* Floating point conditional select */ 7273 disas_fp_csel(s, insn); 7274 break; 7275 case 0: 7276 switch (ctz32(extract32(insn, 12, 4))) { 7277 case 0: /* [15:12] == xxx1 */ 7278 /* Floating point immediate */ 7279 disas_fp_imm(s, insn); 7280 break; 7281 case 1: /* [15:12] == xx10 */ 7282 /* Floating point compare */ 7283 disas_fp_compare(s, insn); 7284 break; 7285 case 2: /* [15:12] == x100 */ 7286 /* Floating point data-processing (1 source) */ 7287 disas_fp_1src(s, insn); 7288 break; 7289 case 3: /* [15:12] == 1000 */ 7290 unallocated_encoding(s); 7291 break; 7292 default: /* [15:12] == 0000 */ 7293 /* Floating point <-> integer conversions */ 7294 disas_fp_int_conv(s, insn); 7295 break; 7296 } 7297 break; 7298 } 7299 } 7300 } 7301 7302 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7303 int pos) 7304 { 7305 /* Extract 64 bits from the middle of two concatenated 64 bit 7306 * vector register slices left:right. The extracted bits start 7307 * at 'pos' bits into the right (least significant) side. 7308 * We return the result in tcg_right, and guarantee not to 7309 * trash tcg_left. 7310 */ 7311 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7312 assert(pos > 0 && pos < 64); 7313 7314 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7315 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7316 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7317 } 7318 7319 /* EXT 7320 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7321 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7322 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7323 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7324 */ 7325 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7326 { 7327 int is_q = extract32(insn, 30, 1); 7328 int op2 = extract32(insn, 22, 2); 7329 int imm4 = extract32(insn, 11, 4); 7330 int rm = extract32(insn, 16, 5); 7331 int rn = extract32(insn, 5, 5); 7332 int rd = extract32(insn, 0, 5); 7333 int pos = imm4 << 3; 7334 TCGv_i64 tcg_resl, tcg_resh; 7335 7336 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7337 unallocated_encoding(s); 7338 return; 7339 } 7340 7341 if (!fp_access_check(s)) { 7342 return; 7343 } 7344 7345 tcg_resh = tcg_temp_new_i64(); 7346 tcg_resl = tcg_temp_new_i64(); 7347 7348 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7349 * either extracting 128 bits from a 128:128 concatenation, or 7350 * extracting 64 bits from a 64:64 concatenation. 7351 */ 7352 if (!is_q) { 7353 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7354 if (pos != 0) { 7355 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7356 do_ext64(s, tcg_resh, tcg_resl, pos); 7357 } 7358 } else { 7359 TCGv_i64 tcg_hh; 7360 typedef struct { 7361 int reg; 7362 int elt; 7363 } EltPosns; 7364 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7365 EltPosns *elt = eltposns; 7366 7367 if (pos >= 64) { 7368 elt++; 7369 pos -= 64; 7370 } 7371 7372 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7373 elt++; 7374 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7375 elt++; 7376 if (pos != 0) { 7377 do_ext64(s, tcg_resh, tcg_resl, pos); 7378 tcg_hh = tcg_temp_new_i64(); 7379 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7380 do_ext64(s, tcg_hh, tcg_resh, pos); 7381 } 7382 } 7383 7384 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7385 if (is_q) { 7386 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7387 } 7388 clear_vec_high(s, is_q, rd); 7389 } 7390 7391 /* TBL/TBX 7392 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7393 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7394 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7395 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7396 */ 7397 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7398 { 7399 int op2 = extract32(insn, 22, 2); 7400 int is_q = extract32(insn, 30, 1); 7401 int rm = extract32(insn, 16, 5); 7402 int rn = extract32(insn, 5, 5); 7403 int rd = extract32(insn, 0, 5); 7404 int is_tbx = extract32(insn, 12, 1); 7405 int len = (extract32(insn, 13, 2) + 1) * 16; 7406 7407 if (op2 != 0) { 7408 unallocated_encoding(s); 7409 return; 7410 } 7411 7412 if (!fp_access_check(s)) { 7413 return; 7414 } 7415 7416 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7417 vec_full_reg_offset(s, rm), cpu_env, 7418 is_q ? 16 : 8, vec_full_reg_size(s), 7419 (len << 6) | (is_tbx << 5) | rn, 7420 gen_helper_simd_tblx); 7421 } 7422 7423 /* ZIP/UZP/TRN 7424 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7425 * +---+---+-------------+------+---+------+---+------------------+------+ 7426 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7427 * +---+---+-------------+------+---+------+---+------------------+------+ 7428 */ 7429 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7430 { 7431 int rd = extract32(insn, 0, 5); 7432 int rn = extract32(insn, 5, 5); 7433 int rm = extract32(insn, 16, 5); 7434 int size = extract32(insn, 22, 2); 7435 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7436 * bit 2 indicates 1 vs 2 variant of the insn. 7437 */ 7438 int opcode = extract32(insn, 12, 2); 7439 bool part = extract32(insn, 14, 1); 7440 bool is_q = extract32(insn, 30, 1); 7441 int esize = 8 << size; 7442 int i; 7443 int datasize = is_q ? 128 : 64; 7444 int elements = datasize / esize; 7445 TCGv_i64 tcg_res[2], tcg_ele; 7446 7447 if (opcode == 0 || (size == 3 && !is_q)) { 7448 unallocated_encoding(s); 7449 return; 7450 } 7451 7452 if (!fp_access_check(s)) { 7453 return; 7454 } 7455 7456 tcg_res[0] = tcg_temp_new_i64(); 7457 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7458 tcg_ele = tcg_temp_new_i64(); 7459 7460 for (i = 0; i < elements; i++) { 7461 int o, w; 7462 7463 switch (opcode) { 7464 case 1: /* UZP1/2 */ 7465 { 7466 int midpoint = elements / 2; 7467 if (i < midpoint) { 7468 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7469 } else { 7470 read_vec_element(s, tcg_ele, rm, 7471 2 * (i - midpoint) + part, size); 7472 } 7473 break; 7474 } 7475 case 2: /* TRN1/2 */ 7476 if (i & 1) { 7477 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7478 } else { 7479 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7480 } 7481 break; 7482 case 3: /* ZIP1/2 */ 7483 { 7484 int base = part * elements / 2; 7485 if (i & 1) { 7486 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7487 } else { 7488 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7489 } 7490 break; 7491 } 7492 default: 7493 g_assert_not_reached(); 7494 } 7495 7496 w = (i * esize) / 64; 7497 o = (i * esize) % 64; 7498 if (o == 0) { 7499 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7500 } else { 7501 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7502 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7503 } 7504 } 7505 7506 for (i = 0; i <= is_q; ++i) { 7507 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7508 } 7509 clear_vec_high(s, is_q, rd); 7510 } 7511 7512 /* 7513 * do_reduction_op helper 7514 * 7515 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7516 * important for correct NaN propagation that we do these 7517 * operations in exactly the order specified by the pseudocode. 7518 * 7519 * This is a recursive function, TCG temps should be freed by the 7520 * calling function once it is done with the values. 7521 */ 7522 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7523 int esize, int size, int vmap, TCGv_ptr fpst) 7524 { 7525 if (esize == size) { 7526 int element; 7527 MemOp msize = esize == 16 ? MO_16 : MO_32; 7528 TCGv_i32 tcg_elem; 7529 7530 /* We should have one register left here */ 7531 assert(ctpop8(vmap) == 1); 7532 element = ctz32(vmap); 7533 assert(element < 8); 7534 7535 tcg_elem = tcg_temp_new_i32(); 7536 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7537 return tcg_elem; 7538 } else { 7539 int bits = size / 2; 7540 int shift = ctpop8(vmap) / 2; 7541 int vmap_lo = (vmap >> shift) & vmap; 7542 int vmap_hi = (vmap & ~vmap_lo); 7543 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7544 7545 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7546 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7547 tcg_res = tcg_temp_new_i32(); 7548 7549 switch (fpopcode) { 7550 case 0x0c: /* fmaxnmv half-precision */ 7551 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7552 break; 7553 case 0x0f: /* fmaxv half-precision */ 7554 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7555 break; 7556 case 0x1c: /* fminnmv half-precision */ 7557 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7558 break; 7559 case 0x1f: /* fminv half-precision */ 7560 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7561 break; 7562 case 0x2c: /* fmaxnmv */ 7563 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7564 break; 7565 case 0x2f: /* fmaxv */ 7566 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7567 break; 7568 case 0x3c: /* fminnmv */ 7569 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7570 break; 7571 case 0x3f: /* fminv */ 7572 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7573 break; 7574 default: 7575 g_assert_not_reached(); 7576 } 7577 return tcg_res; 7578 } 7579 } 7580 7581 /* AdvSIMD across lanes 7582 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7583 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7584 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7585 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7586 */ 7587 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7588 { 7589 int rd = extract32(insn, 0, 5); 7590 int rn = extract32(insn, 5, 5); 7591 int size = extract32(insn, 22, 2); 7592 int opcode = extract32(insn, 12, 5); 7593 bool is_q = extract32(insn, 30, 1); 7594 bool is_u = extract32(insn, 29, 1); 7595 bool is_fp = false; 7596 bool is_min = false; 7597 int esize; 7598 int elements; 7599 int i; 7600 TCGv_i64 tcg_res, tcg_elt; 7601 7602 switch (opcode) { 7603 case 0x1b: /* ADDV */ 7604 if (is_u) { 7605 unallocated_encoding(s); 7606 return; 7607 } 7608 /* fall through */ 7609 case 0x3: /* SADDLV, UADDLV */ 7610 case 0xa: /* SMAXV, UMAXV */ 7611 case 0x1a: /* SMINV, UMINV */ 7612 if (size == 3 || (size == 2 && !is_q)) { 7613 unallocated_encoding(s); 7614 return; 7615 } 7616 break; 7617 case 0xc: /* FMAXNMV, FMINNMV */ 7618 case 0xf: /* FMAXV, FMINV */ 7619 /* Bit 1 of size field encodes min vs max and the actual size 7620 * depends on the encoding of the U bit. If not set (and FP16 7621 * enabled) then we do half-precision float instead of single 7622 * precision. 7623 */ 7624 is_min = extract32(size, 1, 1); 7625 is_fp = true; 7626 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7627 size = 1; 7628 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7629 unallocated_encoding(s); 7630 return; 7631 } else { 7632 size = 2; 7633 } 7634 break; 7635 default: 7636 unallocated_encoding(s); 7637 return; 7638 } 7639 7640 if (!fp_access_check(s)) { 7641 return; 7642 } 7643 7644 esize = 8 << size; 7645 elements = (is_q ? 128 : 64) / esize; 7646 7647 tcg_res = tcg_temp_new_i64(); 7648 tcg_elt = tcg_temp_new_i64(); 7649 7650 /* These instructions operate across all lanes of a vector 7651 * to produce a single result. We can guarantee that a 64 7652 * bit intermediate is sufficient: 7653 * + for [US]ADDLV the maximum element size is 32 bits, and 7654 * the result type is 64 bits 7655 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7656 * same as the element size, which is 32 bits at most 7657 * For the integer operations we can choose to work at 64 7658 * or 32 bits and truncate at the end; for simplicity 7659 * we use 64 bits always. The floating point 7660 * ops do require 32 bit intermediates, though. 7661 */ 7662 if (!is_fp) { 7663 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7664 7665 for (i = 1; i < elements; i++) { 7666 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7667 7668 switch (opcode) { 7669 case 0x03: /* SADDLV / UADDLV */ 7670 case 0x1b: /* ADDV */ 7671 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7672 break; 7673 case 0x0a: /* SMAXV / UMAXV */ 7674 if (is_u) { 7675 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7676 } else { 7677 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7678 } 7679 break; 7680 case 0x1a: /* SMINV / UMINV */ 7681 if (is_u) { 7682 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7683 } else { 7684 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7685 } 7686 break; 7687 default: 7688 g_assert_not_reached(); 7689 } 7690 7691 } 7692 } else { 7693 /* Floating point vector reduction ops which work across 32 7694 * bit (single) or 16 bit (half-precision) intermediates. 7695 * Note that correct NaN propagation requires that we do these 7696 * operations in exactly the order specified by the pseudocode. 7697 */ 7698 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7699 int fpopcode = opcode | is_min << 4 | is_u << 5; 7700 int vmap = (1 << elements) - 1; 7701 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7702 (is_q ? 128 : 64), vmap, fpst); 7703 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7704 } 7705 7706 /* Now truncate the result to the width required for the final output */ 7707 if (opcode == 0x03) { 7708 /* SADDLV, UADDLV: result is 2*esize */ 7709 size++; 7710 } 7711 7712 switch (size) { 7713 case 0: 7714 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7715 break; 7716 case 1: 7717 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7718 break; 7719 case 2: 7720 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7721 break; 7722 case 3: 7723 break; 7724 default: 7725 g_assert_not_reached(); 7726 } 7727 7728 write_fp_dreg(s, rd, tcg_res); 7729 } 7730 7731 /* DUP (Element, Vector) 7732 * 7733 * 31 30 29 21 20 16 15 10 9 5 4 0 7734 * +---+---+-------------------+--------+-------------+------+------+ 7735 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7736 * +---+---+-------------------+--------+-------------+------+------+ 7737 * 7738 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7739 */ 7740 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7741 int imm5) 7742 { 7743 int size = ctz32(imm5); 7744 int index; 7745 7746 if (size > 3 || (size == 3 && !is_q)) { 7747 unallocated_encoding(s); 7748 return; 7749 } 7750 7751 if (!fp_access_check(s)) { 7752 return; 7753 } 7754 7755 index = imm5 >> (size + 1); 7756 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7757 vec_reg_offset(s, rn, index, size), 7758 is_q ? 16 : 8, vec_full_reg_size(s)); 7759 } 7760 7761 /* DUP (element, scalar) 7762 * 31 21 20 16 15 10 9 5 4 0 7763 * +-----------------------+--------+-------------+------+------+ 7764 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7765 * +-----------------------+--------+-------------+------+------+ 7766 */ 7767 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7768 int imm5) 7769 { 7770 int size = ctz32(imm5); 7771 int index; 7772 TCGv_i64 tmp; 7773 7774 if (size > 3) { 7775 unallocated_encoding(s); 7776 return; 7777 } 7778 7779 if (!fp_access_check(s)) { 7780 return; 7781 } 7782 7783 index = imm5 >> (size + 1); 7784 7785 /* This instruction just extracts the specified element and 7786 * zero-extends it into the bottom of the destination register. 7787 */ 7788 tmp = tcg_temp_new_i64(); 7789 read_vec_element(s, tmp, rn, index, size); 7790 write_fp_dreg(s, rd, tmp); 7791 } 7792 7793 /* DUP (General) 7794 * 7795 * 31 30 29 21 20 16 15 10 9 5 4 0 7796 * +---+---+-------------------+--------+-------------+------+------+ 7797 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7798 * +---+---+-------------------+--------+-------------+------+------+ 7799 * 7800 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7801 */ 7802 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7803 int imm5) 7804 { 7805 int size = ctz32(imm5); 7806 uint32_t dofs, oprsz, maxsz; 7807 7808 if (size > 3 || ((size == 3) && !is_q)) { 7809 unallocated_encoding(s); 7810 return; 7811 } 7812 7813 if (!fp_access_check(s)) { 7814 return; 7815 } 7816 7817 dofs = vec_full_reg_offset(s, rd); 7818 oprsz = is_q ? 16 : 8; 7819 maxsz = vec_full_reg_size(s); 7820 7821 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7822 } 7823 7824 /* INS (Element) 7825 * 7826 * 31 21 20 16 15 14 11 10 9 5 4 0 7827 * +-----------------------+--------+------------+---+------+------+ 7828 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7829 * +-----------------------+--------+------------+---+------+------+ 7830 * 7831 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7832 * index: encoded in imm5<4:size+1> 7833 */ 7834 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7835 int imm4, int imm5) 7836 { 7837 int size = ctz32(imm5); 7838 int src_index, dst_index; 7839 TCGv_i64 tmp; 7840 7841 if (size > 3) { 7842 unallocated_encoding(s); 7843 return; 7844 } 7845 7846 if (!fp_access_check(s)) { 7847 return; 7848 } 7849 7850 dst_index = extract32(imm5, 1+size, 5); 7851 src_index = extract32(imm4, size, 4); 7852 7853 tmp = tcg_temp_new_i64(); 7854 7855 read_vec_element(s, tmp, rn, src_index, size); 7856 write_vec_element(s, tmp, rd, dst_index, size); 7857 7858 /* INS is considered a 128-bit write for SVE. */ 7859 clear_vec_high(s, true, rd); 7860 } 7861 7862 7863 /* INS (General) 7864 * 7865 * 31 21 20 16 15 10 9 5 4 0 7866 * +-----------------------+--------+-------------+------+------+ 7867 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7868 * +-----------------------+--------+-------------+------+------+ 7869 * 7870 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7871 * index: encoded in imm5<4:size+1> 7872 */ 7873 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7874 { 7875 int size = ctz32(imm5); 7876 int idx; 7877 7878 if (size > 3) { 7879 unallocated_encoding(s); 7880 return; 7881 } 7882 7883 if (!fp_access_check(s)) { 7884 return; 7885 } 7886 7887 idx = extract32(imm5, 1 + size, 4 - size); 7888 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7889 7890 /* INS is considered a 128-bit write for SVE. */ 7891 clear_vec_high(s, true, rd); 7892 } 7893 7894 /* 7895 * UMOV (General) 7896 * SMOV (General) 7897 * 7898 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7899 * +---+---+-------------------+--------+-------------+------+------+ 7900 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7901 * +---+---+-------------------+--------+-------------+------+------+ 7902 * 7903 * U: unsigned when set 7904 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7905 */ 7906 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7907 int rn, int rd, int imm5) 7908 { 7909 int size = ctz32(imm5); 7910 int element; 7911 TCGv_i64 tcg_rd; 7912 7913 /* Check for UnallocatedEncodings */ 7914 if (is_signed) { 7915 if (size > 2 || (size == 2 && !is_q)) { 7916 unallocated_encoding(s); 7917 return; 7918 } 7919 } else { 7920 if (size > 3 7921 || (size < 3 && is_q) 7922 || (size == 3 && !is_q)) { 7923 unallocated_encoding(s); 7924 return; 7925 } 7926 } 7927 7928 if (!fp_access_check(s)) { 7929 return; 7930 } 7931 7932 element = extract32(imm5, 1+size, 4); 7933 7934 tcg_rd = cpu_reg(s, rd); 7935 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7936 if (is_signed && !is_q) { 7937 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7938 } 7939 } 7940 7941 /* AdvSIMD copy 7942 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7943 * +---+---+----+-----------------+------+---+------+---+------+------+ 7944 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7945 * +---+---+----+-----------------+------+---+------+---+------+------+ 7946 */ 7947 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7948 { 7949 int rd = extract32(insn, 0, 5); 7950 int rn = extract32(insn, 5, 5); 7951 int imm4 = extract32(insn, 11, 4); 7952 int op = extract32(insn, 29, 1); 7953 int is_q = extract32(insn, 30, 1); 7954 int imm5 = extract32(insn, 16, 5); 7955 7956 if (op) { 7957 if (is_q) { 7958 /* INS (element) */ 7959 handle_simd_inse(s, rd, rn, imm4, imm5); 7960 } else { 7961 unallocated_encoding(s); 7962 } 7963 } else { 7964 switch (imm4) { 7965 case 0: 7966 /* DUP (element - vector) */ 7967 handle_simd_dupe(s, is_q, rd, rn, imm5); 7968 break; 7969 case 1: 7970 /* DUP (general) */ 7971 handle_simd_dupg(s, is_q, rd, rn, imm5); 7972 break; 7973 case 3: 7974 if (is_q) { 7975 /* INS (general) */ 7976 handle_simd_insg(s, rd, rn, imm5); 7977 } else { 7978 unallocated_encoding(s); 7979 } 7980 break; 7981 case 5: 7982 case 7: 7983 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7984 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7985 break; 7986 default: 7987 unallocated_encoding(s); 7988 break; 7989 } 7990 } 7991 } 7992 7993 /* AdvSIMD modified immediate 7994 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7995 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7996 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7997 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7998 * 7999 * There are a number of operations that can be carried out here: 8000 * MOVI - move (shifted) imm into register 8001 * MVNI - move inverted (shifted) imm into register 8002 * ORR - bitwise OR of (shifted) imm with register 8003 * BIC - bitwise clear of (shifted) imm with register 8004 * With ARMv8.2 we also have: 8005 * FMOV half-precision 8006 */ 8007 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8008 { 8009 int rd = extract32(insn, 0, 5); 8010 int cmode = extract32(insn, 12, 4); 8011 int o2 = extract32(insn, 11, 1); 8012 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8013 bool is_neg = extract32(insn, 29, 1); 8014 bool is_q = extract32(insn, 30, 1); 8015 uint64_t imm = 0; 8016 8017 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8018 /* Check for FMOV (vector, immediate) - half-precision */ 8019 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8020 unallocated_encoding(s); 8021 return; 8022 } 8023 } 8024 8025 if (!fp_access_check(s)) { 8026 return; 8027 } 8028 8029 if (cmode == 15 && o2 && !is_neg) { 8030 /* FMOV (vector, immediate) - half-precision */ 8031 imm = vfp_expand_imm(MO_16, abcdefgh); 8032 /* now duplicate across the lanes */ 8033 imm = dup_const(MO_16, imm); 8034 } else { 8035 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8036 } 8037 8038 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8039 /* MOVI or MVNI, with MVNI negation handled above. */ 8040 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8041 vec_full_reg_size(s), imm); 8042 } else { 8043 /* ORR or BIC, with BIC negation to AND handled above. */ 8044 if (is_neg) { 8045 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8046 } else { 8047 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8048 } 8049 } 8050 } 8051 8052 /* AdvSIMD scalar copy 8053 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8054 * +-----+----+-----------------+------+---+------+---+------+------+ 8055 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8056 * +-----+----+-----------------+------+---+------+---+------+------+ 8057 */ 8058 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8059 { 8060 int rd = extract32(insn, 0, 5); 8061 int rn = extract32(insn, 5, 5); 8062 int imm4 = extract32(insn, 11, 4); 8063 int imm5 = extract32(insn, 16, 5); 8064 int op = extract32(insn, 29, 1); 8065 8066 if (op != 0 || imm4 != 0) { 8067 unallocated_encoding(s); 8068 return; 8069 } 8070 8071 /* DUP (element, scalar) */ 8072 handle_simd_dupes(s, rd, rn, imm5); 8073 } 8074 8075 /* AdvSIMD scalar pairwise 8076 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8077 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8078 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8079 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8080 */ 8081 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8082 { 8083 int u = extract32(insn, 29, 1); 8084 int size = extract32(insn, 22, 2); 8085 int opcode = extract32(insn, 12, 5); 8086 int rn = extract32(insn, 5, 5); 8087 int rd = extract32(insn, 0, 5); 8088 TCGv_ptr fpst; 8089 8090 /* For some ops (the FP ones), size[1] is part of the encoding. 8091 * For ADDP strictly it is not but size[1] is always 1 for valid 8092 * encodings. 8093 */ 8094 opcode |= (extract32(size, 1, 1) << 5); 8095 8096 switch (opcode) { 8097 case 0x3b: /* ADDP */ 8098 if (u || size != 3) { 8099 unallocated_encoding(s); 8100 return; 8101 } 8102 if (!fp_access_check(s)) { 8103 return; 8104 } 8105 8106 fpst = NULL; 8107 break; 8108 case 0xc: /* FMAXNMP */ 8109 case 0xd: /* FADDP */ 8110 case 0xf: /* FMAXP */ 8111 case 0x2c: /* FMINNMP */ 8112 case 0x2f: /* FMINP */ 8113 /* FP op, size[0] is 32 or 64 bit*/ 8114 if (!u) { 8115 if (!dc_isar_feature(aa64_fp16, s)) { 8116 unallocated_encoding(s); 8117 return; 8118 } else { 8119 size = MO_16; 8120 } 8121 } else { 8122 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8123 } 8124 8125 if (!fp_access_check(s)) { 8126 return; 8127 } 8128 8129 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8130 break; 8131 default: 8132 unallocated_encoding(s); 8133 return; 8134 } 8135 8136 if (size == MO_64) { 8137 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8138 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8139 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8140 8141 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8142 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8143 8144 switch (opcode) { 8145 case 0x3b: /* ADDP */ 8146 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8147 break; 8148 case 0xc: /* FMAXNMP */ 8149 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8150 break; 8151 case 0xd: /* FADDP */ 8152 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8153 break; 8154 case 0xf: /* FMAXP */ 8155 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8156 break; 8157 case 0x2c: /* FMINNMP */ 8158 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8159 break; 8160 case 0x2f: /* FMINP */ 8161 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8162 break; 8163 default: 8164 g_assert_not_reached(); 8165 } 8166 8167 write_fp_dreg(s, rd, tcg_res); 8168 } else { 8169 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8170 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8171 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8172 8173 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8174 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8175 8176 if (size == MO_16) { 8177 switch (opcode) { 8178 case 0xc: /* FMAXNMP */ 8179 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8180 break; 8181 case 0xd: /* FADDP */ 8182 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8183 break; 8184 case 0xf: /* FMAXP */ 8185 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8186 break; 8187 case 0x2c: /* FMINNMP */ 8188 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8189 break; 8190 case 0x2f: /* FMINP */ 8191 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8192 break; 8193 default: 8194 g_assert_not_reached(); 8195 } 8196 } else { 8197 switch (opcode) { 8198 case 0xc: /* FMAXNMP */ 8199 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8200 break; 8201 case 0xd: /* FADDP */ 8202 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8203 break; 8204 case 0xf: /* FMAXP */ 8205 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8206 break; 8207 case 0x2c: /* FMINNMP */ 8208 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8209 break; 8210 case 0x2f: /* FMINP */ 8211 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8212 break; 8213 default: 8214 g_assert_not_reached(); 8215 } 8216 } 8217 8218 write_fp_sreg(s, rd, tcg_res); 8219 } 8220 } 8221 8222 /* 8223 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8224 * 8225 * This code is handles the common shifting code and is used by both 8226 * the vector and scalar code. 8227 */ 8228 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8229 TCGv_i64 tcg_rnd, bool accumulate, 8230 bool is_u, int size, int shift) 8231 { 8232 bool extended_result = false; 8233 bool round = tcg_rnd != NULL; 8234 int ext_lshift = 0; 8235 TCGv_i64 tcg_src_hi; 8236 8237 if (round && size == 3) { 8238 extended_result = true; 8239 ext_lshift = 64 - shift; 8240 tcg_src_hi = tcg_temp_new_i64(); 8241 } else if (shift == 64) { 8242 if (!accumulate && is_u) { 8243 /* result is zero */ 8244 tcg_gen_movi_i64(tcg_res, 0); 8245 return; 8246 } 8247 } 8248 8249 /* Deal with the rounding step */ 8250 if (round) { 8251 if (extended_result) { 8252 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8253 if (!is_u) { 8254 /* take care of sign extending tcg_res */ 8255 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8256 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8257 tcg_src, tcg_src_hi, 8258 tcg_rnd, tcg_zero); 8259 } else { 8260 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8261 tcg_src, tcg_zero, 8262 tcg_rnd, tcg_zero); 8263 } 8264 } else { 8265 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8266 } 8267 } 8268 8269 /* Now do the shift right */ 8270 if (round && extended_result) { 8271 /* extended case, >64 bit precision required */ 8272 if (ext_lshift == 0) { 8273 /* special case, only high bits matter */ 8274 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8275 } else { 8276 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8277 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8278 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8279 } 8280 } else { 8281 if (is_u) { 8282 if (shift == 64) { 8283 /* essentially shifting in 64 zeros */ 8284 tcg_gen_movi_i64(tcg_src, 0); 8285 } else { 8286 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8287 } 8288 } else { 8289 if (shift == 64) { 8290 /* effectively extending the sign-bit */ 8291 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8292 } else { 8293 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8294 } 8295 } 8296 } 8297 8298 if (accumulate) { 8299 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8300 } else { 8301 tcg_gen_mov_i64(tcg_res, tcg_src); 8302 } 8303 } 8304 8305 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8306 static void handle_scalar_simd_shri(DisasContext *s, 8307 bool is_u, int immh, int immb, 8308 int opcode, int rn, int rd) 8309 { 8310 const int size = 3; 8311 int immhb = immh << 3 | immb; 8312 int shift = 2 * (8 << size) - immhb; 8313 bool accumulate = false; 8314 bool round = false; 8315 bool insert = false; 8316 TCGv_i64 tcg_rn; 8317 TCGv_i64 tcg_rd; 8318 TCGv_i64 tcg_round; 8319 8320 if (!extract32(immh, 3, 1)) { 8321 unallocated_encoding(s); 8322 return; 8323 } 8324 8325 if (!fp_access_check(s)) { 8326 return; 8327 } 8328 8329 switch (opcode) { 8330 case 0x02: /* SSRA / USRA (accumulate) */ 8331 accumulate = true; 8332 break; 8333 case 0x04: /* SRSHR / URSHR (rounding) */ 8334 round = true; 8335 break; 8336 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8337 accumulate = round = true; 8338 break; 8339 case 0x08: /* SRI */ 8340 insert = true; 8341 break; 8342 } 8343 8344 if (round) { 8345 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8346 } else { 8347 tcg_round = NULL; 8348 } 8349 8350 tcg_rn = read_fp_dreg(s, rn); 8351 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8352 8353 if (insert) { 8354 /* shift count same as element size is valid but does nothing; 8355 * special case to avoid potential shift by 64. 8356 */ 8357 int esize = 8 << size; 8358 if (shift != esize) { 8359 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8360 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8361 } 8362 } else { 8363 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8364 accumulate, is_u, size, shift); 8365 } 8366 8367 write_fp_dreg(s, rd, tcg_rd); 8368 } 8369 8370 /* SHL/SLI - Scalar shift left */ 8371 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8372 int immh, int immb, int opcode, 8373 int rn, int rd) 8374 { 8375 int size = 32 - clz32(immh) - 1; 8376 int immhb = immh << 3 | immb; 8377 int shift = immhb - (8 << size); 8378 TCGv_i64 tcg_rn; 8379 TCGv_i64 tcg_rd; 8380 8381 if (!extract32(immh, 3, 1)) { 8382 unallocated_encoding(s); 8383 return; 8384 } 8385 8386 if (!fp_access_check(s)) { 8387 return; 8388 } 8389 8390 tcg_rn = read_fp_dreg(s, rn); 8391 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8392 8393 if (insert) { 8394 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8395 } else { 8396 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8397 } 8398 8399 write_fp_dreg(s, rd, tcg_rd); 8400 } 8401 8402 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8403 * (signed/unsigned) narrowing */ 8404 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8405 bool is_u_shift, bool is_u_narrow, 8406 int immh, int immb, int opcode, 8407 int rn, int rd) 8408 { 8409 int immhb = immh << 3 | immb; 8410 int size = 32 - clz32(immh) - 1; 8411 int esize = 8 << size; 8412 int shift = (2 * esize) - immhb; 8413 int elements = is_scalar ? 1 : (64 / esize); 8414 bool round = extract32(opcode, 0, 1); 8415 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8416 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8417 TCGv_i32 tcg_rd_narrowed; 8418 TCGv_i64 tcg_final; 8419 8420 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8421 { gen_helper_neon_narrow_sat_s8, 8422 gen_helper_neon_unarrow_sat8 }, 8423 { gen_helper_neon_narrow_sat_s16, 8424 gen_helper_neon_unarrow_sat16 }, 8425 { gen_helper_neon_narrow_sat_s32, 8426 gen_helper_neon_unarrow_sat32 }, 8427 { NULL, NULL }, 8428 }; 8429 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8430 gen_helper_neon_narrow_sat_u8, 8431 gen_helper_neon_narrow_sat_u16, 8432 gen_helper_neon_narrow_sat_u32, 8433 NULL 8434 }; 8435 NeonGenNarrowEnvFn *narrowfn; 8436 8437 int i; 8438 8439 assert(size < 4); 8440 8441 if (extract32(immh, 3, 1)) { 8442 unallocated_encoding(s); 8443 return; 8444 } 8445 8446 if (!fp_access_check(s)) { 8447 return; 8448 } 8449 8450 if (is_u_shift) { 8451 narrowfn = unsigned_narrow_fns[size]; 8452 } else { 8453 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8454 } 8455 8456 tcg_rn = tcg_temp_new_i64(); 8457 tcg_rd = tcg_temp_new_i64(); 8458 tcg_rd_narrowed = tcg_temp_new_i32(); 8459 tcg_final = tcg_temp_new_i64(); 8460 8461 if (round) { 8462 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8463 } else { 8464 tcg_round = NULL; 8465 } 8466 8467 for (i = 0; i < elements; i++) { 8468 read_vec_element(s, tcg_rn, rn, i, ldop); 8469 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8470 false, is_u_shift, size+1, shift); 8471 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8472 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8473 if (i == 0) { 8474 tcg_gen_mov_i64(tcg_final, tcg_rd); 8475 } else { 8476 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8477 } 8478 } 8479 8480 if (!is_q) { 8481 write_vec_element(s, tcg_final, rd, 0, MO_64); 8482 } else { 8483 write_vec_element(s, tcg_final, rd, 1, MO_64); 8484 } 8485 clear_vec_high(s, is_q, rd); 8486 } 8487 8488 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8489 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8490 bool src_unsigned, bool dst_unsigned, 8491 int immh, int immb, int rn, int rd) 8492 { 8493 int immhb = immh << 3 | immb; 8494 int size = 32 - clz32(immh) - 1; 8495 int shift = immhb - (8 << size); 8496 int pass; 8497 8498 assert(immh != 0); 8499 assert(!(scalar && is_q)); 8500 8501 if (!scalar) { 8502 if (!is_q && extract32(immh, 3, 1)) { 8503 unallocated_encoding(s); 8504 return; 8505 } 8506 8507 /* Since we use the variable-shift helpers we must 8508 * replicate the shift count into each element of 8509 * the tcg_shift value. 8510 */ 8511 switch (size) { 8512 case 0: 8513 shift |= shift << 8; 8514 /* fall through */ 8515 case 1: 8516 shift |= shift << 16; 8517 break; 8518 case 2: 8519 case 3: 8520 break; 8521 default: 8522 g_assert_not_reached(); 8523 } 8524 } 8525 8526 if (!fp_access_check(s)) { 8527 return; 8528 } 8529 8530 if (size == 3) { 8531 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8532 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8533 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8534 { NULL, gen_helper_neon_qshl_u64 }, 8535 }; 8536 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8537 int maxpass = is_q ? 2 : 1; 8538 8539 for (pass = 0; pass < maxpass; pass++) { 8540 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8541 8542 read_vec_element(s, tcg_op, rn, pass, MO_64); 8543 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8544 write_vec_element(s, tcg_op, rd, pass, MO_64); 8545 } 8546 clear_vec_high(s, is_q, rd); 8547 } else { 8548 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8549 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8550 { 8551 { gen_helper_neon_qshl_s8, 8552 gen_helper_neon_qshl_s16, 8553 gen_helper_neon_qshl_s32 }, 8554 { gen_helper_neon_qshlu_s8, 8555 gen_helper_neon_qshlu_s16, 8556 gen_helper_neon_qshlu_s32 } 8557 }, { 8558 { NULL, NULL, NULL }, 8559 { gen_helper_neon_qshl_u8, 8560 gen_helper_neon_qshl_u16, 8561 gen_helper_neon_qshl_u32 } 8562 } 8563 }; 8564 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8565 MemOp memop = scalar ? size : MO_32; 8566 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8567 8568 for (pass = 0; pass < maxpass; pass++) { 8569 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8570 8571 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8572 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8573 if (scalar) { 8574 switch (size) { 8575 case 0: 8576 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8577 break; 8578 case 1: 8579 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8580 break; 8581 case 2: 8582 break; 8583 default: 8584 g_assert_not_reached(); 8585 } 8586 write_fp_sreg(s, rd, tcg_op); 8587 } else { 8588 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8589 } 8590 } 8591 8592 if (!scalar) { 8593 clear_vec_high(s, is_q, rd); 8594 } 8595 } 8596 } 8597 8598 /* Common vector code for handling integer to FP conversion */ 8599 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8600 int elements, int is_signed, 8601 int fracbits, int size) 8602 { 8603 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8604 TCGv_i32 tcg_shift = NULL; 8605 8606 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8607 int pass; 8608 8609 if (fracbits || size == MO_64) { 8610 tcg_shift = tcg_constant_i32(fracbits); 8611 } 8612 8613 if (size == MO_64) { 8614 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8615 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8616 8617 for (pass = 0; pass < elements; pass++) { 8618 read_vec_element(s, tcg_int64, rn, pass, mop); 8619 8620 if (is_signed) { 8621 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8622 tcg_shift, tcg_fpst); 8623 } else { 8624 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8625 tcg_shift, tcg_fpst); 8626 } 8627 if (elements == 1) { 8628 write_fp_dreg(s, rd, tcg_double); 8629 } else { 8630 write_vec_element(s, tcg_double, rd, pass, MO_64); 8631 } 8632 } 8633 } else { 8634 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8635 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8636 8637 for (pass = 0; pass < elements; pass++) { 8638 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8639 8640 switch (size) { 8641 case MO_32: 8642 if (fracbits) { 8643 if (is_signed) { 8644 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8645 tcg_shift, tcg_fpst); 8646 } else { 8647 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8648 tcg_shift, tcg_fpst); 8649 } 8650 } else { 8651 if (is_signed) { 8652 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8653 } else { 8654 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8655 } 8656 } 8657 break; 8658 case MO_16: 8659 if (fracbits) { 8660 if (is_signed) { 8661 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8662 tcg_shift, tcg_fpst); 8663 } else { 8664 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8665 tcg_shift, tcg_fpst); 8666 } 8667 } else { 8668 if (is_signed) { 8669 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8670 } else { 8671 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8672 } 8673 } 8674 break; 8675 default: 8676 g_assert_not_reached(); 8677 } 8678 8679 if (elements == 1) { 8680 write_fp_sreg(s, rd, tcg_float); 8681 } else { 8682 write_vec_element_i32(s, tcg_float, rd, pass, size); 8683 } 8684 } 8685 } 8686 8687 clear_vec_high(s, elements << size == 16, rd); 8688 } 8689 8690 /* UCVTF/SCVTF - Integer to FP conversion */ 8691 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8692 bool is_q, bool is_u, 8693 int immh, int immb, int opcode, 8694 int rn, int rd) 8695 { 8696 int size, elements, fracbits; 8697 int immhb = immh << 3 | immb; 8698 8699 if (immh & 8) { 8700 size = MO_64; 8701 if (!is_scalar && !is_q) { 8702 unallocated_encoding(s); 8703 return; 8704 } 8705 } else if (immh & 4) { 8706 size = MO_32; 8707 } else if (immh & 2) { 8708 size = MO_16; 8709 if (!dc_isar_feature(aa64_fp16, s)) { 8710 unallocated_encoding(s); 8711 return; 8712 } 8713 } else { 8714 /* immh == 0 would be a failure of the decode logic */ 8715 g_assert(immh == 1); 8716 unallocated_encoding(s); 8717 return; 8718 } 8719 8720 if (is_scalar) { 8721 elements = 1; 8722 } else { 8723 elements = (8 << is_q) >> size; 8724 } 8725 fracbits = (16 << size) - immhb; 8726 8727 if (!fp_access_check(s)) { 8728 return; 8729 } 8730 8731 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8732 } 8733 8734 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8735 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8736 bool is_q, bool is_u, 8737 int immh, int immb, int rn, int rd) 8738 { 8739 int immhb = immh << 3 | immb; 8740 int pass, size, fracbits; 8741 TCGv_ptr tcg_fpstatus; 8742 TCGv_i32 tcg_rmode, tcg_shift; 8743 8744 if (immh & 0x8) { 8745 size = MO_64; 8746 if (!is_scalar && !is_q) { 8747 unallocated_encoding(s); 8748 return; 8749 } 8750 } else if (immh & 0x4) { 8751 size = MO_32; 8752 } else if (immh & 0x2) { 8753 size = MO_16; 8754 if (!dc_isar_feature(aa64_fp16, s)) { 8755 unallocated_encoding(s); 8756 return; 8757 } 8758 } else { 8759 /* Should have split out AdvSIMD modified immediate earlier. */ 8760 assert(immh == 1); 8761 unallocated_encoding(s); 8762 return; 8763 } 8764 8765 if (!fp_access_check(s)) { 8766 return; 8767 } 8768 8769 assert(!(is_scalar && is_q)); 8770 8771 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8772 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8773 fracbits = (16 << size) - immhb; 8774 tcg_shift = tcg_constant_i32(fracbits); 8775 8776 if (size == MO_64) { 8777 int maxpass = is_scalar ? 1 : 2; 8778 8779 for (pass = 0; pass < maxpass; pass++) { 8780 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8781 8782 read_vec_element(s, tcg_op, rn, pass, MO_64); 8783 if (is_u) { 8784 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8785 } else { 8786 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8787 } 8788 write_vec_element(s, tcg_op, rd, pass, MO_64); 8789 } 8790 clear_vec_high(s, is_q, rd); 8791 } else { 8792 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8793 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8794 8795 switch (size) { 8796 case MO_16: 8797 if (is_u) { 8798 fn = gen_helper_vfp_touhh; 8799 } else { 8800 fn = gen_helper_vfp_toshh; 8801 } 8802 break; 8803 case MO_32: 8804 if (is_u) { 8805 fn = gen_helper_vfp_touls; 8806 } else { 8807 fn = gen_helper_vfp_tosls; 8808 } 8809 break; 8810 default: 8811 g_assert_not_reached(); 8812 } 8813 8814 for (pass = 0; pass < maxpass; pass++) { 8815 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8816 8817 read_vec_element_i32(s, tcg_op, rn, pass, size); 8818 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8819 if (is_scalar) { 8820 write_fp_sreg(s, rd, tcg_op); 8821 } else { 8822 write_vec_element_i32(s, tcg_op, rd, pass, size); 8823 } 8824 } 8825 if (!is_scalar) { 8826 clear_vec_high(s, is_q, rd); 8827 } 8828 } 8829 8830 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8831 } 8832 8833 /* AdvSIMD scalar shift by immediate 8834 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8835 * +-----+---+-------------+------+------+--------+---+------+------+ 8836 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8837 * +-----+---+-------------+------+------+--------+---+------+------+ 8838 * 8839 * This is the scalar version so it works on a fixed sized registers 8840 */ 8841 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8842 { 8843 int rd = extract32(insn, 0, 5); 8844 int rn = extract32(insn, 5, 5); 8845 int opcode = extract32(insn, 11, 5); 8846 int immb = extract32(insn, 16, 3); 8847 int immh = extract32(insn, 19, 4); 8848 bool is_u = extract32(insn, 29, 1); 8849 8850 if (immh == 0) { 8851 unallocated_encoding(s); 8852 return; 8853 } 8854 8855 switch (opcode) { 8856 case 0x08: /* SRI */ 8857 if (!is_u) { 8858 unallocated_encoding(s); 8859 return; 8860 } 8861 /* fall through */ 8862 case 0x00: /* SSHR / USHR */ 8863 case 0x02: /* SSRA / USRA */ 8864 case 0x04: /* SRSHR / URSHR */ 8865 case 0x06: /* SRSRA / URSRA */ 8866 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8867 break; 8868 case 0x0a: /* SHL / SLI */ 8869 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8870 break; 8871 case 0x1c: /* SCVTF, UCVTF */ 8872 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8873 opcode, rn, rd); 8874 break; 8875 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8876 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8877 if (!is_u) { 8878 unallocated_encoding(s); 8879 return; 8880 } 8881 handle_vec_simd_sqshrn(s, true, false, false, true, 8882 immh, immb, opcode, rn, rd); 8883 break; 8884 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8885 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8886 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8887 immh, immb, opcode, rn, rd); 8888 break; 8889 case 0xc: /* SQSHLU */ 8890 if (!is_u) { 8891 unallocated_encoding(s); 8892 return; 8893 } 8894 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8895 break; 8896 case 0xe: /* SQSHL, UQSHL */ 8897 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8898 break; 8899 case 0x1f: /* FCVTZS, FCVTZU */ 8900 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8901 break; 8902 default: 8903 unallocated_encoding(s); 8904 break; 8905 } 8906 } 8907 8908 /* AdvSIMD scalar three different 8909 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8910 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8911 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8912 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8913 */ 8914 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8915 { 8916 bool is_u = extract32(insn, 29, 1); 8917 int size = extract32(insn, 22, 2); 8918 int opcode = extract32(insn, 12, 4); 8919 int rm = extract32(insn, 16, 5); 8920 int rn = extract32(insn, 5, 5); 8921 int rd = extract32(insn, 0, 5); 8922 8923 if (is_u) { 8924 unallocated_encoding(s); 8925 return; 8926 } 8927 8928 switch (opcode) { 8929 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8930 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8931 case 0xd: /* SQDMULL, SQDMULL2 */ 8932 if (size == 0 || size == 3) { 8933 unallocated_encoding(s); 8934 return; 8935 } 8936 break; 8937 default: 8938 unallocated_encoding(s); 8939 return; 8940 } 8941 8942 if (!fp_access_check(s)) { 8943 return; 8944 } 8945 8946 if (size == 2) { 8947 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8948 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8949 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8950 8951 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8952 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8953 8954 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8955 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8956 8957 switch (opcode) { 8958 case 0xd: /* SQDMULL, SQDMULL2 */ 8959 break; 8960 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8961 tcg_gen_neg_i64(tcg_res, tcg_res); 8962 /* fall through */ 8963 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8964 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8965 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8966 tcg_res, tcg_op1); 8967 break; 8968 default: 8969 g_assert_not_reached(); 8970 } 8971 8972 write_fp_dreg(s, rd, tcg_res); 8973 } else { 8974 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8975 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8976 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8977 8978 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8979 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8980 8981 switch (opcode) { 8982 case 0xd: /* SQDMULL, SQDMULL2 */ 8983 break; 8984 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8985 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8986 /* fall through */ 8987 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8988 { 8989 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8990 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8991 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8992 tcg_res, tcg_op3); 8993 break; 8994 } 8995 default: 8996 g_assert_not_reached(); 8997 } 8998 8999 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9000 write_fp_dreg(s, rd, tcg_res); 9001 } 9002 } 9003 9004 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9005 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9006 { 9007 /* Handle 64x64->64 opcodes which are shared between the scalar 9008 * and vector 3-same groups. We cover every opcode where size == 3 9009 * is valid in either the three-reg-same (integer, not pairwise) 9010 * or scalar-three-reg-same groups. 9011 */ 9012 TCGCond cond; 9013 9014 switch (opcode) { 9015 case 0x1: /* SQADD */ 9016 if (u) { 9017 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9018 } else { 9019 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9020 } 9021 break; 9022 case 0x5: /* SQSUB */ 9023 if (u) { 9024 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9025 } else { 9026 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9027 } 9028 break; 9029 case 0x6: /* CMGT, CMHI */ 9030 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9031 * We implement this using setcond (test) and then negating. 9032 */ 9033 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9034 do_cmop: 9035 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9036 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9037 break; 9038 case 0x7: /* CMGE, CMHS */ 9039 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9040 goto do_cmop; 9041 case 0x11: /* CMTST, CMEQ */ 9042 if (u) { 9043 cond = TCG_COND_EQ; 9044 goto do_cmop; 9045 } 9046 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9047 break; 9048 case 0x8: /* SSHL, USHL */ 9049 if (u) { 9050 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9051 } else { 9052 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9053 } 9054 break; 9055 case 0x9: /* SQSHL, UQSHL */ 9056 if (u) { 9057 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9058 } else { 9059 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9060 } 9061 break; 9062 case 0xa: /* SRSHL, URSHL */ 9063 if (u) { 9064 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9065 } else { 9066 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9067 } 9068 break; 9069 case 0xb: /* SQRSHL, UQRSHL */ 9070 if (u) { 9071 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9072 } else { 9073 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9074 } 9075 break; 9076 case 0x10: /* ADD, SUB */ 9077 if (u) { 9078 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9079 } else { 9080 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9081 } 9082 break; 9083 default: 9084 g_assert_not_reached(); 9085 } 9086 } 9087 9088 /* Handle the 3-same-operands float operations; shared by the scalar 9089 * and vector encodings. The caller must filter out any encodings 9090 * not allocated for the encoding it is dealing with. 9091 */ 9092 static void handle_3same_float(DisasContext *s, int size, int elements, 9093 int fpopcode, int rd, int rn, int rm) 9094 { 9095 int pass; 9096 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9097 9098 for (pass = 0; pass < elements; pass++) { 9099 if (size) { 9100 /* Double */ 9101 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9102 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9103 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9104 9105 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9106 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9107 9108 switch (fpopcode) { 9109 case 0x39: /* FMLS */ 9110 /* As usual for ARM, separate negation for fused multiply-add */ 9111 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9112 /* fall through */ 9113 case 0x19: /* FMLA */ 9114 read_vec_element(s, tcg_res, rd, pass, MO_64); 9115 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9116 tcg_res, fpst); 9117 break; 9118 case 0x18: /* FMAXNM */ 9119 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9120 break; 9121 case 0x1a: /* FADD */ 9122 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9123 break; 9124 case 0x1b: /* FMULX */ 9125 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9126 break; 9127 case 0x1c: /* FCMEQ */ 9128 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9129 break; 9130 case 0x1e: /* FMAX */ 9131 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9132 break; 9133 case 0x1f: /* FRECPS */ 9134 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9135 break; 9136 case 0x38: /* FMINNM */ 9137 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9138 break; 9139 case 0x3a: /* FSUB */ 9140 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9141 break; 9142 case 0x3e: /* FMIN */ 9143 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9144 break; 9145 case 0x3f: /* FRSQRTS */ 9146 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9147 break; 9148 case 0x5b: /* FMUL */ 9149 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9150 break; 9151 case 0x5c: /* FCMGE */ 9152 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9153 break; 9154 case 0x5d: /* FACGE */ 9155 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9156 break; 9157 case 0x5f: /* FDIV */ 9158 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9159 break; 9160 case 0x7a: /* FABD */ 9161 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9162 gen_helper_vfp_absd(tcg_res, tcg_res); 9163 break; 9164 case 0x7c: /* FCMGT */ 9165 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9166 break; 9167 case 0x7d: /* FACGT */ 9168 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9169 break; 9170 default: 9171 g_assert_not_reached(); 9172 } 9173 9174 write_vec_element(s, tcg_res, rd, pass, MO_64); 9175 } else { 9176 /* Single */ 9177 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9178 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9179 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9180 9181 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9182 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9183 9184 switch (fpopcode) { 9185 case 0x39: /* FMLS */ 9186 /* As usual for ARM, separate negation for fused multiply-add */ 9187 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9188 /* fall through */ 9189 case 0x19: /* FMLA */ 9190 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9191 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9192 tcg_res, fpst); 9193 break; 9194 case 0x1a: /* FADD */ 9195 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9196 break; 9197 case 0x1b: /* FMULX */ 9198 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9199 break; 9200 case 0x1c: /* FCMEQ */ 9201 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9202 break; 9203 case 0x1e: /* FMAX */ 9204 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9205 break; 9206 case 0x1f: /* FRECPS */ 9207 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9208 break; 9209 case 0x18: /* FMAXNM */ 9210 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9211 break; 9212 case 0x38: /* FMINNM */ 9213 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9214 break; 9215 case 0x3a: /* FSUB */ 9216 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9217 break; 9218 case 0x3e: /* FMIN */ 9219 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9220 break; 9221 case 0x3f: /* FRSQRTS */ 9222 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9223 break; 9224 case 0x5b: /* FMUL */ 9225 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9226 break; 9227 case 0x5c: /* FCMGE */ 9228 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9229 break; 9230 case 0x5d: /* FACGE */ 9231 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9232 break; 9233 case 0x5f: /* FDIV */ 9234 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9235 break; 9236 case 0x7a: /* FABD */ 9237 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9238 gen_helper_vfp_abss(tcg_res, tcg_res); 9239 break; 9240 case 0x7c: /* FCMGT */ 9241 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9242 break; 9243 case 0x7d: /* FACGT */ 9244 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9245 break; 9246 default: 9247 g_assert_not_reached(); 9248 } 9249 9250 if (elements == 1) { 9251 /* scalar single so clear high part */ 9252 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9253 9254 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9255 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9256 } else { 9257 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9258 } 9259 } 9260 } 9261 9262 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9263 } 9264 9265 /* AdvSIMD scalar three same 9266 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9267 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9268 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9269 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9270 */ 9271 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9272 { 9273 int rd = extract32(insn, 0, 5); 9274 int rn = extract32(insn, 5, 5); 9275 int opcode = extract32(insn, 11, 5); 9276 int rm = extract32(insn, 16, 5); 9277 int size = extract32(insn, 22, 2); 9278 bool u = extract32(insn, 29, 1); 9279 TCGv_i64 tcg_rd; 9280 9281 if (opcode >= 0x18) { 9282 /* Floating point: U, size[1] and opcode indicate operation */ 9283 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9284 switch (fpopcode) { 9285 case 0x1b: /* FMULX */ 9286 case 0x1f: /* FRECPS */ 9287 case 0x3f: /* FRSQRTS */ 9288 case 0x5d: /* FACGE */ 9289 case 0x7d: /* FACGT */ 9290 case 0x1c: /* FCMEQ */ 9291 case 0x5c: /* FCMGE */ 9292 case 0x7c: /* FCMGT */ 9293 case 0x7a: /* FABD */ 9294 break; 9295 default: 9296 unallocated_encoding(s); 9297 return; 9298 } 9299 9300 if (!fp_access_check(s)) { 9301 return; 9302 } 9303 9304 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9305 return; 9306 } 9307 9308 switch (opcode) { 9309 case 0x1: /* SQADD, UQADD */ 9310 case 0x5: /* SQSUB, UQSUB */ 9311 case 0x9: /* SQSHL, UQSHL */ 9312 case 0xb: /* SQRSHL, UQRSHL */ 9313 break; 9314 case 0x8: /* SSHL, USHL */ 9315 case 0xa: /* SRSHL, URSHL */ 9316 case 0x6: /* CMGT, CMHI */ 9317 case 0x7: /* CMGE, CMHS */ 9318 case 0x11: /* CMTST, CMEQ */ 9319 case 0x10: /* ADD, SUB (vector) */ 9320 if (size != 3) { 9321 unallocated_encoding(s); 9322 return; 9323 } 9324 break; 9325 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9326 if (size != 1 && size != 2) { 9327 unallocated_encoding(s); 9328 return; 9329 } 9330 break; 9331 default: 9332 unallocated_encoding(s); 9333 return; 9334 } 9335 9336 if (!fp_access_check(s)) { 9337 return; 9338 } 9339 9340 tcg_rd = tcg_temp_new_i64(); 9341 9342 if (size == 3) { 9343 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9344 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9345 9346 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9347 } else { 9348 /* Do a single operation on the lowest element in the vector. 9349 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9350 * no side effects for all these operations. 9351 * OPTME: special-purpose helpers would avoid doing some 9352 * unnecessary work in the helper for the 8 and 16 bit cases. 9353 */ 9354 NeonGenTwoOpEnvFn *genenvfn; 9355 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9356 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9357 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9358 9359 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9360 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9361 9362 switch (opcode) { 9363 case 0x1: /* SQADD, UQADD */ 9364 { 9365 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9366 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9367 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9368 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9369 }; 9370 genenvfn = fns[size][u]; 9371 break; 9372 } 9373 case 0x5: /* SQSUB, UQSUB */ 9374 { 9375 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9376 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9377 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9378 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9379 }; 9380 genenvfn = fns[size][u]; 9381 break; 9382 } 9383 case 0x9: /* SQSHL, UQSHL */ 9384 { 9385 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9386 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9387 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9388 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9389 }; 9390 genenvfn = fns[size][u]; 9391 break; 9392 } 9393 case 0xb: /* SQRSHL, UQRSHL */ 9394 { 9395 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9396 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9397 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9398 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9399 }; 9400 genenvfn = fns[size][u]; 9401 break; 9402 } 9403 case 0x16: /* SQDMULH, SQRDMULH */ 9404 { 9405 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9406 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9407 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9408 }; 9409 assert(size == 1 || size == 2); 9410 genenvfn = fns[size - 1][u]; 9411 break; 9412 } 9413 default: 9414 g_assert_not_reached(); 9415 } 9416 9417 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9418 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9419 } 9420 9421 write_fp_dreg(s, rd, tcg_rd); 9422 } 9423 9424 /* AdvSIMD scalar three same FP16 9425 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9426 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9427 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9428 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9429 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9430 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9431 */ 9432 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9433 uint32_t insn) 9434 { 9435 int rd = extract32(insn, 0, 5); 9436 int rn = extract32(insn, 5, 5); 9437 int opcode = extract32(insn, 11, 3); 9438 int rm = extract32(insn, 16, 5); 9439 bool u = extract32(insn, 29, 1); 9440 bool a = extract32(insn, 23, 1); 9441 int fpopcode = opcode | (a << 3) | (u << 4); 9442 TCGv_ptr fpst; 9443 TCGv_i32 tcg_op1; 9444 TCGv_i32 tcg_op2; 9445 TCGv_i32 tcg_res; 9446 9447 switch (fpopcode) { 9448 case 0x03: /* FMULX */ 9449 case 0x04: /* FCMEQ (reg) */ 9450 case 0x07: /* FRECPS */ 9451 case 0x0f: /* FRSQRTS */ 9452 case 0x14: /* FCMGE (reg) */ 9453 case 0x15: /* FACGE */ 9454 case 0x1a: /* FABD */ 9455 case 0x1c: /* FCMGT (reg) */ 9456 case 0x1d: /* FACGT */ 9457 break; 9458 default: 9459 unallocated_encoding(s); 9460 return; 9461 } 9462 9463 if (!dc_isar_feature(aa64_fp16, s)) { 9464 unallocated_encoding(s); 9465 } 9466 9467 if (!fp_access_check(s)) { 9468 return; 9469 } 9470 9471 fpst = fpstatus_ptr(FPST_FPCR_F16); 9472 9473 tcg_op1 = read_fp_hreg(s, rn); 9474 tcg_op2 = read_fp_hreg(s, rm); 9475 tcg_res = tcg_temp_new_i32(); 9476 9477 switch (fpopcode) { 9478 case 0x03: /* FMULX */ 9479 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9480 break; 9481 case 0x04: /* FCMEQ (reg) */ 9482 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9483 break; 9484 case 0x07: /* FRECPS */ 9485 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9486 break; 9487 case 0x0f: /* FRSQRTS */ 9488 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9489 break; 9490 case 0x14: /* FCMGE (reg) */ 9491 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9492 break; 9493 case 0x15: /* FACGE */ 9494 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9495 break; 9496 case 0x1a: /* FABD */ 9497 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9498 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9499 break; 9500 case 0x1c: /* FCMGT (reg) */ 9501 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9502 break; 9503 case 0x1d: /* FACGT */ 9504 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9505 break; 9506 default: 9507 g_assert_not_reached(); 9508 } 9509 9510 write_fp_sreg(s, rd, tcg_res); 9511 } 9512 9513 /* AdvSIMD scalar three same extra 9514 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9515 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9516 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9517 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9518 */ 9519 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9520 uint32_t insn) 9521 { 9522 int rd = extract32(insn, 0, 5); 9523 int rn = extract32(insn, 5, 5); 9524 int opcode = extract32(insn, 11, 4); 9525 int rm = extract32(insn, 16, 5); 9526 int size = extract32(insn, 22, 2); 9527 bool u = extract32(insn, 29, 1); 9528 TCGv_i32 ele1, ele2, ele3; 9529 TCGv_i64 res; 9530 bool feature; 9531 9532 switch (u * 16 + opcode) { 9533 case 0x10: /* SQRDMLAH (vector) */ 9534 case 0x11: /* SQRDMLSH (vector) */ 9535 if (size != 1 && size != 2) { 9536 unallocated_encoding(s); 9537 return; 9538 } 9539 feature = dc_isar_feature(aa64_rdm, s); 9540 break; 9541 default: 9542 unallocated_encoding(s); 9543 return; 9544 } 9545 if (!feature) { 9546 unallocated_encoding(s); 9547 return; 9548 } 9549 if (!fp_access_check(s)) { 9550 return; 9551 } 9552 9553 /* Do a single operation on the lowest element in the vector. 9554 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9555 * with no side effects for all these operations. 9556 * OPTME: special-purpose helpers would avoid doing some 9557 * unnecessary work in the helper for the 16 bit cases. 9558 */ 9559 ele1 = tcg_temp_new_i32(); 9560 ele2 = tcg_temp_new_i32(); 9561 ele3 = tcg_temp_new_i32(); 9562 9563 read_vec_element_i32(s, ele1, rn, 0, size); 9564 read_vec_element_i32(s, ele2, rm, 0, size); 9565 read_vec_element_i32(s, ele3, rd, 0, size); 9566 9567 switch (opcode) { 9568 case 0x0: /* SQRDMLAH */ 9569 if (size == 1) { 9570 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9571 } else { 9572 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9573 } 9574 break; 9575 case 0x1: /* SQRDMLSH */ 9576 if (size == 1) { 9577 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9578 } else { 9579 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9580 } 9581 break; 9582 default: 9583 g_assert_not_reached(); 9584 } 9585 9586 res = tcg_temp_new_i64(); 9587 tcg_gen_extu_i32_i64(res, ele3); 9588 write_fp_dreg(s, rd, res); 9589 } 9590 9591 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9592 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9593 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9594 { 9595 /* Handle 64->64 opcodes which are shared between the scalar and 9596 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9597 * is valid in either group and also the double-precision fp ops. 9598 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9599 * requires them. 9600 */ 9601 TCGCond cond; 9602 9603 switch (opcode) { 9604 case 0x4: /* CLS, CLZ */ 9605 if (u) { 9606 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9607 } else { 9608 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9609 } 9610 break; 9611 case 0x5: /* NOT */ 9612 /* This opcode is shared with CNT and RBIT but we have earlier 9613 * enforced that size == 3 if and only if this is the NOT insn. 9614 */ 9615 tcg_gen_not_i64(tcg_rd, tcg_rn); 9616 break; 9617 case 0x7: /* SQABS, SQNEG */ 9618 if (u) { 9619 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9620 } else { 9621 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9622 } 9623 break; 9624 case 0xa: /* CMLT */ 9625 /* 64 bit integer comparison against zero, result is 9626 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9627 * subtracting 1. 9628 */ 9629 cond = TCG_COND_LT; 9630 do_cmop: 9631 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9632 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9633 break; 9634 case 0x8: /* CMGT, CMGE */ 9635 cond = u ? TCG_COND_GE : TCG_COND_GT; 9636 goto do_cmop; 9637 case 0x9: /* CMEQ, CMLE */ 9638 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9639 goto do_cmop; 9640 case 0xb: /* ABS, NEG */ 9641 if (u) { 9642 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9643 } else { 9644 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9645 } 9646 break; 9647 case 0x2f: /* FABS */ 9648 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9649 break; 9650 case 0x6f: /* FNEG */ 9651 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9652 break; 9653 case 0x7f: /* FSQRT */ 9654 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9655 break; 9656 case 0x1a: /* FCVTNS */ 9657 case 0x1b: /* FCVTMS */ 9658 case 0x1c: /* FCVTAS */ 9659 case 0x3a: /* FCVTPS */ 9660 case 0x3b: /* FCVTZS */ 9661 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9662 break; 9663 case 0x5a: /* FCVTNU */ 9664 case 0x5b: /* FCVTMU */ 9665 case 0x5c: /* FCVTAU */ 9666 case 0x7a: /* FCVTPU */ 9667 case 0x7b: /* FCVTZU */ 9668 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9669 break; 9670 case 0x18: /* FRINTN */ 9671 case 0x19: /* FRINTM */ 9672 case 0x38: /* FRINTP */ 9673 case 0x39: /* FRINTZ */ 9674 case 0x58: /* FRINTA */ 9675 case 0x79: /* FRINTI */ 9676 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9677 break; 9678 case 0x59: /* FRINTX */ 9679 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9680 break; 9681 case 0x1e: /* FRINT32Z */ 9682 case 0x5e: /* FRINT32X */ 9683 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9684 break; 9685 case 0x1f: /* FRINT64Z */ 9686 case 0x5f: /* FRINT64X */ 9687 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9688 break; 9689 default: 9690 g_assert_not_reached(); 9691 } 9692 } 9693 9694 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9695 bool is_scalar, bool is_u, bool is_q, 9696 int size, int rn, int rd) 9697 { 9698 bool is_double = (size == MO_64); 9699 TCGv_ptr fpst; 9700 9701 if (!fp_access_check(s)) { 9702 return; 9703 } 9704 9705 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9706 9707 if (is_double) { 9708 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9709 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9710 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9711 NeonGenTwoDoubleOpFn *genfn; 9712 bool swap = false; 9713 int pass; 9714 9715 switch (opcode) { 9716 case 0x2e: /* FCMLT (zero) */ 9717 swap = true; 9718 /* fallthrough */ 9719 case 0x2c: /* FCMGT (zero) */ 9720 genfn = gen_helper_neon_cgt_f64; 9721 break; 9722 case 0x2d: /* FCMEQ (zero) */ 9723 genfn = gen_helper_neon_ceq_f64; 9724 break; 9725 case 0x6d: /* FCMLE (zero) */ 9726 swap = true; 9727 /* fall through */ 9728 case 0x6c: /* FCMGE (zero) */ 9729 genfn = gen_helper_neon_cge_f64; 9730 break; 9731 default: 9732 g_assert_not_reached(); 9733 } 9734 9735 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9736 read_vec_element(s, tcg_op, rn, pass, MO_64); 9737 if (swap) { 9738 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9739 } else { 9740 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9741 } 9742 write_vec_element(s, tcg_res, rd, pass, MO_64); 9743 } 9744 9745 clear_vec_high(s, !is_scalar, rd); 9746 } else { 9747 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9748 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9749 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9750 NeonGenTwoSingleOpFn *genfn; 9751 bool swap = false; 9752 int pass, maxpasses; 9753 9754 if (size == MO_16) { 9755 switch (opcode) { 9756 case 0x2e: /* FCMLT (zero) */ 9757 swap = true; 9758 /* fall through */ 9759 case 0x2c: /* FCMGT (zero) */ 9760 genfn = gen_helper_advsimd_cgt_f16; 9761 break; 9762 case 0x2d: /* FCMEQ (zero) */ 9763 genfn = gen_helper_advsimd_ceq_f16; 9764 break; 9765 case 0x6d: /* FCMLE (zero) */ 9766 swap = true; 9767 /* fall through */ 9768 case 0x6c: /* FCMGE (zero) */ 9769 genfn = gen_helper_advsimd_cge_f16; 9770 break; 9771 default: 9772 g_assert_not_reached(); 9773 } 9774 } else { 9775 switch (opcode) { 9776 case 0x2e: /* FCMLT (zero) */ 9777 swap = true; 9778 /* fall through */ 9779 case 0x2c: /* FCMGT (zero) */ 9780 genfn = gen_helper_neon_cgt_f32; 9781 break; 9782 case 0x2d: /* FCMEQ (zero) */ 9783 genfn = gen_helper_neon_ceq_f32; 9784 break; 9785 case 0x6d: /* FCMLE (zero) */ 9786 swap = true; 9787 /* fall through */ 9788 case 0x6c: /* FCMGE (zero) */ 9789 genfn = gen_helper_neon_cge_f32; 9790 break; 9791 default: 9792 g_assert_not_reached(); 9793 } 9794 } 9795 9796 if (is_scalar) { 9797 maxpasses = 1; 9798 } else { 9799 int vector_size = 8 << is_q; 9800 maxpasses = vector_size >> size; 9801 } 9802 9803 for (pass = 0; pass < maxpasses; pass++) { 9804 read_vec_element_i32(s, tcg_op, rn, pass, size); 9805 if (swap) { 9806 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9807 } else { 9808 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9809 } 9810 if (is_scalar) { 9811 write_fp_sreg(s, rd, tcg_res); 9812 } else { 9813 write_vec_element_i32(s, tcg_res, rd, pass, size); 9814 } 9815 } 9816 9817 if (!is_scalar) { 9818 clear_vec_high(s, is_q, rd); 9819 } 9820 } 9821 } 9822 9823 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9824 bool is_scalar, bool is_u, bool is_q, 9825 int size, int rn, int rd) 9826 { 9827 bool is_double = (size == 3); 9828 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9829 9830 if (is_double) { 9831 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9832 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9833 int pass; 9834 9835 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9836 read_vec_element(s, tcg_op, rn, pass, MO_64); 9837 switch (opcode) { 9838 case 0x3d: /* FRECPE */ 9839 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9840 break; 9841 case 0x3f: /* FRECPX */ 9842 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9843 break; 9844 case 0x7d: /* FRSQRTE */ 9845 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9846 break; 9847 default: 9848 g_assert_not_reached(); 9849 } 9850 write_vec_element(s, tcg_res, rd, pass, MO_64); 9851 } 9852 clear_vec_high(s, !is_scalar, rd); 9853 } else { 9854 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9855 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9856 int pass, maxpasses; 9857 9858 if (is_scalar) { 9859 maxpasses = 1; 9860 } else { 9861 maxpasses = is_q ? 4 : 2; 9862 } 9863 9864 for (pass = 0; pass < maxpasses; pass++) { 9865 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9866 9867 switch (opcode) { 9868 case 0x3c: /* URECPE */ 9869 gen_helper_recpe_u32(tcg_res, tcg_op); 9870 break; 9871 case 0x3d: /* FRECPE */ 9872 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9873 break; 9874 case 0x3f: /* FRECPX */ 9875 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9876 break; 9877 case 0x7d: /* FRSQRTE */ 9878 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9879 break; 9880 default: 9881 g_assert_not_reached(); 9882 } 9883 9884 if (is_scalar) { 9885 write_fp_sreg(s, rd, tcg_res); 9886 } else { 9887 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9888 } 9889 } 9890 if (!is_scalar) { 9891 clear_vec_high(s, is_q, rd); 9892 } 9893 } 9894 } 9895 9896 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9897 int opcode, bool u, bool is_q, 9898 int size, int rn, int rd) 9899 { 9900 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9901 * in the source becomes a size element in the destination). 9902 */ 9903 int pass; 9904 TCGv_i32 tcg_res[2]; 9905 int destelt = is_q ? 2 : 0; 9906 int passes = scalar ? 1 : 2; 9907 9908 if (scalar) { 9909 tcg_res[1] = tcg_constant_i32(0); 9910 } 9911 9912 for (pass = 0; pass < passes; pass++) { 9913 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9914 NeonGenNarrowFn *genfn = NULL; 9915 NeonGenNarrowEnvFn *genenvfn = NULL; 9916 9917 if (scalar) { 9918 read_vec_element(s, tcg_op, rn, pass, size + 1); 9919 } else { 9920 read_vec_element(s, tcg_op, rn, pass, MO_64); 9921 } 9922 tcg_res[pass] = tcg_temp_new_i32(); 9923 9924 switch (opcode) { 9925 case 0x12: /* XTN, SQXTUN */ 9926 { 9927 static NeonGenNarrowFn * const xtnfns[3] = { 9928 gen_helper_neon_narrow_u8, 9929 gen_helper_neon_narrow_u16, 9930 tcg_gen_extrl_i64_i32, 9931 }; 9932 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9933 gen_helper_neon_unarrow_sat8, 9934 gen_helper_neon_unarrow_sat16, 9935 gen_helper_neon_unarrow_sat32, 9936 }; 9937 if (u) { 9938 genenvfn = sqxtunfns[size]; 9939 } else { 9940 genfn = xtnfns[size]; 9941 } 9942 break; 9943 } 9944 case 0x14: /* SQXTN, UQXTN */ 9945 { 9946 static NeonGenNarrowEnvFn * const fns[3][2] = { 9947 { gen_helper_neon_narrow_sat_s8, 9948 gen_helper_neon_narrow_sat_u8 }, 9949 { gen_helper_neon_narrow_sat_s16, 9950 gen_helper_neon_narrow_sat_u16 }, 9951 { gen_helper_neon_narrow_sat_s32, 9952 gen_helper_neon_narrow_sat_u32 }, 9953 }; 9954 genenvfn = fns[size][u]; 9955 break; 9956 } 9957 case 0x16: /* FCVTN, FCVTN2 */ 9958 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9959 if (size == 2) { 9960 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9961 } else { 9962 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9963 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9964 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9965 TCGv_i32 ahp = get_ahp_flag(); 9966 9967 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9968 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9969 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9970 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9971 } 9972 break; 9973 case 0x36: /* BFCVTN, BFCVTN2 */ 9974 { 9975 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9976 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9977 } 9978 break; 9979 case 0x56: /* FCVTXN, FCVTXN2 */ 9980 /* 64 bit to 32 bit float conversion 9981 * with von Neumann rounding (round to odd) 9982 */ 9983 assert(size == 2); 9984 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9985 break; 9986 default: 9987 g_assert_not_reached(); 9988 } 9989 9990 if (genfn) { 9991 genfn(tcg_res[pass], tcg_op); 9992 } else if (genenvfn) { 9993 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9994 } 9995 } 9996 9997 for (pass = 0; pass < 2; pass++) { 9998 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9999 } 10000 clear_vec_high(s, is_q, rd); 10001 } 10002 10003 /* Remaining saturating accumulating ops */ 10004 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10005 bool is_q, int size, int rn, int rd) 10006 { 10007 bool is_double = (size == 3); 10008 10009 if (is_double) { 10010 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10011 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10012 int pass; 10013 10014 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10015 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10016 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10017 10018 if (is_u) { /* USQADD */ 10019 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10020 } else { /* SUQADD */ 10021 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10022 } 10023 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10024 } 10025 clear_vec_high(s, !is_scalar, rd); 10026 } else { 10027 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10028 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10029 int pass, maxpasses; 10030 10031 if (is_scalar) { 10032 maxpasses = 1; 10033 } else { 10034 maxpasses = is_q ? 4 : 2; 10035 } 10036 10037 for (pass = 0; pass < maxpasses; pass++) { 10038 if (is_scalar) { 10039 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10040 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10041 } else { 10042 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10043 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10044 } 10045 10046 if (is_u) { /* USQADD */ 10047 switch (size) { 10048 case 0: 10049 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10050 break; 10051 case 1: 10052 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10053 break; 10054 case 2: 10055 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10056 break; 10057 default: 10058 g_assert_not_reached(); 10059 } 10060 } else { /* SUQADD */ 10061 switch (size) { 10062 case 0: 10063 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10064 break; 10065 case 1: 10066 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10067 break; 10068 case 2: 10069 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10070 break; 10071 default: 10072 g_assert_not_reached(); 10073 } 10074 } 10075 10076 if (is_scalar) { 10077 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10078 } 10079 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10080 } 10081 clear_vec_high(s, is_q, rd); 10082 } 10083 } 10084 10085 /* AdvSIMD scalar two reg misc 10086 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10087 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10088 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10089 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10090 */ 10091 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10092 { 10093 int rd = extract32(insn, 0, 5); 10094 int rn = extract32(insn, 5, 5); 10095 int opcode = extract32(insn, 12, 5); 10096 int size = extract32(insn, 22, 2); 10097 bool u = extract32(insn, 29, 1); 10098 bool is_fcvt = false; 10099 int rmode; 10100 TCGv_i32 tcg_rmode; 10101 TCGv_ptr tcg_fpstatus; 10102 10103 switch (opcode) { 10104 case 0x3: /* USQADD / SUQADD*/ 10105 if (!fp_access_check(s)) { 10106 return; 10107 } 10108 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10109 return; 10110 case 0x7: /* SQABS / SQNEG */ 10111 break; 10112 case 0xa: /* CMLT */ 10113 if (u) { 10114 unallocated_encoding(s); 10115 return; 10116 } 10117 /* fall through */ 10118 case 0x8: /* CMGT, CMGE */ 10119 case 0x9: /* CMEQ, CMLE */ 10120 case 0xb: /* ABS, NEG */ 10121 if (size != 3) { 10122 unallocated_encoding(s); 10123 return; 10124 } 10125 break; 10126 case 0x12: /* SQXTUN */ 10127 if (!u) { 10128 unallocated_encoding(s); 10129 return; 10130 } 10131 /* fall through */ 10132 case 0x14: /* SQXTN, UQXTN */ 10133 if (size == 3) { 10134 unallocated_encoding(s); 10135 return; 10136 } 10137 if (!fp_access_check(s)) { 10138 return; 10139 } 10140 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10141 return; 10142 case 0xc ... 0xf: 10143 case 0x16 ... 0x1d: 10144 case 0x1f: 10145 /* Floating point: U, size[1] and opcode indicate operation; 10146 * size[0] indicates single or double precision. 10147 */ 10148 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10149 size = extract32(size, 0, 1) ? 3 : 2; 10150 switch (opcode) { 10151 case 0x2c: /* FCMGT (zero) */ 10152 case 0x2d: /* FCMEQ (zero) */ 10153 case 0x2e: /* FCMLT (zero) */ 10154 case 0x6c: /* FCMGE (zero) */ 10155 case 0x6d: /* FCMLE (zero) */ 10156 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10157 return; 10158 case 0x1d: /* SCVTF */ 10159 case 0x5d: /* UCVTF */ 10160 { 10161 bool is_signed = (opcode == 0x1d); 10162 if (!fp_access_check(s)) { 10163 return; 10164 } 10165 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10166 return; 10167 } 10168 case 0x3d: /* FRECPE */ 10169 case 0x3f: /* FRECPX */ 10170 case 0x7d: /* FRSQRTE */ 10171 if (!fp_access_check(s)) { 10172 return; 10173 } 10174 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10175 return; 10176 case 0x1a: /* FCVTNS */ 10177 case 0x1b: /* FCVTMS */ 10178 case 0x3a: /* FCVTPS */ 10179 case 0x3b: /* FCVTZS */ 10180 case 0x5a: /* FCVTNU */ 10181 case 0x5b: /* FCVTMU */ 10182 case 0x7a: /* FCVTPU */ 10183 case 0x7b: /* FCVTZU */ 10184 is_fcvt = true; 10185 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10186 break; 10187 case 0x1c: /* FCVTAS */ 10188 case 0x5c: /* FCVTAU */ 10189 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10190 is_fcvt = true; 10191 rmode = FPROUNDING_TIEAWAY; 10192 break; 10193 case 0x56: /* FCVTXN, FCVTXN2 */ 10194 if (size == 2) { 10195 unallocated_encoding(s); 10196 return; 10197 } 10198 if (!fp_access_check(s)) { 10199 return; 10200 } 10201 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10202 return; 10203 default: 10204 unallocated_encoding(s); 10205 return; 10206 } 10207 break; 10208 default: 10209 unallocated_encoding(s); 10210 return; 10211 } 10212 10213 if (!fp_access_check(s)) { 10214 return; 10215 } 10216 10217 if (is_fcvt) { 10218 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10219 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10220 } else { 10221 tcg_fpstatus = NULL; 10222 tcg_rmode = NULL; 10223 } 10224 10225 if (size == 3) { 10226 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10227 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10228 10229 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10230 write_fp_dreg(s, rd, tcg_rd); 10231 } else { 10232 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10233 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10234 10235 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10236 10237 switch (opcode) { 10238 case 0x7: /* SQABS, SQNEG */ 10239 { 10240 NeonGenOneOpEnvFn *genfn; 10241 static NeonGenOneOpEnvFn * const fns[3][2] = { 10242 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10243 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10244 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10245 }; 10246 genfn = fns[size][u]; 10247 genfn(tcg_rd, cpu_env, tcg_rn); 10248 break; 10249 } 10250 case 0x1a: /* FCVTNS */ 10251 case 0x1b: /* FCVTMS */ 10252 case 0x1c: /* FCVTAS */ 10253 case 0x3a: /* FCVTPS */ 10254 case 0x3b: /* FCVTZS */ 10255 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10256 tcg_fpstatus); 10257 break; 10258 case 0x5a: /* FCVTNU */ 10259 case 0x5b: /* FCVTMU */ 10260 case 0x5c: /* FCVTAU */ 10261 case 0x7a: /* FCVTPU */ 10262 case 0x7b: /* FCVTZU */ 10263 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10264 tcg_fpstatus); 10265 break; 10266 default: 10267 g_assert_not_reached(); 10268 } 10269 10270 write_fp_sreg(s, rd, tcg_rd); 10271 } 10272 10273 if (is_fcvt) { 10274 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10275 } 10276 } 10277 10278 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10279 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10280 int immh, int immb, int opcode, int rn, int rd) 10281 { 10282 int size = 32 - clz32(immh) - 1; 10283 int immhb = immh << 3 | immb; 10284 int shift = 2 * (8 << size) - immhb; 10285 GVecGen2iFn *gvec_fn; 10286 10287 if (extract32(immh, 3, 1) && !is_q) { 10288 unallocated_encoding(s); 10289 return; 10290 } 10291 tcg_debug_assert(size <= 3); 10292 10293 if (!fp_access_check(s)) { 10294 return; 10295 } 10296 10297 switch (opcode) { 10298 case 0x02: /* SSRA / USRA (accumulate) */ 10299 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10300 break; 10301 10302 case 0x08: /* SRI */ 10303 gvec_fn = gen_gvec_sri; 10304 break; 10305 10306 case 0x00: /* SSHR / USHR */ 10307 if (is_u) { 10308 if (shift == 8 << size) { 10309 /* Shift count the same size as element size produces zero. */ 10310 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10311 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10312 return; 10313 } 10314 gvec_fn = tcg_gen_gvec_shri; 10315 } else { 10316 /* Shift count the same size as element size produces all sign. */ 10317 if (shift == 8 << size) { 10318 shift -= 1; 10319 } 10320 gvec_fn = tcg_gen_gvec_sari; 10321 } 10322 break; 10323 10324 case 0x04: /* SRSHR / URSHR (rounding) */ 10325 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10326 break; 10327 10328 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10329 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10330 break; 10331 10332 default: 10333 g_assert_not_reached(); 10334 } 10335 10336 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10337 } 10338 10339 /* SHL/SLI - Vector shift left */ 10340 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10341 int immh, int immb, int opcode, int rn, int rd) 10342 { 10343 int size = 32 - clz32(immh) - 1; 10344 int immhb = immh << 3 | immb; 10345 int shift = immhb - (8 << size); 10346 10347 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10348 assert(size >= 0 && size <= 3); 10349 10350 if (extract32(immh, 3, 1) && !is_q) { 10351 unallocated_encoding(s); 10352 return; 10353 } 10354 10355 if (!fp_access_check(s)) { 10356 return; 10357 } 10358 10359 if (insert) { 10360 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10361 } else { 10362 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10363 } 10364 } 10365 10366 /* USHLL/SHLL - Vector shift left with widening */ 10367 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10368 int immh, int immb, int opcode, int rn, int rd) 10369 { 10370 int size = 32 - clz32(immh) - 1; 10371 int immhb = immh << 3 | immb; 10372 int shift = immhb - (8 << size); 10373 int dsize = 64; 10374 int esize = 8 << size; 10375 int elements = dsize/esize; 10376 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10377 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10378 int i; 10379 10380 if (size >= 3) { 10381 unallocated_encoding(s); 10382 return; 10383 } 10384 10385 if (!fp_access_check(s)) { 10386 return; 10387 } 10388 10389 /* For the LL variants the store is larger than the load, 10390 * so if rd == rn we would overwrite parts of our input. 10391 * So load everything right now and use shifts in the main loop. 10392 */ 10393 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10394 10395 for (i = 0; i < elements; i++) { 10396 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10397 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10398 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10399 write_vec_element(s, tcg_rd, rd, i, size + 1); 10400 } 10401 } 10402 10403 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10404 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10405 int immh, int immb, int opcode, int rn, int rd) 10406 { 10407 int immhb = immh << 3 | immb; 10408 int size = 32 - clz32(immh) - 1; 10409 int dsize = 64; 10410 int esize = 8 << size; 10411 int elements = dsize/esize; 10412 int shift = (2 * esize) - immhb; 10413 bool round = extract32(opcode, 0, 1); 10414 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10415 TCGv_i64 tcg_round; 10416 int i; 10417 10418 if (extract32(immh, 3, 1)) { 10419 unallocated_encoding(s); 10420 return; 10421 } 10422 10423 if (!fp_access_check(s)) { 10424 return; 10425 } 10426 10427 tcg_rn = tcg_temp_new_i64(); 10428 tcg_rd = tcg_temp_new_i64(); 10429 tcg_final = tcg_temp_new_i64(); 10430 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10431 10432 if (round) { 10433 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10434 } else { 10435 tcg_round = NULL; 10436 } 10437 10438 for (i = 0; i < elements; i++) { 10439 read_vec_element(s, tcg_rn, rn, i, size+1); 10440 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10441 false, true, size+1, shift); 10442 10443 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10444 } 10445 10446 if (!is_q) { 10447 write_vec_element(s, tcg_final, rd, 0, MO_64); 10448 } else { 10449 write_vec_element(s, tcg_final, rd, 1, MO_64); 10450 } 10451 10452 clear_vec_high(s, is_q, rd); 10453 } 10454 10455 10456 /* AdvSIMD shift by immediate 10457 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10458 * +---+---+---+-------------+------+------+--------+---+------+------+ 10459 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10460 * +---+---+---+-------------+------+------+--------+---+------+------+ 10461 */ 10462 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10463 { 10464 int rd = extract32(insn, 0, 5); 10465 int rn = extract32(insn, 5, 5); 10466 int opcode = extract32(insn, 11, 5); 10467 int immb = extract32(insn, 16, 3); 10468 int immh = extract32(insn, 19, 4); 10469 bool is_u = extract32(insn, 29, 1); 10470 bool is_q = extract32(insn, 30, 1); 10471 10472 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10473 assert(immh != 0); 10474 10475 switch (opcode) { 10476 case 0x08: /* SRI */ 10477 if (!is_u) { 10478 unallocated_encoding(s); 10479 return; 10480 } 10481 /* fall through */ 10482 case 0x00: /* SSHR / USHR */ 10483 case 0x02: /* SSRA / USRA (accumulate) */ 10484 case 0x04: /* SRSHR / URSHR (rounding) */ 10485 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10486 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10487 break; 10488 case 0x0a: /* SHL / SLI */ 10489 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10490 break; 10491 case 0x10: /* SHRN */ 10492 case 0x11: /* RSHRN / SQRSHRUN */ 10493 if (is_u) { 10494 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10495 opcode, rn, rd); 10496 } else { 10497 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10498 } 10499 break; 10500 case 0x12: /* SQSHRN / UQSHRN */ 10501 case 0x13: /* SQRSHRN / UQRSHRN */ 10502 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10503 opcode, rn, rd); 10504 break; 10505 case 0x14: /* SSHLL / USHLL */ 10506 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10507 break; 10508 case 0x1c: /* SCVTF / UCVTF */ 10509 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10510 opcode, rn, rd); 10511 break; 10512 case 0xc: /* SQSHLU */ 10513 if (!is_u) { 10514 unallocated_encoding(s); 10515 return; 10516 } 10517 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10518 break; 10519 case 0xe: /* SQSHL, UQSHL */ 10520 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10521 break; 10522 case 0x1f: /* FCVTZS/ FCVTZU */ 10523 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10524 return; 10525 default: 10526 unallocated_encoding(s); 10527 return; 10528 } 10529 } 10530 10531 /* Generate code to do a "long" addition or subtraction, ie one done in 10532 * TCGv_i64 on vector lanes twice the width specified by size. 10533 */ 10534 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10535 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10536 { 10537 static NeonGenTwo64OpFn * const fns[3][2] = { 10538 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10539 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10540 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10541 }; 10542 NeonGenTwo64OpFn *genfn; 10543 assert(size < 3); 10544 10545 genfn = fns[size][is_sub]; 10546 genfn(tcg_res, tcg_op1, tcg_op2); 10547 } 10548 10549 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10550 int opcode, int rd, int rn, int rm) 10551 { 10552 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10553 TCGv_i64 tcg_res[2]; 10554 int pass, accop; 10555 10556 tcg_res[0] = tcg_temp_new_i64(); 10557 tcg_res[1] = tcg_temp_new_i64(); 10558 10559 /* Does this op do an adding accumulate, a subtracting accumulate, 10560 * or no accumulate at all? 10561 */ 10562 switch (opcode) { 10563 case 5: 10564 case 8: 10565 case 9: 10566 accop = 1; 10567 break; 10568 case 10: 10569 case 11: 10570 accop = -1; 10571 break; 10572 default: 10573 accop = 0; 10574 break; 10575 } 10576 10577 if (accop != 0) { 10578 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10579 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10580 } 10581 10582 /* size == 2 means two 32x32->64 operations; this is worth special 10583 * casing because we can generally handle it inline. 10584 */ 10585 if (size == 2) { 10586 for (pass = 0; pass < 2; pass++) { 10587 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10588 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10589 TCGv_i64 tcg_passres; 10590 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10591 10592 int elt = pass + is_q * 2; 10593 10594 read_vec_element(s, tcg_op1, rn, elt, memop); 10595 read_vec_element(s, tcg_op2, rm, elt, memop); 10596 10597 if (accop == 0) { 10598 tcg_passres = tcg_res[pass]; 10599 } else { 10600 tcg_passres = tcg_temp_new_i64(); 10601 } 10602 10603 switch (opcode) { 10604 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10605 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10606 break; 10607 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10608 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10609 break; 10610 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10611 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10612 { 10613 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10614 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10615 10616 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10617 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10618 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10619 tcg_passres, 10620 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10621 break; 10622 } 10623 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10624 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10625 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10626 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10627 break; 10628 case 9: /* SQDMLAL, SQDMLAL2 */ 10629 case 11: /* SQDMLSL, SQDMLSL2 */ 10630 case 13: /* SQDMULL, SQDMULL2 */ 10631 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10632 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10633 tcg_passres, tcg_passres); 10634 break; 10635 default: 10636 g_assert_not_reached(); 10637 } 10638 10639 if (opcode == 9 || opcode == 11) { 10640 /* saturating accumulate ops */ 10641 if (accop < 0) { 10642 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10643 } 10644 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10645 tcg_res[pass], tcg_passres); 10646 } else if (accop > 0) { 10647 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10648 } else if (accop < 0) { 10649 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10650 } 10651 } 10652 } else { 10653 /* size 0 or 1, generally helper functions */ 10654 for (pass = 0; pass < 2; pass++) { 10655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10657 TCGv_i64 tcg_passres; 10658 int elt = pass + is_q * 2; 10659 10660 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10661 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10662 10663 if (accop == 0) { 10664 tcg_passres = tcg_res[pass]; 10665 } else { 10666 tcg_passres = tcg_temp_new_i64(); 10667 } 10668 10669 switch (opcode) { 10670 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10671 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10672 { 10673 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10674 static NeonGenWidenFn * const widenfns[2][2] = { 10675 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10676 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10677 }; 10678 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10679 10680 widenfn(tcg_op2_64, tcg_op2); 10681 widenfn(tcg_passres, tcg_op1); 10682 gen_neon_addl(size, (opcode == 2), tcg_passres, 10683 tcg_passres, tcg_op2_64); 10684 break; 10685 } 10686 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10687 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10688 if (size == 0) { 10689 if (is_u) { 10690 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10691 } else { 10692 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10693 } 10694 } else { 10695 if (is_u) { 10696 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10697 } else { 10698 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10699 } 10700 } 10701 break; 10702 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10703 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10704 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10705 if (size == 0) { 10706 if (is_u) { 10707 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10708 } else { 10709 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10710 } 10711 } else { 10712 if (is_u) { 10713 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10714 } else { 10715 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10716 } 10717 } 10718 break; 10719 case 9: /* SQDMLAL, SQDMLAL2 */ 10720 case 11: /* SQDMLSL, SQDMLSL2 */ 10721 case 13: /* SQDMULL, SQDMULL2 */ 10722 assert(size == 1); 10723 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10724 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10725 tcg_passres, tcg_passres); 10726 break; 10727 default: 10728 g_assert_not_reached(); 10729 } 10730 10731 if (accop != 0) { 10732 if (opcode == 9 || opcode == 11) { 10733 /* saturating accumulate ops */ 10734 if (accop < 0) { 10735 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10736 } 10737 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10738 tcg_res[pass], 10739 tcg_passres); 10740 } else { 10741 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10742 tcg_res[pass], tcg_passres); 10743 } 10744 } 10745 } 10746 } 10747 10748 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10749 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10750 } 10751 10752 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10753 int opcode, int rd, int rn, int rm) 10754 { 10755 TCGv_i64 tcg_res[2]; 10756 int part = is_q ? 2 : 0; 10757 int pass; 10758 10759 for (pass = 0; pass < 2; pass++) { 10760 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10761 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10762 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10763 static NeonGenWidenFn * const widenfns[3][2] = { 10764 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10765 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10766 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10767 }; 10768 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10769 10770 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10771 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10772 widenfn(tcg_op2_wide, tcg_op2); 10773 tcg_res[pass] = tcg_temp_new_i64(); 10774 gen_neon_addl(size, (opcode == 3), 10775 tcg_res[pass], tcg_op1, tcg_op2_wide); 10776 } 10777 10778 for (pass = 0; pass < 2; pass++) { 10779 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10780 } 10781 } 10782 10783 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10784 { 10785 tcg_gen_addi_i64(in, in, 1U << 31); 10786 tcg_gen_extrh_i64_i32(res, in); 10787 } 10788 10789 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10790 int opcode, int rd, int rn, int rm) 10791 { 10792 TCGv_i32 tcg_res[2]; 10793 int part = is_q ? 2 : 0; 10794 int pass; 10795 10796 for (pass = 0; pass < 2; pass++) { 10797 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10798 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10799 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10800 static NeonGenNarrowFn * const narrowfns[3][2] = { 10801 { gen_helper_neon_narrow_high_u8, 10802 gen_helper_neon_narrow_round_high_u8 }, 10803 { gen_helper_neon_narrow_high_u16, 10804 gen_helper_neon_narrow_round_high_u16 }, 10805 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10806 }; 10807 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10808 10809 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10810 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10811 10812 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10813 10814 tcg_res[pass] = tcg_temp_new_i32(); 10815 gennarrow(tcg_res[pass], tcg_wideres); 10816 } 10817 10818 for (pass = 0; pass < 2; pass++) { 10819 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10820 } 10821 clear_vec_high(s, is_q, rd); 10822 } 10823 10824 /* AdvSIMD three different 10825 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10826 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10827 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10828 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10829 */ 10830 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10831 { 10832 /* Instructions in this group fall into three basic classes 10833 * (in each case with the operation working on each element in 10834 * the input vectors): 10835 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10836 * 128 bit input) 10837 * (2) wide 64 x 128 -> 128 10838 * (3) narrowing 128 x 128 -> 64 10839 * Here we do initial decode, catch unallocated cases and 10840 * dispatch to separate functions for each class. 10841 */ 10842 int is_q = extract32(insn, 30, 1); 10843 int is_u = extract32(insn, 29, 1); 10844 int size = extract32(insn, 22, 2); 10845 int opcode = extract32(insn, 12, 4); 10846 int rm = extract32(insn, 16, 5); 10847 int rn = extract32(insn, 5, 5); 10848 int rd = extract32(insn, 0, 5); 10849 10850 switch (opcode) { 10851 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10852 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10853 /* 64 x 128 -> 128 */ 10854 if (size == 3) { 10855 unallocated_encoding(s); 10856 return; 10857 } 10858 if (!fp_access_check(s)) { 10859 return; 10860 } 10861 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10862 break; 10863 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10864 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10865 /* 128 x 128 -> 64 */ 10866 if (size == 3) { 10867 unallocated_encoding(s); 10868 return; 10869 } 10870 if (!fp_access_check(s)) { 10871 return; 10872 } 10873 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10874 break; 10875 case 14: /* PMULL, PMULL2 */ 10876 if (is_u) { 10877 unallocated_encoding(s); 10878 return; 10879 } 10880 switch (size) { 10881 case 0: /* PMULL.P8 */ 10882 if (!fp_access_check(s)) { 10883 return; 10884 } 10885 /* The Q field specifies lo/hi half input for this insn. */ 10886 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10887 gen_helper_neon_pmull_h); 10888 break; 10889 10890 case 3: /* PMULL.P64 */ 10891 if (!dc_isar_feature(aa64_pmull, s)) { 10892 unallocated_encoding(s); 10893 return; 10894 } 10895 if (!fp_access_check(s)) { 10896 return; 10897 } 10898 /* The Q field specifies lo/hi half input for this insn. */ 10899 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10900 gen_helper_gvec_pmull_q); 10901 break; 10902 10903 default: 10904 unallocated_encoding(s); 10905 break; 10906 } 10907 return; 10908 case 9: /* SQDMLAL, SQDMLAL2 */ 10909 case 11: /* SQDMLSL, SQDMLSL2 */ 10910 case 13: /* SQDMULL, SQDMULL2 */ 10911 if (is_u || size == 0) { 10912 unallocated_encoding(s); 10913 return; 10914 } 10915 /* fall through */ 10916 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10917 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10918 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10919 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10920 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10921 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10922 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10923 /* 64 x 64 -> 128 */ 10924 if (size == 3) { 10925 unallocated_encoding(s); 10926 return; 10927 } 10928 if (!fp_access_check(s)) { 10929 return; 10930 } 10931 10932 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10933 break; 10934 default: 10935 /* opcode 15 not allocated */ 10936 unallocated_encoding(s); 10937 break; 10938 } 10939 } 10940 10941 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10942 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10943 { 10944 int rd = extract32(insn, 0, 5); 10945 int rn = extract32(insn, 5, 5); 10946 int rm = extract32(insn, 16, 5); 10947 int size = extract32(insn, 22, 2); 10948 bool is_u = extract32(insn, 29, 1); 10949 bool is_q = extract32(insn, 30, 1); 10950 10951 if (!fp_access_check(s)) { 10952 return; 10953 } 10954 10955 switch (size + 4 * is_u) { 10956 case 0: /* AND */ 10957 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10958 return; 10959 case 1: /* BIC */ 10960 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10961 return; 10962 case 2: /* ORR */ 10963 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10964 return; 10965 case 3: /* ORN */ 10966 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10967 return; 10968 case 4: /* EOR */ 10969 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10970 return; 10971 10972 case 5: /* BSL bitwise select */ 10973 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10974 return; 10975 case 6: /* BIT, bitwise insert if true */ 10976 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10977 return; 10978 case 7: /* BIF, bitwise insert if false */ 10979 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10980 return; 10981 10982 default: 10983 g_assert_not_reached(); 10984 } 10985 } 10986 10987 /* Pairwise op subgroup of C3.6.16. 10988 * 10989 * This is called directly or via the handle_3same_float for float pairwise 10990 * operations where the opcode and size are calculated differently. 10991 */ 10992 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10993 int size, int rn, int rm, int rd) 10994 { 10995 TCGv_ptr fpst; 10996 int pass; 10997 10998 /* Floating point operations need fpst */ 10999 if (opcode >= 0x58) { 11000 fpst = fpstatus_ptr(FPST_FPCR); 11001 } else { 11002 fpst = NULL; 11003 } 11004 11005 if (!fp_access_check(s)) { 11006 return; 11007 } 11008 11009 /* These operations work on the concatenated rm:rn, with each pair of 11010 * adjacent elements being operated on to produce an element in the result. 11011 */ 11012 if (size == 3) { 11013 TCGv_i64 tcg_res[2]; 11014 11015 for (pass = 0; pass < 2; pass++) { 11016 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11017 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11018 int passreg = (pass == 0) ? rn : rm; 11019 11020 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11021 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11022 tcg_res[pass] = tcg_temp_new_i64(); 11023 11024 switch (opcode) { 11025 case 0x17: /* ADDP */ 11026 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11027 break; 11028 case 0x58: /* FMAXNMP */ 11029 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11030 break; 11031 case 0x5a: /* FADDP */ 11032 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11033 break; 11034 case 0x5e: /* FMAXP */ 11035 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11036 break; 11037 case 0x78: /* FMINNMP */ 11038 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11039 break; 11040 case 0x7e: /* FMINP */ 11041 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11042 break; 11043 default: 11044 g_assert_not_reached(); 11045 } 11046 } 11047 11048 for (pass = 0; pass < 2; pass++) { 11049 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11050 } 11051 } else { 11052 int maxpass = is_q ? 4 : 2; 11053 TCGv_i32 tcg_res[4]; 11054 11055 for (pass = 0; pass < maxpass; pass++) { 11056 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11057 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11058 NeonGenTwoOpFn *genfn = NULL; 11059 int passreg = pass < (maxpass / 2) ? rn : rm; 11060 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11061 11062 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11063 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11064 tcg_res[pass] = tcg_temp_new_i32(); 11065 11066 switch (opcode) { 11067 case 0x17: /* ADDP */ 11068 { 11069 static NeonGenTwoOpFn * const fns[3] = { 11070 gen_helper_neon_padd_u8, 11071 gen_helper_neon_padd_u16, 11072 tcg_gen_add_i32, 11073 }; 11074 genfn = fns[size]; 11075 break; 11076 } 11077 case 0x14: /* SMAXP, UMAXP */ 11078 { 11079 static NeonGenTwoOpFn * const fns[3][2] = { 11080 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11081 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11082 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11083 }; 11084 genfn = fns[size][u]; 11085 break; 11086 } 11087 case 0x15: /* SMINP, UMINP */ 11088 { 11089 static NeonGenTwoOpFn * const fns[3][2] = { 11090 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11091 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11092 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11093 }; 11094 genfn = fns[size][u]; 11095 break; 11096 } 11097 /* The FP operations are all on single floats (32 bit) */ 11098 case 0x58: /* FMAXNMP */ 11099 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11100 break; 11101 case 0x5a: /* FADDP */ 11102 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11103 break; 11104 case 0x5e: /* FMAXP */ 11105 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11106 break; 11107 case 0x78: /* FMINNMP */ 11108 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11109 break; 11110 case 0x7e: /* FMINP */ 11111 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11112 break; 11113 default: 11114 g_assert_not_reached(); 11115 } 11116 11117 /* FP ops called directly, otherwise call now */ 11118 if (genfn) { 11119 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11120 } 11121 } 11122 11123 for (pass = 0; pass < maxpass; pass++) { 11124 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11125 } 11126 clear_vec_high(s, is_q, rd); 11127 } 11128 } 11129 11130 /* Floating point op subgroup of C3.6.16. */ 11131 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11132 { 11133 /* For floating point ops, the U, size[1] and opcode bits 11134 * together indicate the operation. size[0] indicates single 11135 * or double. 11136 */ 11137 int fpopcode = extract32(insn, 11, 5) 11138 | (extract32(insn, 23, 1) << 5) 11139 | (extract32(insn, 29, 1) << 6); 11140 int is_q = extract32(insn, 30, 1); 11141 int size = extract32(insn, 22, 1); 11142 int rm = extract32(insn, 16, 5); 11143 int rn = extract32(insn, 5, 5); 11144 int rd = extract32(insn, 0, 5); 11145 11146 int datasize = is_q ? 128 : 64; 11147 int esize = 32 << size; 11148 int elements = datasize / esize; 11149 11150 if (size == 1 && !is_q) { 11151 unallocated_encoding(s); 11152 return; 11153 } 11154 11155 switch (fpopcode) { 11156 case 0x58: /* FMAXNMP */ 11157 case 0x5a: /* FADDP */ 11158 case 0x5e: /* FMAXP */ 11159 case 0x78: /* FMINNMP */ 11160 case 0x7e: /* FMINP */ 11161 if (size && !is_q) { 11162 unallocated_encoding(s); 11163 return; 11164 } 11165 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11166 rn, rm, rd); 11167 return; 11168 case 0x1b: /* FMULX */ 11169 case 0x1f: /* FRECPS */ 11170 case 0x3f: /* FRSQRTS */ 11171 case 0x5d: /* FACGE */ 11172 case 0x7d: /* FACGT */ 11173 case 0x19: /* FMLA */ 11174 case 0x39: /* FMLS */ 11175 case 0x18: /* FMAXNM */ 11176 case 0x1a: /* FADD */ 11177 case 0x1c: /* FCMEQ */ 11178 case 0x1e: /* FMAX */ 11179 case 0x38: /* FMINNM */ 11180 case 0x3a: /* FSUB */ 11181 case 0x3e: /* FMIN */ 11182 case 0x5b: /* FMUL */ 11183 case 0x5c: /* FCMGE */ 11184 case 0x5f: /* FDIV */ 11185 case 0x7a: /* FABD */ 11186 case 0x7c: /* FCMGT */ 11187 if (!fp_access_check(s)) { 11188 return; 11189 } 11190 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11191 return; 11192 11193 case 0x1d: /* FMLAL */ 11194 case 0x3d: /* FMLSL */ 11195 case 0x59: /* FMLAL2 */ 11196 case 0x79: /* FMLSL2 */ 11197 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11198 unallocated_encoding(s); 11199 return; 11200 } 11201 if (fp_access_check(s)) { 11202 int is_s = extract32(insn, 23, 1); 11203 int is_2 = extract32(insn, 29, 1); 11204 int data = (is_2 << 1) | is_s; 11205 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11206 vec_full_reg_offset(s, rn), 11207 vec_full_reg_offset(s, rm), cpu_env, 11208 is_q ? 16 : 8, vec_full_reg_size(s), 11209 data, gen_helper_gvec_fmlal_a64); 11210 } 11211 return; 11212 11213 default: 11214 unallocated_encoding(s); 11215 return; 11216 } 11217 } 11218 11219 /* Integer op subgroup of C3.6.16. */ 11220 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11221 { 11222 int is_q = extract32(insn, 30, 1); 11223 int u = extract32(insn, 29, 1); 11224 int size = extract32(insn, 22, 2); 11225 int opcode = extract32(insn, 11, 5); 11226 int rm = extract32(insn, 16, 5); 11227 int rn = extract32(insn, 5, 5); 11228 int rd = extract32(insn, 0, 5); 11229 int pass; 11230 TCGCond cond; 11231 11232 switch (opcode) { 11233 case 0x13: /* MUL, PMUL */ 11234 if (u && size != 0) { 11235 unallocated_encoding(s); 11236 return; 11237 } 11238 /* fall through */ 11239 case 0x0: /* SHADD, UHADD */ 11240 case 0x2: /* SRHADD, URHADD */ 11241 case 0x4: /* SHSUB, UHSUB */ 11242 case 0xc: /* SMAX, UMAX */ 11243 case 0xd: /* SMIN, UMIN */ 11244 case 0xe: /* SABD, UABD */ 11245 case 0xf: /* SABA, UABA */ 11246 case 0x12: /* MLA, MLS */ 11247 if (size == 3) { 11248 unallocated_encoding(s); 11249 return; 11250 } 11251 break; 11252 case 0x16: /* SQDMULH, SQRDMULH */ 11253 if (size == 0 || size == 3) { 11254 unallocated_encoding(s); 11255 return; 11256 } 11257 break; 11258 default: 11259 if (size == 3 && !is_q) { 11260 unallocated_encoding(s); 11261 return; 11262 } 11263 break; 11264 } 11265 11266 if (!fp_access_check(s)) { 11267 return; 11268 } 11269 11270 switch (opcode) { 11271 case 0x01: /* SQADD, UQADD */ 11272 if (u) { 11273 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11274 } else { 11275 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11276 } 11277 return; 11278 case 0x05: /* SQSUB, UQSUB */ 11279 if (u) { 11280 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11281 } else { 11282 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11283 } 11284 return; 11285 case 0x08: /* SSHL, USHL */ 11286 if (u) { 11287 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11288 } else { 11289 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11290 } 11291 return; 11292 case 0x0c: /* SMAX, UMAX */ 11293 if (u) { 11294 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11295 } else { 11296 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11297 } 11298 return; 11299 case 0x0d: /* SMIN, UMIN */ 11300 if (u) { 11301 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11302 } else { 11303 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11304 } 11305 return; 11306 case 0xe: /* SABD, UABD */ 11307 if (u) { 11308 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11309 } else { 11310 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11311 } 11312 return; 11313 case 0xf: /* SABA, UABA */ 11314 if (u) { 11315 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11316 } else { 11317 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11318 } 11319 return; 11320 case 0x10: /* ADD, SUB */ 11321 if (u) { 11322 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11323 } else { 11324 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11325 } 11326 return; 11327 case 0x13: /* MUL, PMUL */ 11328 if (!u) { /* MUL */ 11329 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11330 } else { /* PMUL */ 11331 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11332 } 11333 return; 11334 case 0x12: /* MLA, MLS */ 11335 if (u) { 11336 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11337 } else { 11338 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11339 } 11340 return; 11341 case 0x16: /* SQDMULH, SQRDMULH */ 11342 { 11343 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11344 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11345 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11346 }; 11347 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11348 } 11349 return; 11350 case 0x11: 11351 if (!u) { /* CMTST */ 11352 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11353 return; 11354 } 11355 /* else CMEQ */ 11356 cond = TCG_COND_EQ; 11357 goto do_gvec_cmp; 11358 case 0x06: /* CMGT, CMHI */ 11359 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11360 goto do_gvec_cmp; 11361 case 0x07: /* CMGE, CMHS */ 11362 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11363 do_gvec_cmp: 11364 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11365 vec_full_reg_offset(s, rn), 11366 vec_full_reg_offset(s, rm), 11367 is_q ? 16 : 8, vec_full_reg_size(s)); 11368 return; 11369 } 11370 11371 if (size == 3) { 11372 assert(is_q); 11373 for (pass = 0; pass < 2; pass++) { 11374 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11375 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11376 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11377 11378 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11379 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11380 11381 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11382 11383 write_vec_element(s, tcg_res, rd, pass, MO_64); 11384 } 11385 } else { 11386 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11387 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11388 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11389 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11390 NeonGenTwoOpFn *genfn = NULL; 11391 NeonGenTwoOpEnvFn *genenvfn = NULL; 11392 11393 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11394 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11395 11396 switch (opcode) { 11397 case 0x0: /* SHADD, UHADD */ 11398 { 11399 static NeonGenTwoOpFn * const fns[3][2] = { 11400 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11401 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11402 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11403 }; 11404 genfn = fns[size][u]; 11405 break; 11406 } 11407 case 0x2: /* SRHADD, URHADD */ 11408 { 11409 static NeonGenTwoOpFn * const fns[3][2] = { 11410 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11411 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11412 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11413 }; 11414 genfn = fns[size][u]; 11415 break; 11416 } 11417 case 0x4: /* SHSUB, UHSUB */ 11418 { 11419 static NeonGenTwoOpFn * const fns[3][2] = { 11420 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11421 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11422 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11423 }; 11424 genfn = fns[size][u]; 11425 break; 11426 } 11427 case 0x9: /* SQSHL, UQSHL */ 11428 { 11429 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11430 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11431 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11432 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11433 }; 11434 genenvfn = fns[size][u]; 11435 break; 11436 } 11437 case 0xa: /* SRSHL, URSHL */ 11438 { 11439 static NeonGenTwoOpFn * const fns[3][2] = { 11440 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11441 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11442 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11443 }; 11444 genfn = fns[size][u]; 11445 break; 11446 } 11447 case 0xb: /* SQRSHL, UQRSHL */ 11448 { 11449 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11450 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11451 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11452 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11453 }; 11454 genenvfn = fns[size][u]; 11455 break; 11456 } 11457 default: 11458 g_assert_not_reached(); 11459 } 11460 11461 if (genenvfn) { 11462 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11463 } else { 11464 genfn(tcg_res, tcg_op1, tcg_op2); 11465 } 11466 11467 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11468 } 11469 } 11470 clear_vec_high(s, is_q, rd); 11471 } 11472 11473 /* AdvSIMD three same 11474 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11475 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11476 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11477 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11478 */ 11479 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11480 { 11481 int opcode = extract32(insn, 11, 5); 11482 11483 switch (opcode) { 11484 case 0x3: /* logic ops */ 11485 disas_simd_3same_logic(s, insn); 11486 break; 11487 case 0x17: /* ADDP */ 11488 case 0x14: /* SMAXP, UMAXP */ 11489 case 0x15: /* SMINP, UMINP */ 11490 { 11491 /* Pairwise operations */ 11492 int is_q = extract32(insn, 30, 1); 11493 int u = extract32(insn, 29, 1); 11494 int size = extract32(insn, 22, 2); 11495 int rm = extract32(insn, 16, 5); 11496 int rn = extract32(insn, 5, 5); 11497 int rd = extract32(insn, 0, 5); 11498 if (opcode == 0x17) { 11499 if (u || (size == 3 && !is_q)) { 11500 unallocated_encoding(s); 11501 return; 11502 } 11503 } else { 11504 if (size == 3) { 11505 unallocated_encoding(s); 11506 return; 11507 } 11508 } 11509 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11510 break; 11511 } 11512 case 0x18 ... 0x31: 11513 /* floating point ops, sz[1] and U are part of opcode */ 11514 disas_simd_3same_float(s, insn); 11515 break; 11516 default: 11517 disas_simd_3same_int(s, insn); 11518 break; 11519 } 11520 } 11521 11522 /* 11523 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11524 * 11525 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11526 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11527 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11528 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11529 * 11530 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11531 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11532 * 11533 */ 11534 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11535 { 11536 int opcode = extract32(insn, 11, 3); 11537 int u = extract32(insn, 29, 1); 11538 int a = extract32(insn, 23, 1); 11539 int is_q = extract32(insn, 30, 1); 11540 int rm = extract32(insn, 16, 5); 11541 int rn = extract32(insn, 5, 5); 11542 int rd = extract32(insn, 0, 5); 11543 /* 11544 * For these floating point ops, the U, a and opcode bits 11545 * together indicate the operation. 11546 */ 11547 int fpopcode = opcode | (a << 3) | (u << 4); 11548 int datasize = is_q ? 128 : 64; 11549 int elements = datasize / 16; 11550 bool pairwise; 11551 TCGv_ptr fpst; 11552 int pass; 11553 11554 switch (fpopcode) { 11555 case 0x0: /* FMAXNM */ 11556 case 0x1: /* FMLA */ 11557 case 0x2: /* FADD */ 11558 case 0x3: /* FMULX */ 11559 case 0x4: /* FCMEQ */ 11560 case 0x6: /* FMAX */ 11561 case 0x7: /* FRECPS */ 11562 case 0x8: /* FMINNM */ 11563 case 0x9: /* FMLS */ 11564 case 0xa: /* FSUB */ 11565 case 0xe: /* FMIN */ 11566 case 0xf: /* FRSQRTS */ 11567 case 0x13: /* FMUL */ 11568 case 0x14: /* FCMGE */ 11569 case 0x15: /* FACGE */ 11570 case 0x17: /* FDIV */ 11571 case 0x1a: /* FABD */ 11572 case 0x1c: /* FCMGT */ 11573 case 0x1d: /* FACGT */ 11574 pairwise = false; 11575 break; 11576 case 0x10: /* FMAXNMP */ 11577 case 0x12: /* FADDP */ 11578 case 0x16: /* FMAXP */ 11579 case 0x18: /* FMINNMP */ 11580 case 0x1e: /* FMINP */ 11581 pairwise = true; 11582 break; 11583 default: 11584 unallocated_encoding(s); 11585 return; 11586 } 11587 11588 if (!dc_isar_feature(aa64_fp16, s)) { 11589 unallocated_encoding(s); 11590 return; 11591 } 11592 11593 if (!fp_access_check(s)) { 11594 return; 11595 } 11596 11597 fpst = fpstatus_ptr(FPST_FPCR_F16); 11598 11599 if (pairwise) { 11600 int maxpass = is_q ? 8 : 4; 11601 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11602 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11603 TCGv_i32 tcg_res[8]; 11604 11605 for (pass = 0; pass < maxpass; pass++) { 11606 int passreg = pass < (maxpass / 2) ? rn : rm; 11607 int passelt = (pass << 1) & (maxpass - 1); 11608 11609 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11610 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11611 tcg_res[pass] = tcg_temp_new_i32(); 11612 11613 switch (fpopcode) { 11614 case 0x10: /* FMAXNMP */ 11615 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11616 fpst); 11617 break; 11618 case 0x12: /* FADDP */ 11619 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11620 break; 11621 case 0x16: /* FMAXP */ 11622 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11623 break; 11624 case 0x18: /* FMINNMP */ 11625 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11626 fpst); 11627 break; 11628 case 0x1e: /* FMINP */ 11629 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11630 break; 11631 default: 11632 g_assert_not_reached(); 11633 } 11634 } 11635 11636 for (pass = 0; pass < maxpass; pass++) { 11637 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11638 } 11639 } else { 11640 for (pass = 0; pass < elements; pass++) { 11641 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11642 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11643 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11644 11645 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11646 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11647 11648 switch (fpopcode) { 11649 case 0x0: /* FMAXNM */ 11650 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11651 break; 11652 case 0x1: /* FMLA */ 11653 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11654 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11655 fpst); 11656 break; 11657 case 0x2: /* FADD */ 11658 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11659 break; 11660 case 0x3: /* FMULX */ 11661 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11662 break; 11663 case 0x4: /* FCMEQ */ 11664 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11665 break; 11666 case 0x6: /* FMAX */ 11667 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11668 break; 11669 case 0x7: /* FRECPS */ 11670 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11671 break; 11672 case 0x8: /* FMINNM */ 11673 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11674 break; 11675 case 0x9: /* FMLS */ 11676 /* As usual for ARM, separate negation for fused multiply-add */ 11677 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11678 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11679 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11680 fpst); 11681 break; 11682 case 0xa: /* FSUB */ 11683 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11684 break; 11685 case 0xe: /* FMIN */ 11686 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11687 break; 11688 case 0xf: /* FRSQRTS */ 11689 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11690 break; 11691 case 0x13: /* FMUL */ 11692 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11693 break; 11694 case 0x14: /* FCMGE */ 11695 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11696 break; 11697 case 0x15: /* FACGE */ 11698 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11699 break; 11700 case 0x17: /* FDIV */ 11701 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11702 break; 11703 case 0x1a: /* FABD */ 11704 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11705 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11706 break; 11707 case 0x1c: /* FCMGT */ 11708 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11709 break; 11710 case 0x1d: /* FACGT */ 11711 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11712 break; 11713 default: 11714 g_assert_not_reached(); 11715 } 11716 11717 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11718 } 11719 } 11720 11721 clear_vec_high(s, is_q, rd); 11722 } 11723 11724 /* AdvSIMD three same extra 11725 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11726 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11727 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11728 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11729 */ 11730 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11731 { 11732 int rd = extract32(insn, 0, 5); 11733 int rn = extract32(insn, 5, 5); 11734 int opcode = extract32(insn, 11, 4); 11735 int rm = extract32(insn, 16, 5); 11736 int size = extract32(insn, 22, 2); 11737 bool u = extract32(insn, 29, 1); 11738 bool is_q = extract32(insn, 30, 1); 11739 bool feature; 11740 int rot; 11741 11742 switch (u * 16 + opcode) { 11743 case 0x10: /* SQRDMLAH (vector) */ 11744 case 0x11: /* SQRDMLSH (vector) */ 11745 if (size != 1 && size != 2) { 11746 unallocated_encoding(s); 11747 return; 11748 } 11749 feature = dc_isar_feature(aa64_rdm, s); 11750 break; 11751 case 0x02: /* SDOT (vector) */ 11752 case 0x12: /* UDOT (vector) */ 11753 if (size != MO_32) { 11754 unallocated_encoding(s); 11755 return; 11756 } 11757 feature = dc_isar_feature(aa64_dp, s); 11758 break; 11759 case 0x03: /* USDOT */ 11760 if (size != MO_32) { 11761 unallocated_encoding(s); 11762 return; 11763 } 11764 feature = dc_isar_feature(aa64_i8mm, s); 11765 break; 11766 case 0x04: /* SMMLA */ 11767 case 0x14: /* UMMLA */ 11768 case 0x05: /* USMMLA */ 11769 if (!is_q || size != MO_32) { 11770 unallocated_encoding(s); 11771 return; 11772 } 11773 feature = dc_isar_feature(aa64_i8mm, s); 11774 break; 11775 case 0x18: /* FCMLA, #0 */ 11776 case 0x19: /* FCMLA, #90 */ 11777 case 0x1a: /* FCMLA, #180 */ 11778 case 0x1b: /* FCMLA, #270 */ 11779 case 0x1c: /* FCADD, #90 */ 11780 case 0x1e: /* FCADD, #270 */ 11781 if (size == 0 11782 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11783 || (size == 3 && !is_q)) { 11784 unallocated_encoding(s); 11785 return; 11786 } 11787 feature = dc_isar_feature(aa64_fcma, s); 11788 break; 11789 case 0x1d: /* BFMMLA */ 11790 if (size != MO_16 || !is_q) { 11791 unallocated_encoding(s); 11792 return; 11793 } 11794 feature = dc_isar_feature(aa64_bf16, s); 11795 break; 11796 case 0x1f: 11797 switch (size) { 11798 case 1: /* BFDOT */ 11799 case 3: /* BFMLAL{B,T} */ 11800 feature = dc_isar_feature(aa64_bf16, s); 11801 break; 11802 default: 11803 unallocated_encoding(s); 11804 return; 11805 } 11806 break; 11807 default: 11808 unallocated_encoding(s); 11809 return; 11810 } 11811 if (!feature) { 11812 unallocated_encoding(s); 11813 return; 11814 } 11815 if (!fp_access_check(s)) { 11816 return; 11817 } 11818 11819 switch (opcode) { 11820 case 0x0: /* SQRDMLAH (vector) */ 11821 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11822 return; 11823 11824 case 0x1: /* SQRDMLSH (vector) */ 11825 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11826 return; 11827 11828 case 0x2: /* SDOT / UDOT */ 11829 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11830 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11831 return; 11832 11833 case 0x3: /* USDOT */ 11834 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11835 return; 11836 11837 case 0x04: /* SMMLA, UMMLA */ 11838 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11839 u ? gen_helper_gvec_ummla_b 11840 : gen_helper_gvec_smmla_b); 11841 return; 11842 case 0x05: /* USMMLA */ 11843 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11844 return; 11845 11846 case 0x8: /* FCMLA, #0 */ 11847 case 0x9: /* FCMLA, #90 */ 11848 case 0xa: /* FCMLA, #180 */ 11849 case 0xb: /* FCMLA, #270 */ 11850 rot = extract32(opcode, 0, 2); 11851 switch (size) { 11852 case 1: 11853 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11854 gen_helper_gvec_fcmlah); 11855 break; 11856 case 2: 11857 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11858 gen_helper_gvec_fcmlas); 11859 break; 11860 case 3: 11861 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11862 gen_helper_gvec_fcmlad); 11863 break; 11864 default: 11865 g_assert_not_reached(); 11866 } 11867 return; 11868 11869 case 0xc: /* FCADD, #90 */ 11870 case 0xe: /* FCADD, #270 */ 11871 rot = extract32(opcode, 1, 1); 11872 switch (size) { 11873 case 1: 11874 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11875 gen_helper_gvec_fcaddh); 11876 break; 11877 case 2: 11878 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11879 gen_helper_gvec_fcadds); 11880 break; 11881 case 3: 11882 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11883 gen_helper_gvec_fcaddd); 11884 break; 11885 default: 11886 g_assert_not_reached(); 11887 } 11888 return; 11889 11890 case 0xd: /* BFMMLA */ 11891 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11892 return; 11893 case 0xf: 11894 switch (size) { 11895 case 1: /* BFDOT */ 11896 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11897 break; 11898 case 3: /* BFMLAL{B,T} */ 11899 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11900 gen_helper_gvec_bfmlal); 11901 break; 11902 default: 11903 g_assert_not_reached(); 11904 } 11905 return; 11906 11907 default: 11908 g_assert_not_reached(); 11909 } 11910 } 11911 11912 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11913 int size, int rn, int rd) 11914 { 11915 /* Handle 2-reg-misc ops which are widening (so each size element 11916 * in the source becomes a 2*size element in the destination. 11917 * The only instruction like this is FCVTL. 11918 */ 11919 int pass; 11920 11921 if (size == 3) { 11922 /* 32 -> 64 bit fp conversion */ 11923 TCGv_i64 tcg_res[2]; 11924 int srcelt = is_q ? 2 : 0; 11925 11926 for (pass = 0; pass < 2; pass++) { 11927 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11928 tcg_res[pass] = tcg_temp_new_i64(); 11929 11930 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11931 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11932 } 11933 for (pass = 0; pass < 2; pass++) { 11934 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11935 } 11936 } else { 11937 /* 16 -> 32 bit fp conversion */ 11938 int srcelt = is_q ? 4 : 0; 11939 TCGv_i32 tcg_res[4]; 11940 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11941 TCGv_i32 ahp = get_ahp_flag(); 11942 11943 for (pass = 0; pass < 4; pass++) { 11944 tcg_res[pass] = tcg_temp_new_i32(); 11945 11946 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11947 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11948 fpst, ahp); 11949 } 11950 for (pass = 0; pass < 4; pass++) { 11951 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11952 } 11953 } 11954 } 11955 11956 static void handle_rev(DisasContext *s, int opcode, bool u, 11957 bool is_q, int size, int rn, int rd) 11958 { 11959 int op = (opcode << 1) | u; 11960 int opsz = op + size; 11961 int grp_size = 3 - opsz; 11962 int dsize = is_q ? 128 : 64; 11963 int i; 11964 11965 if (opsz >= 3) { 11966 unallocated_encoding(s); 11967 return; 11968 } 11969 11970 if (!fp_access_check(s)) { 11971 return; 11972 } 11973 11974 if (size == 0) { 11975 /* Special case bytes, use bswap op on each group of elements */ 11976 int groups = dsize / (8 << grp_size); 11977 11978 for (i = 0; i < groups; i++) { 11979 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11980 11981 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11982 switch (grp_size) { 11983 case MO_16: 11984 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11985 break; 11986 case MO_32: 11987 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11988 break; 11989 case MO_64: 11990 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11991 break; 11992 default: 11993 g_assert_not_reached(); 11994 } 11995 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11996 } 11997 clear_vec_high(s, is_q, rd); 11998 } else { 11999 int revmask = (1 << grp_size) - 1; 12000 int esize = 8 << size; 12001 int elements = dsize / esize; 12002 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12003 TCGv_i64 tcg_rd[2]; 12004 12005 for (i = 0; i < 2; i++) { 12006 tcg_rd[i] = tcg_temp_new_i64(); 12007 tcg_gen_movi_i64(tcg_rd[i], 0); 12008 } 12009 12010 for (i = 0; i < elements; i++) { 12011 int e_rev = (i & 0xf) ^ revmask; 12012 int w = (e_rev * esize) / 64; 12013 int o = (e_rev * esize) % 64; 12014 12015 read_vec_element(s, tcg_rn, rn, i, size); 12016 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12017 } 12018 12019 for (i = 0; i < 2; i++) { 12020 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12021 } 12022 clear_vec_high(s, true, rd); 12023 } 12024 } 12025 12026 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12027 bool is_q, int size, int rn, int rd) 12028 { 12029 /* Implement the pairwise operations from 2-misc: 12030 * SADDLP, UADDLP, SADALP, UADALP. 12031 * These all add pairs of elements in the input to produce a 12032 * double-width result element in the output (possibly accumulating). 12033 */ 12034 bool accum = (opcode == 0x6); 12035 int maxpass = is_q ? 2 : 1; 12036 int pass; 12037 TCGv_i64 tcg_res[2]; 12038 12039 if (size == 2) { 12040 /* 32 + 32 -> 64 op */ 12041 MemOp memop = size + (u ? 0 : MO_SIGN); 12042 12043 for (pass = 0; pass < maxpass; pass++) { 12044 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12045 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12046 12047 tcg_res[pass] = tcg_temp_new_i64(); 12048 12049 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12050 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12051 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12052 if (accum) { 12053 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12054 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12055 } 12056 } 12057 } else { 12058 for (pass = 0; pass < maxpass; pass++) { 12059 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12060 NeonGenOne64OpFn *genfn; 12061 static NeonGenOne64OpFn * const fns[2][2] = { 12062 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12063 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12064 }; 12065 12066 genfn = fns[size][u]; 12067 12068 tcg_res[pass] = tcg_temp_new_i64(); 12069 12070 read_vec_element(s, tcg_op, rn, pass, MO_64); 12071 genfn(tcg_res[pass], tcg_op); 12072 12073 if (accum) { 12074 read_vec_element(s, tcg_op, rd, pass, MO_64); 12075 if (size == 0) { 12076 gen_helper_neon_addl_u16(tcg_res[pass], 12077 tcg_res[pass], tcg_op); 12078 } else { 12079 gen_helper_neon_addl_u32(tcg_res[pass], 12080 tcg_res[pass], tcg_op); 12081 } 12082 } 12083 } 12084 } 12085 if (!is_q) { 12086 tcg_res[1] = tcg_constant_i64(0); 12087 } 12088 for (pass = 0; pass < 2; pass++) { 12089 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12090 } 12091 } 12092 12093 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12094 { 12095 /* Implement SHLL and SHLL2 */ 12096 int pass; 12097 int part = is_q ? 2 : 0; 12098 TCGv_i64 tcg_res[2]; 12099 12100 for (pass = 0; pass < 2; pass++) { 12101 static NeonGenWidenFn * const widenfns[3] = { 12102 gen_helper_neon_widen_u8, 12103 gen_helper_neon_widen_u16, 12104 tcg_gen_extu_i32_i64, 12105 }; 12106 NeonGenWidenFn *widenfn = widenfns[size]; 12107 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12108 12109 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12110 tcg_res[pass] = tcg_temp_new_i64(); 12111 widenfn(tcg_res[pass], tcg_op); 12112 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12113 } 12114 12115 for (pass = 0; pass < 2; pass++) { 12116 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12117 } 12118 } 12119 12120 /* AdvSIMD two reg misc 12121 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12122 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12123 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12124 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12125 */ 12126 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12127 { 12128 int size = extract32(insn, 22, 2); 12129 int opcode = extract32(insn, 12, 5); 12130 bool u = extract32(insn, 29, 1); 12131 bool is_q = extract32(insn, 30, 1); 12132 int rn = extract32(insn, 5, 5); 12133 int rd = extract32(insn, 0, 5); 12134 bool need_fpstatus = false; 12135 int rmode = -1; 12136 TCGv_i32 tcg_rmode; 12137 TCGv_ptr tcg_fpstatus; 12138 12139 switch (opcode) { 12140 case 0x0: /* REV64, REV32 */ 12141 case 0x1: /* REV16 */ 12142 handle_rev(s, opcode, u, is_q, size, rn, rd); 12143 return; 12144 case 0x5: /* CNT, NOT, RBIT */ 12145 if (u && size == 0) { 12146 /* NOT */ 12147 break; 12148 } else if (u && size == 1) { 12149 /* RBIT */ 12150 break; 12151 } else if (!u && size == 0) { 12152 /* CNT */ 12153 break; 12154 } 12155 unallocated_encoding(s); 12156 return; 12157 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12158 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12159 if (size == 3) { 12160 unallocated_encoding(s); 12161 return; 12162 } 12163 if (!fp_access_check(s)) { 12164 return; 12165 } 12166 12167 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12168 return; 12169 case 0x4: /* CLS, CLZ */ 12170 if (size == 3) { 12171 unallocated_encoding(s); 12172 return; 12173 } 12174 break; 12175 case 0x2: /* SADDLP, UADDLP */ 12176 case 0x6: /* SADALP, UADALP */ 12177 if (size == 3) { 12178 unallocated_encoding(s); 12179 return; 12180 } 12181 if (!fp_access_check(s)) { 12182 return; 12183 } 12184 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12185 return; 12186 case 0x13: /* SHLL, SHLL2 */ 12187 if (u == 0 || size == 3) { 12188 unallocated_encoding(s); 12189 return; 12190 } 12191 if (!fp_access_check(s)) { 12192 return; 12193 } 12194 handle_shll(s, is_q, size, rn, rd); 12195 return; 12196 case 0xa: /* CMLT */ 12197 if (u == 1) { 12198 unallocated_encoding(s); 12199 return; 12200 } 12201 /* fall through */ 12202 case 0x8: /* CMGT, CMGE */ 12203 case 0x9: /* CMEQ, CMLE */ 12204 case 0xb: /* ABS, NEG */ 12205 if (size == 3 && !is_q) { 12206 unallocated_encoding(s); 12207 return; 12208 } 12209 break; 12210 case 0x3: /* SUQADD, USQADD */ 12211 if (size == 3 && !is_q) { 12212 unallocated_encoding(s); 12213 return; 12214 } 12215 if (!fp_access_check(s)) { 12216 return; 12217 } 12218 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12219 return; 12220 case 0x7: /* SQABS, SQNEG */ 12221 if (size == 3 && !is_q) { 12222 unallocated_encoding(s); 12223 return; 12224 } 12225 break; 12226 case 0xc ... 0xf: 12227 case 0x16 ... 0x1f: 12228 { 12229 /* Floating point: U, size[1] and opcode indicate operation; 12230 * size[0] indicates single or double precision. 12231 */ 12232 int is_double = extract32(size, 0, 1); 12233 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12234 size = is_double ? 3 : 2; 12235 switch (opcode) { 12236 case 0x2f: /* FABS */ 12237 case 0x6f: /* FNEG */ 12238 if (size == 3 && !is_q) { 12239 unallocated_encoding(s); 12240 return; 12241 } 12242 break; 12243 case 0x1d: /* SCVTF */ 12244 case 0x5d: /* UCVTF */ 12245 { 12246 bool is_signed = (opcode == 0x1d) ? true : false; 12247 int elements = is_double ? 2 : is_q ? 4 : 2; 12248 if (is_double && !is_q) { 12249 unallocated_encoding(s); 12250 return; 12251 } 12252 if (!fp_access_check(s)) { 12253 return; 12254 } 12255 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12256 return; 12257 } 12258 case 0x2c: /* FCMGT (zero) */ 12259 case 0x2d: /* FCMEQ (zero) */ 12260 case 0x2e: /* FCMLT (zero) */ 12261 case 0x6c: /* FCMGE (zero) */ 12262 case 0x6d: /* FCMLE (zero) */ 12263 if (size == 3 && !is_q) { 12264 unallocated_encoding(s); 12265 return; 12266 } 12267 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12268 return; 12269 case 0x7f: /* FSQRT */ 12270 if (size == 3 && !is_q) { 12271 unallocated_encoding(s); 12272 return; 12273 } 12274 break; 12275 case 0x1a: /* FCVTNS */ 12276 case 0x1b: /* FCVTMS */ 12277 case 0x3a: /* FCVTPS */ 12278 case 0x3b: /* FCVTZS */ 12279 case 0x5a: /* FCVTNU */ 12280 case 0x5b: /* FCVTMU */ 12281 case 0x7a: /* FCVTPU */ 12282 case 0x7b: /* FCVTZU */ 12283 need_fpstatus = true; 12284 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12285 if (size == 3 && !is_q) { 12286 unallocated_encoding(s); 12287 return; 12288 } 12289 break; 12290 case 0x5c: /* FCVTAU */ 12291 case 0x1c: /* FCVTAS */ 12292 need_fpstatus = true; 12293 rmode = FPROUNDING_TIEAWAY; 12294 if (size == 3 && !is_q) { 12295 unallocated_encoding(s); 12296 return; 12297 } 12298 break; 12299 case 0x3c: /* URECPE */ 12300 if (size == 3) { 12301 unallocated_encoding(s); 12302 return; 12303 } 12304 /* fall through */ 12305 case 0x3d: /* FRECPE */ 12306 case 0x7d: /* FRSQRTE */ 12307 if (size == 3 && !is_q) { 12308 unallocated_encoding(s); 12309 return; 12310 } 12311 if (!fp_access_check(s)) { 12312 return; 12313 } 12314 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12315 return; 12316 case 0x56: /* FCVTXN, FCVTXN2 */ 12317 if (size == 2) { 12318 unallocated_encoding(s); 12319 return; 12320 } 12321 /* fall through */ 12322 case 0x16: /* FCVTN, FCVTN2 */ 12323 /* handle_2misc_narrow does a 2*size -> size operation, but these 12324 * instructions encode the source size rather than dest size. 12325 */ 12326 if (!fp_access_check(s)) { 12327 return; 12328 } 12329 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12330 return; 12331 case 0x36: /* BFCVTN, BFCVTN2 */ 12332 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12333 unallocated_encoding(s); 12334 return; 12335 } 12336 if (!fp_access_check(s)) { 12337 return; 12338 } 12339 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12340 return; 12341 case 0x17: /* FCVTL, FCVTL2 */ 12342 if (!fp_access_check(s)) { 12343 return; 12344 } 12345 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12346 return; 12347 case 0x18: /* FRINTN */ 12348 case 0x19: /* FRINTM */ 12349 case 0x38: /* FRINTP */ 12350 case 0x39: /* FRINTZ */ 12351 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12352 /* fall through */ 12353 case 0x59: /* FRINTX */ 12354 case 0x79: /* FRINTI */ 12355 need_fpstatus = true; 12356 if (size == 3 && !is_q) { 12357 unallocated_encoding(s); 12358 return; 12359 } 12360 break; 12361 case 0x58: /* FRINTA */ 12362 rmode = FPROUNDING_TIEAWAY; 12363 need_fpstatus = true; 12364 if (size == 3 && !is_q) { 12365 unallocated_encoding(s); 12366 return; 12367 } 12368 break; 12369 case 0x7c: /* URSQRTE */ 12370 if (size == 3) { 12371 unallocated_encoding(s); 12372 return; 12373 } 12374 break; 12375 case 0x1e: /* FRINT32Z */ 12376 case 0x1f: /* FRINT64Z */ 12377 rmode = FPROUNDING_ZERO; 12378 /* fall through */ 12379 case 0x5e: /* FRINT32X */ 12380 case 0x5f: /* FRINT64X */ 12381 need_fpstatus = true; 12382 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12383 unallocated_encoding(s); 12384 return; 12385 } 12386 break; 12387 default: 12388 unallocated_encoding(s); 12389 return; 12390 } 12391 break; 12392 } 12393 default: 12394 unallocated_encoding(s); 12395 return; 12396 } 12397 12398 if (!fp_access_check(s)) { 12399 return; 12400 } 12401 12402 if (need_fpstatus || rmode >= 0) { 12403 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12404 } else { 12405 tcg_fpstatus = NULL; 12406 } 12407 if (rmode >= 0) { 12408 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12409 } else { 12410 tcg_rmode = NULL; 12411 } 12412 12413 switch (opcode) { 12414 case 0x5: 12415 if (u && size == 0) { /* NOT */ 12416 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12417 return; 12418 } 12419 break; 12420 case 0x8: /* CMGT, CMGE */ 12421 if (u) { 12422 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12423 } else { 12424 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12425 } 12426 return; 12427 case 0x9: /* CMEQ, CMLE */ 12428 if (u) { 12429 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12430 } else { 12431 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12432 } 12433 return; 12434 case 0xa: /* CMLT */ 12435 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12436 return; 12437 case 0xb: 12438 if (u) { /* ABS, NEG */ 12439 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12440 } else { 12441 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12442 } 12443 return; 12444 } 12445 12446 if (size == 3) { 12447 /* All 64-bit element operations can be shared with scalar 2misc */ 12448 int pass; 12449 12450 /* Coverity claims (size == 3 && !is_q) has been eliminated 12451 * from all paths leading to here. 12452 */ 12453 tcg_debug_assert(is_q); 12454 for (pass = 0; pass < 2; pass++) { 12455 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12456 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12457 12458 read_vec_element(s, tcg_op, rn, pass, MO_64); 12459 12460 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12461 tcg_rmode, tcg_fpstatus); 12462 12463 write_vec_element(s, tcg_res, rd, pass, MO_64); 12464 } 12465 } else { 12466 int pass; 12467 12468 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12469 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12470 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12471 12472 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12473 12474 if (size == 2) { 12475 /* Special cases for 32 bit elements */ 12476 switch (opcode) { 12477 case 0x4: /* CLS */ 12478 if (u) { 12479 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12480 } else { 12481 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12482 } 12483 break; 12484 case 0x7: /* SQABS, SQNEG */ 12485 if (u) { 12486 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12487 } else { 12488 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12489 } 12490 break; 12491 case 0x2f: /* FABS */ 12492 gen_helper_vfp_abss(tcg_res, tcg_op); 12493 break; 12494 case 0x6f: /* FNEG */ 12495 gen_helper_vfp_negs(tcg_res, tcg_op); 12496 break; 12497 case 0x7f: /* FSQRT */ 12498 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12499 break; 12500 case 0x1a: /* FCVTNS */ 12501 case 0x1b: /* FCVTMS */ 12502 case 0x1c: /* FCVTAS */ 12503 case 0x3a: /* FCVTPS */ 12504 case 0x3b: /* FCVTZS */ 12505 gen_helper_vfp_tosls(tcg_res, tcg_op, 12506 tcg_constant_i32(0), tcg_fpstatus); 12507 break; 12508 case 0x5a: /* FCVTNU */ 12509 case 0x5b: /* FCVTMU */ 12510 case 0x5c: /* FCVTAU */ 12511 case 0x7a: /* FCVTPU */ 12512 case 0x7b: /* FCVTZU */ 12513 gen_helper_vfp_touls(tcg_res, tcg_op, 12514 tcg_constant_i32(0), tcg_fpstatus); 12515 break; 12516 case 0x18: /* FRINTN */ 12517 case 0x19: /* FRINTM */ 12518 case 0x38: /* FRINTP */ 12519 case 0x39: /* FRINTZ */ 12520 case 0x58: /* FRINTA */ 12521 case 0x79: /* FRINTI */ 12522 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12523 break; 12524 case 0x59: /* FRINTX */ 12525 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12526 break; 12527 case 0x7c: /* URSQRTE */ 12528 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12529 break; 12530 case 0x1e: /* FRINT32Z */ 12531 case 0x5e: /* FRINT32X */ 12532 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12533 break; 12534 case 0x1f: /* FRINT64Z */ 12535 case 0x5f: /* FRINT64X */ 12536 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12537 break; 12538 default: 12539 g_assert_not_reached(); 12540 } 12541 } else { 12542 /* Use helpers for 8 and 16 bit elements */ 12543 switch (opcode) { 12544 case 0x5: /* CNT, RBIT */ 12545 /* For these two insns size is part of the opcode specifier 12546 * (handled earlier); they always operate on byte elements. 12547 */ 12548 if (u) { 12549 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12550 } else { 12551 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12552 } 12553 break; 12554 case 0x7: /* SQABS, SQNEG */ 12555 { 12556 NeonGenOneOpEnvFn *genfn; 12557 static NeonGenOneOpEnvFn * const fns[2][2] = { 12558 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12559 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12560 }; 12561 genfn = fns[size][u]; 12562 genfn(tcg_res, cpu_env, tcg_op); 12563 break; 12564 } 12565 case 0x4: /* CLS, CLZ */ 12566 if (u) { 12567 if (size == 0) { 12568 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12569 } else { 12570 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12571 } 12572 } else { 12573 if (size == 0) { 12574 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12575 } else { 12576 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12577 } 12578 } 12579 break; 12580 default: 12581 g_assert_not_reached(); 12582 } 12583 } 12584 12585 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12586 } 12587 } 12588 clear_vec_high(s, is_q, rd); 12589 12590 if (tcg_rmode) { 12591 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12592 } 12593 } 12594 12595 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12596 * 12597 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12598 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12599 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12600 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12601 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12602 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12603 * 12604 * This actually covers two groups where scalar access is governed by 12605 * bit 28. A bunch of the instructions (float to integral) only exist 12606 * in the vector form and are un-allocated for the scalar decode. Also 12607 * in the scalar decode Q is always 1. 12608 */ 12609 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12610 { 12611 int fpop, opcode, a, u; 12612 int rn, rd; 12613 bool is_q; 12614 bool is_scalar; 12615 bool only_in_vector = false; 12616 12617 int pass; 12618 TCGv_i32 tcg_rmode = NULL; 12619 TCGv_ptr tcg_fpstatus = NULL; 12620 bool need_fpst = true; 12621 int rmode = -1; 12622 12623 if (!dc_isar_feature(aa64_fp16, s)) { 12624 unallocated_encoding(s); 12625 return; 12626 } 12627 12628 rd = extract32(insn, 0, 5); 12629 rn = extract32(insn, 5, 5); 12630 12631 a = extract32(insn, 23, 1); 12632 u = extract32(insn, 29, 1); 12633 is_scalar = extract32(insn, 28, 1); 12634 is_q = extract32(insn, 30, 1); 12635 12636 opcode = extract32(insn, 12, 5); 12637 fpop = deposit32(opcode, 5, 1, a); 12638 fpop = deposit32(fpop, 6, 1, u); 12639 12640 switch (fpop) { 12641 case 0x1d: /* SCVTF */ 12642 case 0x5d: /* UCVTF */ 12643 { 12644 int elements; 12645 12646 if (is_scalar) { 12647 elements = 1; 12648 } else { 12649 elements = (is_q ? 8 : 4); 12650 } 12651 12652 if (!fp_access_check(s)) { 12653 return; 12654 } 12655 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12656 return; 12657 } 12658 break; 12659 case 0x2c: /* FCMGT (zero) */ 12660 case 0x2d: /* FCMEQ (zero) */ 12661 case 0x2e: /* FCMLT (zero) */ 12662 case 0x6c: /* FCMGE (zero) */ 12663 case 0x6d: /* FCMLE (zero) */ 12664 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12665 return; 12666 case 0x3d: /* FRECPE */ 12667 case 0x3f: /* FRECPX */ 12668 break; 12669 case 0x18: /* FRINTN */ 12670 only_in_vector = true; 12671 rmode = FPROUNDING_TIEEVEN; 12672 break; 12673 case 0x19: /* FRINTM */ 12674 only_in_vector = true; 12675 rmode = FPROUNDING_NEGINF; 12676 break; 12677 case 0x38: /* FRINTP */ 12678 only_in_vector = true; 12679 rmode = FPROUNDING_POSINF; 12680 break; 12681 case 0x39: /* FRINTZ */ 12682 only_in_vector = true; 12683 rmode = FPROUNDING_ZERO; 12684 break; 12685 case 0x58: /* FRINTA */ 12686 only_in_vector = true; 12687 rmode = FPROUNDING_TIEAWAY; 12688 break; 12689 case 0x59: /* FRINTX */ 12690 case 0x79: /* FRINTI */ 12691 only_in_vector = true; 12692 /* current rounding mode */ 12693 break; 12694 case 0x1a: /* FCVTNS */ 12695 rmode = FPROUNDING_TIEEVEN; 12696 break; 12697 case 0x1b: /* FCVTMS */ 12698 rmode = FPROUNDING_NEGINF; 12699 break; 12700 case 0x1c: /* FCVTAS */ 12701 rmode = FPROUNDING_TIEAWAY; 12702 break; 12703 case 0x3a: /* FCVTPS */ 12704 rmode = FPROUNDING_POSINF; 12705 break; 12706 case 0x3b: /* FCVTZS */ 12707 rmode = FPROUNDING_ZERO; 12708 break; 12709 case 0x5a: /* FCVTNU */ 12710 rmode = FPROUNDING_TIEEVEN; 12711 break; 12712 case 0x5b: /* FCVTMU */ 12713 rmode = FPROUNDING_NEGINF; 12714 break; 12715 case 0x5c: /* FCVTAU */ 12716 rmode = FPROUNDING_TIEAWAY; 12717 break; 12718 case 0x7a: /* FCVTPU */ 12719 rmode = FPROUNDING_POSINF; 12720 break; 12721 case 0x7b: /* FCVTZU */ 12722 rmode = FPROUNDING_ZERO; 12723 break; 12724 case 0x2f: /* FABS */ 12725 case 0x6f: /* FNEG */ 12726 need_fpst = false; 12727 break; 12728 case 0x7d: /* FRSQRTE */ 12729 case 0x7f: /* FSQRT (vector) */ 12730 break; 12731 default: 12732 unallocated_encoding(s); 12733 return; 12734 } 12735 12736 12737 /* Check additional constraints for the scalar encoding */ 12738 if (is_scalar) { 12739 if (!is_q) { 12740 unallocated_encoding(s); 12741 return; 12742 } 12743 /* FRINTxx is only in the vector form */ 12744 if (only_in_vector) { 12745 unallocated_encoding(s); 12746 return; 12747 } 12748 } 12749 12750 if (!fp_access_check(s)) { 12751 return; 12752 } 12753 12754 if (rmode >= 0 || need_fpst) { 12755 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12756 } 12757 12758 if (rmode >= 0) { 12759 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12760 } 12761 12762 if (is_scalar) { 12763 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12764 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12765 12766 switch (fpop) { 12767 case 0x1a: /* FCVTNS */ 12768 case 0x1b: /* FCVTMS */ 12769 case 0x1c: /* FCVTAS */ 12770 case 0x3a: /* FCVTPS */ 12771 case 0x3b: /* FCVTZS */ 12772 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12773 break; 12774 case 0x3d: /* FRECPE */ 12775 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12776 break; 12777 case 0x3f: /* FRECPX */ 12778 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12779 break; 12780 case 0x5a: /* FCVTNU */ 12781 case 0x5b: /* FCVTMU */ 12782 case 0x5c: /* FCVTAU */ 12783 case 0x7a: /* FCVTPU */ 12784 case 0x7b: /* FCVTZU */ 12785 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12786 break; 12787 case 0x6f: /* FNEG */ 12788 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12789 break; 12790 case 0x7d: /* FRSQRTE */ 12791 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12792 break; 12793 default: 12794 g_assert_not_reached(); 12795 } 12796 12797 /* limit any sign extension going on */ 12798 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12799 write_fp_sreg(s, rd, tcg_res); 12800 } else { 12801 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12802 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12803 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12804 12805 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12806 12807 switch (fpop) { 12808 case 0x1a: /* FCVTNS */ 12809 case 0x1b: /* FCVTMS */ 12810 case 0x1c: /* FCVTAS */ 12811 case 0x3a: /* FCVTPS */ 12812 case 0x3b: /* FCVTZS */ 12813 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12814 break; 12815 case 0x3d: /* FRECPE */ 12816 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12817 break; 12818 case 0x5a: /* FCVTNU */ 12819 case 0x5b: /* FCVTMU */ 12820 case 0x5c: /* FCVTAU */ 12821 case 0x7a: /* FCVTPU */ 12822 case 0x7b: /* FCVTZU */ 12823 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12824 break; 12825 case 0x18: /* FRINTN */ 12826 case 0x19: /* FRINTM */ 12827 case 0x38: /* FRINTP */ 12828 case 0x39: /* FRINTZ */ 12829 case 0x58: /* FRINTA */ 12830 case 0x79: /* FRINTI */ 12831 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12832 break; 12833 case 0x59: /* FRINTX */ 12834 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12835 break; 12836 case 0x2f: /* FABS */ 12837 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12838 break; 12839 case 0x6f: /* FNEG */ 12840 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12841 break; 12842 case 0x7d: /* FRSQRTE */ 12843 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12844 break; 12845 case 0x7f: /* FSQRT */ 12846 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12847 break; 12848 default: 12849 g_assert_not_reached(); 12850 } 12851 12852 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12853 } 12854 12855 clear_vec_high(s, is_q, rd); 12856 } 12857 12858 if (tcg_rmode) { 12859 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12860 } 12861 } 12862 12863 /* AdvSIMD scalar x indexed element 12864 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12865 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12866 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12867 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12868 * AdvSIMD vector x indexed element 12869 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12870 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12871 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12872 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12873 */ 12874 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12875 { 12876 /* This encoding has two kinds of instruction: 12877 * normal, where we perform elt x idxelt => elt for each 12878 * element in the vector 12879 * long, where we perform elt x idxelt and generate a result of 12880 * double the width of the input element 12881 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12882 */ 12883 bool is_scalar = extract32(insn, 28, 1); 12884 bool is_q = extract32(insn, 30, 1); 12885 bool u = extract32(insn, 29, 1); 12886 int size = extract32(insn, 22, 2); 12887 int l = extract32(insn, 21, 1); 12888 int m = extract32(insn, 20, 1); 12889 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12890 int rm = extract32(insn, 16, 4); 12891 int opcode = extract32(insn, 12, 4); 12892 int h = extract32(insn, 11, 1); 12893 int rn = extract32(insn, 5, 5); 12894 int rd = extract32(insn, 0, 5); 12895 bool is_long = false; 12896 int is_fp = 0; 12897 bool is_fp16 = false; 12898 int index; 12899 TCGv_ptr fpst; 12900 12901 switch (16 * u + opcode) { 12902 case 0x08: /* MUL */ 12903 case 0x10: /* MLA */ 12904 case 0x14: /* MLS */ 12905 if (is_scalar) { 12906 unallocated_encoding(s); 12907 return; 12908 } 12909 break; 12910 case 0x02: /* SMLAL, SMLAL2 */ 12911 case 0x12: /* UMLAL, UMLAL2 */ 12912 case 0x06: /* SMLSL, SMLSL2 */ 12913 case 0x16: /* UMLSL, UMLSL2 */ 12914 case 0x0a: /* SMULL, SMULL2 */ 12915 case 0x1a: /* UMULL, UMULL2 */ 12916 if (is_scalar) { 12917 unallocated_encoding(s); 12918 return; 12919 } 12920 is_long = true; 12921 break; 12922 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12923 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12924 case 0x0b: /* SQDMULL, SQDMULL2 */ 12925 is_long = true; 12926 break; 12927 case 0x0c: /* SQDMULH */ 12928 case 0x0d: /* SQRDMULH */ 12929 break; 12930 case 0x01: /* FMLA */ 12931 case 0x05: /* FMLS */ 12932 case 0x09: /* FMUL */ 12933 case 0x19: /* FMULX */ 12934 is_fp = 1; 12935 break; 12936 case 0x1d: /* SQRDMLAH */ 12937 case 0x1f: /* SQRDMLSH */ 12938 if (!dc_isar_feature(aa64_rdm, s)) { 12939 unallocated_encoding(s); 12940 return; 12941 } 12942 break; 12943 case 0x0e: /* SDOT */ 12944 case 0x1e: /* UDOT */ 12945 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12946 unallocated_encoding(s); 12947 return; 12948 } 12949 break; 12950 case 0x0f: 12951 switch (size) { 12952 case 0: /* SUDOT */ 12953 case 2: /* USDOT */ 12954 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12955 unallocated_encoding(s); 12956 return; 12957 } 12958 size = MO_32; 12959 break; 12960 case 1: /* BFDOT */ 12961 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12962 unallocated_encoding(s); 12963 return; 12964 } 12965 size = MO_32; 12966 break; 12967 case 3: /* BFMLAL{B,T} */ 12968 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12969 unallocated_encoding(s); 12970 return; 12971 } 12972 /* can't set is_fp without other incorrect size checks */ 12973 size = MO_16; 12974 break; 12975 default: 12976 unallocated_encoding(s); 12977 return; 12978 } 12979 break; 12980 case 0x11: /* FCMLA #0 */ 12981 case 0x13: /* FCMLA #90 */ 12982 case 0x15: /* FCMLA #180 */ 12983 case 0x17: /* FCMLA #270 */ 12984 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12985 unallocated_encoding(s); 12986 return; 12987 } 12988 is_fp = 2; 12989 break; 12990 case 0x00: /* FMLAL */ 12991 case 0x04: /* FMLSL */ 12992 case 0x18: /* FMLAL2 */ 12993 case 0x1c: /* FMLSL2 */ 12994 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12995 unallocated_encoding(s); 12996 return; 12997 } 12998 size = MO_16; 12999 /* is_fp, but we pass cpu_env not fp_status. */ 13000 break; 13001 default: 13002 unallocated_encoding(s); 13003 return; 13004 } 13005 13006 switch (is_fp) { 13007 case 1: /* normal fp */ 13008 /* convert insn encoded size to MemOp size */ 13009 switch (size) { 13010 case 0: /* half-precision */ 13011 size = MO_16; 13012 is_fp16 = true; 13013 break; 13014 case MO_32: /* single precision */ 13015 case MO_64: /* double precision */ 13016 break; 13017 default: 13018 unallocated_encoding(s); 13019 return; 13020 } 13021 break; 13022 13023 case 2: /* complex fp */ 13024 /* Each indexable element is a complex pair. */ 13025 size += 1; 13026 switch (size) { 13027 case MO_32: 13028 if (h && !is_q) { 13029 unallocated_encoding(s); 13030 return; 13031 } 13032 is_fp16 = true; 13033 break; 13034 case MO_64: 13035 break; 13036 default: 13037 unallocated_encoding(s); 13038 return; 13039 } 13040 break; 13041 13042 default: /* integer */ 13043 switch (size) { 13044 case MO_8: 13045 case MO_64: 13046 unallocated_encoding(s); 13047 return; 13048 } 13049 break; 13050 } 13051 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13052 unallocated_encoding(s); 13053 return; 13054 } 13055 13056 /* Given MemOp size, adjust register and indexing. */ 13057 switch (size) { 13058 case MO_16: 13059 index = h << 2 | l << 1 | m; 13060 break; 13061 case MO_32: 13062 index = h << 1 | l; 13063 rm |= m << 4; 13064 break; 13065 case MO_64: 13066 if (l || !is_q) { 13067 unallocated_encoding(s); 13068 return; 13069 } 13070 index = h; 13071 rm |= m << 4; 13072 break; 13073 default: 13074 g_assert_not_reached(); 13075 } 13076 13077 if (!fp_access_check(s)) { 13078 return; 13079 } 13080 13081 if (is_fp) { 13082 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13083 } else { 13084 fpst = NULL; 13085 } 13086 13087 switch (16 * u + opcode) { 13088 case 0x0e: /* SDOT */ 13089 case 0x1e: /* UDOT */ 13090 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13091 u ? gen_helper_gvec_udot_idx_b 13092 : gen_helper_gvec_sdot_idx_b); 13093 return; 13094 case 0x0f: 13095 switch (extract32(insn, 22, 2)) { 13096 case 0: /* SUDOT */ 13097 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13098 gen_helper_gvec_sudot_idx_b); 13099 return; 13100 case 1: /* BFDOT */ 13101 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13102 gen_helper_gvec_bfdot_idx); 13103 return; 13104 case 2: /* USDOT */ 13105 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13106 gen_helper_gvec_usdot_idx_b); 13107 return; 13108 case 3: /* BFMLAL{B,T} */ 13109 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13110 gen_helper_gvec_bfmlal_idx); 13111 return; 13112 } 13113 g_assert_not_reached(); 13114 case 0x11: /* FCMLA #0 */ 13115 case 0x13: /* FCMLA #90 */ 13116 case 0x15: /* FCMLA #180 */ 13117 case 0x17: /* FCMLA #270 */ 13118 { 13119 int rot = extract32(insn, 13, 2); 13120 int data = (index << 2) | rot; 13121 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13122 vec_full_reg_offset(s, rn), 13123 vec_full_reg_offset(s, rm), 13124 vec_full_reg_offset(s, rd), fpst, 13125 is_q ? 16 : 8, vec_full_reg_size(s), data, 13126 size == MO_64 13127 ? gen_helper_gvec_fcmlas_idx 13128 : gen_helper_gvec_fcmlah_idx); 13129 } 13130 return; 13131 13132 case 0x00: /* FMLAL */ 13133 case 0x04: /* FMLSL */ 13134 case 0x18: /* FMLAL2 */ 13135 case 0x1c: /* FMLSL2 */ 13136 { 13137 int is_s = extract32(opcode, 2, 1); 13138 int is_2 = u; 13139 int data = (index << 2) | (is_2 << 1) | is_s; 13140 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13141 vec_full_reg_offset(s, rn), 13142 vec_full_reg_offset(s, rm), cpu_env, 13143 is_q ? 16 : 8, vec_full_reg_size(s), 13144 data, gen_helper_gvec_fmlal_idx_a64); 13145 } 13146 return; 13147 13148 case 0x08: /* MUL */ 13149 if (!is_long && !is_scalar) { 13150 static gen_helper_gvec_3 * const fns[3] = { 13151 gen_helper_gvec_mul_idx_h, 13152 gen_helper_gvec_mul_idx_s, 13153 gen_helper_gvec_mul_idx_d, 13154 }; 13155 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13156 vec_full_reg_offset(s, rn), 13157 vec_full_reg_offset(s, rm), 13158 is_q ? 16 : 8, vec_full_reg_size(s), 13159 index, fns[size - 1]); 13160 return; 13161 } 13162 break; 13163 13164 case 0x10: /* MLA */ 13165 if (!is_long && !is_scalar) { 13166 static gen_helper_gvec_4 * const fns[3] = { 13167 gen_helper_gvec_mla_idx_h, 13168 gen_helper_gvec_mla_idx_s, 13169 gen_helper_gvec_mla_idx_d, 13170 }; 13171 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13172 vec_full_reg_offset(s, rn), 13173 vec_full_reg_offset(s, rm), 13174 vec_full_reg_offset(s, rd), 13175 is_q ? 16 : 8, vec_full_reg_size(s), 13176 index, fns[size - 1]); 13177 return; 13178 } 13179 break; 13180 13181 case 0x14: /* MLS */ 13182 if (!is_long && !is_scalar) { 13183 static gen_helper_gvec_4 * const fns[3] = { 13184 gen_helper_gvec_mls_idx_h, 13185 gen_helper_gvec_mls_idx_s, 13186 gen_helper_gvec_mls_idx_d, 13187 }; 13188 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13189 vec_full_reg_offset(s, rn), 13190 vec_full_reg_offset(s, rm), 13191 vec_full_reg_offset(s, rd), 13192 is_q ? 16 : 8, vec_full_reg_size(s), 13193 index, fns[size - 1]); 13194 return; 13195 } 13196 break; 13197 } 13198 13199 if (size == 3) { 13200 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13201 int pass; 13202 13203 assert(is_fp && is_q && !is_long); 13204 13205 read_vec_element(s, tcg_idx, rm, index, MO_64); 13206 13207 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13208 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13209 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13210 13211 read_vec_element(s, tcg_op, rn, pass, MO_64); 13212 13213 switch (16 * u + opcode) { 13214 case 0x05: /* FMLS */ 13215 /* As usual for ARM, separate negation for fused multiply-add */ 13216 gen_helper_vfp_negd(tcg_op, tcg_op); 13217 /* fall through */ 13218 case 0x01: /* FMLA */ 13219 read_vec_element(s, tcg_res, rd, pass, MO_64); 13220 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13221 break; 13222 case 0x09: /* FMUL */ 13223 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13224 break; 13225 case 0x19: /* FMULX */ 13226 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13227 break; 13228 default: 13229 g_assert_not_reached(); 13230 } 13231 13232 write_vec_element(s, tcg_res, rd, pass, MO_64); 13233 } 13234 13235 clear_vec_high(s, !is_scalar, rd); 13236 } else if (!is_long) { 13237 /* 32 bit floating point, or 16 or 32 bit integer. 13238 * For the 16 bit scalar case we use the usual Neon helpers and 13239 * rely on the fact that 0 op 0 == 0 with no side effects. 13240 */ 13241 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13242 int pass, maxpasses; 13243 13244 if (is_scalar) { 13245 maxpasses = 1; 13246 } else { 13247 maxpasses = is_q ? 4 : 2; 13248 } 13249 13250 read_vec_element_i32(s, tcg_idx, rm, index, size); 13251 13252 if (size == 1 && !is_scalar) { 13253 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13254 * the index into both halves of the 32 bit tcg_idx and then use 13255 * the usual Neon helpers. 13256 */ 13257 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13258 } 13259 13260 for (pass = 0; pass < maxpasses; pass++) { 13261 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13262 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13263 13264 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13265 13266 switch (16 * u + opcode) { 13267 case 0x08: /* MUL */ 13268 case 0x10: /* MLA */ 13269 case 0x14: /* MLS */ 13270 { 13271 static NeonGenTwoOpFn * const fns[2][2] = { 13272 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13273 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13274 }; 13275 NeonGenTwoOpFn *genfn; 13276 bool is_sub = opcode == 0x4; 13277 13278 if (size == 1) { 13279 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13280 } else { 13281 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13282 } 13283 if (opcode == 0x8) { 13284 break; 13285 } 13286 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13287 genfn = fns[size - 1][is_sub]; 13288 genfn(tcg_res, tcg_op, tcg_res); 13289 break; 13290 } 13291 case 0x05: /* FMLS */ 13292 case 0x01: /* FMLA */ 13293 read_vec_element_i32(s, tcg_res, rd, pass, 13294 is_scalar ? size : MO_32); 13295 switch (size) { 13296 case 1: 13297 if (opcode == 0x5) { 13298 /* As usual for ARM, separate negation for fused 13299 * multiply-add */ 13300 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13301 } 13302 if (is_scalar) { 13303 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13304 tcg_res, fpst); 13305 } else { 13306 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13307 tcg_res, fpst); 13308 } 13309 break; 13310 case 2: 13311 if (opcode == 0x5) { 13312 /* As usual for ARM, separate negation for 13313 * fused multiply-add */ 13314 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13315 } 13316 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13317 tcg_res, fpst); 13318 break; 13319 default: 13320 g_assert_not_reached(); 13321 } 13322 break; 13323 case 0x09: /* FMUL */ 13324 switch (size) { 13325 case 1: 13326 if (is_scalar) { 13327 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13328 tcg_idx, fpst); 13329 } else { 13330 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13331 tcg_idx, fpst); 13332 } 13333 break; 13334 case 2: 13335 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13336 break; 13337 default: 13338 g_assert_not_reached(); 13339 } 13340 break; 13341 case 0x19: /* FMULX */ 13342 switch (size) { 13343 case 1: 13344 if (is_scalar) { 13345 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13346 tcg_idx, fpst); 13347 } else { 13348 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13349 tcg_idx, fpst); 13350 } 13351 break; 13352 case 2: 13353 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13354 break; 13355 default: 13356 g_assert_not_reached(); 13357 } 13358 break; 13359 case 0x0c: /* SQDMULH */ 13360 if (size == 1) { 13361 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13362 tcg_op, tcg_idx); 13363 } else { 13364 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13365 tcg_op, tcg_idx); 13366 } 13367 break; 13368 case 0x0d: /* SQRDMULH */ 13369 if (size == 1) { 13370 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13371 tcg_op, tcg_idx); 13372 } else { 13373 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13374 tcg_op, tcg_idx); 13375 } 13376 break; 13377 case 0x1d: /* SQRDMLAH */ 13378 read_vec_element_i32(s, tcg_res, rd, pass, 13379 is_scalar ? size : MO_32); 13380 if (size == 1) { 13381 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13382 tcg_op, tcg_idx, tcg_res); 13383 } else { 13384 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13385 tcg_op, tcg_idx, tcg_res); 13386 } 13387 break; 13388 case 0x1f: /* SQRDMLSH */ 13389 read_vec_element_i32(s, tcg_res, rd, pass, 13390 is_scalar ? size : MO_32); 13391 if (size == 1) { 13392 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13393 tcg_op, tcg_idx, tcg_res); 13394 } else { 13395 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13396 tcg_op, tcg_idx, tcg_res); 13397 } 13398 break; 13399 default: 13400 g_assert_not_reached(); 13401 } 13402 13403 if (is_scalar) { 13404 write_fp_sreg(s, rd, tcg_res); 13405 } else { 13406 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13407 } 13408 } 13409 13410 clear_vec_high(s, is_q, rd); 13411 } else { 13412 /* long ops: 16x16->32 or 32x32->64 */ 13413 TCGv_i64 tcg_res[2]; 13414 int pass; 13415 bool satop = extract32(opcode, 0, 1); 13416 MemOp memop = MO_32; 13417 13418 if (satop || !u) { 13419 memop |= MO_SIGN; 13420 } 13421 13422 if (size == 2) { 13423 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13424 13425 read_vec_element(s, tcg_idx, rm, index, memop); 13426 13427 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13428 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13429 TCGv_i64 tcg_passres; 13430 int passelt; 13431 13432 if (is_scalar) { 13433 passelt = 0; 13434 } else { 13435 passelt = pass + (is_q * 2); 13436 } 13437 13438 read_vec_element(s, tcg_op, rn, passelt, memop); 13439 13440 tcg_res[pass] = tcg_temp_new_i64(); 13441 13442 if (opcode == 0xa || opcode == 0xb) { 13443 /* Non-accumulating ops */ 13444 tcg_passres = tcg_res[pass]; 13445 } else { 13446 tcg_passres = tcg_temp_new_i64(); 13447 } 13448 13449 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13450 13451 if (satop) { 13452 /* saturating, doubling */ 13453 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13454 tcg_passres, tcg_passres); 13455 } 13456 13457 if (opcode == 0xa || opcode == 0xb) { 13458 continue; 13459 } 13460 13461 /* Accumulating op: handle accumulate step */ 13462 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13463 13464 switch (opcode) { 13465 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13466 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13467 break; 13468 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13469 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13470 break; 13471 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13472 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13473 /* fall through */ 13474 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13475 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13476 tcg_res[pass], 13477 tcg_passres); 13478 break; 13479 default: 13480 g_assert_not_reached(); 13481 } 13482 } 13483 13484 clear_vec_high(s, !is_scalar, rd); 13485 } else { 13486 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13487 13488 assert(size == 1); 13489 read_vec_element_i32(s, tcg_idx, rm, index, size); 13490 13491 if (!is_scalar) { 13492 /* The simplest way to handle the 16x16 indexed ops is to 13493 * duplicate the index into both halves of the 32 bit tcg_idx 13494 * and then use the usual Neon helpers. 13495 */ 13496 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13497 } 13498 13499 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13500 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13501 TCGv_i64 tcg_passres; 13502 13503 if (is_scalar) { 13504 read_vec_element_i32(s, tcg_op, rn, pass, size); 13505 } else { 13506 read_vec_element_i32(s, tcg_op, rn, 13507 pass + (is_q * 2), MO_32); 13508 } 13509 13510 tcg_res[pass] = tcg_temp_new_i64(); 13511 13512 if (opcode == 0xa || opcode == 0xb) { 13513 /* Non-accumulating ops */ 13514 tcg_passres = tcg_res[pass]; 13515 } else { 13516 tcg_passres = tcg_temp_new_i64(); 13517 } 13518 13519 if (memop & MO_SIGN) { 13520 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13521 } else { 13522 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13523 } 13524 if (satop) { 13525 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13526 tcg_passres, tcg_passres); 13527 } 13528 13529 if (opcode == 0xa || opcode == 0xb) { 13530 continue; 13531 } 13532 13533 /* Accumulating op: handle accumulate step */ 13534 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13535 13536 switch (opcode) { 13537 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13538 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13539 tcg_passres); 13540 break; 13541 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13542 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13543 tcg_passres); 13544 break; 13545 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13546 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13547 /* fall through */ 13548 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13549 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13550 tcg_res[pass], 13551 tcg_passres); 13552 break; 13553 default: 13554 g_assert_not_reached(); 13555 } 13556 } 13557 13558 if (is_scalar) { 13559 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13560 } 13561 } 13562 13563 if (is_scalar) { 13564 tcg_res[1] = tcg_constant_i64(0); 13565 } 13566 13567 for (pass = 0; pass < 2; pass++) { 13568 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13569 } 13570 } 13571 } 13572 13573 /* Crypto AES 13574 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13575 * +-----------------+------+-----------+--------+-----+------+------+ 13576 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13577 * +-----------------+------+-----------+--------+-----+------+------+ 13578 */ 13579 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13580 { 13581 int size = extract32(insn, 22, 2); 13582 int opcode = extract32(insn, 12, 5); 13583 int rn = extract32(insn, 5, 5); 13584 int rd = extract32(insn, 0, 5); 13585 int decrypt; 13586 gen_helper_gvec_2 *genfn2 = NULL; 13587 gen_helper_gvec_3 *genfn3 = NULL; 13588 13589 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13590 unallocated_encoding(s); 13591 return; 13592 } 13593 13594 switch (opcode) { 13595 case 0x4: /* AESE */ 13596 decrypt = 0; 13597 genfn3 = gen_helper_crypto_aese; 13598 break; 13599 case 0x6: /* AESMC */ 13600 decrypt = 0; 13601 genfn2 = gen_helper_crypto_aesmc; 13602 break; 13603 case 0x5: /* AESD */ 13604 decrypt = 1; 13605 genfn3 = gen_helper_crypto_aese; 13606 break; 13607 case 0x7: /* AESIMC */ 13608 decrypt = 1; 13609 genfn2 = gen_helper_crypto_aesmc; 13610 break; 13611 default: 13612 unallocated_encoding(s); 13613 return; 13614 } 13615 13616 if (!fp_access_check(s)) { 13617 return; 13618 } 13619 if (genfn2) { 13620 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13621 } else { 13622 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13623 } 13624 } 13625 13626 /* Crypto three-reg SHA 13627 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13628 * +-----------------+------+---+------+---+--------+-----+------+------+ 13629 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13630 * +-----------------+------+---+------+---+--------+-----+------+------+ 13631 */ 13632 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13633 { 13634 int size = extract32(insn, 22, 2); 13635 int opcode = extract32(insn, 12, 3); 13636 int rm = extract32(insn, 16, 5); 13637 int rn = extract32(insn, 5, 5); 13638 int rd = extract32(insn, 0, 5); 13639 gen_helper_gvec_3 *genfn; 13640 bool feature; 13641 13642 if (size != 0) { 13643 unallocated_encoding(s); 13644 return; 13645 } 13646 13647 switch (opcode) { 13648 case 0: /* SHA1C */ 13649 genfn = gen_helper_crypto_sha1c; 13650 feature = dc_isar_feature(aa64_sha1, s); 13651 break; 13652 case 1: /* SHA1P */ 13653 genfn = gen_helper_crypto_sha1p; 13654 feature = dc_isar_feature(aa64_sha1, s); 13655 break; 13656 case 2: /* SHA1M */ 13657 genfn = gen_helper_crypto_sha1m; 13658 feature = dc_isar_feature(aa64_sha1, s); 13659 break; 13660 case 3: /* SHA1SU0 */ 13661 genfn = gen_helper_crypto_sha1su0; 13662 feature = dc_isar_feature(aa64_sha1, s); 13663 break; 13664 case 4: /* SHA256H */ 13665 genfn = gen_helper_crypto_sha256h; 13666 feature = dc_isar_feature(aa64_sha256, s); 13667 break; 13668 case 5: /* SHA256H2 */ 13669 genfn = gen_helper_crypto_sha256h2; 13670 feature = dc_isar_feature(aa64_sha256, s); 13671 break; 13672 case 6: /* SHA256SU1 */ 13673 genfn = gen_helper_crypto_sha256su1; 13674 feature = dc_isar_feature(aa64_sha256, s); 13675 break; 13676 default: 13677 unallocated_encoding(s); 13678 return; 13679 } 13680 13681 if (!feature) { 13682 unallocated_encoding(s); 13683 return; 13684 } 13685 13686 if (!fp_access_check(s)) { 13687 return; 13688 } 13689 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13690 } 13691 13692 /* Crypto two-reg SHA 13693 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13694 * +-----------------+------+-----------+--------+-----+------+------+ 13695 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13696 * +-----------------+------+-----------+--------+-----+------+------+ 13697 */ 13698 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13699 { 13700 int size = extract32(insn, 22, 2); 13701 int opcode = extract32(insn, 12, 5); 13702 int rn = extract32(insn, 5, 5); 13703 int rd = extract32(insn, 0, 5); 13704 gen_helper_gvec_2 *genfn; 13705 bool feature; 13706 13707 if (size != 0) { 13708 unallocated_encoding(s); 13709 return; 13710 } 13711 13712 switch (opcode) { 13713 case 0: /* SHA1H */ 13714 feature = dc_isar_feature(aa64_sha1, s); 13715 genfn = gen_helper_crypto_sha1h; 13716 break; 13717 case 1: /* SHA1SU1 */ 13718 feature = dc_isar_feature(aa64_sha1, s); 13719 genfn = gen_helper_crypto_sha1su1; 13720 break; 13721 case 2: /* SHA256SU0 */ 13722 feature = dc_isar_feature(aa64_sha256, s); 13723 genfn = gen_helper_crypto_sha256su0; 13724 break; 13725 default: 13726 unallocated_encoding(s); 13727 return; 13728 } 13729 13730 if (!feature) { 13731 unallocated_encoding(s); 13732 return; 13733 } 13734 13735 if (!fp_access_check(s)) { 13736 return; 13737 } 13738 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13739 } 13740 13741 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13742 { 13743 tcg_gen_rotli_i64(d, m, 1); 13744 tcg_gen_xor_i64(d, d, n); 13745 } 13746 13747 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13748 { 13749 tcg_gen_rotli_vec(vece, d, m, 1); 13750 tcg_gen_xor_vec(vece, d, d, n); 13751 } 13752 13753 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13754 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13755 { 13756 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13757 static const GVecGen3 op = { 13758 .fni8 = gen_rax1_i64, 13759 .fniv = gen_rax1_vec, 13760 .opt_opc = vecop_list, 13761 .fno = gen_helper_crypto_rax1, 13762 .vece = MO_64, 13763 }; 13764 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13765 } 13766 13767 /* Crypto three-reg SHA512 13768 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13769 * +-----------------------+------+---+---+-----+--------+------+------+ 13770 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13771 * +-----------------------+------+---+---+-----+--------+------+------+ 13772 */ 13773 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13774 { 13775 int opcode = extract32(insn, 10, 2); 13776 int o = extract32(insn, 14, 1); 13777 int rm = extract32(insn, 16, 5); 13778 int rn = extract32(insn, 5, 5); 13779 int rd = extract32(insn, 0, 5); 13780 bool feature; 13781 gen_helper_gvec_3 *oolfn = NULL; 13782 GVecGen3Fn *gvecfn = NULL; 13783 13784 if (o == 0) { 13785 switch (opcode) { 13786 case 0: /* SHA512H */ 13787 feature = dc_isar_feature(aa64_sha512, s); 13788 oolfn = gen_helper_crypto_sha512h; 13789 break; 13790 case 1: /* SHA512H2 */ 13791 feature = dc_isar_feature(aa64_sha512, s); 13792 oolfn = gen_helper_crypto_sha512h2; 13793 break; 13794 case 2: /* SHA512SU1 */ 13795 feature = dc_isar_feature(aa64_sha512, s); 13796 oolfn = gen_helper_crypto_sha512su1; 13797 break; 13798 case 3: /* RAX1 */ 13799 feature = dc_isar_feature(aa64_sha3, s); 13800 gvecfn = gen_gvec_rax1; 13801 break; 13802 default: 13803 g_assert_not_reached(); 13804 } 13805 } else { 13806 switch (opcode) { 13807 case 0: /* SM3PARTW1 */ 13808 feature = dc_isar_feature(aa64_sm3, s); 13809 oolfn = gen_helper_crypto_sm3partw1; 13810 break; 13811 case 1: /* SM3PARTW2 */ 13812 feature = dc_isar_feature(aa64_sm3, s); 13813 oolfn = gen_helper_crypto_sm3partw2; 13814 break; 13815 case 2: /* SM4EKEY */ 13816 feature = dc_isar_feature(aa64_sm4, s); 13817 oolfn = gen_helper_crypto_sm4ekey; 13818 break; 13819 default: 13820 unallocated_encoding(s); 13821 return; 13822 } 13823 } 13824 13825 if (!feature) { 13826 unallocated_encoding(s); 13827 return; 13828 } 13829 13830 if (!fp_access_check(s)) { 13831 return; 13832 } 13833 13834 if (oolfn) { 13835 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13836 } else { 13837 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13838 } 13839 } 13840 13841 /* Crypto two-reg SHA512 13842 * 31 12 11 10 9 5 4 0 13843 * +-----------------------------------------+--------+------+------+ 13844 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13845 * +-----------------------------------------+--------+------+------+ 13846 */ 13847 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13848 { 13849 int opcode = extract32(insn, 10, 2); 13850 int rn = extract32(insn, 5, 5); 13851 int rd = extract32(insn, 0, 5); 13852 bool feature; 13853 13854 switch (opcode) { 13855 case 0: /* SHA512SU0 */ 13856 feature = dc_isar_feature(aa64_sha512, s); 13857 break; 13858 case 1: /* SM4E */ 13859 feature = dc_isar_feature(aa64_sm4, s); 13860 break; 13861 default: 13862 unallocated_encoding(s); 13863 return; 13864 } 13865 13866 if (!feature) { 13867 unallocated_encoding(s); 13868 return; 13869 } 13870 13871 if (!fp_access_check(s)) { 13872 return; 13873 } 13874 13875 switch (opcode) { 13876 case 0: /* SHA512SU0 */ 13877 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13878 break; 13879 case 1: /* SM4E */ 13880 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13881 break; 13882 default: 13883 g_assert_not_reached(); 13884 } 13885 } 13886 13887 /* Crypto four-register 13888 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13889 * +-------------------+-----+------+---+------+------+------+ 13890 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13891 * +-------------------+-----+------+---+------+------+------+ 13892 */ 13893 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13894 { 13895 int op0 = extract32(insn, 21, 2); 13896 int rm = extract32(insn, 16, 5); 13897 int ra = extract32(insn, 10, 5); 13898 int rn = extract32(insn, 5, 5); 13899 int rd = extract32(insn, 0, 5); 13900 bool feature; 13901 13902 switch (op0) { 13903 case 0: /* EOR3 */ 13904 case 1: /* BCAX */ 13905 feature = dc_isar_feature(aa64_sha3, s); 13906 break; 13907 case 2: /* SM3SS1 */ 13908 feature = dc_isar_feature(aa64_sm3, s); 13909 break; 13910 default: 13911 unallocated_encoding(s); 13912 return; 13913 } 13914 13915 if (!feature) { 13916 unallocated_encoding(s); 13917 return; 13918 } 13919 13920 if (!fp_access_check(s)) { 13921 return; 13922 } 13923 13924 if (op0 < 2) { 13925 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13926 int pass; 13927 13928 tcg_op1 = tcg_temp_new_i64(); 13929 tcg_op2 = tcg_temp_new_i64(); 13930 tcg_op3 = tcg_temp_new_i64(); 13931 tcg_res[0] = tcg_temp_new_i64(); 13932 tcg_res[1] = tcg_temp_new_i64(); 13933 13934 for (pass = 0; pass < 2; pass++) { 13935 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13936 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13937 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13938 13939 if (op0 == 0) { 13940 /* EOR3 */ 13941 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13942 } else { 13943 /* BCAX */ 13944 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13945 } 13946 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13947 } 13948 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13949 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13950 } else { 13951 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13952 13953 tcg_op1 = tcg_temp_new_i32(); 13954 tcg_op2 = tcg_temp_new_i32(); 13955 tcg_op3 = tcg_temp_new_i32(); 13956 tcg_res = tcg_temp_new_i32(); 13957 tcg_zero = tcg_constant_i32(0); 13958 13959 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13960 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13961 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13962 13963 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13964 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13965 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13966 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13967 13968 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13969 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13970 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13971 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13972 } 13973 } 13974 13975 /* Crypto XAR 13976 * 31 21 20 16 15 10 9 5 4 0 13977 * +-----------------------+------+--------+------+------+ 13978 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13979 * +-----------------------+------+--------+------+------+ 13980 */ 13981 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13982 { 13983 int rm = extract32(insn, 16, 5); 13984 int imm6 = extract32(insn, 10, 6); 13985 int rn = extract32(insn, 5, 5); 13986 int rd = extract32(insn, 0, 5); 13987 13988 if (!dc_isar_feature(aa64_sha3, s)) { 13989 unallocated_encoding(s); 13990 return; 13991 } 13992 13993 if (!fp_access_check(s)) { 13994 return; 13995 } 13996 13997 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13998 vec_full_reg_offset(s, rn), 13999 vec_full_reg_offset(s, rm), imm6, 16, 14000 vec_full_reg_size(s)); 14001 } 14002 14003 /* Crypto three-reg imm2 14004 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14005 * +-----------------------+------+-----+------+--------+------+------+ 14006 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14007 * +-----------------------+------+-----+------+--------+------+------+ 14008 */ 14009 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14010 { 14011 static gen_helper_gvec_3 * const fns[4] = { 14012 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14013 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14014 }; 14015 int opcode = extract32(insn, 10, 2); 14016 int imm2 = extract32(insn, 12, 2); 14017 int rm = extract32(insn, 16, 5); 14018 int rn = extract32(insn, 5, 5); 14019 int rd = extract32(insn, 0, 5); 14020 14021 if (!dc_isar_feature(aa64_sm3, s)) { 14022 unallocated_encoding(s); 14023 return; 14024 } 14025 14026 if (!fp_access_check(s)) { 14027 return; 14028 } 14029 14030 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14031 } 14032 14033 /* C3.6 Data processing - SIMD, inc Crypto 14034 * 14035 * As the decode gets a little complex we are using a table based 14036 * approach for this part of the decode. 14037 */ 14038 static const AArch64DecodeTable data_proc_simd[] = { 14039 /* pattern , mask , fn */ 14040 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14041 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14042 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14043 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14044 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14045 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14046 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14047 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14048 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14049 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14050 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14051 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14052 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14053 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14054 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14055 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14056 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14057 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14058 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14059 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14060 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14061 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14062 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14063 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14064 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14065 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14066 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14067 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14068 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14069 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14070 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14071 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14072 { 0x00000000, 0x00000000, NULL } 14073 }; 14074 14075 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14076 { 14077 /* Note that this is called with all non-FP cases from 14078 * table C3-6 so it must UNDEF for entries not specifically 14079 * allocated to instructions in that table. 14080 */ 14081 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14082 if (fn) { 14083 fn(s, insn); 14084 } else { 14085 unallocated_encoding(s); 14086 } 14087 } 14088 14089 /* C3.6 Data processing - SIMD and floating point */ 14090 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14091 { 14092 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14093 disas_data_proc_fp(s, insn); 14094 } else { 14095 /* SIMD, including crypto */ 14096 disas_data_proc_simd(s, insn); 14097 } 14098 } 14099 14100 static bool trans_OK(DisasContext *s, arg_OK *a) 14101 { 14102 return true; 14103 } 14104 14105 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14106 { 14107 s->is_nonstreaming = true; 14108 return true; 14109 } 14110 14111 /** 14112 * is_guarded_page: 14113 * @env: The cpu environment 14114 * @s: The DisasContext 14115 * 14116 * Return true if the page is guarded. 14117 */ 14118 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14119 { 14120 uint64_t addr = s->base.pc_first; 14121 #ifdef CONFIG_USER_ONLY 14122 return page_get_flags(addr) & PAGE_BTI; 14123 #else 14124 CPUTLBEntryFull *full; 14125 void *host; 14126 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14127 int flags; 14128 14129 /* 14130 * We test this immediately after reading an insn, which means 14131 * that the TLB entry must be present and valid, and thus this 14132 * access will never raise an exception. 14133 */ 14134 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14135 false, &host, &full, 0); 14136 assert(!(flags & TLB_INVALID_MASK)); 14137 14138 return full->guarded; 14139 #endif 14140 } 14141 14142 /** 14143 * btype_destination_ok: 14144 * @insn: The instruction at the branch destination 14145 * @bt: SCTLR_ELx.BT 14146 * @btype: PSTATE.BTYPE, and is non-zero 14147 * 14148 * On a guarded page, there are a limited number of insns 14149 * that may be present at the branch target: 14150 * - branch target identifiers, 14151 * - paciasp, pacibsp, 14152 * - BRK insn 14153 * - HLT insn 14154 * Anything else causes a Branch Target Exception. 14155 * 14156 * Return true if the branch is compatible, false to raise BTITRAP. 14157 */ 14158 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14159 { 14160 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14161 /* HINT space */ 14162 switch (extract32(insn, 5, 7)) { 14163 case 0b011001: /* PACIASP */ 14164 case 0b011011: /* PACIBSP */ 14165 /* 14166 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14167 * with btype == 3. Otherwise all btype are ok. 14168 */ 14169 return !bt || btype != 3; 14170 case 0b100000: /* BTI */ 14171 /* Not compatible with any btype. */ 14172 return false; 14173 case 0b100010: /* BTI c */ 14174 /* Not compatible with btype == 3 */ 14175 return btype != 3; 14176 case 0b100100: /* BTI j */ 14177 /* Not compatible with btype == 2 */ 14178 return btype != 2; 14179 case 0b100110: /* BTI jc */ 14180 /* Compatible with any btype. */ 14181 return true; 14182 } 14183 } else { 14184 switch (insn & 0xffe0001fu) { 14185 case 0xd4200000u: /* BRK */ 14186 case 0xd4400000u: /* HLT */ 14187 /* Give priority to the breakpoint exception. */ 14188 return true; 14189 } 14190 } 14191 return false; 14192 } 14193 14194 /* C3.1 A64 instruction index by encoding */ 14195 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14196 { 14197 switch (extract32(insn, 25, 4)) { 14198 case 0x8: case 0x9: /* Data processing - immediate */ 14199 disas_data_proc_imm(s, insn); 14200 break; 14201 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14202 disas_b_exc_sys(s, insn); 14203 break; 14204 case 0x4: 14205 case 0x6: 14206 case 0xc: 14207 case 0xe: /* Loads and stores */ 14208 disas_ldst(s, insn); 14209 break; 14210 case 0x5: 14211 case 0xd: /* Data processing - register */ 14212 disas_data_proc_reg(s, insn); 14213 break; 14214 case 0x7: 14215 case 0xf: /* Data processing - SIMD and floating point */ 14216 disas_data_proc_simd_fp(s, insn); 14217 break; 14218 default: 14219 unallocated_encoding(s); 14220 break; 14221 } 14222 } 14223 14224 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14225 CPUState *cpu) 14226 { 14227 DisasContext *dc = container_of(dcbase, DisasContext, base); 14228 CPUARMState *env = cpu->env_ptr; 14229 ARMCPU *arm_cpu = env_archcpu(env); 14230 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14231 int bound, core_mmu_idx; 14232 14233 dc->isar = &arm_cpu->isar; 14234 dc->condjmp = 0; 14235 dc->pc_save = dc->base.pc_first; 14236 dc->aarch64 = true; 14237 dc->thumb = false; 14238 dc->sctlr_b = 0; 14239 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14240 dc->condexec_mask = 0; 14241 dc->condexec_cond = 0; 14242 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14243 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14244 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14245 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14246 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14247 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14248 #if !defined(CONFIG_USER_ONLY) 14249 dc->user = (dc->current_el == 0); 14250 #endif 14251 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14252 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14253 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14254 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14255 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14256 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14257 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14258 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14259 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14260 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14261 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14262 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14263 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14264 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14265 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14266 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14267 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14268 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14269 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14270 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14271 dc->vec_len = 0; 14272 dc->vec_stride = 0; 14273 dc->cp_regs = arm_cpu->cp_regs; 14274 dc->features = env->features; 14275 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14276 14277 #ifdef CONFIG_USER_ONLY 14278 /* In sve_probe_page, we assume TBI is enabled. */ 14279 tcg_debug_assert(dc->tbid & 1); 14280 #endif 14281 14282 /* Single step state. The code-generation logic here is: 14283 * SS_ACTIVE == 0: 14284 * generate code with no special handling for single-stepping (except 14285 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14286 * this happens anyway because those changes are all system register or 14287 * PSTATE writes). 14288 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14289 * emit code for one insn 14290 * emit code to clear PSTATE.SS 14291 * emit code to generate software step exception for completed step 14292 * end TB (as usual for having generated an exception) 14293 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14294 * emit code to generate a software step exception 14295 * end the TB 14296 */ 14297 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14298 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14299 dc->is_ldex = false; 14300 14301 /* Bound the number of insns to execute to those left on the page. */ 14302 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14303 14304 /* If architectural single step active, limit to 1. */ 14305 if (dc->ss_active) { 14306 bound = 1; 14307 } 14308 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14309 } 14310 14311 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14312 { 14313 } 14314 14315 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14316 { 14317 DisasContext *dc = container_of(dcbase, DisasContext, base); 14318 target_ulong pc_arg = dc->base.pc_next; 14319 14320 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14321 pc_arg &= ~TARGET_PAGE_MASK; 14322 } 14323 tcg_gen_insn_start(pc_arg, 0, 0); 14324 dc->insn_start = tcg_last_op(); 14325 } 14326 14327 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14328 { 14329 DisasContext *s = container_of(dcbase, DisasContext, base); 14330 CPUARMState *env = cpu->env_ptr; 14331 uint64_t pc = s->base.pc_next; 14332 uint32_t insn; 14333 14334 /* Singlestep exceptions have the highest priority. */ 14335 if (s->ss_active && !s->pstate_ss) { 14336 /* Singlestep state is Active-pending. 14337 * If we're in this state at the start of a TB then either 14338 * a) we just took an exception to an EL which is being debugged 14339 * and this is the first insn in the exception handler 14340 * b) debug exceptions were masked and we just unmasked them 14341 * without changing EL (eg by clearing PSTATE.D) 14342 * In either case we're going to take a swstep exception in the 14343 * "did not step an insn" case, and so the syndrome ISV and EX 14344 * bits should be zero. 14345 */ 14346 assert(s->base.num_insns == 1); 14347 gen_swstep_exception(s, 0, 0); 14348 s->base.is_jmp = DISAS_NORETURN; 14349 s->base.pc_next = pc + 4; 14350 return; 14351 } 14352 14353 if (pc & 3) { 14354 /* 14355 * PC alignment fault. This has priority over the instruction abort 14356 * that we would receive from a translation fault via arm_ldl_code. 14357 * This should only be possible after an indirect branch, at the 14358 * start of the TB. 14359 */ 14360 assert(s->base.num_insns == 1); 14361 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14362 s->base.is_jmp = DISAS_NORETURN; 14363 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14364 return; 14365 } 14366 14367 s->pc_curr = pc; 14368 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14369 s->insn = insn; 14370 s->base.pc_next = pc + 4; 14371 14372 s->fp_access_checked = false; 14373 s->sve_access_checked = false; 14374 14375 if (s->pstate_il) { 14376 /* 14377 * Illegal execution state. This has priority over BTI 14378 * exceptions, but comes after instruction abort exceptions. 14379 */ 14380 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14381 return; 14382 } 14383 14384 if (dc_isar_feature(aa64_bti, s)) { 14385 if (s->base.num_insns == 1) { 14386 /* 14387 * At the first insn of the TB, compute s->guarded_page. 14388 * We delayed computing this until successfully reading 14389 * the first insn of the TB, above. This (mostly) ensures 14390 * that the softmmu tlb entry has been populated, and the 14391 * page table GP bit is available. 14392 * 14393 * Note that we need to compute this even if btype == 0, 14394 * because this value is used for BR instructions later 14395 * where ENV is not available. 14396 */ 14397 s->guarded_page = is_guarded_page(env, s); 14398 14399 /* First insn can have btype set to non-zero. */ 14400 tcg_debug_assert(s->btype >= 0); 14401 14402 /* 14403 * Note that the Branch Target Exception has fairly high 14404 * priority -- below debugging exceptions but above most 14405 * everything else. This allows us to handle this now 14406 * instead of waiting until the insn is otherwise decoded. 14407 */ 14408 if (s->btype != 0 14409 && s->guarded_page 14410 && !btype_destination_ok(insn, s->bt, s->btype)) { 14411 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14412 return; 14413 } 14414 } else { 14415 /* Not the first insn: btype must be 0. */ 14416 tcg_debug_assert(s->btype == 0); 14417 } 14418 } 14419 14420 s->is_nonstreaming = false; 14421 if (s->sme_trap_nonstreaming) { 14422 disas_sme_fa64(s, insn); 14423 } 14424 14425 if (!disas_a64(s, insn) && 14426 !disas_sme(s, insn) && 14427 !disas_sve(s, insn)) { 14428 disas_a64_legacy(s, insn); 14429 } 14430 14431 /* 14432 * After execution of most insns, btype is reset to 0. 14433 * Note that we set btype == -1 when the insn sets btype. 14434 */ 14435 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14436 reset_btype(s); 14437 } 14438 } 14439 14440 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14441 { 14442 DisasContext *dc = container_of(dcbase, DisasContext, base); 14443 14444 if (unlikely(dc->ss_active)) { 14445 /* Note that this means single stepping WFI doesn't halt the CPU. 14446 * For conditional branch insns this is harmless unreachable code as 14447 * gen_goto_tb() has already handled emitting the debug exception 14448 * (and thus a tb-jump is not possible when singlestepping). 14449 */ 14450 switch (dc->base.is_jmp) { 14451 default: 14452 gen_a64_update_pc(dc, 4); 14453 /* fall through */ 14454 case DISAS_EXIT: 14455 case DISAS_JUMP: 14456 gen_step_complete_exception(dc); 14457 break; 14458 case DISAS_NORETURN: 14459 break; 14460 } 14461 } else { 14462 switch (dc->base.is_jmp) { 14463 case DISAS_NEXT: 14464 case DISAS_TOO_MANY: 14465 gen_goto_tb(dc, 1, 4); 14466 break; 14467 default: 14468 case DISAS_UPDATE_EXIT: 14469 gen_a64_update_pc(dc, 4); 14470 /* fall through */ 14471 case DISAS_EXIT: 14472 tcg_gen_exit_tb(NULL, 0); 14473 break; 14474 case DISAS_UPDATE_NOCHAIN: 14475 gen_a64_update_pc(dc, 4); 14476 /* fall through */ 14477 case DISAS_JUMP: 14478 tcg_gen_lookup_and_goto_ptr(); 14479 break; 14480 case DISAS_NORETURN: 14481 case DISAS_SWI: 14482 break; 14483 case DISAS_WFE: 14484 gen_a64_update_pc(dc, 4); 14485 gen_helper_wfe(cpu_env); 14486 break; 14487 case DISAS_YIELD: 14488 gen_a64_update_pc(dc, 4); 14489 gen_helper_yield(cpu_env); 14490 break; 14491 case DISAS_WFI: 14492 /* 14493 * This is a special case because we don't want to just halt 14494 * the CPU if trying to debug across a WFI. 14495 */ 14496 gen_a64_update_pc(dc, 4); 14497 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14498 /* 14499 * The helper doesn't necessarily throw an exception, but we 14500 * must go back to the main loop to check for interrupts anyway. 14501 */ 14502 tcg_gen_exit_tb(NULL, 0); 14503 break; 14504 } 14505 } 14506 } 14507 14508 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14509 CPUState *cpu, FILE *logfile) 14510 { 14511 DisasContext *dc = container_of(dcbase, DisasContext, base); 14512 14513 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14514 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14515 } 14516 14517 const TranslatorOps aarch64_translator_ops = { 14518 .init_disas_context = aarch64_tr_init_disas_context, 14519 .tb_start = aarch64_tr_tb_start, 14520 .insn_start = aarch64_tr_insn_start, 14521 .translate_insn = aarch64_tr_translate_insn, 14522 .tb_stop = aarch64_tr_tb_stop, 14523 .disas_log = aarch64_tr_disas_log, 14524 }; 14525