1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1653 { 1654 return true; 1655 } 1656 1657 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1658 { 1659 /* 1660 * When running in MTTCG we don't generate jumps to the yield and 1661 * WFE helpers as it won't affect the scheduling of other vCPUs. 1662 * If we wanted to more completely model WFE/SEV so we don't busy 1663 * spin unnecessarily we would need to do something more involved. 1664 */ 1665 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1666 s->base.is_jmp = DISAS_YIELD; 1667 } 1668 return true; 1669 } 1670 1671 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1672 { 1673 s->base.is_jmp = DISAS_WFI; 1674 return true; 1675 } 1676 1677 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1678 { 1679 /* 1680 * When running in MTTCG we don't generate jumps to the yield and 1681 * WFE helpers as it won't affect the scheduling of other vCPUs. 1682 * If we wanted to more completely model WFE/SEV so we don't busy 1683 * spin unnecessarily we would need to do something more involved. 1684 */ 1685 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1686 s->base.is_jmp = DISAS_WFE; 1687 } 1688 return true; 1689 } 1690 1691 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1692 { 1693 if (s->pauth_active) { 1694 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1695 } 1696 return true; 1697 } 1698 1699 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1700 { 1701 if (s->pauth_active) { 1702 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1703 } 1704 return true; 1705 } 1706 1707 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1708 { 1709 if (s->pauth_active) { 1710 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1711 } 1712 return true; 1713 } 1714 1715 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1716 { 1717 if (s->pauth_active) { 1718 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1719 } 1720 return true; 1721 } 1722 1723 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1724 { 1725 if (s->pauth_active) { 1726 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1727 } 1728 return true; 1729 } 1730 1731 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1732 { 1733 /* Without RAS, we must implement this as NOP. */ 1734 if (dc_isar_feature(aa64_ras, s)) { 1735 /* 1736 * QEMU does not have a source of physical SErrors, 1737 * so we are only concerned with virtual SErrors. 1738 * The pseudocode in the ARM for this case is 1739 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1740 * AArch64.vESBOperation(); 1741 * Most of the condition can be evaluated at translation time. 1742 * Test for EL2 present, and defer test for SEL2 to runtime. 1743 */ 1744 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1745 gen_helper_vesb(cpu_env); 1746 } 1747 } 1748 return true; 1749 } 1750 1751 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1752 { 1753 if (s->pauth_active) { 1754 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1755 } 1756 return true; 1757 } 1758 1759 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1760 { 1761 if (s->pauth_active) { 1762 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1763 } 1764 return true; 1765 } 1766 1767 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1768 { 1769 if (s->pauth_active) { 1770 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1771 } 1772 return true; 1773 } 1774 1775 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1776 { 1777 if (s->pauth_active) { 1778 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1779 } 1780 return true; 1781 } 1782 1783 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1784 { 1785 if (s->pauth_active) { 1786 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1787 } 1788 return true; 1789 } 1790 1791 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1792 { 1793 if (s->pauth_active) { 1794 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1795 } 1796 return true; 1797 } 1798 1799 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1800 { 1801 if (s->pauth_active) { 1802 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1803 } 1804 return true; 1805 } 1806 1807 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1808 { 1809 if (s->pauth_active) { 1810 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1811 } 1812 return true; 1813 } 1814 1815 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1816 { 1817 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1818 return true; 1819 } 1820 1821 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1822 { 1823 /* We handle DSB and DMB the same way */ 1824 TCGBar bar; 1825 1826 switch (a->types) { 1827 case 1: /* MBReqTypes_Reads */ 1828 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1829 break; 1830 case 2: /* MBReqTypes_Writes */ 1831 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1832 break; 1833 default: /* MBReqTypes_All */ 1834 bar = TCG_BAR_SC | TCG_MO_ALL; 1835 break; 1836 } 1837 tcg_gen_mb(bar); 1838 return true; 1839 } 1840 1841 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1842 { 1843 /* 1844 * We need to break the TB after this insn to execute 1845 * self-modifying code correctly and also to take 1846 * any pending interrupts immediately. 1847 */ 1848 reset_btype(s); 1849 gen_goto_tb(s, 0, 4); 1850 return true; 1851 } 1852 1853 static bool trans_SB(DisasContext *s, arg_SB *a) 1854 { 1855 if (!dc_isar_feature(aa64_sb, s)) { 1856 return false; 1857 } 1858 /* 1859 * TODO: There is no speculation barrier opcode for TCG; 1860 * MB and end the TB instead. 1861 */ 1862 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1863 gen_goto_tb(s, 0, 4); 1864 return true; 1865 } 1866 1867 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1868 { 1869 if (!dc_isar_feature(aa64_condm_4, s)) { 1870 return false; 1871 } 1872 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1873 return true; 1874 } 1875 1876 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1877 { 1878 TCGv_i32 z; 1879 1880 if (!dc_isar_feature(aa64_condm_5, s)) { 1881 return false; 1882 } 1883 1884 z = tcg_temp_new_i32(); 1885 1886 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1887 1888 /* 1889 * (!C & !Z) << 31 1890 * (!(C | Z)) << 31 1891 * ~((C | Z) << 31) 1892 * ~-(C | Z) 1893 * (C | Z) - 1 1894 */ 1895 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1896 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1897 1898 /* !(Z & C) */ 1899 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1900 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1901 1902 /* (!C & Z) << 31 -> -(Z & ~C) */ 1903 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1904 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1905 1906 /* C | Z */ 1907 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1908 1909 return true; 1910 } 1911 1912 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1913 { 1914 if (!dc_isar_feature(aa64_condm_5, s)) { 1915 return false; 1916 } 1917 1918 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1919 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1920 1921 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1922 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1923 1924 tcg_gen_movi_i32(cpu_NF, 0); 1925 tcg_gen_movi_i32(cpu_VF, 0); 1926 1927 return true; 1928 } 1929 1930 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1931 { 1932 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1933 return false; 1934 } 1935 if (a->imm & 1) { 1936 set_pstate_bits(PSTATE_UAO); 1937 } else { 1938 clear_pstate_bits(PSTATE_UAO); 1939 } 1940 gen_rebuild_hflags(s); 1941 s->base.is_jmp = DISAS_TOO_MANY; 1942 return true; 1943 } 1944 1945 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1946 { 1947 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1948 return false; 1949 } 1950 if (a->imm & 1) { 1951 set_pstate_bits(PSTATE_PAN); 1952 } else { 1953 clear_pstate_bits(PSTATE_PAN); 1954 } 1955 gen_rebuild_hflags(s); 1956 s->base.is_jmp = DISAS_TOO_MANY; 1957 return true; 1958 } 1959 1960 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1961 { 1962 if (s->current_el == 0) { 1963 return false; 1964 } 1965 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1966 s->base.is_jmp = DISAS_TOO_MANY; 1967 return true; 1968 } 1969 1970 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1971 { 1972 if (!dc_isar_feature(aa64_ssbs, s)) { 1973 return false; 1974 } 1975 if (a->imm & 1) { 1976 set_pstate_bits(PSTATE_SSBS); 1977 } else { 1978 clear_pstate_bits(PSTATE_SSBS); 1979 } 1980 /* Don't need to rebuild hflags since SSBS is a nop */ 1981 s->base.is_jmp = DISAS_TOO_MANY; 1982 return true; 1983 } 1984 1985 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1986 { 1987 if (!dc_isar_feature(aa64_dit, s)) { 1988 return false; 1989 } 1990 if (a->imm & 1) { 1991 set_pstate_bits(PSTATE_DIT); 1992 } else { 1993 clear_pstate_bits(PSTATE_DIT); 1994 } 1995 /* There's no need to rebuild hflags because DIT is a nop */ 1996 s->base.is_jmp = DISAS_TOO_MANY; 1997 return true; 1998 } 1999 2000 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2001 { 2002 if (dc_isar_feature(aa64_mte, s)) { 2003 /* Full MTE is enabled -- set the TCO bit as directed. */ 2004 if (a->imm & 1) { 2005 set_pstate_bits(PSTATE_TCO); 2006 } else { 2007 clear_pstate_bits(PSTATE_TCO); 2008 } 2009 gen_rebuild_hflags(s); 2010 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2011 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2012 return true; 2013 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2014 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2015 return true; 2016 } else { 2017 /* Insn not present */ 2018 return false; 2019 } 2020 } 2021 2022 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2023 { 2024 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm)); 2025 s->base.is_jmp = DISAS_TOO_MANY; 2026 return true; 2027 } 2028 2029 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2030 { 2031 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm)); 2032 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2033 s->base.is_jmp = DISAS_UPDATE_EXIT; 2034 return true; 2035 } 2036 2037 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2038 { 2039 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2040 return false; 2041 } 2042 if (sme_access_check(s)) { 2043 int old = s->pstate_sm | (s->pstate_za << 1); 2044 int new = a->imm * 3; 2045 2046 if ((old ^ new) & a->mask) { 2047 /* At least one bit changes. */ 2048 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2049 tcg_constant_i32(a->mask)); 2050 s->base.is_jmp = DISAS_TOO_MANY; 2051 } 2052 } 2053 return true; 2054 } 2055 2056 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2057 { 2058 TCGv_i32 tmp = tcg_temp_new_i32(); 2059 TCGv_i32 nzcv = tcg_temp_new_i32(); 2060 2061 /* build bit 31, N */ 2062 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2063 /* build bit 30, Z */ 2064 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2065 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2066 /* build bit 29, C */ 2067 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2068 /* build bit 28, V */ 2069 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2070 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2071 /* generate result */ 2072 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2073 } 2074 2075 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2076 { 2077 TCGv_i32 nzcv = tcg_temp_new_i32(); 2078 2079 /* take NZCV from R[t] */ 2080 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2081 2082 /* bit 31, N */ 2083 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2084 /* bit 30, Z */ 2085 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2086 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2087 /* bit 29, C */ 2088 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2089 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2090 /* bit 28, V */ 2091 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2092 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2093 } 2094 2095 static void gen_sysreg_undef(DisasContext *s, bool isread, 2096 uint8_t op0, uint8_t op1, uint8_t op2, 2097 uint8_t crn, uint8_t crm, uint8_t rt) 2098 { 2099 /* 2100 * Generate code to emit an UNDEF with correct syndrome 2101 * information for a failed system register access. 2102 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2103 * but if FEAT_IDST is implemented then read accesses to registers 2104 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2105 * syndrome. 2106 */ 2107 uint32_t syndrome; 2108 2109 if (isread && dc_isar_feature(aa64_ids, s) && 2110 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2111 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2112 } else { 2113 syndrome = syn_uncategorized(); 2114 } 2115 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2116 } 2117 2118 /* MRS - move from system register 2119 * MSR (register) - move to system register 2120 * SYS 2121 * SYSL 2122 * These are all essentially the same insn in 'read' and 'write' 2123 * versions, with varying op0 fields. 2124 */ 2125 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2126 unsigned int op0, unsigned int op1, unsigned int op2, 2127 unsigned int crn, unsigned int crm, unsigned int rt) 2128 { 2129 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2130 crn, crm, op0, op1, op2); 2131 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2132 bool need_exit_tb = false; 2133 TCGv_ptr tcg_ri = NULL; 2134 TCGv_i64 tcg_rt; 2135 2136 if (!ri) { 2137 /* Unknown register; this might be a guest error or a QEMU 2138 * unimplemented feature. 2139 */ 2140 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2141 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2142 isread ? "read" : "write", op0, op1, crn, crm, op2); 2143 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2144 return; 2145 } 2146 2147 /* Check access permissions */ 2148 if (!cp_access_ok(s->current_el, ri, isread)) { 2149 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2150 return; 2151 } 2152 2153 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2154 /* Emit code to perform further access permissions checks at 2155 * runtime; this may result in an exception. 2156 */ 2157 uint32_t syndrome; 2158 2159 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2160 gen_a64_update_pc(s, 0); 2161 tcg_ri = tcg_temp_new_ptr(); 2162 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2163 tcg_constant_i32(key), 2164 tcg_constant_i32(syndrome), 2165 tcg_constant_i32(isread)); 2166 } else if (ri->type & ARM_CP_RAISES_EXC) { 2167 /* 2168 * The readfn or writefn might raise an exception; 2169 * synchronize the CPU state in case it does. 2170 */ 2171 gen_a64_update_pc(s, 0); 2172 } 2173 2174 /* Handle special cases first */ 2175 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2176 case 0: 2177 break; 2178 case ARM_CP_NOP: 2179 return; 2180 case ARM_CP_NZCV: 2181 tcg_rt = cpu_reg(s, rt); 2182 if (isread) { 2183 gen_get_nzcv(tcg_rt); 2184 } else { 2185 gen_set_nzcv(tcg_rt); 2186 } 2187 return; 2188 case ARM_CP_CURRENTEL: 2189 /* Reads as current EL value from pstate, which is 2190 * guaranteed to be constant by the tb flags. 2191 */ 2192 tcg_rt = cpu_reg(s, rt); 2193 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2194 return; 2195 case ARM_CP_DC_ZVA: 2196 /* Writes clear the aligned block of memory which rt points into. */ 2197 if (s->mte_active[0]) { 2198 int desc = 0; 2199 2200 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2201 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2202 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2203 2204 tcg_rt = tcg_temp_new_i64(); 2205 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2206 tcg_constant_i32(desc), cpu_reg(s, rt)); 2207 } else { 2208 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2209 } 2210 gen_helper_dc_zva(cpu_env, tcg_rt); 2211 return; 2212 case ARM_CP_DC_GVA: 2213 { 2214 TCGv_i64 clean_addr, tag; 2215 2216 /* 2217 * DC_GVA, like DC_ZVA, requires that we supply the original 2218 * pointer for an invalid page. Probe that address first. 2219 */ 2220 tcg_rt = cpu_reg(s, rt); 2221 clean_addr = clean_data_tbi(s, tcg_rt); 2222 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2223 2224 if (s->ata) { 2225 /* Extract the tag from the register to match STZGM. */ 2226 tag = tcg_temp_new_i64(); 2227 tcg_gen_shri_i64(tag, tcg_rt, 56); 2228 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2229 } 2230 } 2231 return; 2232 case ARM_CP_DC_GZVA: 2233 { 2234 TCGv_i64 clean_addr, tag; 2235 2236 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2237 tcg_rt = cpu_reg(s, rt); 2238 clean_addr = clean_data_tbi(s, tcg_rt); 2239 gen_helper_dc_zva(cpu_env, clean_addr); 2240 2241 if (s->ata) { 2242 /* Extract the tag from the register to match STZGM. */ 2243 tag = tcg_temp_new_i64(); 2244 tcg_gen_shri_i64(tag, tcg_rt, 56); 2245 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2246 } 2247 } 2248 return; 2249 default: 2250 g_assert_not_reached(); 2251 } 2252 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2253 return; 2254 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2255 return; 2256 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2257 return; 2258 } 2259 2260 if (ri->type & ARM_CP_IO) { 2261 /* I/O operations must end the TB here (whether read or write) */ 2262 need_exit_tb = translator_io_start(&s->base); 2263 } 2264 2265 tcg_rt = cpu_reg(s, rt); 2266 2267 if (isread) { 2268 if (ri->type & ARM_CP_CONST) { 2269 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2270 } else if (ri->readfn) { 2271 if (!tcg_ri) { 2272 tcg_ri = gen_lookup_cp_reg(key); 2273 } 2274 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2275 } else { 2276 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2277 } 2278 } else { 2279 if (ri->type & ARM_CP_CONST) { 2280 /* If not forbidden by access permissions, treat as WI */ 2281 return; 2282 } else if (ri->writefn) { 2283 if (!tcg_ri) { 2284 tcg_ri = gen_lookup_cp_reg(key); 2285 } 2286 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2287 } else { 2288 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2289 } 2290 } 2291 2292 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2293 /* 2294 * A write to any coprocessor regiser that ends a TB 2295 * must rebuild the hflags for the next TB. 2296 */ 2297 gen_rebuild_hflags(s); 2298 /* 2299 * We default to ending the TB on a coprocessor register write, 2300 * but allow this to be suppressed by the register definition 2301 * (usually only necessary to work around guest bugs). 2302 */ 2303 need_exit_tb = true; 2304 } 2305 if (need_exit_tb) { 2306 s->base.is_jmp = DISAS_UPDATE_EXIT; 2307 } 2308 } 2309 2310 /* System 2311 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2312 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2313 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2314 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2315 */ 2316 static void disas_system(DisasContext *s, uint32_t insn) 2317 { 2318 unsigned int l, op0, op1, crn, crm, op2, rt; 2319 l = extract32(insn, 21, 1); 2320 op0 = extract32(insn, 19, 2); 2321 op1 = extract32(insn, 16, 3); 2322 crn = extract32(insn, 12, 4); 2323 crm = extract32(insn, 8, 4); 2324 op2 = extract32(insn, 5, 3); 2325 rt = extract32(insn, 0, 5); 2326 2327 if (op0 == 0) { 2328 unallocated_encoding(s); 2329 return; 2330 } 2331 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2332 } 2333 2334 /* Exception generation 2335 * 2336 * 31 24 23 21 20 5 4 2 1 0 2337 * +-----------------+-----+------------------------+-----+----+ 2338 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2339 * +-----------------------+------------------------+----------+ 2340 */ 2341 static void disas_exc(DisasContext *s, uint32_t insn) 2342 { 2343 int opc = extract32(insn, 21, 3); 2344 int op2_ll = extract32(insn, 0, 5); 2345 int imm16 = extract32(insn, 5, 16); 2346 uint32_t syndrome; 2347 2348 switch (opc) { 2349 case 0: 2350 /* For SVC, HVC and SMC we advance the single-step state 2351 * machine before taking the exception. This is architecturally 2352 * mandated, to ensure that single-stepping a system call 2353 * instruction works properly. 2354 */ 2355 switch (op2_ll) { 2356 case 1: /* SVC */ 2357 syndrome = syn_aa64_svc(imm16); 2358 if (s->fgt_svc) { 2359 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2360 break; 2361 } 2362 gen_ss_advance(s); 2363 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2364 break; 2365 case 2: /* HVC */ 2366 if (s->current_el == 0) { 2367 unallocated_encoding(s); 2368 break; 2369 } 2370 /* The pre HVC helper handles cases when HVC gets trapped 2371 * as an undefined insn by runtime configuration. 2372 */ 2373 gen_a64_update_pc(s, 0); 2374 gen_helper_pre_hvc(cpu_env); 2375 gen_ss_advance(s); 2376 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2377 break; 2378 case 3: /* SMC */ 2379 if (s->current_el == 0) { 2380 unallocated_encoding(s); 2381 break; 2382 } 2383 gen_a64_update_pc(s, 0); 2384 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2385 gen_ss_advance(s); 2386 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2387 break; 2388 default: 2389 unallocated_encoding(s); 2390 break; 2391 } 2392 break; 2393 case 1: 2394 if (op2_ll != 0) { 2395 unallocated_encoding(s); 2396 break; 2397 } 2398 /* BRK */ 2399 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2400 break; 2401 case 2: 2402 if (op2_ll != 0) { 2403 unallocated_encoding(s); 2404 break; 2405 } 2406 /* HLT. This has two purposes. 2407 * Architecturally, it is an external halting debug instruction. 2408 * Since QEMU doesn't implement external debug, we treat this as 2409 * it is required for halting debug disabled: it will UNDEF. 2410 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2411 */ 2412 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2413 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2414 } else { 2415 unallocated_encoding(s); 2416 } 2417 break; 2418 case 5: 2419 if (op2_ll < 1 || op2_ll > 3) { 2420 unallocated_encoding(s); 2421 break; 2422 } 2423 /* DCPS1, DCPS2, DCPS3 */ 2424 unallocated_encoding(s); 2425 break; 2426 default: 2427 unallocated_encoding(s); 2428 break; 2429 } 2430 } 2431 2432 /* Branches, exception generating and system instructions */ 2433 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2434 { 2435 switch (extract32(insn, 25, 7)) { 2436 case 0x6a: /* Exception generation / System */ 2437 if (insn & (1 << 24)) { 2438 if (extract32(insn, 22, 2) == 0) { 2439 disas_system(s, insn); 2440 } else { 2441 unallocated_encoding(s); 2442 } 2443 } else { 2444 disas_exc(s, insn); 2445 } 2446 break; 2447 default: 2448 unallocated_encoding(s); 2449 break; 2450 } 2451 } 2452 2453 /* 2454 * Load/Store exclusive instructions are implemented by remembering 2455 * the value/address loaded, and seeing if these are the same 2456 * when the store is performed. This is not actually the architecturally 2457 * mandated semantics, but it works for typical guest code sequences 2458 * and avoids having to monitor regular stores. 2459 * 2460 * The store exclusive uses the atomic cmpxchg primitives to avoid 2461 * races in multi-threaded linux-user and when MTTCG softmmu is 2462 * enabled. 2463 */ 2464 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2465 int size, bool is_pair) 2466 { 2467 int idx = get_mem_index(s); 2468 TCGv_i64 dirty_addr, clean_addr; 2469 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2470 2471 s->is_ldex = true; 2472 dirty_addr = cpu_reg_sp(s, rn); 2473 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2474 2475 g_assert(size <= 3); 2476 if (is_pair) { 2477 g_assert(size >= 2); 2478 if (size == 2) { 2479 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2480 if (s->be_data == MO_LE) { 2481 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2482 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2483 } else { 2484 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2485 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2486 } 2487 } else { 2488 TCGv_i128 t16 = tcg_temp_new_i128(); 2489 2490 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2491 2492 if (s->be_data == MO_LE) { 2493 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2494 cpu_exclusive_high, t16); 2495 } else { 2496 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2497 cpu_exclusive_val, t16); 2498 } 2499 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2500 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2501 } 2502 } else { 2503 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2504 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2505 } 2506 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2507 } 2508 2509 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2510 int rn, int size, int is_pair) 2511 { 2512 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2513 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2514 * [addr] = {Rt}; 2515 * if (is_pair) { 2516 * [addr + datasize] = {Rt2}; 2517 * } 2518 * {Rd} = 0; 2519 * } else { 2520 * {Rd} = 1; 2521 * } 2522 * env->exclusive_addr = -1; 2523 */ 2524 TCGLabel *fail_label = gen_new_label(); 2525 TCGLabel *done_label = gen_new_label(); 2526 TCGv_i64 tmp, clean_addr; 2527 MemOp memop; 2528 2529 /* 2530 * FIXME: We are out of spec here. We have recorded only the address 2531 * from load_exclusive, not the entire range, and we assume that the 2532 * size of the access on both sides match. The architecture allows the 2533 * store to be smaller than the load, so long as the stored bytes are 2534 * within the range recorded by the load. 2535 */ 2536 2537 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2538 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2539 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2540 2541 /* 2542 * The write, and any associated faults, only happen if the virtual 2543 * and physical addresses pass the exclusive monitor check. These 2544 * faults are exceedingly unlikely, because normally the guest uses 2545 * the exact same address register for the load_exclusive, and we 2546 * would have recognized these faults there. 2547 * 2548 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2549 * unaligned 4-byte write within the range of an aligned 8-byte load. 2550 * With LSE2, the store would need to cross a 16-byte boundary when the 2551 * load did not, which would mean the store is outside the range 2552 * recorded for the monitor, which would have failed a corrected monitor 2553 * check above. For now, we assume no size change and retain the 2554 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2555 * 2556 * It is possible to trigger an MTE fault, by performing the load with 2557 * a virtual address with a valid tag and performing the store with the 2558 * same virtual address and a different invalid tag. 2559 */ 2560 memop = size + is_pair; 2561 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2562 memop |= MO_ALIGN; 2563 } 2564 memop = finalize_memop(s, memop); 2565 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2566 2567 tmp = tcg_temp_new_i64(); 2568 if (is_pair) { 2569 if (size == 2) { 2570 if (s->be_data == MO_LE) { 2571 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2572 } else { 2573 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2574 } 2575 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2576 cpu_exclusive_val, tmp, 2577 get_mem_index(s), memop); 2578 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2579 } else { 2580 TCGv_i128 t16 = tcg_temp_new_i128(); 2581 TCGv_i128 c16 = tcg_temp_new_i128(); 2582 TCGv_i64 a, b; 2583 2584 if (s->be_data == MO_LE) { 2585 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2586 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2587 cpu_exclusive_high); 2588 } else { 2589 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2590 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2591 cpu_exclusive_val); 2592 } 2593 2594 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2595 get_mem_index(s), memop); 2596 2597 a = tcg_temp_new_i64(); 2598 b = tcg_temp_new_i64(); 2599 if (s->be_data == MO_LE) { 2600 tcg_gen_extr_i128_i64(a, b, t16); 2601 } else { 2602 tcg_gen_extr_i128_i64(b, a, t16); 2603 } 2604 2605 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2606 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2607 tcg_gen_or_i64(tmp, a, b); 2608 2609 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2610 } 2611 } else { 2612 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2613 cpu_reg(s, rt), get_mem_index(s), memop); 2614 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2615 } 2616 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2617 tcg_gen_br(done_label); 2618 2619 gen_set_label(fail_label); 2620 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2621 gen_set_label(done_label); 2622 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2623 } 2624 2625 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2626 int rn, int size) 2627 { 2628 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2629 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2630 int memidx = get_mem_index(s); 2631 TCGv_i64 clean_addr; 2632 MemOp memop; 2633 2634 if (rn == 31) { 2635 gen_check_sp_alignment(s); 2636 } 2637 memop = check_atomic_align(s, rn, size); 2638 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2639 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2640 memidx, memop); 2641 } 2642 2643 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2644 int rn, int size) 2645 { 2646 TCGv_i64 s1 = cpu_reg(s, rs); 2647 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2648 TCGv_i64 t1 = cpu_reg(s, rt); 2649 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2650 TCGv_i64 clean_addr; 2651 int memidx = get_mem_index(s); 2652 MemOp memop; 2653 2654 if (rn == 31) { 2655 gen_check_sp_alignment(s); 2656 } 2657 2658 /* This is a single atomic access, despite the "pair". */ 2659 memop = check_atomic_align(s, rn, size + 1); 2660 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2661 2662 if (size == 2) { 2663 TCGv_i64 cmp = tcg_temp_new_i64(); 2664 TCGv_i64 val = tcg_temp_new_i64(); 2665 2666 if (s->be_data == MO_LE) { 2667 tcg_gen_concat32_i64(val, t1, t2); 2668 tcg_gen_concat32_i64(cmp, s1, s2); 2669 } else { 2670 tcg_gen_concat32_i64(val, t2, t1); 2671 tcg_gen_concat32_i64(cmp, s2, s1); 2672 } 2673 2674 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2675 2676 if (s->be_data == MO_LE) { 2677 tcg_gen_extr32_i64(s1, s2, cmp); 2678 } else { 2679 tcg_gen_extr32_i64(s2, s1, cmp); 2680 } 2681 } else { 2682 TCGv_i128 cmp = tcg_temp_new_i128(); 2683 TCGv_i128 val = tcg_temp_new_i128(); 2684 2685 if (s->be_data == MO_LE) { 2686 tcg_gen_concat_i64_i128(val, t1, t2); 2687 tcg_gen_concat_i64_i128(cmp, s1, s2); 2688 } else { 2689 tcg_gen_concat_i64_i128(val, t2, t1); 2690 tcg_gen_concat_i64_i128(cmp, s2, s1); 2691 } 2692 2693 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2694 2695 if (s->be_data == MO_LE) { 2696 tcg_gen_extr_i128_i64(s1, s2, cmp); 2697 } else { 2698 tcg_gen_extr_i128_i64(s2, s1, cmp); 2699 } 2700 } 2701 } 2702 2703 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2704 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2705 */ 2706 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2707 { 2708 int opc0 = extract32(opc, 0, 1); 2709 int regsize; 2710 2711 if (is_signed) { 2712 regsize = opc0 ? 32 : 64; 2713 } else { 2714 regsize = size == 3 ? 64 : 32; 2715 } 2716 return regsize == 64; 2717 } 2718 2719 /* Load/store exclusive 2720 * 2721 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2722 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2723 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2724 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2725 * 2726 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2727 * L: 0 -> store, 1 -> load 2728 * o2: 0 -> exclusive, 1 -> not 2729 * o1: 0 -> single register, 1 -> register pair 2730 * o0: 1 -> load-acquire/store-release, 0 -> not 2731 */ 2732 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2733 { 2734 int rt = extract32(insn, 0, 5); 2735 int rn = extract32(insn, 5, 5); 2736 int rt2 = extract32(insn, 10, 5); 2737 int rs = extract32(insn, 16, 5); 2738 int is_lasr = extract32(insn, 15, 1); 2739 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2740 int size = extract32(insn, 30, 2); 2741 TCGv_i64 clean_addr; 2742 MemOp memop; 2743 2744 switch (o2_L_o1_o0) { 2745 case 0x0: /* STXR */ 2746 case 0x1: /* STLXR */ 2747 if (rn == 31) { 2748 gen_check_sp_alignment(s); 2749 } 2750 if (is_lasr) { 2751 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2752 } 2753 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2754 return; 2755 2756 case 0x4: /* LDXR */ 2757 case 0x5: /* LDAXR */ 2758 if (rn == 31) { 2759 gen_check_sp_alignment(s); 2760 } 2761 gen_load_exclusive(s, rt, rt2, rn, size, false); 2762 if (is_lasr) { 2763 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2764 } 2765 return; 2766 2767 case 0x8: /* STLLR */ 2768 if (!dc_isar_feature(aa64_lor, s)) { 2769 break; 2770 } 2771 /* StoreLORelease is the same as Store-Release for QEMU. */ 2772 /* fall through */ 2773 case 0x9: /* STLR */ 2774 /* Generate ISS for non-exclusive accesses including LASR. */ 2775 if (rn == 31) { 2776 gen_check_sp_alignment(s); 2777 } 2778 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2779 memop = check_ordered_align(s, rn, 0, true, size); 2780 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2781 true, rn != 31, memop); 2782 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2783 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2784 return; 2785 2786 case 0xc: /* LDLAR */ 2787 if (!dc_isar_feature(aa64_lor, s)) { 2788 break; 2789 } 2790 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2791 /* fall through */ 2792 case 0xd: /* LDAR */ 2793 /* Generate ISS for non-exclusive accesses including LASR. */ 2794 if (rn == 31) { 2795 gen_check_sp_alignment(s); 2796 } 2797 memop = check_ordered_align(s, rn, 0, false, size); 2798 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2799 false, rn != 31, memop); 2800 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2801 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2802 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2803 return; 2804 2805 case 0x2: case 0x3: /* CASP / STXP */ 2806 if (size & 2) { /* STXP / STLXP */ 2807 if (rn == 31) { 2808 gen_check_sp_alignment(s); 2809 } 2810 if (is_lasr) { 2811 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2812 } 2813 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2814 return; 2815 } 2816 if (rt2 == 31 2817 && ((rt | rs) & 1) == 0 2818 && dc_isar_feature(aa64_atomics, s)) { 2819 /* CASP / CASPL */ 2820 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2821 return; 2822 } 2823 break; 2824 2825 case 0x6: case 0x7: /* CASPA / LDXP */ 2826 if (size & 2) { /* LDXP / LDAXP */ 2827 if (rn == 31) { 2828 gen_check_sp_alignment(s); 2829 } 2830 gen_load_exclusive(s, rt, rt2, rn, size, true); 2831 if (is_lasr) { 2832 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2833 } 2834 return; 2835 } 2836 if (rt2 == 31 2837 && ((rt | rs) & 1) == 0 2838 && dc_isar_feature(aa64_atomics, s)) { 2839 /* CASPA / CASPAL */ 2840 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2841 return; 2842 } 2843 break; 2844 2845 case 0xa: /* CAS */ 2846 case 0xb: /* CASL */ 2847 case 0xe: /* CASA */ 2848 case 0xf: /* CASAL */ 2849 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2850 gen_compare_and_swap(s, rs, rt, rn, size); 2851 return; 2852 } 2853 break; 2854 } 2855 unallocated_encoding(s); 2856 } 2857 2858 /* 2859 * Load register (literal) 2860 * 2861 * 31 30 29 27 26 25 24 23 5 4 0 2862 * +-----+-------+---+-----+-------------------+-------+ 2863 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2864 * +-----+-------+---+-----+-------------------+-------+ 2865 * 2866 * V: 1 -> vector (simd/fp) 2867 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2868 * 10-> 32 bit signed, 11 -> prefetch 2869 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2870 */ 2871 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2872 { 2873 int rt = extract32(insn, 0, 5); 2874 int64_t imm = sextract32(insn, 5, 19) << 2; 2875 bool is_vector = extract32(insn, 26, 1); 2876 int opc = extract32(insn, 30, 2); 2877 bool is_signed = false; 2878 int size = 2; 2879 TCGv_i64 tcg_rt, clean_addr; 2880 MemOp memop; 2881 2882 if (is_vector) { 2883 if (opc == 3) { 2884 unallocated_encoding(s); 2885 return; 2886 } 2887 size = 2 + opc; 2888 if (!fp_access_check(s)) { 2889 return; 2890 } 2891 memop = finalize_memop_asimd(s, size); 2892 } else { 2893 if (opc == 3) { 2894 /* PRFM (literal) : prefetch */ 2895 return; 2896 } 2897 size = 2 + extract32(opc, 0, 1); 2898 is_signed = extract32(opc, 1, 1); 2899 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2900 } 2901 2902 tcg_rt = cpu_reg(s, rt); 2903 2904 clean_addr = tcg_temp_new_i64(); 2905 gen_pc_plus_diff(s, clean_addr, imm); 2906 2907 if (is_vector) { 2908 do_fp_ld(s, rt, clean_addr, memop); 2909 } else { 2910 /* Only unsigned 32bit loads target 32bit registers. */ 2911 bool iss_sf = opc != 0; 2912 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2913 } 2914 } 2915 2916 /* 2917 * LDNP (Load Pair - non-temporal hint) 2918 * LDP (Load Pair - non vector) 2919 * LDPSW (Load Pair Signed Word - non vector) 2920 * STNP (Store Pair - non-temporal hint) 2921 * STP (Store Pair - non vector) 2922 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2923 * LDP (Load Pair of SIMD&FP) 2924 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2925 * STP (Store Pair of SIMD&FP) 2926 * 2927 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2928 * +-----+-------+---+---+-------+---+-----------------------------+ 2929 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2930 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2931 * 2932 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2933 * LDPSW/STGP 01 2934 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2935 * V: 0 -> GPR, 1 -> Vector 2936 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2937 * 10 -> signed offset, 11 -> pre-index 2938 * L: 0 -> Store 1 -> Load 2939 * 2940 * Rt, Rt2 = GPR or SIMD registers to be stored 2941 * Rn = general purpose register containing address 2942 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2943 */ 2944 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2945 { 2946 int rt = extract32(insn, 0, 5); 2947 int rn = extract32(insn, 5, 5); 2948 int rt2 = extract32(insn, 10, 5); 2949 uint64_t offset = sextract64(insn, 15, 7); 2950 int index = extract32(insn, 23, 2); 2951 bool is_vector = extract32(insn, 26, 1); 2952 bool is_load = extract32(insn, 22, 1); 2953 int opc = extract32(insn, 30, 2); 2954 bool is_signed = false; 2955 bool postindex = false; 2956 bool wback = false; 2957 bool set_tag = false; 2958 TCGv_i64 clean_addr, dirty_addr; 2959 MemOp mop; 2960 int size; 2961 2962 if (opc == 3) { 2963 unallocated_encoding(s); 2964 return; 2965 } 2966 2967 if (is_vector) { 2968 size = 2 + opc; 2969 } else if (opc == 1 && !is_load) { 2970 /* STGP */ 2971 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2972 unallocated_encoding(s); 2973 return; 2974 } 2975 size = 3; 2976 set_tag = true; 2977 } else { 2978 size = 2 + extract32(opc, 1, 1); 2979 is_signed = extract32(opc, 0, 1); 2980 if (!is_load && is_signed) { 2981 unallocated_encoding(s); 2982 return; 2983 } 2984 } 2985 2986 switch (index) { 2987 case 1: /* post-index */ 2988 postindex = true; 2989 wback = true; 2990 break; 2991 case 0: 2992 /* signed offset with "non-temporal" hint. Since we don't emulate 2993 * caches we don't care about hints to the cache system about 2994 * data access patterns, and handle this identically to plain 2995 * signed offset. 2996 */ 2997 if (is_signed) { 2998 /* There is no non-temporal-hint version of LDPSW */ 2999 unallocated_encoding(s); 3000 return; 3001 } 3002 postindex = false; 3003 break; 3004 case 2: /* signed offset, rn not updated */ 3005 postindex = false; 3006 break; 3007 case 3: /* pre-index */ 3008 postindex = false; 3009 wback = true; 3010 break; 3011 } 3012 3013 if (is_vector && !fp_access_check(s)) { 3014 return; 3015 } 3016 3017 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 3018 3019 if (rn == 31) { 3020 gen_check_sp_alignment(s); 3021 } 3022 3023 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3024 if (!postindex) { 3025 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3026 } 3027 3028 if (set_tag) { 3029 if (!s->ata) { 3030 /* 3031 * TODO: We could rely on the stores below, at least for 3032 * system mode, if we arrange to add MO_ALIGN_16. 3033 */ 3034 gen_helper_stg_stub(cpu_env, dirty_addr); 3035 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3036 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3037 } else { 3038 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3039 } 3040 } 3041 3042 if (is_vector) { 3043 mop = finalize_memop_asimd(s, size); 3044 } else { 3045 mop = finalize_memop(s, size); 3046 } 3047 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3048 (wback || rn != 31) && !set_tag, 3049 2 << size, mop); 3050 3051 if (is_vector) { 3052 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3053 if (is_load) { 3054 do_fp_ld(s, rt, clean_addr, mop); 3055 } else { 3056 do_fp_st(s, rt, clean_addr, mop); 3057 } 3058 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3059 if (is_load) { 3060 do_fp_ld(s, rt2, clean_addr, mop); 3061 } else { 3062 do_fp_st(s, rt2, clean_addr, mop); 3063 } 3064 } else { 3065 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3066 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3067 3068 /* 3069 * We built mop above for the single logical access -- rebuild it 3070 * now for the paired operation. 3071 * 3072 * With LSE2, non-sign-extending pairs are treated atomically if 3073 * aligned, and if unaligned one of the pair will be completely 3074 * within a 16-byte block and that element will be atomic. 3075 * Otherwise each element is separately atomic. 3076 * In all cases, issue one operation with the correct atomicity. 3077 * 3078 * This treats sign-extending loads like zero-extending loads, 3079 * since that reuses the most code below. 3080 */ 3081 mop = size + 1; 3082 if (s->align_mem) { 3083 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3084 } 3085 mop = finalize_memop_pair(s, mop); 3086 3087 if (is_load) { 3088 if (size == 2) { 3089 int o2 = s->be_data == MO_LE ? 32 : 0; 3090 int o1 = o2 ^ 32; 3091 3092 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3093 if (is_signed) { 3094 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3095 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3096 } else { 3097 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3098 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3099 } 3100 } else { 3101 TCGv_i128 tmp = tcg_temp_new_i128(); 3102 3103 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3104 if (s->be_data == MO_LE) { 3105 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3106 } else { 3107 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3108 } 3109 } 3110 } else { 3111 if (size == 2) { 3112 TCGv_i64 tmp = tcg_temp_new_i64(); 3113 3114 if (s->be_data == MO_LE) { 3115 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3116 } else { 3117 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3118 } 3119 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3120 } else { 3121 TCGv_i128 tmp = tcg_temp_new_i128(); 3122 3123 if (s->be_data == MO_LE) { 3124 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3125 } else { 3126 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3127 } 3128 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3129 } 3130 } 3131 } 3132 3133 if (wback) { 3134 if (postindex) { 3135 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3136 } 3137 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3138 } 3139 } 3140 3141 /* 3142 * Load/store (immediate post-indexed) 3143 * Load/store (immediate pre-indexed) 3144 * Load/store (unscaled immediate) 3145 * 3146 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3147 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3148 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3149 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3150 * 3151 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3152 10 -> unprivileged 3153 * V = 0 -> non-vector 3154 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3155 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3156 */ 3157 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3158 int opc, 3159 int size, 3160 int rt, 3161 bool is_vector) 3162 { 3163 int rn = extract32(insn, 5, 5); 3164 int imm9 = sextract32(insn, 12, 9); 3165 int idx = extract32(insn, 10, 2); 3166 bool is_signed = false; 3167 bool is_store = false; 3168 bool is_extended = false; 3169 bool is_unpriv = (idx == 2); 3170 bool iss_valid; 3171 bool post_index; 3172 bool writeback; 3173 int memidx; 3174 MemOp memop; 3175 TCGv_i64 clean_addr, dirty_addr; 3176 3177 if (is_vector) { 3178 size |= (opc & 2) << 1; 3179 if (size > 4 || is_unpriv) { 3180 unallocated_encoding(s); 3181 return; 3182 } 3183 is_store = ((opc & 1) == 0); 3184 if (!fp_access_check(s)) { 3185 return; 3186 } 3187 memop = finalize_memop_asimd(s, size); 3188 } else { 3189 if (size == 3 && opc == 2) { 3190 /* PRFM - prefetch */ 3191 if (idx != 0) { 3192 unallocated_encoding(s); 3193 return; 3194 } 3195 return; 3196 } 3197 if (opc == 3 && size > 1) { 3198 unallocated_encoding(s); 3199 return; 3200 } 3201 is_store = (opc == 0); 3202 is_signed = !is_store && extract32(opc, 1, 1); 3203 is_extended = (size < 3) && extract32(opc, 0, 1); 3204 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3205 } 3206 3207 switch (idx) { 3208 case 0: 3209 case 2: 3210 post_index = false; 3211 writeback = false; 3212 break; 3213 case 1: 3214 post_index = true; 3215 writeback = true; 3216 break; 3217 case 3: 3218 post_index = false; 3219 writeback = true; 3220 break; 3221 default: 3222 g_assert_not_reached(); 3223 } 3224 3225 iss_valid = !is_vector && !writeback; 3226 3227 if (rn == 31) { 3228 gen_check_sp_alignment(s); 3229 } 3230 3231 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3232 if (!post_index) { 3233 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3234 } 3235 3236 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3237 3238 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3239 writeback || rn != 31, 3240 memop, is_unpriv, memidx); 3241 3242 if (is_vector) { 3243 if (is_store) { 3244 do_fp_st(s, rt, clean_addr, memop); 3245 } else { 3246 do_fp_ld(s, rt, clean_addr, memop); 3247 } 3248 } else { 3249 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3250 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3251 3252 if (is_store) { 3253 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3254 iss_valid, rt, iss_sf, false); 3255 } else { 3256 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3257 is_extended, memidx, 3258 iss_valid, rt, iss_sf, false); 3259 } 3260 } 3261 3262 if (writeback) { 3263 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3264 if (post_index) { 3265 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3266 } 3267 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3268 } 3269 } 3270 3271 /* 3272 * Load/store (register offset) 3273 * 3274 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3275 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3276 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3277 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3278 * 3279 * For non-vector: 3280 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3281 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3282 * For vector: 3283 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3284 * opc<0>: 0 -> store, 1 -> load 3285 * V: 1 -> vector/simd 3286 * opt: extend encoding (see DecodeRegExtend) 3287 * S: if S=1 then scale (essentially index by sizeof(size)) 3288 * Rt: register to transfer into/out of 3289 * Rn: address register or SP for base 3290 * Rm: offset register or ZR for offset 3291 */ 3292 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3293 int opc, 3294 int size, 3295 int rt, 3296 bool is_vector) 3297 { 3298 int rn = extract32(insn, 5, 5); 3299 int shift = extract32(insn, 12, 1); 3300 int rm = extract32(insn, 16, 5); 3301 int opt = extract32(insn, 13, 3); 3302 bool is_signed = false; 3303 bool is_store = false; 3304 bool is_extended = false; 3305 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3306 MemOp memop; 3307 3308 if (extract32(opt, 1, 1) == 0) { 3309 unallocated_encoding(s); 3310 return; 3311 } 3312 3313 if (is_vector) { 3314 size |= (opc & 2) << 1; 3315 if (size > 4) { 3316 unallocated_encoding(s); 3317 return; 3318 } 3319 is_store = !extract32(opc, 0, 1); 3320 if (!fp_access_check(s)) { 3321 return; 3322 } 3323 memop = finalize_memop_asimd(s, size); 3324 } else { 3325 if (size == 3 && opc == 2) { 3326 /* PRFM - prefetch */ 3327 return; 3328 } 3329 if (opc == 3 && size > 1) { 3330 unallocated_encoding(s); 3331 return; 3332 } 3333 is_store = (opc == 0); 3334 is_signed = !is_store && extract32(opc, 1, 1); 3335 is_extended = (size < 3) && extract32(opc, 0, 1); 3336 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3337 } 3338 3339 if (rn == 31) { 3340 gen_check_sp_alignment(s); 3341 } 3342 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3343 3344 tcg_rm = read_cpu_reg(s, rm, 1); 3345 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3346 3347 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3348 3349 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3350 3351 if (is_vector) { 3352 if (is_store) { 3353 do_fp_st(s, rt, clean_addr, memop); 3354 } else { 3355 do_fp_ld(s, rt, clean_addr, memop); 3356 } 3357 } else { 3358 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3359 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3360 3361 if (is_store) { 3362 do_gpr_st(s, tcg_rt, clean_addr, memop, 3363 true, rt, iss_sf, false); 3364 } else { 3365 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3366 is_extended, true, rt, iss_sf, false); 3367 } 3368 } 3369 } 3370 3371 /* 3372 * Load/store (unsigned immediate) 3373 * 3374 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3375 * +----+-------+---+-----+-----+------------+-------+------+ 3376 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3377 * +----+-------+---+-----+-----+------------+-------+------+ 3378 * 3379 * For non-vector: 3380 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3381 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3382 * For vector: 3383 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3384 * opc<0>: 0 -> store, 1 -> load 3385 * Rn: base address register (inc SP) 3386 * Rt: target register 3387 */ 3388 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3389 int opc, 3390 int size, 3391 int rt, 3392 bool is_vector) 3393 { 3394 int rn = extract32(insn, 5, 5); 3395 unsigned int imm12 = extract32(insn, 10, 12); 3396 unsigned int offset; 3397 TCGv_i64 clean_addr, dirty_addr; 3398 bool is_store; 3399 bool is_signed = false; 3400 bool is_extended = false; 3401 MemOp memop; 3402 3403 if (is_vector) { 3404 size |= (opc & 2) << 1; 3405 if (size > 4) { 3406 unallocated_encoding(s); 3407 return; 3408 } 3409 is_store = !extract32(opc, 0, 1); 3410 if (!fp_access_check(s)) { 3411 return; 3412 } 3413 memop = finalize_memop_asimd(s, size); 3414 } else { 3415 if (size == 3 && opc == 2) { 3416 /* PRFM - prefetch */ 3417 return; 3418 } 3419 if (opc == 3 && size > 1) { 3420 unallocated_encoding(s); 3421 return; 3422 } 3423 is_store = (opc == 0); 3424 is_signed = !is_store && extract32(opc, 1, 1); 3425 is_extended = (size < 3) && extract32(opc, 0, 1); 3426 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3427 } 3428 3429 if (rn == 31) { 3430 gen_check_sp_alignment(s); 3431 } 3432 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3433 offset = imm12 << size; 3434 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3435 3436 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3437 3438 if (is_vector) { 3439 if (is_store) { 3440 do_fp_st(s, rt, clean_addr, memop); 3441 } else { 3442 do_fp_ld(s, rt, clean_addr, memop); 3443 } 3444 } else { 3445 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3446 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3447 if (is_store) { 3448 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3449 } else { 3450 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3451 is_extended, true, rt, iss_sf, false); 3452 } 3453 } 3454 } 3455 3456 /* Atomic memory operations 3457 * 3458 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3459 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3460 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3461 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3462 * 3463 * Rt: the result register 3464 * Rn: base address or SP 3465 * Rs: the source register for the operation 3466 * V: vector flag (always 0 as of v8.3) 3467 * A: acquire flag 3468 * R: release flag 3469 */ 3470 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3471 int size, int rt, bool is_vector) 3472 { 3473 int rs = extract32(insn, 16, 5); 3474 int rn = extract32(insn, 5, 5); 3475 int o3_opc = extract32(insn, 12, 4); 3476 bool r = extract32(insn, 22, 1); 3477 bool a = extract32(insn, 23, 1); 3478 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3479 AtomicThreeOpFn *fn = NULL; 3480 MemOp mop = size; 3481 3482 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3483 unallocated_encoding(s); 3484 return; 3485 } 3486 switch (o3_opc) { 3487 case 000: /* LDADD */ 3488 fn = tcg_gen_atomic_fetch_add_i64; 3489 break; 3490 case 001: /* LDCLR */ 3491 fn = tcg_gen_atomic_fetch_and_i64; 3492 break; 3493 case 002: /* LDEOR */ 3494 fn = tcg_gen_atomic_fetch_xor_i64; 3495 break; 3496 case 003: /* LDSET */ 3497 fn = tcg_gen_atomic_fetch_or_i64; 3498 break; 3499 case 004: /* LDSMAX */ 3500 fn = tcg_gen_atomic_fetch_smax_i64; 3501 mop |= MO_SIGN; 3502 break; 3503 case 005: /* LDSMIN */ 3504 fn = tcg_gen_atomic_fetch_smin_i64; 3505 mop |= MO_SIGN; 3506 break; 3507 case 006: /* LDUMAX */ 3508 fn = tcg_gen_atomic_fetch_umax_i64; 3509 break; 3510 case 007: /* LDUMIN */ 3511 fn = tcg_gen_atomic_fetch_umin_i64; 3512 break; 3513 case 010: /* SWP */ 3514 fn = tcg_gen_atomic_xchg_i64; 3515 break; 3516 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3517 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3518 rs != 31 || a != 1 || r != 0) { 3519 unallocated_encoding(s); 3520 return; 3521 } 3522 break; 3523 default: 3524 unallocated_encoding(s); 3525 return; 3526 } 3527 3528 if (rn == 31) { 3529 gen_check_sp_alignment(s); 3530 } 3531 3532 mop = check_atomic_align(s, rn, mop); 3533 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3534 3535 if (o3_opc == 014) { 3536 /* 3537 * LDAPR* are a special case because they are a simple load, not a 3538 * fetch-and-do-something op. 3539 * The architectural consistency requirements here are weaker than 3540 * full load-acquire (we only need "load-acquire processor consistent"), 3541 * but we choose to implement them as full LDAQ. 3542 */ 3543 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3544 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3545 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3546 return; 3547 } 3548 3549 tcg_rs = read_cpu_reg(s, rs, true); 3550 tcg_rt = cpu_reg(s, rt); 3551 3552 if (o3_opc == 1) { /* LDCLR */ 3553 tcg_gen_not_i64(tcg_rs, tcg_rs); 3554 } 3555 3556 /* The tcg atomic primitives are all full barriers. Therefore we 3557 * can ignore the Acquire and Release bits of this instruction. 3558 */ 3559 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3560 3561 if (mop & MO_SIGN) { 3562 switch (size) { 3563 case MO_8: 3564 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3565 break; 3566 case MO_16: 3567 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3568 break; 3569 case MO_32: 3570 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3571 break; 3572 case MO_64: 3573 break; 3574 default: 3575 g_assert_not_reached(); 3576 } 3577 } 3578 } 3579 3580 /* 3581 * PAC memory operations 3582 * 3583 * 31 30 27 26 24 22 21 12 11 10 5 0 3584 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3585 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3586 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3587 * 3588 * Rt: the result register 3589 * Rn: base address or SP 3590 * V: vector flag (always 0 as of v8.3) 3591 * M: clear for key DA, set for key DB 3592 * W: pre-indexing flag 3593 * S: sign for imm9. 3594 */ 3595 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3596 int size, int rt, bool is_vector) 3597 { 3598 int rn = extract32(insn, 5, 5); 3599 bool is_wback = extract32(insn, 11, 1); 3600 bool use_key_a = !extract32(insn, 23, 1); 3601 int offset; 3602 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3603 MemOp memop; 3604 3605 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3606 unallocated_encoding(s); 3607 return; 3608 } 3609 3610 if (rn == 31) { 3611 gen_check_sp_alignment(s); 3612 } 3613 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3614 3615 if (s->pauth_active) { 3616 if (use_key_a) { 3617 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3618 tcg_constant_i64(0)); 3619 } else { 3620 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3621 tcg_constant_i64(0)); 3622 } 3623 } 3624 3625 /* Form the 10-bit signed, scaled offset. */ 3626 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3627 offset = sextract32(offset << size, 0, 10 + size); 3628 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3629 3630 memop = finalize_memop(s, size); 3631 3632 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3633 clean_addr = gen_mte_check1(s, dirty_addr, false, 3634 is_wback || rn != 31, memop); 3635 3636 tcg_rt = cpu_reg(s, rt); 3637 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3638 /* extend */ false, /* iss_valid */ !is_wback, 3639 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3640 3641 if (is_wback) { 3642 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3643 } 3644 } 3645 3646 /* 3647 * LDAPR/STLR (unscaled immediate) 3648 * 3649 * 31 30 24 22 21 12 10 5 0 3650 * +------+-------------+-----+---+--------+-----+----+-----+ 3651 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3652 * +------+-------------+-----+---+--------+-----+----+-----+ 3653 * 3654 * Rt: source or destination register 3655 * Rn: base register 3656 * imm9: unscaled immediate offset 3657 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3658 * size: size of load/store 3659 */ 3660 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3661 { 3662 int rt = extract32(insn, 0, 5); 3663 int rn = extract32(insn, 5, 5); 3664 int offset = sextract32(insn, 12, 9); 3665 int opc = extract32(insn, 22, 2); 3666 int size = extract32(insn, 30, 2); 3667 TCGv_i64 clean_addr, dirty_addr; 3668 bool is_store = false; 3669 bool extend = false; 3670 bool iss_sf; 3671 MemOp mop = size; 3672 3673 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3674 unallocated_encoding(s); 3675 return; 3676 } 3677 3678 switch (opc) { 3679 case 0: /* STLURB */ 3680 is_store = true; 3681 break; 3682 case 1: /* LDAPUR* */ 3683 break; 3684 case 2: /* LDAPURS* 64-bit variant */ 3685 if (size == 3) { 3686 unallocated_encoding(s); 3687 return; 3688 } 3689 mop |= MO_SIGN; 3690 break; 3691 case 3: /* LDAPURS* 32-bit variant */ 3692 if (size > 1) { 3693 unallocated_encoding(s); 3694 return; 3695 } 3696 mop |= MO_SIGN; 3697 extend = true; /* zero-extend 32->64 after signed load */ 3698 break; 3699 default: 3700 g_assert_not_reached(); 3701 } 3702 3703 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3704 3705 if (rn == 31) { 3706 gen_check_sp_alignment(s); 3707 } 3708 3709 mop = check_ordered_align(s, rn, offset, is_store, mop); 3710 3711 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3712 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3713 clean_addr = clean_data_tbi(s, dirty_addr); 3714 3715 if (is_store) { 3716 /* Store-Release semantics */ 3717 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3718 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3719 } else { 3720 /* 3721 * Load-AcquirePC semantics; we implement as the slightly more 3722 * restrictive Load-Acquire. 3723 */ 3724 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3725 extend, true, rt, iss_sf, true); 3726 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3727 } 3728 } 3729 3730 /* Load/store register (all forms) */ 3731 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3732 { 3733 int rt = extract32(insn, 0, 5); 3734 int opc = extract32(insn, 22, 2); 3735 bool is_vector = extract32(insn, 26, 1); 3736 int size = extract32(insn, 30, 2); 3737 3738 switch (extract32(insn, 24, 2)) { 3739 case 0: 3740 if (extract32(insn, 21, 1) == 0) { 3741 /* Load/store register (unscaled immediate) 3742 * Load/store immediate pre/post-indexed 3743 * Load/store register unprivileged 3744 */ 3745 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3746 return; 3747 } 3748 switch (extract32(insn, 10, 2)) { 3749 case 0: 3750 disas_ldst_atomic(s, insn, size, rt, is_vector); 3751 return; 3752 case 2: 3753 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3754 return; 3755 default: 3756 disas_ldst_pac(s, insn, size, rt, is_vector); 3757 return; 3758 } 3759 break; 3760 case 1: 3761 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3762 return; 3763 } 3764 unallocated_encoding(s); 3765 } 3766 3767 /* AdvSIMD load/store multiple structures 3768 * 3769 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3770 * +---+---+---------------+---+-------------+--------+------+------+------+ 3771 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3772 * +---+---+---------------+---+-------------+--------+------+------+------+ 3773 * 3774 * AdvSIMD load/store multiple structures (post-indexed) 3775 * 3776 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3777 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3778 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3779 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3780 * 3781 * Rt: first (or only) SIMD&FP register to be transferred 3782 * Rn: base address or SP 3783 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3784 */ 3785 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3786 { 3787 int rt = extract32(insn, 0, 5); 3788 int rn = extract32(insn, 5, 5); 3789 int rm = extract32(insn, 16, 5); 3790 int size = extract32(insn, 10, 2); 3791 int opcode = extract32(insn, 12, 4); 3792 bool is_store = !extract32(insn, 22, 1); 3793 bool is_postidx = extract32(insn, 23, 1); 3794 bool is_q = extract32(insn, 30, 1); 3795 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3796 MemOp endian, align, mop; 3797 3798 int total; /* total bytes */ 3799 int elements; /* elements per vector */ 3800 int rpt; /* num iterations */ 3801 int selem; /* structure elements */ 3802 int r; 3803 3804 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3805 unallocated_encoding(s); 3806 return; 3807 } 3808 3809 if (!is_postidx && rm != 0) { 3810 unallocated_encoding(s); 3811 return; 3812 } 3813 3814 /* From the shared decode logic */ 3815 switch (opcode) { 3816 case 0x0: 3817 rpt = 1; 3818 selem = 4; 3819 break; 3820 case 0x2: 3821 rpt = 4; 3822 selem = 1; 3823 break; 3824 case 0x4: 3825 rpt = 1; 3826 selem = 3; 3827 break; 3828 case 0x6: 3829 rpt = 3; 3830 selem = 1; 3831 break; 3832 case 0x7: 3833 rpt = 1; 3834 selem = 1; 3835 break; 3836 case 0x8: 3837 rpt = 1; 3838 selem = 2; 3839 break; 3840 case 0xa: 3841 rpt = 2; 3842 selem = 1; 3843 break; 3844 default: 3845 unallocated_encoding(s); 3846 return; 3847 } 3848 3849 if (size == 3 && !is_q && selem != 1) { 3850 /* reserved */ 3851 unallocated_encoding(s); 3852 return; 3853 } 3854 3855 if (!fp_access_check(s)) { 3856 return; 3857 } 3858 3859 if (rn == 31) { 3860 gen_check_sp_alignment(s); 3861 } 3862 3863 /* For our purposes, bytes are always little-endian. */ 3864 endian = s->be_data; 3865 if (size == 0) { 3866 endian = MO_LE; 3867 } 3868 3869 total = rpt * selem * (is_q ? 16 : 8); 3870 tcg_rn = cpu_reg_sp(s, rn); 3871 3872 /* 3873 * Issue the MTE check vs the logical repeat count, before we 3874 * promote consecutive little-endian elements below. 3875 */ 3876 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3877 total, finalize_memop_asimd(s, size)); 3878 3879 /* 3880 * Consecutive little-endian elements from a single register 3881 * can be promoted to a larger little-endian operation. 3882 */ 3883 align = MO_ALIGN; 3884 if (selem == 1 && endian == MO_LE) { 3885 align = pow2_align(size); 3886 size = 3; 3887 } 3888 if (!s->align_mem) { 3889 align = 0; 3890 } 3891 mop = endian | size | align; 3892 3893 elements = (is_q ? 16 : 8) >> size; 3894 tcg_ebytes = tcg_constant_i64(1 << size); 3895 for (r = 0; r < rpt; r++) { 3896 int e; 3897 for (e = 0; e < elements; e++) { 3898 int xs; 3899 for (xs = 0; xs < selem; xs++) { 3900 int tt = (rt + r + xs) % 32; 3901 if (is_store) { 3902 do_vec_st(s, tt, e, clean_addr, mop); 3903 } else { 3904 do_vec_ld(s, tt, e, clean_addr, mop); 3905 } 3906 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3907 } 3908 } 3909 } 3910 3911 if (!is_store) { 3912 /* For non-quad operations, setting a slice of the low 3913 * 64 bits of the register clears the high 64 bits (in 3914 * the ARM ARM pseudocode this is implicit in the fact 3915 * that 'rval' is a 64 bit wide variable). 3916 * For quad operations, we might still need to zero the 3917 * high bits of SVE. 3918 */ 3919 for (r = 0; r < rpt * selem; r++) { 3920 int tt = (rt + r) % 32; 3921 clear_vec_high(s, is_q, tt); 3922 } 3923 } 3924 3925 if (is_postidx) { 3926 if (rm == 31) { 3927 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3928 } else { 3929 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3930 } 3931 } 3932 } 3933 3934 /* AdvSIMD load/store single structure 3935 * 3936 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3937 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3938 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3939 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3940 * 3941 * AdvSIMD load/store single structure (post-indexed) 3942 * 3943 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3944 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3945 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3946 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3947 * 3948 * Rt: first (or only) SIMD&FP register to be transferred 3949 * Rn: base address or SP 3950 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3951 * index = encoded in Q:S:size dependent on size 3952 * 3953 * lane_size = encoded in R, opc 3954 * transfer width = encoded in opc, S, size 3955 */ 3956 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3957 { 3958 int rt = extract32(insn, 0, 5); 3959 int rn = extract32(insn, 5, 5); 3960 int rm = extract32(insn, 16, 5); 3961 int size = extract32(insn, 10, 2); 3962 int S = extract32(insn, 12, 1); 3963 int opc = extract32(insn, 13, 3); 3964 int R = extract32(insn, 21, 1); 3965 int is_load = extract32(insn, 22, 1); 3966 int is_postidx = extract32(insn, 23, 1); 3967 int is_q = extract32(insn, 30, 1); 3968 3969 int scale = extract32(opc, 1, 2); 3970 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3971 bool replicate = false; 3972 int index = is_q << 3 | S << 2 | size; 3973 int xs, total; 3974 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3975 MemOp mop; 3976 3977 if (extract32(insn, 31, 1)) { 3978 unallocated_encoding(s); 3979 return; 3980 } 3981 if (!is_postidx && rm != 0) { 3982 unallocated_encoding(s); 3983 return; 3984 } 3985 3986 switch (scale) { 3987 case 3: 3988 if (!is_load || S) { 3989 unallocated_encoding(s); 3990 return; 3991 } 3992 scale = size; 3993 replicate = true; 3994 break; 3995 case 0: 3996 break; 3997 case 1: 3998 if (extract32(size, 0, 1)) { 3999 unallocated_encoding(s); 4000 return; 4001 } 4002 index >>= 1; 4003 break; 4004 case 2: 4005 if (extract32(size, 1, 1)) { 4006 unallocated_encoding(s); 4007 return; 4008 } 4009 if (!extract32(size, 0, 1)) { 4010 index >>= 2; 4011 } else { 4012 if (S) { 4013 unallocated_encoding(s); 4014 return; 4015 } 4016 index >>= 3; 4017 scale = 3; 4018 } 4019 break; 4020 default: 4021 g_assert_not_reached(); 4022 } 4023 4024 if (!fp_access_check(s)) { 4025 return; 4026 } 4027 4028 if (rn == 31) { 4029 gen_check_sp_alignment(s); 4030 } 4031 4032 total = selem << scale; 4033 tcg_rn = cpu_reg_sp(s, rn); 4034 4035 mop = finalize_memop_asimd(s, scale); 4036 4037 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 4038 total, mop); 4039 4040 tcg_ebytes = tcg_constant_i64(1 << scale); 4041 for (xs = 0; xs < selem; xs++) { 4042 if (replicate) { 4043 /* Load and replicate to all elements */ 4044 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4045 4046 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4047 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4048 (is_q + 1) * 8, vec_full_reg_size(s), 4049 tcg_tmp); 4050 } else { 4051 /* Load/store one element per register */ 4052 if (is_load) { 4053 do_vec_ld(s, rt, index, clean_addr, mop); 4054 } else { 4055 do_vec_st(s, rt, index, clean_addr, mop); 4056 } 4057 } 4058 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4059 rt = (rt + 1) % 32; 4060 } 4061 4062 if (is_postidx) { 4063 if (rm == 31) { 4064 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4065 } else { 4066 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4067 } 4068 } 4069 } 4070 4071 /* 4072 * Load/Store memory tags 4073 * 4074 * 31 30 29 24 22 21 12 10 5 0 4075 * +-----+-------------+-----+---+------+-----+------+------+ 4076 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4077 * +-----+-------------+-----+---+------+-----+------+------+ 4078 */ 4079 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4080 { 4081 int rt = extract32(insn, 0, 5); 4082 int rn = extract32(insn, 5, 5); 4083 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4084 int op2 = extract32(insn, 10, 2); 4085 int op1 = extract32(insn, 22, 2); 4086 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4087 int index = 0; 4088 TCGv_i64 addr, clean_addr, tcg_rt; 4089 4090 /* We checked insn bits [29:24,21] in the caller. */ 4091 if (extract32(insn, 30, 2) != 3) { 4092 goto do_unallocated; 4093 } 4094 4095 /* 4096 * @index is a tri-state variable which has 3 states: 4097 * < 0 : post-index, writeback 4098 * = 0 : signed offset 4099 * > 0 : pre-index, writeback 4100 */ 4101 switch (op1) { 4102 case 0: 4103 if (op2 != 0) { 4104 /* STG */ 4105 index = op2 - 2; 4106 } else { 4107 /* STZGM */ 4108 if (s->current_el == 0 || offset != 0) { 4109 goto do_unallocated; 4110 } 4111 is_mult = is_zero = true; 4112 } 4113 break; 4114 case 1: 4115 if (op2 != 0) { 4116 /* STZG */ 4117 is_zero = true; 4118 index = op2 - 2; 4119 } else { 4120 /* LDG */ 4121 is_load = true; 4122 } 4123 break; 4124 case 2: 4125 if (op2 != 0) { 4126 /* ST2G */ 4127 is_pair = true; 4128 index = op2 - 2; 4129 } else { 4130 /* STGM */ 4131 if (s->current_el == 0 || offset != 0) { 4132 goto do_unallocated; 4133 } 4134 is_mult = true; 4135 } 4136 break; 4137 case 3: 4138 if (op2 != 0) { 4139 /* STZ2G */ 4140 is_pair = is_zero = true; 4141 index = op2 - 2; 4142 } else { 4143 /* LDGM */ 4144 if (s->current_el == 0 || offset != 0) { 4145 goto do_unallocated; 4146 } 4147 is_mult = is_load = true; 4148 } 4149 break; 4150 4151 default: 4152 do_unallocated: 4153 unallocated_encoding(s); 4154 return; 4155 } 4156 4157 if (is_mult 4158 ? !dc_isar_feature(aa64_mte, s) 4159 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4160 goto do_unallocated; 4161 } 4162 4163 if (rn == 31) { 4164 gen_check_sp_alignment(s); 4165 } 4166 4167 addr = read_cpu_reg_sp(s, rn, true); 4168 if (index >= 0) { 4169 /* pre-index or signed offset */ 4170 tcg_gen_addi_i64(addr, addr, offset); 4171 } 4172 4173 if (is_mult) { 4174 tcg_rt = cpu_reg(s, rt); 4175 4176 if (is_zero) { 4177 int size = 4 << s->dcz_blocksize; 4178 4179 if (s->ata) { 4180 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4181 } 4182 /* 4183 * The non-tags portion of STZGM is mostly like DC_ZVA, 4184 * except the alignment happens before the access. 4185 */ 4186 clean_addr = clean_data_tbi(s, addr); 4187 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4188 gen_helper_dc_zva(cpu_env, clean_addr); 4189 } else if (s->ata) { 4190 if (is_load) { 4191 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4192 } else { 4193 gen_helper_stgm(cpu_env, addr, tcg_rt); 4194 } 4195 } else { 4196 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4197 int size = 4 << GMID_EL1_BS; 4198 4199 clean_addr = clean_data_tbi(s, addr); 4200 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4201 gen_probe_access(s, clean_addr, acc, size); 4202 4203 if (is_load) { 4204 /* The result tags are zeros. */ 4205 tcg_gen_movi_i64(tcg_rt, 0); 4206 } 4207 } 4208 return; 4209 } 4210 4211 if (is_load) { 4212 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4213 tcg_rt = cpu_reg(s, rt); 4214 if (s->ata) { 4215 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4216 } else { 4217 /* 4218 * Tag access disabled: we must check for aborts on the load 4219 * load from [rn+offset], and then insert a 0 tag into rt. 4220 */ 4221 clean_addr = clean_data_tbi(s, addr); 4222 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4223 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4224 } 4225 } else { 4226 tcg_rt = cpu_reg_sp(s, rt); 4227 if (!s->ata) { 4228 /* 4229 * For STG and ST2G, we need to check alignment and probe memory. 4230 * TODO: For STZG and STZ2G, we could rely on the stores below, 4231 * at least for system mode; user-only won't enforce alignment. 4232 */ 4233 if (is_pair) { 4234 gen_helper_st2g_stub(cpu_env, addr); 4235 } else { 4236 gen_helper_stg_stub(cpu_env, addr); 4237 } 4238 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4239 if (is_pair) { 4240 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4241 } else { 4242 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4243 } 4244 } else { 4245 if (is_pair) { 4246 gen_helper_st2g(cpu_env, addr, tcg_rt); 4247 } else { 4248 gen_helper_stg(cpu_env, addr, tcg_rt); 4249 } 4250 } 4251 } 4252 4253 if (is_zero) { 4254 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4255 TCGv_i64 zero64 = tcg_constant_i64(0); 4256 TCGv_i128 zero128 = tcg_temp_new_i128(); 4257 int mem_index = get_mem_index(s); 4258 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4259 4260 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4261 4262 /* This is 1 or 2 atomic 16-byte operations. */ 4263 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4264 if (is_pair) { 4265 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4266 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4267 } 4268 } 4269 4270 if (index != 0) { 4271 /* pre-index or post-index */ 4272 if (index < 0) { 4273 /* post-index */ 4274 tcg_gen_addi_i64(addr, addr, offset); 4275 } 4276 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4277 } 4278 } 4279 4280 /* Loads and stores */ 4281 static void disas_ldst(DisasContext *s, uint32_t insn) 4282 { 4283 switch (extract32(insn, 24, 6)) { 4284 case 0x08: /* Load/store exclusive */ 4285 disas_ldst_excl(s, insn); 4286 break; 4287 case 0x18: case 0x1c: /* Load register (literal) */ 4288 disas_ld_lit(s, insn); 4289 break; 4290 case 0x28: case 0x29: 4291 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4292 disas_ldst_pair(s, insn); 4293 break; 4294 case 0x38: case 0x39: 4295 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4296 disas_ldst_reg(s, insn); 4297 break; 4298 case 0x0c: /* AdvSIMD load/store multiple structures */ 4299 disas_ldst_multiple_struct(s, insn); 4300 break; 4301 case 0x0d: /* AdvSIMD load/store single structure */ 4302 disas_ldst_single_struct(s, insn); 4303 break; 4304 case 0x19: 4305 if (extract32(insn, 21, 1) != 0) { 4306 disas_ldst_tag(s, insn); 4307 } else if (extract32(insn, 10, 2) == 0) { 4308 disas_ldst_ldapr_stlr(s, insn); 4309 } else { 4310 unallocated_encoding(s); 4311 } 4312 break; 4313 default: 4314 unallocated_encoding(s); 4315 break; 4316 } 4317 } 4318 4319 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4320 4321 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4322 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4323 { 4324 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4325 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4326 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4327 4328 fn(tcg_rd, tcg_rn, tcg_imm); 4329 if (!a->sf) { 4330 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4331 } 4332 return true; 4333 } 4334 4335 /* 4336 * PC-rel. addressing 4337 */ 4338 4339 static bool trans_ADR(DisasContext *s, arg_ri *a) 4340 { 4341 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4342 return true; 4343 } 4344 4345 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4346 { 4347 int64_t offset = (int64_t)a->imm << 12; 4348 4349 /* The page offset is ok for CF_PCREL. */ 4350 offset -= s->pc_curr & 0xfff; 4351 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4352 return true; 4353 } 4354 4355 /* 4356 * Add/subtract (immediate) 4357 */ 4358 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4359 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4360 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4361 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4362 4363 /* 4364 * Add/subtract (immediate, with tags) 4365 */ 4366 4367 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4368 bool sub_op) 4369 { 4370 TCGv_i64 tcg_rn, tcg_rd; 4371 int imm; 4372 4373 imm = a->uimm6 << LOG2_TAG_GRANULE; 4374 if (sub_op) { 4375 imm = -imm; 4376 } 4377 4378 tcg_rn = cpu_reg_sp(s, a->rn); 4379 tcg_rd = cpu_reg_sp(s, a->rd); 4380 4381 if (s->ata) { 4382 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4383 tcg_constant_i32(imm), 4384 tcg_constant_i32(a->uimm4)); 4385 } else { 4386 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4387 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4388 } 4389 return true; 4390 } 4391 4392 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4393 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4394 4395 /* The input should be a value in the bottom e bits (with higher 4396 * bits zero); returns that value replicated into every element 4397 * of size e in a 64 bit integer. 4398 */ 4399 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4400 { 4401 assert(e != 0); 4402 while (e < 64) { 4403 mask |= mask << e; 4404 e *= 2; 4405 } 4406 return mask; 4407 } 4408 4409 /* 4410 * Logical (immediate) 4411 */ 4412 4413 /* 4414 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4415 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4416 * value (ie should cause a guest UNDEF exception), and true if they are 4417 * valid, in which case the decoded bit pattern is written to result. 4418 */ 4419 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4420 unsigned int imms, unsigned int immr) 4421 { 4422 uint64_t mask; 4423 unsigned e, levels, s, r; 4424 int len; 4425 4426 assert(immn < 2 && imms < 64 && immr < 64); 4427 4428 /* The bit patterns we create here are 64 bit patterns which 4429 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4430 * 64 bits each. Each element contains the same value: a run 4431 * of between 1 and e-1 non-zero bits, rotated within the 4432 * element by between 0 and e-1 bits. 4433 * 4434 * The element size and run length are encoded into immn (1 bit) 4435 * and imms (6 bits) as follows: 4436 * 64 bit elements: immn = 1, imms = <length of run - 1> 4437 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4438 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4439 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4440 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4441 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4442 * Notice that immn = 0, imms = 11111x is the only combination 4443 * not covered by one of the above options; this is reserved. 4444 * Further, <length of run - 1> all-ones is a reserved pattern. 4445 * 4446 * In all cases the rotation is by immr % e (and immr is 6 bits). 4447 */ 4448 4449 /* First determine the element size */ 4450 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4451 if (len < 1) { 4452 /* This is the immn == 0, imms == 0x11111x case */ 4453 return false; 4454 } 4455 e = 1 << len; 4456 4457 levels = e - 1; 4458 s = imms & levels; 4459 r = immr & levels; 4460 4461 if (s == levels) { 4462 /* <length of run - 1> mustn't be all-ones. */ 4463 return false; 4464 } 4465 4466 /* Create the value of one element: s+1 set bits rotated 4467 * by r within the element (which is e bits wide)... 4468 */ 4469 mask = MAKE_64BIT_MASK(0, s + 1); 4470 if (r) { 4471 mask = (mask >> r) | (mask << (e - r)); 4472 mask &= MAKE_64BIT_MASK(0, e); 4473 } 4474 /* ...then replicate the element over the whole 64 bit value */ 4475 mask = bitfield_replicate(mask, e); 4476 *result = mask; 4477 return true; 4478 } 4479 4480 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4481 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4482 { 4483 TCGv_i64 tcg_rd, tcg_rn; 4484 uint64_t imm; 4485 4486 /* Some immediate field values are reserved. */ 4487 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4488 extract32(a->dbm, 0, 6), 4489 extract32(a->dbm, 6, 6))) { 4490 return false; 4491 } 4492 if (!a->sf) { 4493 imm &= 0xffffffffull; 4494 } 4495 4496 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4497 tcg_rn = cpu_reg(s, a->rn); 4498 4499 fn(tcg_rd, tcg_rn, imm); 4500 if (set_cc) { 4501 gen_logic_CC(a->sf, tcg_rd); 4502 } 4503 if (!a->sf) { 4504 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4505 } 4506 return true; 4507 } 4508 4509 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4510 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4511 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4512 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4513 4514 /* 4515 * Move wide (immediate) 4516 */ 4517 4518 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4519 { 4520 int pos = a->hw << 4; 4521 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4522 return true; 4523 } 4524 4525 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4526 { 4527 int pos = a->hw << 4; 4528 uint64_t imm = a->imm; 4529 4530 imm = ~(imm << pos); 4531 if (!a->sf) { 4532 imm = (uint32_t)imm; 4533 } 4534 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4535 return true; 4536 } 4537 4538 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4539 { 4540 int pos = a->hw << 4; 4541 TCGv_i64 tcg_rd, tcg_im; 4542 4543 tcg_rd = cpu_reg(s, a->rd); 4544 tcg_im = tcg_constant_i64(a->imm); 4545 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4546 if (!a->sf) { 4547 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4548 } 4549 return true; 4550 } 4551 4552 /* 4553 * Bitfield 4554 */ 4555 4556 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4557 { 4558 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4559 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4560 unsigned int bitsize = a->sf ? 64 : 32; 4561 unsigned int ri = a->immr; 4562 unsigned int si = a->imms; 4563 unsigned int pos, len; 4564 4565 if (si >= ri) { 4566 /* Wd<s-r:0> = Wn<s:r> */ 4567 len = (si - ri) + 1; 4568 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4569 if (!a->sf) { 4570 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4571 } 4572 } else { 4573 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4574 len = si + 1; 4575 pos = (bitsize - ri) & (bitsize - 1); 4576 4577 if (len < ri) { 4578 /* 4579 * Sign extend the destination field from len to fill the 4580 * balance of the word. Let the deposit below insert all 4581 * of those sign bits. 4582 */ 4583 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4584 len = ri; 4585 } 4586 4587 /* 4588 * We start with zero, and we haven't modified any bits outside 4589 * bitsize, therefore no final zero-extension is unneeded for !sf. 4590 */ 4591 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4592 } 4593 return true; 4594 } 4595 4596 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4597 { 4598 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4599 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4600 unsigned int bitsize = a->sf ? 64 : 32; 4601 unsigned int ri = a->immr; 4602 unsigned int si = a->imms; 4603 unsigned int pos, len; 4604 4605 tcg_rd = cpu_reg(s, a->rd); 4606 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4607 4608 if (si >= ri) { 4609 /* Wd<s-r:0> = Wn<s:r> */ 4610 len = (si - ri) + 1; 4611 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4612 } else { 4613 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4614 len = si + 1; 4615 pos = (bitsize - ri) & (bitsize - 1); 4616 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4617 } 4618 return true; 4619 } 4620 4621 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4622 { 4623 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4624 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4625 unsigned int bitsize = a->sf ? 64 : 32; 4626 unsigned int ri = a->immr; 4627 unsigned int si = a->imms; 4628 unsigned int pos, len; 4629 4630 tcg_rd = cpu_reg(s, a->rd); 4631 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4632 4633 if (si >= ri) { 4634 /* Wd<s-r:0> = Wn<s:r> */ 4635 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4636 len = (si - ri) + 1; 4637 pos = 0; 4638 } else { 4639 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4640 len = si + 1; 4641 pos = (bitsize - ri) & (bitsize - 1); 4642 } 4643 4644 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4645 if (!a->sf) { 4646 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4647 } 4648 return true; 4649 } 4650 4651 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4652 { 4653 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4654 4655 tcg_rd = cpu_reg(s, a->rd); 4656 4657 if (unlikely(a->imm == 0)) { 4658 /* 4659 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4660 * so an extract from bit 0 is a special case. 4661 */ 4662 if (a->sf) { 4663 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4664 } else { 4665 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4666 } 4667 } else { 4668 tcg_rm = cpu_reg(s, a->rm); 4669 tcg_rn = cpu_reg(s, a->rn); 4670 4671 if (a->sf) { 4672 /* Specialization to ROR happens in EXTRACT2. */ 4673 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4674 } else { 4675 TCGv_i32 t0 = tcg_temp_new_i32(); 4676 4677 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4678 if (a->rm == a->rn) { 4679 tcg_gen_rotri_i32(t0, t0, a->imm); 4680 } else { 4681 TCGv_i32 t1 = tcg_temp_new_i32(); 4682 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4683 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4684 } 4685 tcg_gen_extu_i32_i64(tcg_rd, t0); 4686 } 4687 } 4688 return true; 4689 } 4690 4691 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4692 * Note that it is the caller's responsibility to ensure that the 4693 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4694 * mandated semantics for out of range shifts. 4695 */ 4696 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4697 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4698 { 4699 switch (shift_type) { 4700 case A64_SHIFT_TYPE_LSL: 4701 tcg_gen_shl_i64(dst, src, shift_amount); 4702 break; 4703 case A64_SHIFT_TYPE_LSR: 4704 tcg_gen_shr_i64(dst, src, shift_amount); 4705 break; 4706 case A64_SHIFT_TYPE_ASR: 4707 if (!sf) { 4708 tcg_gen_ext32s_i64(dst, src); 4709 } 4710 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4711 break; 4712 case A64_SHIFT_TYPE_ROR: 4713 if (sf) { 4714 tcg_gen_rotr_i64(dst, src, shift_amount); 4715 } else { 4716 TCGv_i32 t0, t1; 4717 t0 = tcg_temp_new_i32(); 4718 t1 = tcg_temp_new_i32(); 4719 tcg_gen_extrl_i64_i32(t0, src); 4720 tcg_gen_extrl_i64_i32(t1, shift_amount); 4721 tcg_gen_rotr_i32(t0, t0, t1); 4722 tcg_gen_extu_i32_i64(dst, t0); 4723 } 4724 break; 4725 default: 4726 assert(FALSE); /* all shift types should be handled */ 4727 break; 4728 } 4729 4730 if (!sf) { /* zero extend final result */ 4731 tcg_gen_ext32u_i64(dst, dst); 4732 } 4733 } 4734 4735 /* Shift a TCGv src by immediate, put result in dst. 4736 * The shift amount must be in range (this should always be true as the 4737 * relevant instructions will UNDEF on bad shift immediates). 4738 */ 4739 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4740 enum a64_shift_type shift_type, unsigned int shift_i) 4741 { 4742 assert(shift_i < (sf ? 64 : 32)); 4743 4744 if (shift_i == 0) { 4745 tcg_gen_mov_i64(dst, src); 4746 } else { 4747 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4748 } 4749 } 4750 4751 /* Logical (shifted register) 4752 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4753 * +----+-----+-----------+-------+---+------+--------+------+------+ 4754 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4755 * +----+-----+-----------+-------+---+------+--------+------+------+ 4756 */ 4757 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4758 { 4759 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4760 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4761 4762 sf = extract32(insn, 31, 1); 4763 opc = extract32(insn, 29, 2); 4764 shift_type = extract32(insn, 22, 2); 4765 invert = extract32(insn, 21, 1); 4766 rm = extract32(insn, 16, 5); 4767 shift_amount = extract32(insn, 10, 6); 4768 rn = extract32(insn, 5, 5); 4769 rd = extract32(insn, 0, 5); 4770 4771 if (!sf && (shift_amount & (1 << 5))) { 4772 unallocated_encoding(s); 4773 return; 4774 } 4775 4776 tcg_rd = cpu_reg(s, rd); 4777 4778 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4779 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4780 * register-register MOV and MVN, so it is worth special casing. 4781 */ 4782 tcg_rm = cpu_reg(s, rm); 4783 if (invert) { 4784 tcg_gen_not_i64(tcg_rd, tcg_rm); 4785 if (!sf) { 4786 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4787 } 4788 } else { 4789 if (sf) { 4790 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4791 } else { 4792 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4793 } 4794 } 4795 return; 4796 } 4797 4798 tcg_rm = read_cpu_reg(s, rm, sf); 4799 4800 if (shift_amount) { 4801 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4802 } 4803 4804 tcg_rn = cpu_reg(s, rn); 4805 4806 switch (opc | (invert << 2)) { 4807 case 0: /* AND */ 4808 case 3: /* ANDS */ 4809 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4810 break; 4811 case 1: /* ORR */ 4812 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4813 break; 4814 case 2: /* EOR */ 4815 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4816 break; 4817 case 4: /* BIC */ 4818 case 7: /* BICS */ 4819 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4820 break; 4821 case 5: /* ORN */ 4822 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4823 break; 4824 case 6: /* EON */ 4825 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4826 break; 4827 default: 4828 assert(FALSE); 4829 break; 4830 } 4831 4832 if (!sf) { 4833 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4834 } 4835 4836 if (opc == 3) { 4837 gen_logic_CC(sf, tcg_rd); 4838 } 4839 } 4840 4841 /* 4842 * Add/subtract (extended register) 4843 * 4844 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4845 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4846 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4847 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4848 * 4849 * sf: 0 -> 32bit, 1 -> 64bit 4850 * op: 0 -> add , 1 -> sub 4851 * S: 1 -> set flags 4852 * opt: 00 4853 * option: extension type (see DecodeRegExtend) 4854 * imm3: optional shift to Rm 4855 * 4856 * Rd = Rn + LSL(extend(Rm), amount) 4857 */ 4858 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4859 { 4860 int rd = extract32(insn, 0, 5); 4861 int rn = extract32(insn, 5, 5); 4862 int imm3 = extract32(insn, 10, 3); 4863 int option = extract32(insn, 13, 3); 4864 int rm = extract32(insn, 16, 5); 4865 int opt = extract32(insn, 22, 2); 4866 bool setflags = extract32(insn, 29, 1); 4867 bool sub_op = extract32(insn, 30, 1); 4868 bool sf = extract32(insn, 31, 1); 4869 4870 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4871 TCGv_i64 tcg_rd; 4872 TCGv_i64 tcg_result; 4873 4874 if (imm3 > 4 || opt != 0) { 4875 unallocated_encoding(s); 4876 return; 4877 } 4878 4879 /* non-flag setting ops may use SP */ 4880 if (!setflags) { 4881 tcg_rd = cpu_reg_sp(s, rd); 4882 } else { 4883 tcg_rd = cpu_reg(s, rd); 4884 } 4885 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4886 4887 tcg_rm = read_cpu_reg(s, rm, sf); 4888 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4889 4890 tcg_result = tcg_temp_new_i64(); 4891 4892 if (!setflags) { 4893 if (sub_op) { 4894 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4895 } else { 4896 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4897 } 4898 } else { 4899 if (sub_op) { 4900 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4901 } else { 4902 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4903 } 4904 } 4905 4906 if (sf) { 4907 tcg_gen_mov_i64(tcg_rd, tcg_result); 4908 } else { 4909 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4910 } 4911 } 4912 4913 /* 4914 * Add/subtract (shifted register) 4915 * 4916 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4917 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4918 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4919 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4920 * 4921 * sf: 0 -> 32bit, 1 -> 64bit 4922 * op: 0 -> add , 1 -> sub 4923 * S: 1 -> set flags 4924 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4925 * imm6: Shift amount to apply to Rm before the add/sub 4926 */ 4927 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4928 { 4929 int rd = extract32(insn, 0, 5); 4930 int rn = extract32(insn, 5, 5); 4931 int imm6 = extract32(insn, 10, 6); 4932 int rm = extract32(insn, 16, 5); 4933 int shift_type = extract32(insn, 22, 2); 4934 bool setflags = extract32(insn, 29, 1); 4935 bool sub_op = extract32(insn, 30, 1); 4936 bool sf = extract32(insn, 31, 1); 4937 4938 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4939 TCGv_i64 tcg_rn, tcg_rm; 4940 TCGv_i64 tcg_result; 4941 4942 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4943 unallocated_encoding(s); 4944 return; 4945 } 4946 4947 tcg_rn = read_cpu_reg(s, rn, sf); 4948 tcg_rm = read_cpu_reg(s, rm, sf); 4949 4950 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4951 4952 tcg_result = tcg_temp_new_i64(); 4953 4954 if (!setflags) { 4955 if (sub_op) { 4956 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4957 } else { 4958 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4959 } 4960 } else { 4961 if (sub_op) { 4962 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4963 } else { 4964 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4965 } 4966 } 4967 4968 if (sf) { 4969 tcg_gen_mov_i64(tcg_rd, tcg_result); 4970 } else { 4971 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4972 } 4973 } 4974 4975 /* Data-processing (3 source) 4976 * 4977 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4978 * +--+------+-----------+------+------+----+------+------+------+ 4979 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4980 * +--+------+-----------+------+------+----+------+------+------+ 4981 */ 4982 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4983 { 4984 int rd = extract32(insn, 0, 5); 4985 int rn = extract32(insn, 5, 5); 4986 int ra = extract32(insn, 10, 5); 4987 int rm = extract32(insn, 16, 5); 4988 int op_id = (extract32(insn, 29, 3) << 4) | 4989 (extract32(insn, 21, 3) << 1) | 4990 extract32(insn, 15, 1); 4991 bool sf = extract32(insn, 31, 1); 4992 bool is_sub = extract32(op_id, 0, 1); 4993 bool is_high = extract32(op_id, 2, 1); 4994 bool is_signed = false; 4995 TCGv_i64 tcg_op1; 4996 TCGv_i64 tcg_op2; 4997 TCGv_i64 tcg_tmp; 4998 4999 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5000 switch (op_id) { 5001 case 0x42: /* SMADDL */ 5002 case 0x43: /* SMSUBL */ 5003 case 0x44: /* SMULH */ 5004 is_signed = true; 5005 break; 5006 case 0x0: /* MADD (32bit) */ 5007 case 0x1: /* MSUB (32bit) */ 5008 case 0x40: /* MADD (64bit) */ 5009 case 0x41: /* MSUB (64bit) */ 5010 case 0x4a: /* UMADDL */ 5011 case 0x4b: /* UMSUBL */ 5012 case 0x4c: /* UMULH */ 5013 break; 5014 default: 5015 unallocated_encoding(s); 5016 return; 5017 } 5018 5019 if (is_high) { 5020 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5021 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5022 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5023 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5024 5025 if (is_signed) { 5026 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5027 } else { 5028 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5029 } 5030 return; 5031 } 5032 5033 tcg_op1 = tcg_temp_new_i64(); 5034 tcg_op2 = tcg_temp_new_i64(); 5035 tcg_tmp = tcg_temp_new_i64(); 5036 5037 if (op_id < 0x42) { 5038 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5039 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5040 } else { 5041 if (is_signed) { 5042 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5043 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5044 } else { 5045 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5046 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5047 } 5048 } 5049 5050 if (ra == 31 && !is_sub) { 5051 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5052 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5053 } else { 5054 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5055 if (is_sub) { 5056 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5057 } else { 5058 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5059 } 5060 } 5061 5062 if (!sf) { 5063 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5064 } 5065 } 5066 5067 /* Add/subtract (with carry) 5068 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5069 * +--+--+--+------------------------+------+-------------+------+-----+ 5070 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5071 * +--+--+--+------------------------+------+-------------+------+-----+ 5072 */ 5073 5074 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5075 { 5076 unsigned int sf, op, setflags, rm, rn, rd; 5077 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5078 5079 sf = extract32(insn, 31, 1); 5080 op = extract32(insn, 30, 1); 5081 setflags = extract32(insn, 29, 1); 5082 rm = extract32(insn, 16, 5); 5083 rn = extract32(insn, 5, 5); 5084 rd = extract32(insn, 0, 5); 5085 5086 tcg_rd = cpu_reg(s, rd); 5087 tcg_rn = cpu_reg(s, rn); 5088 5089 if (op) { 5090 tcg_y = tcg_temp_new_i64(); 5091 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5092 } else { 5093 tcg_y = cpu_reg(s, rm); 5094 } 5095 5096 if (setflags) { 5097 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5098 } else { 5099 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5100 } 5101 } 5102 5103 /* 5104 * Rotate right into flags 5105 * 31 30 29 21 15 10 5 4 0 5106 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5107 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5108 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5109 */ 5110 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5111 { 5112 int mask = extract32(insn, 0, 4); 5113 int o2 = extract32(insn, 4, 1); 5114 int rn = extract32(insn, 5, 5); 5115 int imm6 = extract32(insn, 15, 6); 5116 int sf_op_s = extract32(insn, 29, 3); 5117 TCGv_i64 tcg_rn; 5118 TCGv_i32 nzcv; 5119 5120 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5121 unallocated_encoding(s); 5122 return; 5123 } 5124 5125 tcg_rn = read_cpu_reg(s, rn, 1); 5126 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5127 5128 nzcv = tcg_temp_new_i32(); 5129 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5130 5131 if (mask & 8) { /* N */ 5132 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5133 } 5134 if (mask & 4) { /* Z */ 5135 tcg_gen_not_i32(cpu_ZF, nzcv); 5136 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5137 } 5138 if (mask & 2) { /* C */ 5139 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5140 } 5141 if (mask & 1) { /* V */ 5142 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5143 } 5144 } 5145 5146 /* 5147 * Evaluate into flags 5148 * 31 30 29 21 15 14 10 5 4 0 5149 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5150 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5151 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5152 */ 5153 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5154 { 5155 int o3_mask = extract32(insn, 0, 5); 5156 int rn = extract32(insn, 5, 5); 5157 int o2 = extract32(insn, 15, 6); 5158 int sz = extract32(insn, 14, 1); 5159 int sf_op_s = extract32(insn, 29, 3); 5160 TCGv_i32 tmp; 5161 int shift; 5162 5163 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5164 !dc_isar_feature(aa64_condm_4, s)) { 5165 unallocated_encoding(s); 5166 return; 5167 } 5168 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5169 5170 tmp = tcg_temp_new_i32(); 5171 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5172 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5173 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5174 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5175 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5176 } 5177 5178 /* Conditional compare (immediate / register) 5179 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5180 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5181 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5182 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5183 * [1] y [0] [0] 5184 */ 5185 static void disas_cc(DisasContext *s, uint32_t insn) 5186 { 5187 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5188 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5189 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5190 DisasCompare c; 5191 5192 if (!extract32(insn, 29, 1)) { 5193 unallocated_encoding(s); 5194 return; 5195 } 5196 if (insn & (1 << 10 | 1 << 4)) { 5197 unallocated_encoding(s); 5198 return; 5199 } 5200 sf = extract32(insn, 31, 1); 5201 op = extract32(insn, 30, 1); 5202 is_imm = extract32(insn, 11, 1); 5203 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5204 cond = extract32(insn, 12, 4); 5205 rn = extract32(insn, 5, 5); 5206 nzcv = extract32(insn, 0, 4); 5207 5208 /* Set T0 = !COND. */ 5209 tcg_t0 = tcg_temp_new_i32(); 5210 arm_test_cc(&c, cond); 5211 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5212 5213 /* Load the arguments for the new comparison. */ 5214 if (is_imm) { 5215 tcg_y = tcg_temp_new_i64(); 5216 tcg_gen_movi_i64(tcg_y, y); 5217 } else { 5218 tcg_y = cpu_reg(s, y); 5219 } 5220 tcg_rn = cpu_reg(s, rn); 5221 5222 /* Set the flags for the new comparison. */ 5223 tcg_tmp = tcg_temp_new_i64(); 5224 if (op) { 5225 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5226 } else { 5227 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5228 } 5229 5230 /* If COND was false, force the flags to #nzcv. Compute two masks 5231 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5232 * For tcg hosts that support ANDC, we can make do with just T1. 5233 * In either case, allow the tcg optimizer to delete any unused mask. 5234 */ 5235 tcg_t1 = tcg_temp_new_i32(); 5236 tcg_t2 = tcg_temp_new_i32(); 5237 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5238 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5239 5240 if (nzcv & 8) { /* N */ 5241 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5242 } else { 5243 if (TCG_TARGET_HAS_andc_i32) { 5244 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5245 } else { 5246 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5247 } 5248 } 5249 if (nzcv & 4) { /* Z */ 5250 if (TCG_TARGET_HAS_andc_i32) { 5251 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5252 } else { 5253 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5254 } 5255 } else { 5256 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5257 } 5258 if (nzcv & 2) { /* C */ 5259 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5260 } else { 5261 if (TCG_TARGET_HAS_andc_i32) { 5262 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5263 } else { 5264 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5265 } 5266 } 5267 if (nzcv & 1) { /* V */ 5268 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5269 } else { 5270 if (TCG_TARGET_HAS_andc_i32) { 5271 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5272 } else { 5273 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5274 } 5275 } 5276 } 5277 5278 /* Conditional select 5279 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5280 * +----+----+---+-----------------+------+------+-----+------+------+ 5281 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5282 * +----+----+---+-----------------+------+------+-----+------+------+ 5283 */ 5284 static void disas_cond_select(DisasContext *s, uint32_t insn) 5285 { 5286 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5287 TCGv_i64 tcg_rd, zero; 5288 DisasCompare64 c; 5289 5290 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5291 /* S == 1 or op2<1> == 1 */ 5292 unallocated_encoding(s); 5293 return; 5294 } 5295 sf = extract32(insn, 31, 1); 5296 else_inv = extract32(insn, 30, 1); 5297 rm = extract32(insn, 16, 5); 5298 cond = extract32(insn, 12, 4); 5299 else_inc = extract32(insn, 10, 1); 5300 rn = extract32(insn, 5, 5); 5301 rd = extract32(insn, 0, 5); 5302 5303 tcg_rd = cpu_reg(s, rd); 5304 5305 a64_test_cc(&c, cond); 5306 zero = tcg_constant_i64(0); 5307 5308 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5309 /* CSET & CSETM. */ 5310 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5311 if (else_inv) { 5312 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5313 } 5314 } else { 5315 TCGv_i64 t_true = cpu_reg(s, rn); 5316 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5317 if (else_inv && else_inc) { 5318 tcg_gen_neg_i64(t_false, t_false); 5319 } else if (else_inv) { 5320 tcg_gen_not_i64(t_false, t_false); 5321 } else if (else_inc) { 5322 tcg_gen_addi_i64(t_false, t_false, 1); 5323 } 5324 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5325 } 5326 5327 if (!sf) { 5328 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5329 } 5330 } 5331 5332 static void handle_clz(DisasContext *s, unsigned int sf, 5333 unsigned int rn, unsigned int rd) 5334 { 5335 TCGv_i64 tcg_rd, tcg_rn; 5336 tcg_rd = cpu_reg(s, rd); 5337 tcg_rn = cpu_reg(s, rn); 5338 5339 if (sf) { 5340 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5341 } else { 5342 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5343 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5344 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5345 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5346 } 5347 } 5348 5349 static void handle_cls(DisasContext *s, unsigned int sf, 5350 unsigned int rn, unsigned int rd) 5351 { 5352 TCGv_i64 tcg_rd, tcg_rn; 5353 tcg_rd = cpu_reg(s, rd); 5354 tcg_rn = cpu_reg(s, rn); 5355 5356 if (sf) { 5357 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5358 } else { 5359 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5360 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5361 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5362 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5363 } 5364 } 5365 5366 static void handle_rbit(DisasContext *s, unsigned int sf, 5367 unsigned int rn, unsigned int rd) 5368 { 5369 TCGv_i64 tcg_rd, tcg_rn; 5370 tcg_rd = cpu_reg(s, rd); 5371 tcg_rn = cpu_reg(s, rn); 5372 5373 if (sf) { 5374 gen_helper_rbit64(tcg_rd, tcg_rn); 5375 } else { 5376 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5377 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5378 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5379 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5380 } 5381 } 5382 5383 /* REV with sf==1, opcode==3 ("REV64") */ 5384 static void handle_rev64(DisasContext *s, unsigned int sf, 5385 unsigned int rn, unsigned int rd) 5386 { 5387 if (!sf) { 5388 unallocated_encoding(s); 5389 return; 5390 } 5391 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5392 } 5393 5394 /* REV with sf==0, opcode==2 5395 * REV32 (sf==1, opcode==2) 5396 */ 5397 static void handle_rev32(DisasContext *s, unsigned int sf, 5398 unsigned int rn, unsigned int rd) 5399 { 5400 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5401 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5402 5403 if (sf) { 5404 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5405 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5406 } else { 5407 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5408 } 5409 } 5410 5411 /* REV16 (opcode==1) */ 5412 static void handle_rev16(DisasContext *s, unsigned int sf, 5413 unsigned int rn, unsigned int rd) 5414 { 5415 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5416 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5417 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5418 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5419 5420 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5421 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5422 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5423 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5424 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5425 } 5426 5427 /* Data-processing (1 source) 5428 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5429 * +----+---+---+-----------------+---------+--------+------+------+ 5430 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5431 * +----+---+---+-----------------+---------+--------+------+------+ 5432 */ 5433 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5434 { 5435 unsigned int sf, opcode, opcode2, rn, rd; 5436 TCGv_i64 tcg_rd; 5437 5438 if (extract32(insn, 29, 1)) { 5439 unallocated_encoding(s); 5440 return; 5441 } 5442 5443 sf = extract32(insn, 31, 1); 5444 opcode = extract32(insn, 10, 6); 5445 opcode2 = extract32(insn, 16, 5); 5446 rn = extract32(insn, 5, 5); 5447 rd = extract32(insn, 0, 5); 5448 5449 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5450 5451 switch (MAP(sf, opcode2, opcode)) { 5452 case MAP(0, 0x00, 0x00): /* RBIT */ 5453 case MAP(1, 0x00, 0x00): 5454 handle_rbit(s, sf, rn, rd); 5455 break; 5456 case MAP(0, 0x00, 0x01): /* REV16 */ 5457 case MAP(1, 0x00, 0x01): 5458 handle_rev16(s, sf, rn, rd); 5459 break; 5460 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5461 case MAP(1, 0x00, 0x02): 5462 handle_rev32(s, sf, rn, rd); 5463 break; 5464 case MAP(1, 0x00, 0x03): /* REV64 */ 5465 handle_rev64(s, sf, rn, rd); 5466 break; 5467 case MAP(0, 0x00, 0x04): /* CLZ */ 5468 case MAP(1, 0x00, 0x04): 5469 handle_clz(s, sf, rn, rd); 5470 break; 5471 case MAP(0, 0x00, 0x05): /* CLS */ 5472 case MAP(1, 0x00, 0x05): 5473 handle_cls(s, sf, rn, rd); 5474 break; 5475 case MAP(1, 0x01, 0x00): /* PACIA */ 5476 if (s->pauth_active) { 5477 tcg_rd = cpu_reg(s, rd); 5478 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5479 } else if (!dc_isar_feature(aa64_pauth, s)) { 5480 goto do_unallocated; 5481 } 5482 break; 5483 case MAP(1, 0x01, 0x01): /* PACIB */ 5484 if (s->pauth_active) { 5485 tcg_rd = cpu_reg(s, rd); 5486 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5487 } else if (!dc_isar_feature(aa64_pauth, s)) { 5488 goto do_unallocated; 5489 } 5490 break; 5491 case MAP(1, 0x01, 0x02): /* PACDA */ 5492 if (s->pauth_active) { 5493 tcg_rd = cpu_reg(s, rd); 5494 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5495 } else if (!dc_isar_feature(aa64_pauth, s)) { 5496 goto do_unallocated; 5497 } 5498 break; 5499 case MAP(1, 0x01, 0x03): /* PACDB */ 5500 if (s->pauth_active) { 5501 tcg_rd = cpu_reg(s, rd); 5502 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5503 } else if (!dc_isar_feature(aa64_pauth, s)) { 5504 goto do_unallocated; 5505 } 5506 break; 5507 case MAP(1, 0x01, 0x04): /* AUTIA */ 5508 if (s->pauth_active) { 5509 tcg_rd = cpu_reg(s, rd); 5510 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5511 } else if (!dc_isar_feature(aa64_pauth, s)) { 5512 goto do_unallocated; 5513 } 5514 break; 5515 case MAP(1, 0x01, 0x05): /* AUTIB */ 5516 if (s->pauth_active) { 5517 tcg_rd = cpu_reg(s, rd); 5518 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5519 } else if (!dc_isar_feature(aa64_pauth, s)) { 5520 goto do_unallocated; 5521 } 5522 break; 5523 case MAP(1, 0x01, 0x06): /* AUTDA */ 5524 if (s->pauth_active) { 5525 tcg_rd = cpu_reg(s, rd); 5526 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5527 } else if (!dc_isar_feature(aa64_pauth, s)) { 5528 goto do_unallocated; 5529 } 5530 break; 5531 case MAP(1, 0x01, 0x07): /* AUTDB */ 5532 if (s->pauth_active) { 5533 tcg_rd = cpu_reg(s, rd); 5534 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5535 } else if (!dc_isar_feature(aa64_pauth, s)) { 5536 goto do_unallocated; 5537 } 5538 break; 5539 case MAP(1, 0x01, 0x08): /* PACIZA */ 5540 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5541 goto do_unallocated; 5542 } else if (s->pauth_active) { 5543 tcg_rd = cpu_reg(s, rd); 5544 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5545 } 5546 break; 5547 case MAP(1, 0x01, 0x09): /* PACIZB */ 5548 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5549 goto do_unallocated; 5550 } else if (s->pauth_active) { 5551 tcg_rd = cpu_reg(s, rd); 5552 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5553 } 5554 break; 5555 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5556 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5557 goto do_unallocated; 5558 } else if (s->pauth_active) { 5559 tcg_rd = cpu_reg(s, rd); 5560 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5561 } 5562 break; 5563 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5564 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5565 goto do_unallocated; 5566 } else if (s->pauth_active) { 5567 tcg_rd = cpu_reg(s, rd); 5568 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5569 } 5570 break; 5571 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5572 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5573 goto do_unallocated; 5574 } else if (s->pauth_active) { 5575 tcg_rd = cpu_reg(s, rd); 5576 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5577 } 5578 break; 5579 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5580 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5581 goto do_unallocated; 5582 } else if (s->pauth_active) { 5583 tcg_rd = cpu_reg(s, rd); 5584 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5585 } 5586 break; 5587 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5588 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5589 goto do_unallocated; 5590 } else if (s->pauth_active) { 5591 tcg_rd = cpu_reg(s, rd); 5592 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5593 } 5594 break; 5595 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5596 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5597 goto do_unallocated; 5598 } else if (s->pauth_active) { 5599 tcg_rd = cpu_reg(s, rd); 5600 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5601 } 5602 break; 5603 case MAP(1, 0x01, 0x10): /* XPACI */ 5604 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5605 goto do_unallocated; 5606 } else if (s->pauth_active) { 5607 tcg_rd = cpu_reg(s, rd); 5608 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5609 } 5610 break; 5611 case MAP(1, 0x01, 0x11): /* XPACD */ 5612 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5613 goto do_unallocated; 5614 } else if (s->pauth_active) { 5615 tcg_rd = cpu_reg(s, rd); 5616 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5617 } 5618 break; 5619 default: 5620 do_unallocated: 5621 unallocated_encoding(s); 5622 break; 5623 } 5624 5625 #undef MAP 5626 } 5627 5628 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5629 unsigned int rm, unsigned int rn, unsigned int rd) 5630 { 5631 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5632 tcg_rd = cpu_reg(s, rd); 5633 5634 if (!sf && is_signed) { 5635 tcg_n = tcg_temp_new_i64(); 5636 tcg_m = tcg_temp_new_i64(); 5637 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5638 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5639 } else { 5640 tcg_n = read_cpu_reg(s, rn, sf); 5641 tcg_m = read_cpu_reg(s, rm, sf); 5642 } 5643 5644 if (is_signed) { 5645 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5646 } else { 5647 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5648 } 5649 5650 if (!sf) { /* zero extend final result */ 5651 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5652 } 5653 } 5654 5655 /* LSLV, LSRV, ASRV, RORV */ 5656 static void handle_shift_reg(DisasContext *s, 5657 enum a64_shift_type shift_type, unsigned int sf, 5658 unsigned int rm, unsigned int rn, unsigned int rd) 5659 { 5660 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5661 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5662 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5663 5664 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5665 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5666 } 5667 5668 /* CRC32[BHWX], CRC32C[BHWX] */ 5669 static void handle_crc32(DisasContext *s, 5670 unsigned int sf, unsigned int sz, bool crc32c, 5671 unsigned int rm, unsigned int rn, unsigned int rd) 5672 { 5673 TCGv_i64 tcg_acc, tcg_val; 5674 TCGv_i32 tcg_bytes; 5675 5676 if (!dc_isar_feature(aa64_crc32, s) 5677 || (sf == 1 && sz != 3) 5678 || (sf == 0 && sz == 3)) { 5679 unallocated_encoding(s); 5680 return; 5681 } 5682 5683 if (sz == 3) { 5684 tcg_val = cpu_reg(s, rm); 5685 } else { 5686 uint64_t mask; 5687 switch (sz) { 5688 case 0: 5689 mask = 0xFF; 5690 break; 5691 case 1: 5692 mask = 0xFFFF; 5693 break; 5694 case 2: 5695 mask = 0xFFFFFFFF; 5696 break; 5697 default: 5698 g_assert_not_reached(); 5699 } 5700 tcg_val = tcg_temp_new_i64(); 5701 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5702 } 5703 5704 tcg_acc = cpu_reg(s, rn); 5705 tcg_bytes = tcg_constant_i32(1 << sz); 5706 5707 if (crc32c) { 5708 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5709 } else { 5710 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5711 } 5712 } 5713 5714 /* Data-processing (2 source) 5715 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5716 * +----+---+---+-----------------+------+--------+------+------+ 5717 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5718 * +----+---+---+-----------------+------+--------+------+------+ 5719 */ 5720 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5721 { 5722 unsigned int sf, rm, opcode, rn, rd, setflag; 5723 sf = extract32(insn, 31, 1); 5724 setflag = extract32(insn, 29, 1); 5725 rm = extract32(insn, 16, 5); 5726 opcode = extract32(insn, 10, 6); 5727 rn = extract32(insn, 5, 5); 5728 rd = extract32(insn, 0, 5); 5729 5730 if (setflag && opcode != 0) { 5731 unallocated_encoding(s); 5732 return; 5733 } 5734 5735 switch (opcode) { 5736 case 0: /* SUBP(S) */ 5737 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5738 goto do_unallocated; 5739 } else { 5740 TCGv_i64 tcg_n, tcg_m, tcg_d; 5741 5742 tcg_n = read_cpu_reg_sp(s, rn, true); 5743 tcg_m = read_cpu_reg_sp(s, rm, true); 5744 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5745 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5746 tcg_d = cpu_reg(s, rd); 5747 5748 if (setflag) { 5749 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5750 } else { 5751 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5752 } 5753 } 5754 break; 5755 case 2: /* UDIV */ 5756 handle_div(s, false, sf, rm, rn, rd); 5757 break; 5758 case 3: /* SDIV */ 5759 handle_div(s, true, sf, rm, rn, rd); 5760 break; 5761 case 4: /* IRG */ 5762 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5763 goto do_unallocated; 5764 } 5765 if (s->ata) { 5766 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5767 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5768 } else { 5769 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5770 cpu_reg_sp(s, rn)); 5771 } 5772 break; 5773 case 5: /* GMI */ 5774 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5775 goto do_unallocated; 5776 } else { 5777 TCGv_i64 t = tcg_temp_new_i64(); 5778 5779 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5780 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5781 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5782 } 5783 break; 5784 case 8: /* LSLV */ 5785 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5786 break; 5787 case 9: /* LSRV */ 5788 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5789 break; 5790 case 10: /* ASRV */ 5791 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5792 break; 5793 case 11: /* RORV */ 5794 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5795 break; 5796 case 12: /* PACGA */ 5797 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5798 goto do_unallocated; 5799 } 5800 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5801 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5802 break; 5803 case 16: 5804 case 17: 5805 case 18: 5806 case 19: 5807 case 20: 5808 case 21: 5809 case 22: 5810 case 23: /* CRC32 */ 5811 { 5812 int sz = extract32(opcode, 0, 2); 5813 bool crc32c = extract32(opcode, 2, 1); 5814 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5815 break; 5816 } 5817 default: 5818 do_unallocated: 5819 unallocated_encoding(s); 5820 break; 5821 } 5822 } 5823 5824 /* 5825 * Data processing - register 5826 * 31 30 29 28 25 21 20 16 10 0 5827 * +--+---+--+---+-------+-----+-------+-------+---------+ 5828 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5829 * +--+---+--+---+-------+-----+-------+-------+---------+ 5830 */ 5831 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5832 { 5833 int op0 = extract32(insn, 30, 1); 5834 int op1 = extract32(insn, 28, 1); 5835 int op2 = extract32(insn, 21, 4); 5836 int op3 = extract32(insn, 10, 6); 5837 5838 if (!op1) { 5839 if (op2 & 8) { 5840 if (op2 & 1) { 5841 /* Add/sub (extended register) */ 5842 disas_add_sub_ext_reg(s, insn); 5843 } else { 5844 /* Add/sub (shifted register) */ 5845 disas_add_sub_reg(s, insn); 5846 } 5847 } else { 5848 /* Logical (shifted register) */ 5849 disas_logic_reg(s, insn); 5850 } 5851 return; 5852 } 5853 5854 switch (op2) { 5855 case 0x0: 5856 switch (op3) { 5857 case 0x00: /* Add/subtract (with carry) */ 5858 disas_adc_sbc(s, insn); 5859 break; 5860 5861 case 0x01: /* Rotate right into flags */ 5862 case 0x21: 5863 disas_rotate_right_into_flags(s, insn); 5864 break; 5865 5866 case 0x02: /* Evaluate into flags */ 5867 case 0x12: 5868 case 0x22: 5869 case 0x32: 5870 disas_evaluate_into_flags(s, insn); 5871 break; 5872 5873 default: 5874 goto do_unallocated; 5875 } 5876 break; 5877 5878 case 0x2: /* Conditional compare */ 5879 disas_cc(s, insn); /* both imm and reg forms */ 5880 break; 5881 5882 case 0x4: /* Conditional select */ 5883 disas_cond_select(s, insn); 5884 break; 5885 5886 case 0x6: /* Data-processing */ 5887 if (op0) { /* (1 source) */ 5888 disas_data_proc_1src(s, insn); 5889 } else { /* (2 source) */ 5890 disas_data_proc_2src(s, insn); 5891 } 5892 break; 5893 case 0x8 ... 0xf: /* (3 source) */ 5894 disas_data_proc_3src(s, insn); 5895 break; 5896 5897 default: 5898 do_unallocated: 5899 unallocated_encoding(s); 5900 break; 5901 } 5902 } 5903 5904 static void handle_fp_compare(DisasContext *s, int size, 5905 unsigned int rn, unsigned int rm, 5906 bool cmp_with_zero, bool signal_all_nans) 5907 { 5908 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5909 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5910 5911 if (size == MO_64) { 5912 TCGv_i64 tcg_vn, tcg_vm; 5913 5914 tcg_vn = read_fp_dreg(s, rn); 5915 if (cmp_with_zero) { 5916 tcg_vm = tcg_constant_i64(0); 5917 } else { 5918 tcg_vm = read_fp_dreg(s, rm); 5919 } 5920 if (signal_all_nans) { 5921 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5922 } else { 5923 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5924 } 5925 } else { 5926 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5927 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5928 5929 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5930 if (cmp_with_zero) { 5931 tcg_gen_movi_i32(tcg_vm, 0); 5932 } else { 5933 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5934 } 5935 5936 switch (size) { 5937 case MO_32: 5938 if (signal_all_nans) { 5939 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5940 } else { 5941 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5942 } 5943 break; 5944 case MO_16: 5945 if (signal_all_nans) { 5946 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5947 } else { 5948 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5949 } 5950 break; 5951 default: 5952 g_assert_not_reached(); 5953 } 5954 } 5955 5956 gen_set_nzcv(tcg_flags); 5957 } 5958 5959 /* Floating point compare 5960 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5961 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5962 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5963 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5964 */ 5965 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5966 { 5967 unsigned int mos, type, rm, op, rn, opc, op2r; 5968 int size; 5969 5970 mos = extract32(insn, 29, 3); 5971 type = extract32(insn, 22, 2); 5972 rm = extract32(insn, 16, 5); 5973 op = extract32(insn, 14, 2); 5974 rn = extract32(insn, 5, 5); 5975 opc = extract32(insn, 3, 2); 5976 op2r = extract32(insn, 0, 3); 5977 5978 if (mos || op || op2r) { 5979 unallocated_encoding(s); 5980 return; 5981 } 5982 5983 switch (type) { 5984 case 0: 5985 size = MO_32; 5986 break; 5987 case 1: 5988 size = MO_64; 5989 break; 5990 case 3: 5991 size = MO_16; 5992 if (dc_isar_feature(aa64_fp16, s)) { 5993 break; 5994 } 5995 /* fallthru */ 5996 default: 5997 unallocated_encoding(s); 5998 return; 5999 } 6000 6001 if (!fp_access_check(s)) { 6002 return; 6003 } 6004 6005 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6006 } 6007 6008 /* Floating point conditional compare 6009 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6010 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6011 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6012 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6013 */ 6014 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6015 { 6016 unsigned int mos, type, rm, cond, rn, op, nzcv; 6017 TCGLabel *label_continue = NULL; 6018 int size; 6019 6020 mos = extract32(insn, 29, 3); 6021 type = extract32(insn, 22, 2); 6022 rm = extract32(insn, 16, 5); 6023 cond = extract32(insn, 12, 4); 6024 rn = extract32(insn, 5, 5); 6025 op = extract32(insn, 4, 1); 6026 nzcv = extract32(insn, 0, 4); 6027 6028 if (mos) { 6029 unallocated_encoding(s); 6030 return; 6031 } 6032 6033 switch (type) { 6034 case 0: 6035 size = MO_32; 6036 break; 6037 case 1: 6038 size = MO_64; 6039 break; 6040 case 3: 6041 size = MO_16; 6042 if (dc_isar_feature(aa64_fp16, s)) { 6043 break; 6044 } 6045 /* fallthru */ 6046 default: 6047 unallocated_encoding(s); 6048 return; 6049 } 6050 6051 if (!fp_access_check(s)) { 6052 return; 6053 } 6054 6055 if (cond < 0x0e) { /* not always */ 6056 TCGLabel *label_match = gen_new_label(); 6057 label_continue = gen_new_label(); 6058 arm_gen_test_cc(cond, label_match); 6059 /* nomatch: */ 6060 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6061 tcg_gen_br(label_continue); 6062 gen_set_label(label_match); 6063 } 6064 6065 handle_fp_compare(s, size, rn, rm, false, op); 6066 6067 if (cond < 0x0e) { 6068 gen_set_label(label_continue); 6069 } 6070 } 6071 6072 /* Floating point conditional select 6073 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6074 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6075 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6076 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6077 */ 6078 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6079 { 6080 unsigned int mos, type, rm, cond, rn, rd; 6081 TCGv_i64 t_true, t_false; 6082 DisasCompare64 c; 6083 MemOp sz; 6084 6085 mos = extract32(insn, 29, 3); 6086 type = extract32(insn, 22, 2); 6087 rm = extract32(insn, 16, 5); 6088 cond = extract32(insn, 12, 4); 6089 rn = extract32(insn, 5, 5); 6090 rd = extract32(insn, 0, 5); 6091 6092 if (mos) { 6093 unallocated_encoding(s); 6094 return; 6095 } 6096 6097 switch (type) { 6098 case 0: 6099 sz = MO_32; 6100 break; 6101 case 1: 6102 sz = MO_64; 6103 break; 6104 case 3: 6105 sz = MO_16; 6106 if (dc_isar_feature(aa64_fp16, s)) { 6107 break; 6108 } 6109 /* fallthru */ 6110 default: 6111 unallocated_encoding(s); 6112 return; 6113 } 6114 6115 if (!fp_access_check(s)) { 6116 return; 6117 } 6118 6119 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6120 t_true = tcg_temp_new_i64(); 6121 t_false = tcg_temp_new_i64(); 6122 read_vec_element(s, t_true, rn, 0, sz); 6123 read_vec_element(s, t_false, rm, 0, sz); 6124 6125 a64_test_cc(&c, cond); 6126 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6127 t_true, t_false); 6128 6129 /* Note that sregs & hregs write back zeros to the high bits, 6130 and we've already done the zero-extension. */ 6131 write_fp_dreg(s, rd, t_true); 6132 } 6133 6134 /* Floating-point data-processing (1 source) - half precision */ 6135 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6136 { 6137 TCGv_ptr fpst = NULL; 6138 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6139 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6140 6141 switch (opcode) { 6142 case 0x0: /* FMOV */ 6143 tcg_gen_mov_i32(tcg_res, tcg_op); 6144 break; 6145 case 0x1: /* FABS */ 6146 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6147 break; 6148 case 0x2: /* FNEG */ 6149 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6150 break; 6151 case 0x3: /* FSQRT */ 6152 fpst = fpstatus_ptr(FPST_FPCR_F16); 6153 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6154 break; 6155 case 0x8: /* FRINTN */ 6156 case 0x9: /* FRINTP */ 6157 case 0xa: /* FRINTM */ 6158 case 0xb: /* FRINTZ */ 6159 case 0xc: /* FRINTA */ 6160 { 6161 TCGv_i32 tcg_rmode; 6162 6163 fpst = fpstatus_ptr(FPST_FPCR_F16); 6164 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6165 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6166 gen_restore_rmode(tcg_rmode, fpst); 6167 break; 6168 } 6169 case 0xe: /* FRINTX */ 6170 fpst = fpstatus_ptr(FPST_FPCR_F16); 6171 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6172 break; 6173 case 0xf: /* FRINTI */ 6174 fpst = fpstatus_ptr(FPST_FPCR_F16); 6175 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6176 break; 6177 default: 6178 g_assert_not_reached(); 6179 } 6180 6181 write_fp_sreg(s, rd, tcg_res); 6182 } 6183 6184 /* Floating-point data-processing (1 source) - single precision */ 6185 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6186 { 6187 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6188 TCGv_i32 tcg_op, tcg_res; 6189 TCGv_ptr fpst; 6190 int rmode = -1; 6191 6192 tcg_op = read_fp_sreg(s, rn); 6193 tcg_res = tcg_temp_new_i32(); 6194 6195 switch (opcode) { 6196 case 0x0: /* FMOV */ 6197 tcg_gen_mov_i32(tcg_res, tcg_op); 6198 goto done; 6199 case 0x1: /* FABS */ 6200 gen_helper_vfp_abss(tcg_res, tcg_op); 6201 goto done; 6202 case 0x2: /* FNEG */ 6203 gen_helper_vfp_negs(tcg_res, tcg_op); 6204 goto done; 6205 case 0x3: /* FSQRT */ 6206 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6207 goto done; 6208 case 0x6: /* BFCVT */ 6209 gen_fpst = gen_helper_bfcvt; 6210 break; 6211 case 0x8: /* FRINTN */ 6212 case 0x9: /* FRINTP */ 6213 case 0xa: /* FRINTM */ 6214 case 0xb: /* FRINTZ */ 6215 case 0xc: /* FRINTA */ 6216 rmode = opcode & 7; 6217 gen_fpst = gen_helper_rints; 6218 break; 6219 case 0xe: /* FRINTX */ 6220 gen_fpst = gen_helper_rints_exact; 6221 break; 6222 case 0xf: /* FRINTI */ 6223 gen_fpst = gen_helper_rints; 6224 break; 6225 case 0x10: /* FRINT32Z */ 6226 rmode = FPROUNDING_ZERO; 6227 gen_fpst = gen_helper_frint32_s; 6228 break; 6229 case 0x11: /* FRINT32X */ 6230 gen_fpst = gen_helper_frint32_s; 6231 break; 6232 case 0x12: /* FRINT64Z */ 6233 rmode = FPROUNDING_ZERO; 6234 gen_fpst = gen_helper_frint64_s; 6235 break; 6236 case 0x13: /* FRINT64X */ 6237 gen_fpst = gen_helper_frint64_s; 6238 break; 6239 default: 6240 g_assert_not_reached(); 6241 } 6242 6243 fpst = fpstatus_ptr(FPST_FPCR); 6244 if (rmode >= 0) { 6245 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6246 gen_fpst(tcg_res, tcg_op, fpst); 6247 gen_restore_rmode(tcg_rmode, fpst); 6248 } else { 6249 gen_fpst(tcg_res, tcg_op, fpst); 6250 } 6251 6252 done: 6253 write_fp_sreg(s, rd, tcg_res); 6254 } 6255 6256 /* Floating-point data-processing (1 source) - double precision */ 6257 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6258 { 6259 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6260 TCGv_i64 tcg_op, tcg_res; 6261 TCGv_ptr fpst; 6262 int rmode = -1; 6263 6264 switch (opcode) { 6265 case 0x0: /* FMOV */ 6266 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6267 return; 6268 } 6269 6270 tcg_op = read_fp_dreg(s, rn); 6271 tcg_res = tcg_temp_new_i64(); 6272 6273 switch (opcode) { 6274 case 0x1: /* FABS */ 6275 gen_helper_vfp_absd(tcg_res, tcg_op); 6276 goto done; 6277 case 0x2: /* FNEG */ 6278 gen_helper_vfp_negd(tcg_res, tcg_op); 6279 goto done; 6280 case 0x3: /* FSQRT */ 6281 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6282 goto done; 6283 case 0x8: /* FRINTN */ 6284 case 0x9: /* FRINTP */ 6285 case 0xa: /* FRINTM */ 6286 case 0xb: /* FRINTZ */ 6287 case 0xc: /* FRINTA */ 6288 rmode = opcode & 7; 6289 gen_fpst = gen_helper_rintd; 6290 break; 6291 case 0xe: /* FRINTX */ 6292 gen_fpst = gen_helper_rintd_exact; 6293 break; 6294 case 0xf: /* FRINTI */ 6295 gen_fpst = gen_helper_rintd; 6296 break; 6297 case 0x10: /* FRINT32Z */ 6298 rmode = FPROUNDING_ZERO; 6299 gen_fpst = gen_helper_frint32_d; 6300 break; 6301 case 0x11: /* FRINT32X */ 6302 gen_fpst = gen_helper_frint32_d; 6303 break; 6304 case 0x12: /* FRINT64Z */ 6305 rmode = FPROUNDING_ZERO; 6306 gen_fpst = gen_helper_frint64_d; 6307 break; 6308 case 0x13: /* FRINT64X */ 6309 gen_fpst = gen_helper_frint64_d; 6310 break; 6311 default: 6312 g_assert_not_reached(); 6313 } 6314 6315 fpst = fpstatus_ptr(FPST_FPCR); 6316 if (rmode >= 0) { 6317 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6318 gen_fpst(tcg_res, tcg_op, fpst); 6319 gen_restore_rmode(tcg_rmode, fpst); 6320 } else { 6321 gen_fpst(tcg_res, tcg_op, fpst); 6322 } 6323 6324 done: 6325 write_fp_dreg(s, rd, tcg_res); 6326 } 6327 6328 static void handle_fp_fcvt(DisasContext *s, int opcode, 6329 int rd, int rn, int dtype, int ntype) 6330 { 6331 switch (ntype) { 6332 case 0x0: 6333 { 6334 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6335 if (dtype == 1) { 6336 /* Single to double */ 6337 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6338 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6339 write_fp_dreg(s, rd, tcg_rd); 6340 } else { 6341 /* Single to half */ 6342 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6343 TCGv_i32 ahp = get_ahp_flag(); 6344 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6345 6346 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6347 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6348 write_fp_sreg(s, rd, tcg_rd); 6349 } 6350 break; 6351 } 6352 case 0x1: 6353 { 6354 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6355 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6356 if (dtype == 0) { 6357 /* Double to single */ 6358 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6359 } else { 6360 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6361 TCGv_i32 ahp = get_ahp_flag(); 6362 /* Double to half */ 6363 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6364 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6365 } 6366 write_fp_sreg(s, rd, tcg_rd); 6367 break; 6368 } 6369 case 0x3: 6370 { 6371 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6372 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6373 TCGv_i32 tcg_ahp = get_ahp_flag(); 6374 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6375 if (dtype == 0) { 6376 /* Half to single */ 6377 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6378 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6379 write_fp_sreg(s, rd, tcg_rd); 6380 } else { 6381 /* Half to double */ 6382 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6383 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6384 write_fp_dreg(s, rd, tcg_rd); 6385 } 6386 break; 6387 } 6388 default: 6389 g_assert_not_reached(); 6390 } 6391 } 6392 6393 /* Floating point data-processing (1 source) 6394 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6395 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6396 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6397 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6398 */ 6399 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6400 { 6401 int mos = extract32(insn, 29, 3); 6402 int type = extract32(insn, 22, 2); 6403 int opcode = extract32(insn, 15, 6); 6404 int rn = extract32(insn, 5, 5); 6405 int rd = extract32(insn, 0, 5); 6406 6407 if (mos) { 6408 goto do_unallocated; 6409 } 6410 6411 switch (opcode) { 6412 case 0x4: case 0x5: case 0x7: 6413 { 6414 /* FCVT between half, single and double precision */ 6415 int dtype = extract32(opcode, 0, 2); 6416 if (type == 2 || dtype == type) { 6417 goto do_unallocated; 6418 } 6419 if (!fp_access_check(s)) { 6420 return; 6421 } 6422 6423 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6424 break; 6425 } 6426 6427 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6428 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6429 goto do_unallocated; 6430 } 6431 /* fall through */ 6432 case 0x0 ... 0x3: 6433 case 0x8 ... 0xc: 6434 case 0xe ... 0xf: 6435 /* 32-to-32 and 64-to-64 ops */ 6436 switch (type) { 6437 case 0: 6438 if (!fp_access_check(s)) { 6439 return; 6440 } 6441 handle_fp_1src_single(s, opcode, rd, rn); 6442 break; 6443 case 1: 6444 if (!fp_access_check(s)) { 6445 return; 6446 } 6447 handle_fp_1src_double(s, opcode, rd, rn); 6448 break; 6449 case 3: 6450 if (!dc_isar_feature(aa64_fp16, s)) { 6451 goto do_unallocated; 6452 } 6453 6454 if (!fp_access_check(s)) { 6455 return; 6456 } 6457 handle_fp_1src_half(s, opcode, rd, rn); 6458 break; 6459 default: 6460 goto do_unallocated; 6461 } 6462 break; 6463 6464 case 0x6: 6465 switch (type) { 6466 case 1: /* BFCVT */ 6467 if (!dc_isar_feature(aa64_bf16, s)) { 6468 goto do_unallocated; 6469 } 6470 if (!fp_access_check(s)) { 6471 return; 6472 } 6473 handle_fp_1src_single(s, opcode, rd, rn); 6474 break; 6475 default: 6476 goto do_unallocated; 6477 } 6478 break; 6479 6480 default: 6481 do_unallocated: 6482 unallocated_encoding(s); 6483 break; 6484 } 6485 } 6486 6487 /* Floating-point data-processing (2 source) - single precision */ 6488 static void handle_fp_2src_single(DisasContext *s, int opcode, 6489 int rd, int rn, int rm) 6490 { 6491 TCGv_i32 tcg_op1; 6492 TCGv_i32 tcg_op2; 6493 TCGv_i32 tcg_res; 6494 TCGv_ptr fpst; 6495 6496 tcg_res = tcg_temp_new_i32(); 6497 fpst = fpstatus_ptr(FPST_FPCR); 6498 tcg_op1 = read_fp_sreg(s, rn); 6499 tcg_op2 = read_fp_sreg(s, rm); 6500 6501 switch (opcode) { 6502 case 0x0: /* FMUL */ 6503 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6504 break; 6505 case 0x1: /* FDIV */ 6506 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6507 break; 6508 case 0x2: /* FADD */ 6509 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6510 break; 6511 case 0x3: /* FSUB */ 6512 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6513 break; 6514 case 0x4: /* FMAX */ 6515 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6516 break; 6517 case 0x5: /* FMIN */ 6518 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6519 break; 6520 case 0x6: /* FMAXNM */ 6521 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6522 break; 6523 case 0x7: /* FMINNM */ 6524 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6525 break; 6526 case 0x8: /* FNMUL */ 6527 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6528 gen_helper_vfp_negs(tcg_res, tcg_res); 6529 break; 6530 } 6531 6532 write_fp_sreg(s, rd, tcg_res); 6533 } 6534 6535 /* Floating-point data-processing (2 source) - double precision */ 6536 static void handle_fp_2src_double(DisasContext *s, int opcode, 6537 int rd, int rn, int rm) 6538 { 6539 TCGv_i64 tcg_op1; 6540 TCGv_i64 tcg_op2; 6541 TCGv_i64 tcg_res; 6542 TCGv_ptr fpst; 6543 6544 tcg_res = tcg_temp_new_i64(); 6545 fpst = fpstatus_ptr(FPST_FPCR); 6546 tcg_op1 = read_fp_dreg(s, rn); 6547 tcg_op2 = read_fp_dreg(s, rm); 6548 6549 switch (opcode) { 6550 case 0x0: /* FMUL */ 6551 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6552 break; 6553 case 0x1: /* FDIV */ 6554 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6555 break; 6556 case 0x2: /* FADD */ 6557 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6558 break; 6559 case 0x3: /* FSUB */ 6560 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6561 break; 6562 case 0x4: /* FMAX */ 6563 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6564 break; 6565 case 0x5: /* FMIN */ 6566 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6567 break; 6568 case 0x6: /* FMAXNM */ 6569 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6570 break; 6571 case 0x7: /* FMINNM */ 6572 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6573 break; 6574 case 0x8: /* FNMUL */ 6575 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6576 gen_helper_vfp_negd(tcg_res, tcg_res); 6577 break; 6578 } 6579 6580 write_fp_dreg(s, rd, tcg_res); 6581 } 6582 6583 /* Floating-point data-processing (2 source) - half precision */ 6584 static void handle_fp_2src_half(DisasContext *s, int opcode, 6585 int rd, int rn, int rm) 6586 { 6587 TCGv_i32 tcg_op1; 6588 TCGv_i32 tcg_op2; 6589 TCGv_i32 tcg_res; 6590 TCGv_ptr fpst; 6591 6592 tcg_res = tcg_temp_new_i32(); 6593 fpst = fpstatus_ptr(FPST_FPCR_F16); 6594 tcg_op1 = read_fp_hreg(s, rn); 6595 tcg_op2 = read_fp_hreg(s, rm); 6596 6597 switch (opcode) { 6598 case 0x0: /* FMUL */ 6599 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6600 break; 6601 case 0x1: /* FDIV */ 6602 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6603 break; 6604 case 0x2: /* FADD */ 6605 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6606 break; 6607 case 0x3: /* FSUB */ 6608 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6609 break; 6610 case 0x4: /* FMAX */ 6611 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6612 break; 6613 case 0x5: /* FMIN */ 6614 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6615 break; 6616 case 0x6: /* FMAXNM */ 6617 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6618 break; 6619 case 0x7: /* FMINNM */ 6620 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6621 break; 6622 case 0x8: /* FNMUL */ 6623 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6624 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6625 break; 6626 default: 6627 g_assert_not_reached(); 6628 } 6629 6630 write_fp_sreg(s, rd, tcg_res); 6631 } 6632 6633 /* Floating point data-processing (2 source) 6634 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6635 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6636 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6637 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6638 */ 6639 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6640 { 6641 int mos = extract32(insn, 29, 3); 6642 int type = extract32(insn, 22, 2); 6643 int rd = extract32(insn, 0, 5); 6644 int rn = extract32(insn, 5, 5); 6645 int rm = extract32(insn, 16, 5); 6646 int opcode = extract32(insn, 12, 4); 6647 6648 if (opcode > 8 || mos) { 6649 unallocated_encoding(s); 6650 return; 6651 } 6652 6653 switch (type) { 6654 case 0: 6655 if (!fp_access_check(s)) { 6656 return; 6657 } 6658 handle_fp_2src_single(s, opcode, rd, rn, rm); 6659 break; 6660 case 1: 6661 if (!fp_access_check(s)) { 6662 return; 6663 } 6664 handle_fp_2src_double(s, opcode, rd, rn, rm); 6665 break; 6666 case 3: 6667 if (!dc_isar_feature(aa64_fp16, s)) { 6668 unallocated_encoding(s); 6669 return; 6670 } 6671 if (!fp_access_check(s)) { 6672 return; 6673 } 6674 handle_fp_2src_half(s, opcode, rd, rn, rm); 6675 break; 6676 default: 6677 unallocated_encoding(s); 6678 } 6679 } 6680 6681 /* Floating-point data-processing (3 source) - single precision */ 6682 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6683 int rd, int rn, int rm, int ra) 6684 { 6685 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6686 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6687 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6688 6689 tcg_op1 = read_fp_sreg(s, rn); 6690 tcg_op2 = read_fp_sreg(s, rm); 6691 tcg_op3 = read_fp_sreg(s, ra); 6692 6693 /* These are fused multiply-add, and must be done as one 6694 * floating point operation with no rounding between the 6695 * multiplication and addition steps. 6696 * NB that doing the negations here as separate steps is 6697 * correct : an input NaN should come out with its sign bit 6698 * flipped if it is a negated-input. 6699 */ 6700 if (o1 == true) { 6701 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6702 } 6703 6704 if (o0 != o1) { 6705 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6706 } 6707 6708 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6709 6710 write_fp_sreg(s, rd, tcg_res); 6711 } 6712 6713 /* Floating-point data-processing (3 source) - double precision */ 6714 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6715 int rd, int rn, int rm, int ra) 6716 { 6717 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6718 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6719 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6720 6721 tcg_op1 = read_fp_dreg(s, rn); 6722 tcg_op2 = read_fp_dreg(s, rm); 6723 tcg_op3 = read_fp_dreg(s, ra); 6724 6725 /* These are fused multiply-add, and must be done as one 6726 * floating point operation with no rounding between the 6727 * multiplication and addition steps. 6728 * NB that doing the negations here as separate steps is 6729 * correct : an input NaN should come out with its sign bit 6730 * flipped if it is a negated-input. 6731 */ 6732 if (o1 == true) { 6733 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6734 } 6735 6736 if (o0 != o1) { 6737 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6738 } 6739 6740 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6741 6742 write_fp_dreg(s, rd, tcg_res); 6743 } 6744 6745 /* Floating-point data-processing (3 source) - half precision */ 6746 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6747 int rd, int rn, int rm, int ra) 6748 { 6749 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6750 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6751 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6752 6753 tcg_op1 = read_fp_hreg(s, rn); 6754 tcg_op2 = read_fp_hreg(s, rm); 6755 tcg_op3 = read_fp_hreg(s, ra); 6756 6757 /* These are fused multiply-add, and must be done as one 6758 * floating point operation with no rounding between the 6759 * multiplication and addition steps. 6760 * NB that doing the negations here as separate steps is 6761 * correct : an input NaN should come out with its sign bit 6762 * flipped if it is a negated-input. 6763 */ 6764 if (o1 == true) { 6765 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6766 } 6767 6768 if (o0 != o1) { 6769 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6770 } 6771 6772 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6773 6774 write_fp_sreg(s, rd, tcg_res); 6775 } 6776 6777 /* Floating point data-processing (3 source) 6778 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6779 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6780 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6781 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6782 */ 6783 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6784 { 6785 int mos = extract32(insn, 29, 3); 6786 int type = extract32(insn, 22, 2); 6787 int rd = extract32(insn, 0, 5); 6788 int rn = extract32(insn, 5, 5); 6789 int ra = extract32(insn, 10, 5); 6790 int rm = extract32(insn, 16, 5); 6791 bool o0 = extract32(insn, 15, 1); 6792 bool o1 = extract32(insn, 21, 1); 6793 6794 if (mos) { 6795 unallocated_encoding(s); 6796 return; 6797 } 6798 6799 switch (type) { 6800 case 0: 6801 if (!fp_access_check(s)) { 6802 return; 6803 } 6804 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6805 break; 6806 case 1: 6807 if (!fp_access_check(s)) { 6808 return; 6809 } 6810 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6811 break; 6812 case 3: 6813 if (!dc_isar_feature(aa64_fp16, s)) { 6814 unallocated_encoding(s); 6815 return; 6816 } 6817 if (!fp_access_check(s)) { 6818 return; 6819 } 6820 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6821 break; 6822 default: 6823 unallocated_encoding(s); 6824 } 6825 } 6826 6827 /* Floating point immediate 6828 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6829 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6830 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6831 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6832 */ 6833 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6834 { 6835 int rd = extract32(insn, 0, 5); 6836 int imm5 = extract32(insn, 5, 5); 6837 int imm8 = extract32(insn, 13, 8); 6838 int type = extract32(insn, 22, 2); 6839 int mos = extract32(insn, 29, 3); 6840 uint64_t imm; 6841 MemOp sz; 6842 6843 if (mos || imm5) { 6844 unallocated_encoding(s); 6845 return; 6846 } 6847 6848 switch (type) { 6849 case 0: 6850 sz = MO_32; 6851 break; 6852 case 1: 6853 sz = MO_64; 6854 break; 6855 case 3: 6856 sz = MO_16; 6857 if (dc_isar_feature(aa64_fp16, s)) { 6858 break; 6859 } 6860 /* fallthru */ 6861 default: 6862 unallocated_encoding(s); 6863 return; 6864 } 6865 6866 if (!fp_access_check(s)) { 6867 return; 6868 } 6869 6870 imm = vfp_expand_imm(sz, imm8); 6871 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6872 } 6873 6874 /* Handle floating point <=> fixed point conversions. Note that we can 6875 * also deal with fp <=> integer conversions as a special case (scale == 64) 6876 * OPTME: consider handling that special case specially or at least skipping 6877 * the call to scalbn in the helpers for zero shifts. 6878 */ 6879 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6880 bool itof, int rmode, int scale, int sf, int type) 6881 { 6882 bool is_signed = !(opcode & 1); 6883 TCGv_ptr tcg_fpstatus; 6884 TCGv_i32 tcg_shift, tcg_single; 6885 TCGv_i64 tcg_double; 6886 6887 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6888 6889 tcg_shift = tcg_constant_i32(64 - scale); 6890 6891 if (itof) { 6892 TCGv_i64 tcg_int = cpu_reg(s, rn); 6893 if (!sf) { 6894 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6895 6896 if (is_signed) { 6897 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6898 } else { 6899 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6900 } 6901 6902 tcg_int = tcg_extend; 6903 } 6904 6905 switch (type) { 6906 case 1: /* float64 */ 6907 tcg_double = tcg_temp_new_i64(); 6908 if (is_signed) { 6909 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6910 tcg_shift, tcg_fpstatus); 6911 } else { 6912 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6913 tcg_shift, tcg_fpstatus); 6914 } 6915 write_fp_dreg(s, rd, tcg_double); 6916 break; 6917 6918 case 0: /* float32 */ 6919 tcg_single = tcg_temp_new_i32(); 6920 if (is_signed) { 6921 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6922 tcg_shift, tcg_fpstatus); 6923 } else { 6924 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6925 tcg_shift, tcg_fpstatus); 6926 } 6927 write_fp_sreg(s, rd, tcg_single); 6928 break; 6929 6930 case 3: /* float16 */ 6931 tcg_single = tcg_temp_new_i32(); 6932 if (is_signed) { 6933 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6934 tcg_shift, tcg_fpstatus); 6935 } else { 6936 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6937 tcg_shift, tcg_fpstatus); 6938 } 6939 write_fp_sreg(s, rd, tcg_single); 6940 break; 6941 6942 default: 6943 g_assert_not_reached(); 6944 } 6945 } else { 6946 TCGv_i64 tcg_int = cpu_reg(s, rd); 6947 TCGv_i32 tcg_rmode; 6948 6949 if (extract32(opcode, 2, 1)) { 6950 /* There are too many rounding modes to all fit into rmode, 6951 * so FCVTA[US] is a special case. 6952 */ 6953 rmode = FPROUNDING_TIEAWAY; 6954 } 6955 6956 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6957 6958 switch (type) { 6959 case 1: /* float64 */ 6960 tcg_double = read_fp_dreg(s, rn); 6961 if (is_signed) { 6962 if (!sf) { 6963 gen_helper_vfp_tosld(tcg_int, tcg_double, 6964 tcg_shift, tcg_fpstatus); 6965 } else { 6966 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6967 tcg_shift, tcg_fpstatus); 6968 } 6969 } else { 6970 if (!sf) { 6971 gen_helper_vfp_tould(tcg_int, tcg_double, 6972 tcg_shift, tcg_fpstatus); 6973 } else { 6974 gen_helper_vfp_touqd(tcg_int, tcg_double, 6975 tcg_shift, tcg_fpstatus); 6976 } 6977 } 6978 if (!sf) { 6979 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6980 } 6981 break; 6982 6983 case 0: /* float32 */ 6984 tcg_single = read_fp_sreg(s, rn); 6985 if (sf) { 6986 if (is_signed) { 6987 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6988 tcg_shift, tcg_fpstatus); 6989 } else { 6990 gen_helper_vfp_touqs(tcg_int, tcg_single, 6991 tcg_shift, tcg_fpstatus); 6992 } 6993 } else { 6994 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6995 if (is_signed) { 6996 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6997 tcg_shift, tcg_fpstatus); 6998 } else { 6999 gen_helper_vfp_touls(tcg_dest, tcg_single, 7000 tcg_shift, tcg_fpstatus); 7001 } 7002 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7003 } 7004 break; 7005 7006 case 3: /* float16 */ 7007 tcg_single = read_fp_sreg(s, rn); 7008 if (sf) { 7009 if (is_signed) { 7010 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7011 tcg_shift, tcg_fpstatus); 7012 } else { 7013 gen_helper_vfp_touqh(tcg_int, tcg_single, 7014 tcg_shift, tcg_fpstatus); 7015 } 7016 } else { 7017 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7018 if (is_signed) { 7019 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7020 tcg_shift, tcg_fpstatus); 7021 } else { 7022 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7023 tcg_shift, tcg_fpstatus); 7024 } 7025 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7026 } 7027 break; 7028 7029 default: 7030 g_assert_not_reached(); 7031 } 7032 7033 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7034 } 7035 } 7036 7037 /* Floating point <-> fixed point conversions 7038 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7039 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7040 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7041 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7042 */ 7043 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7044 { 7045 int rd = extract32(insn, 0, 5); 7046 int rn = extract32(insn, 5, 5); 7047 int scale = extract32(insn, 10, 6); 7048 int opcode = extract32(insn, 16, 3); 7049 int rmode = extract32(insn, 19, 2); 7050 int type = extract32(insn, 22, 2); 7051 bool sbit = extract32(insn, 29, 1); 7052 bool sf = extract32(insn, 31, 1); 7053 bool itof; 7054 7055 if (sbit || (!sf && scale < 32)) { 7056 unallocated_encoding(s); 7057 return; 7058 } 7059 7060 switch (type) { 7061 case 0: /* float32 */ 7062 case 1: /* float64 */ 7063 break; 7064 case 3: /* float16 */ 7065 if (dc_isar_feature(aa64_fp16, s)) { 7066 break; 7067 } 7068 /* fallthru */ 7069 default: 7070 unallocated_encoding(s); 7071 return; 7072 } 7073 7074 switch ((rmode << 3) | opcode) { 7075 case 0x2: /* SCVTF */ 7076 case 0x3: /* UCVTF */ 7077 itof = true; 7078 break; 7079 case 0x18: /* FCVTZS */ 7080 case 0x19: /* FCVTZU */ 7081 itof = false; 7082 break; 7083 default: 7084 unallocated_encoding(s); 7085 return; 7086 } 7087 7088 if (!fp_access_check(s)) { 7089 return; 7090 } 7091 7092 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7093 } 7094 7095 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7096 { 7097 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7098 * without conversion. 7099 */ 7100 7101 if (itof) { 7102 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7103 TCGv_i64 tmp; 7104 7105 switch (type) { 7106 case 0: 7107 /* 32 bit */ 7108 tmp = tcg_temp_new_i64(); 7109 tcg_gen_ext32u_i64(tmp, tcg_rn); 7110 write_fp_dreg(s, rd, tmp); 7111 break; 7112 case 1: 7113 /* 64 bit */ 7114 write_fp_dreg(s, rd, tcg_rn); 7115 break; 7116 case 2: 7117 /* 64 bit to top half. */ 7118 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7119 clear_vec_high(s, true, rd); 7120 break; 7121 case 3: 7122 /* 16 bit */ 7123 tmp = tcg_temp_new_i64(); 7124 tcg_gen_ext16u_i64(tmp, tcg_rn); 7125 write_fp_dreg(s, rd, tmp); 7126 break; 7127 default: 7128 g_assert_not_reached(); 7129 } 7130 } else { 7131 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7132 7133 switch (type) { 7134 case 0: 7135 /* 32 bit */ 7136 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7137 break; 7138 case 1: 7139 /* 64 bit */ 7140 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7141 break; 7142 case 2: 7143 /* 64 bits from top half */ 7144 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7145 break; 7146 case 3: 7147 /* 16 bit */ 7148 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7149 break; 7150 default: 7151 g_assert_not_reached(); 7152 } 7153 } 7154 } 7155 7156 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7157 { 7158 TCGv_i64 t = read_fp_dreg(s, rn); 7159 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7160 7161 gen_helper_fjcvtzs(t, t, fpstatus); 7162 7163 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7164 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7165 tcg_gen_movi_i32(cpu_CF, 0); 7166 tcg_gen_movi_i32(cpu_NF, 0); 7167 tcg_gen_movi_i32(cpu_VF, 0); 7168 } 7169 7170 /* Floating point <-> integer conversions 7171 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7172 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7173 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7174 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7175 */ 7176 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7177 { 7178 int rd = extract32(insn, 0, 5); 7179 int rn = extract32(insn, 5, 5); 7180 int opcode = extract32(insn, 16, 3); 7181 int rmode = extract32(insn, 19, 2); 7182 int type = extract32(insn, 22, 2); 7183 bool sbit = extract32(insn, 29, 1); 7184 bool sf = extract32(insn, 31, 1); 7185 bool itof = false; 7186 7187 if (sbit) { 7188 goto do_unallocated; 7189 } 7190 7191 switch (opcode) { 7192 case 2: /* SCVTF */ 7193 case 3: /* UCVTF */ 7194 itof = true; 7195 /* fallthru */ 7196 case 4: /* FCVTAS */ 7197 case 5: /* FCVTAU */ 7198 if (rmode != 0) { 7199 goto do_unallocated; 7200 } 7201 /* fallthru */ 7202 case 0: /* FCVT[NPMZ]S */ 7203 case 1: /* FCVT[NPMZ]U */ 7204 switch (type) { 7205 case 0: /* float32 */ 7206 case 1: /* float64 */ 7207 break; 7208 case 3: /* float16 */ 7209 if (!dc_isar_feature(aa64_fp16, s)) { 7210 goto do_unallocated; 7211 } 7212 break; 7213 default: 7214 goto do_unallocated; 7215 } 7216 if (!fp_access_check(s)) { 7217 return; 7218 } 7219 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7220 break; 7221 7222 default: 7223 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7224 case 0b01100110: /* FMOV half <-> 32-bit int */ 7225 case 0b01100111: 7226 case 0b11100110: /* FMOV half <-> 64-bit int */ 7227 case 0b11100111: 7228 if (!dc_isar_feature(aa64_fp16, s)) { 7229 goto do_unallocated; 7230 } 7231 /* fallthru */ 7232 case 0b00000110: /* FMOV 32-bit */ 7233 case 0b00000111: 7234 case 0b10100110: /* FMOV 64-bit */ 7235 case 0b10100111: 7236 case 0b11001110: /* FMOV top half of 128-bit */ 7237 case 0b11001111: 7238 if (!fp_access_check(s)) { 7239 return; 7240 } 7241 itof = opcode & 1; 7242 handle_fmov(s, rd, rn, type, itof); 7243 break; 7244 7245 case 0b00111110: /* FJCVTZS */ 7246 if (!dc_isar_feature(aa64_jscvt, s)) { 7247 goto do_unallocated; 7248 } else if (fp_access_check(s)) { 7249 handle_fjcvtzs(s, rd, rn); 7250 } 7251 break; 7252 7253 default: 7254 do_unallocated: 7255 unallocated_encoding(s); 7256 return; 7257 } 7258 break; 7259 } 7260 } 7261 7262 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7263 * 31 30 29 28 25 24 0 7264 * +---+---+---+---------+-----------------------------+ 7265 * | | 0 | | 1 1 1 1 | | 7266 * +---+---+---+---------+-----------------------------+ 7267 */ 7268 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7269 { 7270 if (extract32(insn, 24, 1)) { 7271 /* Floating point data-processing (3 source) */ 7272 disas_fp_3src(s, insn); 7273 } else if (extract32(insn, 21, 1) == 0) { 7274 /* Floating point to fixed point conversions */ 7275 disas_fp_fixed_conv(s, insn); 7276 } else { 7277 switch (extract32(insn, 10, 2)) { 7278 case 1: 7279 /* Floating point conditional compare */ 7280 disas_fp_ccomp(s, insn); 7281 break; 7282 case 2: 7283 /* Floating point data-processing (2 source) */ 7284 disas_fp_2src(s, insn); 7285 break; 7286 case 3: 7287 /* Floating point conditional select */ 7288 disas_fp_csel(s, insn); 7289 break; 7290 case 0: 7291 switch (ctz32(extract32(insn, 12, 4))) { 7292 case 0: /* [15:12] == xxx1 */ 7293 /* Floating point immediate */ 7294 disas_fp_imm(s, insn); 7295 break; 7296 case 1: /* [15:12] == xx10 */ 7297 /* Floating point compare */ 7298 disas_fp_compare(s, insn); 7299 break; 7300 case 2: /* [15:12] == x100 */ 7301 /* Floating point data-processing (1 source) */ 7302 disas_fp_1src(s, insn); 7303 break; 7304 case 3: /* [15:12] == 1000 */ 7305 unallocated_encoding(s); 7306 break; 7307 default: /* [15:12] == 0000 */ 7308 /* Floating point <-> integer conversions */ 7309 disas_fp_int_conv(s, insn); 7310 break; 7311 } 7312 break; 7313 } 7314 } 7315 } 7316 7317 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7318 int pos) 7319 { 7320 /* Extract 64 bits from the middle of two concatenated 64 bit 7321 * vector register slices left:right. The extracted bits start 7322 * at 'pos' bits into the right (least significant) side. 7323 * We return the result in tcg_right, and guarantee not to 7324 * trash tcg_left. 7325 */ 7326 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7327 assert(pos > 0 && pos < 64); 7328 7329 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7330 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7331 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7332 } 7333 7334 /* EXT 7335 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7336 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7337 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7338 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7339 */ 7340 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7341 { 7342 int is_q = extract32(insn, 30, 1); 7343 int op2 = extract32(insn, 22, 2); 7344 int imm4 = extract32(insn, 11, 4); 7345 int rm = extract32(insn, 16, 5); 7346 int rn = extract32(insn, 5, 5); 7347 int rd = extract32(insn, 0, 5); 7348 int pos = imm4 << 3; 7349 TCGv_i64 tcg_resl, tcg_resh; 7350 7351 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7352 unallocated_encoding(s); 7353 return; 7354 } 7355 7356 if (!fp_access_check(s)) { 7357 return; 7358 } 7359 7360 tcg_resh = tcg_temp_new_i64(); 7361 tcg_resl = tcg_temp_new_i64(); 7362 7363 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7364 * either extracting 128 bits from a 128:128 concatenation, or 7365 * extracting 64 bits from a 64:64 concatenation. 7366 */ 7367 if (!is_q) { 7368 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7369 if (pos != 0) { 7370 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7371 do_ext64(s, tcg_resh, tcg_resl, pos); 7372 } 7373 } else { 7374 TCGv_i64 tcg_hh; 7375 typedef struct { 7376 int reg; 7377 int elt; 7378 } EltPosns; 7379 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7380 EltPosns *elt = eltposns; 7381 7382 if (pos >= 64) { 7383 elt++; 7384 pos -= 64; 7385 } 7386 7387 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7388 elt++; 7389 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7390 elt++; 7391 if (pos != 0) { 7392 do_ext64(s, tcg_resh, tcg_resl, pos); 7393 tcg_hh = tcg_temp_new_i64(); 7394 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7395 do_ext64(s, tcg_hh, tcg_resh, pos); 7396 } 7397 } 7398 7399 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7400 if (is_q) { 7401 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7402 } 7403 clear_vec_high(s, is_q, rd); 7404 } 7405 7406 /* TBL/TBX 7407 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7408 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7409 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7410 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7411 */ 7412 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7413 { 7414 int op2 = extract32(insn, 22, 2); 7415 int is_q = extract32(insn, 30, 1); 7416 int rm = extract32(insn, 16, 5); 7417 int rn = extract32(insn, 5, 5); 7418 int rd = extract32(insn, 0, 5); 7419 int is_tbx = extract32(insn, 12, 1); 7420 int len = (extract32(insn, 13, 2) + 1) * 16; 7421 7422 if (op2 != 0) { 7423 unallocated_encoding(s); 7424 return; 7425 } 7426 7427 if (!fp_access_check(s)) { 7428 return; 7429 } 7430 7431 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7432 vec_full_reg_offset(s, rm), cpu_env, 7433 is_q ? 16 : 8, vec_full_reg_size(s), 7434 (len << 6) | (is_tbx << 5) | rn, 7435 gen_helper_simd_tblx); 7436 } 7437 7438 /* ZIP/UZP/TRN 7439 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7440 * +---+---+-------------+------+---+------+---+------------------+------+ 7441 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7442 * +---+---+-------------+------+---+------+---+------------------+------+ 7443 */ 7444 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7445 { 7446 int rd = extract32(insn, 0, 5); 7447 int rn = extract32(insn, 5, 5); 7448 int rm = extract32(insn, 16, 5); 7449 int size = extract32(insn, 22, 2); 7450 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7451 * bit 2 indicates 1 vs 2 variant of the insn. 7452 */ 7453 int opcode = extract32(insn, 12, 2); 7454 bool part = extract32(insn, 14, 1); 7455 bool is_q = extract32(insn, 30, 1); 7456 int esize = 8 << size; 7457 int i; 7458 int datasize = is_q ? 128 : 64; 7459 int elements = datasize / esize; 7460 TCGv_i64 tcg_res[2], tcg_ele; 7461 7462 if (opcode == 0 || (size == 3 && !is_q)) { 7463 unallocated_encoding(s); 7464 return; 7465 } 7466 7467 if (!fp_access_check(s)) { 7468 return; 7469 } 7470 7471 tcg_res[0] = tcg_temp_new_i64(); 7472 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7473 tcg_ele = tcg_temp_new_i64(); 7474 7475 for (i = 0; i < elements; i++) { 7476 int o, w; 7477 7478 switch (opcode) { 7479 case 1: /* UZP1/2 */ 7480 { 7481 int midpoint = elements / 2; 7482 if (i < midpoint) { 7483 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7484 } else { 7485 read_vec_element(s, tcg_ele, rm, 7486 2 * (i - midpoint) + part, size); 7487 } 7488 break; 7489 } 7490 case 2: /* TRN1/2 */ 7491 if (i & 1) { 7492 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7493 } else { 7494 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7495 } 7496 break; 7497 case 3: /* ZIP1/2 */ 7498 { 7499 int base = part * elements / 2; 7500 if (i & 1) { 7501 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7502 } else { 7503 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7504 } 7505 break; 7506 } 7507 default: 7508 g_assert_not_reached(); 7509 } 7510 7511 w = (i * esize) / 64; 7512 o = (i * esize) % 64; 7513 if (o == 0) { 7514 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7515 } else { 7516 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7517 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7518 } 7519 } 7520 7521 for (i = 0; i <= is_q; ++i) { 7522 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7523 } 7524 clear_vec_high(s, is_q, rd); 7525 } 7526 7527 /* 7528 * do_reduction_op helper 7529 * 7530 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7531 * important for correct NaN propagation that we do these 7532 * operations in exactly the order specified by the pseudocode. 7533 * 7534 * This is a recursive function, TCG temps should be freed by the 7535 * calling function once it is done with the values. 7536 */ 7537 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7538 int esize, int size, int vmap, TCGv_ptr fpst) 7539 { 7540 if (esize == size) { 7541 int element; 7542 MemOp msize = esize == 16 ? MO_16 : MO_32; 7543 TCGv_i32 tcg_elem; 7544 7545 /* We should have one register left here */ 7546 assert(ctpop8(vmap) == 1); 7547 element = ctz32(vmap); 7548 assert(element < 8); 7549 7550 tcg_elem = tcg_temp_new_i32(); 7551 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7552 return tcg_elem; 7553 } else { 7554 int bits = size / 2; 7555 int shift = ctpop8(vmap) / 2; 7556 int vmap_lo = (vmap >> shift) & vmap; 7557 int vmap_hi = (vmap & ~vmap_lo); 7558 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7559 7560 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7561 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7562 tcg_res = tcg_temp_new_i32(); 7563 7564 switch (fpopcode) { 7565 case 0x0c: /* fmaxnmv half-precision */ 7566 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7567 break; 7568 case 0x0f: /* fmaxv half-precision */ 7569 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7570 break; 7571 case 0x1c: /* fminnmv half-precision */ 7572 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7573 break; 7574 case 0x1f: /* fminv half-precision */ 7575 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7576 break; 7577 case 0x2c: /* fmaxnmv */ 7578 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7579 break; 7580 case 0x2f: /* fmaxv */ 7581 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7582 break; 7583 case 0x3c: /* fminnmv */ 7584 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7585 break; 7586 case 0x3f: /* fminv */ 7587 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7588 break; 7589 default: 7590 g_assert_not_reached(); 7591 } 7592 return tcg_res; 7593 } 7594 } 7595 7596 /* AdvSIMD across lanes 7597 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7598 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7599 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7600 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7601 */ 7602 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7603 { 7604 int rd = extract32(insn, 0, 5); 7605 int rn = extract32(insn, 5, 5); 7606 int size = extract32(insn, 22, 2); 7607 int opcode = extract32(insn, 12, 5); 7608 bool is_q = extract32(insn, 30, 1); 7609 bool is_u = extract32(insn, 29, 1); 7610 bool is_fp = false; 7611 bool is_min = false; 7612 int esize; 7613 int elements; 7614 int i; 7615 TCGv_i64 tcg_res, tcg_elt; 7616 7617 switch (opcode) { 7618 case 0x1b: /* ADDV */ 7619 if (is_u) { 7620 unallocated_encoding(s); 7621 return; 7622 } 7623 /* fall through */ 7624 case 0x3: /* SADDLV, UADDLV */ 7625 case 0xa: /* SMAXV, UMAXV */ 7626 case 0x1a: /* SMINV, UMINV */ 7627 if (size == 3 || (size == 2 && !is_q)) { 7628 unallocated_encoding(s); 7629 return; 7630 } 7631 break; 7632 case 0xc: /* FMAXNMV, FMINNMV */ 7633 case 0xf: /* FMAXV, FMINV */ 7634 /* Bit 1 of size field encodes min vs max and the actual size 7635 * depends on the encoding of the U bit. If not set (and FP16 7636 * enabled) then we do half-precision float instead of single 7637 * precision. 7638 */ 7639 is_min = extract32(size, 1, 1); 7640 is_fp = true; 7641 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7642 size = 1; 7643 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7644 unallocated_encoding(s); 7645 return; 7646 } else { 7647 size = 2; 7648 } 7649 break; 7650 default: 7651 unallocated_encoding(s); 7652 return; 7653 } 7654 7655 if (!fp_access_check(s)) { 7656 return; 7657 } 7658 7659 esize = 8 << size; 7660 elements = (is_q ? 128 : 64) / esize; 7661 7662 tcg_res = tcg_temp_new_i64(); 7663 tcg_elt = tcg_temp_new_i64(); 7664 7665 /* These instructions operate across all lanes of a vector 7666 * to produce a single result. We can guarantee that a 64 7667 * bit intermediate is sufficient: 7668 * + for [US]ADDLV the maximum element size is 32 bits, and 7669 * the result type is 64 bits 7670 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7671 * same as the element size, which is 32 bits at most 7672 * For the integer operations we can choose to work at 64 7673 * or 32 bits and truncate at the end; for simplicity 7674 * we use 64 bits always. The floating point 7675 * ops do require 32 bit intermediates, though. 7676 */ 7677 if (!is_fp) { 7678 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7679 7680 for (i = 1; i < elements; i++) { 7681 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7682 7683 switch (opcode) { 7684 case 0x03: /* SADDLV / UADDLV */ 7685 case 0x1b: /* ADDV */ 7686 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7687 break; 7688 case 0x0a: /* SMAXV / UMAXV */ 7689 if (is_u) { 7690 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7691 } else { 7692 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7693 } 7694 break; 7695 case 0x1a: /* SMINV / UMINV */ 7696 if (is_u) { 7697 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7698 } else { 7699 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7700 } 7701 break; 7702 default: 7703 g_assert_not_reached(); 7704 } 7705 7706 } 7707 } else { 7708 /* Floating point vector reduction ops which work across 32 7709 * bit (single) or 16 bit (half-precision) intermediates. 7710 * Note that correct NaN propagation requires that we do these 7711 * operations in exactly the order specified by the pseudocode. 7712 */ 7713 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7714 int fpopcode = opcode | is_min << 4 | is_u << 5; 7715 int vmap = (1 << elements) - 1; 7716 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7717 (is_q ? 128 : 64), vmap, fpst); 7718 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7719 } 7720 7721 /* Now truncate the result to the width required for the final output */ 7722 if (opcode == 0x03) { 7723 /* SADDLV, UADDLV: result is 2*esize */ 7724 size++; 7725 } 7726 7727 switch (size) { 7728 case 0: 7729 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7730 break; 7731 case 1: 7732 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7733 break; 7734 case 2: 7735 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7736 break; 7737 case 3: 7738 break; 7739 default: 7740 g_assert_not_reached(); 7741 } 7742 7743 write_fp_dreg(s, rd, tcg_res); 7744 } 7745 7746 /* DUP (Element, Vector) 7747 * 7748 * 31 30 29 21 20 16 15 10 9 5 4 0 7749 * +---+---+-------------------+--------+-------------+------+------+ 7750 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7751 * +---+---+-------------------+--------+-------------+------+------+ 7752 * 7753 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7754 */ 7755 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7756 int imm5) 7757 { 7758 int size = ctz32(imm5); 7759 int index; 7760 7761 if (size > 3 || (size == 3 && !is_q)) { 7762 unallocated_encoding(s); 7763 return; 7764 } 7765 7766 if (!fp_access_check(s)) { 7767 return; 7768 } 7769 7770 index = imm5 >> (size + 1); 7771 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7772 vec_reg_offset(s, rn, index, size), 7773 is_q ? 16 : 8, vec_full_reg_size(s)); 7774 } 7775 7776 /* DUP (element, scalar) 7777 * 31 21 20 16 15 10 9 5 4 0 7778 * +-----------------------+--------+-------------+------+------+ 7779 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7780 * +-----------------------+--------+-------------+------+------+ 7781 */ 7782 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7783 int imm5) 7784 { 7785 int size = ctz32(imm5); 7786 int index; 7787 TCGv_i64 tmp; 7788 7789 if (size > 3) { 7790 unallocated_encoding(s); 7791 return; 7792 } 7793 7794 if (!fp_access_check(s)) { 7795 return; 7796 } 7797 7798 index = imm5 >> (size + 1); 7799 7800 /* This instruction just extracts the specified element and 7801 * zero-extends it into the bottom of the destination register. 7802 */ 7803 tmp = tcg_temp_new_i64(); 7804 read_vec_element(s, tmp, rn, index, size); 7805 write_fp_dreg(s, rd, tmp); 7806 } 7807 7808 /* DUP (General) 7809 * 7810 * 31 30 29 21 20 16 15 10 9 5 4 0 7811 * +---+---+-------------------+--------+-------------+------+------+ 7812 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7813 * +---+---+-------------------+--------+-------------+------+------+ 7814 * 7815 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7816 */ 7817 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7818 int imm5) 7819 { 7820 int size = ctz32(imm5); 7821 uint32_t dofs, oprsz, maxsz; 7822 7823 if (size > 3 || ((size == 3) && !is_q)) { 7824 unallocated_encoding(s); 7825 return; 7826 } 7827 7828 if (!fp_access_check(s)) { 7829 return; 7830 } 7831 7832 dofs = vec_full_reg_offset(s, rd); 7833 oprsz = is_q ? 16 : 8; 7834 maxsz = vec_full_reg_size(s); 7835 7836 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7837 } 7838 7839 /* INS (Element) 7840 * 7841 * 31 21 20 16 15 14 11 10 9 5 4 0 7842 * +-----------------------+--------+------------+---+------+------+ 7843 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7844 * +-----------------------+--------+------------+---+------+------+ 7845 * 7846 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7847 * index: encoded in imm5<4:size+1> 7848 */ 7849 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7850 int imm4, int imm5) 7851 { 7852 int size = ctz32(imm5); 7853 int src_index, dst_index; 7854 TCGv_i64 tmp; 7855 7856 if (size > 3) { 7857 unallocated_encoding(s); 7858 return; 7859 } 7860 7861 if (!fp_access_check(s)) { 7862 return; 7863 } 7864 7865 dst_index = extract32(imm5, 1+size, 5); 7866 src_index = extract32(imm4, size, 4); 7867 7868 tmp = tcg_temp_new_i64(); 7869 7870 read_vec_element(s, tmp, rn, src_index, size); 7871 write_vec_element(s, tmp, rd, dst_index, size); 7872 7873 /* INS is considered a 128-bit write for SVE. */ 7874 clear_vec_high(s, true, rd); 7875 } 7876 7877 7878 /* INS (General) 7879 * 7880 * 31 21 20 16 15 10 9 5 4 0 7881 * +-----------------------+--------+-------------+------+------+ 7882 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7883 * +-----------------------+--------+-------------+------+------+ 7884 * 7885 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7886 * index: encoded in imm5<4:size+1> 7887 */ 7888 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7889 { 7890 int size = ctz32(imm5); 7891 int idx; 7892 7893 if (size > 3) { 7894 unallocated_encoding(s); 7895 return; 7896 } 7897 7898 if (!fp_access_check(s)) { 7899 return; 7900 } 7901 7902 idx = extract32(imm5, 1 + size, 4 - size); 7903 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7904 7905 /* INS is considered a 128-bit write for SVE. */ 7906 clear_vec_high(s, true, rd); 7907 } 7908 7909 /* 7910 * UMOV (General) 7911 * SMOV (General) 7912 * 7913 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7914 * +---+---+-------------------+--------+-------------+------+------+ 7915 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7916 * +---+---+-------------------+--------+-------------+------+------+ 7917 * 7918 * U: unsigned when set 7919 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7920 */ 7921 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7922 int rn, int rd, int imm5) 7923 { 7924 int size = ctz32(imm5); 7925 int element; 7926 TCGv_i64 tcg_rd; 7927 7928 /* Check for UnallocatedEncodings */ 7929 if (is_signed) { 7930 if (size > 2 || (size == 2 && !is_q)) { 7931 unallocated_encoding(s); 7932 return; 7933 } 7934 } else { 7935 if (size > 3 7936 || (size < 3 && is_q) 7937 || (size == 3 && !is_q)) { 7938 unallocated_encoding(s); 7939 return; 7940 } 7941 } 7942 7943 if (!fp_access_check(s)) { 7944 return; 7945 } 7946 7947 element = extract32(imm5, 1+size, 4); 7948 7949 tcg_rd = cpu_reg(s, rd); 7950 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7951 if (is_signed && !is_q) { 7952 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7953 } 7954 } 7955 7956 /* AdvSIMD copy 7957 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7958 * +---+---+----+-----------------+------+---+------+---+------+------+ 7959 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7960 * +---+---+----+-----------------+------+---+------+---+------+------+ 7961 */ 7962 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7963 { 7964 int rd = extract32(insn, 0, 5); 7965 int rn = extract32(insn, 5, 5); 7966 int imm4 = extract32(insn, 11, 4); 7967 int op = extract32(insn, 29, 1); 7968 int is_q = extract32(insn, 30, 1); 7969 int imm5 = extract32(insn, 16, 5); 7970 7971 if (op) { 7972 if (is_q) { 7973 /* INS (element) */ 7974 handle_simd_inse(s, rd, rn, imm4, imm5); 7975 } else { 7976 unallocated_encoding(s); 7977 } 7978 } else { 7979 switch (imm4) { 7980 case 0: 7981 /* DUP (element - vector) */ 7982 handle_simd_dupe(s, is_q, rd, rn, imm5); 7983 break; 7984 case 1: 7985 /* DUP (general) */ 7986 handle_simd_dupg(s, is_q, rd, rn, imm5); 7987 break; 7988 case 3: 7989 if (is_q) { 7990 /* INS (general) */ 7991 handle_simd_insg(s, rd, rn, imm5); 7992 } else { 7993 unallocated_encoding(s); 7994 } 7995 break; 7996 case 5: 7997 case 7: 7998 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7999 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 8000 break; 8001 default: 8002 unallocated_encoding(s); 8003 break; 8004 } 8005 } 8006 } 8007 8008 /* AdvSIMD modified immediate 8009 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8010 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8011 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8012 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8013 * 8014 * There are a number of operations that can be carried out here: 8015 * MOVI - move (shifted) imm into register 8016 * MVNI - move inverted (shifted) imm into register 8017 * ORR - bitwise OR of (shifted) imm with register 8018 * BIC - bitwise clear of (shifted) imm with register 8019 * With ARMv8.2 we also have: 8020 * FMOV half-precision 8021 */ 8022 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8023 { 8024 int rd = extract32(insn, 0, 5); 8025 int cmode = extract32(insn, 12, 4); 8026 int o2 = extract32(insn, 11, 1); 8027 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8028 bool is_neg = extract32(insn, 29, 1); 8029 bool is_q = extract32(insn, 30, 1); 8030 uint64_t imm = 0; 8031 8032 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8033 /* Check for FMOV (vector, immediate) - half-precision */ 8034 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8035 unallocated_encoding(s); 8036 return; 8037 } 8038 } 8039 8040 if (!fp_access_check(s)) { 8041 return; 8042 } 8043 8044 if (cmode == 15 && o2 && !is_neg) { 8045 /* FMOV (vector, immediate) - half-precision */ 8046 imm = vfp_expand_imm(MO_16, abcdefgh); 8047 /* now duplicate across the lanes */ 8048 imm = dup_const(MO_16, imm); 8049 } else { 8050 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8051 } 8052 8053 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8054 /* MOVI or MVNI, with MVNI negation handled above. */ 8055 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8056 vec_full_reg_size(s), imm); 8057 } else { 8058 /* ORR or BIC, with BIC negation to AND handled above. */ 8059 if (is_neg) { 8060 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8061 } else { 8062 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8063 } 8064 } 8065 } 8066 8067 /* AdvSIMD scalar copy 8068 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8069 * +-----+----+-----------------+------+---+------+---+------+------+ 8070 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8071 * +-----+----+-----------------+------+---+------+---+------+------+ 8072 */ 8073 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8074 { 8075 int rd = extract32(insn, 0, 5); 8076 int rn = extract32(insn, 5, 5); 8077 int imm4 = extract32(insn, 11, 4); 8078 int imm5 = extract32(insn, 16, 5); 8079 int op = extract32(insn, 29, 1); 8080 8081 if (op != 0 || imm4 != 0) { 8082 unallocated_encoding(s); 8083 return; 8084 } 8085 8086 /* DUP (element, scalar) */ 8087 handle_simd_dupes(s, rd, rn, imm5); 8088 } 8089 8090 /* AdvSIMD scalar pairwise 8091 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8092 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8093 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8094 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8095 */ 8096 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8097 { 8098 int u = extract32(insn, 29, 1); 8099 int size = extract32(insn, 22, 2); 8100 int opcode = extract32(insn, 12, 5); 8101 int rn = extract32(insn, 5, 5); 8102 int rd = extract32(insn, 0, 5); 8103 TCGv_ptr fpst; 8104 8105 /* For some ops (the FP ones), size[1] is part of the encoding. 8106 * For ADDP strictly it is not but size[1] is always 1 for valid 8107 * encodings. 8108 */ 8109 opcode |= (extract32(size, 1, 1) << 5); 8110 8111 switch (opcode) { 8112 case 0x3b: /* ADDP */ 8113 if (u || size != 3) { 8114 unallocated_encoding(s); 8115 return; 8116 } 8117 if (!fp_access_check(s)) { 8118 return; 8119 } 8120 8121 fpst = NULL; 8122 break; 8123 case 0xc: /* FMAXNMP */ 8124 case 0xd: /* FADDP */ 8125 case 0xf: /* FMAXP */ 8126 case 0x2c: /* FMINNMP */ 8127 case 0x2f: /* FMINP */ 8128 /* FP op, size[0] is 32 or 64 bit*/ 8129 if (!u) { 8130 if (!dc_isar_feature(aa64_fp16, s)) { 8131 unallocated_encoding(s); 8132 return; 8133 } else { 8134 size = MO_16; 8135 } 8136 } else { 8137 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8138 } 8139 8140 if (!fp_access_check(s)) { 8141 return; 8142 } 8143 8144 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8145 break; 8146 default: 8147 unallocated_encoding(s); 8148 return; 8149 } 8150 8151 if (size == MO_64) { 8152 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8153 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8154 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8155 8156 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8157 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8158 8159 switch (opcode) { 8160 case 0x3b: /* ADDP */ 8161 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8162 break; 8163 case 0xc: /* FMAXNMP */ 8164 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8165 break; 8166 case 0xd: /* FADDP */ 8167 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8168 break; 8169 case 0xf: /* FMAXP */ 8170 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8171 break; 8172 case 0x2c: /* FMINNMP */ 8173 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8174 break; 8175 case 0x2f: /* FMINP */ 8176 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8177 break; 8178 default: 8179 g_assert_not_reached(); 8180 } 8181 8182 write_fp_dreg(s, rd, tcg_res); 8183 } else { 8184 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8185 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8186 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8187 8188 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8189 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8190 8191 if (size == MO_16) { 8192 switch (opcode) { 8193 case 0xc: /* FMAXNMP */ 8194 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8195 break; 8196 case 0xd: /* FADDP */ 8197 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8198 break; 8199 case 0xf: /* FMAXP */ 8200 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8201 break; 8202 case 0x2c: /* FMINNMP */ 8203 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8204 break; 8205 case 0x2f: /* FMINP */ 8206 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8207 break; 8208 default: 8209 g_assert_not_reached(); 8210 } 8211 } else { 8212 switch (opcode) { 8213 case 0xc: /* FMAXNMP */ 8214 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8215 break; 8216 case 0xd: /* FADDP */ 8217 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8218 break; 8219 case 0xf: /* FMAXP */ 8220 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8221 break; 8222 case 0x2c: /* FMINNMP */ 8223 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8224 break; 8225 case 0x2f: /* FMINP */ 8226 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8227 break; 8228 default: 8229 g_assert_not_reached(); 8230 } 8231 } 8232 8233 write_fp_sreg(s, rd, tcg_res); 8234 } 8235 } 8236 8237 /* 8238 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8239 * 8240 * This code is handles the common shifting code and is used by both 8241 * the vector and scalar code. 8242 */ 8243 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8244 TCGv_i64 tcg_rnd, bool accumulate, 8245 bool is_u, int size, int shift) 8246 { 8247 bool extended_result = false; 8248 bool round = tcg_rnd != NULL; 8249 int ext_lshift = 0; 8250 TCGv_i64 tcg_src_hi; 8251 8252 if (round && size == 3) { 8253 extended_result = true; 8254 ext_lshift = 64 - shift; 8255 tcg_src_hi = tcg_temp_new_i64(); 8256 } else if (shift == 64) { 8257 if (!accumulate && is_u) { 8258 /* result is zero */ 8259 tcg_gen_movi_i64(tcg_res, 0); 8260 return; 8261 } 8262 } 8263 8264 /* Deal with the rounding step */ 8265 if (round) { 8266 if (extended_result) { 8267 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8268 if (!is_u) { 8269 /* take care of sign extending tcg_res */ 8270 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8271 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8272 tcg_src, tcg_src_hi, 8273 tcg_rnd, tcg_zero); 8274 } else { 8275 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8276 tcg_src, tcg_zero, 8277 tcg_rnd, tcg_zero); 8278 } 8279 } else { 8280 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8281 } 8282 } 8283 8284 /* Now do the shift right */ 8285 if (round && extended_result) { 8286 /* extended case, >64 bit precision required */ 8287 if (ext_lshift == 0) { 8288 /* special case, only high bits matter */ 8289 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8290 } else { 8291 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8292 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8293 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8294 } 8295 } else { 8296 if (is_u) { 8297 if (shift == 64) { 8298 /* essentially shifting in 64 zeros */ 8299 tcg_gen_movi_i64(tcg_src, 0); 8300 } else { 8301 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8302 } 8303 } else { 8304 if (shift == 64) { 8305 /* effectively extending the sign-bit */ 8306 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8307 } else { 8308 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8309 } 8310 } 8311 } 8312 8313 if (accumulate) { 8314 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8315 } else { 8316 tcg_gen_mov_i64(tcg_res, tcg_src); 8317 } 8318 } 8319 8320 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8321 static void handle_scalar_simd_shri(DisasContext *s, 8322 bool is_u, int immh, int immb, 8323 int opcode, int rn, int rd) 8324 { 8325 const int size = 3; 8326 int immhb = immh << 3 | immb; 8327 int shift = 2 * (8 << size) - immhb; 8328 bool accumulate = false; 8329 bool round = false; 8330 bool insert = false; 8331 TCGv_i64 tcg_rn; 8332 TCGv_i64 tcg_rd; 8333 TCGv_i64 tcg_round; 8334 8335 if (!extract32(immh, 3, 1)) { 8336 unallocated_encoding(s); 8337 return; 8338 } 8339 8340 if (!fp_access_check(s)) { 8341 return; 8342 } 8343 8344 switch (opcode) { 8345 case 0x02: /* SSRA / USRA (accumulate) */ 8346 accumulate = true; 8347 break; 8348 case 0x04: /* SRSHR / URSHR (rounding) */ 8349 round = true; 8350 break; 8351 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8352 accumulate = round = true; 8353 break; 8354 case 0x08: /* SRI */ 8355 insert = true; 8356 break; 8357 } 8358 8359 if (round) { 8360 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8361 } else { 8362 tcg_round = NULL; 8363 } 8364 8365 tcg_rn = read_fp_dreg(s, rn); 8366 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8367 8368 if (insert) { 8369 /* shift count same as element size is valid but does nothing; 8370 * special case to avoid potential shift by 64. 8371 */ 8372 int esize = 8 << size; 8373 if (shift != esize) { 8374 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8375 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8376 } 8377 } else { 8378 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8379 accumulate, is_u, size, shift); 8380 } 8381 8382 write_fp_dreg(s, rd, tcg_rd); 8383 } 8384 8385 /* SHL/SLI - Scalar shift left */ 8386 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8387 int immh, int immb, int opcode, 8388 int rn, int rd) 8389 { 8390 int size = 32 - clz32(immh) - 1; 8391 int immhb = immh << 3 | immb; 8392 int shift = immhb - (8 << size); 8393 TCGv_i64 tcg_rn; 8394 TCGv_i64 tcg_rd; 8395 8396 if (!extract32(immh, 3, 1)) { 8397 unallocated_encoding(s); 8398 return; 8399 } 8400 8401 if (!fp_access_check(s)) { 8402 return; 8403 } 8404 8405 tcg_rn = read_fp_dreg(s, rn); 8406 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8407 8408 if (insert) { 8409 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8410 } else { 8411 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8412 } 8413 8414 write_fp_dreg(s, rd, tcg_rd); 8415 } 8416 8417 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8418 * (signed/unsigned) narrowing */ 8419 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8420 bool is_u_shift, bool is_u_narrow, 8421 int immh, int immb, int opcode, 8422 int rn, int rd) 8423 { 8424 int immhb = immh << 3 | immb; 8425 int size = 32 - clz32(immh) - 1; 8426 int esize = 8 << size; 8427 int shift = (2 * esize) - immhb; 8428 int elements = is_scalar ? 1 : (64 / esize); 8429 bool round = extract32(opcode, 0, 1); 8430 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8431 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8432 TCGv_i32 tcg_rd_narrowed; 8433 TCGv_i64 tcg_final; 8434 8435 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8436 { gen_helper_neon_narrow_sat_s8, 8437 gen_helper_neon_unarrow_sat8 }, 8438 { gen_helper_neon_narrow_sat_s16, 8439 gen_helper_neon_unarrow_sat16 }, 8440 { gen_helper_neon_narrow_sat_s32, 8441 gen_helper_neon_unarrow_sat32 }, 8442 { NULL, NULL }, 8443 }; 8444 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8445 gen_helper_neon_narrow_sat_u8, 8446 gen_helper_neon_narrow_sat_u16, 8447 gen_helper_neon_narrow_sat_u32, 8448 NULL 8449 }; 8450 NeonGenNarrowEnvFn *narrowfn; 8451 8452 int i; 8453 8454 assert(size < 4); 8455 8456 if (extract32(immh, 3, 1)) { 8457 unallocated_encoding(s); 8458 return; 8459 } 8460 8461 if (!fp_access_check(s)) { 8462 return; 8463 } 8464 8465 if (is_u_shift) { 8466 narrowfn = unsigned_narrow_fns[size]; 8467 } else { 8468 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8469 } 8470 8471 tcg_rn = tcg_temp_new_i64(); 8472 tcg_rd = tcg_temp_new_i64(); 8473 tcg_rd_narrowed = tcg_temp_new_i32(); 8474 tcg_final = tcg_temp_new_i64(); 8475 8476 if (round) { 8477 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8478 } else { 8479 tcg_round = NULL; 8480 } 8481 8482 for (i = 0; i < elements; i++) { 8483 read_vec_element(s, tcg_rn, rn, i, ldop); 8484 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8485 false, is_u_shift, size+1, shift); 8486 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8487 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8488 if (i == 0) { 8489 tcg_gen_mov_i64(tcg_final, tcg_rd); 8490 } else { 8491 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8492 } 8493 } 8494 8495 if (!is_q) { 8496 write_vec_element(s, tcg_final, rd, 0, MO_64); 8497 } else { 8498 write_vec_element(s, tcg_final, rd, 1, MO_64); 8499 } 8500 clear_vec_high(s, is_q, rd); 8501 } 8502 8503 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8504 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8505 bool src_unsigned, bool dst_unsigned, 8506 int immh, int immb, int rn, int rd) 8507 { 8508 int immhb = immh << 3 | immb; 8509 int size = 32 - clz32(immh) - 1; 8510 int shift = immhb - (8 << size); 8511 int pass; 8512 8513 assert(immh != 0); 8514 assert(!(scalar && is_q)); 8515 8516 if (!scalar) { 8517 if (!is_q && extract32(immh, 3, 1)) { 8518 unallocated_encoding(s); 8519 return; 8520 } 8521 8522 /* Since we use the variable-shift helpers we must 8523 * replicate the shift count into each element of 8524 * the tcg_shift value. 8525 */ 8526 switch (size) { 8527 case 0: 8528 shift |= shift << 8; 8529 /* fall through */ 8530 case 1: 8531 shift |= shift << 16; 8532 break; 8533 case 2: 8534 case 3: 8535 break; 8536 default: 8537 g_assert_not_reached(); 8538 } 8539 } 8540 8541 if (!fp_access_check(s)) { 8542 return; 8543 } 8544 8545 if (size == 3) { 8546 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8547 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8548 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8549 { NULL, gen_helper_neon_qshl_u64 }, 8550 }; 8551 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8552 int maxpass = is_q ? 2 : 1; 8553 8554 for (pass = 0; pass < maxpass; pass++) { 8555 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8556 8557 read_vec_element(s, tcg_op, rn, pass, MO_64); 8558 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8559 write_vec_element(s, tcg_op, rd, pass, MO_64); 8560 } 8561 clear_vec_high(s, is_q, rd); 8562 } else { 8563 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8564 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8565 { 8566 { gen_helper_neon_qshl_s8, 8567 gen_helper_neon_qshl_s16, 8568 gen_helper_neon_qshl_s32 }, 8569 { gen_helper_neon_qshlu_s8, 8570 gen_helper_neon_qshlu_s16, 8571 gen_helper_neon_qshlu_s32 } 8572 }, { 8573 { NULL, NULL, NULL }, 8574 { gen_helper_neon_qshl_u8, 8575 gen_helper_neon_qshl_u16, 8576 gen_helper_neon_qshl_u32 } 8577 } 8578 }; 8579 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8580 MemOp memop = scalar ? size : MO_32; 8581 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8582 8583 for (pass = 0; pass < maxpass; pass++) { 8584 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8585 8586 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8587 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8588 if (scalar) { 8589 switch (size) { 8590 case 0: 8591 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8592 break; 8593 case 1: 8594 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8595 break; 8596 case 2: 8597 break; 8598 default: 8599 g_assert_not_reached(); 8600 } 8601 write_fp_sreg(s, rd, tcg_op); 8602 } else { 8603 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8604 } 8605 } 8606 8607 if (!scalar) { 8608 clear_vec_high(s, is_q, rd); 8609 } 8610 } 8611 } 8612 8613 /* Common vector code for handling integer to FP conversion */ 8614 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8615 int elements, int is_signed, 8616 int fracbits, int size) 8617 { 8618 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8619 TCGv_i32 tcg_shift = NULL; 8620 8621 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8622 int pass; 8623 8624 if (fracbits || size == MO_64) { 8625 tcg_shift = tcg_constant_i32(fracbits); 8626 } 8627 8628 if (size == MO_64) { 8629 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8630 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8631 8632 for (pass = 0; pass < elements; pass++) { 8633 read_vec_element(s, tcg_int64, rn, pass, mop); 8634 8635 if (is_signed) { 8636 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8637 tcg_shift, tcg_fpst); 8638 } else { 8639 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8640 tcg_shift, tcg_fpst); 8641 } 8642 if (elements == 1) { 8643 write_fp_dreg(s, rd, tcg_double); 8644 } else { 8645 write_vec_element(s, tcg_double, rd, pass, MO_64); 8646 } 8647 } 8648 } else { 8649 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8650 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8651 8652 for (pass = 0; pass < elements; pass++) { 8653 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8654 8655 switch (size) { 8656 case MO_32: 8657 if (fracbits) { 8658 if (is_signed) { 8659 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8660 tcg_shift, tcg_fpst); 8661 } else { 8662 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8663 tcg_shift, tcg_fpst); 8664 } 8665 } else { 8666 if (is_signed) { 8667 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8668 } else { 8669 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8670 } 8671 } 8672 break; 8673 case MO_16: 8674 if (fracbits) { 8675 if (is_signed) { 8676 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8677 tcg_shift, tcg_fpst); 8678 } else { 8679 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8680 tcg_shift, tcg_fpst); 8681 } 8682 } else { 8683 if (is_signed) { 8684 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8685 } else { 8686 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8687 } 8688 } 8689 break; 8690 default: 8691 g_assert_not_reached(); 8692 } 8693 8694 if (elements == 1) { 8695 write_fp_sreg(s, rd, tcg_float); 8696 } else { 8697 write_vec_element_i32(s, tcg_float, rd, pass, size); 8698 } 8699 } 8700 } 8701 8702 clear_vec_high(s, elements << size == 16, rd); 8703 } 8704 8705 /* UCVTF/SCVTF - Integer to FP conversion */ 8706 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8707 bool is_q, bool is_u, 8708 int immh, int immb, int opcode, 8709 int rn, int rd) 8710 { 8711 int size, elements, fracbits; 8712 int immhb = immh << 3 | immb; 8713 8714 if (immh & 8) { 8715 size = MO_64; 8716 if (!is_scalar && !is_q) { 8717 unallocated_encoding(s); 8718 return; 8719 } 8720 } else if (immh & 4) { 8721 size = MO_32; 8722 } else if (immh & 2) { 8723 size = MO_16; 8724 if (!dc_isar_feature(aa64_fp16, s)) { 8725 unallocated_encoding(s); 8726 return; 8727 } 8728 } else { 8729 /* immh == 0 would be a failure of the decode logic */ 8730 g_assert(immh == 1); 8731 unallocated_encoding(s); 8732 return; 8733 } 8734 8735 if (is_scalar) { 8736 elements = 1; 8737 } else { 8738 elements = (8 << is_q) >> size; 8739 } 8740 fracbits = (16 << size) - immhb; 8741 8742 if (!fp_access_check(s)) { 8743 return; 8744 } 8745 8746 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8747 } 8748 8749 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8750 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8751 bool is_q, bool is_u, 8752 int immh, int immb, int rn, int rd) 8753 { 8754 int immhb = immh << 3 | immb; 8755 int pass, size, fracbits; 8756 TCGv_ptr tcg_fpstatus; 8757 TCGv_i32 tcg_rmode, tcg_shift; 8758 8759 if (immh & 0x8) { 8760 size = MO_64; 8761 if (!is_scalar && !is_q) { 8762 unallocated_encoding(s); 8763 return; 8764 } 8765 } else if (immh & 0x4) { 8766 size = MO_32; 8767 } else if (immh & 0x2) { 8768 size = MO_16; 8769 if (!dc_isar_feature(aa64_fp16, s)) { 8770 unallocated_encoding(s); 8771 return; 8772 } 8773 } else { 8774 /* Should have split out AdvSIMD modified immediate earlier. */ 8775 assert(immh == 1); 8776 unallocated_encoding(s); 8777 return; 8778 } 8779 8780 if (!fp_access_check(s)) { 8781 return; 8782 } 8783 8784 assert(!(is_scalar && is_q)); 8785 8786 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8787 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8788 fracbits = (16 << size) - immhb; 8789 tcg_shift = tcg_constant_i32(fracbits); 8790 8791 if (size == MO_64) { 8792 int maxpass = is_scalar ? 1 : 2; 8793 8794 for (pass = 0; pass < maxpass; pass++) { 8795 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8796 8797 read_vec_element(s, tcg_op, rn, pass, MO_64); 8798 if (is_u) { 8799 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8800 } else { 8801 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8802 } 8803 write_vec_element(s, tcg_op, rd, pass, MO_64); 8804 } 8805 clear_vec_high(s, is_q, rd); 8806 } else { 8807 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8808 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8809 8810 switch (size) { 8811 case MO_16: 8812 if (is_u) { 8813 fn = gen_helper_vfp_touhh; 8814 } else { 8815 fn = gen_helper_vfp_toshh; 8816 } 8817 break; 8818 case MO_32: 8819 if (is_u) { 8820 fn = gen_helper_vfp_touls; 8821 } else { 8822 fn = gen_helper_vfp_tosls; 8823 } 8824 break; 8825 default: 8826 g_assert_not_reached(); 8827 } 8828 8829 for (pass = 0; pass < maxpass; pass++) { 8830 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8831 8832 read_vec_element_i32(s, tcg_op, rn, pass, size); 8833 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8834 if (is_scalar) { 8835 write_fp_sreg(s, rd, tcg_op); 8836 } else { 8837 write_vec_element_i32(s, tcg_op, rd, pass, size); 8838 } 8839 } 8840 if (!is_scalar) { 8841 clear_vec_high(s, is_q, rd); 8842 } 8843 } 8844 8845 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8846 } 8847 8848 /* AdvSIMD scalar shift by immediate 8849 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8850 * +-----+---+-------------+------+------+--------+---+------+------+ 8851 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8852 * +-----+---+-------------+------+------+--------+---+------+------+ 8853 * 8854 * This is the scalar version so it works on a fixed sized registers 8855 */ 8856 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8857 { 8858 int rd = extract32(insn, 0, 5); 8859 int rn = extract32(insn, 5, 5); 8860 int opcode = extract32(insn, 11, 5); 8861 int immb = extract32(insn, 16, 3); 8862 int immh = extract32(insn, 19, 4); 8863 bool is_u = extract32(insn, 29, 1); 8864 8865 if (immh == 0) { 8866 unallocated_encoding(s); 8867 return; 8868 } 8869 8870 switch (opcode) { 8871 case 0x08: /* SRI */ 8872 if (!is_u) { 8873 unallocated_encoding(s); 8874 return; 8875 } 8876 /* fall through */ 8877 case 0x00: /* SSHR / USHR */ 8878 case 0x02: /* SSRA / USRA */ 8879 case 0x04: /* SRSHR / URSHR */ 8880 case 0x06: /* SRSRA / URSRA */ 8881 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8882 break; 8883 case 0x0a: /* SHL / SLI */ 8884 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8885 break; 8886 case 0x1c: /* SCVTF, UCVTF */ 8887 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8888 opcode, rn, rd); 8889 break; 8890 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8891 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8892 if (!is_u) { 8893 unallocated_encoding(s); 8894 return; 8895 } 8896 handle_vec_simd_sqshrn(s, true, false, false, true, 8897 immh, immb, opcode, rn, rd); 8898 break; 8899 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8900 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8901 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8902 immh, immb, opcode, rn, rd); 8903 break; 8904 case 0xc: /* SQSHLU */ 8905 if (!is_u) { 8906 unallocated_encoding(s); 8907 return; 8908 } 8909 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8910 break; 8911 case 0xe: /* SQSHL, UQSHL */ 8912 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8913 break; 8914 case 0x1f: /* FCVTZS, FCVTZU */ 8915 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8916 break; 8917 default: 8918 unallocated_encoding(s); 8919 break; 8920 } 8921 } 8922 8923 /* AdvSIMD scalar three different 8924 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8925 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8926 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8927 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8928 */ 8929 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8930 { 8931 bool is_u = extract32(insn, 29, 1); 8932 int size = extract32(insn, 22, 2); 8933 int opcode = extract32(insn, 12, 4); 8934 int rm = extract32(insn, 16, 5); 8935 int rn = extract32(insn, 5, 5); 8936 int rd = extract32(insn, 0, 5); 8937 8938 if (is_u) { 8939 unallocated_encoding(s); 8940 return; 8941 } 8942 8943 switch (opcode) { 8944 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8945 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8946 case 0xd: /* SQDMULL, SQDMULL2 */ 8947 if (size == 0 || size == 3) { 8948 unallocated_encoding(s); 8949 return; 8950 } 8951 break; 8952 default: 8953 unallocated_encoding(s); 8954 return; 8955 } 8956 8957 if (!fp_access_check(s)) { 8958 return; 8959 } 8960 8961 if (size == 2) { 8962 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8963 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8964 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8965 8966 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8967 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8968 8969 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8970 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8971 8972 switch (opcode) { 8973 case 0xd: /* SQDMULL, SQDMULL2 */ 8974 break; 8975 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8976 tcg_gen_neg_i64(tcg_res, tcg_res); 8977 /* fall through */ 8978 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8979 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8980 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8981 tcg_res, tcg_op1); 8982 break; 8983 default: 8984 g_assert_not_reached(); 8985 } 8986 8987 write_fp_dreg(s, rd, tcg_res); 8988 } else { 8989 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8990 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8991 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8992 8993 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8994 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8995 8996 switch (opcode) { 8997 case 0xd: /* SQDMULL, SQDMULL2 */ 8998 break; 8999 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9000 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9001 /* fall through */ 9002 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9003 { 9004 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9005 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9006 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 9007 tcg_res, tcg_op3); 9008 break; 9009 } 9010 default: 9011 g_assert_not_reached(); 9012 } 9013 9014 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9015 write_fp_dreg(s, rd, tcg_res); 9016 } 9017 } 9018 9019 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9020 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9021 { 9022 /* Handle 64x64->64 opcodes which are shared between the scalar 9023 * and vector 3-same groups. We cover every opcode where size == 3 9024 * is valid in either the three-reg-same (integer, not pairwise) 9025 * or scalar-three-reg-same groups. 9026 */ 9027 TCGCond cond; 9028 9029 switch (opcode) { 9030 case 0x1: /* SQADD */ 9031 if (u) { 9032 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9033 } else { 9034 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9035 } 9036 break; 9037 case 0x5: /* SQSUB */ 9038 if (u) { 9039 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9040 } else { 9041 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9042 } 9043 break; 9044 case 0x6: /* CMGT, CMHI */ 9045 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9046 * We implement this using setcond (test) and then negating. 9047 */ 9048 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9049 do_cmop: 9050 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9051 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9052 break; 9053 case 0x7: /* CMGE, CMHS */ 9054 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9055 goto do_cmop; 9056 case 0x11: /* CMTST, CMEQ */ 9057 if (u) { 9058 cond = TCG_COND_EQ; 9059 goto do_cmop; 9060 } 9061 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9062 break; 9063 case 0x8: /* SSHL, USHL */ 9064 if (u) { 9065 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9066 } else { 9067 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9068 } 9069 break; 9070 case 0x9: /* SQSHL, UQSHL */ 9071 if (u) { 9072 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9073 } else { 9074 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9075 } 9076 break; 9077 case 0xa: /* SRSHL, URSHL */ 9078 if (u) { 9079 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9080 } else { 9081 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9082 } 9083 break; 9084 case 0xb: /* SQRSHL, UQRSHL */ 9085 if (u) { 9086 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9087 } else { 9088 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9089 } 9090 break; 9091 case 0x10: /* ADD, SUB */ 9092 if (u) { 9093 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9094 } else { 9095 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9096 } 9097 break; 9098 default: 9099 g_assert_not_reached(); 9100 } 9101 } 9102 9103 /* Handle the 3-same-operands float operations; shared by the scalar 9104 * and vector encodings. The caller must filter out any encodings 9105 * not allocated for the encoding it is dealing with. 9106 */ 9107 static void handle_3same_float(DisasContext *s, int size, int elements, 9108 int fpopcode, int rd, int rn, int rm) 9109 { 9110 int pass; 9111 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9112 9113 for (pass = 0; pass < elements; pass++) { 9114 if (size) { 9115 /* Double */ 9116 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9117 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9118 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9119 9120 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9121 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9122 9123 switch (fpopcode) { 9124 case 0x39: /* FMLS */ 9125 /* As usual for ARM, separate negation for fused multiply-add */ 9126 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9127 /* fall through */ 9128 case 0x19: /* FMLA */ 9129 read_vec_element(s, tcg_res, rd, pass, MO_64); 9130 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9131 tcg_res, fpst); 9132 break; 9133 case 0x18: /* FMAXNM */ 9134 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9135 break; 9136 case 0x1a: /* FADD */ 9137 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9138 break; 9139 case 0x1b: /* FMULX */ 9140 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9141 break; 9142 case 0x1c: /* FCMEQ */ 9143 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9144 break; 9145 case 0x1e: /* FMAX */ 9146 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9147 break; 9148 case 0x1f: /* FRECPS */ 9149 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9150 break; 9151 case 0x38: /* FMINNM */ 9152 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9153 break; 9154 case 0x3a: /* FSUB */ 9155 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9156 break; 9157 case 0x3e: /* FMIN */ 9158 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9159 break; 9160 case 0x3f: /* FRSQRTS */ 9161 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9162 break; 9163 case 0x5b: /* FMUL */ 9164 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9165 break; 9166 case 0x5c: /* FCMGE */ 9167 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9168 break; 9169 case 0x5d: /* FACGE */ 9170 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9171 break; 9172 case 0x5f: /* FDIV */ 9173 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9174 break; 9175 case 0x7a: /* FABD */ 9176 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9177 gen_helper_vfp_absd(tcg_res, tcg_res); 9178 break; 9179 case 0x7c: /* FCMGT */ 9180 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9181 break; 9182 case 0x7d: /* FACGT */ 9183 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9184 break; 9185 default: 9186 g_assert_not_reached(); 9187 } 9188 9189 write_vec_element(s, tcg_res, rd, pass, MO_64); 9190 } else { 9191 /* Single */ 9192 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9193 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9194 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9195 9196 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9197 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9198 9199 switch (fpopcode) { 9200 case 0x39: /* FMLS */ 9201 /* As usual for ARM, separate negation for fused multiply-add */ 9202 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9203 /* fall through */ 9204 case 0x19: /* FMLA */ 9205 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9206 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9207 tcg_res, fpst); 9208 break; 9209 case 0x1a: /* FADD */ 9210 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9211 break; 9212 case 0x1b: /* FMULX */ 9213 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9214 break; 9215 case 0x1c: /* FCMEQ */ 9216 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9217 break; 9218 case 0x1e: /* FMAX */ 9219 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9220 break; 9221 case 0x1f: /* FRECPS */ 9222 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9223 break; 9224 case 0x18: /* FMAXNM */ 9225 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9226 break; 9227 case 0x38: /* FMINNM */ 9228 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9229 break; 9230 case 0x3a: /* FSUB */ 9231 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9232 break; 9233 case 0x3e: /* FMIN */ 9234 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9235 break; 9236 case 0x3f: /* FRSQRTS */ 9237 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9238 break; 9239 case 0x5b: /* FMUL */ 9240 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9241 break; 9242 case 0x5c: /* FCMGE */ 9243 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9244 break; 9245 case 0x5d: /* FACGE */ 9246 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9247 break; 9248 case 0x5f: /* FDIV */ 9249 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9250 break; 9251 case 0x7a: /* FABD */ 9252 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9253 gen_helper_vfp_abss(tcg_res, tcg_res); 9254 break; 9255 case 0x7c: /* FCMGT */ 9256 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9257 break; 9258 case 0x7d: /* FACGT */ 9259 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9260 break; 9261 default: 9262 g_assert_not_reached(); 9263 } 9264 9265 if (elements == 1) { 9266 /* scalar single so clear high part */ 9267 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9268 9269 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9270 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9271 } else { 9272 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9273 } 9274 } 9275 } 9276 9277 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9278 } 9279 9280 /* AdvSIMD scalar three same 9281 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9282 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9283 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9284 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9285 */ 9286 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9287 { 9288 int rd = extract32(insn, 0, 5); 9289 int rn = extract32(insn, 5, 5); 9290 int opcode = extract32(insn, 11, 5); 9291 int rm = extract32(insn, 16, 5); 9292 int size = extract32(insn, 22, 2); 9293 bool u = extract32(insn, 29, 1); 9294 TCGv_i64 tcg_rd; 9295 9296 if (opcode >= 0x18) { 9297 /* Floating point: U, size[1] and opcode indicate operation */ 9298 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9299 switch (fpopcode) { 9300 case 0x1b: /* FMULX */ 9301 case 0x1f: /* FRECPS */ 9302 case 0x3f: /* FRSQRTS */ 9303 case 0x5d: /* FACGE */ 9304 case 0x7d: /* FACGT */ 9305 case 0x1c: /* FCMEQ */ 9306 case 0x5c: /* FCMGE */ 9307 case 0x7c: /* FCMGT */ 9308 case 0x7a: /* FABD */ 9309 break; 9310 default: 9311 unallocated_encoding(s); 9312 return; 9313 } 9314 9315 if (!fp_access_check(s)) { 9316 return; 9317 } 9318 9319 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9320 return; 9321 } 9322 9323 switch (opcode) { 9324 case 0x1: /* SQADD, UQADD */ 9325 case 0x5: /* SQSUB, UQSUB */ 9326 case 0x9: /* SQSHL, UQSHL */ 9327 case 0xb: /* SQRSHL, UQRSHL */ 9328 break; 9329 case 0x8: /* SSHL, USHL */ 9330 case 0xa: /* SRSHL, URSHL */ 9331 case 0x6: /* CMGT, CMHI */ 9332 case 0x7: /* CMGE, CMHS */ 9333 case 0x11: /* CMTST, CMEQ */ 9334 case 0x10: /* ADD, SUB (vector) */ 9335 if (size != 3) { 9336 unallocated_encoding(s); 9337 return; 9338 } 9339 break; 9340 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9341 if (size != 1 && size != 2) { 9342 unallocated_encoding(s); 9343 return; 9344 } 9345 break; 9346 default: 9347 unallocated_encoding(s); 9348 return; 9349 } 9350 9351 if (!fp_access_check(s)) { 9352 return; 9353 } 9354 9355 tcg_rd = tcg_temp_new_i64(); 9356 9357 if (size == 3) { 9358 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9359 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9360 9361 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9362 } else { 9363 /* Do a single operation on the lowest element in the vector. 9364 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9365 * no side effects for all these operations. 9366 * OPTME: special-purpose helpers would avoid doing some 9367 * unnecessary work in the helper for the 8 and 16 bit cases. 9368 */ 9369 NeonGenTwoOpEnvFn *genenvfn; 9370 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9371 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9372 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9373 9374 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9375 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9376 9377 switch (opcode) { 9378 case 0x1: /* SQADD, UQADD */ 9379 { 9380 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9381 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9382 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9383 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9384 }; 9385 genenvfn = fns[size][u]; 9386 break; 9387 } 9388 case 0x5: /* SQSUB, UQSUB */ 9389 { 9390 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9391 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9392 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9393 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9394 }; 9395 genenvfn = fns[size][u]; 9396 break; 9397 } 9398 case 0x9: /* SQSHL, UQSHL */ 9399 { 9400 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9401 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9402 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9403 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9404 }; 9405 genenvfn = fns[size][u]; 9406 break; 9407 } 9408 case 0xb: /* SQRSHL, UQRSHL */ 9409 { 9410 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9411 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9412 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9413 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9414 }; 9415 genenvfn = fns[size][u]; 9416 break; 9417 } 9418 case 0x16: /* SQDMULH, SQRDMULH */ 9419 { 9420 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9421 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9422 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9423 }; 9424 assert(size == 1 || size == 2); 9425 genenvfn = fns[size - 1][u]; 9426 break; 9427 } 9428 default: 9429 g_assert_not_reached(); 9430 } 9431 9432 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9433 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9434 } 9435 9436 write_fp_dreg(s, rd, tcg_rd); 9437 } 9438 9439 /* AdvSIMD scalar three same FP16 9440 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9441 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9442 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9443 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9444 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9445 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9446 */ 9447 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9448 uint32_t insn) 9449 { 9450 int rd = extract32(insn, 0, 5); 9451 int rn = extract32(insn, 5, 5); 9452 int opcode = extract32(insn, 11, 3); 9453 int rm = extract32(insn, 16, 5); 9454 bool u = extract32(insn, 29, 1); 9455 bool a = extract32(insn, 23, 1); 9456 int fpopcode = opcode | (a << 3) | (u << 4); 9457 TCGv_ptr fpst; 9458 TCGv_i32 tcg_op1; 9459 TCGv_i32 tcg_op2; 9460 TCGv_i32 tcg_res; 9461 9462 switch (fpopcode) { 9463 case 0x03: /* FMULX */ 9464 case 0x04: /* FCMEQ (reg) */ 9465 case 0x07: /* FRECPS */ 9466 case 0x0f: /* FRSQRTS */ 9467 case 0x14: /* FCMGE (reg) */ 9468 case 0x15: /* FACGE */ 9469 case 0x1a: /* FABD */ 9470 case 0x1c: /* FCMGT (reg) */ 9471 case 0x1d: /* FACGT */ 9472 break; 9473 default: 9474 unallocated_encoding(s); 9475 return; 9476 } 9477 9478 if (!dc_isar_feature(aa64_fp16, s)) { 9479 unallocated_encoding(s); 9480 } 9481 9482 if (!fp_access_check(s)) { 9483 return; 9484 } 9485 9486 fpst = fpstatus_ptr(FPST_FPCR_F16); 9487 9488 tcg_op1 = read_fp_hreg(s, rn); 9489 tcg_op2 = read_fp_hreg(s, rm); 9490 tcg_res = tcg_temp_new_i32(); 9491 9492 switch (fpopcode) { 9493 case 0x03: /* FMULX */ 9494 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9495 break; 9496 case 0x04: /* FCMEQ (reg) */ 9497 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9498 break; 9499 case 0x07: /* FRECPS */ 9500 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9501 break; 9502 case 0x0f: /* FRSQRTS */ 9503 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9504 break; 9505 case 0x14: /* FCMGE (reg) */ 9506 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9507 break; 9508 case 0x15: /* FACGE */ 9509 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9510 break; 9511 case 0x1a: /* FABD */ 9512 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9513 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9514 break; 9515 case 0x1c: /* FCMGT (reg) */ 9516 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9517 break; 9518 case 0x1d: /* FACGT */ 9519 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9520 break; 9521 default: 9522 g_assert_not_reached(); 9523 } 9524 9525 write_fp_sreg(s, rd, tcg_res); 9526 } 9527 9528 /* AdvSIMD scalar three same extra 9529 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9530 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9531 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9532 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9533 */ 9534 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9535 uint32_t insn) 9536 { 9537 int rd = extract32(insn, 0, 5); 9538 int rn = extract32(insn, 5, 5); 9539 int opcode = extract32(insn, 11, 4); 9540 int rm = extract32(insn, 16, 5); 9541 int size = extract32(insn, 22, 2); 9542 bool u = extract32(insn, 29, 1); 9543 TCGv_i32 ele1, ele2, ele3; 9544 TCGv_i64 res; 9545 bool feature; 9546 9547 switch (u * 16 + opcode) { 9548 case 0x10: /* SQRDMLAH (vector) */ 9549 case 0x11: /* SQRDMLSH (vector) */ 9550 if (size != 1 && size != 2) { 9551 unallocated_encoding(s); 9552 return; 9553 } 9554 feature = dc_isar_feature(aa64_rdm, s); 9555 break; 9556 default: 9557 unallocated_encoding(s); 9558 return; 9559 } 9560 if (!feature) { 9561 unallocated_encoding(s); 9562 return; 9563 } 9564 if (!fp_access_check(s)) { 9565 return; 9566 } 9567 9568 /* Do a single operation on the lowest element in the vector. 9569 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9570 * with no side effects for all these operations. 9571 * OPTME: special-purpose helpers would avoid doing some 9572 * unnecessary work in the helper for the 16 bit cases. 9573 */ 9574 ele1 = tcg_temp_new_i32(); 9575 ele2 = tcg_temp_new_i32(); 9576 ele3 = tcg_temp_new_i32(); 9577 9578 read_vec_element_i32(s, ele1, rn, 0, size); 9579 read_vec_element_i32(s, ele2, rm, 0, size); 9580 read_vec_element_i32(s, ele3, rd, 0, size); 9581 9582 switch (opcode) { 9583 case 0x0: /* SQRDMLAH */ 9584 if (size == 1) { 9585 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9586 } else { 9587 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9588 } 9589 break; 9590 case 0x1: /* SQRDMLSH */ 9591 if (size == 1) { 9592 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9593 } else { 9594 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9595 } 9596 break; 9597 default: 9598 g_assert_not_reached(); 9599 } 9600 9601 res = tcg_temp_new_i64(); 9602 tcg_gen_extu_i32_i64(res, ele3); 9603 write_fp_dreg(s, rd, res); 9604 } 9605 9606 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9607 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9608 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9609 { 9610 /* Handle 64->64 opcodes which are shared between the scalar and 9611 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9612 * is valid in either group and also the double-precision fp ops. 9613 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9614 * requires them. 9615 */ 9616 TCGCond cond; 9617 9618 switch (opcode) { 9619 case 0x4: /* CLS, CLZ */ 9620 if (u) { 9621 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9622 } else { 9623 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9624 } 9625 break; 9626 case 0x5: /* NOT */ 9627 /* This opcode is shared with CNT and RBIT but we have earlier 9628 * enforced that size == 3 if and only if this is the NOT insn. 9629 */ 9630 tcg_gen_not_i64(tcg_rd, tcg_rn); 9631 break; 9632 case 0x7: /* SQABS, SQNEG */ 9633 if (u) { 9634 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9635 } else { 9636 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9637 } 9638 break; 9639 case 0xa: /* CMLT */ 9640 /* 64 bit integer comparison against zero, result is 9641 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9642 * subtracting 1. 9643 */ 9644 cond = TCG_COND_LT; 9645 do_cmop: 9646 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9647 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9648 break; 9649 case 0x8: /* CMGT, CMGE */ 9650 cond = u ? TCG_COND_GE : TCG_COND_GT; 9651 goto do_cmop; 9652 case 0x9: /* CMEQ, CMLE */ 9653 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9654 goto do_cmop; 9655 case 0xb: /* ABS, NEG */ 9656 if (u) { 9657 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9658 } else { 9659 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9660 } 9661 break; 9662 case 0x2f: /* FABS */ 9663 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9664 break; 9665 case 0x6f: /* FNEG */ 9666 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9667 break; 9668 case 0x7f: /* FSQRT */ 9669 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9670 break; 9671 case 0x1a: /* FCVTNS */ 9672 case 0x1b: /* FCVTMS */ 9673 case 0x1c: /* FCVTAS */ 9674 case 0x3a: /* FCVTPS */ 9675 case 0x3b: /* FCVTZS */ 9676 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9677 break; 9678 case 0x5a: /* FCVTNU */ 9679 case 0x5b: /* FCVTMU */ 9680 case 0x5c: /* FCVTAU */ 9681 case 0x7a: /* FCVTPU */ 9682 case 0x7b: /* FCVTZU */ 9683 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9684 break; 9685 case 0x18: /* FRINTN */ 9686 case 0x19: /* FRINTM */ 9687 case 0x38: /* FRINTP */ 9688 case 0x39: /* FRINTZ */ 9689 case 0x58: /* FRINTA */ 9690 case 0x79: /* FRINTI */ 9691 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9692 break; 9693 case 0x59: /* FRINTX */ 9694 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9695 break; 9696 case 0x1e: /* FRINT32Z */ 9697 case 0x5e: /* FRINT32X */ 9698 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9699 break; 9700 case 0x1f: /* FRINT64Z */ 9701 case 0x5f: /* FRINT64X */ 9702 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9703 break; 9704 default: 9705 g_assert_not_reached(); 9706 } 9707 } 9708 9709 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9710 bool is_scalar, bool is_u, bool is_q, 9711 int size, int rn, int rd) 9712 { 9713 bool is_double = (size == MO_64); 9714 TCGv_ptr fpst; 9715 9716 if (!fp_access_check(s)) { 9717 return; 9718 } 9719 9720 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9721 9722 if (is_double) { 9723 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9724 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9725 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9726 NeonGenTwoDoubleOpFn *genfn; 9727 bool swap = false; 9728 int pass; 9729 9730 switch (opcode) { 9731 case 0x2e: /* FCMLT (zero) */ 9732 swap = true; 9733 /* fallthrough */ 9734 case 0x2c: /* FCMGT (zero) */ 9735 genfn = gen_helper_neon_cgt_f64; 9736 break; 9737 case 0x2d: /* FCMEQ (zero) */ 9738 genfn = gen_helper_neon_ceq_f64; 9739 break; 9740 case 0x6d: /* FCMLE (zero) */ 9741 swap = true; 9742 /* fall through */ 9743 case 0x6c: /* FCMGE (zero) */ 9744 genfn = gen_helper_neon_cge_f64; 9745 break; 9746 default: 9747 g_assert_not_reached(); 9748 } 9749 9750 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9751 read_vec_element(s, tcg_op, rn, pass, MO_64); 9752 if (swap) { 9753 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9754 } else { 9755 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9756 } 9757 write_vec_element(s, tcg_res, rd, pass, MO_64); 9758 } 9759 9760 clear_vec_high(s, !is_scalar, rd); 9761 } else { 9762 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9763 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9764 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9765 NeonGenTwoSingleOpFn *genfn; 9766 bool swap = false; 9767 int pass, maxpasses; 9768 9769 if (size == MO_16) { 9770 switch (opcode) { 9771 case 0x2e: /* FCMLT (zero) */ 9772 swap = true; 9773 /* fall through */ 9774 case 0x2c: /* FCMGT (zero) */ 9775 genfn = gen_helper_advsimd_cgt_f16; 9776 break; 9777 case 0x2d: /* FCMEQ (zero) */ 9778 genfn = gen_helper_advsimd_ceq_f16; 9779 break; 9780 case 0x6d: /* FCMLE (zero) */ 9781 swap = true; 9782 /* fall through */ 9783 case 0x6c: /* FCMGE (zero) */ 9784 genfn = gen_helper_advsimd_cge_f16; 9785 break; 9786 default: 9787 g_assert_not_reached(); 9788 } 9789 } else { 9790 switch (opcode) { 9791 case 0x2e: /* FCMLT (zero) */ 9792 swap = true; 9793 /* fall through */ 9794 case 0x2c: /* FCMGT (zero) */ 9795 genfn = gen_helper_neon_cgt_f32; 9796 break; 9797 case 0x2d: /* FCMEQ (zero) */ 9798 genfn = gen_helper_neon_ceq_f32; 9799 break; 9800 case 0x6d: /* FCMLE (zero) */ 9801 swap = true; 9802 /* fall through */ 9803 case 0x6c: /* FCMGE (zero) */ 9804 genfn = gen_helper_neon_cge_f32; 9805 break; 9806 default: 9807 g_assert_not_reached(); 9808 } 9809 } 9810 9811 if (is_scalar) { 9812 maxpasses = 1; 9813 } else { 9814 int vector_size = 8 << is_q; 9815 maxpasses = vector_size >> size; 9816 } 9817 9818 for (pass = 0; pass < maxpasses; pass++) { 9819 read_vec_element_i32(s, tcg_op, rn, pass, size); 9820 if (swap) { 9821 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9822 } else { 9823 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9824 } 9825 if (is_scalar) { 9826 write_fp_sreg(s, rd, tcg_res); 9827 } else { 9828 write_vec_element_i32(s, tcg_res, rd, pass, size); 9829 } 9830 } 9831 9832 if (!is_scalar) { 9833 clear_vec_high(s, is_q, rd); 9834 } 9835 } 9836 } 9837 9838 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9839 bool is_scalar, bool is_u, bool is_q, 9840 int size, int rn, int rd) 9841 { 9842 bool is_double = (size == 3); 9843 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9844 9845 if (is_double) { 9846 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9847 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9848 int pass; 9849 9850 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9851 read_vec_element(s, tcg_op, rn, pass, MO_64); 9852 switch (opcode) { 9853 case 0x3d: /* FRECPE */ 9854 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9855 break; 9856 case 0x3f: /* FRECPX */ 9857 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9858 break; 9859 case 0x7d: /* FRSQRTE */ 9860 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9861 break; 9862 default: 9863 g_assert_not_reached(); 9864 } 9865 write_vec_element(s, tcg_res, rd, pass, MO_64); 9866 } 9867 clear_vec_high(s, !is_scalar, rd); 9868 } else { 9869 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9870 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9871 int pass, maxpasses; 9872 9873 if (is_scalar) { 9874 maxpasses = 1; 9875 } else { 9876 maxpasses = is_q ? 4 : 2; 9877 } 9878 9879 for (pass = 0; pass < maxpasses; pass++) { 9880 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9881 9882 switch (opcode) { 9883 case 0x3c: /* URECPE */ 9884 gen_helper_recpe_u32(tcg_res, tcg_op); 9885 break; 9886 case 0x3d: /* FRECPE */ 9887 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9888 break; 9889 case 0x3f: /* FRECPX */ 9890 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9891 break; 9892 case 0x7d: /* FRSQRTE */ 9893 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9894 break; 9895 default: 9896 g_assert_not_reached(); 9897 } 9898 9899 if (is_scalar) { 9900 write_fp_sreg(s, rd, tcg_res); 9901 } else { 9902 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9903 } 9904 } 9905 if (!is_scalar) { 9906 clear_vec_high(s, is_q, rd); 9907 } 9908 } 9909 } 9910 9911 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9912 int opcode, bool u, bool is_q, 9913 int size, int rn, int rd) 9914 { 9915 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9916 * in the source becomes a size element in the destination). 9917 */ 9918 int pass; 9919 TCGv_i32 tcg_res[2]; 9920 int destelt = is_q ? 2 : 0; 9921 int passes = scalar ? 1 : 2; 9922 9923 if (scalar) { 9924 tcg_res[1] = tcg_constant_i32(0); 9925 } 9926 9927 for (pass = 0; pass < passes; pass++) { 9928 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9929 NeonGenNarrowFn *genfn = NULL; 9930 NeonGenNarrowEnvFn *genenvfn = NULL; 9931 9932 if (scalar) { 9933 read_vec_element(s, tcg_op, rn, pass, size + 1); 9934 } else { 9935 read_vec_element(s, tcg_op, rn, pass, MO_64); 9936 } 9937 tcg_res[pass] = tcg_temp_new_i32(); 9938 9939 switch (opcode) { 9940 case 0x12: /* XTN, SQXTUN */ 9941 { 9942 static NeonGenNarrowFn * const xtnfns[3] = { 9943 gen_helper_neon_narrow_u8, 9944 gen_helper_neon_narrow_u16, 9945 tcg_gen_extrl_i64_i32, 9946 }; 9947 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9948 gen_helper_neon_unarrow_sat8, 9949 gen_helper_neon_unarrow_sat16, 9950 gen_helper_neon_unarrow_sat32, 9951 }; 9952 if (u) { 9953 genenvfn = sqxtunfns[size]; 9954 } else { 9955 genfn = xtnfns[size]; 9956 } 9957 break; 9958 } 9959 case 0x14: /* SQXTN, UQXTN */ 9960 { 9961 static NeonGenNarrowEnvFn * const fns[3][2] = { 9962 { gen_helper_neon_narrow_sat_s8, 9963 gen_helper_neon_narrow_sat_u8 }, 9964 { gen_helper_neon_narrow_sat_s16, 9965 gen_helper_neon_narrow_sat_u16 }, 9966 { gen_helper_neon_narrow_sat_s32, 9967 gen_helper_neon_narrow_sat_u32 }, 9968 }; 9969 genenvfn = fns[size][u]; 9970 break; 9971 } 9972 case 0x16: /* FCVTN, FCVTN2 */ 9973 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9974 if (size == 2) { 9975 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9976 } else { 9977 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9978 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9979 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9980 TCGv_i32 ahp = get_ahp_flag(); 9981 9982 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9983 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9984 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9985 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9986 } 9987 break; 9988 case 0x36: /* BFCVTN, BFCVTN2 */ 9989 { 9990 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9991 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9992 } 9993 break; 9994 case 0x56: /* FCVTXN, FCVTXN2 */ 9995 /* 64 bit to 32 bit float conversion 9996 * with von Neumann rounding (round to odd) 9997 */ 9998 assert(size == 2); 9999 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 10000 break; 10001 default: 10002 g_assert_not_reached(); 10003 } 10004 10005 if (genfn) { 10006 genfn(tcg_res[pass], tcg_op); 10007 } else if (genenvfn) { 10008 genenvfn(tcg_res[pass], cpu_env, tcg_op); 10009 } 10010 } 10011 10012 for (pass = 0; pass < 2; pass++) { 10013 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10014 } 10015 clear_vec_high(s, is_q, rd); 10016 } 10017 10018 /* Remaining saturating accumulating ops */ 10019 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10020 bool is_q, int size, int rn, int rd) 10021 { 10022 bool is_double = (size == 3); 10023 10024 if (is_double) { 10025 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10026 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10027 int pass; 10028 10029 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10030 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10031 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10032 10033 if (is_u) { /* USQADD */ 10034 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10035 } else { /* SUQADD */ 10036 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10037 } 10038 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10039 } 10040 clear_vec_high(s, !is_scalar, rd); 10041 } else { 10042 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10043 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10044 int pass, maxpasses; 10045 10046 if (is_scalar) { 10047 maxpasses = 1; 10048 } else { 10049 maxpasses = is_q ? 4 : 2; 10050 } 10051 10052 for (pass = 0; pass < maxpasses; pass++) { 10053 if (is_scalar) { 10054 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10055 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10056 } else { 10057 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10058 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10059 } 10060 10061 if (is_u) { /* USQADD */ 10062 switch (size) { 10063 case 0: 10064 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10065 break; 10066 case 1: 10067 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10068 break; 10069 case 2: 10070 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10071 break; 10072 default: 10073 g_assert_not_reached(); 10074 } 10075 } else { /* SUQADD */ 10076 switch (size) { 10077 case 0: 10078 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10079 break; 10080 case 1: 10081 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10082 break; 10083 case 2: 10084 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10085 break; 10086 default: 10087 g_assert_not_reached(); 10088 } 10089 } 10090 10091 if (is_scalar) { 10092 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10093 } 10094 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10095 } 10096 clear_vec_high(s, is_q, rd); 10097 } 10098 } 10099 10100 /* AdvSIMD scalar two reg misc 10101 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10102 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10103 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10104 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10105 */ 10106 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10107 { 10108 int rd = extract32(insn, 0, 5); 10109 int rn = extract32(insn, 5, 5); 10110 int opcode = extract32(insn, 12, 5); 10111 int size = extract32(insn, 22, 2); 10112 bool u = extract32(insn, 29, 1); 10113 bool is_fcvt = false; 10114 int rmode; 10115 TCGv_i32 tcg_rmode; 10116 TCGv_ptr tcg_fpstatus; 10117 10118 switch (opcode) { 10119 case 0x3: /* USQADD / SUQADD*/ 10120 if (!fp_access_check(s)) { 10121 return; 10122 } 10123 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10124 return; 10125 case 0x7: /* SQABS / SQNEG */ 10126 break; 10127 case 0xa: /* CMLT */ 10128 if (u) { 10129 unallocated_encoding(s); 10130 return; 10131 } 10132 /* fall through */ 10133 case 0x8: /* CMGT, CMGE */ 10134 case 0x9: /* CMEQ, CMLE */ 10135 case 0xb: /* ABS, NEG */ 10136 if (size != 3) { 10137 unallocated_encoding(s); 10138 return; 10139 } 10140 break; 10141 case 0x12: /* SQXTUN */ 10142 if (!u) { 10143 unallocated_encoding(s); 10144 return; 10145 } 10146 /* fall through */ 10147 case 0x14: /* SQXTN, UQXTN */ 10148 if (size == 3) { 10149 unallocated_encoding(s); 10150 return; 10151 } 10152 if (!fp_access_check(s)) { 10153 return; 10154 } 10155 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10156 return; 10157 case 0xc ... 0xf: 10158 case 0x16 ... 0x1d: 10159 case 0x1f: 10160 /* Floating point: U, size[1] and opcode indicate operation; 10161 * size[0] indicates single or double precision. 10162 */ 10163 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10164 size = extract32(size, 0, 1) ? 3 : 2; 10165 switch (opcode) { 10166 case 0x2c: /* FCMGT (zero) */ 10167 case 0x2d: /* FCMEQ (zero) */ 10168 case 0x2e: /* FCMLT (zero) */ 10169 case 0x6c: /* FCMGE (zero) */ 10170 case 0x6d: /* FCMLE (zero) */ 10171 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10172 return; 10173 case 0x1d: /* SCVTF */ 10174 case 0x5d: /* UCVTF */ 10175 { 10176 bool is_signed = (opcode == 0x1d); 10177 if (!fp_access_check(s)) { 10178 return; 10179 } 10180 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10181 return; 10182 } 10183 case 0x3d: /* FRECPE */ 10184 case 0x3f: /* FRECPX */ 10185 case 0x7d: /* FRSQRTE */ 10186 if (!fp_access_check(s)) { 10187 return; 10188 } 10189 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10190 return; 10191 case 0x1a: /* FCVTNS */ 10192 case 0x1b: /* FCVTMS */ 10193 case 0x3a: /* FCVTPS */ 10194 case 0x3b: /* FCVTZS */ 10195 case 0x5a: /* FCVTNU */ 10196 case 0x5b: /* FCVTMU */ 10197 case 0x7a: /* FCVTPU */ 10198 case 0x7b: /* FCVTZU */ 10199 is_fcvt = true; 10200 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10201 break; 10202 case 0x1c: /* FCVTAS */ 10203 case 0x5c: /* FCVTAU */ 10204 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10205 is_fcvt = true; 10206 rmode = FPROUNDING_TIEAWAY; 10207 break; 10208 case 0x56: /* FCVTXN, FCVTXN2 */ 10209 if (size == 2) { 10210 unallocated_encoding(s); 10211 return; 10212 } 10213 if (!fp_access_check(s)) { 10214 return; 10215 } 10216 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10217 return; 10218 default: 10219 unallocated_encoding(s); 10220 return; 10221 } 10222 break; 10223 default: 10224 unallocated_encoding(s); 10225 return; 10226 } 10227 10228 if (!fp_access_check(s)) { 10229 return; 10230 } 10231 10232 if (is_fcvt) { 10233 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10234 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10235 } else { 10236 tcg_fpstatus = NULL; 10237 tcg_rmode = NULL; 10238 } 10239 10240 if (size == 3) { 10241 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10242 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10243 10244 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10245 write_fp_dreg(s, rd, tcg_rd); 10246 } else { 10247 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10248 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10249 10250 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10251 10252 switch (opcode) { 10253 case 0x7: /* SQABS, SQNEG */ 10254 { 10255 NeonGenOneOpEnvFn *genfn; 10256 static NeonGenOneOpEnvFn * const fns[3][2] = { 10257 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10258 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10259 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10260 }; 10261 genfn = fns[size][u]; 10262 genfn(tcg_rd, cpu_env, tcg_rn); 10263 break; 10264 } 10265 case 0x1a: /* FCVTNS */ 10266 case 0x1b: /* FCVTMS */ 10267 case 0x1c: /* FCVTAS */ 10268 case 0x3a: /* FCVTPS */ 10269 case 0x3b: /* FCVTZS */ 10270 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10271 tcg_fpstatus); 10272 break; 10273 case 0x5a: /* FCVTNU */ 10274 case 0x5b: /* FCVTMU */ 10275 case 0x5c: /* FCVTAU */ 10276 case 0x7a: /* FCVTPU */ 10277 case 0x7b: /* FCVTZU */ 10278 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10279 tcg_fpstatus); 10280 break; 10281 default: 10282 g_assert_not_reached(); 10283 } 10284 10285 write_fp_sreg(s, rd, tcg_rd); 10286 } 10287 10288 if (is_fcvt) { 10289 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10290 } 10291 } 10292 10293 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10294 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10295 int immh, int immb, int opcode, int rn, int rd) 10296 { 10297 int size = 32 - clz32(immh) - 1; 10298 int immhb = immh << 3 | immb; 10299 int shift = 2 * (8 << size) - immhb; 10300 GVecGen2iFn *gvec_fn; 10301 10302 if (extract32(immh, 3, 1) && !is_q) { 10303 unallocated_encoding(s); 10304 return; 10305 } 10306 tcg_debug_assert(size <= 3); 10307 10308 if (!fp_access_check(s)) { 10309 return; 10310 } 10311 10312 switch (opcode) { 10313 case 0x02: /* SSRA / USRA (accumulate) */ 10314 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10315 break; 10316 10317 case 0x08: /* SRI */ 10318 gvec_fn = gen_gvec_sri; 10319 break; 10320 10321 case 0x00: /* SSHR / USHR */ 10322 if (is_u) { 10323 if (shift == 8 << size) { 10324 /* Shift count the same size as element size produces zero. */ 10325 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10326 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10327 return; 10328 } 10329 gvec_fn = tcg_gen_gvec_shri; 10330 } else { 10331 /* Shift count the same size as element size produces all sign. */ 10332 if (shift == 8 << size) { 10333 shift -= 1; 10334 } 10335 gvec_fn = tcg_gen_gvec_sari; 10336 } 10337 break; 10338 10339 case 0x04: /* SRSHR / URSHR (rounding) */ 10340 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10341 break; 10342 10343 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10344 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10345 break; 10346 10347 default: 10348 g_assert_not_reached(); 10349 } 10350 10351 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10352 } 10353 10354 /* SHL/SLI - Vector shift left */ 10355 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10356 int immh, int immb, int opcode, int rn, int rd) 10357 { 10358 int size = 32 - clz32(immh) - 1; 10359 int immhb = immh << 3 | immb; 10360 int shift = immhb - (8 << size); 10361 10362 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10363 assert(size >= 0 && size <= 3); 10364 10365 if (extract32(immh, 3, 1) && !is_q) { 10366 unallocated_encoding(s); 10367 return; 10368 } 10369 10370 if (!fp_access_check(s)) { 10371 return; 10372 } 10373 10374 if (insert) { 10375 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10376 } else { 10377 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10378 } 10379 } 10380 10381 /* USHLL/SHLL - Vector shift left with widening */ 10382 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10383 int immh, int immb, int opcode, int rn, int rd) 10384 { 10385 int size = 32 - clz32(immh) - 1; 10386 int immhb = immh << 3 | immb; 10387 int shift = immhb - (8 << size); 10388 int dsize = 64; 10389 int esize = 8 << size; 10390 int elements = dsize/esize; 10391 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10392 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10393 int i; 10394 10395 if (size >= 3) { 10396 unallocated_encoding(s); 10397 return; 10398 } 10399 10400 if (!fp_access_check(s)) { 10401 return; 10402 } 10403 10404 /* For the LL variants the store is larger than the load, 10405 * so if rd == rn we would overwrite parts of our input. 10406 * So load everything right now and use shifts in the main loop. 10407 */ 10408 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10409 10410 for (i = 0; i < elements; i++) { 10411 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10412 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10413 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10414 write_vec_element(s, tcg_rd, rd, i, size + 1); 10415 } 10416 } 10417 10418 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10419 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10420 int immh, int immb, int opcode, int rn, int rd) 10421 { 10422 int immhb = immh << 3 | immb; 10423 int size = 32 - clz32(immh) - 1; 10424 int dsize = 64; 10425 int esize = 8 << size; 10426 int elements = dsize/esize; 10427 int shift = (2 * esize) - immhb; 10428 bool round = extract32(opcode, 0, 1); 10429 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10430 TCGv_i64 tcg_round; 10431 int i; 10432 10433 if (extract32(immh, 3, 1)) { 10434 unallocated_encoding(s); 10435 return; 10436 } 10437 10438 if (!fp_access_check(s)) { 10439 return; 10440 } 10441 10442 tcg_rn = tcg_temp_new_i64(); 10443 tcg_rd = tcg_temp_new_i64(); 10444 tcg_final = tcg_temp_new_i64(); 10445 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10446 10447 if (round) { 10448 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10449 } else { 10450 tcg_round = NULL; 10451 } 10452 10453 for (i = 0; i < elements; i++) { 10454 read_vec_element(s, tcg_rn, rn, i, size+1); 10455 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10456 false, true, size+1, shift); 10457 10458 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10459 } 10460 10461 if (!is_q) { 10462 write_vec_element(s, tcg_final, rd, 0, MO_64); 10463 } else { 10464 write_vec_element(s, tcg_final, rd, 1, MO_64); 10465 } 10466 10467 clear_vec_high(s, is_q, rd); 10468 } 10469 10470 10471 /* AdvSIMD shift by immediate 10472 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10473 * +---+---+---+-------------+------+------+--------+---+------+------+ 10474 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10475 * +---+---+---+-------------+------+------+--------+---+------+------+ 10476 */ 10477 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10478 { 10479 int rd = extract32(insn, 0, 5); 10480 int rn = extract32(insn, 5, 5); 10481 int opcode = extract32(insn, 11, 5); 10482 int immb = extract32(insn, 16, 3); 10483 int immh = extract32(insn, 19, 4); 10484 bool is_u = extract32(insn, 29, 1); 10485 bool is_q = extract32(insn, 30, 1); 10486 10487 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10488 assert(immh != 0); 10489 10490 switch (opcode) { 10491 case 0x08: /* SRI */ 10492 if (!is_u) { 10493 unallocated_encoding(s); 10494 return; 10495 } 10496 /* fall through */ 10497 case 0x00: /* SSHR / USHR */ 10498 case 0x02: /* SSRA / USRA (accumulate) */ 10499 case 0x04: /* SRSHR / URSHR (rounding) */ 10500 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10501 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10502 break; 10503 case 0x0a: /* SHL / SLI */ 10504 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10505 break; 10506 case 0x10: /* SHRN */ 10507 case 0x11: /* RSHRN / SQRSHRUN */ 10508 if (is_u) { 10509 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10510 opcode, rn, rd); 10511 } else { 10512 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10513 } 10514 break; 10515 case 0x12: /* SQSHRN / UQSHRN */ 10516 case 0x13: /* SQRSHRN / UQRSHRN */ 10517 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10518 opcode, rn, rd); 10519 break; 10520 case 0x14: /* SSHLL / USHLL */ 10521 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10522 break; 10523 case 0x1c: /* SCVTF / UCVTF */ 10524 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10525 opcode, rn, rd); 10526 break; 10527 case 0xc: /* SQSHLU */ 10528 if (!is_u) { 10529 unallocated_encoding(s); 10530 return; 10531 } 10532 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10533 break; 10534 case 0xe: /* SQSHL, UQSHL */ 10535 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10536 break; 10537 case 0x1f: /* FCVTZS/ FCVTZU */ 10538 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10539 return; 10540 default: 10541 unallocated_encoding(s); 10542 return; 10543 } 10544 } 10545 10546 /* Generate code to do a "long" addition or subtraction, ie one done in 10547 * TCGv_i64 on vector lanes twice the width specified by size. 10548 */ 10549 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10550 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10551 { 10552 static NeonGenTwo64OpFn * const fns[3][2] = { 10553 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10554 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10555 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10556 }; 10557 NeonGenTwo64OpFn *genfn; 10558 assert(size < 3); 10559 10560 genfn = fns[size][is_sub]; 10561 genfn(tcg_res, tcg_op1, tcg_op2); 10562 } 10563 10564 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10565 int opcode, int rd, int rn, int rm) 10566 { 10567 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10568 TCGv_i64 tcg_res[2]; 10569 int pass, accop; 10570 10571 tcg_res[0] = tcg_temp_new_i64(); 10572 tcg_res[1] = tcg_temp_new_i64(); 10573 10574 /* Does this op do an adding accumulate, a subtracting accumulate, 10575 * or no accumulate at all? 10576 */ 10577 switch (opcode) { 10578 case 5: 10579 case 8: 10580 case 9: 10581 accop = 1; 10582 break; 10583 case 10: 10584 case 11: 10585 accop = -1; 10586 break; 10587 default: 10588 accop = 0; 10589 break; 10590 } 10591 10592 if (accop != 0) { 10593 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10594 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10595 } 10596 10597 /* size == 2 means two 32x32->64 operations; this is worth special 10598 * casing because we can generally handle it inline. 10599 */ 10600 if (size == 2) { 10601 for (pass = 0; pass < 2; pass++) { 10602 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10603 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10604 TCGv_i64 tcg_passres; 10605 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10606 10607 int elt = pass + is_q * 2; 10608 10609 read_vec_element(s, tcg_op1, rn, elt, memop); 10610 read_vec_element(s, tcg_op2, rm, elt, memop); 10611 10612 if (accop == 0) { 10613 tcg_passres = tcg_res[pass]; 10614 } else { 10615 tcg_passres = tcg_temp_new_i64(); 10616 } 10617 10618 switch (opcode) { 10619 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10620 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10621 break; 10622 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10623 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10624 break; 10625 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10626 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10627 { 10628 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10629 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10630 10631 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10632 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10633 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10634 tcg_passres, 10635 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10636 break; 10637 } 10638 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10639 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10640 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10641 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10642 break; 10643 case 9: /* SQDMLAL, SQDMLAL2 */ 10644 case 11: /* SQDMLSL, SQDMLSL2 */ 10645 case 13: /* SQDMULL, SQDMULL2 */ 10646 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10647 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10648 tcg_passres, tcg_passres); 10649 break; 10650 default: 10651 g_assert_not_reached(); 10652 } 10653 10654 if (opcode == 9 || opcode == 11) { 10655 /* saturating accumulate ops */ 10656 if (accop < 0) { 10657 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10658 } 10659 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10660 tcg_res[pass], tcg_passres); 10661 } else if (accop > 0) { 10662 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10663 } else if (accop < 0) { 10664 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10665 } 10666 } 10667 } else { 10668 /* size 0 or 1, generally helper functions */ 10669 for (pass = 0; pass < 2; pass++) { 10670 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10671 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10672 TCGv_i64 tcg_passres; 10673 int elt = pass + is_q * 2; 10674 10675 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10676 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10677 10678 if (accop == 0) { 10679 tcg_passres = tcg_res[pass]; 10680 } else { 10681 tcg_passres = tcg_temp_new_i64(); 10682 } 10683 10684 switch (opcode) { 10685 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10686 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10687 { 10688 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10689 static NeonGenWidenFn * const widenfns[2][2] = { 10690 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10691 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10692 }; 10693 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10694 10695 widenfn(tcg_op2_64, tcg_op2); 10696 widenfn(tcg_passres, tcg_op1); 10697 gen_neon_addl(size, (opcode == 2), tcg_passres, 10698 tcg_passres, tcg_op2_64); 10699 break; 10700 } 10701 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10702 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10703 if (size == 0) { 10704 if (is_u) { 10705 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10706 } else { 10707 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10708 } 10709 } else { 10710 if (is_u) { 10711 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10712 } else { 10713 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10714 } 10715 } 10716 break; 10717 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10718 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10719 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10720 if (size == 0) { 10721 if (is_u) { 10722 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10723 } else { 10724 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10725 } 10726 } else { 10727 if (is_u) { 10728 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10729 } else { 10730 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10731 } 10732 } 10733 break; 10734 case 9: /* SQDMLAL, SQDMLAL2 */ 10735 case 11: /* SQDMLSL, SQDMLSL2 */ 10736 case 13: /* SQDMULL, SQDMULL2 */ 10737 assert(size == 1); 10738 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10739 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10740 tcg_passres, tcg_passres); 10741 break; 10742 default: 10743 g_assert_not_reached(); 10744 } 10745 10746 if (accop != 0) { 10747 if (opcode == 9 || opcode == 11) { 10748 /* saturating accumulate ops */ 10749 if (accop < 0) { 10750 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10751 } 10752 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10753 tcg_res[pass], 10754 tcg_passres); 10755 } else { 10756 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10757 tcg_res[pass], tcg_passres); 10758 } 10759 } 10760 } 10761 } 10762 10763 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10764 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10765 } 10766 10767 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10768 int opcode, int rd, int rn, int rm) 10769 { 10770 TCGv_i64 tcg_res[2]; 10771 int part = is_q ? 2 : 0; 10772 int pass; 10773 10774 for (pass = 0; pass < 2; pass++) { 10775 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10776 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10777 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10778 static NeonGenWidenFn * const widenfns[3][2] = { 10779 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10780 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10781 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10782 }; 10783 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10784 10785 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10786 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10787 widenfn(tcg_op2_wide, tcg_op2); 10788 tcg_res[pass] = tcg_temp_new_i64(); 10789 gen_neon_addl(size, (opcode == 3), 10790 tcg_res[pass], tcg_op1, tcg_op2_wide); 10791 } 10792 10793 for (pass = 0; pass < 2; pass++) { 10794 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10795 } 10796 } 10797 10798 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10799 { 10800 tcg_gen_addi_i64(in, in, 1U << 31); 10801 tcg_gen_extrh_i64_i32(res, in); 10802 } 10803 10804 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10805 int opcode, int rd, int rn, int rm) 10806 { 10807 TCGv_i32 tcg_res[2]; 10808 int part = is_q ? 2 : 0; 10809 int pass; 10810 10811 for (pass = 0; pass < 2; pass++) { 10812 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10813 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10814 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10815 static NeonGenNarrowFn * const narrowfns[3][2] = { 10816 { gen_helper_neon_narrow_high_u8, 10817 gen_helper_neon_narrow_round_high_u8 }, 10818 { gen_helper_neon_narrow_high_u16, 10819 gen_helper_neon_narrow_round_high_u16 }, 10820 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10821 }; 10822 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10823 10824 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10825 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10826 10827 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10828 10829 tcg_res[pass] = tcg_temp_new_i32(); 10830 gennarrow(tcg_res[pass], tcg_wideres); 10831 } 10832 10833 for (pass = 0; pass < 2; pass++) { 10834 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10835 } 10836 clear_vec_high(s, is_q, rd); 10837 } 10838 10839 /* AdvSIMD three different 10840 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10841 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10842 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10843 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10844 */ 10845 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10846 { 10847 /* Instructions in this group fall into three basic classes 10848 * (in each case with the operation working on each element in 10849 * the input vectors): 10850 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10851 * 128 bit input) 10852 * (2) wide 64 x 128 -> 128 10853 * (3) narrowing 128 x 128 -> 64 10854 * Here we do initial decode, catch unallocated cases and 10855 * dispatch to separate functions for each class. 10856 */ 10857 int is_q = extract32(insn, 30, 1); 10858 int is_u = extract32(insn, 29, 1); 10859 int size = extract32(insn, 22, 2); 10860 int opcode = extract32(insn, 12, 4); 10861 int rm = extract32(insn, 16, 5); 10862 int rn = extract32(insn, 5, 5); 10863 int rd = extract32(insn, 0, 5); 10864 10865 switch (opcode) { 10866 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10867 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10868 /* 64 x 128 -> 128 */ 10869 if (size == 3) { 10870 unallocated_encoding(s); 10871 return; 10872 } 10873 if (!fp_access_check(s)) { 10874 return; 10875 } 10876 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10877 break; 10878 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10879 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10880 /* 128 x 128 -> 64 */ 10881 if (size == 3) { 10882 unallocated_encoding(s); 10883 return; 10884 } 10885 if (!fp_access_check(s)) { 10886 return; 10887 } 10888 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10889 break; 10890 case 14: /* PMULL, PMULL2 */ 10891 if (is_u) { 10892 unallocated_encoding(s); 10893 return; 10894 } 10895 switch (size) { 10896 case 0: /* PMULL.P8 */ 10897 if (!fp_access_check(s)) { 10898 return; 10899 } 10900 /* The Q field specifies lo/hi half input for this insn. */ 10901 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10902 gen_helper_neon_pmull_h); 10903 break; 10904 10905 case 3: /* PMULL.P64 */ 10906 if (!dc_isar_feature(aa64_pmull, s)) { 10907 unallocated_encoding(s); 10908 return; 10909 } 10910 if (!fp_access_check(s)) { 10911 return; 10912 } 10913 /* The Q field specifies lo/hi half input for this insn. */ 10914 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10915 gen_helper_gvec_pmull_q); 10916 break; 10917 10918 default: 10919 unallocated_encoding(s); 10920 break; 10921 } 10922 return; 10923 case 9: /* SQDMLAL, SQDMLAL2 */ 10924 case 11: /* SQDMLSL, SQDMLSL2 */ 10925 case 13: /* SQDMULL, SQDMULL2 */ 10926 if (is_u || size == 0) { 10927 unallocated_encoding(s); 10928 return; 10929 } 10930 /* fall through */ 10931 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10932 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10933 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10934 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10935 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10936 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10937 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10938 /* 64 x 64 -> 128 */ 10939 if (size == 3) { 10940 unallocated_encoding(s); 10941 return; 10942 } 10943 if (!fp_access_check(s)) { 10944 return; 10945 } 10946 10947 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10948 break; 10949 default: 10950 /* opcode 15 not allocated */ 10951 unallocated_encoding(s); 10952 break; 10953 } 10954 } 10955 10956 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10957 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10958 { 10959 int rd = extract32(insn, 0, 5); 10960 int rn = extract32(insn, 5, 5); 10961 int rm = extract32(insn, 16, 5); 10962 int size = extract32(insn, 22, 2); 10963 bool is_u = extract32(insn, 29, 1); 10964 bool is_q = extract32(insn, 30, 1); 10965 10966 if (!fp_access_check(s)) { 10967 return; 10968 } 10969 10970 switch (size + 4 * is_u) { 10971 case 0: /* AND */ 10972 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10973 return; 10974 case 1: /* BIC */ 10975 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10976 return; 10977 case 2: /* ORR */ 10978 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10979 return; 10980 case 3: /* ORN */ 10981 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10982 return; 10983 case 4: /* EOR */ 10984 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10985 return; 10986 10987 case 5: /* BSL bitwise select */ 10988 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10989 return; 10990 case 6: /* BIT, bitwise insert if true */ 10991 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10992 return; 10993 case 7: /* BIF, bitwise insert if false */ 10994 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10995 return; 10996 10997 default: 10998 g_assert_not_reached(); 10999 } 11000 } 11001 11002 /* Pairwise op subgroup of C3.6.16. 11003 * 11004 * This is called directly or via the handle_3same_float for float pairwise 11005 * operations where the opcode and size are calculated differently. 11006 */ 11007 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11008 int size, int rn, int rm, int rd) 11009 { 11010 TCGv_ptr fpst; 11011 int pass; 11012 11013 /* Floating point operations need fpst */ 11014 if (opcode >= 0x58) { 11015 fpst = fpstatus_ptr(FPST_FPCR); 11016 } else { 11017 fpst = NULL; 11018 } 11019 11020 if (!fp_access_check(s)) { 11021 return; 11022 } 11023 11024 /* These operations work on the concatenated rm:rn, with each pair of 11025 * adjacent elements being operated on to produce an element in the result. 11026 */ 11027 if (size == 3) { 11028 TCGv_i64 tcg_res[2]; 11029 11030 for (pass = 0; pass < 2; pass++) { 11031 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11032 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11033 int passreg = (pass == 0) ? rn : rm; 11034 11035 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11036 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11037 tcg_res[pass] = tcg_temp_new_i64(); 11038 11039 switch (opcode) { 11040 case 0x17: /* ADDP */ 11041 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11042 break; 11043 case 0x58: /* FMAXNMP */ 11044 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11045 break; 11046 case 0x5a: /* FADDP */ 11047 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11048 break; 11049 case 0x5e: /* FMAXP */ 11050 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11051 break; 11052 case 0x78: /* FMINNMP */ 11053 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11054 break; 11055 case 0x7e: /* FMINP */ 11056 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11057 break; 11058 default: 11059 g_assert_not_reached(); 11060 } 11061 } 11062 11063 for (pass = 0; pass < 2; pass++) { 11064 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11065 } 11066 } else { 11067 int maxpass = is_q ? 4 : 2; 11068 TCGv_i32 tcg_res[4]; 11069 11070 for (pass = 0; pass < maxpass; pass++) { 11071 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11072 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11073 NeonGenTwoOpFn *genfn = NULL; 11074 int passreg = pass < (maxpass / 2) ? rn : rm; 11075 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11076 11077 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11078 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11079 tcg_res[pass] = tcg_temp_new_i32(); 11080 11081 switch (opcode) { 11082 case 0x17: /* ADDP */ 11083 { 11084 static NeonGenTwoOpFn * const fns[3] = { 11085 gen_helper_neon_padd_u8, 11086 gen_helper_neon_padd_u16, 11087 tcg_gen_add_i32, 11088 }; 11089 genfn = fns[size]; 11090 break; 11091 } 11092 case 0x14: /* SMAXP, UMAXP */ 11093 { 11094 static NeonGenTwoOpFn * const fns[3][2] = { 11095 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11096 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11097 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11098 }; 11099 genfn = fns[size][u]; 11100 break; 11101 } 11102 case 0x15: /* SMINP, UMINP */ 11103 { 11104 static NeonGenTwoOpFn * const fns[3][2] = { 11105 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11106 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11107 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11108 }; 11109 genfn = fns[size][u]; 11110 break; 11111 } 11112 /* The FP operations are all on single floats (32 bit) */ 11113 case 0x58: /* FMAXNMP */ 11114 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11115 break; 11116 case 0x5a: /* FADDP */ 11117 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11118 break; 11119 case 0x5e: /* FMAXP */ 11120 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11121 break; 11122 case 0x78: /* FMINNMP */ 11123 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11124 break; 11125 case 0x7e: /* FMINP */ 11126 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11127 break; 11128 default: 11129 g_assert_not_reached(); 11130 } 11131 11132 /* FP ops called directly, otherwise call now */ 11133 if (genfn) { 11134 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11135 } 11136 } 11137 11138 for (pass = 0; pass < maxpass; pass++) { 11139 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11140 } 11141 clear_vec_high(s, is_q, rd); 11142 } 11143 } 11144 11145 /* Floating point op subgroup of C3.6.16. */ 11146 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11147 { 11148 /* For floating point ops, the U, size[1] and opcode bits 11149 * together indicate the operation. size[0] indicates single 11150 * or double. 11151 */ 11152 int fpopcode = extract32(insn, 11, 5) 11153 | (extract32(insn, 23, 1) << 5) 11154 | (extract32(insn, 29, 1) << 6); 11155 int is_q = extract32(insn, 30, 1); 11156 int size = extract32(insn, 22, 1); 11157 int rm = extract32(insn, 16, 5); 11158 int rn = extract32(insn, 5, 5); 11159 int rd = extract32(insn, 0, 5); 11160 11161 int datasize = is_q ? 128 : 64; 11162 int esize = 32 << size; 11163 int elements = datasize / esize; 11164 11165 if (size == 1 && !is_q) { 11166 unallocated_encoding(s); 11167 return; 11168 } 11169 11170 switch (fpopcode) { 11171 case 0x58: /* FMAXNMP */ 11172 case 0x5a: /* FADDP */ 11173 case 0x5e: /* FMAXP */ 11174 case 0x78: /* FMINNMP */ 11175 case 0x7e: /* FMINP */ 11176 if (size && !is_q) { 11177 unallocated_encoding(s); 11178 return; 11179 } 11180 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11181 rn, rm, rd); 11182 return; 11183 case 0x1b: /* FMULX */ 11184 case 0x1f: /* FRECPS */ 11185 case 0x3f: /* FRSQRTS */ 11186 case 0x5d: /* FACGE */ 11187 case 0x7d: /* FACGT */ 11188 case 0x19: /* FMLA */ 11189 case 0x39: /* FMLS */ 11190 case 0x18: /* FMAXNM */ 11191 case 0x1a: /* FADD */ 11192 case 0x1c: /* FCMEQ */ 11193 case 0x1e: /* FMAX */ 11194 case 0x38: /* FMINNM */ 11195 case 0x3a: /* FSUB */ 11196 case 0x3e: /* FMIN */ 11197 case 0x5b: /* FMUL */ 11198 case 0x5c: /* FCMGE */ 11199 case 0x5f: /* FDIV */ 11200 case 0x7a: /* FABD */ 11201 case 0x7c: /* FCMGT */ 11202 if (!fp_access_check(s)) { 11203 return; 11204 } 11205 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11206 return; 11207 11208 case 0x1d: /* FMLAL */ 11209 case 0x3d: /* FMLSL */ 11210 case 0x59: /* FMLAL2 */ 11211 case 0x79: /* FMLSL2 */ 11212 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11213 unallocated_encoding(s); 11214 return; 11215 } 11216 if (fp_access_check(s)) { 11217 int is_s = extract32(insn, 23, 1); 11218 int is_2 = extract32(insn, 29, 1); 11219 int data = (is_2 << 1) | is_s; 11220 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11221 vec_full_reg_offset(s, rn), 11222 vec_full_reg_offset(s, rm), cpu_env, 11223 is_q ? 16 : 8, vec_full_reg_size(s), 11224 data, gen_helper_gvec_fmlal_a64); 11225 } 11226 return; 11227 11228 default: 11229 unallocated_encoding(s); 11230 return; 11231 } 11232 } 11233 11234 /* Integer op subgroup of C3.6.16. */ 11235 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11236 { 11237 int is_q = extract32(insn, 30, 1); 11238 int u = extract32(insn, 29, 1); 11239 int size = extract32(insn, 22, 2); 11240 int opcode = extract32(insn, 11, 5); 11241 int rm = extract32(insn, 16, 5); 11242 int rn = extract32(insn, 5, 5); 11243 int rd = extract32(insn, 0, 5); 11244 int pass; 11245 TCGCond cond; 11246 11247 switch (opcode) { 11248 case 0x13: /* MUL, PMUL */ 11249 if (u && size != 0) { 11250 unallocated_encoding(s); 11251 return; 11252 } 11253 /* fall through */ 11254 case 0x0: /* SHADD, UHADD */ 11255 case 0x2: /* SRHADD, URHADD */ 11256 case 0x4: /* SHSUB, UHSUB */ 11257 case 0xc: /* SMAX, UMAX */ 11258 case 0xd: /* SMIN, UMIN */ 11259 case 0xe: /* SABD, UABD */ 11260 case 0xf: /* SABA, UABA */ 11261 case 0x12: /* MLA, MLS */ 11262 if (size == 3) { 11263 unallocated_encoding(s); 11264 return; 11265 } 11266 break; 11267 case 0x16: /* SQDMULH, SQRDMULH */ 11268 if (size == 0 || size == 3) { 11269 unallocated_encoding(s); 11270 return; 11271 } 11272 break; 11273 default: 11274 if (size == 3 && !is_q) { 11275 unallocated_encoding(s); 11276 return; 11277 } 11278 break; 11279 } 11280 11281 if (!fp_access_check(s)) { 11282 return; 11283 } 11284 11285 switch (opcode) { 11286 case 0x01: /* SQADD, UQADD */ 11287 if (u) { 11288 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11289 } else { 11290 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11291 } 11292 return; 11293 case 0x05: /* SQSUB, UQSUB */ 11294 if (u) { 11295 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11296 } else { 11297 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11298 } 11299 return; 11300 case 0x08: /* SSHL, USHL */ 11301 if (u) { 11302 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11303 } else { 11304 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11305 } 11306 return; 11307 case 0x0c: /* SMAX, UMAX */ 11308 if (u) { 11309 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11310 } else { 11311 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11312 } 11313 return; 11314 case 0x0d: /* SMIN, UMIN */ 11315 if (u) { 11316 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11317 } else { 11318 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11319 } 11320 return; 11321 case 0xe: /* SABD, UABD */ 11322 if (u) { 11323 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11324 } else { 11325 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11326 } 11327 return; 11328 case 0xf: /* SABA, UABA */ 11329 if (u) { 11330 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11331 } else { 11332 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11333 } 11334 return; 11335 case 0x10: /* ADD, SUB */ 11336 if (u) { 11337 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11338 } else { 11339 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11340 } 11341 return; 11342 case 0x13: /* MUL, PMUL */ 11343 if (!u) { /* MUL */ 11344 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11345 } else { /* PMUL */ 11346 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11347 } 11348 return; 11349 case 0x12: /* MLA, MLS */ 11350 if (u) { 11351 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11352 } else { 11353 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11354 } 11355 return; 11356 case 0x16: /* SQDMULH, SQRDMULH */ 11357 { 11358 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11359 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11360 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11361 }; 11362 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11363 } 11364 return; 11365 case 0x11: 11366 if (!u) { /* CMTST */ 11367 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11368 return; 11369 } 11370 /* else CMEQ */ 11371 cond = TCG_COND_EQ; 11372 goto do_gvec_cmp; 11373 case 0x06: /* CMGT, CMHI */ 11374 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11375 goto do_gvec_cmp; 11376 case 0x07: /* CMGE, CMHS */ 11377 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11378 do_gvec_cmp: 11379 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11380 vec_full_reg_offset(s, rn), 11381 vec_full_reg_offset(s, rm), 11382 is_q ? 16 : 8, vec_full_reg_size(s)); 11383 return; 11384 } 11385 11386 if (size == 3) { 11387 assert(is_q); 11388 for (pass = 0; pass < 2; pass++) { 11389 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11390 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11391 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11392 11393 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11394 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11395 11396 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11397 11398 write_vec_element(s, tcg_res, rd, pass, MO_64); 11399 } 11400 } else { 11401 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11402 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11403 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11404 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11405 NeonGenTwoOpFn *genfn = NULL; 11406 NeonGenTwoOpEnvFn *genenvfn = NULL; 11407 11408 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11409 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11410 11411 switch (opcode) { 11412 case 0x0: /* SHADD, UHADD */ 11413 { 11414 static NeonGenTwoOpFn * const fns[3][2] = { 11415 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11416 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11417 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11418 }; 11419 genfn = fns[size][u]; 11420 break; 11421 } 11422 case 0x2: /* SRHADD, URHADD */ 11423 { 11424 static NeonGenTwoOpFn * const fns[3][2] = { 11425 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11426 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11427 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11428 }; 11429 genfn = fns[size][u]; 11430 break; 11431 } 11432 case 0x4: /* SHSUB, UHSUB */ 11433 { 11434 static NeonGenTwoOpFn * const fns[3][2] = { 11435 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11436 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11437 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11438 }; 11439 genfn = fns[size][u]; 11440 break; 11441 } 11442 case 0x9: /* SQSHL, UQSHL */ 11443 { 11444 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11445 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11446 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11447 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11448 }; 11449 genenvfn = fns[size][u]; 11450 break; 11451 } 11452 case 0xa: /* SRSHL, URSHL */ 11453 { 11454 static NeonGenTwoOpFn * const fns[3][2] = { 11455 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11456 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11457 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11458 }; 11459 genfn = fns[size][u]; 11460 break; 11461 } 11462 case 0xb: /* SQRSHL, UQRSHL */ 11463 { 11464 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11465 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11466 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11467 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11468 }; 11469 genenvfn = fns[size][u]; 11470 break; 11471 } 11472 default: 11473 g_assert_not_reached(); 11474 } 11475 11476 if (genenvfn) { 11477 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11478 } else { 11479 genfn(tcg_res, tcg_op1, tcg_op2); 11480 } 11481 11482 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11483 } 11484 } 11485 clear_vec_high(s, is_q, rd); 11486 } 11487 11488 /* AdvSIMD three same 11489 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11490 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11491 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11492 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11493 */ 11494 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11495 { 11496 int opcode = extract32(insn, 11, 5); 11497 11498 switch (opcode) { 11499 case 0x3: /* logic ops */ 11500 disas_simd_3same_logic(s, insn); 11501 break; 11502 case 0x17: /* ADDP */ 11503 case 0x14: /* SMAXP, UMAXP */ 11504 case 0x15: /* SMINP, UMINP */ 11505 { 11506 /* Pairwise operations */ 11507 int is_q = extract32(insn, 30, 1); 11508 int u = extract32(insn, 29, 1); 11509 int size = extract32(insn, 22, 2); 11510 int rm = extract32(insn, 16, 5); 11511 int rn = extract32(insn, 5, 5); 11512 int rd = extract32(insn, 0, 5); 11513 if (opcode == 0x17) { 11514 if (u || (size == 3 && !is_q)) { 11515 unallocated_encoding(s); 11516 return; 11517 } 11518 } else { 11519 if (size == 3) { 11520 unallocated_encoding(s); 11521 return; 11522 } 11523 } 11524 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11525 break; 11526 } 11527 case 0x18 ... 0x31: 11528 /* floating point ops, sz[1] and U are part of opcode */ 11529 disas_simd_3same_float(s, insn); 11530 break; 11531 default: 11532 disas_simd_3same_int(s, insn); 11533 break; 11534 } 11535 } 11536 11537 /* 11538 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11539 * 11540 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11541 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11542 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11543 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11544 * 11545 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11546 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11547 * 11548 */ 11549 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11550 { 11551 int opcode = extract32(insn, 11, 3); 11552 int u = extract32(insn, 29, 1); 11553 int a = extract32(insn, 23, 1); 11554 int is_q = extract32(insn, 30, 1); 11555 int rm = extract32(insn, 16, 5); 11556 int rn = extract32(insn, 5, 5); 11557 int rd = extract32(insn, 0, 5); 11558 /* 11559 * For these floating point ops, the U, a and opcode bits 11560 * together indicate the operation. 11561 */ 11562 int fpopcode = opcode | (a << 3) | (u << 4); 11563 int datasize = is_q ? 128 : 64; 11564 int elements = datasize / 16; 11565 bool pairwise; 11566 TCGv_ptr fpst; 11567 int pass; 11568 11569 switch (fpopcode) { 11570 case 0x0: /* FMAXNM */ 11571 case 0x1: /* FMLA */ 11572 case 0x2: /* FADD */ 11573 case 0x3: /* FMULX */ 11574 case 0x4: /* FCMEQ */ 11575 case 0x6: /* FMAX */ 11576 case 0x7: /* FRECPS */ 11577 case 0x8: /* FMINNM */ 11578 case 0x9: /* FMLS */ 11579 case 0xa: /* FSUB */ 11580 case 0xe: /* FMIN */ 11581 case 0xf: /* FRSQRTS */ 11582 case 0x13: /* FMUL */ 11583 case 0x14: /* FCMGE */ 11584 case 0x15: /* FACGE */ 11585 case 0x17: /* FDIV */ 11586 case 0x1a: /* FABD */ 11587 case 0x1c: /* FCMGT */ 11588 case 0x1d: /* FACGT */ 11589 pairwise = false; 11590 break; 11591 case 0x10: /* FMAXNMP */ 11592 case 0x12: /* FADDP */ 11593 case 0x16: /* FMAXP */ 11594 case 0x18: /* FMINNMP */ 11595 case 0x1e: /* FMINP */ 11596 pairwise = true; 11597 break; 11598 default: 11599 unallocated_encoding(s); 11600 return; 11601 } 11602 11603 if (!dc_isar_feature(aa64_fp16, s)) { 11604 unallocated_encoding(s); 11605 return; 11606 } 11607 11608 if (!fp_access_check(s)) { 11609 return; 11610 } 11611 11612 fpst = fpstatus_ptr(FPST_FPCR_F16); 11613 11614 if (pairwise) { 11615 int maxpass = is_q ? 8 : 4; 11616 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11617 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11618 TCGv_i32 tcg_res[8]; 11619 11620 for (pass = 0; pass < maxpass; pass++) { 11621 int passreg = pass < (maxpass / 2) ? rn : rm; 11622 int passelt = (pass << 1) & (maxpass - 1); 11623 11624 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11625 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11626 tcg_res[pass] = tcg_temp_new_i32(); 11627 11628 switch (fpopcode) { 11629 case 0x10: /* FMAXNMP */ 11630 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11631 fpst); 11632 break; 11633 case 0x12: /* FADDP */ 11634 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11635 break; 11636 case 0x16: /* FMAXP */ 11637 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11638 break; 11639 case 0x18: /* FMINNMP */ 11640 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11641 fpst); 11642 break; 11643 case 0x1e: /* FMINP */ 11644 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11645 break; 11646 default: 11647 g_assert_not_reached(); 11648 } 11649 } 11650 11651 for (pass = 0; pass < maxpass; pass++) { 11652 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11653 } 11654 } else { 11655 for (pass = 0; pass < elements; pass++) { 11656 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11657 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11659 11660 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11661 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11662 11663 switch (fpopcode) { 11664 case 0x0: /* FMAXNM */ 11665 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11666 break; 11667 case 0x1: /* FMLA */ 11668 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11669 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11670 fpst); 11671 break; 11672 case 0x2: /* FADD */ 11673 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11674 break; 11675 case 0x3: /* FMULX */ 11676 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11677 break; 11678 case 0x4: /* FCMEQ */ 11679 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11680 break; 11681 case 0x6: /* FMAX */ 11682 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11683 break; 11684 case 0x7: /* FRECPS */ 11685 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11686 break; 11687 case 0x8: /* FMINNM */ 11688 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11689 break; 11690 case 0x9: /* FMLS */ 11691 /* As usual for ARM, separate negation for fused multiply-add */ 11692 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11693 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11694 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11695 fpst); 11696 break; 11697 case 0xa: /* FSUB */ 11698 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11699 break; 11700 case 0xe: /* FMIN */ 11701 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11702 break; 11703 case 0xf: /* FRSQRTS */ 11704 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11705 break; 11706 case 0x13: /* FMUL */ 11707 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11708 break; 11709 case 0x14: /* FCMGE */ 11710 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11711 break; 11712 case 0x15: /* FACGE */ 11713 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11714 break; 11715 case 0x17: /* FDIV */ 11716 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11717 break; 11718 case 0x1a: /* FABD */ 11719 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11720 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11721 break; 11722 case 0x1c: /* FCMGT */ 11723 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11724 break; 11725 case 0x1d: /* FACGT */ 11726 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11727 break; 11728 default: 11729 g_assert_not_reached(); 11730 } 11731 11732 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11733 } 11734 } 11735 11736 clear_vec_high(s, is_q, rd); 11737 } 11738 11739 /* AdvSIMD three same extra 11740 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11741 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11742 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11743 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11744 */ 11745 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11746 { 11747 int rd = extract32(insn, 0, 5); 11748 int rn = extract32(insn, 5, 5); 11749 int opcode = extract32(insn, 11, 4); 11750 int rm = extract32(insn, 16, 5); 11751 int size = extract32(insn, 22, 2); 11752 bool u = extract32(insn, 29, 1); 11753 bool is_q = extract32(insn, 30, 1); 11754 bool feature; 11755 int rot; 11756 11757 switch (u * 16 + opcode) { 11758 case 0x10: /* SQRDMLAH (vector) */ 11759 case 0x11: /* SQRDMLSH (vector) */ 11760 if (size != 1 && size != 2) { 11761 unallocated_encoding(s); 11762 return; 11763 } 11764 feature = dc_isar_feature(aa64_rdm, s); 11765 break; 11766 case 0x02: /* SDOT (vector) */ 11767 case 0x12: /* UDOT (vector) */ 11768 if (size != MO_32) { 11769 unallocated_encoding(s); 11770 return; 11771 } 11772 feature = dc_isar_feature(aa64_dp, s); 11773 break; 11774 case 0x03: /* USDOT */ 11775 if (size != MO_32) { 11776 unallocated_encoding(s); 11777 return; 11778 } 11779 feature = dc_isar_feature(aa64_i8mm, s); 11780 break; 11781 case 0x04: /* SMMLA */ 11782 case 0x14: /* UMMLA */ 11783 case 0x05: /* USMMLA */ 11784 if (!is_q || size != MO_32) { 11785 unallocated_encoding(s); 11786 return; 11787 } 11788 feature = dc_isar_feature(aa64_i8mm, s); 11789 break; 11790 case 0x18: /* FCMLA, #0 */ 11791 case 0x19: /* FCMLA, #90 */ 11792 case 0x1a: /* FCMLA, #180 */ 11793 case 0x1b: /* FCMLA, #270 */ 11794 case 0x1c: /* FCADD, #90 */ 11795 case 0x1e: /* FCADD, #270 */ 11796 if (size == 0 11797 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11798 || (size == 3 && !is_q)) { 11799 unallocated_encoding(s); 11800 return; 11801 } 11802 feature = dc_isar_feature(aa64_fcma, s); 11803 break; 11804 case 0x1d: /* BFMMLA */ 11805 if (size != MO_16 || !is_q) { 11806 unallocated_encoding(s); 11807 return; 11808 } 11809 feature = dc_isar_feature(aa64_bf16, s); 11810 break; 11811 case 0x1f: 11812 switch (size) { 11813 case 1: /* BFDOT */ 11814 case 3: /* BFMLAL{B,T} */ 11815 feature = dc_isar_feature(aa64_bf16, s); 11816 break; 11817 default: 11818 unallocated_encoding(s); 11819 return; 11820 } 11821 break; 11822 default: 11823 unallocated_encoding(s); 11824 return; 11825 } 11826 if (!feature) { 11827 unallocated_encoding(s); 11828 return; 11829 } 11830 if (!fp_access_check(s)) { 11831 return; 11832 } 11833 11834 switch (opcode) { 11835 case 0x0: /* SQRDMLAH (vector) */ 11836 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11837 return; 11838 11839 case 0x1: /* SQRDMLSH (vector) */ 11840 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11841 return; 11842 11843 case 0x2: /* SDOT / UDOT */ 11844 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11845 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11846 return; 11847 11848 case 0x3: /* USDOT */ 11849 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11850 return; 11851 11852 case 0x04: /* SMMLA, UMMLA */ 11853 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11854 u ? gen_helper_gvec_ummla_b 11855 : gen_helper_gvec_smmla_b); 11856 return; 11857 case 0x05: /* USMMLA */ 11858 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11859 return; 11860 11861 case 0x8: /* FCMLA, #0 */ 11862 case 0x9: /* FCMLA, #90 */ 11863 case 0xa: /* FCMLA, #180 */ 11864 case 0xb: /* FCMLA, #270 */ 11865 rot = extract32(opcode, 0, 2); 11866 switch (size) { 11867 case 1: 11868 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11869 gen_helper_gvec_fcmlah); 11870 break; 11871 case 2: 11872 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11873 gen_helper_gvec_fcmlas); 11874 break; 11875 case 3: 11876 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11877 gen_helper_gvec_fcmlad); 11878 break; 11879 default: 11880 g_assert_not_reached(); 11881 } 11882 return; 11883 11884 case 0xc: /* FCADD, #90 */ 11885 case 0xe: /* FCADD, #270 */ 11886 rot = extract32(opcode, 1, 1); 11887 switch (size) { 11888 case 1: 11889 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11890 gen_helper_gvec_fcaddh); 11891 break; 11892 case 2: 11893 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11894 gen_helper_gvec_fcadds); 11895 break; 11896 case 3: 11897 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11898 gen_helper_gvec_fcaddd); 11899 break; 11900 default: 11901 g_assert_not_reached(); 11902 } 11903 return; 11904 11905 case 0xd: /* BFMMLA */ 11906 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11907 return; 11908 case 0xf: 11909 switch (size) { 11910 case 1: /* BFDOT */ 11911 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11912 break; 11913 case 3: /* BFMLAL{B,T} */ 11914 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11915 gen_helper_gvec_bfmlal); 11916 break; 11917 default: 11918 g_assert_not_reached(); 11919 } 11920 return; 11921 11922 default: 11923 g_assert_not_reached(); 11924 } 11925 } 11926 11927 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11928 int size, int rn, int rd) 11929 { 11930 /* Handle 2-reg-misc ops which are widening (so each size element 11931 * in the source becomes a 2*size element in the destination. 11932 * The only instruction like this is FCVTL. 11933 */ 11934 int pass; 11935 11936 if (size == 3) { 11937 /* 32 -> 64 bit fp conversion */ 11938 TCGv_i64 tcg_res[2]; 11939 int srcelt = is_q ? 2 : 0; 11940 11941 for (pass = 0; pass < 2; pass++) { 11942 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11943 tcg_res[pass] = tcg_temp_new_i64(); 11944 11945 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11946 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11947 } 11948 for (pass = 0; pass < 2; pass++) { 11949 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11950 } 11951 } else { 11952 /* 16 -> 32 bit fp conversion */ 11953 int srcelt = is_q ? 4 : 0; 11954 TCGv_i32 tcg_res[4]; 11955 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11956 TCGv_i32 ahp = get_ahp_flag(); 11957 11958 for (pass = 0; pass < 4; pass++) { 11959 tcg_res[pass] = tcg_temp_new_i32(); 11960 11961 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11962 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11963 fpst, ahp); 11964 } 11965 for (pass = 0; pass < 4; pass++) { 11966 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11967 } 11968 } 11969 } 11970 11971 static void handle_rev(DisasContext *s, int opcode, bool u, 11972 bool is_q, int size, int rn, int rd) 11973 { 11974 int op = (opcode << 1) | u; 11975 int opsz = op + size; 11976 int grp_size = 3 - opsz; 11977 int dsize = is_q ? 128 : 64; 11978 int i; 11979 11980 if (opsz >= 3) { 11981 unallocated_encoding(s); 11982 return; 11983 } 11984 11985 if (!fp_access_check(s)) { 11986 return; 11987 } 11988 11989 if (size == 0) { 11990 /* Special case bytes, use bswap op on each group of elements */ 11991 int groups = dsize / (8 << grp_size); 11992 11993 for (i = 0; i < groups; i++) { 11994 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11995 11996 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11997 switch (grp_size) { 11998 case MO_16: 11999 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12000 break; 12001 case MO_32: 12002 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12003 break; 12004 case MO_64: 12005 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12006 break; 12007 default: 12008 g_assert_not_reached(); 12009 } 12010 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12011 } 12012 clear_vec_high(s, is_q, rd); 12013 } else { 12014 int revmask = (1 << grp_size) - 1; 12015 int esize = 8 << size; 12016 int elements = dsize / esize; 12017 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12018 TCGv_i64 tcg_rd[2]; 12019 12020 for (i = 0; i < 2; i++) { 12021 tcg_rd[i] = tcg_temp_new_i64(); 12022 tcg_gen_movi_i64(tcg_rd[i], 0); 12023 } 12024 12025 for (i = 0; i < elements; i++) { 12026 int e_rev = (i & 0xf) ^ revmask; 12027 int w = (e_rev * esize) / 64; 12028 int o = (e_rev * esize) % 64; 12029 12030 read_vec_element(s, tcg_rn, rn, i, size); 12031 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12032 } 12033 12034 for (i = 0; i < 2; i++) { 12035 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12036 } 12037 clear_vec_high(s, true, rd); 12038 } 12039 } 12040 12041 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12042 bool is_q, int size, int rn, int rd) 12043 { 12044 /* Implement the pairwise operations from 2-misc: 12045 * SADDLP, UADDLP, SADALP, UADALP. 12046 * These all add pairs of elements in the input to produce a 12047 * double-width result element in the output (possibly accumulating). 12048 */ 12049 bool accum = (opcode == 0x6); 12050 int maxpass = is_q ? 2 : 1; 12051 int pass; 12052 TCGv_i64 tcg_res[2]; 12053 12054 if (size == 2) { 12055 /* 32 + 32 -> 64 op */ 12056 MemOp memop = size + (u ? 0 : MO_SIGN); 12057 12058 for (pass = 0; pass < maxpass; pass++) { 12059 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12060 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12061 12062 tcg_res[pass] = tcg_temp_new_i64(); 12063 12064 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12065 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12066 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12067 if (accum) { 12068 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12069 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12070 } 12071 } 12072 } else { 12073 for (pass = 0; pass < maxpass; pass++) { 12074 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12075 NeonGenOne64OpFn *genfn; 12076 static NeonGenOne64OpFn * const fns[2][2] = { 12077 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12078 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12079 }; 12080 12081 genfn = fns[size][u]; 12082 12083 tcg_res[pass] = tcg_temp_new_i64(); 12084 12085 read_vec_element(s, tcg_op, rn, pass, MO_64); 12086 genfn(tcg_res[pass], tcg_op); 12087 12088 if (accum) { 12089 read_vec_element(s, tcg_op, rd, pass, MO_64); 12090 if (size == 0) { 12091 gen_helper_neon_addl_u16(tcg_res[pass], 12092 tcg_res[pass], tcg_op); 12093 } else { 12094 gen_helper_neon_addl_u32(tcg_res[pass], 12095 tcg_res[pass], tcg_op); 12096 } 12097 } 12098 } 12099 } 12100 if (!is_q) { 12101 tcg_res[1] = tcg_constant_i64(0); 12102 } 12103 for (pass = 0; pass < 2; pass++) { 12104 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12105 } 12106 } 12107 12108 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12109 { 12110 /* Implement SHLL and SHLL2 */ 12111 int pass; 12112 int part = is_q ? 2 : 0; 12113 TCGv_i64 tcg_res[2]; 12114 12115 for (pass = 0; pass < 2; pass++) { 12116 static NeonGenWidenFn * const widenfns[3] = { 12117 gen_helper_neon_widen_u8, 12118 gen_helper_neon_widen_u16, 12119 tcg_gen_extu_i32_i64, 12120 }; 12121 NeonGenWidenFn *widenfn = widenfns[size]; 12122 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12123 12124 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12125 tcg_res[pass] = tcg_temp_new_i64(); 12126 widenfn(tcg_res[pass], tcg_op); 12127 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12128 } 12129 12130 for (pass = 0; pass < 2; pass++) { 12131 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12132 } 12133 } 12134 12135 /* AdvSIMD two reg misc 12136 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12137 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12138 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12139 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12140 */ 12141 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12142 { 12143 int size = extract32(insn, 22, 2); 12144 int opcode = extract32(insn, 12, 5); 12145 bool u = extract32(insn, 29, 1); 12146 bool is_q = extract32(insn, 30, 1); 12147 int rn = extract32(insn, 5, 5); 12148 int rd = extract32(insn, 0, 5); 12149 bool need_fpstatus = false; 12150 int rmode = -1; 12151 TCGv_i32 tcg_rmode; 12152 TCGv_ptr tcg_fpstatus; 12153 12154 switch (opcode) { 12155 case 0x0: /* REV64, REV32 */ 12156 case 0x1: /* REV16 */ 12157 handle_rev(s, opcode, u, is_q, size, rn, rd); 12158 return; 12159 case 0x5: /* CNT, NOT, RBIT */ 12160 if (u && size == 0) { 12161 /* NOT */ 12162 break; 12163 } else if (u && size == 1) { 12164 /* RBIT */ 12165 break; 12166 } else if (!u && size == 0) { 12167 /* CNT */ 12168 break; 12169 } 12170 unallocated_encoding(s); 12171 return; 12172 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12173 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12174 if (size == 3) { 12175 unallocated_encoding(s); 12176 return; 12177 } 12178 if (!fp_access_check(s)) { 12179 return; 12180 } 12181 12182 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12183 return; 12184 case 0x4: /* CLS, CLZ */ 12185 if (size == 3) { 12186 unallocated_encoding(s); 12187 return; 12188 } 12189 break; 12190 case 0x2: /* SADDLP, UADDLP */ 12191 case 0x6: /* SADALP, UADALP */ 12192 if (size == 3) { 12193 unallocated_encoding(s); 12194 return; 12195 } 12196 if (!fp_access_check(s)) { 12197 return; 12198 } 12199 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12200 return; 12201 case 0x13: /* SHLL, SHLL2 */ 12202 if (u == 0 || size == 3) { 12203 unallocated_encoding(s); 12204 return; 12205 } 12206 if (!fp_access_check(s)) { 12207 return; 12208 } 12209 handle_shll(s, is_q, size, rn, rd); 12210 return; 12211 case 0xa: /* CMLT */ 12212 if (u == 1) { 12213 unallocated_encoding(s); 12214 return; 12215 } 12216 /* fall through */ 12217 case 0x8: /* CMGT, CMGE */ 12218 case 0x9: /* CMEQ, CMLE */ 12219 case 0xb: /* ABS, NEG */ 12220 if (size == 3 && !is_q) { 12221 unallocated_encoding(s); 12222 return; 12223 } 12224 break; 12225 case 0x3: /* SUQADD, USQADD */ 12226 if (size == 3 && !is_q) { 12227 unallocated_encoding(s); 12228 return; 12229 } 12230 if (!fp_access_check(s)) { 12231 return; 12232 } 12233 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12234 return; 12235 case 0x7: /* SQABS, SQNEG */ 12236 if (size == 3 && !is_q) { 12237 unallocated_encoding(s); 12238 return; 12239 } 12240 break; 12241 case 0xc ... 0xf: 12242 case 0x16 ... 0x1f: 12243 { 12244 /* Floating point: U, size[1] and opcode indicate operation; 12245 * size[0] indicates single or double precision. 12246 */ 12247 int is_double = extract32(size, 0, 1); 12248 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12249 size = is_double ? 3 : 2; 12250 switch (opcode) { 12251 case 0x2f: /* FABS */ 12252 case 0x6f: /* FNEG */ 12253 if (size == 3 && !is_q) { 12254 unallocated_encoding(s); 12255 return; 12256 } 12257 break; 12258 case 0x1d: /* SCVTF */ 12259 case 0x5d: /* UCVTF */ 12260 { 12261 bool is_signed = (opcode == 0x1d) ? true : false; 12262 int elements = is_double ? 2 : is_q ? 4 : 2; 12263 if (is_double && !is_q) { 12264 unallocated_encoding(s); 12265 return; 12266 } 12267 if (!fp_access_check(s)) { 12268 return; 12269 } 12270 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12271 return; 12272 } 12273 case 0x2c: /* FCMGT (zero) */ 12274 case 0x2d: /* FCMEQ (zero) */ 12275 case 0x2e: /* FCMLT (zero) */ 12276 case 0x6c: /* FCMGE (zero) */ 12277 case 0x6d: /* FCMLE (zero) */ 12278 if (size == 3 && !is_q) { 12279 unallocated_encoding(s); 12280 return; 12281 } 12282 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12283 return; 12284 case 0x7f: /* FSQRT */ 12285 if (size == 3 && !is_q) { 12286 unallocated_encoding(s); 12287 return; 12288 } 12289 break; 12290 case 0x1a: /* FCVTNS */ 12291 case 0x1b: /* FCVTMS */ 12292 case 0x3a: /* FCVTPS */ 12293 case 0x3b: /* FCVTZS */ 12294 case 0x5a: /* FCVTNU */ 12295 case 0x5b: /* FCVTMU */ 12296 case 0x7a: /* FCVTPU */ 12297 case 0x7b: /* FCVTZU */ 12298 need_fpstatus = true; 12299 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12300 if (size == 3 && !is_q) { 12301 unallocated_encoding(s); 12302 return; 12303 } 12304 break; 12305 case 0x5c: /* FCVTAU */ 12306 case 0x1c: /* FCVTAS */ 12307 need_fpstatus = true; 12308 rmode = FPROUNDING_TIEAWAY; 12309 if (size == 3 && !is_q) { 12310 unallocated_encoding(s); 12311 return; 12312 } 12313 break; 12314 case 0x3c: /* URECPE */ 12315 if (size == 3) { 12316 unallocated_encoding(s); 12317 return; 12318 } 12319 /* fall through */ 12320 case 0x3d: /* FRECPE */ 12321 case 0x7d: /* FRSQRTE */ 12322 if (size == 3 && !is_q) { 12323 unallocated_encoding(s); 12324 return; 12325 } 12326 if (!fp_access_check(s)) { 12327 return; 12328 } 12329 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12330 return; 12331 case 0x56: /* FCVTXN, FCVTXN2 */ 12332 if (size == 2) { 12333 unallocated_encoding(s); 12334 return; 12335 } 12336 /* fall through */ 12337 case 0x16: /* FCVTN, FCVTN2 */ 12338 /* handle_2misc_narrow does a 2*size -> size operation, but these 12339 * instructions encode the source size rather than dest size. 12340 */ 12341 if (!fp_access_check(s)) { 12342 return; 12343 } 12344 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12345 return; 12346 case 0x36: /* BFCVTN, BFCVTN2 */ 12347 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12348 unallocated_encoding(s); 12349 return; 12350 } 12351 if (!fp_access_check(s)) { 12352 return; 12353 } 12354 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12355 return; 12356 case 0x17: /* FCVTL, FCVTL2 */ 12357 if (!fp_access_check(s)) { 12358 return; 12359 } 12360 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12361 return; 12362 case 0x18: /* FRINTN */ 12363 case 0x19: /* FRINTM */ 12364 case 0x38: /* FRINTP */ 12365 case 0x39: /* FRINTZ */ 12366 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12367 /* fall through */ 12368 case 0x59: /* FRINTX */ 12369 case 0x79: /* FRINTI */ 12370 need_fpstatus = true; 12371 if (size == 3 && !is_q) { 12372 unallocated_encoding(s); 12373 return; 12374 } 12375 break; 12376 case 0x58: /* FRINTA */ 12377 rmode = FPROUNDING_TIEAWAY; 12378 need_fpstatus = true; 12379 if (size == 3 && !is_q) { 12380 unallocated_encoding(s); 12381 return; 12382 } 12383 break; 12384 case 0x7c: /* URSQRTE */ 12385 if (size == 3) { 12386 unallocated_encoding(s); 12387 return; 12388 } 12389 break; 12390 case 0x1e: /* FRINT32Z */ 12391 case 0x1f: /* FRINT64Z */ 12392 rmode = FPROUNDING_ZERO; 12393 /* fall through */ 12394 case 0x5e: /* FRINT32X */ 12395 case 0x5f: /* FRINT64X */ 12396 need_fpstatus = true; 12397 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12398 unallocated_encoding(s); 12399 return; 12400 } 12401 break; 12402 default: 12403 unallocated_encoding(s); 12404 return; 12405 } 12406 break; 12407 } 12408 default: 12409 unallocated_encoding(s); 12410 return; 12411 } 12412 12413 if (!fp_access_check(s)) { 12414 return; 12415 } 12416 12417 if (need_fpstatus || rmode >= 0) { 12418 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12419 } else { 12420 tcg_fpstatus = NULL; 12421 } 12422 if (rmode >= 0) { 12423 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12424 } else { 12425 tcg_rmode = NULL; 12426 } 12427 12428 switch (opcode) { 12429 case 0x5: 12430 if (u && size == 0) { /* NOT */ 12431 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12432 return; 12433 } 12434 break; 12435 case 0x8: /* CMGT, CMGE */ 12436 if (u) { 12437 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12438 } else { 12439 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12440 } 12441 return; 12442 case 0x9: /* CMEQ, CMLE */ 12443 if (u) { 12444 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12445 } else { 12446 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12447 } 12448 return; 12449 case 0xa: /* CMLT */ 12450 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12451 return; 12452 case 0xb: 12453 if (u) { /* ABS, NEG */ 12454 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12455 } else { 12456 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12457 } 12458 return; 12459 } 12460 12461 if (size == 3) { 12462 /* All 64-bit element operations can be shared with scalar 2misc */ 12463 int pass; 12464 12465 /* Coverity claims (size == 3 && !is_q) has been eliminated 12466 * from all paths leading to here. 12467 */ 12468 tcg_debug_assert(is_q); 12469 for (pass = 0; pass < 2; pass++) { 12470 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12471 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12472 12473 read_vec_element(s, tcg_op, rn, pass, MO_64); 12474 12475 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12476 tcg_rmode, tcg_fpstatus); 12477 12478 write_vec_element(s, tcg_res, rd, pass, MO_64); 12479 } 12480 } else { 12481 int pass; 12482 12483 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12484 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12485 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12486 12487 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12488 12489 if (size == 2) { 12490 /* Special cases for 32 bit elements */ 12491 switch (opcode) { 12492 case 0x4: /* CLS */ 12493 if (u) { 12494 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12495 } else { 12496 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12497 } 12498 break; 12499 case 0x7: /* SQABS, SQNEG */ 12500 if (u) { 12501 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12502 } else { 12503 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12504 } 12505 break; 12506 case 0x2f: /* FABS */ 12507 gen_helper_vfp_abss(tcg_res, tcg_op); 12508 break; 12509 case 0x6f: /* FNEG */ 12510 gen_helper_vfp_negs(tcg_res, tcg_op); 12511 break; 12512 case 0x7f: /* FSQRT */ 12513 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12514 break; 12515 case 0x1a: /* FCVTNS */ 12516 case 0x1b: /* FCVTMS */ 12517 case 0x1c: /* FCVTAS */ 12518 case 0x3a: /* FCVTPS */ 12519 case 0x3b: /* FCVTZS */ 12520 gen_helper_vfp_tosls(tcg_res, tcg_op, 12521 tcg_constant_i32(0), tcg_fpstatus); 12522 break; 12523 case 0x5a: /* FCVTNU */ 12524 case 0x5b: /* FCVTMU */ 12525 case 0x5c: /* FCVTAU */ 12526 case 0x7a: /* FCVTPU */ 12527 case 0x7b: /* FCVTZU */ 12528 gen_helper_vfp_touls(tcg_res, tcg_op, 12529 tcg_constant_i32(0), tcg_fpstatus); 12530 break; 12531 case 0x18: /* FRINTN */ 12532 case 0x19: /* FRINTM */ 12533 case 0x38: /* FRINTP */ 12534 case 0x39: /* FRINTZ */ 12535 case 0x58: /* FRINTA */ 12536 case 0x79: /* FRINTI */ 12537 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12538 break; 12539 case 0x59: /* FRINTX */ 12540 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12541 break; 12542 case 0x7c: /* URSQRTE */ 12543 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12544 break; 12545 case 0x1e: /* FRINT32Z */ 12546 case 0x5e: /* FRINT32X */ 12547 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12548 break; 12549 case 0x1f: /* FRINT64Z */ 12550 case 0x5f: /* FRINT64X */ 12551 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12552 break; 12553 default: 12554 g_assert_not_reached(); 12555 } 12556 } else { 12557 /* Use helpers for 8 and 16 bit elements */ 12558 switch (opcode) { 12559 case 0x5: /* CNT, RBIT */ 12560 /* For these two insns size is part of the opcode specifier 12561 * (handled earlier); they always operate on byte elements. 12562 */ 12563 if (u) { 12564 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12565 } else { 12566 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12567 } 12568 break; 12569 case 0x7: /* SQABS, SQNEG */ 12570 { 12571 NeonGenOneOpEnvFn *genfn; 12572 static NeonGenOneOpEnvFn * const fns[2][2] = { 12573 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12574 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12575 }; 12576 genfn = fns[size][u]; 12577 genfn(tcg_res, cpu_env, tcg_op); 12578 break; 12579 } 12580 case 0x4: /* CLS, CLZ */ 12581 if (u) { 12582 if (size == 0) { 12583 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12584 } else { 12585 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12586 } 12587 } else { 12588 if (size == 0) { 12589 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12590 } else { 12591 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12592 } 12593 } 12594 break; 12595 default: 12596 g_assert_not_reached(); 12597 } 12598 } 12599 12600 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12601 } 12602 } 12603 clear_vec_high(s, is_q, rd); 12604 12605 if (tcg_rmode) { 12606 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12607 } 12608 } 12609 12610 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12611 * 12612 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12613 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12614 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12615 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12616 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12617 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12618 * 12619 * This actually covers two groups where scalar access is governed by 12620 * bit 28. A bunch of the instructions (float to integral) only exist 12621 * in the vector form and are un-allocated for the scalar decode. Also 12622 * in the scalar decode Q is always 1. 12623 */ 12624 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12625 { 12626 int fpop, opcode, a, u; 12627 int rn, rd; 12628 bool is_q; 12629 bool is_scalar; 12630 bool only_in_vector = false; 12631 12632 int pass; 12633 TCGv_i32 tcg_rmode = NULL; 12634 TCGv_ptr tcg_fpstatus = NULL; 12635 bool need_fpst = true; 12636 int rmode = -1; 12637 12638 if (!dc_isar_feature(aa64_fp16, s)) { 12639 unallocated_encoding(s); 12640 return; 12641 } 12642 12643 rd = extract32(insn, 0, 5); 12644 rn = extract32(insn, 5, 5); 12645 12646 a = extract32(insn, 23, 1); 12647 u = extract32(insn, 29, 1); 12648 is_scalar = extract32(insn, 28, 1); 12649 is_q = extract32(insn, 30, 1); 12650 12651 opcode = extract32(insn, 12, 5); 12652 fpop = deposit32(opcode, 5, 1, a); 12653 fpop = deposit32(fpop, 6, 1, u); 12654 12655 switch (fpop) { 12656 case 0x1d: /* SCVTF */ 12657 case 0x5d: /* UCVTF */ 12658 { 12659 int elements; 12660 12661 if (is_scalar) { 12662 elements = 1; 12663 } else { 12664 elements = (is_q ? 8 : 4); 12665 } 12666 12667 if (!fp_access_check(s)) { 12668 return; 12669 } 12670 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12671 return; 12672 } 12673 break; 12674 case 0x2c: /* FCMGT (zero) */ 12675 case 0x2d: /* FCMEQ (zero) */ 12676 case 0x2e: /* FCMLT (zero) */ 12677 case 0x6c: /* FCMGE (zero) */ 12678 case 0x6d: /* FCMLE (zero) */ 12679 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12680 return; 12681 case 0x3d: /* FRECPE */ 12682 case 0x3f: /* FRECPX */ 12683 break; 12684 case 0x18: /* FRINTN */ 12685 only_in_vector = true; 12686 rmode = FPROUNDING_TIEEVEN; 12687 break; 12688 case 0x19: /* FRINTM */ 12689 only_in_vector = true; 12690 rmode = FPROUNDING_NEGINF; 12691 break; 12692 case 0x38: /* FRINTP */ 12693 only_in_vector = true; 12694 rmode = FPROUNDING_POSINF; 12695 break; 12696 case 0x39: /* FRINTZ */ 12697 only_in_vector = true; 12698 rmode = FPROUNDING_ZERO; 12699 break; 12700 case 0x58: /* FRINTA */ 12701 only_in_vector = true; 12702 rmode = FPROUNDING_TIEAWAY; 12703 break; 12704 case 0x59: /* FRINTX */ 12705 case 0x79: /* FRINTI */ 12706 only_in_vector = true; 12707 /* current rounding mode */ 12708 break; 12709 case 0x1a: /* FCVTNS */ 12710 rmode = FPROUNDING_TIEEVEN; 12711 break; 12712 case 0x1b: /* FCVTMS */ 12713 rmode = FPROUNDING_NEGINF; 12714 break; 12715 case 0x1c: /* FCVTAS */ 12716 rmode = FPROUNDING_TIEAWAY; 12717 break; 12718 case 0x3a: /* FCVTPS */ 12719 rmode = FPROUNDING_POSINF; 12720 break; 12721 case 0x3b: /* FCVTZS */ 12722 rmode = FPROUNDING_ZERO; 12723 break; 12724 case 0x5a: /* FCVTNU */ 12725 rmode = FPROUNDING_TIEEVEN; 12726 break; 12727 case 0x5b: /* FCVTMU */ 12728 rmode = FPROUNDING_NEGINF; 12729 break; 12730 case 0x5c: /* FCVTAU */ 12731 rmode = FPROUNDING_TIEAWAY; 12732 break; 12733 case 0x7a: /* FCVTPU */ 12734 rmode = FPROUNDING_POSINF; 12735 break; 12736 case 0x7b: /* FCVTZU */ 12737 rmode = FPROUNDING_ZERO; 12738 break; 12739 case 0x2f: /* FABS */ 12740 case 0x6f: /* FNEG */ 12741 need_fpst = false; 12742 break; 12743 case 0x7d: /* FRSQRTE */ 12744 case 0x7f: /* FSQRT (vector) */ 12745 break; 12746 default: 12747 unallocated_encoding(s); 12748 return; 12749 } 12750 12751 12752 /* Check additional constraints for the scalar encoding */ 12753 if (is_scalar) { 12754 if (!is_q) { 12755 unallocated_encoding(s); 12756 return; 12757 } 12758 /* FRINTxx is only in the vector form */ 12759 if (only_in_vector) { 12760 unallocated_encoding(s); 12761 return; 12762 } 12763 } 12764 12765 if (!fp_access_check(s)) { 12766 return; 12767 } 12768 12769 if (rmode >= 0 || need_fpst) { 12770 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12771 } 12772 12773 if (rmode >= 0) { 12774 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12775 } 12776 12777 if (is_scalar) { 12778 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12779 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12780 12781 switch (fpop) { 12782 case 0x1a: /* FCVTNS */ 12783 case 0x1b: /* FCVTMS */ 12784 case 0x1c: /* FCVTAS */ 12785 case 0x3a: /* FCVTPS */ 12786 case 0x3b: /* FCVTZS */ 12787 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12788 break; 12789 case 0x3d: /* FRECPE */ 12790 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12791 break; 12792 case 0x3f: /* FRECPX */ 12793 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12794 break; 12795 case 0x5a: /* FCVTNU */ 12796 case 0x5b: /* FCVTMU */ 12797 case 0x5c: /* FCVTAU */ 12798 case 0x7a: /* FCVTPU */ 12799 case 0x7b: /* FCVTZU */ 12800 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12801 break; 12802 case 0x6f: /* FNEG */ 12803 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12804 break; 12805 case 0x7d: /* FRSQRTE */ 12806 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12807 break; 12808 default: 12809 g_assert_not_reached(); 12810 } 12811 12812 /* limit any sign extension going on */ 12813 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12814 write_fp_sreg(s, rd, tcg_res); 12815 } else { 12816 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12817 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12818 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12819 12820 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12821 12822 switch (fpop) { 12823 case 0x1a: /* FCVTNS */ 12824 case 0x1b: /* FCVTMS */ 12825 case 0x1c: /* FCVTAS */ 12826 case 0x3a: /* FCVTPS */ 12827 case 0x3b: /* FCVTZS */ 12828 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12829 break; 12830 case 0x3d: /* FRECPE */ 12831 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12832 break; 12833 case 0x5a: /* FCVTNU */ 12834 case 0x5b: /* FCVTMU */ 12835 case 0x5c: /* FCVTAU */ 12836 case 0x7a: /* FCVTPU */ 12837 case 0x7b: /* FCVTZU */ 12838 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12839 break; 12840 case 0x18: /* FRINTN */ 12841 case 0x19: /* FRINTM */ 12842 case 0x38: /* FRINTP */ 12843 case 0x39: /* FRINTZ */ 12844 case 0x58: /* FRINTA */ 12845 case 0x79: /* FRINTI */ 12846 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12847 break; 12848 case 0x59: /* FRINTX */ 12849 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12850 break; 12851 case 0x2f: /* FABS */ 12852 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12853 break; 12854 case 0x6f: /* FNEG */ 12855 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12856 break; 12857 case 0x7d: /* FRSQRTE */ 12858 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12859 break; 12860 case 0x7f: /* FSQRT */ 12861 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12862 break; 12863 default: 12864 g_assert_not_reached(); 12865 } 12866 12867 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12868 } 12869 12870 clear_vec_high(s, is_q, rd); 12871 } 12872 12873 if (tcg_rmode) { 12874 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12875 } 12876 } 12877 12878 /* AdvSIMD scalar x indexed element 12879 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12880 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12881 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12882 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12883 * AdvSIMD vector x indexed element 12884 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12885 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12886 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12887 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12888 */ 12889 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12890 { 12891 /* This encoding has two kinds of instruction: 12892 * normal, where we perform elt x idxelt => elt for each 12893 * element in the vector 12894 * long, where we perform elt x idxelt and generate a result of 12895 * double the width of the input element 12896 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12897 */ 12898 bool is_scalar = extract32(insn, 28, 1); 12899 bool is_q = extract32(insn, 30, 1); 12900 bool u = extract32(insn, 29, 1); 12901 int size = extract32(insn, 22, 2); 12902 int l = extract32(insn, 21, 1); 12903 int m = extract32(insn, 20, 1); 12904 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12905 int rm = extract32(insn, 16, 4); 12906 int opcode = extract32(insn, 12, 4); 12907 int h = extract32(insn, 11, 1); 12908 int rn = extract32(insn, 5, 5); 12909 int rd = extract32(insn, 0, 5); 12910 bool is_long = false; 12911 int is_fp = 0; 12912 bool is_fp16 = false; 12913 int index; 12914 TCGv_ptr fpst; 12915 12916 switch (16 * u + opcode) { 12917 case 0x08: /* MUL */ 12918 case 0x10: /* MLA */ 12919 case 0x14: /* MLS */ 12920 if (is_scalar) { 12921 unallocated_encoding(s); 12922 return; 12923 } 12924 break; 12925 case 0x02: /* SMLAL, SMLAL2 */ 12926 case 0x12: /* UMLAL, UMLAL2 */ 12927 case 0x06: /* SMLSL, SMLSL2 */ 12928 case 0x16: /* UMLSL, UMLSL2 */ 12929 case 0x0a: /* SMULL, SMULL2 */ 12930 case 0x1a: /* UMULL, UMULL2 */ 12931 if (is_scalar) { 12932 unallocated_encoding(s); 12933 return; 12934 } 12935 is_long = true; 12936 break; 12937 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12938 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12939 case 0x0b: /* SQDMULL, SQDMULL2 */ 12940 is_long = true; 12941 break; 12942 case 0x0c: /* SQDMULH */ 12943 case 0x0d: /* SQRDMULH */ 12944 break; 12945 case 0x01: /* FMLA */ 12946 case 0x05: /* FMLS */ 12947 case 0x09: /* FMUL */ 12948 case 0x19: /* FMULX */ 12949 is_fp = 1; 12950 break; 12951 case 0x1d: /* SQRDMLAH */ 12952 case 0x1f: /* SQRDMLSH */ 12953 if (!dc_isar_feature(aa64_rdm, s)) { 12954 unallocated_encoding(s); 12955 return; 12956 } 12957 break; 12958 case 0x0e: /* SDOT */ 12959 case 0x1e: /* UDOT */ 12960 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12961 unallocated_encoding(s); 12962 return; 12963 } 12964 break; 12965 case 0x0f: 12966 switch (size) { 12967 case 0: /* SUDOT */ 12968 case 2: /* USDOT */ 12969 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12970 unallocated_encoding(s); 12971 return; 12972 } 12973 size = MO_32; 12974 break; 12975 case 1: /* BFDOT */ 12976 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12977 unallocated_encoding(s); 12978 return; 12979 } 12980 size = MO_32; 12981 break; 12982 case 3: /* BFMLAL{B,T} */ 12983 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12984 unallocated_encoding(s); 12985 return; 12986 } 12987 /* can't set is_fp without other incorrect size checks */ 12988 size = MO_16; 12989 break; 12990 default: 12991 unallocated_encoding(s); 12992 return; 12993 } 12994 break; 12995 case 0x11: /* FCMLA #0 */ 12996 case 0x13: /* FCMLA #90 */ 12997 case 0x15: /* FCMLA #180 */ 12998 case 0x17: /* FCMLA #270 */ 12999 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13000 unallocated_encoding(s); 13001 return; 13002 } 13003 is_fp = 2; 13004 break; 13005 case 0x00: /* FMLAL */ 13006 case 0x04: /* FMLSL */ 13007 case 0x18: /* FMLAL2 */ 13008 case 0x1c: /* FMLSL2 */ 13009 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13010 unallocated_encoding(s); 13011 return; 13012 } 13013 size = MO_16; 13014 /* is_fp, but we pass cpu_env not fp_status. */ 13015 break; 13016 default: 13017 unallocated_encoding(s); 13018 return; 13019 } 13020 13021 switch (is_fp) { 13022 case 1: /* normal fp */ 13023 /* convert insn encoded size to MemOp size */ 13024 switch (size) { 13025 case 0: /* half-precision */ 13026 size = MO_16; 13027 is_fp16 = true; 13028 break; 13029 case MO_32: /* single precision */ 13030 case MO_64: /* double precision */ 13031 break; 13032 default: 13033 unallocated_encoding(s); 13034 return; 13035 } 13036 break; 13037 13038 case 2: /* complex fp */ 13039 /* Each indexable element is a complex pair. */ 13040 size += 1; 13041 switch (size) { 13042 case MO_32: 13043 if (h && !is_q) { 13044 unallocated_encoding(s); 13045 return; 13046 } 13047 is_fp16 = true; 13048 break; 13049 case MO_64: 13050 break; 13051 default: 13052 unallocated_encoding(s); 13053 return; 13054 } 13055 break; 13056 13057 default: /* integer */ 13058 switch (size) { 13059 case MO_8: 13060 case MO_64: 13061 unallocated_encoding(s); 13062 return; 13063 } 13064 break; 13065 } 13066 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13067 unallocated_encoding(s); 13068 return; 13069 } 13070 13071 /* Given MemOp size, adjust register and indexing. */ 13072 switch (size) { 13073 case MO_16: 13074 index = h << 2 | l << 1 | m; 13075 break; 13076 case MO_32: 13077 index = h << 1 | l; 13078 rm |= m << 4; 13079 break; 13080 case MO_64: 13081 if (l || !is_q) { 13082 unallocated_encoding(s); 13083 return; 13084 } 13085 index = h; 13086 rm |= m << 4; 13087 break; 13088 default: 13089 g_assert_not_reached(); 13090 } 13091 13092 if (!fp_access_check(s)) { 13093 return; 13094 } 13095 13096 if (is_fp) { 13097 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13098 } else { 13099 fpst = NULL; 13100 } 13101 13102 switch (16 * u + opcode) { 13103 case 0x0e: /* SDOT */ 13104 case 0x1e: /* UDOT */ 13105 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13106 u ? gen_helper_gvec_udot_idx_b 13107 : gen_helper_gvec_sdot_idx_b); 13108 return; 13109 case 0x0f: 13110 switch (extract32(insn, 22, 2)) { 13111 case 0: /* SUDOT */ 13112 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13113 gen_helper_gvec_sudot_idx_b); 13114 return; 13115 case 1: /* BFDOT */ 13116 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13117 gen_helper_gvec_bfdot_idx); 13118 return; 13119 case 2: /* USDOT */ 13120 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13121 gen_helper_gvec_usdot_idx_b); 13122 return; 13123 case 3: /* BFMLAL{B,T} */ 13124 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13125 gen_helper_gvec_bfmlal_idx); 13126 return; 13127 } 13128 g_assert_not_reached(); 13129 case 0x11: /* FCMLA #0 */ 13130 case 0x13: /* FCMLA #90 */ 13131 case 0x15: /* FCMLA #180 */ 13132 case 0x17: /* FCMLA #270 */ 13133 { 13134 int rot = extract32(insn, 13, 2); 13135 int data = (index << 2) | rot; 13136 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13137 vec_full_reg_offset(s, rn), 13138 vec_full_reg_offset(s, rm), 13139 vec_full_reg_offset(s, rd), fpst, 13140 is_q ? 16 : 8, vec_full_reg_size(s), data, 13141 size == MO_64 13142 ? gen_helper_gvec_fcmlas_idx 13143 : gen_helper_gvec_fcmlah_idx); 13144 } 13145 return; 13146 13147 case 0x00: /* FMLAL */ 13148 case 0x04: /* FMLSL */ 13149 case 0x18: /* FMLAL2 */ 13150 case 0x1c: /* FMLSL2 */ 13151 { 13152 int is_s = extract32(opcode, 2, 1); 13153 int is_2 = u; 13154 int data = (index << 2) | (is_2 << 1) | is_s; 13155 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13156 vec_full_reg_offset(s, rn), 13157 vec_full_reg_offset(s, rm), cpu_env, 13158 is_q ? 16 : 8, vec_full_reg_size(s), 13159 data, gen_helper_gvec_fmlal_idx_a64); 13160 } 13161 return; 13162 13163 case 0x08: /* MUL */ 13164 if (!is_long && !is_scalar) { 13165 static gen_helper_gvec_3 * const fns[3] = { 13166 gen_helper_gvec_mul_idx_h, 13167 gen_helper_gvec_mul_idx_s, 13168 gen_helper_gvec_mul_idx_d, 13169 }; 13170 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13171 vec_full_reg_offset(s, rn), 13172 vec_full_reg_offset(s, rm), 13173 is_q ? 16 : 8, vec_full_reg_size(s), 13174 index, fns[size - 1]); 13175 return; 13176 } 13177 break; 13178 13179 case 0x10: /* MLA */ 13180 if (!is_long && !is_scalar) { 13181 static gen_helper_gvec_4 * const fns[3] = { 13182 gen_helper_gvec_mla_idx_h, 13183 gen_helper_gvec_mla_idx_s, 13184 gen_helper_gvec_mla_idx_d, 13185 }; 13186 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13187 vec_full_reg_offset(s, rn), 13188 vec_full_reg_offset(s, rm), 13189 vec_full_reg_offset(s, rd), 13190 is_q ? 16 : 8, vec_full_reg_size(s), 13191 index, fns[size - 1]); 13192 return; 13193 } 13194 break; 13195 13196 case 0x14: /* MLS */ 13197 if (!is_long && !is_scalar) { 13198 static gen_helper_gvec_4 * const fns[3] = { 13199 gen_helper_gvec_mls_idx_h, 13200 gen_helper_gvec_mls_idx_s, 13201 gen_helper_gvec_mls_idx_d, 13202 }; 13203 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13204 vec_full_reg_offset(s, rn), 13205 vec_full_reg_offset(s, rm), 13206 vec_full_reg_offset(s, rd), 13207 is_q ? 16 : 8, vec_full_reg_size(s), 13208 index, fns[size - 1]); 13209 return; 13210 } 13211 break; 13212 } 13213 13214 if (size == 3) { 13215 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13216 int pass; 13217 13218 assert(is_fp && is_q && !is_long); 13219 13220 read_vec_element(s, tcg_idx, rm, index, MO_64); 13221 13222 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13223 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13224 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13225 13226 read_vec_element(s, tcg_op, rn, pass, MO_64); 13227 13228 switch (16 * u + opcode) { 13229 case 0x05: /* FMLS */ 13230 /* As usual for ARM, separate negation for fused multiply-add */ 13231 gen_helper_vfp_negd(tcg_op, tcg_op); 13232 /* fall through */ 13233 case 0x01: /* FMLA */ 13234 read_vec_element(s, tcg_res, rd, pass, MO_64); 13235 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13236 break; 13237 case 0x09: /* FMUL */ 13238 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13239 break; 13240 case 0x19: /* FMULX */ 13241 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13242 break; 13243 default: 13244 g_assert_not_reached(); 13245 } 13246 13247 write_vec_element(s, tcg_res, rd, pass, MO_64); 13248 } 13249 13250 clear_vec_high(s, !is_scalar, rd); 13251 } else if (!is_long) { 13252 /* 32 bit floating point, or 16 or 32 bit integer. 13253 * For the 16 bit scalar case we use the usual Neon helpers and 13254 * rely on the fact that 0 op 0 == 0 with no side effects. 13255 */ 13256 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13257 int pass, maxpasses; 13258 13259 if (is_scalar) { 13260 maxpasses = 1; 13261 } else { 13262 maxpasses = is_q ? 4 : 2; 13263 } 13264 13265 read_vec_element_i32(s, tcg_idx, rm, index, size); 13266 13267 if (size == 1 && !is_scalar) { 13268 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13269 * the index into both halves of the 32 bit tcg_idx and then use 13270 * the usual Neon helpers. 13271 */ 13272 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13273 } 13274 13275 for (pass = 0; pass < maxpasses; pass++) { 13276 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13277 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13278 13279 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13280 13281 switch (16 * u + opcode) { 13282 case 0x08: /* MUL */ 13283 case 0x10: /* MLA */ 13284 case 0x14: /* MLS */ 13285 { 13286 static NeonGenTwoOpFn * const fns[2][2] = { 13287 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13288 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13289 }; 13290 NeonGenTwoOpFn *genfn; 13291 bool is_sub = opcode == 0x4; 13292 13293 if (size == 1) { 13294 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13295 } else { 13296 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13297 } 13298 if (opcode == 0x8) { 13299 break; 13300 } 13301 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13302 genfn = fns[size - 1][is_sub]; 13303 genfn(tcg_res, tcg_op, tcg_res); 13304 break; 13305 } 13306 case 0x05: /* FMLS */ 13307 case 0x01: /* FMLA */ 13308 read_vec_element_i32(s, tcg_res, rd, pass, 13309 is_scalar ? size : MO_32); 13310 switch (size) { 13311 case 1: 13312 if (opcode == 0x5) { 13313 /* As usual for ARM, separate negation for fused 13314 * multiply-add */ 13315 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13316 } 13317 if (is_scalar) { 13318 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13319 tcg_res, fpst); 13320 } else { 13321 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13322 tcg_res, fpst); 13323 } 13324 break; 13325 case 2: 13326 if (opcode == 0x5) { 13327 /* As usual for ARM, separate negation for 13328 * fused multiply-add */ 13329 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13330 } 13331 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13332 tcg_res, fpst); 13333 break; 13334 default: 13335 g_assert_not_reached(); 13336 } 13337 break; 13338 case 0x09: /* FMUL */ 13339 switch (size) { 13340 case 1: 13341 if (is_scalar) { 13342 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13343 tcg_idx, fpst); 13344 } else { 13345 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13346 tcg_idx, fpst); 13347 } 13348 break; 13349 case 2: 13350 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13351 break; 13352 default: 13353 g_assert_not_reached(); 13354 } 13355 break; 13356 case 0x19: /* FMULX */ 13357 switch (size) { 13358 case 1: 13359 if (is_scalar) { 13360 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13361 tcg_idx, fpst); 13362 } else { 13363 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13364 tcg_idx, fpst); 13365 } 13366 break; 13367 case 2: 13368 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13369 break; 13370 default: 13371 g_assert_not_reached(); 13372 } 13373 break; 13374 case 0x0c: /* SQDMULH */ 13375 if (size == 1) { 13376 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13377 tcg_op, tcg_idx); 13378 } else { 13379 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13380 tcg_op, tcg_idx); 13381 } 13382 break; 13383 case 0x0d: /* SQRDMULH */ 13384 if (size == 1) { 13385 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13386 tcg_op, tcg_idx); 13387 } else { 13388 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13389 tcg_op, tcg_idx); 13390 } 13391 break; 13392 case 0x1d: /* SQRDMLAH */ 13393 read_vec_element_i32(s, tcg_res, rd, pass, 13394 is_scalar ? size : MO_32); 13395 if (size == 1) { 13396 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13397 tcg_op, tcg_idx, tcg_res); 13398 } else { 13399 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13400 tcg_op, tcg_idx, tcg_res); 13401 } 13402 break; 13403 case 0x1f: /* SQRDMLSH */ 13404 read_vec_element_i32(s, tcg_res, rd, pass, 13405 is_scalar ? size : MO_32); 13406 if (size == 1) { 13407 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13408 tcg_op, tcg_idx, tcg_res); 13409 } else { 13410 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13411 tcg_op, tcg_idx, tcg_res); 13412 } 13413 break; 13414 default: 13415 g_assert_not_reached(); 13416 } 13417 13418 if (is_scalar) { 13419 write_fp_sreg(s, rd, tcg_res); 13420 } else { 13421 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13422 } 13423 } 13424 13425 clear_vec_high(s, is_q, rd); 13426 } else { 13427 /* long ops: 16x16->32 or 32x32->64 */ 13428 TCGv_i64 tcg_res[2]; 13429 int pass; 13430 bool satop = extract32(opcode, 0, 1); 13431 MemOp memop = MO_32; 13432 13433 if (satop || !u) { 13434 memop |= MO_SIGN; 13435 } 13436 13437 if (size == 2) { 13438 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13439 13440 read_vec_element(s, tcg_idx, rm, index, memop); 13441 13442 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13443 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13444 TCGv_i64 tcg_passres; 13445 int passelt; 13446 13447 if (is_scalar) { 13448 passelt = 0; 13449 } else { 13450 passelt = pass + (is_q * 2); 13451 } 13452 13453 read_vec_element(s, tcg_op, rn, passelt, memop); 13454 13455 tcg_res[pass] = tcg_temp_new_i64(); 13456 13457 if (opcode == 0xa || opcode == 0xb) { 13458 /* Non-accumulating ops */ 13459 tcg_passres = tcg_res[pass]; 13460 } else { 13461 tcg_passres = tcg_temp_new_i64(); 13462 } 13463 13464 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13465 13466 if (satop) { 13467 /* saturating, doubling */ 13468 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13469 tcg_passres, tcg_passres); 13470 } 13471 13472 if (opcode == 0xa || opcode == 0xb) { 13473 continue; 13474 } 13475 13476 /* Accumulating op: handle accumulate step */ 13477 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13478 13479 switch (opcode) { 13480 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13481 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13482 break; 13483 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13484 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13485 break; 13486 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13487 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13488 /* fall through */ 13489 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13490 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13491 tcg_res[pass], 13492 tcg_passres); 13493 break; 13494 default: 13495 g_assert_not_reached(); 13496 } 13497 } 13498 13499 clear_vec_high(s, !is_scalar, rd); 13500 } else { 13501 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13502 13503 assert(size == 1); 13504 read_vec_element_i32(s, tcg_idx, rm, index, size); 13505 13506 if (!is_scalar) { 13507 /* The simplest way to handle the 16x16 indexed ops is to 13508 * duplicate the index into both halves of the 32 bit tcg_idx 13509 * and then use the usual Neon helpers. 13510 */ 13511 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13512 } 13513 13514 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13515 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13516 TCGv_i64 tcg_passres; 13517 13518 if (is_scalar) { 13519 read_vec_element_i32(s, tcg_op, rn, pass, size); 13520 } else { 13521 read_vec_element_i32(s, tcg_op, rn, 13522 pass + (is_q * 2), MO_32); 13523 } 13524 13525 tcg_res[pass] = tcg_temp_new_i64(); 13526 13527 if (opcode == 0xa || opcode == 0xb) { 13528 /* Non-accumulating ops */ 13529 tcg_passres = tcg_res[pass]; 13530 } else { 13531 tcg_passres = tcg_temp_new_i64(); 13532 } 13533 13534 if (memop & MO_SIGN) { 13535 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13536 } else { 13537 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13538 } 13539 if (satop) { 13540 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13541 tcg_passres, tcg_passres); 13542 } 13543 13544 if (opcode == 0xa || opcode == 0xb) { 13545 continue; 13546 } 13547 13548 /* Accumulating op: handle accumulate step */ 13549 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13550 13551 switch (opcode) { 13552 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13553 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13554 tcg_passres); 13555 break; 13556 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13557 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13558 tcg_passres); 13559 break; 13560 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13561 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13562 /* fall through */ 13563 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13564 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13565 tcg_res[pass], 13566 tcg_passres); 13567 break; 13568 default: 13569 g_assert_not_reached(); 13570 } 13571 } 13572 13573 if (is_scalar) { 13574 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13575 } 13576 } 13577 13578 if (is_scalar) { 13579 tcg_res[1] = tcg_constant_i64(0); 13580 } 13581 13582 for (pass = 0; pass < 2; pass++) { 13583 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13584 } 13585 } 13586 } 13587 13588 /* Crypto AES 13589 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13590 * +-----------------+------+-----------+--------+-----+------+------+ 13591 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13592 * +-----------------+------+-----------+--------+-----+------+------+ 13593 */ 13594 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13595 { 13596 int size = extract32(insn, 22, 2); 13597 int opcode = extract32(insn, 12, 5); 13598 int rn = extract32(insn, 5, 5); 13599 int rd = extract32(insn, 0, 5); 13600 int decrypt; 13601 gen_helper_gvec_2 *genfn2 = NULL; 13602 gen_helper_gvec_3 *genfn3 = NULL; 13603 13604 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13605 unallocated_encoding(s); 13606 return; 13607 } 13608 13609 switch (opcode) { 13610 case 0x4: /* AESE */ 13611 decrypt = 0; 13612 genfn3 = gen_helper_crypto_aese; 13613 break; 13614 case 0x6: /* AESMC */ 13615 decrypt = 0; 13616 genfn2 = gen_helper_crypto_aesmc; 13617 break; 13618 case 0x5: /* AESD */ 13619 decrypt = 1; 13620 genfn3 = gen_helper_crypto_aese; 13621 break; 13622 case 0x7: /* AESIMC */ 13623 decrypt = 1; 13624 genfn2 = gen_helper_crypto_aesmc; 13625 break; 13626 default: 13627 unallocated_encoding(s); 13628 return; 13629 } 13630 13631 if (!fp_access_check(s)) { 13632 return; 13633 } 13634 if (genfn2) { 13635 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13636 } else { 13637 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13638 } 13639 } 13640 13641 /* Crypto three-reg SHA 13642 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13643 * +-----------------+------+---+------+---+--------+-----+------+------+ 13644 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13645 * +-----------------+------+---+------+---+--------+-----+------+------+ 13646 */ 13647 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13648 { 13649 int size = extract32(insn, 22, 2); 13650 int opcode = extract32(insn, 12, 3); 13651 int rm = extract32(insn, 16, 5); 13652 int rn = extract32(insn, 5, 5); 13653 int rd = extract32(insn, 0, 5); 13654 gen_helper_gvec_3 *genfn; 13655 bool feature; 13656 13657 if (size != 0) { 13658 unallocated_encoding(s); 13659 return; 13660 } 13661 13662 switch (opcode) { 13663 case 0: /* SHA1C */ 13664 genfn = gen_helper_crypto_sha1c; 13665 feature = dc_isar_feature(aa64_sha1, s); 13666 break; 13667 case 1: /* SHA1P */ 13668 genfn = gen_helper_crypto_sha1p; 13669 feature = dc_isar_feature(aa64_sha1, s); 13670 break; 13671 case 2: /* SHA1M */ 13672 genfn = gen_helper_crypto_sha1m; 13673 feature = dc_isar_feature(aa64_sha1, s); 13674 break; 13675 case 3: /* SHA1SU0 */ 13676 genfn = gen_helper_crypto_sha1su0; 13677 feature = dc_isar_feature(aa64_sha1, s); 13678 break; 13679 case 4: /* SHA256H */ 13680 genfn = gen_helper_crypto_sha256h; 13681 feature = dc_isar_feature(aa64_sha256, s); 13682 break; 13683 case 5: /* SHA256H2 */ 13684 genfn = gen_helper_crypto_sha256h2; 13685 feature = dc_isar_feature(aa64_sha256, s); 13686 break; 13687 case 6: /* SHA256SU1 */ 13688 genfn = gen_helper_crypto_sha256su1; 13689 feature = dc_isar_feature(aa64_sha256, s); 13690 break; 13691 default: 13692 unallocated_encoding(s); 13693 return; 13694 } 13695 13696 if (!feature) { 13697 unallocated_encoding(s); 13698 return; 13699 } 13700 13701 if (!fp_access_check(s)) { 13702 return; 13703 } 13704 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13705 } 13706 13707 /* Crypto two-reg SHA 13708 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13709 * +-----------------+------+-----------+--------+-----+------+------+ 13710 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13711 * +-----------------+------+-----------+--------+-----+------+------+ 13712 */ 13713 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13714 { 13715 int size = extract32(insn, 22, 2); 13716 int opcode = extract32(insn, 12, 5); 13717 int rn = extract32(insn, 5, 5); 13718 int rd = extract32(insn, 0, 5); 13719 gen_helper_gvec_2 *genfn; 13720 bool feature; 13721 13722 if (size != 0) { 13723 unallocated_encoding(s); 13724 return; 13725 } 13726 13727 switch (opcode) { 13728 case 0: /* SHA1H */ 13729 feature = dc_isar_feature(aa64_sha1, s); 13730 genfn = gen_helper_crypto_sha1h; 13731 break; 13732 case 1: /* SHA1SU1 */ 13733 feature = dc_isar_feature(aa64_sha1, s); 13734 genfn = gen_helper_crypto_sha1su1; 13735 break; 13736 case 2: /* SHA256SU0 */ 13737 feature = dc_isar_feature(aa64_sha256, s); 13738 genfn = gen_helper_crypto_sha256su0; 13739 break; 13740 default: 13741 unallocated_encoding(s); 13742 return; 13743 } 13744 13745 if (!feature) { 13746 unallocated_encoding(s); 13747 return; 13748 } 13749 13750 if (!fp_access_check(s)) { 13751 return; 13752 } 13753 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13754 } 13755 13756 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13757 { 13758 tcg_gen_rotli_i64(d, m, 1); 13759 tcg_gen_xor_i64(d, d, n); 13760 } 13761 13762 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13763 { 13764 tcg_gen_rotli_vec(vece, d, m, 1); 13765 tcg_gen_xor_vec(vece, d, d, n); 13766 } 13767 13768 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13769 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13770 { 13771 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13772 static const GVecGen3 op = { 13773 .fni8 = gen_rax1_i64, 13774 .fniv = gen_rax1_vec, 13775 .opt_opc = vecop_list, 13776 .fno = gen_helper_crypto_rax1, 13777 .vece = MO_64, 13778 }; 13779 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13780 } 13781 13782 /* Crypto three-reg SHA512 13783 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13784 * +-----------------------+------+---+---+-----+--------+------+------+ 13785 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13786 * +-----------------------+------+---+---+-----+--------+------+------+ 13787 */ 13788 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13789 { 13790 int opcode = extract32(insn, 10, 2); 13791 int o = extract32(insn, 14, 1); 13792 int rm = extract32(insn, 16, 5); 13793 int rn = extract32(insn, 5, 5); 13794 int rd = extract32(insn, 0, 5); 13795 bool feature; 13796 gen_helper_gvec_3 *oolfn = NULL; 13797 GVecGen3Fn *gvecfn = NULL; 13798 13799 if (o == 0) { 13800 switch (opcode) { 13801 case 0: /* SHA512H */ 13802 feature = dc_isar_feature(aa64_sha512, s); 13803 oolfn = gen_helper_crypto_sha512h; 13804 break; 13805 case 1: /* SHA512H2 */ 13806 feature = dc_isar_feature(aa64_sha512, s); 13807 oolfn = gen_helper_crypto_sha512h2; 13808 break; 13809 case 2: /* SHA512SU1 */ 13810 feature = dc_isar_feature(aa64_sha512, s); 13811 oolfn = gen_helper_crypto_sha512su1; 13812 break; 13813 case 3: /* RAX1 */ 13814 feature = dc_isar_feature(aa64_sha3, s); 13815 gvecfn = gen_gvec_rax1; 13816 break; 13817 default: 13818 g_assert_not_reached(); 13819 } 13820 } else { 13821 switch (opcode) { 13822 case 0: /* SM3PARTW1 */ 13823 feature = dc_isar_feature(aa64_sm3, s); 13824 oolfn = gen_helper_crypto_sm3partw1; 13825 break; 13826 case 1: /* SM3PARTW2 */ 13827 feature = dc_isar_feature(aa64_sm3, s); 13828 oolfn = gen_helper_crypto_sm3partw2; 13829 break; 13830 case 2: /* SM4EKEY */ 13831 feature = dc_isar_feature(aa64_sm4, s); 13832 oolfn = gen_helper_crypto_sm4ekey; 13833 break; 13834 default: 13835 unallocated_encoding(s); 13836 return; 13837 } 13838 } 13839 13840 if (!feature) { 13841 unallocated_encoding(s); 13842 return; 13843 } 13844 13845 if (!fp_access_check(s)) { 13846 return; 13847 } 13848 13849 if (oolfn) { 13850 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13851 } else { 13852 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13853 } 13854 } 13855 13856 /* Crypto two-reg SHA512 13857 * 31 12 11 10 9 5 4 0 13858 * +-----------------------------------------+--------+------+------+ 13859 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13860 * +-----------------------------------------+--------+------+------+ 13861 */ 13862 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13863 { 13864 int opcode = extract32(insn, 10, 2); 13865 int rn = extract32(insn, 5, 5); 13866 int rd = extract32(insn, 0, 5); 13867 bool feature; 13868 13869 switch (opcode) { 13870 case 0: /* SHA512SU0 */ 13871 feature = dc_isar_feature(aa64_sha512, s); 13872 break; 13873 case 1: /* SM4E */ 13874 feature = dc_isar_feature(aa64_sm4, s); 13875 break; 13876 default: 13877 unallocated_encoding(s); 13878 return; 13879 } 13880 13881 if (!feature) { 13882 unallocated_encoding(s); 13883 return; 13884 } 13885 13886 if (!fp_access_check(s)) { 13887 return; 13888 } 13889 13890 switch (opcode) { 13891 case 0: /* SHA512SU0 */ 13892 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13893 break; 13894 case 1: /* SM4E */ 13895 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13896 break; 13897 default: 13898 g_assert_not_reached(); 13899 } 13900 } 13901 13902 /* Crypto four-register 13903 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13904 * +-------------------+-----+------+---+------+------+------+ 13905 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13906 * +-------------------+-----+------+---+------+------+------+ 13907 */ 13908 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13909 { 13910 int op0 = extract32(insn, 21, 2); 13911 int rm = extract32(insn, 16, 5); 13912 int ra = extract32(insn, 10, 5); 13913 int rn = extract32(insn, 5, 5); 13914 int rd = extract32(insn, 0, 5); 13915 bool feature; 13916 13917 switch (op0) { 13918 case 0: /* EOR3 */ 13919 case 1: /* BCAX */ 13920 feature = dc_isar_feature(aa64_sha3, s); 13921 break; 13922 case 2: /* SM3SS1 */ 13923 feature = dc_isar_feature(aa64_sm3, s); 13924 break; 13925 default: 13926 unallocated_encoding(s); 13927 return; 13928 } 13929 13930 if (!feature) { 13931 unallocated_encoding(s); 13932 return; 13933 } 13934 13935 if (!fp_access_check(s)) { 13936 return; 13937 } 13938 13939 if (op0 < 2) { 13940 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13941 int pass; 13942 13943 tcg_op1 = tcg_temp_new_i64(); 13944 tcg_op2 = tcg_temp_new_i64(); 13945 tcg_op3 = tcg_temp_new_i64(); 13946 tcg_res[0] = tcg_temp_new_i64(); 13947 tcg_res[1] = tcg_temp_new_i64(); 13948 13949 for (pass = 0; pass < 2; pass++) { 13950 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13951 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13952 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13953 13954 if (op0 == 0) { 13955 /* EOR3 */ 13956 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13957 } else { 13958 /* BCAX */ 13959 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13960 } 13961 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13962 } 13963 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13964 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13965 } else { 13966 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13967 13968 tcg_op1 = tcg_temp_new_i32(); 13969 tcg_op2 = tcg_temp_new_i32(); 13970 tcg_op3 = tcg_temp_new_i32(); 13971 tcg_res = tcg_temp_new_i32(); 13972 tcg_zero = tcg_constant_i32(0); 13973 13974 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13975 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13976 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13977 13978 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13979 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13980 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13981 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13982 13983 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13984 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13985 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13986 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13987 } 13988 } 13989 13990 /* Crypto XAR 13991 * 31 21 20 16 15 10 9 5 4 0 13992 * +-----------------------+------+--------+------+------+ 13993 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13994 * +-----------------------+------+--------+------+------+ 13995 */ 13996 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13997 { 13998 int rm = extract32(insn, 16, 5); 13999 int imm6 = extract32(insn, 10, 6); 14000 int rn = extract32(insn, 5, 5); 14001 int rd = extract32(insn, 0, 5); 14002 14003 if (!dc_isar_feature(aa64_sha3, s)) { 14004 unallocated_encoding(s); 14005 return; 14006 } 14007 14008 if (!fp_access_check(s)) { 14009 return; 14010 } 14011 14012 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 14013 vec_full_reg_offset(s, rn), 14014 vec_full_reg_offset(s, rm), imm6, 16, 14015 vec_full_reg_size(s)); 14016 } 14017 14018 /* Crypto three-reg imm2 14019 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14020 * +-----------------------+------+-----+------+--------+------+------+ 14021 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14022 * +-----------------------+------+-----+------+--------+------+------+ 14023 */ 14024 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14025 { 14026 static gen_helper_gvec_3 * const fns[4] = { 14027 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14028 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14029 }; 14030 int opcode = extract32(insn, 10, 2); 14031 int imm2 = extract32(insn, 12, 2); 14032 int rm = extract32(insn, 16, 5); 14033 int rn = extract32(insn, 5, 5); 14034 int rd = extract32(insn, 0, 5); 14035 14036 if (!dc_isar_feature(aa64_sm3, s)) { 14037 unallocated_encoding(s); 14038 return; 14039 } 14040 14041 if (!fp_access_check(s)) { 14042 return; 14043 } 14044 14045 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14046 } 14047 14048 /* C3.6 Data processing - SIMD, inc Crypto 14049 * 14050 * As the decode gets a little complex we are using a table based 14051 * approach for this part of the decode. 14052 */ 14053 static const AArch64DecodeTable data_proc_simd[] = { 14054 /* pattern , mask , fn */ 14055 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14056 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14057 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14058 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14059 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14060 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14061 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14062 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14063 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14064 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14065 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14066 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14067 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14068 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14069 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14070 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14071 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14072 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14073 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14074 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14075 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14076 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14077 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14078 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14079 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14080 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14081 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14082 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14083 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14084 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14085 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14086 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14087 { 0x00000000, 0x00000000, NULL } 14088 }; 14089 14090 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14091 { 14092 /* Note that this is called with all non-FP cases from 14093 * table C3-6 so it must UNDEF for entries not specifically 14094 * allocated to instructions in that table. 14095 */ 14096 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14097 if (fn) { 14098 fn(s, insn); 14099 } else { 14100 unallocated_encoding(s); 14101 } 14102 } 14103 14104 /* C3.6 Data processing - SIMD and floating point */ 14105 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14106 { 14107 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14108 disas_data_proc_fp(s, insn); 14109 } else { 14110 /* SIMD, including crypto */ 14111 disas_data_proc_simd(s, insn); 14112 } 14113 } 14114 14115 static bool trans_OK(DisasContext *s, arg_OK *a) 14116 { 14117 return true; 14118 } 14119 14120 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14121 { 14122 s->is_nonstreaming = true; 14123 return true; 14124 } 14125 14126 /** 14127 * is_guarded_page: 14128 * @env: The cpu environment 14129 * @s: The DisasContext 14130 * 14131 * Return true if the page is guarded. 14132 */ 14133 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14134 { 14135 uint64_t addr = s->base.pc_first; 14136 #ifdef CONFIG_USER_ONLY 14137 return page_get_flags(addr) & PAGE_BTI; 14138 #else 14139 CPUTLBEntryFull *full; 14140 void *host; 14141 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14142 int flags; 14143 14144 /* 14145 * We test this immediately after reading an insn, which means 14146 * that the TLB entry must be present and valid, and thus this 14147 * access will never raise an exception. 14148 */ 14149 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14150 false, &host, &full, 0); 14151 assert(!(flags & TLB_INVALID_MASK)); 14152 14153 return full->guarded; 14154 #endif 14155 } 14156 14157 /** 14158 * btype_destination_ok: 14159 * @insn: The instruction at the branch destination 14160 * @bt: SCTLR_ELx.BT 14161 * @btype: PSTATE.BTYPE, and is non-zero 14162 * 14163 * On a guarded page, there are a limited number of insns 14164 * that may be present at the branch target: 14165 * - branch target identifiers, 14166 * - paciasp, pacibsp, 14167 * - BRK insn 14168 * - HLT insn 14169 * Anything else causes a Branch Target Exception. 14170 * 14171 * Return true if the branch is compatible, false to raise BTITRAP. 14172 */ 14173 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14174 { 14175 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14176 /* HINT space */ 14177 switch (extract32(insn, 5, 7)) { 14178 case 0b011001: /* PACIASP */ 14179 case 0b011011: /* PACIBSP */ 14180 /* 14181 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14182 * with btype == 3. Otherwise all btype are ok. 14183 */ 14184 return !bt || btype != 3; 14185 case 0b100000: /* BTI */ 14186 /* Not compatible with any btype. */ 14187 return false; 14188 case 0b100010: /* BTI c */ 14189 /* Not compatible with btype == 3 */ 14190 return btype != 3; 14191 case 0b100100: /* BTI j */ 14192 /* Not compatible with btype == 2 */ 14193 return btype != 2; 14194 case 0b100110: /* BTI jc */ 14195 /* Compatible with any btype. */ 14196 return true; 14197 } 14198 } else { 14199 switch (insn & 0xffe0001fu) { 14200 case 0xd4200000u: /* BRK */ 14201 case 0xd4400000u: /* HLT */ 14202 /* Give priority to the breakpoint exception. */ 14203 return true; 14204 } 14205 } 14206 return false; 14207 } 14208 14209 /* C3.1 A64 instruction index by encoding */ 14210 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14211 { 14212 switch (extract32(insn, 25, 4)) { 14213 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14214 disas_b_exc_sys(s, insn); 14215 break; 14216 case 0x4: 14217 case 0x6: 14218 case 0xc: 14219 case 0xe: /* Loads and stores */ 14220 disas_ldst(s, insn); 14221 break; 14222 case 0x5: 14223 case 0xd: /* Data processing - register */ 14224 disas_data_proc_reg(s, insn); 14225 break; 14226 case 0x7: 14227 case 0xf: /* Data processing - SIMD and floating point */ 14228 disas_data_proc_simd_fp(s, insn); 14229 break; 14230 default: 14231 unallocated_encoding(s); 14232 break; 14233 } 14234 } 14235 14236 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14237 CPUState *cpu) 14238 { 14239 DisasContext *dc = container_of(dcbase, DisasContext, base); 14240 CPUARMState *env = cpu->env_ptr; 14241 ARMCPU *arm_cpu = env_archcpu(env); 14242 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14243 int bound, core_mmu_idx; 14244 14245 dc->isar = &arm_cpu->isar; 14246 dc->condjmp = 0; 14247 dc->pc_save = dc->base.pc_first; 14248 dc->aarch64 = true; 14249 dc->thumb = false; 14250 dc->sctlr_b = 0; 14251 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14252 dc->condexec_mask = 0; 14253 dc->condexec_cond = 0; 14254 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14255 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14256 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14257 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14258 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14259 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14260 #if !defined(CONFIG_USER_ONLY) 14261 dc->user = (dc->current_el == 0); 14262 #endif 14263 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14264 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14265 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14266 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14267 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14268 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14269 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14270 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14271 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14272 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14273 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14274 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14275 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14276 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14277 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14278 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14279 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14280 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14281 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14282 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14283 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14284 dc->vec_len = 0; 14285 dc->vec_stride = 0; 14286 dc->cp_regs = arm_cpu->cp_regs; 14287 dc->features = env->features; 14288 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14289 14290 #ifdef CONFIG_USER_ONLY 14291 /* In sve_probe_page, we assume TBI is enabled. */ 14292 tcg_debug_assert(dc->tbid & 1); 14293 #endif 14294 14295 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14296 14297 /* Single step state. The code-generation logic here is: 14298 * SS_ACTIVE == 0: 14299 * generate code with no special handling for single-stepping (except 14300 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14301 * this happens anyway because those changes are all system register or 14302 * PSTATE writes). 14303 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14304 * emit code for one insn 14305 * emit code to clear PSTATE.SS 14306 * emit code to generate software step exception for completed step 14307 * end TB (as usual for having generated an exception) 14308 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14309 * emit code to generate a software step exception 14310 * end the TB 14311 */ 14312 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14313 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14314 dc->is_ldex = false; 14315 14316 /* Bound the number of insns to execute to those left on the page. */ 14317 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14318 14319 /* If architectural single step active, limit to 1. */ 14320 if (dc->ss_active) { 14321 bound = 1; 14322 } 14323 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14324 } 14325 14326 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14327 { 14328 } 14329 14330 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14331 { 14332 DisasContext *dc = container_of(dcbase, DisasContext, base); 14333 target_ulong pc_arg = dc->base.pc_next; 14334 14335 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14336 pc_arg &= ~TARGET_PAGE_MASK; 14337 } 14338 tcg_gen_insn_start(pc_arg, 0, 0); 14339 dc->insn_start = tcg_last_op(); 14340 } 14341 14342 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14343 { 14344 DisasContext *s = container_of(dcbase, DisasContext, base); 14345 CPUARMState *env = cpu->env_ptr; 14346 uint64_t pc = s->base.pc_next; 14347 uint32_t insn; 14348 14349 /* Singlestep exceptions have the highest priority. */ 14350 if (s->ss_active && !s->pstate_ss) { 14351 /* Singlestep state is Active-pending. 14352 * If we're in this state at the start of a TB then either 14353 * a) we just took an exception to an EL which is being debugged 14354 * and this is the first insn in the exception handler 14355 * b) debug exceptions were masked and we just unmasked them 14356 * without changing EL (eg by clearing PSTATE.D) 14357 * In either case we're going to take a swstep exception in the 14358 * "did not step an insn" case, and so the syndrome ISV and EX 14359 * bits should be zero. 14360 */ 14361 assert(s->base.num_insns == 1); 14362 gen_swstep_exception(s, 0, 0); 14363 s->base.is_jmp = DISAS_NORETURN; 14364 s->base.pc_next = pc + 4; 14365 return; 14366 } 14367 14368 if (pc & 3) { 14369 /* 14370 * PC alignment fault. This has priority over the instruction abort 14371 * that we would receive from a translation fault via arm_ldl_code. 14372 * This should only be possible after an indirect branch, at the 14373 * start of the TB. 14374 */ 14375 assert(s->base.num_insns == 1); 14376 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14377 s->base.is_jmp = DISAS_NORETURN; 14378 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14379 return; 14380 } 14381 14382 s->pc_curr = pc; 14383 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14384 s->insn = insn; 14385 s->base.pc_next = pc + 4; 14386 14387 s->fp_access_checked = false; 14388 s->sve_access_checked = false; 14389 14390 if (s->pstate_il) { 14391 /* 14392 * Illegal execution state. This has priority over BTI 14393 * exceptions, but comes after instruction abort exceptions. 14394 */ 14395 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14396 return; 14397 } 14398 14399 if (dc_isar_feature(aa64_bti, s)) { 14400 if (s->base.num_insns == 1) { 14401 /* 14402 * At the first insn of the TB, compute s->guarded_page. 14403 * We delayed computing this until successfully reading 14404 * the first insn of the TB, above. This (mostly) ensures 14405 * that the softmmu tlb entry has been populated, and the 14406 * page table GP bit is available. 14407 * 14408 * Note that we need to compute this even if btype == 0, 14409 * because this value is used for BR instructions later 14410 * where ENV is not available. 14411 */ 14412 s->guarded_page = is_guarded_page(env, s); 14413 14414 /* First insn can have btype set to non-zero. */ 14415 tcg_debug_assert(s->btype >= 0); 14416 14417 /* 14418 * Note that the Branch Target Exception has fairly high 14419 * priority -- below debugging exceptions but above most 14420 * everything else. This allows us to handle this now 14421 * instead of waiting until the insn is otherwise decoded. 14422 */ 14423 if (s->btype != 0 14424 && s->guarded_page 14425 && !btype_destination_ok(insn, s->bt, s->btype)) { 14426 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14427 return; 14428 } 14429 } else { 14430 /* Not the first insn: btype must be 0. */ 14431 tcg_debug_assert(s->btype == 0); 14432 } 14433 } 14434 14435 s->is_nonstreaming = false; 14436 if (s->sme_trap_nonstreaming) { 14437 disas_sme_fa64(s, insn); 14438 } 14439 14440 if (!disas_a64(s, insn) && 14441 !disas_sme(s, insn) && 14442 !disas_sve(s, insn)) { 14443 disas_a64_legacy(s, insn); 14444 } 14445 14446 /* 14447 * After execution of most insns, btype is reset to 0. 14448 * Note that we set btype == -1 when the insn sets btype. 14449 */ 14450 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14451 reset_btype(s); 14452 } 14453 } 14454 14455 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14456 { 14457 DisasContext *dc = container_of(dcbase, DisasContext, base); 14458 14459 if (unlikely(dc->ss_active)) { 14460 /* Note that this means single stepping WFI doesn't halt the CPU. 14461 * For conditional branch insns this is harmless unreachable code as 14462 * gen_goto_tb() has already handled emitting the debug exception 14463 * (and thus a tb-jump is not possible when singlestepping). 14464 */ 14465 switch (dc->base.is_jmp) { 14466 default: 14467 gen_a64_update_pc(dc, 4); 14468 /* fall through */ 14469 case DISAS_EXIT: 14470 case DISAS_JUMP: 14471 gen_step_complete_exception(dc); 14472 break; 14473 case DISAS_NORETURN: 14474 break; 14475 } 14476 } else { 14477 switch (dc->base.is_jmp) { 14478 case DISAS_NEXT: 14479 case DISAS_TOO_MANY: 14480 gen_goto_tb(dc, 1, 4); 14481 break; 14482 default: 14483 case DISAS_UPDATE_EXIT: 14484 gen_a64_update_pc(dc, 4); 14485 /* fall through */ 14486 case DISAS_EXIT: 14487 tcg_gen_exit_tb(NULL, 0); 14488 break; 14489 case DISAS_UPDATE_NOCHAIN: 14490 gen_a64_update_pc(dc, 4); 14491 /* fall through */ 14492 case DISAS_JUMP: 14493 tcg_gen_lookup_and_goto_ptr(); 14494 break; 14495 case DISAS_NORETURN: 14496 case DISAS_SWI: 14497 break; 14498 case DISAS_WFE: 14499 gen_a64_update_pc(dc, 4); 14500 gen_helper_wfe(cpu_env); 14501 break; 14502 case DISAS_YIELD: 14503 gen_a64_update_pc(dc, 4); 14504 gen_helper_yield(cpu_env); 14505 break; 14506 case DISAS_WFI: 14507 /* 14508 * This is a special case because we don't want to just halt 14509 * the CPU if trying to debug across a WFI. 14510 */ 14511 gen_a64_update_pc(dc, 4); 14512 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14513 /* 14514 * The helper doesn't necessarily throw an exception, but we 14515 * must go back to the main loop to check for interrupts anyway. 14516 */ 14517 tcg_gen_exit_tb(NULL, 0); 14518 break; 14519 } 14520 } 14521 } 14522 14523 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14524 CPUState *cpu, FILE *logfile) 14525 { 14526 DisasContext *dc = container_of(dcbase, DisasContext, base); 14527 14528 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14529 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14530 } 14531 14532 const TranslatorOps aarch64_translator_ops = { 14533 .init_disas_context = aarch64_tr_init_disas_context, 14534 .tb_start = aarch64_tr_tb_start, 14535 .insn_start = aarch64_tr_insn_start, 14536 .translate_insn = aarch64_tr_translate_insn, 14537 .tb_stop = aarch64_tr_tb_stop, 14538 .disas_log = aarch64_tr_disas_log, 14539 }; 14540