1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(cpu_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 109 */ 110 static int get_a64_user_mem_index(DisasContext *s) 111 { 112 /* 113 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 114 * which is the usual mmu_idx for this cpu state. 115 */ 116 ARMMMUIdx useridx = s->mmu_idx; 117 118 if (s->unpriv) { 119 /* 120 * We have pre-computed the condition for AccType_UNPRIV. 121 * Therefore we should never get here with a mmu_idx for 122 * which we do not know the corresponding user mmu_idx. 123 */ 124 switch (useridx) { 125 case ARMMMUIdx_E10_1: 126 case ARMMMUIdx_E10_1_PAN: 127 useridx = ARMMMUIdx_E10_0; 128 break; 129 case ARMMMUIdx_E20_2: 130 case ARMMMUIdx_E20_2_PAN: 131 useridx = ARMMMUIdx_E20_0; 132 break; 133 default: 134 g_assert_not_reached(); 135 } 136 } 137 return arm_to_core_mmu_idx(useridx); 138 } 139 140 static void set_btype_raw(int val) 141 { 142 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 143 offsetof(CPUARMState, btype)); 144 } 145 146 static void set_btype(DisasContext *s, int val) 147 { 148 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 149 tcg_debug_assert(val >= 1 && val <= 3); 150 set_btype_raw(val); 151 s->btype = -1; 152 } 153 154 static void reset_btype(DisasContext *s) 155 { 156 if (s->btype != 0) { 157 set_btype_raw(0); 158 s->btype = 0; 159 } 160 } 161 162 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 163 { 164 assert(s->pc_save != -1); 165 if (tb_cflags(s->base.tb) & CF_PCREL) { 166 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 167 } else { 168 tcg_gen_movi_i64(dest, s->pc_curr + diff); 169 } 170 } 171 172 void gen_a64_update_pc(DisasContext *s, target_long diff) 173 { 174 gen_pc_plus_diff(s, cpu_pc, diff); 175 s->pc_save = s->pc_curr + diff; 176 } 177 178 /* 179 * Handle Top Byte Ignore (TBI) bits. 180 * 181 * If address tagging is enabled via the TCR TBI bits: 182 * + for EL2 and EL3 there is only one TBI bit, and if it is set 183 * then the address is zero-extended, clearing bits [63:56] 184 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 185 * and TBI1 controls addresses with bit 55 == 1. 186 * If the appropriate TBI bit is set for the address then 187 * the address is sign-extended from bit 55 into bits [63:56] 188 * 189 * Here We have concatenated TBI{1,0} into tbi. 190 */ 191 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 192 TCGv_i64 src, int tbi) 193 { 194 if (tbi == 0) { 195 /* Load unmodified address */ 196 tcg_gen_mov_i64(dst, src); 197 } else if (!regime_has_2_ranges(s->mmu_idx)) { 198 /* Force tag byte to all zero */ 199 tcg_gen_extract_i64(dst, src, 0, 56); 200 } else { 201 /* Sign-extend from bit 55. */ 202 tcg_gen_sextract_i64(dst, src, 0, 56); 203 204 switch (tbi) { 205 case 1: 206 /* tbi0 but !tbi1: only use the extension if positive */ 207 tcg_gen_and_i64(dst, dst, src); 208 break; 209 case 2: 210 /* !tbi0 but tbi1: only use the extension if negative */ 211 tcg_gen_or_i64(dst, dst, src); 212 break; 213 case 3: 214 /* tbi0 and tbi1: always use the extension */ 215 break; 216 default: 217 g_assert_not_reached(); 218 } 219 } 220 } 221 222 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 223 { 224 /* 225 * If address tagging is enabled for instructions via the TCR TBI bits, 226 * then loading an address into the PC will clear out any tag. 227 */ 228 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 229 s->pc_save = -1; 230 } 231 232 /* 233 * Handle MTE and/or TBI. 234 * 235 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 236 * for the tag to be present in the FAR_ELx register. But for user-only 237 * mode we do not have a TLB with which to implement this, so we must 238 * remove the top byte now. 239 * 240 * Always return a fresh temporary that we can increment independently 241 * of the write-back address. 242 */ 243 244 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 245 { 246 TCGv_i64 clean = tcg_temp_new_i64(); 247 #ifdef CONFIG_USER_ONLY 248 gen_top_byte_ignore(s, clean, addr, s->tbid); 249 #else 250 tcg_gen_mov_i64(clean, addr); 251 #endif 252 return clean; 253 } 254 255 /* Insert a zero tag into src, with the result at dst. */ 256 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 257 { 258 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 259 } 260 261 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 262 MMUAccessType acc, int log2_size) 263 { 264 gen_helper_probe_access(cpu_env, ptr, 265 tcg_constant_i32(acc), 266 tcg_constant_i32(get_mem_index(s)), 267 tcg_constant_i32(1 << log2_size)); 268 } 269 270 /* 271 * For MTE, check a single logical or atomic access. This probes a single 272 * address, the exact one specified. The size and alignment of the access 273 * is not relevant to MTE, per se, but watchpoints do require the size, 274 * and we want to recognize those before making any other changes to state. 275 */ 276 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 277 bool is_write, bool tag_checked, 278 MemOp memop, bool is_unpriv, 279 int core_idx) 280 { 281 if (tag_checked && s->mte_active[is_unpriv]) { 282 TCGv_i64 ret; 283 int desc = 0; 284 285 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 286 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 287 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 288 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 289 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 290 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 291 292 ret = tcg_temp_new_i64(); 293 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 294 295 return ret; 296 } 297 return clean_data_tbi(s, addr); 298 } 299 300 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 301 bool tag_checked, MemOp memop) 302 { 303 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 304 false, get_mem_index(s)); 305 } 306 307 /* 308 * For MTE, check multiple logical sequential accesses. 309 */ 310 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 311 bool tag_checked, int total_size, MemOp single_mop) 312 { 313 if (tag_checked && s->mte_active[0]) { 314 TCGv_i64 ret; 315 int desc = 0; 316 317 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 318 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 319 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 320 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 321 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 322 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 323 324 ret = tcg_temp_new_i64(); 325 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 326 327 return ret; 328 } 329 return clean_data_tbi(s, addr); 330 } 331 332 /* 333 * Generate the special alignment check that applies to AccType_ATOMIC 334 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 335 * naturally aligned, but it must not cross a 16-byte boundary. 336 * See AArch64.CheckAlignment(). 337 */ 338 static void check_lse2_align(DisasContext *s, int rn, int imm, 339 bool is_write, MemOp mop) 340 { 341 TCGv_i32 tmp; 342 TCGv_i64 addr; 343 TCGLabel *over_label; 344 MMUAccessType type; 345 int mmu_idx; 346 347 tmp = tcg_temp_new_i32(); 348 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 349 tcg_gen_addi_i32(tmp, tmp, imm & 15); 350 tcg_gen_andi_i32(tmp, tmp, 15); 351 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 352 353 over_label = gen_new_label(); 354 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 355 356 addr = tcg_temp_new_i64(); 357 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 358 359 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 360 mmu_idx = get_mem_index(s); 361 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 362 tcg_constant_i32(mmu_idx)); 363 364 gen_set_label(over_label); 365 366 } 367 368 /* Handle the alignment check for AccType_ATOMIC instructions. */ 369 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 370 { 371 MemOp size = mop & MO_SIZE; 372 373 if (size == MO_8) { 374 return mop; 375 } 376 377 /* 378 * If size == MO_128, this is a LDXP, and the operation is single-copy 379 * atomic for each doubleword, not the entire quadword; it still must 380 * be quadword aligned. 381 */ 382 if (size == MO_128) { 383 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 384 MO_ATOM_IFALIGN_PAIR); 385 } 386 if (dc_isar_feature(aa64_lse2, s)) { 387 check_lse2_align(s, rn, 0, true, mop); 388 } else { 389 mop |= MO_ALIGN; 390 } 391 return finalize_memop(s, mop); 392 } 393 394 /* Handle the alignment check for AccType_ORDERED instructions. */ 395 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 396 bool is_write, MemOp mop) 397 { 398 MemOp size = mop & MO_SIZE; 399 400 if (size == MO_8) { 401 return mop; 402 } 403 if (size == MO_128) { 404 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 405 MO_ATOM_IFALIGN_PAIR); 406 } 407 if (!dc_isar_feature(aa64_lse2, s)) { 408 mop |= MO_ALIGN; 409 } else if (!s->naa) { 410 check_lse2_align(s, rn, imm, is_write, mop); 411 } 412 return finalize_memop(s, mop); 413 } 414 415 typedef struct DisasCompare64 { 416 TCGCond cond; 417 TCGv_i64 value; 418 } DisasCompare64; 419 420 static void a64_test_cc(DisasCompare64 *c64, int cc) 421 { 422 DisasCompare c32; 423 424 arm_test_cc(&c32, cc); 425 426 /* 427 * Sign-extend the 32-bit value so that the GE/LT comparisons work 428 * properly. The NE/EQ comparisons are also fine with this choice. 429 */ 430 c64->cond = c32.cond; 431 c64->value = tcg_temp_new_i64(); 432 tcg_gen_ext_i32_i64(c64->value, c32.value); 433 } 434 435 static void gen_rebuild_hflags(DisasContext *s) 436 { 437 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 438 } 439 440 static void gen_exception_internal(int excp) 441 { 442 assert(excp_is_internal(excp)); 443 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 444 } 445 446 static void gen_exception_internal_insn(DisasContext *s, int excp) 447 { 448 gen_a64_update_pc(s, 0); 449 gen_exception_internal(excp); 450 s->base.is_jmp = DISAS_NORETURN; 451 } 452 453 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 454 { 455 gen_a64_update_pc(s, 0); 456 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 457 s->base.is_jmp = DISAS_NORETURN; 458 } 459 460 static void gen_step_complete_exception(DisasContext *s) 461 { 462 /* We just completed step of an insn. Move from Active-not-pending 463 * to Active-pending, and then also take the swstep exception. 464 * This corresponds to making the (IMPDEF) choice to prioritize 465 * swstep exceptions over asynchronous exceptions taken to an exception 466 * level where debug is disabled. This choice has the advantage that 467 * we do not need to maintain internal state corresponding to the 468 * ISV/EX syndrome bits between completion of the step and generation 469 * of the exception, and our syndrome information is always correct. 470 */ 471 gen_ss_advance(s); 472 gen_swstep_exception(s, 1, s->is_ldex); 473 s->base.is_jmp = DISAS_NORETURN; 474 } 475 476 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 477 { 478 if (s->ss_active) { 479 return false; 480 } 481 return translator_use_goto_tb(&s->base, dest); 482 } 483 484 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 485 { 486 if (use_goto_tb(s, s->pc_curr + diff)) { 487 /* 488 * For pcrel, the pc must always be up-to-date on entry to 489 * the linked TB, so that it can use simple additions for all 490 * further adjustments. For !pcrel, the linked TB is compiled 491 * to know its full virtual address, so we can delay the 492 * update to pc to the unlinked path. A long chain of links 493 * can thus avoid many updates to the PC. 494 */ 495 if (tb_cflags(s->base.tb) & CF_PCREL) { 496 gen_a64_update_pc(s, diff); 497 tcg_gen_goto_tb(n); 498 } else { 499 tcg_gen_goto_tb(n); 500 gen_a64_update_pc(s, diff); 501 } 502 tcg_gen_exit_tb(s->base.tb, n); 503 s->base.is_jmp = DISAS_NORETURN; 504 } else { 505 gen_a64_update_pc(s, diff); 506 if (s->ss_active) { 507 gen_step_complete_exception(s); 508 } else { 509 tcg_gen_lookup_and_goto_ptr(); 510 s->base.is_jmp = DISAS_NORETURN; 511 } 512 } 513 } 514 515 /* 516 * Register access functions 517 * 518 * These functions are used for directly accessing a register in where 519 * changes to the final register value are likely to be made. If you 520 * need to use a register for temporary calculation (e.g. index type 521 * operations) use the read_* form. 522 * 523 * B1.2.1 Register mappings 524 * 525 * In instruction register encoding 31 can refer to ZR (zero register) or 526 * the SP (stack pointer) depending on context. In QEMU's case we map SP 527 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 528 * This is the point of the _sp forms. 529 */ 530 TCGv_i64 cpu_reg(DisasContext *s, int reg) 531 { 532 if (reg == 31) { 533 TCGv_i64 t = tcg_temp_new_i64(); 534 tcg_gen_movi_i64(t, 0); 535 return t; 536 } else { 537 return cpu_X[reg]; 538 } 539 } 540 541 /* register access for when 31 == SP */ 542 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 543 { 544 return cpu_X[reg]; 545 } 546 547 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 548 * representing the register contents. This TCGv is an auto-freed 549 * temporary so it need not be explicitly freed, and may be modified. 550 */ 551 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 552 { 553 TCGv_i64 v = tcg_temp_new_i64(); 554 if (reg != 31) { 555 if (sf) { 556 tcg_gen_mov_i64(v, cpu_X[reg]); 557 } else { 558 tcg_gen_ext32u_i64(v, cpu_X[reg]); 559 } 560 } else { 561 tcg_gen_movi_i64(v, 0); 562 } 563 return v; 564 } 565 566 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 567 { 568 TCGv_i64 v = tcg_temp_new_i64(); 569 if (sf) { 570 tcg_gen_mov_i64(v, cpu_X[reg]); 571 } else { 572 tcg_gen_ext32u_i64(v, cpu_X[reg]); 573 } 574 return v; 575 } 576 577 /* Return the offset into CPUARMState of a slice (from 578 * the least significant end) of FP register Qn (ie 579 * Dn, Sn, Hn or Bn). 580 * (Note that this is not the same mapping as for A32; see cpu.h) 581 */ 582 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 583 { 584 return vec_reg_offset(s, regno, 0, size); 585 } 586 587 /* Offset of the high half of the 128 bit vector Qn */ 588 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 589 { 590 return vec_reg_offset(s, regno, 1, MO_64); 591 } 592 593 /* Convenience accessors for reading and writing single and double 594 * FP registers. Writing clears the upper parts of the associated 595 * 128 bit vector register, as required by the architecture. 596 * Note that unlike the GP register accessors, the values returned 597 * by the read functions must be manually freed. 598 */ 599 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 600 { 601 TCGv_i64 v = tcg_temp_new_i64(); 602 603 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 604 return v; 605 } 606 607 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 608 { 609 TCGv_i32 v = tcg_temp_new_i32(); 610 611 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 620 return v; 621 } 622 623 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 624 * If SVE is not enabled, then there are only 128 bits in the vector. 625 */ 626 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 627 { 628 unsigned ofs = fp_reg_offset(s, rd, MO_64); 629 unsigned vsz = vec_full_reg_size(s); 630 631 /* Nop move, with side effect of clearing the tail. */ 632 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 633 } 634 635 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 636 { 637 unsigned ofs = fp_reg_offset(s, reg, MO_64); 638 639 tcg_gen_st_i64(v, cpu_env, ofs); 640 clear_vec_high(s, false, reg); 641 } 642 643 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 644 { 645 TCGv_i64 tmp = tcg_temp_new_i64(); 646 647 tcg_gen_extu_i32_i64(tmp, v); 648 write_fp_dreg(s, reg, tmp); 649 } 650 651 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 652 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 653 GVecGen2Fn *gvec_fn, int vece) 654 { 655 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 656 is_q ? 16 : 8, vec_full_reg_size(s)); 657 } 658 659 /* Expand a 2-operand + immediate AdvSIMD vector operation using 660 * an expander function. 661 */ 662 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 663 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 664 { 665 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 666 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 667 } 668 669 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 670 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 671 GVecGen3Fn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 int rx, GVecGen4Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 683 is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 2-operand operation using an out-of-line helper. */ 687 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 688 int rn, int data, gen_helper_gvec_2 *fn) 689 { 690 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 691 vec_full_reg_offset(s, rn), 692 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 693 } 694 695 /* Expand a 3-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int rm, int data, gen_helper_gvec_3 *fn) 698 { 699 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 vec_full_reg_offset(s, rm), 702 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 703 } 704 705 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 706 * an out-of-line helper. 707 */ 708 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 709 int rm, bool is_fp16, int data, 710 gen_helper_gvec_3_ptr *fn) 711 { 712 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 713 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 714 vec_full_reg_offset(s, rn), 715 vec_full_reg_offset(s, rm), fpst, 716 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 717 } 718 719 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 720 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 721 int rm, gen_helper_gvec_3_ptr *fn) 722 { 723 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 724 725 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 726 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 727 vec_full_reg_offset(s, rn), 728 vec_full_reg_offset(s, rm), qc_ptr, 729 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 730 } 731 732 /* Expand a 4-operand operation using an out-of-line helper. */ 733 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 734 int rm, int ra, int data, gen_helper_gvec_4 *fn) 735 { 736 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 737 vec_full_reg_offset(s, rn), 738 vec_full_reg_offset(s, rm), 739 vec_full_reg_offset(s, ra), 740 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 741 } 742 743 /* 744 * Expand a 4-operand + fpstatus pointer + simd data value operation using 745 * an out-of-line helper. 746 */ 747 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 748 int rm, int ra, bool is_fp16, int data, 749 gen_helper_gvec_4_ptr *fn) 750 { 751 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 752 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 753 vec_full_reg_offset(s, rn), 754 vec_full_reg_offset(s, rm), 755 vec_full_reg_offset(s, ra), fpst, 756 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 757 } 758 759 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 760 * than the 32 bit equivalent. 761 */ 762 static inline void gen_set_NZ64(TCGv_i64 result) 763 { 764 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 765 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 766 } 767 768 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 769 static inline void gen_logic_CC(int sf, TCGv_i64 result) 770 { 771 if (sf) { 772 gen_set_NZ64(result); 773 } else { 774 tcg_gen_extrl_i64_i32(cpu_ZF, result); 775 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 776 } 777 tcg_gen_movi_i32(cpu_CF, 0); 778 tcg_gen_movi_i32(cpu_VF, 0); 779 } 780 781 /* dest = T0 + T1; compute C, N, V and Z flags */ 782 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i64 result, flag, tmp; 785 result = tcg_temp_new_i64(); 786 flag = tcg_temp_new_i64(); 787 tmp = tcg_temp_new_i64(); 788 789 tcg_gen_movi_i64(tmp, 0); 790 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 791 792 tcg_gen_extrl_i64_i32(cpu_CF, flag); 793 794 gen_set_NZ64(result); 795 796 tcg_gen_xor_i64(flag, result, t0); 797 tcg_gen_xor_i64(tmp, t0, t1); 798 tcg_gen_andc_i64(flag, flag, tmp); 799 tcg_gen_extrh_i64_i32(cpu_VF, flag); 800 801 tcg_gen_mov_i64(dest, result); 802 } 803 804 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 805 { 806 TCGv_i32 t0_32 = tcg_temp_new_i32(); 807 TCGv_i32 t1_32 = tcg_temp_new_i32(); 808 TCGv_i32 tmp = tcg_temp_new_i32(); 809 810 tcg_gen_movi_i32(tmp, 0); 811 tcg_gen_extrl_i64_i32(t0_32, t0); 812 tcg_gen_extrl_i64_i32(t1_32, t1); 813 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 814 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 815 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 816 tcg_gen_xor_i32(tmp, t0_32, t1_32); 817 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 818 tcg_gen_extu_i32_i64(dest, cpu_NF); 819 } 820 821 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 822 { 823 if (sf) { 824 gen_add64_CC(dest, t0, t1); 825 } else { 826 gen_add32_CC(dest, t0, t1); 827 } 828 } 829 830 /* dest = T0 - T1; compute C, N, V and Z flags */ 831 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 64 bit arithmetic */ 834 TCGv_i64 result, flag, tmp; 835 836 result = tcg_temp_new_i64(); 837 flag = tcg_temp_new_i64(); 838 tcg_gen_sub_i64(result, t0, t1); 839 840 gen_set_NZ64(result); 841 842 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 843 tcg_gen_extrl_i64_i32(cpu_CF, flag); 844 845 tcg_gen_xor_i64(flag, result, t0); 846 tmp = tcg_temp_new_i64(); 847 tcg_gen_xor_i64(tmp, t0, t1); 848 tcg_gen_and_i64(flag, flag, tmp); 849 tcg_gen_extrh_i64_i32(cpu_VF, flag); 850 tcg_gen_mov_i64(dest, result); 851 } 852 853 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 854 { 855 /* 32 bit arithmetic */ 856 TCGv_i32 t0_32 = tcg_temp_new_i32(); 857 TCGv_i32 t1_32 = tcg_temp_new_i32(); 858 TCGv_i32 tmp; 859 860 tcg_gen_extrl_i64_i32(t0_32, t0); 861 tcg_gen_extrl_i64_i32(t1_32, t1); 862 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 863 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 864 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 865 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 866 tmp = tcg_temp_new_i32(); 867 tcg_gen_xor_i32(tmp, t0_32, t1_32); 868 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 869 tcg_gen_extu_i32_i64(dest, cpu_NF); 870 } 871 872 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 873 { 874 if (sf) { 875 gen_sub64_CC(dest, t0, t1); 876 } else { 877 gen_sub32_CC(dest, t0, t1); 878 } 879 } 880 881 /* dest = T0 + T1 + CF; do not compute flags. */ 882 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 883 { 884 TCGv_i64 flag = tcg_temp_new_i64(); 885 tcg_gen_extu_i32_i64(flag, cpu_CF); 886 tcg_gen_add_i64(dest, t0, t1); 887 tcg_gen_add_i64(dest, dest, flag); 888 889 if (!sf) { 890 tcg_gen_ext32u_i64(dest, dest); 891 } 892 } 893 894 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 895 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 896 { 897 if (sf) { 898 TCGv_i64 result = tcg_temp_new_i64(); 899 TCGv_i64 cf_64 = tcg_temp_new_i64(); 900 TCGv_i64 vf_64 = tcg_temp_new_i64(); 901 TCGv_i64 tmp = tcg_temp_new_i64(); 902 TCGv_i64 zero = tcg_constant_i64(0); 903 904 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 905 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 906 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 907 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 908 gen_set_NZ64(result); 909 910 tcg_gen_xor_i64(vf_64, result, t0); 911 tcg_gen_xor_i64(tmp, t0, t1); 912 tcg_gen_andc_i64(vf_64, vf_64, tmp); 913 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 914 915 tcg_gen_mov_i64(dest, result); 916 } else { 917 TCGv_i32 t0_32 = tcg_temp_new_i32(); 918 TCGv_i32 t1_32 = tcg_temp_new_i32(); 919 TCGv_i32 tmp = tcg_temp_new_i32(); 920 TCGv_i32 zero = tcg_constant_i32(0); 921 922 tcg_gen_extrl_i64_i32(t0_32, t0); 923 tcg_gen_extrl_i64_i32(t1_32, t1); 924 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 925 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 926 927 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 928 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 929 tcg_gen_xor_i32(tmp, t0_32, t1_32); 930 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 931 tcg_gen_extu_i32_i64(dest, cpu_NF); 932 } 933 } 934 935 /* 936 * Load/Store generators 937 */ 938 939 /* 940 * Store from GPR register to memory. 941 */ 942 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, int memidx, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 949 950 if (iss_valid) { 951 uint32_t syn; 952 953 syn = syn_data_abort_with_iss(0, 954 (memop & MO_SIZE), 955 false, 956 iss_srt, 957 iss_sf, 958 iss_ar, 959 0, 0, 0, 0, 0, false); 960 disas_set_insn_syndrome(s, syn); 961 } 962 } 963 964 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 965 TCGv_i64 tcg_addr, MemOp memop, 966 bool iss_valid, 967 unsigned int iss_srt, 968 bool iss_sf, bool iss_ar) 969 { 970 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 971 iss_valid, iss_srt, iss_sf, iss_ar); 972 } 973 974 /* 975 * Load from memory to GPR register 976 */ 977 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 978 MemOp memop, bool extend, int memidx, 979 bool iss_valid, unsigned int iss_srt, 980 bool iss_sf, bool iss_ar) 981 { 982 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 983 984 if (extend && (memop & MO_SIGN)) { 985 g_assert((memop & MO_SIZE) <= MO_32); 986 tcg_gen_ext32u_i64(dest, dest); 987 } 988 989 if (iss_valid) { 990 uint32_t syn; 991 992 syn = syn_data_abort_with_iss(0, 993 (memop & MO_SIZE), 994 (memop & MO_SIGN) != 0, 995 iss_srt, 996 iss_sf, 997 iss_ar, 998 0, 0, 0, 0, 0, false); 999 disas_set_insn_syndrome(s, syn); 1000 } 1001 } 1002 1003 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1004 MemOp memop, bool extend, 1005 bool iss_valid, unsigned int iss_srt, 1006 bool iss_sf, bool iss_ar) 1007 { 1008 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1009 iss_valid, iss_srt, iss_sf, iss_ar); 1010 } 1011 1012 /* 1013 * Store from FP register to memory 1014 */ 1015 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1016 { 1017 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1018 TCGv_i64 tmplo = tcg_temp_new_i64(); 1019 1020 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i64 tmphi = tcg_temp_new_i64(); 1026 TCGv_i128 t16 = tcg_temp_new_i128(); 1027 1028 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1029 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1030 1031 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1032 } 1033 } 1034 1035 /* 1036 * Load from memory to FP register 1037 */ 1038 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1039 { 1040 /* This always zero-extends and writes to a full 128 bit wide vector */ 1041 TCGv_i64 tmplo = tcg_temp_new_i64(); 1042 TCGv_i64 tmphi = NULL; 1043 1044 if ((mop & MO_SIZE) < MO_128) { 1045 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1046 } else { 1047 TCGv_i128 t16 = tcg_temp_new_i128(); 1048 1049 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1050 1051 tmphi = tcg_temp_new_i64(); 1052 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1053 } 1054 1055 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1056 1057 if (tmphi) { 1058 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1059 } 1060 clear_vec_high(s, tmphi != NULL, destidx); 1061 } 1062 1063 /* 1064 * Vector load/store helpers. 1065 * 1066 * The principal difference between this and a FP load is that we don't 1067 * zero extend as we are filling a partial chunk of the vector register. 1068 * These functions don't support 128 bit loads/stores, which would be 1069 * normal load/store operations. 1070 * 1071 * The _i32 versions are useful when operating on 32 bit quantities 1072 * (eg for floating point single or using Neon helper functions). 1073 */ 1074 1075 /* Get value of an element within a vector register */ 1076 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1077 int element, MemOp memop) 1078 { 1079 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1080 switch ((unsigned)memop) { 1081 case MO_8: 1082 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1083 break; 1084 case MO_16: 1085 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1086 break; 1087 case MO_32: 1088 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1089 break; 1090 case MO_8|MO_SIGN: 1091 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1092 break; 1093 case MO_16|MO_SIGN: 1094 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1095 break; 1096 case MO_32|MO_SIGN: 1097 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1098 break; 1099 case MO_64: 1100 case MO_64|MO_SIGN: 1101 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1102 break; 1103 default: 1104 g_assert_not_reached(); 1105 } 1106 } 1107 1108 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1109 int element, MemOp memop) 1110 { 1111 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1112 switch (memop) { 1113 case MO_8: 1114 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1115 break; 1116 case MO_16: 1117 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1118 break; 1119 case MO_8|MO_SIGN: 1120 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1121 break; 1122 case MO_16|MO_SIGN: 1123 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1124 break; 1125 case MO_32: 1126 case MO_32|MO_SIGN: 1127 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1128 break; 1129 default: 1130 g_assert_not_reached(); 1131 } 1132 } 1133 1134 /* Set value of an element within a vector register */ 1135 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1136 int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1148 break; 1149 case MO_64: 1150 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1151 break; 1152 default: 1153 g_assert_not_reached(); 1154 } 1155 } 1156 1157 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1158 int destidx, int element, MemOp memop) 1159 { 1160 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1161 switch (memop) { 1162 case MO_8: 1163 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1164 break; 1165 case MO_16: 1166 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1167 break; 1168 case MO_32: 1169 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1170 break; 1171 default: 1172 g_assert_not_reached(); 1173 } 1174 } 1175 1176 /* Store from vector register to memory */ 1177 static void do_vec_st(DisasContext *s, int srcidx, int element, 1178 TCGv_i64 tcg_addr, MemOp mop) 1179 { 1180 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1181 1182 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1183 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1184 } 1185 1186 /* Load from memory to vector register */ 1187 static void do_vec_ld(DisasContext *s, int destidx, int element, 1188 TCGv_i64 tcg_addr, MemOp mop) 1189 { 1190 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1191 1192 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1194 } 1195 1196 /* Check that FP/Neon access is enabled. If it is, return 1197 * true. If not, emit code to generate an appropriate exception, 1198 * and return false; the caller should not emit any code for 1199 * the instruction. Note that this check must happen after all 1200 * unallocated-encoding checks (otherwise the syndrome information 1201 * for the resulting exception will be incorrect). 1202 */ 1203 static bool fp_access_check_only(DisasContext *s) 1204 { 1205 if (s->fp_excp_el) { 1206 assert(!s->fp_access_checked); 1207 s->fp_access_checked = true; 1208 1209 gen_exception_insn_el(s, 0, EXCP_UDEF, 1210 syn_fp_access_trap(1, 0xe, false, 0), 1211 s->fp_excp_el); 1212 return false; 1213 } 1214 s->fp_access_checked = true; 1215 return true; 1216 } 1217 1218 static bool fp_access_check(DisasContext *s) 1219 { 1220 if (!fp_access_check_only(s)) { 1221 return false; 1222 } 1223 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1224 gen_exception_insn(s, 0, EXCP_UDEF, 1225 syn_smetrap(SME_ET_Streaming, false)); 1226 return false; 1227 } 1228 return true; 1229 } 1230 1231 /* 1232 * Check that SVE access is enabled. If it is, return true. 1233 * If not, emit code to generate an appropriate exception and return false. 1234 * This function corresponds to CheckSVEEnabled(). 1235 */ 1236 bool sve_access_check(DisasContext *s) 1237 { 1238 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1239 assert(dc_isar_feature(aa64_sme, s)); 1240 if (!sme_sm_enabled_check(s)) { 1241 goto fail_exit; 1242 } 1243 } else if (s->sve_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_sve_access_trap(), s->sve_excp_el); 1246 goto fail_exit; 1247 } 1248 s->sve_access_checked = true; 1249 return fp_access_check(s); 1250 1251 fail_exit: 1252 /* Assert that we only raise one exception per instruction. */ 1253 assert(!s->sve_access_checked); 1254 s->sve_access_checked = true; 1255 return false; 1256 } 1257 1258 /* 1259 * Check that SME access is enabled, raise an exception if not. 1260 * Note that this function corresponds to CheckSMEAccess and is 1261 * only used directly for cpregs. 1262 */ 1263 static bool sme_access_check(DisasContext *s) 1264 { 1265 if (s->sme_excp_el) { 1266 gen_exception_insn_el(s, 0, EXCP_UDEF, 1267 syn_smetrap(SME_ET_AccessTrap, false), 1268 s->sme_excp_el); 1269 return false; 1270 } 1271 return true; 1272 } 1273 1274 /* This function corresponds to CheckSMEEnabled. */ 1275 bool sme_enabled_check(DisasContext *s) 1276 { 1277 /* 1278 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1279 * to be zero when fp_excp_el has priority. This is because we need 1280 * sme_excp_el by itself for cpregs access checks. 1281 */ 1282 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1283 s->fp_access_checked = true; 1284 return sme_access_check(s); 1285 } 1286 return fp_access_check_only(s); 1287 } 1288 1289 /* Common subroutine for CheckSMEAnd*Enabled. */ 1290 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1291 { 1292 if (!sme_enabled_check(s)) { 1293 return false; 1294 } 1295 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1296 gen_exception_insn(s, 0, EXCP_UDEF, 1297 syn_smetrap(SME_ET_NotStreaming, false)); 1298 return false; 1299 } 1300 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1301 gen_exception_insn(s, 0, EXCP_UDEF, 1302 syn_smetrap(SME_ET_InactiveZA, false)); 1303 return false; 1304 } 1305 return true; 1306 } 1307 1308 /* 1309 * This utility function is for doing register extension with an 1310 * optional shift. You will likely want to pass a temporary for the 1311 * destination register. See DecodeRegExtend() in the ARM ARM. 1312 */ 1313 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1314 int option, unsigned int shift) 1315 { 1316 int extsize = extract32(option, 0, 2); 1317 bool is_signed = extract32(option, 2, 1); 1318 1319 if (is_signed) { 1320 switch (extsize) { 1321 case 0: 1322 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1323 break; 1324 case 1: 1325 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1326 break; 1327 case 2: 1328 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1329 break; 1330 case 3: 1331 tcg_gen_mov_i64(tcg_out, tcg_in); 1332 break; 1333 } 1334 } else { 1335 switch (extsize) { 1336 case 0: 1337 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1338 break; 1339 case 1: 1340 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1341 break; 1342 case 2: 1343 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1344 break; 1345 case 3: 1346 tcg_gen_mov_i64(tcg_out, tcg_in); 1347 break; 1348 } 1349 } 1350 1351 if (shift) { 1352 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1353 } 1354 } 1355 1356 static inline void gen_check_sp_alignment(DisasContext *s) 1357 { 1358 /* The AArch64 architecture mandates that (if enabled via PSTATE 1359 * or SCTLR bits) there is a check that SP is 16-aligned on every 1360 * SP-relative load or store (with an exception generated if it is not). 1361 * In line with general QEMU practice regarding misaligned accesses, 1362 * we omit these checks for the sake of guest program performance. 1363 * This function is provided as a hook so we can more easily add these 1364 * checks in future (possibly as a "favour catching guest program bugs 1365 * over speed" user selectable option). 1366 */ 1367 } 1368 1369 /* 1370 * This provides a simple table based table lookup decoder. It is 1371 * intended to be used when the relevant bits for decode are too 1372 * awkwardly placed and switch/if based logic would be confusing and 1373 * deeply nested. Since it's a linear search through the table, tables 1374 * should be kept small. 1375 * 1376 * It returns the first handler where insn & mask == pattern, or 1377 * NULL if there is no match. 1378 * The table is terminated by an empty mask (i.e. 0) 1379 */ 1380 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1381 uint32_t insn) 1382 { 1383 const AArch64DecodeTable *tptr = table; 1384 1385 while (tptr->mask) { 1386 if ((insn & tptr->mask) == tptr->pattern) { 1387 return tptr->disas_fn; 1388 } 1389 tptr++; 1390 } 1391 return NULL; 1392 } 1393 1394 /* 1395 * The instruction disassembly implemented here matches 1396 * the instruction encoding classifications in chapter C4 1397 * of the ARM Architecture Reference Manual (DDI0487B_a); 1398 * classification names and decode diagrams here should generally 1399 * match up with those in the manual. 1400 */ 1401 1402 static bool trans_B(DisasContext *s, arg_i *a) 1403 { 1404 reset_btype(s); 1405 gen_goto_tb(s, 0, a->imm); 1406 return true; 1407 } 1408 1409 static bool trans_BL(DisasContext *s, arg_i *a) 1410 { 1411 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1412 reset_btype(s); 1413 gen_goto_tb(s, 0, a->imm); 1414 return true; 1415 } 1416 1417 1418 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1419 { 1420 DisasLabel match; 1421 TCGv_i64 tcg_cmp; 1422 1423 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1424 reset_btype(s); 1425 1426 match = gen_disas_label(s); 1427 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1428 tcg_cmp, 0, match.label); 1429 gen_goto_tb(s, 0, 4); 1430 set_disas_label(s, match); 1431 gen_goto_tb(s, 1, a->imm); 1432 return true; 1433 } 1434 1435 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1436 { 1437 DisasLabel match; 1438 TCGv_i64 tcg_cmp; 1439 1440 tcg_cmp = tcg_temp_new_i64(); 1441 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1442 1443 reset_btype(s); 1444 1445 match = gen_disas_label(s); 1446 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1447 tcg_cmp, 0, match.label); 1448 gen_goto_tb(s, 0, 4); 1449 set_disas_label(s, match); 1450 gen_goto_tb(s, 1, a->imm); 1451 return true; 1452 } 1453 1454 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1455 { 1456 reset_btype(s); 1457 if (a->cond < 0x0e) { 1458 /* genuinely conditional branches */ 1459 DisasLabel match = gen_disas_label(s); 1460 arm_gen_test_cc(a->cond, match.label); 1461 gen_goto_tb(s, 0, 4); 1462 set_disas_label(s, match); 1463 gen_goto_tb(s, 1, a->imm); 1464 } else { 1465 /* 0xe and 0xf are both "always" conditions */ 1466 gen_goto_tb(s, 0, a->imm); 1467 } 1468 return true; 1469 } 1470 1471 static void set_btype_for_br(DisasContext *s, int rn) 1472 { 1473 if (dc_isar_feature(aa64_bti, s)) { 1474 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1475 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1476 } 1477 } 1478 1479 static void set_btype_for_blr(DisasContext *s) 1480 { 1481 if (dc_isar_feature(aa64_bti, s)) { 1482 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1483 set_btype(s, 2); 1484 } 1485 } 1486 1487 static bool trans_BR(DisasContext *s, arg_r *a) 1488 { 1489 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1490 set_btype_for_br(s, a->rn); 1491 s->base.is_jmp = DISAS_JUMP; 1492 return true; 1493 } 1494 1495 static bool trans_BLR(DisasContext *s, arg_r *a) 1496 { 1497 TCGv_i64 dst = cpu_reg(s, a->rn); 1498 TCGv_i64 lr = cpu_reg(s, 30); 1499 if (dst == lr) { 1500 TCGv_i64 tmp = tcg_temp_new_i64(); 1501 tcg_gen_mov_i64(tmp, dst); 1502 dst = tmp; 1503 } 1504 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1505 gen_a64_set_pc(s, dst); 1506 set_btype_for_blr(s); 1507 s->base.is_jmp = DISAS_JUMP; 1508 return true; 1509 } 1510 1511 static bool trans_RET(DisasContext *s, arg_r *a) 1512 { 1513 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1514 s->base.is_jmp = DISAS_JUMP; 1515 return true; 1516 } 1517 1518 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1519 TCGv_i64 modifier, bool use_key_a) 1520 { 1521 TCGv_i64 truedst; 1522 /* 1523 * Return the branch target for a BRAA/RETA/etc, which is either 1524 * just the destination dst, or that value with the pauth check 1525 * done and the code removed from the high bits. 1526 */ 1527 if (!s->pauth_active) { 1528 return dst; 1529 } 1530 1531 truedst = tcg_temp_new_i64(); 1532 if (use_key_a) { 1533 gen_helper_autia_combined(truedst, cpu_env, dst, modifier); 1534 } else { 1535 gen_helper_autib_combined(truedst, cpu_env, dst, modifier); 1536 } 1537 return truedst; 1538 } 1539 1540 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1541 { 1542 TCGv_i64 dst; 1543 1544 if (!dc_isar_feature(aa64_pauth, s)) { 1545 return false; 1546 } 1547 1548 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_br(s, a->rn); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1556 { 1557 TCGv_i64 dst, lr; 1558 1559 if (!dc_isar_feature(aa64_pauth, s)) { 1560 return false; 1561 } 1562 1563 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1564 lr = cpu_reg(s, 30); 1565 if (dst == lr) { 1566 TCGv_i64 tmp = tcg_temp_new_i64(); 1567 tcg_gen_mov_i64(tmp, dst); 1568 dst = tmp; 1569 } 1570 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1571 gen_a64_set_pc(s, dst); 1572 set_btype_for_blr(s); 1573 s->base.is_jmp = DISAS_JUMP; 1574 return true; 1575 } 1576 1577 static bool trans_RETA(DisasContext *s, arg_reta *a) 1578 { 1579 TCGv_i64 dst; 1580 1581 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1582 gen_a64_set_pc(s, dst); 1583 s->base.is_jmp = DISAS_JUMP; 1584 return true; 1585 } 1586 1587 static bool trans_BRA(DisasContext *s, arg_bra *a) 1588 { 1589 TCGv_i64 dst; 1590 1591 if (!dc_isar_feature(aa64_pauth, s)) { 1592 return false; 1593 } 1594 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1595 gen_a64_set_pc(s, dst); 1596 set_btype_for_br(s, a->rn); 1597 s->base.is_jmp = DISAS_JUMP; 1598 return true; 1599 } 1600 1601 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1602 { 1603 TCGv_i64 dst, lr; 1604 1605 if (!dc_isar_feature(aa64_pauth, s)) { 1606 return false; 1607 } 1608 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1609 lr = cpu_reg(s, 30); 1610 if (dst == lr) { 1611 TCGv_i64 tmp = tcg_temp_new_i64(); 1612 tcg_gen_mov_i64(tmp, dst); 1613 dst = tmp; 1614 } 1615 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1616 gen_a64_set_pc(s, dst); 1617 set_btype_for_blr(s); 1618 s->base.is_jmp = DISAS_JUMP; 1619 return true; 1620 } 1621 1622 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1623 { 1624 TCGv_i64 dst; 1625 1626 if (s->current_el == 0) { 1627 return false; 1628 } 1629 if (s->fgt_eret) { 1630 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1631 return true; 1632 } 1633 dst = tcg_temp_new_i64(); 1634 tcg_gen_ld_i64(dst, cpu_env, 1635 offsetof(CPUARMState, elr_el[s->current_el])); 1636 1637 translator_io_start(&s->base); 1638 1639 gen_helper_exception_return(cpu_env, dst); 1640 /* Must exit loop to check un-masked IRQs */ 1641 s->base.is_jmp = DISAS_EXIT; 1642 return true; 1643 } 1644 1645 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1646 { 1647 TCGv_i64 dst; 1648 1649 if (!dc_isar_feature(aa64_pauth, s)) { 1650 return false; 1651 } 1652 if (s->current_el == 0) { 1653 return false; 1654 } 1655 /* The FGT trap takes precedence over an auth trap. */ 1656 if (s->fgt_eret) { 1657 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1658 return true; 1659 } 1660 dst = tcg_temp_new_i64(); 1661 tcg_gen_ld_i64(dst, cpu_env, 1662 offsetof(CPUARMState, elr_el[s->current_el])); 1663 1664 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(cpu_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1675 { 1676 return true; 1677 } 1678 1679 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_YIELD; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1694 { 1695 s->base.is_jmp = DISAS_WFI; 1696 return true; 1697 } 1698 1699 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1700 { 1701 /* 1702 * When running in MTTCG we don't generate jumps to the yield and 1703 * WFE helpers as it won't affect the scheduling of other vCPUs. 1704 * If we wanted to more completely model WFE/SEV so we don't busy 1705 * spin unnecessarily we would need to do something more involved. 1706 */ 1707 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1708 s->base.is_jmp = DISAS_WFE; 1709 } 1710 return true; 1711 } 1712 1713 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1714 { 1715 if (s->pauth_active) { 1716 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1717 } 1718 return true; 1719 } 1720 1721 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1722 { 1723 if (s->pauth_active) { 1724 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1725 } 1726 return true; 1727 } 1728 1729 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1730 { 1731 if (s->pauth_active) { 1732 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1733 } 1734 return true; 1735 } 1736 1737 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1738 { 1739 if (s->pauth_active) { 1740 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1741 } 1742 return true; 1743 } 1744 1745 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1746 { 1747 if (s->pauth_active) { 1748 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1754 { 1755 /* Without RAS, we must implement this as NOP. */ 1756 if (dc_isar_feature(aa64_ras, s)) { 1757 /* 1758 * QEMU does not have a source of physical SErrors, 1759 * so we are only concerned with virtual SErrors. 1760 * The pseudocode in the ARM for this case is 1761 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1762 * AArch64.vESBOperation(); 1763 * Most of the condition can be evaluated at translation time. 1764 * Test for EL2 present, and defer test for SEL2 to runtime. 1765 */ 1766 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1767 gen_helper_vesb(cpu_env); 1768 } 1769 } 1770 return true; 1771 } 1772 1773 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1774 { 1775 if (s->pauth_active) { 1776 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1777 } 1778 return true; 1779 } 1780 1781 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1782 { 1783 if (s->pauth_active) { 1784 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1785 } 1786 return true; 1787 } 1788 1789 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1790 { 1791 if (s->pauth_active) { 1792 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1793 } 1794 return true; 1795 } 1796 1797 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1798 { 1799 if (s->pauth_active) { 1800 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1801 } 1802 return true; 1803 } 1804 1805 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1806 { 1807 if (s->pauth_active) { 1808 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1809 } 1810 return true; 1811 } 1812 1813 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1814 { 1815 if (s->pauth_active) { 1816 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1817 } 1818 return true; 1819 } 1820 1821 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1822 { 1823 if (s->pauth_active) { 1824 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1825 } 1826 return true; 1827 } 1828 1829 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1830 { 1831 if (s->pauth_active) { 1832 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1833 } 1834 return true; 1835 } 1836 1837 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1838 { 1839 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1840 return true; 1841 } 1842 1843 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1844 { 1845 /* We handle DSB and DMB the same way */ 1846 TCGBar bar; 1847 1848 switch (a->types) { 1849 case 1: /* MBReqTypes_Reads */ 1850 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1851 break; 1852 case 2: /* MBReqTypes_Writes */ 1853 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1854 break; 1855 default: /* MBReqTypes_All */ 1856 bar = TCG_BAR_SC | TCG_MO_ALL; 1857 break; 1858 } 1859 tcg_gen_mb(bar); 1860 return true; 1861 } 1862 1863 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1864 { 1865 /* 1866 * We need to break the TB after this insn to execute 1867 * self-modifying code correctly and also to take 1868 * any pending interrupts immediately. 1869 */ 1870 reset_btype(s); 1871 gen_goto_tb(s, 0, 4); 1872 return true; 1873 } 1874 1875 static bool trans_SB(DisasContext *s, arg_SB *a) 1876 { 1877 if (!dc_isar_feature(aa64_sb, s)) { 1878 return false; 1879 } 1880 /* 1881 * TODO: There is no speculation barrier opcode for TCG; 1882 * MB and end the TB instead. 1883 */ 1884 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1885 gen_goto_tb(s, 0, 4); 1886 return true; 1887 } 1888 1889 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1890 { 1891 if (!dc_isar_feature(aa64_condm_4, s)) { 1892 return false; 1893 } 1894 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1895 return true; 1896 } 1897 1898 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1899 { 1900 TCGv_i32 z; 1901 1902 if (!dc_isar_feature(aa64_condm_5, s)) { 1903 return false; 1904 } 1905 1906 z = tcg_temp_new_i32(); 1907 1908 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1909 1910 /* 1911 * (!C & !Z) << 31 1912 * (!(C | Z)) << 31 1913 * ~((C | Z) << 31) 1914 * ~-(C | Z) 1915 * (C | Z) - 1 1916 */ 1917 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1918 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1919 1920 /* !(Z & C) */ 1921 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1922 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1923 1924 /* (!C & Z) << 31 -> -(Z & ~C) */ 1925 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1926 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1927 1928 /* C | Z */ 1929 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1930 1931 return true; 1932 } 1933 1934 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1935 { 1936 if (!dc_isar_feature(aa64_condm_5, s)) { 1937 return false; 1938 } 1939 1940 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1941 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1942 1943 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1944 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1945 1946 tcg_gen_movi_i32(cpu_NF, 0); 1947 tcg_gen_movi_i32(cpu_VF, 0); 1948 1949 return true; 1950 } 1951 1952 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1953 { 1954 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1955 return false; 1956 } 1957 if (a->imm & 1) { 1958 set_pstate_bits(PSTATE_UAO); 1959 } else { 1960 clear_pstate_bits(PSTATE_UAO); 1961 } 1962 gen_rebuild_hflags(s); 1963 s->base.is_jmp = DISAS_TOO_MANY; 1964 return true; 1965 } 1966 1967 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1968 { 1969 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1970 return false; 1971 } 1972 if (a->imm & 1) { 1973 set_pstate_bits(PSTATE_PAN); 1974 } else { 1975 clear_pstate_bits(PSTATE_PAN); 1976 } 1977 gen_rebuild_hflags(s); 1978 s->base.is_jmp = DISAS_TOO_MANY; 1979 return true; 1980 } 1981 1982 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1983 { 1984 if (s->current_el == 0) { 1985 return false; 1986 } 1987 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1988 s->base.is_jmp = DISAS_TOO_MANY; 1989 return true; 1990 } 1991 1992 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1993 { 1994 if (!dc_isar_feature(aa64_ssbs, s)) { 1995 return false; 1996 } 1997 if (a->imm & 1) { 1998 set_pstate_bits(PSTATE_SSBS); 1999 } else { 2000 clear_pstate_bits(PSTATE_SSBS); 2001 } 2002 /* Don't need to rebuild hflags since SSBS is a nop */ 2003 s->base.is_jmp = DISAS_TOO_MANY; 2004 return true; 2005 } 2006 2007 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2008 { 2009 if (!dc_isar_feature(aa64_dit, s)) { 2010 return false; 2011 } 2012 if (a->imm & 1) { 2013 set_pstate_bits(PSTATE_DIT); 2014 } else { 2015 clear_pstate_bits(PSTATE_DIT); 2016 } 2017 /* There's no need to rebuild hflags because DIT is a nop */ 2018 s->base.is_jmp = DISAS_TOO_MANY; 2019 return true; 2020 } 2021 2022 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2023 { 2024 if (dc_isar_feature(aa64_mte, s)) { 2025 /* Full MTE is enabled -- set the TCO bit as directed. */ 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_TCO); 2028 } else { 2029 clear_pstate_bits(PSTATE_TCO); 2030 } 2031 gen_rebuild_hflags(s); 2032 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2033 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2034 return true; 2035 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2036 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2037 return true; 2038 } else { 2039 /* Insn not present */ 2040 return false; 2041 } 2042 } 2043 2044 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2045 { 2046 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm)); 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2052 { 2053 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm)); 2054 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2055 s->base.is_jmp = DISAS_UPDATE_EXIT; 2056 return true; 2057 } 2058 2059 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2060 { 2061 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2062 return false; 2063 } 2064 if (sme_access_check(s)) { 2065 int old = s->pstate_sm | (s->pstate_za << 1); 2066 int new = a->imm * 3; 2067 2068 if ((old ^ new) & a->mask) { 2069 /* At least one bit changes. */ 2070 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2071 tcg_constant_i32(a->mask)); 2072 s->base.is_jmp = DISAS_TOO_MANY; 2073 } 2074 } 2075 return true; 2076 } 2077 2078 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2079 { 2080 TCGv_i32 tmp = tcg_temp_new_i32(); 2081 TCGv_i32 nzcv = tcg_temp_new_i32(); 2082 2083 /* build bit 31, N */ 2084 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2085 /* build bit 30, Z */ 2086 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2087 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2088 /* build bit 29, C */ 2089 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2090 /* build bit 28, V */ 2091 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2092 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2093 /* generate result */ 2094 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2095 } 2096 2097 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2098 { 2099 TCGv_i32 nzcv = tcg_temp_new_i32(); 2100 2101 /* take NZCV from R[t] */ 2102 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2103 2104 /* bit 31, N */ 2105 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2106 /* bit 30, Z */ 2107 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2108 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2109 /* bit 29, C */ 2110 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2111 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2112 /* bit 28, V */ 2113 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2114 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2115 } 2116 2117 static void gen_sysreg_undef(DisasContext *s, bool isread, 2118 uint8_t op0, uint8_t op1, uint8_t op2, 2119 uint8_t crn, uint8_t crm, uint8_t rt) 2120 { 2121 /* 2122 * Generate code to emit an UNDEF with correct syndrome 2123 * information for a failed system register access. 2124 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2125 * but if FEAT_IDST is implemented then read accesses to registers 2126 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2127 * syndrome. 2128 */ 2129 uint32_t syndrome; 2130 2131 if (isread && dc_isar_feature(aa64_ids, s) && 2132 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2133 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2134 } else { 2135 syndrome = syn_uncategorized(); 2136 } 2137 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2138 } 2139 2140 /* MRS - move from system register 2141 * MSR (register) - move to system register 2142 * SYS 2143 * SYSL 2144 * These are all essentially the same insn in 'read' and 'write' 2145 * versions, with varying op0 fields. 2146 */ 2147 static void handle_sys(DisasContext *s, bool isread, 2148 unsigned int op0, unsigned int op1, unsigned int op2, 2149 unsigned int crn, unsigned int crm, unsigned int rt) 2150 { 2151 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2152 crn, crm, op0, op1, op2); 2153 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2154 bool need_exit_tb = false; 2155 TCGv_ptr tcg_ri = NULL; 2156 TCGv_i64 tcg_rt; 2157 2158 if (!ri) { 2159 /* Unknown register; this might be a guest error or a QEMU 2160 * unimplemented feature. 2161 */ 2162 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2163 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2164 isread ? "read" : "write", op0, op1, crn, crm, op2); 2165 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2166 return; 2167 } 2168 2169 /* Check access permissions */ 2170 if (!cp_access_ok(s->current_el, ri, isread)) { 2171 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2172 return; 2173 } 2174 2175 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2176 /* Emit code to perform further access permissions checks at 2177 * runtime; this may result in an exception. 2178 */ 2179 uint32_t syndrome; 2180 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 gen_a64_update_pc(s, 0); 2183 tcg_ri = tcg_temp_new_ptr(); 2184 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2185 tcg_constant_i32(key), 2186 tcg_constant_i32(syndrome), 2187 tcg_constant_i32(isread)); 2188 } else if (ri->type & ARM_CP_RAISES_EXC) { 2189 /* 2190 * The readfn or writefn might raise an exception; 2191 * synchronize the CPU state in case it does. 2192 */ 2193 gen_a64_update_pc(s, 0); 2194 } 2195 2196 /* Handle special cases first */ 2197 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2198 case 0: 2199 break; 2200 case ARM_CP_NOP: 2201 return; 2202 case ARM_CP_NZCV: 2203 tcg_rt = cpu_reg(s, rt); 2204 if (isread) { 2205 gen_get_nzcv(tcg_rt); 2206 } else { 2207 gen_set_nzcv(tcg_rt); 2208 } 2209 return; 2210 case ARM_CP_CURRENTEL: 2211 /* Reads as current EL value from pstate, which is 2212 * guaranteed to be constant by the tb flags. 2213 */ 2214 tcg_rt = cpu_reg(s, rt); 2215 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2216 return; 2217 case ARM_CP_DC_ZVA: 2218 /* Writes clear the aligned block of memory which rt points into. */ 2219 if (s->mte_active[0]) { 2220 int desc = 0; 2221 2222 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2223 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2224 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2225 2226 tcg_rt = tcg_temp_new_i64(); 2227 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2228 tcg_constant_i32(desc), cpu_reg(s, rt)); 2229 } else { 2230 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2231 } 2232 gen_helper_dc_zva(cpu_env, tcg_rt); 2233 return; 2234 case ARM_CP_DC_GVA: 2235 { 2236 TCGv_i64 clean_addr, tag; 2237 2238 /* 2239 * DC_GVA, like DC_ZVA, requires that we supply the original 2240 * pointer for an invalid page. Probe that address first. 2241 */ 2242 tcg_rt = cpu_reg(s, rt); 2243 clean_addr = clean_data_tbi(s, tcg_rt); 2244 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2245 2246 if (s->ata) { 2247 /* Extract the tag from the register to match STZGM. */ 2248 tag = tcg_temp_new_i64(); 2249 tcg_gen_shri_i64(tag, tcg_rt, 56); 2250 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2251 } 2252 } 2253 return; 2254 case ARM_CP_DC_GZVA: 2255 { 2256 TCGv_i64 clean_addr, tag; 2257 2258 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2259 tcg_rt = cpu_reg(s, rt); 2260 clean_addr = clean_data_tbi(s, tcg_rt); 2261 gen_helper_dc_zva(cpu_env, clean_addr); 2262 2263 if (s->ata) { 2264 /* Extract the tag from the register to match STZGM. */ 2265 tag = tcg_temp_new_i64(); 2266 tcg_gen_shri_i64(tag, tcg_rt, 56); 2267 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2268 } 2269 } 2270 return; 2271 default: 2272 g_assert_not_reached(); 2273 } 2274 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2275 return; 2276 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2277 return; 2278 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2279 return; 2280 } 2281 2282 if (ri->type & ARM_CP_IO) { 2283 /* I/O operations must end the TB here (whether read or write) */ 2284 need_exit_tb = translator_io_start(&s->base); 2285 } 2286 2287 tcg_rt = cpu_reg(s, rt); 2288 2289 if (isread) { 2290 if (ri->type & ARM_CP_CONST) { 2291 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2292 } else if (ri->readfn) { 2293 if (!tcg_ri) { 2294 tcg_ri = gen_lookup_cp_reg(key); 2295 } 2296 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2297 } else { 2298 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2299 } 2300 } else { 2301 if (ri->type & ARM_CP_CONST) { 2302 /* If not forbidden by access permissions, treat as WI */ 2303 return; 2304 } else if (ri->writefn) { 2305 if (!tcg_ri) { 2306 tcg_ri = gen_lookup_cp_reg(key); 2307 } 2308 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2309 } else { 2310 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2311 } 2312 } 2313 2314 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2315 /* 2316 * A write to any coprocessor register that ends a TB 2317 * must rebuild the hflags for the next TB. 2318 */ 2319 gen_rebuild_hflags(s); 2320 /* 2321 * We default to ending the TB on a coprocessor register write, 2322 * but allow this to be suppressed by the register definition 2323 * (usually only necessary to work around guest bugs). 2324 */ 2325 need_exit_tb = true; 2326 } 2327 if (need_exit_tb) { 2328 s->base.is_jmp = DISAS_UPDATE_EXIT; 2329 } 2330 } 2331 2332 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2333 { 2334 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2335 return true; 2336 } 2337 2338 static bool trans_SVC(DisasContext *s, arg_i *a) 2339 { 2340 /* 2341 * For SVC, HVC and SMC we advance the single-step state 2342 * machine before taking the exception. This is architecturally 2343 * mandated, to ensure that single-stepping a system call 2344 * instruction works properly. 2345 */ 2346 uint32_t syndrome = syn_aa64_svc(a->imm); 2347 if (s->fgt_svc) { 2348 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2349 return true; 2350 } 2351 gen_ss_advance(s); 2352 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2353 return true; 2354 } 2355 2356 static bool trans_HVC(DisasContext *s, arg_i *a) 2357 { 2358 if (s->current_el == 0) { 2359 unallocated_encoding(s); 2360 return true; 2361 } 2362 /* 2363 * The pre HVC helper handles cases when HVC gets trapped 2364 * as an undefined insn by runtime configuration. 2365 */ 2366 gen_a64_update_pc(s, 0); 2367 gen_helper_pre_hvc(cpu_env); 2368 /* Architecture requires ss advance before we do the actual work */ 2369 gen_ss_advance(s); 2370 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2); 2371 return true; 2372 } 2373 2374 static bool trans_SMC(DisasContext *s, arg_i *a) 2375 { 2376 if (s->current_el == 0) { 2377 unallocated_encoding(s); 2378 return true; 2379 } 2380 gen_a64_update_pc(s, 0); 2381 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2382 /* Architecture requires ss advance before we do the actual work */ 2383 gen_ss_advance(s); 2384 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2385 return true; 2386 } 2387 2388 static bool trans_BRK(DisasContext *s, arg_i *a) 2389 { 2390 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2391 return true; 2392 } 2393 2394 static bool trans_HLT(DisasContext *s, arg_i *a) 2395 { 2396 /* 2397 * HLT. This has two purposes. 2398 * Architecturally, it is an external halting debug instruction. 2399 * Since QEMU doesn't implement external debug, we treat this as 2400 * it is required for halting debug disabled: it will UNDEF. 2401 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2402 */ 2403 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2404 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2405 } else { 2406 unallocated_encoding(s); 2407 } 2408 return true; 2409 } 2410 2411 /* 2412 * Load/Store exclusive instructions are implemented by remembering 2413 * the value/address loaded, and seeing if these are the same 2414 * when the store is performed. This is not actually the architecturally 2415 * mandated semantics, but it works for typical guest code sequences 2416 * and avoids having to monitor regular stores. 2417 * 2418 * The store exclusive uses the atomic cmpxchg primitives to avoid 2419 * races in multi-threaded linux-user and when MTTCG softmmu is 2420 * enabled. 2421 */ 2422 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2423 int size, bool is_pair) 2424 { 2425 int idx = get_mem_index(s); 2426 TCGv_i64 dirty_addr, clean_addr; 2427 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2428 2429 s->is_ldex = true; 2430 dirty_addr = cpu_reg_sp(s, rn); 2431 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2432 2433 g_assert(size <= 3); 2434 if (is_pair) { 2435 g_assert(size >= 2); 2436 if (size == 2) { 2437 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2438 if (s->be_data == MO_LE) { 2439 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2440 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2441 } else { 2442 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2443 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2444 } 2445 } else { 2446 TCGv_i128 t16 = tcg_temp_new_i128(); 2447 2448 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2449 2450 if (s->be_data == MO_LE) { 2451 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2452 cpu_exclusive_high, t16); 2453 } else { 2454 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2455 cpu_exclusive_val, t16); 2456 } 2457 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2458 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2459 } 2460 } else { 2461 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2462 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2463 } 2464 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2465 } 2466 2467 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2468 int rn, int size, int is_pair) 2469 { 2470 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2471 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2472 * [addr] = {Rt}; 2473 * if (is_pair) { 2474 * [addr + datasize] = {Rt2}; 2475 * } 2476 * {Rd} = 0; 2477 * } else { 2478 * {Rd} = 1; 2479 * } 2480 * env->exclusive_addr = -1; 2481 */ 2482 TCGLabel *fail_label = gen_new_label(); 2483 TCGLabel *done_label = gen_new_label(); 2484 TCGv_i64 tmp, clean_addr; 2485 MemOp memop; 2486 2487 /* 2488 * FIXME: We are out of spec here. We have recorded only the address 2489 * from load_exclusive, not the entire range, and we assume that the 2490 * size of the access on both sides match. The architecture allows the 2491 * store to be smaller than the load, so long as the stored bytes are 2492 * within the range recorded by the load. 2493 */ 2494 2495 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2496 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2497 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2498 2499 /* 2500 * The write, and any associated faults, only happen if the virtual 2501 * and physical addresses pass the exclusive monitor check. These 2502 * faults are exceedingly unlikely, because normally the guest uses 2503 * the exact same address register for the load_exclusive, and we 2504 * would have recognized these faults there. 2505 * 2506 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2507 * unaligned 4-byte write within the range of an aligned 8-byte load. 2508 * With LSE2, the store would need to cross a 16-byte boundary when the 2509 * load did not, which would mean the store is outside the range 2510 * recorded for the monitor, which would have failed a corrected monitor 2511 * check above. For now, we assume no size change and retain the 2512 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2513 * 2514 * It is possible to trigger an MTE fault, by performing the load with 2515 * a virtual address with a valid tag and performing the store with the 2516 * same virtual address and a different invalid tag. 2517 */ 2518 memop = size + is_pair; 2519 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2520 memop |= MO_ALIGN; 2521 } 2522 memop = finalize_memop(s, memop); 2523 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2524 2525 tmp = tcg_temp_new_i64(); 2526 if (is_pair) { 2527 if (size == 2) { 2528 if (s->be_data == MO_LE) { 2529 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2530 } else { 2531 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2532 } 2533 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2534 cpu_exclusive_val, tmp, 2535 get_mem_index(s), memop); 2536 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2537 } else { 2538 TCGv_i128 t16 = tcg_temp_new_i128(); 2539 TCGv_i128 c16 = tcg_temp_new_i128(); 2540 TCGv_i64 a, b; 2541 2542 if (s->be_data == MO_LE) { 2543 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2544 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2545 cpu_exclusive_high); 2546 } else { 2547 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2548 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2549 cpu_exclusive_val); 2550 } 2551 2552 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2553 get_mem_index(s), memop); 2554 2555 a = tcg_temp_new_i64(); 2556 b = tcg_temp_new_i64(); 2557 if (s->be_data == MO_LE) { 2558 tcg_gen_extr_i128_i64(a, b, t16); 2559 } else { 2560 tcg_gen_extr_i128_i64(b, a, t16); 2561 } 2562 2563 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2564 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2565 tcg_gen_or_i64(tmp, a, b); 2566 2567 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2568 } 2569 } else { 2570 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2571 cpu_reg(s, rt), get_mem_index(s), memop); 2572 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2573 } 2574 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2575 tcg_gen_br(done_label); 2576 2577 gen_set_label(fail_label); 2578 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2579 gen_set_label(done_label); 2580 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2581 } 2582 2583 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2584 int rn, int size) 2585 { 2586 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2587 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2588 int memidx = get_mem_index(s); 2589 TCGv_i64 clean_addr; 2590 MemOp memop; 2591 2592 if (rn == 31) { 2593 gen_check_sp_alignment(s); 2594 } 2595 memop = check_atomic_align(s, rn, size); 2596 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2597 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2598 memidx, memop); 2599 } 2600 2601 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2602 int rn, int size) 2603 { 2604 TCGv_i64 s1 = cpu_reg(s, rs); 2605 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2606 TCGv_i64 t1 = cpu_reg(s, rt); 2607 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2608 TCGv_i64 clean_addr; 2609 int memidx = get_mem_index(s); 2610 MemOp memop; 2611 2612 if (rn == 31) { 2613 gen_check_sp_alignment(s); 2614 } 2615 2616 /* This is a single atomic access, despite the "pair". */ 2617 memop = check_atomic_align(s, rn, size + 1); 2618 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2619 2620 if (size == 2) { 2621 TCGv_i64 cmp = tcg_temp_new_i64(); 2622 TCGv_i64 val = tcg_temp_new_i64(); 2623 2624 if (s->be_data == MO_LE) { 2625 tcg_gen_concat32_i64(val, t1, t2); 2626 tcg_gen_concat32_i64(cmp, s1, s2); 2627 } else { 2628 tcg_gen_concat32_i64(val, t2, t1); 2629 tcg_gen_concat32_i64(cmp, s2, s1); 2630 } 2631 2632 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2633 2634 if (s->be_data == MO_LE) { 2635 tcg_gen_extr32_i64(s1, s2, cmp); 2636 } else { 2637 tcg_gen_extr32_i64(s2, s1, cmp); 2638 } 2639 } else { 2640 TCGv_i128 cmp = tcg_temp_new_i128(); 2641 TCGv_i128 val = tcg_temp_new_i128(); 2642 2643 if (s->be_data == MO_LE) { 2644 tcg_gen_concat_i64_i128(val, t1, t2); 2645 tcg_gen_concat_i64_i128(cmp, s1, s2); 2646 } else { 2647 tcg_gen_concat_i64_i128(val, t2, t1); 2648 tcg_gen_concat_i64_i128(cmp, s2, s1); 2649 } 2650 2651 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2652 2653 if (s->be_data == MO_LE) { 2654 tcg_gen_extr_i128_i64(s1, s2, cmp); 2655 } else { 2656 tcg_gen_extr_i128_i64(s2, s1, cmp); 2657 } 2658 } 2659 } 2660 2661 /* 2662 * Compute the ISS.SF bit for syndrome information if an exception 2663 * is taken on a load or store. This indicates whether the instruction 2664 * is accessing a 32-bit or 64-bit register. This logic is derived 2665 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2666 */ 2667 static bool ldst_iss_sf(int size, bool sign, bool ext) 2668 { 2669 2670 if (sign) { 2671 /* 2672 * Signed loads are 64 bit results if we are not going to 2673 * do a zero-extend from 32 to 64 after the load. 2674 * (For a store, sign and ext are always false.) 2675 */ 2676 return !ext; 2677 } else { 2678 /* Unsigned loads/stores work at the specified size */ 2679 return size == MO_64; 2680 } 2681 } 2682 2683 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2684 { 2685 if (a->rn == 31) { 2686 gen_check_sp_alignment(s); 2687 } 2688 if (a->lasr) { 2689 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2690 } 2691 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2692 return true; 2693 } 2694 2695 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2696 { 2697 if (a->rn == 31) { 2698 gen_check_sp_alignment(s); 2699 } 2700 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2701 if (a->lasr) { 2702 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2703 } 2704 return true; 2705 } 2706 2707 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2708 { 2709 TCGv_i64 clean_addr; 2710 MemOp memop; 2711 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2712 2713 /* 2714 * StoreLORelease is the same as Store-Release for QEMU, but 2715 * needs the feature-test. 2716 */ 2717 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2718 return false; 2719 } 2720 /* Generate ISS for non-exclusive accesses including LASR. */ 2721 if (a->rn == 31) { 2722 gen_check_sp_alignment(s); 2723 } 2724 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2725 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2726 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2727 true, a->rn != 31, memop); 2728 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2729 iss_sf, a->lasr); 2730 return true; 2731 } 2732 2733 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2734 { 2735 TCGv_i64 clean_addr; 2736 MemOp memop; 2737 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2738 2739 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2740 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2741 return false; 2742 } 2743 /* Generate ISS for non-exclusive accesses including LASR. */ 2744 if (a->rn == 31) { 2745 gen_check_sp_alignment(s); 2746 } 2747 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2748 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2749 false, a->rn != 31, memop); 2750 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2751 a->rt, iss_sf, a->lasr); 2752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2753 return true; 2754 } 2755 2756 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2757 { 2758 if (a->rn == 31) { 2759 gen_check_sp_alignment(s); 2760 } 2761 if (a->lasr) { 2762 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2763 } 2764 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2765 return true; 2766 } 2767 2768 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2769 { 2770 if (a->rn == 31) { 2771 gen_check_sp_alignment(s); 2772 } 2773 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2774 if (a->lasr) { 2775 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2776 } 2777 return true; 2778 } 2779 2780 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2781 { 2782 if (!dc_isar_feature(aa64_atomics, s)) { 2783 return false; 2784 } 2785 if (((a->rt | a->rs) & 1) != 0) { 2786 return false; 2787 } 2788 2789 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2790 return true; 2791 } 2792 2793 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2794 { 2795 if (!dc_isar_feature(aa64_atomics, s)) { 2796 return false; 2797 } 2798 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2799 return true; 2800 } 2801 2802 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2803 { 2804 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2805 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2806 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2807 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2808 2809 gen_pc_plus_diff(s, clean_addr, a->imm); 2810 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2811 false, true, a->rt, iss_sf, false); 2812 return true; 2813 } 2814 2815 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2816 { 2817 /* Load register (literal), vector version */ 2818 TCGv_i64 clean_addr; 2819 MemOp memop; 2820 2821 if (!fp_access_check(s)) { 2822 return true; 2823 } 2824 memop = finalize_memop_asimd(s, a->sz); 2825 clean_addr = tcg_temp_new_i64(); 2826 gen_pc_plus_diff(s, clean_addr, a->imm); 2827 do_fp_ld(s, a->rt, clean_addr, memop); 2828 return true; 2829 } 2830 2831 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2832 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2833 uint64_t offset, bool is_store, MemOp mop) 2834 { 2835 if (a->rn == 31) { 2836 gen_check_sp_alignment(s); 2837 } 2838 2839 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2840 if (!a->p) { 2841 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2842 } 2843 2844 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2845 (a->w || a->rn != 31), 2 << a->sz, mop); 2846 } 2847 2848 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2849 TCGv_i64 dirty_addr, uint64_t offset) 2850 { 2851 if (a->w) { 2852 if (a->p) { 2853 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2854 } 2855 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2856 } 2857 } 2858 2859 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2860 { 2861 uint64_t offset = a->imm << a->sz; 2862 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2863 MemOp mop = finalize_memop(s, a->sz); 2864 2865 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2866 tcg_rt = cpu_reg(s, a->rt); 2867 tcg_rt2 = cpu_reg(s, a->rt2); 2868 /* 2869 * We built mop above for the single logical access -- rebuild it 2870 * now for the paired operation. 2871 * 2872 * With LSE2, non-sign-extending pairs are treated atomically if 2873 * aligned, and if unaligned one of the pair will be completely 2874 * within a 16-byte block and that element will be atomic. 2875 * Otherwise each element is separately atomic. 2876 * In all cases, issue one operation with the correct atomicity. 2877 */ 2878 mop = a->sz + 1; 2879 if (s->align_mem) { 2880 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2881 } 2882 mop = finalize_memop_pair(s, mop); 2883 if (a->sz == 2) { 2884 TCGv_i64 tmp = tcg_temp_new_i64(); 2885 2886 if (s->be_data == MO_LE) { 2887 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2888 } else { 2889 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2890 } 2891 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2892 } else { 2893 TCGv_i128 tmp = tcg_temp_new_i128(); 2894 2895 if (s->be_data == MO_LE) { 2896 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 2897 } else { 2898 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 2899 } 2900 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 2901 } 2902 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2903 return true; 2904 } 2905 2906 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 2907 { 2908 uint64_t offset = a->imm << a->sz; 2909 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2910 MemOp mop = finalize_memop(s, a->sz); 2911 2912 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2913 tcg_rt = cpu_reg(s, a->rt); 2914 tcg_rt2 = cpu_reg(s, a->rt2); 2915 2916 /* 2917 * We built mop above for the single logical access -- rebuild it 2918 * now for the paired operation. 2919 * 2920 * With LSE2, non-sign-extending pairs are treated atomically if 2921 * aligned, and if unaligned one of the pair will be completely 2922 * within a 16-byte block and that element will be atomic. 2923 * Otherwise each element is separately atomic. 2924 * In all cases, issue one operation with the correct atomicity. 2925 * 2926 * This treats sign-extending loads like zero-extending loads, 2927 * since that reuses the most code below. 2928 */ 2929 mop = a->sz + 1; 2930 if (s->align_mem) { 2931 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2932 } 2933 mop = finalize_memop_pair(s, mop); 2934 if (a->sz == 2) { 2935 int o2 = s->be_data == MO_LE ? 32 : 0; 2936 int o1 = o2 ^ 32; 2937 2938 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2939 if (a->sign) { 2940 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2941 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2942 } else { 2943 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2944 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2945 } 2946 } else { 2947 TCGv_i128 tmp = tcg_temp_new_i128(); 2948 2949 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2950 if (s->be_data == MO_LE) { 2951 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2952 } else { 2953 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2954 } 2955 } 2956 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2957 return true; 2958 } 2959 2960 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 2961 { 2962 uint64_t offset = a->imm << a->sz; 2963 TCGv_i64 clean_addr, dirty_addr; 2964 MemOp mop; 2965 2966 if (!fp_access_check(s)) { 2967 return true; 2968 } 2969 2970 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2971 mop = finalize_memop_asimd(s, a->sz); 2972 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2973 do_fp_st(s, a->rt, clean_addr, mop); 2974 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2975 do_fp_st(s, a->rt2, clean_addr, mop); 2976 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2977 return true; 2978 } 2979 2980 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 2981 { 2982 uint64_t offset = a->imm << a->sz; 2983 TCGv_i64 clean_addr, dirty_addr; 2984 MemOp mop; 2985 2986 if (!fp_access_check(s)) { 2987 return true; 2988 } 2989 2990 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2991 mop = finalize_memop_asimd(s, a->sz); 2992 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2993 do_fp_ld(s, a->rt, clean_addr, mop); 2994 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2995 do_fp_ld(s, a->rt2, clean_addr, mop); 2996 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2997 return true; 2998 } 2999 3000 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3001 { 3002 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3003 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3004 MemOp mop; 3005 TCGv_i128 tmp; 3006 3007 /* STGP only comes in one size. */ 3008 tcg_debug_assert(a->sz == MO_64); 3009 3010 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3011 return false; 3012 } 3013 3014 if (a->rn == 31) { 3015 gen_check_sp_alignment(s); 3016 } 3017 3018 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3019 if (!a->p) { 3020 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3021 } 3022 3023 clean_addr = clean_data_tbi(s, dirty_addr); 3024 tcg_rt = cpu_reg(s, a->rt); 3025 tcg_rt2 = cpu_reg(s, a->rt2); 3026 3027 /* 3028 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3029 * and one tag operation. We implement it as one single aligned 16-byte 3030 * memory operation for convenience. Note that the alignment ensures 3031 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3032 */ 3033 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3034 3035 tmp = tcg_temp_new_i128(); 3036 if (s->be_data == MO_LE) { 3037 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3038 } else { 3039 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3040 } 3041 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3042 3043 /* Perform the tag store, if tag access enabled. */ 3044 if (s->ata) { 3045 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3046 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3047 } else { 3048 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3049 } 3050 } 3051 3052 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3053 return true; 3054 } 3055 3056 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3057 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3058 uint64_t offset, bool is_store, MemOp mop) 3059 { 3060 int memidx; 3061 3062 if (a->rn == 31) { 3063 gen_check_sp_alignment(s); 3064 } 3065 3066 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3067 if (!a->p) { 3068 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3069 } 3070 memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3071 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3072 a->w || a->rn != 31, 3073 mop, a->unpriv, memidx); 3074 } 3075 3076 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3077 TCGv_i64 dirty_addr, uint64_t offset) 3078 { 3079 if (a->w) { 3080 if (a->p) { 3081 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3082 } 3083 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3084 } 3085 } 3086 3087 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3088 { 3089 bool iss_sf, iss_valid = !a->w; 3090 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3091 int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3092 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3093 3094 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3095 3096 tcg_rt = cpu_reg(s, a->rt); 3097 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3098 3099 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3100 iss_valid, a->rt, iss_sf, false); 3101 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3102 return true; 3103 } 3104 3105 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3106 { 3107 bool iss_sf, iss_valid = !a->w; 3108 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3109 int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3110 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3111 3112 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3113 3114 tcg_rt = cpu_reg(s, a->rt); 3115 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3116 3117 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3118 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3119 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3120 return true; 3121 } 3122 3123 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3124 { 3125 TCGv_i64 clean_addr, dirty_addr; 3126 MemOp mop; 3127 3128 if (!fp_access_check(s)) { 3129 return true; 3130 } 3131 mop = finalize_memop_asimd(s, a->sz); 3132 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3133 do_fp_st(s, a->rt, clean_addr, mop); 3134 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3135 return true; 3136 } 3137 3138 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3139 { 3140 TCGv_i64 clean_addr, dirty_addr; 3141 MemOp mop; 3142 3143 if (!fp_access_check(s)) { 3144 return true; 3145 } 3146 mop = finalize_memop_asimd(s, a->sz); 3147 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3148 do_fp_ld(s, a->rt, clean_addr, mop); 3149 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3150 return true; 3151 } 3152 3153 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3154 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3155 bool is_store, MemOp memop) 3156 { 3157 TCGv_i64 tcg_rm; 3158 3159 if (a->rn == 31) { 3160 gen_check_sp_alignment(s); 3161 } 3162 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3163 3164 tcg_rm = read_cpu_reg(s, a->rm, 1); 3165 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3166 3167 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3168 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3169 } 3170 3171 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3172 { 3173 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3174 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3175 MemOp memop; 3176 3177 if (extract32(a->opt, 1, 1) == 0) { 3178 return false; 3179 } 3180 3181 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3182 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3183 tcg_rt = cpu_reg(s, a->rt); 3184 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3185 a->ext, true, a->rt, iss_sf, false); 3186 return true; 3187 } 3188 3189 static bool trans_STR(DisasContext *s, arg_ldst *a) 3190 { 3191 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3192 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3193 MemOp memop; 3194 3195 if (extract32(a->opt, 1, 1) == 0) { 3196 return false; 3197 } 3198 3199 memop = finalize_memop(s, a->sz); 3200 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3201 tcg_rt = cpu_reg(s, a->rt); 3202 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3203 return true; 3204 } 3205 3206 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3207 { 3208 TCGv_i64 clean_addr, dirty_addr; 3209 MemOp memop; 3210 3211 if (extract32(a->opt, 1, 1) == 0) { 3212 return false; 3213 } 3214 3215 if (!fp_access_check(s)) { 3216 return true; 3217 } 3218 3219 memop = finalize_memop_asimd(s, a->sz); 3220 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3221 do_fp_ld(s, a->rt, clean_addr, memop); 3222 return true; 3223 } 3224 3225 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3226 { 3227 TCGv_i64 clean_addr, dirty_addr; 3228 MemOp memop; 3229 3230 if (extract32(a->opt, 1, 1) == 0) { 3231 return false; 3232 } 3233 3234 if (!fp_access_check(s)) { 3235 return true; 3236 } 3237 3238 memop = finalize_memop_asimd(s, a->sz); 3239 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3240 do_fp_st(s, a->rt, clean_addr, memop); 3241 return true; 3242 } 3243 3244 3245 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3246 int sign, bool invert) 3247 { 3248 MemOp mop = a->sz | sign; 3249 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3250 3251 if (a->rn == 31) { 3252 gen_check_sp_alignment(s); 3253 } 3254 mop = check_atomic_align(s, a->rn, mop); 3255 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3256 a->rn != 31, mop); 3257 tcg_rs = read_cpu_reg(s, a->rs, true); 3258 tcg_rt = cpu_reg(s, a->rt); 3259 if (invert) { 3260 tcg_gen_not_i64(tcg_rs, tcg_rs); 3261 } 3262 /* 3263 * The tcg atomic primitives are all full barriers. Therefore we 3264 * can ignore the Acquire and Release bits of this instruction. 3265 */ 3266 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3267 3268 if (mop & MO_SIGN) { 3269 switch (a->sz) { 3270 case MO_8: 3271 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3272 break; 3273 case MO_16: 3274 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3275 break; 3276 case MO_32: 3277 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3278 break; 3279 case MO_64: 3280 break; 3281 default: 3282 g_assert_not_reached(); 3283 } 3284 } 3285 return true; 3286 } 3287 3288 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3289 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3290 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3291 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3292 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3293 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3294 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3295 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3296 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3297 3298 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3299 { 3300 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3301 TCGv_i64 clean_addr; 3302 MemOp mop; 3303 3304 if (!dc_isar_feature(aa64_atomics, s) || 3305 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3306 return false; 3307 } 3308 if (a->rn == 31) { 3309 gen_check_sp_alignment(s); 3310 } 3311 mop = check_atomic_align(s, a->rn, a->sz); 3312 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3313 a->rn != 31, mop); 3314 /* 3315 * LDAPR* are a special case because they are a simple load, not a 3316 * fetch-and-do-something op. 3317 * The architectural consistency requirements here are weaker than 3318 * full load-acquire (we only need "load-acquire processor consistent"), 3319 * but we choose to implement them as full LDAQ. 3320 */ 3321 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3322 true, a->rt, iss_sf, true); 3323 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3324 return true; 3325 } 3326 3327 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3328 { 3329 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3330 MemOp memop; 3331 3332 /* Load with pointer authentication */ 3333 if (!dc_isar_feature(aa64_pauth, s)) { 3334 return false; 3335 } 3336 3337 if (a->rn == 31) { 3338 gen_check_sp_alignment(s); 3339 } 3340 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3341 3342 if (s->pauth_active) { 3343 if (!a->m) { 3344 gen_helper_autda_combined(dirty_addr, cpu_env, dirty_addr, 3345 tcg_constant_i64(0)); 3346 } else { 3347 gen_helper_autdb_combined(dirty_addr, cpu_env, dirty_addr, 3348 tcg_constant_i64(0)); 3349 } 3350 } 3351 3352 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3353 3354 memop = finalize_memop(s, MO_64); 3355 3356 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3357 clean_addr = gen_mte_check1(s, dirty_addr, false, 3358 a->w || a->rn != 31, memop); 3359 3360 tcg_rt = cpu_reg(s, a->rt); 3361 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3362 /* extend */ false, /* iss_valid */ !a->w, 3363 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3364 3365 if (a->w) { 3366 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3367 } 3368 return true; 3369 } 3370 3371 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3372 { 3373 TCGv_i64 clean_addr, dirty_addr; 3374 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3375 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3376 3377 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3378 return false; 3379 } 3380 3381 if (a->rn == 31) { 3382 gen_check_sp_alignment(s); 3383 } 3384 3385 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3386 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3387 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3388 clean_addr = clean_data_tbi(s, dirty_addr); 3389 3390 /* 3391 * Load-AcquirePC semantics; we implement as the slightly more 3392 * restrictive Load-Acquire. 3393 */ 3394 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3395 a->rt, iss_sf, true); 3396 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3397 return true; 3398 } 3399 3400 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3401 { 3402 TCGv_i64 clean_addr, dirty_addr; 3403 MemOp mop = a->sz; 3404 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3405 3406 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3407 return false; 3408 } 3409 3410 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3411 3412 if (a->rn == 31) { 3413 gen_check_sp_alignment(s); 3414 } 3415 3416 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3417 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3418 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3419 clean_addr = clean_data_tbi(s, dirty_addr); 3420 3421 /* Store-Release semantics */ 3422 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3423 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3424 return true; 3425 } 3426 3427 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3428 { 3429 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3430 MemOp endian, align, mop; 3431 3432 int total; /* total bytes */ 3433 int elements; /* elements per vector */ 3434 int r; 3435 int size = a->sz; 3436 3437 if (!a->p && a->rm != 0) { 3438 /* For non-postindexed accesses the Rm field must be 0 */ 3439 return false; 3440 } 3441 if (size == 3 && !a->q && a->selem != 1) { 3442 return false; 3443 } 3444 if (!fp_access_check(s)) { 3445 return true; 3446 } 3447 3448 if (a->rn == 31) { 3449 gen_check_sp_alignment(s); 3450 } 3451 3452 /* For our purposes, bytes are always little-endian. */ 3453 endian = s->be_data; 3454 if (size == 0) { 3455 endian = MO_LE; 3456 } 3457 3458 total = a->rpt * a->selem * (a->q ? 16 : 8); 3459 tcg_rn = cpu_reg_sp(s, a->rn); 3460 3461 /* 3462 * Issue the MTE check vs the logical repeat count, before we 3463 * promote consecutive little-endian elements below. 3464 */ 3465 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3466 finalize_memop_asimd(s, size)); 3467 3468 /* 3469 * Consecutive little-endian elements from a single register 3470 * can be promoted to a larger little-endian operation. 3471 */ 3472 align = MO_ALIGN; 3473 if (a->selem == 1 && endian == MO_LE) { 3474 align = pow2_align(size); 3475 size = 3; 3476 } 3477 if (!s->align_mem) { 3478 align = 0; 3479 } 3480 mop = endian | size | align; 3481 3482 elements = (a->q ? 16 : 8) >> size; 3483 tcg_ebytes = tcg_constant_i64(1 << size); 3484 for (r = 0; r < a->rpt; r++) { 3485 int e; 3486 for (e = 0; e < elements; e++) { 3487 int xs; 3488 for (xs = 0; xs < a->selem; xs++) { 3489 int tt = (a->rt + r + xs) % 32; 3490 do_vec_ld(s, tt, e, clean_addr, mop); 3491 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3492 } 3493 } 3494 } 3495 3496 /* 3497 * For non-quad operations, setting a slice of the low 64 bits of 3498 * the register clears the high 64 bits (in the ARM ARM pseudocode 3499 * this is implicit in the fact that 'rval' is a 64 bit wide 3500 * variable). For quad operations, we might still need to zero 3501 * the high bits of SVE. 3502 */ 3503 for (r = 0; r < a->rpt * a->selem; r++) { 3504 int tt = (a->rt + r) % 32; 3505 clear_vec_high(s, a->q, tt); 3506 } 3507 3508 if (a->p) { 3509 if (a->rm == 31) { 3510 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3511 } else { 3512 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3513 } 3514 } 3515 return true; 3516 } 3517 3518 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3519 { 3520 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3521 MemOp endian, align, mop; 3522 3523 int total; /* total bytes */ 3524 int elements; /* elements per vector */ 3525 int r; 3526 int size = a->sz; 3527 3528 if (!a->p && a->rm != 0) { 3529 /* For non-postindexed accesses the Rm field must be 0 */ 3530 return false; 3531 } 3532 if (size == 3 && !a->q && a->selem != 1) { 3533 return false; 3534 } 3535 if (!fp_access_check(s)) { 3536 return true; 3537 } 3538 3539 if (a->rn == 31) { 3540 gen_check_sp_alignment(s); 3541 } 3542 3543 /* For our purposes, bytes are always little-endian. */ 3544 endian = s->be_data; 3545 if (size == 0) { 3546 endian = MO_LE; 3547 } 3548 3549 total = a->rpt * a->selem * (a->q ? 16 : 8); 3550 tcg_rn = cpu_reg_sp(s, a->rn); 3551 3552 /* 3553 * Issue the MTE check vs the logical repeat count, before we 3554 * promote consecutive little-endian elements below. 3555 */ 3556 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3557 finalize_memop_asimd(s, size)); 3558 3559 /* 3560 * Consecutive little-endian elements from a single register 3561 * can be promoted to a larger little-endian operation. 3562 */ 3563 align = MO_ALIGN; 3564 if (a->selem == 1 && endian == MO_LE) { 3565 align = pow2_align(size); 3566 size = 3; 3567 } 3568 if (!s->align_mem) { 3569 align = 0; 3570 } 3571 mop = endian | size | align; 3572 3573 elements = (a->q ? 16 : 8) >> size; 3574 tcg_ebytes = tcg_constant_i64(1 << size); 3575 for (r = 0; r < a->rpt; r++) { 3576 int e; 3577 for (e = 0; e < elements; e++) { 3578 int xs; 3579 for (xs = 0; xs < a->selem; xs++) { 3580 int tt = (a->rt + r + xs) % 32; 3581 do_vec_st(s, tt, e, clean_addr, mop); 3582 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3583 } 3584 } 3585 } 3586 3587 if (a->p) { 3588 if (a->rm == 31) { 3589 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3590 } else { 3591 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3592 } 3593 } 3594 return true; 3595 } 3596 3597 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3598 { 3599 int xs, total, rt; 3600 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3601 MemOp mop; 3602 3603 if (!a->p && a->rm != 0) { 3604 return false; 3605 } 3606 if (!fp_access_check(s)) { 3607 return true; 3608 } 3609 3610 if (a->rn == 31) { 3611 gen_check_sp_alignment(s); 3612 } 3613 3614 total = a->selem << a->scale; 3615 tcg_rn = cpu_reg_sp(s, a->rn); 3616 3617 mop = finalize_memop_asimd(s, a->scale); 3618 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3619 total, mop); 3620 3621 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3622 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3623 do_vec_st(s, rt, a->index, clean_addr, mop); 3624 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3625 } 3626 3627 if (a->p) { 3628 if (a->rm == 31) { 3629 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3630 } else { 3631 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3632 } 3633 } 3634 return true; 3635 } 3636 3637 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3638 { 3639 int xs, total, rt; 3640 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3641 MemOp mop; 3642 3643 if (!a->p && a->rm != 0) { 3644 return false; 3645 } 3646 if (!fp_access_check(s)) { 3647 return true; 3648 } 3649 3650 if (a->rn == 31) { 3651 gen_check_sp_alignment(s); 3652 } 3653 3654 total = a->selem << a->scale; 3655 tcg_rn = cpu_reg_sp(s, a->rn); 3656 3657 mop = finalize_memop_asimd(s, a->scale); 3658 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3659 total, mop); 3660 3661 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3662 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3663 do_vec_ld(s, rt, a->index, clean_addr, mop); 3664 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3665 } 3666 3667 if (a->p) { 3668 if (a->rm == 31) { 3669 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3670 } else { 3671 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3672 } 3673 } 3674 return true; 3675 } 3676 3677 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3678 { 3679 int xs, total, rt; 3680 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3681 MemOp mop; 3682 3683 if (!a->p && a->rm != 0) { 3684 return false; 3685 } 3686 if (!fp_access_check(s)) { 3687 return true; 3688 } 3689 3690 if (a->rn == 31) { 3691 gen_check_sp_alignment(s); 3692 } 3693 3694 total = a->selem << a->scale; 3695 tcg_rn = cpu_reg_sp(s, a->rn); 3696 3697 mop = finalize_memop_asimd(s, a->scale); 3698 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3699 total, mop); 3700 3701 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3702 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3703 /* Load and replicate to all elements */ 3704 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3705 3706 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3707 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3708 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3709 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3710 } 3711 3712 if (a->p) { 3713 if (a->rm == 31) { 3714 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3715 } else { 3716 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3717 } 3718 } 3719 return true; 3720 } 3721 3722 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3723 { 3724 TCGv_i64 addr, clean_addr, tcg_rt; 3725 int size = 4 << s->dcz_blocksize; 3726 3727 if (!dc_isar_feature(aa64_mte, s)) { 3728 return false; 3729 } 3730 if (s->current_el == 0) { 3731 return false; 3732 } 3733 3734 if (a->rn == 31) { 3735 gen_check_sp_alignment(s); 3736 } 3737 3738 addr = read_cpu_reg_sp(s, a->rn, true); 3739 tcg_gen_addi_i64(addr, addr, a->imm); 3740 tcg_rt = cpu_reg(s, a->rt); 3741 3742 if (s->ata) { 3743 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 3744 } 3745 /* 3746 * The non-tags portion of STZGM is mostly like DC_ZVA, 3747 * except the alignment happens before the access. 3748 */ 3749 clean_addr = clean_data_tbi(s, addr); 3750 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3751 gen_helper_dc_zva(cpu_env, clean_addr); 3752 return true; 3753 } 3754 3755 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3756 { 3757 TCGv_i64 addr, clean_addr, tcg_rt; 3758 3759 if (!dc_isar_feature(aa64_mte, s)) { 3760 return false; 3761 } 3762 if (s->current_el == 0) { 3763 return false; 3764 } 3765 3766 if (a->rn == 31) { 3767 gen_check_sp_alignment(s); 3768 } 3769 3770 addr = read_cpu_reg_sp(s, a->rn, true); 3771 tcg_gen_addi_i64(addr, addr, a->imm); 3772 tcg_rt = cpu_reg(s, a->rt); 3773 3774 if (s->ata) { 3775 gen_helper_stgm(cpu_env, addr, tcg_rt); 3776 } else { 3777 MMUAccessType acc = MMU_DATA_STORE; 3778 int size = 4 << s->gm_blocksize; 3779 3780 clean_addr = clean_data_tbi(s, addr); 3781 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3782 gen_probe_access(s, clean_addr, acc, size); 3783 } 3784 return true; 3785 } 3786 3787 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3788 { 3789 TCGv_i64 addr, clean_addr, tcg_rt; 3790 3791 if (!dc_isar_feature(aa64_mte, s)) { 3792 return false; 3793 } 3794 if (s->current_el == 0) { 3795 return false; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 addr = read_cpu_reg_sp(s, a->rn, true); 3803 tcg_gen_addi_i64(addr, addr, a->imm); 3804 tcg_rt = cpu_reg(s, a->rt); 3805 3806 if (s->ata) { 3807 gen_helper_ldgm(tcg_rt, cpu_env, addr); 3808 } else { 3809 MMUAccessType acc = MMU_DATA_LOAD; 3810 int size = 4 << s->gm_blocksize; 3811 3812 clean_addr = clean_data_tbi(s, addr); 3813 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3814 gen_probe_access(s, clean_addr, acc, size); 3815 /* The result tags are zeros. */ 3816 tcg_gen_movi_i64(tcg_rt, 0); 3817 } 3818 return true; 3819 } 3820 3821 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3822 { 3823 TCGv_i64 addr, clean_addr, tcg_rt; 3824 3825 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3826 return false; 3827 } 3828 3829 if (a->rn == 31) { 3830 gen_check_sp_alignment(s); 3831 } 3832 3833 addr = read_cpu_reg_sp(s, a->rn, true); 3834 if (!a->p) { 3835 /* pre-index or signed offset */ 3836 tcg_gen_addi_i64(addr, addr, a->imm); 3837 } 3838 3839 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3840 tcg_rt = cpu_reg(s, a->rt); 3841 if (s->ata) { 3842 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 3843 } else { 3844 /* 3845 * Tag access disabled: we must check for aborts on the load 3846 * load from [rn+offset], and then insert a 0 tag into rt. 3847 */ 3848 clean_addr = clean_data_tbi(s, addr); 3849 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3850 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3851 } 3852 3853 if (a->w) { 3854 /* pre-index or post-index */ 3855 if (a->p) { 3856 /* post-index */ 3857 tcg_gen_addi_i64(addr, addr, a->imm); 3858 } 3859 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3860 } 3861 return true; 3862 } 3863 3864 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3865 { 3866 TCGv_i64 addr, tcg_rt; 3867 3868 if (a->rn == 31) { 3869 gen_check_sp_alignment(s); 3870 } 3871 3872 addr = read_cpu_reg_sp(s, a->rn, true); 3873 if (!a->p) { 3874 /* pre-index or signed offset */ 3875 tcg_gen_addi_i64(addr, addr, a->imm); 3876 } 3877 tcg_rt = cpu_reg_sp(s, a->rt); 3878 if (!s->ata) { 3879 /* 3880 * For STG and ST2G, we need to check alignment and probe memory. 3881 * TODO: For STZG and STZ2G, we could rely on the stores below, 3882 * at least for system mode; user-only won't enforce alignment. 3883 */ 3884 if (is_pair) { 3885 gen_helper_st2g_stub(cpu_env, addr); 3886 } else { 3887 gen_helper_stg_stub(cpu_env, addr); 3888 } 3889 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3890 if (is_pair) { 3891 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 3892 } else { 3893 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 3894 } 3895 } else { 3896 if (is_pair) { 3897 gen_helper_st2g(cpu_env, addr, tcg_rt); 3898 } else { 3899 gen_helper_stg(cpu_env, addr, tcg_rt); 3900 } 3901 } 3902 3903 if (is_zero) { 3904 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 3905 TCGv_i64 zero64 = tcg_constant_i64(0); 3906 TCGv_i128 zero128 = tcg_temp_new_i128(); 3907 int mem_index = get_mem_index(s); 3908 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 3909 3910 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 3911 3912 /* This is 1 or 2 atomic 16-byte operations. */ 3913 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3914 if (is_pair) { 3915 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 3916 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3917 } 3918 } 3919 3920 if (a->w) { 3921 /* pre-index or post-index */ 3922 if (a->p) { 3923 /* post-index */ 3924 tcg_gen_addi_i64(addr, addr, a->imm); 3925 } 3926 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3927 } 3928 return true; 3929 } 3930 3931 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 3932 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 3933 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 3934 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 3935 3936 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 3937 3938 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 3939 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 3940 { 3941 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 3942 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 3943 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 3944 3945 fn(tcg_rd, tcg_rn, tcg_imm); 3946 if (!a->sf) { 3947 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 3948 } 3949 return true; 3950 } 3951 3952 /* 3953 * PC-rel. addressing 3954 */ 3955 3956 static bool trans_ADR(DisasContext *s, arg_ri *a) 3957 { 3958 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 3959 return true; 3960 } 3961 3962 static bool trans_ADRP(DisasContext *s, arg_ri *a) 3963 { 3964 int64_t offset = (int64_t)a->imm << 12; 3965 3966 /* The page offset is ok for CF_PCREL. */ 3967 offset -= s->pc_curr & 0xfff; 3968 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 3969 return true; 3970 } 3971 3972 /* 3973 * Add/subtract (immediate) 3974 */ 3975 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 3976 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 3977 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 3978 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 3979 3980 /* 3981 * Add/subtract (immediate, with tags) 3982 */ 3983 3984 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 3985 bool sub_op) 3986 { 3987 TCGv_i64 tcg_rn, tcg_rd; 3988 int imm; 3989 3990 imm = a->uimm6 << LOG2_TAG_GRANULE; 3991 if (sub_op) { 3992 imm = -imm; 3993 } 3994 3995 tcg_rn = cpu_reg_sp(s, a->rn); 3996 tcg_rd = cpu_reg_sp(s, a->rd); 3997 3998 if (s->ata) { 3999 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4000 tcg_constant_i32(imm), 4001 tcg_constant_i32(a->uimm4)); 4002 } else { 4003 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4004 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4005 } 4006 return true; 4007 } 4008 4009 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4010 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4011 4012 /* The input should be a value in the bottom e bits (with higher 4013 * bits zero); returns that value replicated into every element 4014 * of size e in a 64 bit integer. 4015 */ 4016 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4017 { 4018 assert(e != 0); 4019 while (e < 64) { 4020 mask |= mask << e; 4021 e *= 2; 4022 } 4023 return mask; 4024 } 4025 4026 /* 4027 * Logical (immediate) 4028 */ 4029 4030 /* 4031 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4032 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4033 * value (ie should cause a guest UNDEF exception), and true if they are 4034 * valid, in which case the decoded bit pattern is written to result. 4035 */ 4036 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4037 unsigned int imms, unsigned int immr) 4038 { 4039 uint64_t mask; 4040 unsigned e, levels, s, r; 4041 int len; 4042 4043 assert(immn < 2 && imms < 64 && immr < 64); 4044 4045 /* The bit patterns we create here are 64 bit patterns which 4046 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4047 * 64 bits each. Each element contains the same value: a run 4048 * of between 1 and e-1 non-zero bits, rotated within the 4049 * element by between 0 and e-1 bits. 4050 * 4051 * The element size and run length are encoded into immn (1 bit) 4052 * and imms (6 bits) as follows: 4053 * 64 bit elements: immn = 1, imms = <length of run - 1> 4054 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4055 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4056 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4057 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4058 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4059 * Notice that immn = 0, imms = 11111x is the only combination 4060 * not covered by one of the above options; this is reserved. 4061 * Further, <length of run - 1> all-ones is a reserved pattern. 4062 * 4063 * In all cases the rotation is by immr % e (and immr is 6 bits). 4064 */ 4065 4066 /* First determine the element size */ 4067 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4068 if (len < 1) { 4069 /* This is the immn == 0, imms == 0x11111x case */ 4070 return false; 4071 } 4072 e = 1 << len; 4073 4074 levels = e - 1; 4075 s = imms & levels; 4076 r = immr & levels; 4077 4078 if (s == levels) { 4079 /* <length of run - 1> mustn't be all-ones. */ 4080 return false; 4081 } 4082 4083 /* Create the value of one element: s+1 set bits rotated 4084 * by r within the element (which is e bits wide)... 4085 */ 4086 mask = MAKE_64BIT_MASK(0, s + 1); 4087 if (r) { 4088 mask = (mask >> r) | (mask << (e - r)); 4089 mask &= MAKE_64BIT_MASK(0, e); 4090 } 4091 /* ...then replicate the element over the whole 64 bit value */ 4092 mask = bitfield_replicate(mask, e); 4093 *result = mask; 4094 return true; 4095 } 4096 4097 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4098 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4099 { 4100 TCGv_i64 tcg_rd, tcg_rn; 4101 uint64_t imm; 4102 4103 /* Some immediate field values are reserved. */ 4104 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4105 extract32(a->dbm, 0, 6), 4106 extract32(a->dbm, 6, 6))) { 4107 return false; 4108 } 4109 if (!a->sf) { 4110 imm &= 0xffffffffull; 4111 } 4112 4113 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4114 tcg_rn = cpu_reg(s, a->rn); 4115 4116 fn(tcg_rd, tcg_rn, imm); 4117 if (set_cc) { 4118 gen_logic_CC(a->sf, tcg_rd); 4119 } 4120 if (!a->sf) { 4121 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4122 } 4123 return true; 4124 } 4125 4126 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4127 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4128 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4129 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4130 4131 /* 4132 * Move wide (immediate) 4133 */ 4134 4135 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4136 { 4137 int pos = a->hw << 4; 4138 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4139 return true; 4140 } 4141 4142 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4143 { 4144 int pos = a->hw << 4; 4145 uint64_t imm = a->imm; 4146 4147 imm = ~(imm << pos); 4148 if (!a->sf) { 4149 imm = (uint32_t)imm; 4150 } 4151 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4152 return true; 4153 } 4154 4155 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4156 { 4157 int pos = a->hw << 4; 4158 TCGv_i64 tcg_rd, tcg_im; 4159 4160 tcg_rd = cpu_reg(s, a->rd); 4161 tcg_im = tcg_constant_i64(a->imm); 4162 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4163 if (!a->sf) { 4164 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4165 } 4166 return true; 4167 } 4168 4169 /* 4170 * Bitfield 4171 */ 4172 4173 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4174 { 4175 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4176 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4177 unsigned int bitsize = a->sf ? 64 : 32; 4178 unsigned int ri = a->immr; 4179 unsigned int si = a->imms; 4180 unsigned int pos, len; 4181 4182 if (si >= ri) { 4183 /* Wd<s-r:0> = Wn<s:r> */ 4184 len = (si - ri) + 1; 4185 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4186 if (!a->sf) { 4187 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4188 } 4189 } else { 4190 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4191 len = si + 1; 4192 pos = (bitsize - ri) & (bitsize - 1); 4193 4194 if (len < ri) { 4195 /* 4196 * Sign extend the destination field from len to fill the 4197 * balance of the word. Let the deposit below insert all 4198 * of those sign bits. 4199 */ 4200 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4201 len = ri; 4202 } 4203 4204 /* 4205 * We start with zero, and we haven't modified any bits outside 4206 * bitsize, therefore no final zero-extension is unneeded for !sf. 4207 */ 4208 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4209 } 4210 return true; 4211 } 4212 4213 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4214 { 4215 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4216 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4217 unsigned int bitsize = a->sf ? 64 : 32; 4218 unsigned int ri = a->immr; 4219 unsigned int si = a->imms; 4220 unsigned int pos, len; 4221 4222 tcg_rd = cpu_reg(s, a->rd); 4223 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4224 4225 if (si >= ri) { 4226 /* Wd<s-r:0> = Wn<s:r> */ 4227 len = (si - ri) + 1; 4228 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4229 } else { 4230 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4231 len = si + 1; 4232 pos = (bitsize - ri) & (bitsize - 1); 4233 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4234 } 4235 return true; 4236 } 4237 4238 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4239 { 4240 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4241 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4242 unsigned int bitsize = a->sf ? 64 : 32; 4243 unsigned int ri = a->immr; 4244 unsigned int si = a->imms; 4245 unsigned int pos, len; 4246 4247 tcg_rd = cpu_reg(s, a->rd); 4248 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4249 4250 if (si >= ri) { 4251 /* Wd<s-r:0> = Wn<s:r> */ 4252 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4253 len = (si - ri) + 1; 4254 pos = 0; 4255 } else { 4256 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4257 len = si + 1; 4258 pos = (bitsize - ri) & (bitsize - 1); 4259 } 4260 4261 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4262 if (!a->sf) { 4263 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4264 } 4265 return true; 4266 } 4267 4268 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4269 { 4270 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4271 4272 tcg_rd = cpu_reg(s, a->rd); 4273 4274 if (unlikely(a->imm == 0)) { 4275 /* 4276 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4277 * so an extract from bit 0 is a special case. 4278 */ 4279 if (a->sf) { 4280 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4281 } else { 4282 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4283 } 4284 } else { 4285 tcg_rm = cpu_reg(s, a->rm); 4286 tcg_rn = cpu_reg(s, a->rn); 4287 4288 if (a->sf) { 4289 /* Specialization to ROR happens in EXTRACT2. */ 4290 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4291 } else { 4292 TCGv_i32 t0 = tcg_temp_new_i32(); 4293 4294 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4295 if (a->rm == a->rn) { 4296 tcg_gen_rotri_i32(t0, t0, a->imm); 4297 } else { 4298 TCGv_i32 t1 = tcg_temp_new_i32(); 4299 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4300 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4301 } 4302 tcg_gen_extu_i32_i64(tcg_rd, t0); 4303 } 4304 } 4305 return true; 4306 } 4307 4308 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4309 * Note that it is the caller's responsibility to ensure that the 4310 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4311 * mandated semantics for out of range shifts. 4312 */ 4313 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4314 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4315 { 4316 switch (shift_type) { 4317 case A64_SHIFT_TYPE_LSL: 4318 tcg_gen_shl_i64(dst, src, shift_amount); 4319 break; 4320 case A64_SHIFT_TYPE_LSR: 4321 tcg_gen_shr_i64(dst, src, shift_amount); 4322 break; 4323 case A64_SHIFT_TYPE_ASR: 4324 if (!sf) { 4325 tcg_gen_ext32s_i64(dst, src); 4326 } 4327 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4328 break; 4329 case A64_SHIFT_TYPE_ROR: 4330 if (sf) { 4331 tcg_gen_rotr_i64(dst, src, shift_amount); 4332 } else { 4333 TCGv_i32 t0, t1; 4334 t0 = tcg_temp_new_i32(); 4335 t1 = tcg_temp_new_i32(); 4336 tcg_gen_extrl_i64_i32(t0, src); 4337 tcg_gen_extrl_i64_i32(t1, shift_amount); 4338 tcg_gen_rotr_i32(t0, t0, t1); 4339 tcg_gen_extu_i32_i64(dst, t0); 4340 } 4341 break; 4342 default: 4343 assert(FALSE); /* all shift types should be handled */ 4344 break; 4345 } 4346 4347 if (!sf) { /* zero extend final result */ 4348 tcg_gen_ext32u_i64(dst, dst); 4349 } 4350 } 4351 4352 /* Shift a TCGv src by immediate, put result in dst. 4353 * The shift amount must be in range (this should always be true as the 4354 * relevant instructions will UNDEF on bad shift immediates). 4355 */ 4356 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4357 enum a64_shift_type shift_type, unsigned int shift_i) 4358 { 4359 assert(shift_i < (sf ? 64 : 32)); 4360 4361 if (shift_i == 0) { 4362 tcg_gen_mov_i64(dst, src); 4363 } else { 4364 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4365 } 4366 } 4367 4368 /* Logical (shifted register) 4369 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4370 * +----+-----+-----------+-------+---+------+--------+------+------+ 4371 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4372 * +----+-----+-----------+-------+---+------+--------+------+------+ 4373 */ 4374 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4375 { 4376 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4377 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4378 4379 sf = extract32(insn, 31, 1); 4380 opc = extract32(insn, 29, 2); 4381 shift_type = extract32(insn, 22, 2); 4382 invert = extract32(insn, 21, 1); 4383 rm = extract32(insn, 16, 5); 4384 shift_amount = extract32(insn, 10, 6); 4385 rn = extract32(insn, 5, 5); 4386 rd = extract32(insn, 0, 5); 4387 4388 if (!sf && (shift_amount & (1 << 5))) { 4389 unallocated_encoding(s); 4390 return; 4391 } 4392 4393 tcg_rd = cpu_reg(s, rd); 4394 4395 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4396 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4397 * register-register MOV and MVN, so it is worth special casing. 4398 */ 4399 tcg_rm = cpu_reg(s, rm); 4400 if (invert) { 4401 tcg_gen_not_i64(tcg_rd, tcg_rm); 4402 if (!sf) { 4403 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4404 } 4405 } else { 4406 if (sf) { 4407 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4408 } else { 4409 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4410 } 4411 } 4412 return; 4413 } 4414 4415 tcg_rm = read_cpu_reg(s, rm, sf); 4416 4417 if (shift_amount) { 4418 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4419 } 4420 4421 tcg_rn = cpu_reg(s, rn); 4422 4423 switch (opc | (invert << 2)) { 4424 case 0: /* AND */ 4425 case 3: /* ANDS */ 4426 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4427 break; 4428 case 1: /* ORR */ 4429 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4430 break; 4431 case 2: /* EOR */ 4432 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4433 break; 4434 case 4: /* BIC */ 4435 case 7: /* BICS */ 4436 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4437 break; 4438 case 5: /* ORN */ 4439 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4440 break; 4441 case 6: /* EON */ 4442 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4443 break; 4444 default: 4445 assert(FALSE); 4446 break; 4447 } 4448 4449 if (!sf) { 4450 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4451 } 4452 4453 if (opc == 3) { 4454 gen_logic_CC(sf, tcg_rd); 4455 } 4456 } 4457 4458 /* 4459 * Add/subtract (extended register) 4460 * 4461 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4462 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4463 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4464 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4465 * 4466 * sf: 0 -> 32bit, 1 -> 64bit 4467 * op: 0 -> add , 1 -> sub 4468 * S: 1 -> set flags 4469 * opt: 00 4470 * option: extension type (see DecodeRegExtend) 4471 * imm3: optional shift to Rm 4472 * 4473 * Rd = Rn + LSL(extend(Rm), amount) 4474 */ 4475 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4476 { 4477 int rd = extract32(insn, 0, 5); 4478 int rn = extract32(insn, 5, 5); 4479 int imm3 = extract32(insn, 10, 3); 4480 int option = extract32(insn, 13, 3); 4481 int rm = extract32(insn, 16, 5); 4482 int opt = extract32(insn, 22, 2); 4483 bool setflags = extract32(insn, 29, 1); 4484 bool sub_op = extract32(insn, 30, 1); 4485 bool sf = extract32(insn, 31, 1); 4486 4487 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4488 TCGv_i64 tcg_rd; 4489 TCGv_i64 tcg_result; 4490 4491 if (imm3 > 4 || opt != 0) { 4492 unallocated_encoding(s); 4493 return; 4494 } 4495 4496 /* non-flag setting ops may use SP */ 4497 if (!setflags) { 4498 tcg_rd = cpu_reg_sp(s, rd); 4499 } else { 4500 tcg_rd = cpu_reg(s, rd); 4501 } 4502 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4503 4504 tcg_rm = read_cpu_reg(s, rm, sf); 4505 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4506 4507 tcg_result = tcg_temp_new_i64(); 4508 4509 if (!setflags) { 4510 if (sub_op) { 4511 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4512 } else { 4513 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4514 } 4515 } else { 4516 if (sub_op) { 4517 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4518 } else { 4519 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4520 } 4521 } 4522 4523 if (sf) { 4524 tcg_gen_mov_i64(tcg_rd, tcg_result); 4525 } else { 4526 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4527 } 4528 } 4529 4530 /* 4531 * Add/subtract (shifted register) 4532 * 4533 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4534 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4535 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4536 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4537 * 4538 * sf: 0 -> 32bit, 1 -> 64bit 4539 * op: 0 -> add , 1 -> sub 4540 * S: 1 -> set flags 4541 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4542 * imm6: Shift amount to apply to Rm before the add/sub 4543 */ 4544 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4545 { 4546 int rd = extract32(insn, 0, 5); 4547 int rn = extract32(insn, 5, 5); 4548 int imm6 = extract32(insn, 10, 6); 4549 int rm = extract32(insn, 16, 5); 4550 int shift_type = extract32(insn, 22, 2); 4551 bool setflags = extract32(insn, 29, 1); 4552 bool sub_op = extract32(insn, 30, 1); 4553 bool sf = extract32(insn, 31, 1); 4554 4555 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4556 TCGv_i64 tcg_rn, tcg_rm; 4557 TCGv_i64 tcg_result; 4558 4559 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4560 unallocated_encoding(s); 4561 return; 4562 } 4563 4564 tcg_rn = read_cpu_reg(s, rn, sf); 4565 tcg_rm = read_cpu_reg(s, rm, sf); 4566 4567 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4568 4569 tcg_result = tcg_temp_new_i64(); 4570 4571 if (!setflags) { 4572 if (sub_op) { 4573 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4574 } else { 4575 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4576 } 4577 } else { 4578 if (sub_op) { 4579 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4580 } else { 4581 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4582 } 4583 } 4584 4585 if (sf) { 4586 tcg_gen_mov_i64(tcg_rd, tcg_result); 4587 } else { 4588 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4589 } 4590 } 4591 4592 /* Data-processing (3 source) 4593 * 4594 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4595 * +--+------+-----------+------+------+----+------+------+------+ 4596 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4597 * +--+------+-----------+------+------+----+------+------+------+ 4598 */ 4599 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4600 { 4601 int rd = extract32(insn, 0, 5); 4602 int rn = extract32(insn, 5, 5); 4603 int ra = extract32(insn, 10, 5); 4604 int rm = extract32(insn, 16, 5); 4605 int op_id = (extract32(insn, 29, 3) << 4) | 4606 (extract32(insn, 21, 3) << 1) | 4607 extract32(insn, 15, 1); 4608 bool sf = extract32(insn, 31, 1); 4609 bool is_sub = extract32(op_id, 0, 1); 4610 bool is_high = extract32(op_id, 2, 1); 4611 bool is_signed = false; 4612 TCGv_i64 tcg_op1; 4613 TCGv_i64 tcg_op2; 4614 TCGv_i64 tcg_tmp; 4615 4616 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4617 switch (op_id) { 4618 case 0x42: /* SMADDL */ 4619 case 0x43: /* SMSUBL */ 4620 case 0x44: /* SMULH */ 4621 is_signed = true; 4622 break; 4623 case 0x0: /* MADD (32bit) */ 4624 case 0x1: /* MSUB (32bit) */ 4625 case 0x40: /* MADD (64bit) */ 4626 case 0x41: /* MSUB (64bit) */ 4627 case 0x4a: /* UMADDL */ 4628 case 0x4b: /* UMSUBL */ 4629 case 0x4c: /* UMULH */ 4630 break; 4631 default: 4632 unallocated_encoding(s); 4633 return; 4634 } 4635 4636 if (is_high) { 4637 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4638 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4639 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4640 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4641 4642 if (is_signed) { 4643 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4644 } else { 4645 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4646 } 4647 return; 4648 } 4649 4650 tcg_op1 = tcg_temp_new_i64(); 4651 tcg_op2 = tcg_temp_new_i64(); 4652 tcg_tmp = tcg_temp_new_i64(); 4653 4654 if (op_id < 0x42) { 4655 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4656 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4657 } else { 4658 if (is_signed) { 4659 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4660 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4661 } else { 4662 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4663 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4664 } 4665 } 4666 4667 if (ra == 31 && !is_sub) { 4668 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4669 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4670 } else { 4671 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4672 if (is_sub) { 4673 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4674 } else { 4675 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4676 } 4677 } 4678 4679 if (!sf) { 4680 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4681 } 4682 } 4683 4684 /* Add/subtract (with carry) 4685 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4686 * +--+--+--+------------------------+------+-------------+------+-----+ 4687 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4688 * +--+--+--+------------------------+------+-------------+------+-----+ 4689 */ 4690 4691 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4692 { 4693 unsigned int sf, op, setflags, rm, rn, rd; 4694 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4695 4696 sf = extract32(insn, 31, 1); 4697 op = extract32(insn, 30, 1); 4698 setflags = extract32(insn, 29, 1); 4699 rm = extract32(insn, 16, 5); 4700 rn = extract32(insn, 5, 5); 4701 rd = extract32(insn, 0, 5); 4702 4703 tcg_rd = cpu_reg(s, rd); 4704 tcg_rn = cpu_reg(s, rn); 4705 4706 if (op) { 4707 tcg_y = tcg_temp_new_i64(); 4708 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4709 } else { 4710 tcg_y = cpu_reg(s, rm); 4711 } 4712 4713 if (setflags) { 4714 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4715 } else { 4716 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4717 } 4718 } 4719 4720 /* 4721 * Rotate right into flags 4722 * 31 30 29 21 15 10 5 4 0 4723 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4724 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4725 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4726 */ 4727 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4728 { 4729 int mask = extract32(insn, 0, 4); 4730 int o2 = extract32(insn, 4, 1); 4731 int rn = extract32(insn, 5, 5); 4732 int imm6 = extract32(insn, 15, 6); 4733 int sf_op_s = extract32(insn, 29, 3); 4734 TCGv_i64 tcg_rn; 4735 TCGv_i32 nzcv; 4736 4737 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4738 unallocated_encoding(s); 4739 return; 4740 } 4741 4742 tcg_rn = read_cpu_reg(s, rn, 1); 4743 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4744 4745 nzcv = tcg_temp_new_i32(); 4746 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4747 4748 if (mask & 8) { /* N */ 4749 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4750 } 4751 if (mask & 4) { /* Z */ 4752 tcg_gen_not_i32(cpu_ZF, nzcv); 4753 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4754 } 4755 if (mask & 2) { /* C */ 4756 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4757 } 4758 if (mask & 1) { /* V */ 4759 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4760 } 4761 } 4762 4763 /* 4764 * Evaluate into flags 4765 * 31 30 29 21 15 14 10 5 4 0 4766 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4767 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4768 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4769 */ 4770 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4771 { 4772 int o3_mask = extract32(insn, 0, 5); 4773 int rn = extract32(insn, 5, 5); 4774 int o2 = extract32(insn, 15, 6); 4775 int sz = extract32(insn, 14, 1); 4776 int sf_op_s = extract32(insn, 29, 3); 4777 TCGv_i32 tmp; 4778 int shift; 4779 4780 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4781 !dc_isar_feature(aa64_condm_4, s)) { 4782 unallocated_encoding(s); 4783 return; 4784 } 4785 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4786 4787 tmp = tcg_temp_new_i32(); 4788 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4789 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4790 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4791 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4792 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4793 } 4794 4795 /* Conditional compare (immediate / register) 4796 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4797 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4798 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4799 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4800 * [1] y [0] [0] 4801 */ 4802 static void disas_cc(DisasContext *s, uint32_t insn) 4803 { 4804 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4805 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4806 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4807 DisasCompare c; 4808 4809 if (!extract32(insn, 29, 1)) { 4810 unallocated_encoding(s); 4811 return; 4812 } 4813 if (insn & (1 << 10 | 1 << 4)) { 4814 unallocated_encoding(s); 4815 return; 4816 } 4817 sf = extract32(insn, 31, 1); 4818 op = extract32(insn, 30, 1); 4819 is_imm = extract32(insn, 11, 1); 4820 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 4821 cond = extract32(insn, 12, 4); 4822 rn = extract32(insn, 5, 5); 4823 nzcv = extract32(insn, 0, 4); 4824 4825 /* Set T0 = !COND. */ 4826 tcg_t0 = tcg_temp_new_i32(); 4827 arm_test_cc(&c, cond); 4828 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 4829 4830 /* Load the arguments for the new comparison. */ 4831 if (is_imm) { 4832 tcg_y = tcg_temp_new_i64(); 4833 tcg_gen_movi_i64(tcg_y, y); 4834 } else { 4835 tcg_y = cpu_reg(s, y); 4836 } 4837 tcg_rn = cpu_reg(s, rn); 4838 4839 /* Set the flags for the new comparison. */ 4840 tcg_tmp = tcg_temp_new_i64(); 4841 if (op) { 4842 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4843 } else { 4844 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4845 } 4846 4847 /* If COND was false, force the flags to #nzcv. Compute two masks 4848 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 4849 * For tcg hosts that support ANDC, we can make do with just T1. 4850 * In either case, allow the tcg optimizer to delete any unused mask. 4851 */ 4852 tcg_t1 = tcg_temp_new_i32(); 4853 tcg_t2 = tcg_temp_new_i32(); 4854 tcg_gen_neg_i32(tcg_t1, tcg_t0); 4855 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 4856 4857 if (nzcv & 8) { /* N */ 4858 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 4859 } else { 4860 if (TCG_TARGET_HAS_andc_i32) { 4861 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 4862 } else { 4863 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 4864 } 4865 } 4866 if (nzcv & 4) { /* Z */ 4867 if (TCG_TARGET_HAS_andc_i32) { 4868 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 4869 } else { 4870 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 4871 } 4872 } else { 4873 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 4874 } 4875 if (nzcv & 2) { /* C */ 4876 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 4877 } else { 4878 if (TCG_TARGET_HAS_andc_i32) { 4879 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 4880 } else { 4881 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 4882 } 4883 } 4884 if (nzcv & 1) { /* V */ 4885 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 4886 } else { 4887 if (TCG_TARGET_HAS_andc_i32) { 4888 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 4889 } else { 4890 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 4891 } 4892 } 4893 } 4894 4895 /* Conditional select 4896 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 4897 * +----+----+---+-----------------+------+------+-----+------+------+ 4898 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 4899 * +----+----+---+-----------------+------+------+-----+------+------+ 4900 */ 4901 static void disas_cond_select(DisasContext *s, uint32_t insn) 4902 { 4903 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 4904 TCGv_i64 tcg_rd, zero; 4905 DisasCompare64 c; 4906 4907 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 4908 /* S == 1 or op2<1> == 1 */ 4909 unallocated_encoding(s); 4910 return; 4911 } 4912 sf = extract32(insn, 31, 1); 4913 else_inv = extract32(insn, 30, 1); 4914 rm = extract32(insn, 16, 5); 4915 cond = extract32(insn, 12, 4); 4916 else_inc = extract32(insn, 10, 1); 4917 rn = extract32(insn, 5, 5); 4918 rd = extract32(insn, 0, 5); 4919 4920 tcg_rd = cpu_reg(s, rd); 4921 4922 a64_test_cc(&c, cond); 4923 zero = tcg_constant_i64(0); 4924 4925 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 4926 /* CSET & CSETM. */ 4927 if (else_inv) { 4928 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 4929 tcg_rd, c.value, zero); 4930 } else { 4931 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 4932 tcg_rd, c.value, zero); 4933 } 4934 } else { 4935 TCGv_i64 t_true = cpu_reg(s, rn); 4936 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 4937 if (else_inv && else_inc) { 4938 tcg_gen_neg_i64(t_false, t_false); 4939 } else if (else_inv) { 4940 tcg_gen_not_i64(t_false, t_false); 4941 } else if (else_inc) { 4942 tcg_gen_addi_i64(t_false, t_false, 1); 4943 } 4944 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 4945 } 4946 4947 if (!sf) { 4948 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4949 } 4950 } 4951 4952 static void handle_clz(DisasContext *s, unsigned int sf, 4953 unsigned int rn, unsigned int rd) 4954 { 4955 TCGv_i64 tcg_rd, tcg_rn; 4956 tcg_rd = cpu_reg(s, rd); 4957 tcg_rn = cpu_reg(s, rn); 4958 4959 if (sf) { 4960 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 4961 } else { 4962 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4963 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4964 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 4965 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 4966 } 4967 } 4968 4969 static void handle_cls(DisasContext *s, unsigned int sf, 4970 unsigned int rn, unsigned int rd) 4971 { 4972 TCGv_i64 tcg_rd, tcg_rn; 4973 tcg_rd = cpu_reg(s, rd); 4974 tcg_rn = cpu_reg(s, rn); 4975 4976 if (sf) { 4977 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 4978 } else { 4979 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4980 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4981 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 4982 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 4983 } 4984 } 4985 4986 static void handle_rbit(DisasContext *s, unsigned int sf, 4987 unsigned int rn, unsigned int rd) 4988 { 4989 TCGv_i64 tcg_rd, tcg_rn; 4990 tcg_rd = cpu_reg(s, rd); 4991 tcg_rn = cpu_reg(s, rn); 4992 4993 if (sf) { 4994 gen_helper_rbit64(tcg_rd, tcg_rn); 4995 } else { 4996 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4997 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4998 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 4999 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5000 } 5001 } 5002 5003 /* REV with sf==1, opcode==3 ("REV64") */ 5004 static void handle_rev64(DisasContext *s, unsigned int sf, 5005 unsigned int rn, unsigned int rd) 5006 { 5007 if (!sf) { 5008 unallocated_encoding(s); 5009 return; 5010 } 5011 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5012 } 5013 5014 /* REV with sf==0, opcode==2 5015 * REV32 (sf==1, opcode==2) 5016 */ 5017 static void handle_rev32(DisasContext *s, unsigned int sf, 5018 unsigned int rn, unsigned int rd) 5019 { 5020 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5021 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5022 5023 if (sf) { 5024 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5025 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5026 } else { 5027 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5028 } 5029 } 5030 5031 /* REV16 (opcode==1) */ 5032 static void handle_rev16(DisasContext *s, unsigned int sf, 5033 unsigned int rn, unsigned int rd) 5034 { 5035 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5036 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5037 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5038 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5039 5040 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5041 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5042 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5043 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5044 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5045 } 5046 5047 /* Data-processing (1 source) 5048 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5049 * +----+---+---+-----------------+---------+--------+------+------+ 5050 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5051 * +----+---+---+-----------------+---------+--------+------+------+ 5052 */ 5053 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5054 { 5055 unsigned int sf, opcode, opcode2, rn, rd; 5056 TCGv_i64 tcg_rd; 5057 5058 if (extract32(insn, 29, 1)) { 5059 unallocated_encoding(s); 5060 return; 5061 } 5062 5063 sf = extract32(insn, 31, 1); 5064 opcode = extract32(insn, 10, 6); 5065 opcode2 = extract32(insn, 16, 5); 5066 rn = extract32(insn, 5, 5); 5067 rd = extract32(insn, 0, 5); 5068 5069 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5070 5071 switch (MAP(sf, opcode2, opcode)) { 5072 case MAP(0, 0x00, 0x00): /* RBIT */ 5073 case MAP(1, 0x00, 0x00): 5074 handle_rbit(s, sf, rn, rd); 5075 break; 5076 case MAP(0, 0x00, 0x01): /* REV16 */ 5077 case MAP(1, 0x00, 0x01): 5078 handle_rev16(s, sf, rn, rd); 5079 break; 5080 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5081 case MAP(1, 0x00, 0x02): 5082 handle_rev32(s, sf, rn, rd); 5083 break; 5084 case MAP(1, 0x00, 0x03): /* REV64 */ 5085 handle_rev64(s, sf, rn, rd); 5086 break; 5087 case MAP(0, 0x00, 0x04): /* CLZ */ 5088 case MAP(1, 0x00, 0x04): 5089 handle_clz(s, sf, rn, rd); 5090 break; 5091 case MAP(0, 0x00, 0x05): /* CLS */ 5092 case MAP(1, 0x00, 0x05): 5093 handle_cls(s, sf, rn, rd); 5094 break; 5095 case MAP(1, 0x01, 0x00): /* PACIA */ 5096 if (s->pauth_active) { 5097 tcg_rd = cpu_reg(s, rd); 5098 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5099 } else if (!dc_isar_feature(aa64_pauth, s)) { 5100 goto do_unallocated; 5101 } 5102 break; 5103 case MAP(1, 0x01, 0x01): /* PACIB */ 5104 if (s->pauth_active) { 5105 tcg_rd = cpu_reg(s, rd); 5106 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5107 } else if (!dc_isar_feature(aa64_pauth, s)) { 5108 goto do_unallocated; 5109 } 5110 break; 5111 case MAP(1, 0x01, 0x02): /* PACDA */ 5112 if (s->pauth_active) { 5113 tcg_rd = cpu_reg(s, rd); 5114 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5115 } else if (!dc_isar_feature(aa64_pauth, s)) { 5116 goto do_unallocated; 5117 } 5118 break; 5119 case MAP(1, 0x01, 0x03): /* PACDB */ 5120 if (s->pauth_active) { 5121 tcg_rd = cpu_reg(s, rd); 5122 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5123 } else if (!dc_isar_feature(aa64_pauth, s)) { 5124 goto do_unallocated; 5125 } 5126 break; 5127 case MAP(1, 0x01, 0x04): /* AUTIA */ 5128 if (s->pauth_active) { 5129 tcg_rd = cpu_reg(s, rd); 5130 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5131 } else if (!dc_isar_feature(aa64_pauth, s)) { 5132 goto do_unallocated; 5133 } 5134 break; 5135 case MAP(1, 0x01, 0x05): /* AUTIB */ 5136 if (s->pauth_active) { 5137 tcg_rd = cpu_reg(s, rd); 5138 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5139 } else if (!dc_isar_feature(aa64_pauth, s)) { 5140 goto do_unallocated; 5141 } 5142 break; 5143 case MAP(1, 0x01, 0x06): /* AUTDA */ 5144 if (s->pauth_active) { 5145 tcg_rd = cpu_reg(s, rd); 5146 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5147 } else if (!dc_isar_feature(aa64_pauth, s)) { 5148 goto do_unallocated; 5149 } 5150 break; 5151 case MAP(1, 0x01, 0x07): /* AUTDB */ 5152 if (s->pauth_active) { 5153 tcg_rd = cpu_reg(s, rd); 5154 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5155 } else if (!dc_isar_feature(aa64_pauth, s)) { 5156 goto do_unallocated; 5157 } 5158 break; 5159 case MAP(1, 0x01, 0x08): /* PACIZA */ 5160 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5161 goto do_unallocated; 5162 } else if (s->pauth_active) { 5163 tcg_rd = cpu_reg(s, rd); 5164 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5165 } 5166 break; 5167 case MAP(1, 0x01, 0x09): /* PACIZB */ 5168 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5169 goto do_unallocated; 5170 } else if (s->pauth_active) { 5171 tcg_rd = cpu_reg(s, rd); 5172 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5173 } 5174 break; 5175 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5176 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5177 goto do_unallocated; 5178 } else if (s->pauth_active) { 5179 tcg_rd = cpu_reg(s, rd); 5180 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5181 } 5182 break; 5183 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5184 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5185 goto do_unallocated; 5186 } else if (s->pauth_active) { 5187 tcg_rd = cpu_reg(s, rd); 5188 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5189 } 5190 break; 5191 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5192 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5193 goto do_unallocated; 5194 } else if (s->pauth_active) { 5195 tcg_rd = cpu_reg(s, rd); 5196 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5197 } 5198 break; 5199 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5200 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5201 goto do_unallocated; 5202 } else if (s->pauth_active) { 5203 tcg_rd = cpu_reg(s, rd); 5204 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5205 } 5206 break; 5207 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5208 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5209 goto do_unallocated; 5210 } else if (s->pauth_active) { 5211 tcg_rd = cpu_reg(s, rd); 5212 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5213 } 5214 break; 5215 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5216 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5217 goto do_unallocated; 5218 } else if (s->pauth_active) { 5219 tcg_rd = cpu_reg(s, rd); 5220 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5221 } 5222 break; 5223 case MAP(1, 0x01, 0x10): /* XPACI */ 5224 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5225 goto do_unallocated; 5226 } else if (s->pauth_active) { 5227 tcg_rd = cpu_reg(s, rd); 5228 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5229 } 5230 break; 5231 case MAP(1, 0x01, 0x11): /* XPACD */ 5232 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5233 goto do_unallocated; 5234 } else if (s->pauth_active) { 5235 tcg_rd = cpu_reg(s, rd); 5236 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5237 } 5238 break; 5239 default: 5240 do_unallocated: 5241 unallocated_encoding(s); 5242 break; 5243 } 5244 5245 #undef MAP 5246 } 5247 5248 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5249 unsigned int rm, unsigned int rn, unsigned int rd) 5250 { 5251 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5252 tcg_rd = cpu_reg(s, rd); 5253 5254 if (!sf && is_signed) { 5255 tcg_n = tcg_temp_new_i64(); 5256 tcg_m = tcg_temp_new_i64(); 5257 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5258 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5259 } else { 5260 tcg_n = read_cpu_reg(s, rn, sf); 5261 tcg_m = read_cpu_reg(s, rm, sf); 5262 } 5263 5264 if (is_signed) { 5265 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5266 } else { 5267 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5268 } 5269 5270 if (!sf) { /* zero extend final result */ 5271 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5272 } 5273 } 5274 5275 /* LSLV, LSRV, ASRV, RORV */ 5276 static void handle_shift_reg(DisasContext *s, 5277 enum a64_shift_type shift_type, unsigned int sf, 5278 unsigned int rm, unsigned int rn, unsigned int rd) 5279 { 5280 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5281 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5282 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5283 5284 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5285 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5286 } 5287 5288 /* CRC32[BHWX], CRC32C[BHWX] */ 5289 static void handle_crc32(DisasContext *s, 5290 unsigned int sf, unsigned int sz, bool crc32c, 5291 unsigned int rm, unsigned int rn, unsigned int rd) 5292 { 5293 TCGv_i64 tcg_acc, tcg_val; 5294 TCGv_i32 tcg_bytes; 5295 5296 if (!dc_isar_feature(aa64_crc32, s) 5297 || (sf == 1 && sz != 3) 5298 || (sf == 0 && sz == 3)) { 5299 unallocated_encoding(s); 5300 return; 5301 } 5302 5303 if (sz == 3) { 5304 tcg_val = cpu_reg(s, rm); 5305 } else { 5306 uint64_t mask; 5307 switch (sz) { 5308 case 0: 5309 mask = 0xFF; 5310 break; 5311 case 1: 5312 mask = 0xFFFF; 5313 break; 5314 case 2: 5315 mask = 0xFFFFFFFF; 5316 break; 5317 default: 5318 g_assert_not_reached(); 5319 } 5320 tcg_val = tcg_temp_new_i64(); 5321 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5322 } 5323 5324 tcg_acc = cpu_reg(s, rn); 5325 tcg_bytes = tcg_constant_i32(1 << sz); 5326 5327 if (crc32c) { 5328 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5329 } else { 5330 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5331 } 5332 } 5333 5334 /* Data-processing (2 source) 5335 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5336 * +----+---+---+-----------------+------+--------+------+------+ 5337 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5338 * +----+---+---+-----------------+------+--------+------+------+ 5339 */ 5340 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5341 { 5342 unsigned int sf, rm, opcode, rn, rd, setflag; 5343 sf = extract32(insn, 31, 1); 5344 setflag = extract32(insn, 29, 1); 5345 rm = extract32(insn, 16, 5); 5346 opcode = extract32(insn, 10, 6); 5347 rn = extract32(insn, 5, 5); 5348 rd = extract32(insn, 0, 5); 5349 5350 if (setflag && opcode != 0) { 5351 unallocated_encoding(s); 5352 return; 5353 } 5354 5355 switch (opcode) { 5356 case 0: /* SUBP(S) */ 5357 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5358 goto do_unallocated; 5359 } else { 5360 TCGv_i64 tcg_n, tcg_m, tcg_d; 5361 5362 tcg_n = read_cpu_reg_sp(s, rn, true); 5363 tcg_m = read_cpu_reg_sp(s, rm, true); 5364 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5365 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5366 tcg_d = cpu_reg(s, rd); 5367 5368 if (setflag) { 5369 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5370 } else { 5371 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5372 } 5373 } 5374 break; 5375 case 2: /* UDIV */ 5376 handle_div(s, false, sf, rm, rn, rd); 5377 break; 5378 case 3: /* SDIV */ 5379 handle_div(s, true, sf, rm, rn, rd); 5380 break; 5381 case 4: /* IRG */ 5382 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5383 goto do_unallocated; 5384 } 5385 if (s->ata) { 5386 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5387 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5388 } else { 5389 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5390 cpu_reg_sp(s, rn)); 5391 } 5392 break; 5393 case 5: /* GMI */ 5394 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5395 goto do_unallocated; 5396 } else { 5397 TCGv_i64 t = tcg_temp_new_i64(); 5398 5399 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5400 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5401 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5402 } 5403 break; 5404 case 8: /* LSLV */ 5405 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5406 break; 5407 case 9: /* LSRV */ 5408 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5409 break; 5410 case 10: /* ASRV */ 5411 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5412 break; 5413 case 11: /* RORV */ 5414 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5415 break; 5416 case 12: /* PACGA */ 5417 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5418 goto do_unallocated; 5419 } 5420 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5421 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5422 break; 5423 case 16: 5424 case 17: 5425 case 18: 5426 case 19: 5427 case 20: 5428 case 21: 5429 case 22: 5430 case 23: /* CRC32 */ 5431 { 5432 int sz = extract32(opcode, 0, 2); 5433 bool crc32c = extract32(opcode, 2, 1); 5434 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5435 break; 5436 } 5437 default: 5438 do_unallocated: 5439 unallocated_encoding(s); 5440 break; 5441 } 5442 } 5443 5444 /* 5445 * Data processing - register 5446 * 31 30 29 28 25 21 20 16 10 0 5447 * +--+---+--+---+-------+-----+-------+-------+---------+ 5448 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5449 * +--+---+--+---+-------+-----+-------+-------+---------+ 5450 */ 5451 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5452 { 5453 int op0 = extract32(insn, 30, 1); 5454 int op1 = extract32(insn, 28, 1); 5455 int op2 = extract32(insn, 21, 4); 5456 int op3 = extract32(insn, 10, 6); 5457 5458 if (!op1) { 5459 if (op2 & 8) { 5460 if (op2 & 1) { 5461 /* Add/sub (extended register) */ 5462 disas_add_sub_ext_reg(s, insn); 5463 } else { 5464 /* Add/sub (shifted register) */ 5465 disas_add_sub_reg(s, insn); 5466 } 5467 } else { 5468 /* Logical (shifted register) */ 5469 disas_logic_reg(s, insn); 5470 } 5471 return; 5472 } 5473 5474 switch (op2) { 5475 case 0x0: 5476 switch (op3) { 5477 case 0x00: /* Add/subtract (with carry) */ 5478 disas_adc_sbc(s, insn); 5479 break; 5480 5481 case 0x01: /* Rotate right into flags */ 5482 case 0x21: 5483 disas_rotate_right_into_flags(s, insn); 5484 break; 5485 5486 case 0x02: /* Evaluate into flags */ 5487 case 0x12: 5488 case 0x22: 5489 case 0x32: 5490 disas_evaluate_into_flags(s, insn); 5491 break; 5492 5493 default: 5494 goto do_unallocated; 5495 } 5496 break; 5497 5498 case 0x2: /* Conditional compare */ 5499 disas_cc(s, insn); /* both imm and reg forms */ 5500 break; 5501 5502 case 0x4: /* Conditional select */ 5503 disas_cond_select(s, insn); 5504 break; 5505 5506 case 0x6: /* Data-processing */ 5507 if (op0) { /* (1 source) */ 5508 disas_data_proc_1src(s, insn); 5509 } else { /* (2 source) */ 5510 disas_data_proc_2src(s, insn); 5511 } 5512 break; 5513 case 0x8 ... 0xf: /* (3 source) */ 5514 disas_data_proc_3src(s, insn); 5515 break; 5516 5517 default: 5518 do_unallocated: 5519 unallocated_encoding(s); 5520 break; 5521 } 5522 } 5523 5524 static void handle_fp_compare(DisasContext *s, int size, 5525 unsigned int rn, unsigned int rm, 5526 bool cmp_with_zero, bool signal_all_nans) 5527 { 5528 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5529 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5530 5531 if (size == MO_64) { 5532 TCGv_i64 tcg_vn, tcg_vm; 5533 5534 tcg_vn = read_fp_dreg(s, rn); 5535 if (cmp_with_zero) { 5536 tcg_vm = tcg_constant_i64(0); 5537 } else { 5538 tcg_vm = read_fp_dreg(s, rm); 5539 } 5540 if (signal_all_nans) { 5541 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5542 } else { 5543 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5544 } 5545 } else { 5546 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5547 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5548 5549 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5550 if (cmp_with_zero) { 5551 tcg_gen_movi_i32(tcg_vm, 0); 5552 } else { 5553 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5554 } 5555 5556 switch (size) { 5557 case MO_32: 5558 if (signal_all_nans) { 5559 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5560 } else { 5561 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5562 } 5563 break; 5564 case MO_16: 5565 if (signal_all_nans) { 5566 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5567 } else { 5568 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5569 } 5570 break; 5571 default: 5572 g_assert_not_reached(); 5573 } 5574 } 5575 5576 gen_set_nzcv(tcg_flags); 5577 } 5578 5579 /* Floating point compare 5580 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5581 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5582 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5583 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5584 */ 5585 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5586 { 5587 unsigned int mos, type, rm, op, rn, opc, op2r; 5588 int size; 5589 5590 mos = extract32(insn, 29, 3); 5591 type = extract32(insn, 22, 2); 5592 rm = extract32(insn, 16, 5); 5593 op = extract32(insn, 14, 2); 5594 rn = extract32(insn, 5, 5); 5595 opc = extract32(insn, 3, 2); 5596 op2r = extract32(insn, 0, 3); 5597 5598 if (mos || op || op2r) { 5599 unallocated_encoding(s); 5600 return; 5601 } 5602 5603 switch (type) { 5604 case 0: 5605 size = MO_32; 5606 break; 5607 case 1: 5608 size = MO_64; 5609 break; 5610 case 3: 5611 size = MO_16; 5612 if (dc_isar_feature(aa64_fp16, s)) { 5613 break; 5614 } 5615 /* fallthru */ 5616 default: 5617 unallocated_encoding(s); 5618 return; 5619 } 5620 5621 if (!fp_access_check(s)) { 5622 return; 5623 } 5624 5625 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5626 } 5627 5628 /* Floating point conditional compare 5629 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5630 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5631 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5632 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5633 */ 5634 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5635 { 5636 unsigned int mos, type, rm, cond, rn, op, nzcv; 5637 TCGLabel *label_continue = NULL; 5638 int size; 5639 5640 mos = extract32(insn, 29, 3); 5641 type = extract32(insn, 22, 2); 5642 rm = extract32(insn, 16, 5); 5643 cond = extract32(insn, 12, 4); 5644 rn = extract32(insn, 5, 5); 5645 op = extract32(insn, 4, 1); 5646 nzcv = extract32(insn, 0, 4); 5647 5648 if (mos) { 5649 unallocated_encoding(s); 5650 return; 5651 } 5652 5653 switch (type) { 5654 case 0: 5655 size = MO_32; 5656 break; 5657 case 1: 5658 size = MO_64; 5659 break; 5660 case 3: 5661 size = MO_16; 5662 if (dc_isar_feature(aa64_fp16, s)) { 5663 break; 5664 } 5665 /* fallthru */ 5666 default: 5667 unallocated_encoding(s); 5668 return; 5669 } 5670 5671 if (!fp_access_check(s)) { 5672 return; 5673 } 5674 5675 if (cond < 0x0e) { /* not always */ 5676 TCGLabel *label_match = gen_new_label(); 5677 label_continue = gen_new_label(); 5678 arm_gen_test_cc(cond, label_match); 5679 /* nomatch: */ 5680 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5681 tcg_gen_br(label_continue); 5682 gen_set_label(label_match); 5683 } 5684 5685 handle_fp_compare(s, size, rn, rm, false, op); 5686 5687 if (cond < 0x0e) { 5688 gen_set_label(label_continue); 5689 } 5690 } 5691 5692 /* Floating point conditional select 5693 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5694 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5695 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5696 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5697 */ 5698 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5699 { 5700 unsigned int mos, type, rm, cond, rn, rd; 5701 TCGv_i64 t_true, t_false; 5702 DisasCompare64 c; 5703 MemOp sz; 5704 5705 mos = extract32(insn, 29, 3); 5706 type = extract32(insn, 22, 2); 5707 rm = extract32(insn, 16, 5); 5708 cond = extract32(insn, 12, 4); 5709 rn = extract32(insn, 5, 5); 5710 rd = extract32(insn, 0, 5); 5711 5712 if (mos) { 5713 unallocated_encoding(s); 5714 return; 5715 } 5716 5717 switch (type) { 5718 case 0: 5719 sz = MO_32; 5720 break; 5721 case 1: 5722 sz = MO_64; 5723 break; 5724 case 3: 5725 sz = MO_16; 5726 if (dc_isar_feature(aa64_fp16, s)) { 5727 break; 5728 } 5729 /* fallthru */ 5730 default: 5731 unallocated_encoding(s); 5732 return; 5733 } 5734 5735 if (!fp_access_check(s)) { 5736 return; 5737 } 5738 5739 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5740 t_true = tcg_temp_new_i64(); 5741 t_false = tcg_temp_new_i64(); 5742 read_vec_element(s, t_true, rn, 0, sz); 5743 read_vec_element(s, t_false, rm, 0, sz); 5744 5745 a64_test_cc(&c, cond); 5746 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5747 t_true, t_false); 5748 5749 /* Note that sregs & hregs write back zeros to the high bits, 5750 and we've already done the zero-extension. */ 5751 write_fp_dreg(s, rd, t_true); 5752 } 5753 5754 /* Floating-point data-processing (1 source) - half precision */ 5755 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5756 { 5757 TCGv_ptr fpst = NULL; 5758 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5759 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5760 5761 switch (opcode) { 5762 case 0x0: /* FMOV */ 5763 tcg_gen_mov_i32(tcg_res, tcg_op); 5764 break; 5765 case 0x1: /* FABS */ 5766 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5767 break; 5768 case 0x2: /* FNEG */ 5769 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5770 break; 5771 case 0x3: /* FSQRT */ 5772 fpst = fpstatus_ptr(FPST_FPCR_F16); 5773 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5774 break; 5775 case 0x8: /* FRINTN */ 5776 case 0x9: /* FRINTP */ 5777 case 0xa: /* FRINTM */ 5778 case 0xb: /* FRINTZ */ 5779 case 0xc: /* FRINTA */ 5780 { 5781 TCGv_i32 tcg_rmode; 5782 5783 fpst = fpstatus_ptr(FPST_FPCR_F16); 5784 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5785 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5786 gen_restore_rmode(tcg_rmode, fpst); 5787 break; 5788 } 5789 case 0xe: /* FRINTX */ 5790 fpst = fpstatus_ptr(FPST_FPCR_F16); 5791 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5792 break; 5793 case 0xf: /* FRINTI */ 5794 fpst = fpstatus_ptr(FPST_FPCR_F16); 5795 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5796 break; 5797 default: 5798 g_assert_not_reached(); 5799 } 5800 5801 write_fp_sreg(s, rd, tcg_res); 5802 } 5803 5804 /* Floating-point data-processing (1 source) - single precision */ 5805 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5806 { 5807 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5808 TCGv_i32 tcg_op, tcg_res; 5809 TCGv_ptr fpst; 5810 int rmode = -1; 5811 5812 tcg_op = read_fp_sreg(s, rn); 5813 tcg_res = tcg_temp_new_i32(); 5814 5815 switch (opcode) { 5816 case 0x0: /* FMOV */ 5817 tcg_gen_mov_i32(tcg_res, tcg_op); 5818 goto done; 5819 case 0x1: /* FABS */ 5820 gen_helper_vfp_abss(tcg_res, tcg_op); 5821 goto done; 5822 case 0x2: /* FNEG */ 5823 gen_helper_vfp_negs(tcg_res, tcg_op); 5824 goto done; 5825 case 0x3: /* FSQRT */ 5826 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 5827 goto done; 5828 case 0x6: /* BFCVT */ 5829 gen_fpst = gen_helper_bfcvt; 5830 break; 5831 case 0x8: /* FRINTN */ 5832 case 0x9: /* FRINTP */ 5833 case 0xa: /* FRINTM */ 5834 case 0xb: /* FRINTZ */ 5835 case 0xc: /* FRINTA */ 5836 rmode = opcode & 7; 5837 gen_fpst = gen_helper_rints; 5838 break; 5839 case 0xe: /* FRINTX */ 5840 gen_fpst = gen_helper_rints_exact; 5841 break; 5842 case 0xf: /* FRINTI */ 5843 gen_fpst = gen_helper_rints; 5844 break; 5845 case 0x10: /* FRINT32Z */ 5846 rmode = FPROUNDING_ZERO; 5847 gen_fpst = gen_helper_frint32_s; 5848 break; 5849 case 0x11: /* FRINT32X */ 5850 gen_fpst = gen_helper_frint32_s; 5851 break; 5852 case 0x12: /* FRINT64Z */ 5853 rmode = FPROUNDING_ZERO; 5854 gen_fpst = gen_helper_frint64_s; 5855 break; 5856 case 0x13: /* FRINT64X */ 5857 gen_fpst = gen_helper_frint64_s; 5858 break; 5859 default: 5860 g_assert_not_reached(); 5861 } 5862 5863 fpst = fpstatus_ptr(FPST_FPCR); 5864 if (rmode >= 0) { 5865 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5866 gen_fpst(tcg_res, tcg_op, fpst); 5867 gen_restore_rmode(tcg_rmode, fpst); 5868 } else { 5869 gen_fpst(tcg_res, tcg_op, fpst); 5870 } 5871 5872 done: 5873 write_fp_sreg(s, rd, tcg_res); 5874 } 5875 5876 /* Floating-point data-processing (1 source) - double precision */ 5877 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 5878 { 5879 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 5880 TCGv_i64 tcg_op, tcg_res; 5881 TCGv_ptr fpst; 5882 int rmode = -1; 5883 5884 switch (opcode) { 5885 case 0x0: /* FMOV */ 5886 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 5887 return; 5888 } 5889 5890 tcg_op = read_fp_dreg(s, rn); 5891 tcg_res = tcg_temp_new_i64(); 5892 5893 switch (opcode) { 5894 case 0x1: /* FABS */ 5895 gen_helper_vfp_absd(tcg_res, tcg_op); 5896 goto done; 5897 case 0x2: /* FNEG */ 5898 gen_helper_vfp_negd(tcg_res, tcg_op); 5899 goto done; 5900 case 0x3: /* FSQRT */ 5901 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 5902 goto done; 5903 case 0x8: /* FRINTN */ 5904 case 0x9: /* FRINTP */ 5905 case 0xa: /* FRINTM */ 5906 case 0xb: /* FRINTZ */ 5907 case 0xc: /* FRINTA */ 5908 rmode = opcode & 7; 5909 gen_fpst = gen_helper_rintd; 5910 break; 5911 case 0xe: /* FRINTX */ 5912 gen_fpst = gen_helper_rintd_exact; 5913 break; 5914 case 0xf: /* FRINTI */ 5915 gen_fpst = gen_helper_rintd; 5916 break; 5917 case 0x10: /* FRINT32Z */ 5918 rmode = FPROUNDING_ZERO; 5919 gen_fpst = gen_helper_frint32_d; 5920 break; 5921 case 0x11: /* FRINT32X */ 5922 gen_fpst = gen_helper_frint32_d; 5923 break; 5924 case 0x12: /* FRINT64Z */ 5925 rmode = FPROUNDING_ZERO; 5926 gen_fpst = gen_helper_frint64_d; 5927 break; 5928 case 0x13: /* FRINT64X */ 5929 gen_fpst = gen_helper_frint64_d; 5930 break; 5931 default: 5932 g_assert_not_reached(); 5933 } 5934 5935 fpst = fpstatus_ptr(FPST_FPCR); 5936 if (rmode >= 0) { 5937 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5938 gen_fpst(tcg_res, tcg_op, fpst); 5939 gen_restore_rmode(tcg_rmode, fpst); 5940 } else { 5941 gen_fpst(tcg_res, tcg_op, fpst); 5942 } 5943 5944 done: 5945 write_fp_dreg(s, rd, tcg_res); 5946 } 5947 5948 static void handle_fp_fcvt(DisasContext *s, int opcode, 5949 int rd, int rn, int dtype, int ntype) 5950 { 5951 switch (ntype) { 5952 case 0x0: 5953 { 5954 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 5955 if (dtype == 1) { 5956 /* Single to double */ 5957 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 5958 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 5959 write_fp_dreg(s, rd, tcg_rd); 5960 } else { 5961 /* Single to half */ 5962 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5963 TCGv_i32 ahp = get_ahp_flag(); 5964 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 5965 5966 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 5967 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 5968 write_fp_sreg(s, rd, tcg_rd); 5969 } 5970 break; 5971 } 5972 case 0x1: 5973 { 5974 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 5975 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5976 if (dtype == 0) { 5977 /* Double to single */ 5978 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 5979 } else { 5980 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 5981 TCGv_i32 ahp = get_ahp_flag(); 5982 /* Double to half */ 5983 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 5984 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 5985 } 5986 write_fp_sreg(s, rd, tcg_rd); 5987 break; 5988 } 5989 case 0x3: 5990 { 5991 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 5992 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 5993 TCGv_i32 tcg_ahp = get_ahp_flag(); 5994 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 5995 if (dtype == 0) { 5996 /* Half to single */ 5997 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5998 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 5999 write_fp_sreg(s, rd, tcg_rd); 6000 } else { 6001 /* Half to double */ 6002 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6003 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6004 write_fp_dreg(s, rd, tcg_rd); 6005 } 6006 break; 6007 } 6008 default: 6009 g_assert_not_reached(); 6010 } 6011 } 6012 6013 /* Floating point data-processing (1 source) 6014 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6015 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6016 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6017 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6018 */ 6019 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6020 { 6021 int mos = extract32(insn, 29, 3); 6022 int type = extract32(insn, 22, 2); 6023 int opcode = extract32(insn, 15, 6); 6024 int rn = extract32(insn, 5, 5); 6025 int rd = extract32(insn, 0, 5); 6026 6027 if (mos) { 6028 goto do_unallocated; 6029 } 6030 6031 switch (opcode) { 6032 case 0x4: case 0x5: case 0x7: 6033 { 6034 /* FCVT between half, single and double precision */ 6035 int dtype = extract32(opcode, 0, 2); 6036 if (type == 2 || dtype == type) { 6037 goto do_unallocated; 6038 } 6039 if (!fp_access_check(s)) { 6040 return; 6041 } 6042 6043 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6044 break; 6045 } 6046 6047 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6048 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6049 goto do_unallocated; 6050 } 6051 /* fall through */ 6052 case 0x0 ... 0x3: 6053 case 0x8 ... 0xc: 6054 case 0xe ... 0xf: 6055 /* 32-to-32 and 64-to-64 ops */ 6056 switch (type) { 6057 case 0: 6058 if (!fp_access_check(s)) { 6059 return; 6060 } 6061 handle_fp_1src_single(s, opcode, rd, rn); 6062 break; 6063 case 1: 6064 if (!fp_access_check(s)) { 6065 return; 6066 } 6067 handle_fp_1src_double(s, opcode, rd, rn); 6068 break; 6069 case 3: 6070 if (!dc_isar_feature(aa64_fp16, s)) { 6071 goto do_unallocated; 6072 } 6073 6074 if (!fp_access_check(s)) { 6075 return; 6076 } 6077 handle_fp_1src_half(s, opcode, rd, rn); 6078 break; 6079 default: 6080 goto do_unallocated; 6081 } 6082 break; 6083 6084 case 0x6: 6085 switch (type) { 6086 case 1: /* BFCVT */ 6087 if (!dc_isar_feature(aa64_bf16, s)) { 6088 goto do_unallocated; 6089 } 6090 if (!fp_access_check(s)) { 6091 return; 6092 } 6093 handle_fp_1src_single(s, opcode, rd, rn); 6094 break; 6095 default: 6096 goto do_unallocated; 6097 } 6098 break; 6099 6100 default: 6101 do_unallocated: 6102 unallocated_encoding(s); 6103 break; 6104 } 6105 } 6106 6107 /* Floating-point data-processing (2 source) - single precision */ 6108 static void handle_fp_2src_single(DisasContext *s, int opcode, 6109 int rd, int rn, int rm) 6110 { 6111 TCGv_i32 tcg_op1; 6112 TCGv_i32 tcg_op2; 6113 TCGv_i32 tcg_res; 6114 TCGv_ptr fpst; 6115 6116 tcg_res = tcg_temp_new_i32(); 6117 fpst = fpstatus_ptr(FPST_FPCR); 6118 tcg_op1 = read_fp_sreg(s, rn); 6119 tcg_op2 = read_fp_sreg(s, rm); 6120 6121 switch (opcode) { 6122 case 0x0: /* FMUL */ 6123 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6124 break; 6125 case 0x1: /* FDIV */ 6126 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6127 break; 6128 case 0x2: /* FADD */ 6129 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6130 break; 6131 case 0x3: /* FSUB */ 6132 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6133 break; 6134 case 0x4: /* FMAX */ 6135 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6136 break; 6137 case 0x5: /* FMIN */ 6138 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6139 break; 6140 case 0x6: /* FMAXNM */ 6141 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6142 break; 6143 case 0x7: /* FMINNM */ 6144 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6145 break; 6146 case 0x8: /* FNMUL */ 6147 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6148 gen_helper_vfp_negs(tcg_res, tcg_res); 6149 break; 6150 } 6151 6152 write_fp_sreg(s, rd, tcg_res); 6153 } 6154 6155 /* Floating-point data-processing (2 source) - double precision */ 6156 static void handle_fp_2src_double(DisasContext *s, int opcode, 6157 int rd, int rn, int rm) 6158 { 6159 TCGv_i64 tcg_op1; 6160 TCGv_i64 tcg_op2; 6161 TCGv_i64 tcg_res; 6162 TCGv_ptr fpst; 6163 6164 tcg_res = tcg_temp_new_i64(); 6165 fpst = fpstatus_ptr(FPST_FPCR); 6166 tcg_op1 = read_fp_dreg(s, rn); 6167 tcg_op2 = read_fp_dreg(s, rm); 6168 6169 switch (opcode) { 6170 case 0x0: /* FMUL */ 6171 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6172 break; 6173 case 0x1: /* FDIV */ 6174 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6175 break; 6176 case 0x2: /* FADD */ 6177 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6178 break; 6179 case 0x3: /* FSUB */ 6180 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6181 break; 6182 case 0x4: /* FMAX */ 6183 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6184 break; 6185 case 0x5: /* FMIN */ 6186 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6187 break; 6188 case 0x6: /* FMAXNM */ 6189 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6190 break; 6191 case 0x7: /* FMINNM */ 6192 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6193 break; 6194 case 0x8: /* FNMUL */ 6195 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6196 gen_helper_vfp_negd(tcg_res, tcg_res); 6197 break; 6198 } 6199 6200 write_fp_dreg(s, rd, tcg_res); 6201 } 6202 6203 /* Floating-point data-processing (2 source) - half precision */ 6204 static void handle_fp_2src_half(DisasContext *s, int opcode, 6205 int rd, int rn, int rm) 6206 { 6207 TCGv_i32 tcg_op1; 6208 TCGv_i32 tcg_op2; 6209 TCGv_i32 tcg_res; 6210 TCGv_ptr fpst; 6211 6212 tcg_res = tcg_temp_new_i32(); 6213 fpst = fpstatus_ptr(FPST_FPCR_F16); 6214 tcg_op1 = read_fp_hreg(s, rn); 6215 tcg_op2 = read_fp_hreg(s, rm); 6216 6217 switch (opcode) { 6218 case 0x0: /* FMUL */ 6219 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6220 break; 6221 case 0x1: /* FDIV */ 6222 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6223 break; 6224 case 0x2: /* FADD */ 6225 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6226 break; 6227 case 0x3: /* FSUB */ 6228 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6229 break; 6230 case 0x4: /* FMAX */ 6231 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6232 break; 6233 case 0x5: /* FMIN */ 6234 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6235 break; 6236 case 0x6: /* FMAXNM */ 6237 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6238 break; 6239 case 0x7: /* FMINNM */ 6240 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6241 break; 6242 case 0x8: /* FNMUL */ 6243 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6244 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6245 break; 6246 default: 6247 g_assert_not_reached(); 6248 } 6249 6250 write_fp_sreg(s, rd, tcg_res); 6251 } 6252 6253 /* Floating point data-processing (2 source) 6254 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6255 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6256 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6257 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6258 */ 6259 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6260 { 6261 int mos = extract32(insn, 29, 3); 6262 int type = extract32(insn, 22, 2); 6263 int rd = extract32(insn, 0, 5); 6264 int rn = extract32(insn, 5, 5); 6265 int rm = extract32(insn, 16, 5); 6266 int opcode = extract32(insn, 12, 4); 6267 6268 if (opcode > 8 || mos) { 6269 unallocated_encoding(s); 6270 return; 6271 } 6272 6273 switch (type) { 6274 case 0: 6275 if (!fp_access_check(s)) { 6276 return; 6277 } 6278 handle_fp_2src_single(s, opcode, rd, rn, rm); 6279 break; 6280 case 1: 6281 if (!fp_access_check(s)) { 6282 return; 6283 } 6284 handle_fp_2src_double(s, opcode, rd, rn, rm); 6285 break; 6286 case 3: 6287 if (!dc_isar_feature(aa64_fp16, s)) { 6288 unallocated_encoding(s); 6289 return; 6290 } 6291 if (!fp_access_check(s)) { 6292 return; 6293 } 6294 handle_fp_2src_half(s, opcode, rd, rn, rm); 6295 break; 6296 default: 6297 unallocated_encoding(s); 6298 } 6299 } 6300 6301 /* Floating-point data-processing (3 source) - single precision */ 6302 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6303 int rd, int rn, int rm, int ra) 6304 { 6305 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6306 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6307 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6308 6309 tcg_op1 = read_fp_sreg(s, rn); 6310 tcg_op2 = read_fp_sreg(s, rm); 6311 tcg_op3 = read_fp_sreg(s, ra); 6312 6313 /* These are fused multiply-add, and must be done as one 6314 * floating point operation with no rounding between the 6315 * multiplication and addition steps. 6316 * NB that doing the negations here as separate steps is 6317 * correct : an input NaN should come out with its sign bit 6318 * flipped if it is a negated-input. 6319 */ 6320 if (o1 == true) { 6321 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6322 } 6323 6324 if (o0 != o1) { 6325 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6326 } 6327 6328 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6329 6330 write_fp_sreg(s, rd, tcg_res); 6331 } 6332 6333 /* Floating-point data-processing (3 source) - double precision */ 6334 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6335 int rd, int rn, int rm, int ra) 6336 { 6337 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6338 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6339 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6340 6341 tcg_op1 = read_fp_dreg(s, rn); 6342 tcg_op2 = read_fp_dreg(s, rm); 6343 tcg_op3 = read_fp_dreg(s, ra); 6344 6345 /* These are fused multiply-add, and must be done as one 6346 * floating point operation with no rounding between the 6347 * multiplication and addition steps. 6348 * NB that doing the negations here as separate steps is 6349 * correct : an input NaN should come out with its sign bit 6350 * flipped if it is a negated-input. 6351 */ 6352 if (o1 == true) { 6353 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6354 } 6355 6356 if (o0 != o1) { 6357 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6358 } 6359 6360 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6361 6362 write_fp_dreg(s, rd, tcg_res); 6363 } 6364 6365 /* Floating-point data-processing (3 source) - half precision */ 6366 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6367 int rd, int rn, int rm, int ra) 6368 { 6369 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6370 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6371 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6372 6373 tcg_op1 = read_fp_hreg(s, rn); 6374 tcg_op2 = read_fp_hreg(s, rm); 6375 tcg_op3 = read_fp_hreg(s, ra); 6376 6377 /* These are fused multiply-add, and must be done as one 6378 * floating point operation with no rounding between the 6379 * multiplication and addition steps. 6380 * NB that doing the negations here as separate steps is 6381 * correct : an input NaN should come out with its sign bit 6382 * flipped if it is a negated-input. 6383 */ 6384 if (o1 == true) { 6385 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6386 } 6387 6388 if (o0 != o1) { 6389 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6390 } 6391 6392 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6393 6394 write_fp_sreg(s, rd, tcg_res); 6395 } 6396 6397 /* Floating point data-processing (3 source) 6398 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6399 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6400 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6401 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6402 */ 6403 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6404 { 6405 int mos = extract32(insn, 29, 3); 6406 int type = extract32(insn, 22, 2); 6407 int rd = extract32(insn, 0, 5); 6408 int rn = extract32(insn, 5, 5); 6409 int ra = extract32(insn, 10, 5); 6410 int rm = extract32(insn, 16, 5); 6411 bool o0 = extract32(insn, 15, 1); 6412 bool o1 = extract32(insn, 21, 1); 6413 6414 if (mos) { 6415 unallocated_encoding(s); 6416 return; 6417 } 6418 6419 switch (type) { 6420 case 0: 6421 if (!fp_access_check(s)) { 6422 return; 6423 } 6424 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6425 break; 6426 case 1: 6427 if (!fp_access_check(s)) { 6428 return; 6429 } 6430 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6431 break; 6432 case 3: 6433 if (!dc_isar_feature(aa64_fp16, s)) { 6434 unallocated_encoding(s); 6435 return; 6436 } 6437 if (!fp_access_check(s)) { 6438 return; 6439 } 6440 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6441 break; 6442 default: 6443 unallocated_encoding(s); 6444 } 6445 } 6446 6447 /* Floating point immediate 6448 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6449 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6450 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6451 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6452 */ 6453 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6454 { 6455 int rd = extract32(insn, 0, 5); 6456 int imm5 = extract32(insn, 5, 5); 6457 int imm8 = extract32(insn, 13, 8); 6458 int type = extract32(insn, 22, 2); 6459 int mos = extract32(insn, 29, 3); 6460 uint64_t imm; 6461 MemOp sz; 6462 6463 if (mos || imm5) { 6464 unallocated_encoding(s); 6465 return; 6466 } 6467 6468 switch (type) { 6469 case 0: 6470 sz = MO_32; 6471 break; 6472 case 1: 6473 sz = MO_64; 6474 break; 6475 case 3: 6476 sz = MO_16; 6477 if (dc_isar_feature(aa64_fp16, s)) { 6478 break; 6479 } 6480 /* fallthru */ 6481 default: 6482 unallocated_encoding(s); 6483 return; 6484 } 6485 6486 if (!fp_access_check(s)) { 6487 return; 6488 } 6489 6490 imm = vfp_expand_imm(sz, imm8); 6491 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6492 } 6493 6494 /* Handle floating point <=> fixed point conversions. Note that we can 6495 * also deal with fp <=> integer conversions as a special case (scale == 64) 6496 * OPTME: consider handling that special case specially or at least skipping 6497 * the call to scalbn in the helpers for zero shifts. 6498 */ 6499 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6500 bool itof, int rmode, int scale, int sf, int type) 6501 { 6502 bool is_signed = !(opcode & 1); 6503 TCGv_ptr tcg_fpstatus; 6504 TCGv_i32 tcg_shift, tcg_single; 6505 TCGv_i64 tcg_double; 6506 6507 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6508 6509 tcg_shift = tcg_constant_i32(64 - scale); 6510 6511 if (itof) { 6512 TCGv_i64 tcg_int = cpu_reg(s, rn); 6513 if (!sf) { 6514 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6515 6516 if (is_signed) { 6517 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6518 } else { 6519 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6520 } 6521 6522 tcg_int = tcg_extend; 6523 } 6524 6525 switch (type) { 6526 case 1: /* float64 */ 6527 tcg_double = tcg_temp_new_i64(); 6528 if (is_signed) { 6529 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6530 tcg_shift, tcg_fpstatus); 6531 } else { 6532 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6533 tcg_shift, tcg_fpstatus); 6534 } 6535 write_fp_dreg(s, rd, tcg_double); 6536 break; 6537 6538 case 0: /* float32 */ 6539 tcg_single = tcg_temp_new_i32(); 6540 if (is_signed) { 6541 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6542 tcg_shift, tcg_fpstatus); 6543 } else { 6544 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6545 tcg_shift, tcg_fpstatus); 6546 } 6547 write_fp_sreg(s, rd, tcg_single); 6548 break; 6549 6550 case 3: /* float16 */ 6551 tcg_single = tcg_temp_new_i32(); 6552 if (is_signed) { 6553 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6554 tcg_shift, tcg_fpstatus); 6555 } else { 6556 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6557 tcg_shift, tcg_fpstatus); 6558 } 6559 write_fp_sreg(s, rd, tcg_single); 6560 break; 6561 6562 default: 6563 g_assert_not_reached(); 6564 } 6565 } else { 6566 TCGv_i64 tcg_int = cpu_reg(s, rd); 6567 TCGv_i32 tcg_rmode; 6568 6569 if (extract32(opcode, 2, 1)) { 6570 /* There are too many rounding modes to all fit into rmode, 6571 * so FCVTA[US] is a special case. 6572 */ 6573 rmode = FPROUNDING_TIEAWAY; 6574 } 6575 6576 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6577 6578 switch (type) { 6579 case 1: /* float64 */ 6580 tcg_double = read_fp_dreg(s, rn); 6581 if (is_signed) { 6582 if (!sf) { 6583 gen_helper_vfp_tosld(tcg_int, tcg_double, 6584 tcg_shift, tcg_fpstatus); 6585 } else { 6586 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6587 tcg_shift, tcg_fpstatus); 6588 } 6589 } else { 6590 if (!sf) { 6591 gen_helper_vfp_tould(tcg_int, tcg_double, 6592 tcg_shift, tcg_fpstatus); 6593 } else { 6594 gen_helper_vfp_touqd(tcg_int, tcg_double, 6595 tcg_shift, tcg_fpstatus); 6596 } 6597 } 6598 if (!sf) { 6599 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6600 } 6601 break; 6602 6603 case 0: /* float32 */ 6604 tcg_single = read_fp_sreg(s, rn); 6605 if (sf) { 6606 if (is_signed) { 6607 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6608 tcg_shift, tcg_fpstatus); 6609 } else { 6610 gen_helper_vfp_touqs(tcg_int, tcg_single, 6611 tcg_shift, tcg_fpstatus); 6612 } 6613 } else { 6614 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6615 if (is_signed) { 6616 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6617 tcg_shift, tcg_fpstatus); 6618 } else { 6619 gen_helper_vfp_touls(tcg_dest, tcg_single, 6620 tcg_shift, tcg_fpstatus); 6621 } 6622 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6623 } 6624 break; 6625 6626 case 3: /* float16 */ 6627 tcg_single = read_fp_sreg(s, rn); 6628 if (sf) { 6629 if (is_signed) { 6630 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6631 tcg_shift, tcg_fpstatus); 6632 } else { 6633 gen_helper_vfp_touqh(tcg_int, tcg_single, 6634 tcg_shift, tcg_fpstatus); 6635 } 6636 } else { 6637 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6638 if (is_signed) { 6639 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6640 tcg_shift, tcg_fpstatus); 6641 } else { 6642 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6643 tcg_shift, tcg_fpstatus); 6644 } 6645 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6646 } 6647 break; 6648 6649 default: 6650 g_assert_not_reached(); 6651 } 6652 6653 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6654 } 6655 } 6656 6657 /* Floating point <-> fixed point conversions 6658 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6659 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6660 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6661 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6662 */ 6663 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6664 { 6665 int rd = extract32(insn, 0, 5); 6666 int rn = extract32(insn, 5, 5); 6667 int scale = extract32(insn, 10, 6); 6668 int opcode = extract32(insn, 16, 3); 6669 int rmode = extract32(insn, 19, 2); 6670 int type = extract32(insn, 22, 2); 6671 bool sbit = extract32(insn, 29, 1); 6672 bool sf = extract32(insn, 31, 1); 6673 bool itof; 6674 6675 if (sbit || (!sf && scale < 32)) { 6676 unallocated_encoding(s); 6677 return; 6678 } 6679 6680 switch (type) { 6681 case 0: /* float32 */ 6682 case 1: /* float64 */ 6683 break; 6684 case 3: /* float16 */ 6685 if (dc_isar_feature(aa64_fp16, s)) { 6686 break; 6687 } 6688 /* fallthru */ 6689 default: 6690 unallocated_encoding(s); 6691 return; 6692 } 6693 6694 switch ((rmode << 3) | opcode) { 6695 case 0x2: /* SCVTF */ 6696 case 0x3: /* UCVTF */ 6697 itof = true; 6698 break; 6699 case 0x18: /* FCVTZS */ 6700 case 0x19: /* FCVTZU */ 6701 itof = false; 6702 break; 6703 default: 6704 unallocated_encoding(s); 6705 return; 6706 } 6707 6708 if (!fp_access_check(s)) { 6709 return; 6710 } 6711 6712 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6713 } 6714 6715 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6716 { 6717 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6718 * without conversion. 6719 */ 6720 6721 if (itof) { 6722 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6723 TCGv_i64 tmp; 6724 6725 switch (type) { 6726 case 0: 6727 /* 32 bit */ 6728 tmp = tcg_temp_new_i64(); 6729 tcg_gen_ext32u_i64(tmp, tcg_rn); 6730 write_fp_dreg(s, rd, tmp); 6731 break; 6732 case 1: 6733 /* 64 bit */ 6734 write_fp_dreg(s, rd, tcg_rn); 6735 break; 6736 case 2: 6737 /* 64 bit to top half. */ 6738 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6739 clear_vec_high(s, true, rd); 6740 break; 6741 case 3: 6742 /* 16 bit */ 6743 tmp = tcg_temp_new_i64(); 6744 tcg_gen_ext16u_i64(tmp, tcg_rn); 6745 write_fp_dreg(s, rd, tmp); 6746 break; 6747 default: 6748 g_assert_not_reached(); 6749 } 6750 } else { 6751 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6752 6753 switch (type) { 6754 case 0: 6755 /* 32 bit */ 6756 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6757 break; 6758 case 1: 6759 /* 64 bit */ 6760 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6761 break; 6762 case 2: 6763 /* 64 bits from top half */ 6764 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6765 break; 6766 case 3: 6767 /* 16 bit */ 6768 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6769 break; 6770 default: 6771 g_assert_not_reached(); 6772 } 6773 } 6774 } 6775 6776 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6777 { 6778 TCGv_i64 t = read_fp_dreg(s, rn); 6779 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6780 6781 gen_helper_fjcvtzs(t, t, fpstatus); 6782 6783 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6784 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6785 tcg_gen_movi_i32(cpu_CF, 0); 6786 tcg_gen_movi_i32(cpu_NF, 0); 6787 tcg_gen_movi_i32(cpu_VF, 0); 6788 } 6789 6790 /* Floating point <-> integer conversions 6791 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6792 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6793 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6794 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6795 */ 6796 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6797 { 6798 int rd = extract32(insn, 0, 5); 6799 int rn = extract32(insn, 5, 5); 6800 int opcode = extract32(insn, 16, 3); 6801 int rmode = extract32(insn, 19, 2); 6802 int type = extract32(insn, 22, 2); 6803 bool sbit = extract32(insn, 29, 1); 6804 bool sf = extract32(insn, 31, 1); 6805 bool itof = false; 6806 6807 if (sbit) { 6808 goto do_unallocated; 6809 } 6810 6811 switch (opcode) { 6812 case 2: /* SCVTF */ 6813 case 3: /* UCVTF */ 6814 itof = true; 6815 /* fallthru */ 6816 case 4: /* FCVTAS */ 6817 case 5: /* FCVTAU */ 6818 if (rmode != 0) { 6819 goto do_unallocated; 6820 } 6821 /* fallthru */ 6822 case 0: /* FCVT[NPMZ]S */ 6823 case 1: /* FCVT[NPMZ]U */ 6824 switch (type) { 6825 case 0: /* float32 */ 6826 case 1: /* float64 */ 6827 break; 6828 case 3: /* float16 */ 6829 if (!dc_isar_feature(aa64_fp16, s)) { 6830 goto do_unallocated; 6831 } 6832 break; 6833 default: 6834 goto do_unallocated; 6835 } 6836 if (!fp_access_check(s)) { 6837 return; 6838 } 6839 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 6840 break; 6841 6842 default: 6843 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 6844 case 0b01100110: /* FMOV half <-> 32-bit int */ 6845 case 0b01100111: 6846 case 0b11100110: /* FMOV half <-> 64-bit int */ 6847 case 0b11100111: 6848 if (!dc_isar_feature(aa64_fp16, s)) { 6849 goto do_unallocated; 6850 } 6851 /* fallthru */ 6852 case 0b00000110: /* FMOV 32-bit */ 6853 case 0b00000111: 6854 case 0b10100110: /* FMOV 64-bit */ 6855 case 0b10100111: 6856 case 0b11001110: /* FMOV top half of 128-bit */ 6857 case 0b11001111: 6858 if (!fp_access_check(s)) { 6859 return; 6860 } 6861 itof = opcode & 1; 6862 handle_fmov(s, rd, rn, type, itof); 6863 break; 6864 6865 case 0b00111110: /* FJCVTZS */ 6866 if (!dc_isar_feature(aa64_jscvt, s)) { 6867 goto do_unallocated; 6868 } else if (fp_access_check(s)) { 6869 handle_fjcvtzs(s, rd, rn); 6870 } 6871 break; 6872 6873 default: 6874 do_unallocated: 6875 unallocated_encoding(s); 6876 return; 6877 } 6878 break; 6879 } 6880 } 6881 6882 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 6883 * 31 30 29 28 25 24 0 6884 * +---+---+---+---------+-----------------------------+ 6885 * | | 0 | | 1 1 1 1 | | 6886 * +---+---+---+---------+-----------------------------+ 6887 */ 6888 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 6889 { 6890 if (extract32(insn, 24, 1)) { 6891 /* Floating point data-processing (3 source) */ 6892 disas_fp_3src(s, insn); 6893 } else if (extract32(insn, 21, 1) == 0) { 6894 /* Floating point to fixed point conversions */ 6895 disas_fp_fixed_conv(s, insn); 6896 } else { 6897 switch (extract32(insn, 10, 2)) { 6898 case 1: 6899 /* Floating point conditional compare */ 6900 disas_fp_ccomp(s, insn); 6901 break; 6902 case 2: 6903 /* Floating point data-processing (2 source) */ 6904 disas_fp_2src(s, insn); 6905 break; 6906 case 3: 6907 /* Floating point conditional select */ 6908 disas_fp_csel(s, insn); 6909 break; 6910 case 0: 6911 switch (ctz32(extract32(insn, 12, 4))) { 6912 case 0: /* [15:12] == xxx1 */ 6913 /* Floating point immediate */ 6914 disas_fp_imm(s, insn); 6915 break; 6916 case 1: /* [15:12] == xx10 */ 6917 /* Floating point compare */ 6918 disas_fp_compare(s, insn); 6919 break; 6920 case 2: /* [15:12] == x100 */ 6921 /* Floating point data-processing (1 source) */ 6922 disas_fp_1src(s, insn); 6923 break; 6924 case 3: /* [15:12] == 1000 */ 6925 unallocated_encoding(s); 6926 break; 6927 default: /* [15:12] == 0000 */ 6928 /* Floating point <-> integer conversions */ 6929 disas_fp_int_conv(s, insn); 6930 break; 6931 } 6932 break; 6933 } 6934 } 6935 } 6936 6937 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 6938 int pos) 6939 { 6940 /* Extract 64 bits from the middle of two concatenated 64 bit 6941 * vector register slices left:right. The extracted bits start 6942 * at 'pos' bits into the right (least significant) side. 6943 * We return the result in tcg_right, and guarantee not to 6944 * trash tcg_left. 6945 */ 6946 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6947 assert(pos > 0 && pos < 64); 6948 6949 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 6950 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 6951 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 6952 } 6953 6954 /* EXT 6955 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 6956 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 6957 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 6958 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 6959 */ 6960 static void disas_simd_ext(DisasContext *s, uint32_t insn) 6961 { 6962 int is_q = extract32(insn, 30, 1); 6963 int op2 = extract32(insn, 22, 2); 6964 int imm4 = extract32(insn, 11, 4); 6965 int rm = extract32(insn, 16, 5); 6966 int rn = extract32(insn, 5, 5); 6967 int rd = extract32(insn, 0, 5); 6968 int pos = imm4 << 3; 6969 TCGv_i64 tcg_resl, tcg_resh; 6970 6971 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 6972 unallocated_encoding(s); 6973 return; 6974 } 6975 6976 if (!fp_access_check(s)) { 6977 return; 6978 } 6979 6980 tcg_resh = tcg_temp_new_i64(); 6981 tcg_resl = tcg_temp_new_i64(); 6982 6983 /* Vd gets bits starting at pos bits into Vm:Vn. This is 6984 * either extracting 128 bits from a 128:128 concatenation, or 6985 * extracting 64 bits from a 64:64 concatenation. 6986 */ 6987 if (!is_q) { 6988 read_vec_element(s, tcg_resl, rn, 0, MO_64); 6989 if (pos != 0) { 6990 read_vec_element(s, tcg_resh, rm, 0, MO_64); 6991 do_ext64(s, tcg_resh, tcg_resl, pos); 6992 } 6993 } else { 6994 TCGv_i64 tcg_hh; 6995 typedef struct { 6996 int reg; 6997 int elt; 6998 } EltPosns; 6999 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7000 EltPosns *elt = eltposns; 7001 7002 if (pos >= 64) { 7003 elt++; 7004 pos -= 64; 7005 } 7006 7007 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7008 elt++; 7009 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7010 elt++; 7011 if (pos != 0) { 7012 do_ext64(s, tcg_resh, tcg_resl, pos); 7013 tcg_hh = tcg_temp_new_i64(); 7014 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7015 do_ext64(s, tcg_hh, tcg_resh, pos); 7016 } 7017 } 7018 7019 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7020 if (is_q) { 7021 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7022 } 7023 clear_vec_high(s, is_q, rd); 7024 } 7025 7026 /* TBL/TBX 7027 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7028 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7029 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7030 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7031 */ 7032 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7033 { 7034 int op2 = extract32(insn, 22, 2); 7035 int is_q = extract32(insn, 30, 1); 7036 int rm = extract32(insn, 16, 5); 7037 int rn = extract32(insn, 5, 5); 7038 int rd = extract32(insn, 0, 5); 7039 int is_tbx = extract32(insn, 12, 1); 7040 int len = (extract32(insn, 13, 2) + 1) * 16; 7041 7042 if (op2 != 0) { 7043 unallocated_encoding(s); 7044 return; 7045 } 7046 7047 if (!fp_access_check(s)) { 7048 return; 7049 } 7050 7051 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7052 vec_full_reg_offset(s, rm), cpu_env, 7053 is_q ? 16 : 8, vec_full_reg_size(s), 7054 (len << 6) | (is_tbx << 5) | rn, 7055 gen_helper_simd_tblx); 7056 } 7057 7058 /* ZIP/UZP/TRN 7059 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7060 * +---+---+-------------+------+---+------+---+------------------+------+ 7061 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7062 * +---+---+-------------+------+---+------+---+------------------+------+ 7063 */ 7064 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7065 { 7066 int rd = extract32(insn, 0, 5); 7067 int rn = extract32(insn, 5, 5); 7068 int rm = extract32(insn, 16, 5); 7069 int size = extract32(insn, 22, 2); 7070 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7071 * bit 2 indicates 1 vs 2 variant of the insn. 7072 */ 7073 int opcode = extract32(insn, 12, 2); 7074 bool part = extract32(insn, 14, 1); 7075 bool is_q = extract32(insn, 30, 1); 7076 int esize = 8 << size; 7077 int i; 7078 int datasize = is_q ? 128 : 64; 7079 int elements = datasize / esize; 7080 TCGv_i64 tcg_res[2], tcg_ele; 7081 7082 if (opcode == 0 || (size == 3 && !is_q)) { 7083 unallocated_encoding(s); 7084 return; 7085 } 7086 7087 if (!fp_access_check(s)) { 7088 return; 7089 } 7090 7091 tcg_res[0] = tcg_temp_new_i64(); 7092 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7093 tcg_ele = tcg_temp_new_i64(); 7094 7095 for (i = 0; i < elements; i++) { 7096 int o, w; 7097 7098 switch (opcode) { 7099 case 1: /* UZP1/2 */ 7100 { 7101 int midpoint = elements / 2; 7102 if (i < midpoint) { 7103 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7104 } else { 7105 read_vec_element(s, tcg_ele, rm, 7106 2 * (i - midpoint) + part, size); 7107 } 7108 break; 7109 } 7110 case 2: /* TRN1/2 */ 7111 if (i & 1) { 7112 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7113 } else { 7114 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7115 } 7116 break; 7117 case 3: /* ZIP1/2 */ 7118 { 7119 int base = part * elements / 2; 7120 if (i & 1) { 7121 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7122 } else { 7123 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7124 } 7125 break; 7126 } 7127 default: 7128 g_assert_not_reached(); 7129 } 7130 7131 w = (i * esize) / 64; 7132 o = (i * esize) % 64; 7133 if (o == 0) { 7134 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7135 } else { 7136 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7137 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7138 } 7139 } 7140 7141 for (i = 0; i <= is_q; ++i) { 7142 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7143 } 7144 clear_vec_high(s, is_q, rd); 7145 } 7146 7147 /* 7148 * do_reduction_op helper 7149 * 7150 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7151 * important for correct NaN propagation that we do these 7152 * operations in exactly the order specified by the pseudocode. 7153 * 7154 * This is a recursive function, TCG temps should be freed by the 7155 * calling function once it is done with the values. 7156 */ 7157 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7158 int esize, int size, int vmap, TCGv_ptr fpst) 7159 { 7160 if (esize == size) { 7161 int element; 7162 MemOp msize = esize == 16 ? MO_16 : MO_32; 7163 TCGv_i32 tcg_elem; 7164 7165 /* We should have one register left here */ 7166 assert(ctpop8(vmap) == 1); 7167 element = ctz32(vmap); 7168 assert(element < 8); 7169 7170 tcg_elem = tcg_temp_new_i32(); 7171 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7172 return tcg_elem; 7173 } else { 7174 int bits = size / 2; 7175 int shift = ctpop8(vmap) / 2; 7176 int vmap_lo = (vmap >> shift) & vmap; 7177 int vmap_hi = (vmap & ~vmap_lo); 7178 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7179 7180 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7181 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7182 tcg_res = tcg_temp_new_i32(); 7183 7184 switch (fpopcode) { 7185 case 0x0c: /* fmaxnmv half-precision */ 7186 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7187 break; 7188 case 0x0f: /* fmaxv half-precision */ 7189 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7190 break; 7191 case 0x1c: /* fminnmv half-precision */ 7192 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7193 break; 7194 case 0x1f: /* fminv half-precision */ 7195 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7196 break; 7197 case 0x2c: /* fmaxnmv */ 7198 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7199 break; 7200 case 0x2f: /* fmaxv */ 7201 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7202 break; 7203 case 0x3c: /* fminnmv */ 7204 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7205 break; 7206 case 0x3f: /* fminv */ 7207 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7208 break; 7209 default: 7210 g_assert_not_reached(); 7211 } 7212 return tcg_res; 7213 } 7214 } 7215 7216 /* AdvSIMD across lanes 7217 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7218 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7219 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7220 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7221 */ 7222 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7223 { 7224 int rd = extract32(insn, 0, 5); 7225 int rn = extract32(insn, 5, 5); 7226 int size = extract32(insn, 22, 2); 7227 int opcode = extract32(insn, 12, 5); 7228 bool is_q = extract32(insn, 30, 1); 7229 bool is_u = extract32(insn, 29, 1); 7230 bool is_fp = false; 7231 bool is_min = false; 7232 int esize; 7233 int elements; 7234 int i; 7235 TCGv_i64 tcg_res, tcg_elt; 7236 7237 switch (opcode) { 7238 case 0x1b: /* ADDV */ 7239 if (is_u) { 7240 unallocated_encoding(s); 7241 return; 7242 } 7243 /* fall through */ 7244 case 0x3: /* SADDLV, UADDLV */ 7245 case 0xa: /* SMAXV, UMAXV */ 7246 case 0x1a: /* SMINV, UMINV */ 7247 if (size == 3 || (size == 2 && !is_q)) { 7248 unallocated_encoding(s); 7249 return; 7250 } 7251 break; 7252 case 0xc: /* FMAXNMV, FMINNMV */ 7253 case 0xf: /* FMAXV, FMINV */ 7254 /* Bit 1 of size field encodes min vs max and the actual size 7255 * depends on the encoding of the U bit. If not set (and FP16 7256 * enabled) then we do half-precision float instead of single 7257 * precision. 7258 */ 7259 is_min = extract32(size, 1, 1); 7260 is_fp = true; 7261 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7262 size = 1; 7263 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7264 unallocated_encoding(s); 7265 return; 7266 } else { 7267 size = 2; 7268 } 7269 break; 7270 default: 7271 unallocated_encoding(s); 7272 return; 7273 } 7274 7275 if (!fp_access_check(s)) { 7276 return; 7277 } 7278 7279 esize = 8 << size; 7280 elements = (is_q ? 128 : 64) / esize; 7281 7282 tcg_res = tcg_temp_new_i64(); 7283 tcg_elt = tcg_temp_new_i64(); 7284 7285 /* These instructions operate across all lanes of a vector 7286 * to produce a single result. We can guarantee that a 64 7287 * bit intermediate is sufficient: 7288 * + for [US]ADDLV the maximum element size is 32 bits, and 7289 * the result type is 64 bits 7290 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7291 * same as the element size, which is 32 bits at most 7292 * For the integer operations we can choose to work at 64 7293 * or 32 bits and truncate at the end; for simplicity 7294 * we use 64 bits always. The floating point 7295 * ops do require 32 bit intermediates, though. 7296 */ 7297 if (!is_fp) { 7298 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7299 7300 for (i = 1; i < elements; i++) { 7301 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7302 7303 switch (opcode) { 7304 case 0x03: /* SADDLV / UADDLV */ 7305 case 0x1b: /* ADDV */ 7306 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7307 break; 7308 case 0x0a: /* SMAXV / UMAXV */ 7309 if (is_u) { 7310 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7311 } else { 7312 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7313 } 7314 break; 7315 case 0x1a: /* SMINV / UMINV */ 7316 if (is_u) { 7317 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7318 } else { 7319 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7320 } 7321 break; 7322 default: 7323 g_assert_not_reached(); 7324 } 7325 7326 } 7327 } else { 7328 /* Floating point vector reduction ops which work across 32 7329 * bit (single) or 16 bit (half-precision) intermediates. 7330 * Note that correct NaN propagation requires that we do these 7331 * operations in exactly the order specified by the pseudocode. 7332 */ 7333 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7334 int fpopcode = opcode | is_min << 4 | is_u << 5; 7335 int vmap = (1 << elements) - 1; 7336 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7337 (is_q ? 128 : 64), vmap, fpst); 7338 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7339 } 7340 7341 /* Now truncate the result to the width required for the final output */ 7342 if (opcode == 0x03) { 7343 /* SADDLV, UADDLV: result is 2*esize */ 7344 size++; 7345 } 7346 7347 switch (size) { 7348 case 0: 7349 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7350 break; 7351 case 1: 7352 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7353 break; 7354 case 2: 7355 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7356 break; 7357 case 3: 7358 break; 7359 default: 7360 g_assert_not_reached(); 7361 } 7362 7363 write_fp_dreg(s, rd, tcg_res); 7364 } 7365 7366 /* DUP (Element, Vector) 7367 * 7368 * 31 30 29 21 20 16 15 10 9 5 4 0 7369 * +---+---+-------------------+--------+-------------+------+------+ 7370 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7371 * +---+---+-------------------+--------+-------------+------+------+ 7372 * 7373 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7374 */ 7375 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7376 int imm5) 7377 { 7378 int size = ctz32(imm5); 7379 int index; 7380 7381 if (size > 3 || (size == 3 && !is_q)) { 7382 unallocated_encoding(s); 7383 return; 7384 } 7385 7386 if (!fp_access_check(s)) { 7387 return; 7388 } 7389 7390 index = imm5 >> (size + 1); 7391 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7392 vec_reg_offset(s, rn, index, size), 7393 is_q ? 16 : 8, vec_full_reg_size(s)); 7394 } 7395 7396 /* DUP (element, scalar) 7397 * 31 21 20 16 15 10 9 5 4 0 7398 * +-----------------------+--------+-------------+------+------+ 7399 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7400 * +-----------------------+--------+-------------+------+------+ 7401 */ 7402 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7403 int imm5) 7404 { 7405 int size = ctz32(imm5); 7406 int index; 7407 TCGv_i64 tmp; 7408 7409 if (size > 3) { 7410 unallocated_encoding(s); 7411 return; 7412 } 7413 7414 if (!fp_access_check(s)) { 7415 return; 7416 } 7417 7418 index = imm5 >> (size + 1); 7419 7420 /* This instruction just extracts the specified element and 7421 * zero-extends it into the bottom of the destination register. 7422 */ 7423 tmp = tcg_temp_new_i64(); 7424 read_vec_element(s, tmp, rn, index, size); 7425 write_fp_dreg(s, rd, tmp); 7426 } 7427 7428 /* DUP (General) 7429 * 7430 * 31 30 29 21 20 16 15 10 9 5 4 0 7431 * +---+---+-------------------+--------+-------------+------+------+ 7432 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7433 * +---+---+-------------------+--------+-------------+------+------+ 7434 * 7435 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7436 */ 7437 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7438 int imm5) 7439 { 7440 int size = ctz32(imm5); 7441 uint32_t dofs, oprsz, maxsz; 7442 7443 if (size > 3 || ((size == 3) && !is_q)) { 7444 unallocated_encoding(s); 7445 return; 7446 } 7447 7448 if (!fp_access_check(s)) { 7449 return; 7450 } 7451 7452 dofs = vec_full_reg_offset(s, rd); 7453 oprsz = is_q ? 16 : 8; 7454 maxsz = vec_full_reg_size(s); 7455 7456 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7457 } 7458 7459 /* INS (Element) 7460 * 7461 * 31 21 20 16 15 14 11 10 9 5 4 0 7462 * +-----------------------+--------+------------+---+------+------+ 7463 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7464 * +-----------------------+--------+------------+---+------+------+ 7465 * 7466 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7467 * index: encoded in imm5<4:size+1> 7468 */ 7469 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7470 int imm4, int imm5) 7471 { 7472 int size = ctz32(imm5); 7473 int src_index, dst_index; 7474 TCGv_i64 tmp; 7475 7476 if (size > 3) { 7477 unallocated_encoding(s); 7478 return; 7479 } 7480 7481 if (!fp_access_check(s)) { 7482 return; 7483 } 7484 7485 dst_index = extract32(imm5, 1+size, 5); 7486 src_index = extract32(imm4, size, 4); 7487 7488 tmp = tcg_temp_new_i64(); 7489 7490 read_vec_element(s, tmp, rn, src_index, size); 7491 write_vec_element(s, tmp, rd, dst_index, size); 7492 7493 /* INS is considered a 128-bit write for SVE. */ 7494 clear_vec_high(s, true, rd); 7495 } 7496 7497 7498 /* INS (General) 7499 * 7500 * 31 21 20 16 15 10 9 5 4 0 7501 * +-----------------------+--------+-------------+------+------+ 7502 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7503 * +-----------------------+--------+-------------+------+------+ 7504 * 7505 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7506 * index: encoded in imm5<4:size+1> 7507 */ 7508 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7509 { 7510 int size = ctz32(imm5); 7511 int idx; 7512 7513 if (size > 3) { 7514 unallocated_encoding(s); 7515 return; 7516 } 7517 7518 if (!fp_access_check(s)) { 7519 return; 7520 } 7521 7522 idx = extract32(imm5, 1 + size, 4 - size); 7523 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7524 7525 /* INS is considered a 128-bit write for SVE. */ 7526 clear_vec_high(s, true, rd); 7527 } 7528 7529 /* 7530 * UMOV (General) 7531 * SMOV (General) 7532 * 7533 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7534 * +---+---+-------------------+--------+-------------+------+------+ 7535 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7536 * +---+---+-------------------+--------+-------------+------+------+ 7537 * 7538 * U: unsigned when set 7539 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7540 */ 7541 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7542 int rn, int rd, int imm5) 7543 { 7544 int size = ctz32(imm5); 7545 int element; 7546 TCGv_i64 tcg_rd; 7547 7548 /* Check for UnallocatedEncodings */ 7549 if (is_signed) { 7550 if (size > 2 || (size == 2 && !is_q)) { 7551 unallocated_encoding(s); 7552 return; 7553 } 7554 } else { 7555 if (size > 3 7556 || (size < 3 && is_q) 7557 || (size == 3 && !is_q)) { 7558 unallocated_encoding(s); 7559 return; 7560 } 7561 } 7562 7563 if (!fp_access_check(s)) { 7564 return; 7565 } 7566 7567 element = extract32(imm5, 1+size, 4); 7568 7569 tcg_rd = cpu_reg(s, rd); 7570 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7571 if (is_signed && !is_q) { 7572 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7573 } 7574 } 7575 7576 /* AdvSIMD copy 7577 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7578 * +---+---+----+-----------------+------+---+------+---+------+------+ 7579 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7580 * +---+---+----+-----------------+------+---+------+---+------+------+ 7581 */ 7582 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7583 { 7584 int rd = extract32(insn, 0, 5); 7585 int rn = extract32(insn, 5, 5); 7586 int imm4 = extract32(insn, 11, 4); 7587 int op = extract32(insn, 29, 1); 7588 int is_q = extract32(insn, 30, 1); 7589 int imm5 = extract32(insn, 16, 5); 7590 7591 if (op) { 7592 if (is_q) { 7593 /* INS (element) */ 7594 handle_simd_inse(s, rd, rn, imm4, imm5); 7595 } else { 7596 unallocated_encoding(s); 7597 } 7598 } else { 7599 switch (imm4) { 7600 case 0: 7601 /* DUP (element - vector) */ 7602 handle_simd_dupe(s, is_q, rd, rn, imm5); 7603 break; 7604 case 1: 7605 /* DUP (general) */ 7606 handle_simd_dupg(s, is_q, rd, rn, imm5); 7607 break; 7608 case 3: 7609 if (is_q) { 7610 /* INS (general) */ 7611 handle_simd_insg(s, rd, rn, imm5); 7612 } else { 7613 unallocated_encoding(s); 7614 } 7615 break; 7616 case 5: 7617 case 7: 7618 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7619 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7620 break; 7621 default: 7622 unallocated_encoding(s); 7623 break; 7624 } 7625 } 7626 } 7627 7628 /* AdvSIMD modified immediate 7629 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7630 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7631 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7632 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7633 * 7634 * There are a number of operations that can be carried out here: 7635 * MOVI - move (shifted) imm into register 7636 * MVNI - move inverted (shifted) imm into register 7637 * ORR - bitwise OR of (shifted) imm with register 7638 * BIC - bitwise clear of (shifted) imm with register 7639 * With ARMv8.2 we also have: 7640 * FMOV half-precision 7641 */ 7642 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7643 { 7644 int rd = extract32(insn, 0, 5); 7645 int cmode = extract32(insn, 12, 4); 7646 int o2 = extract32(insn, 11, 1); 7647 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7648 bool is_neg = extract32(insn, 29, 1); 7649 bool is_q = extract32(insn, 30, 1); 7650 uint64_t imm = 0; 7651 7652 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7653 /* Check for FMOV (vector, immediate) - half-precision */ 7654 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7655 unallocated_encoding(s); 7656 return; 7657 } 7658 } 7659 7660 if (!fp_access_check(s)) { 7661 return; 7662 } 7663 7664 if (cmode == 15 && o2 && !is_neg) { 7665 /* FMOV (vector, immediate) - half-precision */ 7666 imm = vfp_expand_imm(MO_16, abcdefgh); 7667 /* now duplicate across the lanes */ 7668 imm = dup_const(MO_16, imm); 7669 } else { 7670 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7671 } 7672 7673 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7674 /* MOVI or MVNI, with MVNI negation handled above. */ 7675 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7676 vec_full_reg_size(s), imm); 7677 } else { 7678 /* ORR or BIC, with BIC negation to AND handled above. */ 7679 if (is_neg) { 7680 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7681 } else { 7682 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7683 } 7684 } 7685 } 7686 7687 /* AdvSIMD scalar copy 7688 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7689 * +-----+----+-----------------+------+---+------+---+------+------+ 7690 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7691 * +-----+----+-----------------+------+---+------+---+------+------+ 7692 */ 7693 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7694 { 7695 int rd = extract32(insn, 0, 5); 7696 int rn = extract32(insn, 5, 5); 7697 int imm4 = extract32(insn, 11, 4); 7698 int imm5 = extract32(insn, 16, 5); 7699 int op = extract32(insn, 29, 1); 7700 7701 if (op != 0 || imm4 != 0) { 7702 unallocated_encoding(s); 7703 return; 7704 } 7705 7706 /* DUP (element, scalar) */ 7707 handle_simd_dupes(s, rd, rn, imm5); 7708 } 7709 7710 /* AdvSIMD scalar pairwise 7711 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7712 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7713 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7714 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7715 */ 7716 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7717 { 7718 int u = extract32(insn, 29, 1); 7719 int size = extract32(insn, 22, 2); 7720 int opcode = extract32(insn, 12, 5); 7721 int rn = extract32(insn, 5, 5); 7722 int rd = extract32(insn, 0, 5); 7723 TCGv_ptr fpst; 7724 7725 /* For some ops (the FP ones), size[1] is part of the encoding. 7726 * For ADDP strictly it is not but size[1] is always 1 for valid 7727 * encodings. 7728 */ 7729 opcode |= (extract32(size, 1, 1) << 5); 7730 7731 switch (opcode) { 7732 case 0x3b: /* ADDP */ 7733 if (u || size != 3) { 7734 unallocated_encoding(s); 7735 return; 7736 } 7737 if (!fp_access_check(s)) { 7738 return; 7739 } 7740 7741 fpst = NULL; 7742 break; 7743 case 0xc: /* FMAXNMP */ 7744 case 0xd: /* FADDP */ 7745 case 0xf: /* FMAXP */ 7746 case 0x2c: /* FMINNMP */ 7747 case 0x2f: /* FMINP */ 7748 /* FP op, size[0] is 32 or 64 bit*/ 7749 if (!u) { 7750 if (!dc_isar_feature(aa64_fp16, s)) { 7751 unallocated_encoding(s); 7752 return; 7753 } else { 7754 size = MO_16; 7755 } 7756 } else { 7757 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7758 } 7759 7760 if (!fp_access_check(s)) { 7761 return; 7762 } 7763 7764 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7765 break; 7766 default: 7767 unallocated_encoding(s); 7768 return; 7769 } 7770 7771 if (size == MO_64) { 7772 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7773 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7774 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7775 7776 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7777 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7778 7779 switch (opcode) { 7780 case 0x3b: /* ADDP */ 7781 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7782 break; 7783 case 0xc: /* FMAXNMP */ 7784 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7785 break; 7786 case 0xd: /* FADDP */ 7787 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7788 break; 7789 case 0xf: /* FMAXP */ 7790 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7791 break; 7792 case 0x2c: /* FMINNMP */ 7793 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7794 break; 7795 case 0x2f: /* FMINP */ 7796 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7797 break; 7798 default: 7799 g_assert_not_reached(); 7800 } 7801 7802 write_fp_dreg(s, rd, tcg_res); 7803 } else { 7804 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7805 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7806 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7807 7808 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7809 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7810 7811 if (size == MO_16) { 7812 switch (opcode) { 7813 case 0xc: /* FMAXNMP */ 7814 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7815 break; 7816 case 0xd: /* FADDP */ 7817 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 7818 break; 7819 case 0xf: /* FMAXP */ 7820 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 7821 break; 7822 case 0x2c: /* FMINNMP */ 7823 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7824 break; 7825 case 0x2f: /* FMINP */ 7826 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 7827 break; 7828 default: 7829 g_assert_not_reached(); 7830 } 7831 } else { 7832 switch (opcode) { 7833 case 0xc: /* FMAXNMP */ 7834 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 7835 break; 7836 case 0xd: /* FADDP */ 7837 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 7838 break; 7839 case 0xf: /* FMAXP */ 7840 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 7841 break; 7842 case 0x2c: /* FMINNMP */ 7843 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 7844 break; 7845 case 0x2f: /* FMINP */ 7846 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 7847 break; 7848 default: 7849 g_assert_not_reached(); 7850 } 7851 } 7852 7853 write_fp_sreg(s, rd, tcg_res); 7854 } 7855 } 7856 7857 /* 7858 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 7859 * 7860 * This code is handles the common shifting code and is used by both 7861 * the vector and scalar code. 7862 */ 7863 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 7864 TCGv_i64 tcg_rnd, bool accumulate, 7865 bool is_u, int size, int shift) 7866 { 7867 bool extended_result = false; 7868 bool round = tcg_rnd != NULL; 7869 int ext_lshift = 0; 7870 TCGv_i64 tcg_src_hi; 7871 7872 if (round && size == 3) { 7873 extended_result = true; 7874 ext_lshift = 64 - shift; 7875 tcg_src_hi = tcg_temp_new_i64(); 7876 } else if (shift == 64) { 7877 if (!accumulate && is_u) { 7878 /* result is zero */ 7879 tcg_gen_movi_i64(tcg_res, 0); 7880 return; 7881 } 7882 } 7883 7884 /* Deal with the rounding step */ 7885 if (round) { 7886 if (extended_result) { 7887 TCGv_i64 tcg_zero = tcg_constant_i64(0); 7888 if (!is_u) { 7889 /* take care of sign extending tcg_res */ 7890 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 7891 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 7892 tcg_src, tcg_src_hi, 7893 tcg_rnd, tcg_zero); 7894 } else { 7895 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 7896 tcg_src, tcg_zero, 7897 tcg_rnd, tcg_zero); 7898 } 7899 } else { 7900 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 7901 } 7902 } 7903 7904 /* Now do the shift right */ 7905 if (round && extended_result) { 7906 /* extended case, >64 bit precision required */ 7907 if (ext_lshift == 0) { 7908 /* special case, only high bits matter */ 7909 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 7910 } else { 7911 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 7912 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 7913 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 7914 } 7915 } else { 7916 if (is_u) { 7917 if (shift == 64) { 7918 /* essentially shifting in 64 zeros */ 7919 tcg_gen_movi_i64(tcg_src, 0); 7920 } else { 7921 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 7922 } 7923 } else { 7924 if (shift == 64) { 7925 /* effectively extending the sign-bit */ 7926 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 7927 } else { 7928 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 7929 } 7930 } 7931 } 7932 7933 if (accumulate) { 7934 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 7935 } else { 7936 tcg_gen_mov_i64(tcg_res, tcg_src); 7937 } 7938 } 7939 7940 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 7941 static void handle_scalar_simd_shri(DisasContext *s, 7942 bool is_u, int immh, int immb, 7943 int opcode, int rn, int rd) 7944 { 7945 const int size = 3; 7946 int immhb = immh << 3 | immb; 7947 int shift = 2 * (8 << size) - immhb; 7948 bool accumulate = false; 7949 bool round = false; 7950 bool insert = false; 7951 TCGv_i64 tcg_rn; 7952 TCGv_i64 tcg_rd; 7953 TCGv_i64 tcg_round; 7954 7955 if (!extract32(immh, 3, 1)) { 7956 unallocated_encoding(s); 7957 return; 7958 } 7959 7960 if (!fp_access_check(s)) { 7961 return; 7962 } 7963 7964 switch (opcode) { 7965 case 0x02: /* SSRA / USRA (accumulate) */ 7966 accumulate = true; 7967 break; 7968 case 0x04: /* SRSHR / URSHR (rounding) */ 7969 round = true; 7970 break; 7971 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 7972 accumulate = round = true; 7973 break; 7974 case 0x08: /* SRI */ 7975 insert = true; 7976 break; 7977 } 7978 7979 if (round) { 7980 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 7981 } else { 7982 tcg_round = NULL; 7983 } 7984 7985 tcg_rn = read_fp_dreg(s, rn); 7986 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 7987 7988 if (insert) { 7989 /* shift count same as element size is valid but does nothing; 7990 * special case to avoid potential shift by 64. 7991 */ 7992 int esize = 8 << size; 7993 if (shift != esize) { 7994 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 7995 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 7996 } 7997 } else { 7998 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 7999 accumulate, is_u, size, shift); 8000 } 8001 8002 write_fp_dreg(s, rd, tcg_rd); 8003 } 8004 8005 /* SHL/SLI - Scalar shift left */ 8006 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8007 int immh, int immb, int opcode, 8008 int rn, int rd) 8009 { 8010 int size = 32 - clz32(immh) - 1; 8011 int immhb = immh << 3 | immb; 8012 int shift = immhb - (8 << size); 8013 TCGv_i64 tcg_rn; 8014 TCGv_i64 tcg_rd; 8015 8016 if (!extract32(immh, 3, 1)) { 8017 unallocated_encoding(s); 8018 return; 8019 } 8020 8021 if (!fp_access_check(s)) { 8022 return; 8023 } 8024 8025 tcg_rn = read_fp_dreg(s, rn); 8026 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8027 8028 if (insert) { 8029 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8030 } else { 8031 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8032 } 8033 8034 write_fp_dreg(s, rd, tcg_rd); 8035 } 8036 8037 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8038 * (signed/unsigned) narrowing */ 8039 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8040 bool is_u_shift, bool is_u_narrow, 8041 int immh, int immb, int opcode, 8042 int rn, int rd) 8043 { 8044 int immhb = immh << 3 | immb; 8045 int size = 32 - clz32(immh) - 1; 8046 int esize = 8 << size; 8047 int shift = (2 * esize) - immhb; 8048 int elements = is_scalar ? 1 : (64 / esize); 8049 bool round = extract32(opcode, 0, 1); 8050 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8051 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8052 TCGv_i32 tcg_rd_narrowed; 8053 TCGv_i64 tcg_final; 8054 8055 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8056 { gen_helper_neon_narrow_sat_s8, 8057 gen_helper_neon_unarrow_sat8 }, 8058 { gen_helper_neon_narrow_sat_s16, 8059 gen_helper_neon_unarrow_sat16 }, 8060 { gen_helper_neon_narrow_sat_s32, 8061 gen_helper_neon_unarrow_sat32 }, 8062 { NULL, NULL }, 8063 }; 8064 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8065 gen_helper_neon_narrow_sat_u8, 8066 gen_helper_neon_narrow_sat_u16, 8067 gen_helper_neon_narrow_sat_u32, 8068 NULL 8069 }; 8070 NeonGenNarrowEnvFn *narrowfn; 8071 8072 int i; 8073 8074 assert(size < 4); 8075 8076 if (extract32(immh, 3, 1)) { 8077 unallocated_encoding(s); 8078 return; 8079 } 8080 8081 if (!fp_access_check(s)) { 8082 return; 8083 } 8084 8085 if (is_u_shift) { 8086 narrowfn = unsigned_narrow_fns[size]; 8087 } else { 8088 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8089 } 8090 8091 tcg_rn = tcg_temp_new_i64(); 8092 tcg_rd = tcg_temp_new_i64(); 8093 tcg_rd_narrowed = tcg_temp_new_i32(); 8094 tcg_final = tcg_temp_new_i64(); 8095 8096 if (round) { 8097 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8098 } else { 8099 tcg_round = NULL; 8100 } 8101 8102 for (i = 0; i < elements; i++) { 8103 read_vec_element(s, tcg_rn, rn, i, ldop); 8104 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8105 false, is_u_shift, size+1, shift); 8106 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8107 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8108 if (i == 0) { 8109 tcg_gen_mov_i64(tcg_final, tcg_rd); 8110 } else { 8111 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8112 } 8113 } 8114 8115 if (!is_q) { 8116 write_vec_element(s, tcg_final, rd, 0, MO_64); 8117 } else { 8118 write_vec_element(s, tcg_final, rd, 1, MO_64); 8119 } 8120 clear_vec_high(s, is_q, rd); 8121 } 8122 8123 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8124 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8125 bool src_unsigned, bool dst_unsigned, 8126 int immh, int immb, int rn, int rd) 8127 { 8128 int immhb = immh << 3 | immb; 8129 int size = 32 - clz32(immh) - 1; 8130 int shift = immhb - (8 << size); 8131 int pass; 8132 8133 assert(immh != 0); 8134 assert(!(scalar && is_q)); 8135 8136 if (!scalar) { 8137 if (!is_q && extract32(immh, 3, 1)) { 8138 unallocated_encoding(s); 8139 return; 8140 } 8141 8142 /* Since we use the variable-shift helpers we must 8143 * replicate the shift count into each element of 8144 * the tcg_shift value. 8145 */ 8146 switch (size) { 8147 case 0: 8148 shift |= shift << 8; 8149 /* fall through */ 8150 case 1: 8151 shift |= shift << 16; 8152 break; 8153 case 2: 8154 case 3: 8155 break; 8156 default: 8157 g_assert_not_reached(); 8158 } 8159 } 8160 8161 if (!fp_access_check(s)) { 8162 return; 8163 } 8164 8165 if (size == 3) { 8166 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8167 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8168 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8169 { NULL, gen_helper_neon_qshl_u64 }, 8170 }; 8171 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8172 int maxpass = is_q ? 2 : 1; 8173 8174 for (pass = 0; pass < maxpass; pass++) { 8175 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8176 8177 read_vec_element(s, tcg_op, rn, pass, MO_64); 8178 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8179 write_vec_element(s, tcg_op, rd, pass, MO_64); 8180 } 8181 clear_vec_high(s, is_q, rd); 8182 } else { 8183 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8184 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8185 { 8186 { gen_helper_neon_qshl_s8, 8187 gen_helper_neon_qshl_s16, 8188 gen_helper_neon_qshl_s32 }, 8189 { gen_helper_neon_qshlu_s8, 8190 gen_helper_neon_qshlu_s16, 8191 gen_helper_neon_qshlu_s32 } 8192 }, { 8193 { NULL, NULL, NULL }, 8194 { gen_helper_neon_qshl_u8, 8195 gen_helper_neon_qshl_u16, 8196 gen_helper_neon_qshl_u32 } 8197 } 8198 }; 8199 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8200 MemOp memop = scalar ? size : MO_32; 8201 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8202 8203 for (pass = 0; pass < maxpass; pass++) { 8204 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8205 8206 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8207 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8208 if (scalar) { 8209 switch (size) { 8210 case 0: 8211 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8212 break; 8213 case 1: 8214 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8215 break; 8216 case 2: 8217 break; 8218 default: 8219 g_assert_not_reached(); 8220 } 8221 write_fp_sreg(s, rd, tcg_op); 8222 } else { 8223 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8224 } 8225 } 8226 8227 if (!scalar) { 8228 clear_vec_high(s, is_q, rd); 8229 } 8230 } 8231 } 8232 8233 /* Common vector code for handling integer to FP conversion */ 8234 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8235 int elements, int is_signed, 8236 int fracbits, int size) 8237 { 8238 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8239 TCGv_i32 tcg_shift = NULL; 8240 8241 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8242 int pass; 8243 8244 if (fracbits || size == MO_64) { 8245 tcg_shift = tcg_constant_i32(fracbits); 8246 } 8247 8248 if (size == MO_64) { 8249 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8250 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8251 8252 for (pass = 0; pass < elements; pass++) { 8253 read_vec_element(s, tcg_int64, rn, pass, mop); 8254 8255 if (is_signed) { 8256 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8257 tcg_shift, tcg_fpst); 8258 } else { 8259 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8260 tcg_shift, tcg_fpst); 8261 } 8262 if (elements == 1) { 8263 write_fp_dreg(s, rd, tcg_double); 8264 } else { 8265 write_vec_element(s, tcg_double, rd, pass, MO_64); 8266 } 8267 } 8268 } else { 8269 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8270 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8271 8272 for (pass = 0; pass < elements; pass++) { 8273 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8274 8275 switch (size) { 8276 case MO_32: 8277 if (fracbits) { 8278 if (is_signed) { 8279 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8280 tcg_shift, tcg_fpst); 8281 } else { 8282 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8283 tcg_shift, tcg_fpst); 8284 } 8285 } else { 8286 if (is_signed) { 8287 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8288 } else { 8289 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8290 } 8291 } 8292 break; 8293 case MO_16: 8294 if (fracbits) { 8295 if (is_signed) { 8296 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8297 tcg_shift, tcg_fpst); 8298 } else { 8299 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8300 tcg_shift, tcg_fpst); 8301 } 8302 } else { 8303 if (is_signed) { 8304 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8305 } else { 8306 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8307 } 8308 } 8309 break; 8310 default: 8311 g_assert_not_reached(); 8312 } 8313 8314 if (elements == 1) { 8315 write_fp_sreg(s, rd, tcg_float); 8316 } else { 8317 write_vec_element_i32(s, tcg_float, rd, pass, size); 8318 } 8319 } 8320 } 8321 8322 clear_vec_high(s, elements << size == 16, rd); 8323 } 8324 8325 /* UCVTF/SCVTF - Integer to FP conversion */ 8326 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8327 bool is_q, bool is_u, 8328 int immh, int immb, int opcode, 8329 int rn, int rd) 8330 { 8331 int size, elements, fracbits; 8332 int immhb = immh << 3 | immb; 8333 8334 if (immh & 8) { 8335 size = MO_64; 8336 if (!is_scalar && !is_q) { 8337 unallocated_encoding(s); 8338 return; 8339 } 8340 } else if (immh & 4) { 8341 size = MO_32; 8342 } else if (immh & 2) { 8343 size = MO_16; 8344 if (!dc_isar_feature(aa64_fp16, s)) { 8345 unallocated_encoding(s); 8346 return; 8347 } 8348 } else { 8349 /* immh == 0 would be a failure of the decode logic */ 8350 g_assert(immh == 1); 8351 unallocated_encoding(s); 8352 return; 8353 } 8354 8355 if (is_scalar) { 8356 elements = 1; 8357 } else { 8358 elements = (8 << is_q) >> size; 8359 } 8360 fracbits = (16 << size) - immhb; 8361 8362 if (!fp_access_check(s)) { 8363 return; 8364 } 8365 8366 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8367 } 8368 8369 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8370 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8371 bool is_q, bool is_u, 8372 int immh, int immb, int rn, int rd) 8373 { 8374 int immhb = immh << 3 | immb; 8375 int pass, size, fracbits; 8376 TCGv_ptr tcg_fpstatus; 8377 TCGv_i32 tcg_rmode, tcg_shift; 8378 8379 if (immh & 0x8) { 8380 size = MO_64; 8381 if (!is_scalar && !is_q) { 8382 unallocated_encoding(s); 8383 return; 8384 } 8385 } else if (immh & 0x4) { 8386 size = MO_32; 8387 } else if (immh & 0x2) { 8388 size = MO_16; 8389 if (!dc_isar_feature(aa64_fp16, s)) { 8390 unallocated_encoding(s); 8391 return; 8392 } 8393 } else { 8394 /* Should have split out AdvSIMD modified immediate earlier. */ 8395 assert(immh == 1); 8396 unallocated_encoding(s); 8397 return; 8398 } 8399 8400 if (!fp_access_check(s)) { 8401 return; 8402 } 8403 8404 assert(!(is_scalar && is_q)); 8405 8406 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8407 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8408 fracbits = (16 << size) - immhb; 8409 tcg_shift = tcg_constant_i32(fracbits); 8410 8411 if (size == MO_64) { 8412 int maxpass = is_scalar ? 1 : 2; 8413 8414 for (pass = 0; pass < maxpass; pass++) { 8415 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8416 8417 read_vec_element(s, tcg_op, rn, pass, MO_64); 8418 if (is_u) { 8419 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8420 } else { 8421 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8422 } 8423 write_vec_element(s, tcg_op, rd, pass, MO_64); 8424 } 8425 clear_vec_high(s, is_q, rd); 8426 } else { 8427 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8428 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8429 8430 switch (size) { 8431 case MO_16: 8432 if (is_u) { 8433 fn = gen_helper_vfp_touhh; 8434 } else { 8435 fn = gen_helper_vfp_toshh; 8436 } 8437 break; 8438 case MO_32: 8439 if (is_u) { 8440 fn = gen_helper_vfp_touls; 8441 } else { 8442 fn = gen_helper_vfp_tosls; 8443 } 8444 break; 8445 default: 8446 g_assert_not_reached(); 8447 } 8448 8449 for (pass = 0; pass < maxpass; pass++) { 8450 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8451 8452 read_vec_element_i32(s, tcg_op, rn, pass, size); 8453 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8454 if (is_scalar) { 8455 write_fp_sreg(s, rd, tcg_op); 8456 } else { 8457 write_vec_element_i32(s, tcg_op, rd, pass, size); 8458 } 8459 } 8460 if (!is_scalar) { 8461 clear_vec_high(s, is_q, rd); 8462 } 8463 } 8464 8465 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8466 } 8467 8468 /* AdvSIMD scalar shift by immediate 8469 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8470 * +-----+---+-------------+------+------+--------+---+------+------+ 8471 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8472 * +-----+---+-------------+------+------+--------+---+------+------+ 8473 * 8474 * This is the scalar version so it works on a fixed sized registers 8475 */ 8476 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8477 { 8478 int rd = extract32(insn, 0, 5); 8479 int rn = extract32(insn, 5, 5); 8480 int opcode = extract32(insn, 11, 5); 8481 int immb = extract32(insn, 16, 3); 8482 int immh = extract32(insn, 19, 4); 8483 bool is_u = extract32(insn, 29, 1); 8484 8485 if (immh == 0) { 8486 unallocated_encoding(s); 8487 return; 8488 } 8489 8490 switch (opcode) { 8491 case 0x08: /* SRI */ 8492 if (!is_u) { 8493 unallocated_encoding(s); 8494 return; 8495 } 8496 /* fall through */ 8497 case 0x00: /* SSHR / USHR */ 8498 case 0x02: /* SSRA / USRA */ 8499 case 0x04: /* SRSHR / URSHR */ 8500 case 0x06: /* SRSRA / URSRA */ 8501 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8502 break; 8503 case 0x0a: /* SHL / SLI */ 8504 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8505 break; 8506 case 0x1c: /* SCVTF, UCVTF */ 8507 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8508 opcode, rn, rd); 8509 break; 8510 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8511 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8512 if (!is_u) { 8513 unallocated_encoding(s); 8514 return; 8515 } 8516 handle_vec_simd_sqshrn(s, true, false, false, true, 8517 immh, immb, opcode, rn, rd); 8518 break; 8519 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8520 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8521 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8522 immh, immb, opcode, rn, rd); 8523 break; 8524 case 0xc: /* SQSHLU */ 8525 if (!is_u) { 8526 unallocated_encoding(s); 8527 return; 8528 } 8529 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8530 break; 8531 case 0xe: /* SQSHL, UQSHL */ 8532 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8533 break; 8534 case 0x1f: /* FCVTZS, FCVTZU */ 8535 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8536 break; 8537 default: 8538 unallocated_encoding(s); 8539 break; 8540 } 8541 } 8542 8543 /* AdvSIMD scalar three different 8544 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8545 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8546 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8547 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8548 */ 8549 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8550 { 8551 bool is_u = extract32(insn, 29, 1); 8552 int size = extract32(insn, 22, 2); 8553 int opcode = extract32(insn, 12, 4); 8554 int rm = extract32(insn, 16, 5); 8555 int rn = extract32(insn, 5, 5); 8556 int rd = extract32(insn, 0, 5); 8557 8558 if (is_u) { 8559 unallocated_encoding(s); 8560 return; 8561 } 8562 8563 switch (opcode) { 8564 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8565 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8566 case 0xd: /* SQDMULL, SQDMULL2 */ 8567 if (size == 0 || size == 3) { 8568 unallocated_encoding(s); 8569 return; 8570 } 8571 break; 8572 default: 8573 unallocated_encoding(s); 8574 return; 8575 } 8576 8577 if (!fp_access_check(s)) { 8578 return; 8579 } 8580 8581 if (size == 2) { 8582 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8583 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8584 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8585 8586 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8587 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8588 8589 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8590 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8591 8592 switch (opcode) { 8593 case 0xd: /* SQDMULL, SQDMULL2 */ 8594 break; 8595 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8596 tcg_gen_neg_i64(tcg_res, tcg_res); 8597 /* fall through */ 8598 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8599 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8600 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8601 tcg_res, tcg_op1); 8602 break; 8603 default: 8604 g_assert_not_reached(); 8605 } 8606 8607 write_fp_dreg(s, rd, tcg_res); 8608 } else { 8609 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8610 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8611 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8612 8613 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8614 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8615 8616 switch (opcode) { 8617 case 0xd: /* SQDMULL, SQDMULL2 */ 8618 break; 8619 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8620 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8621 /* fall through */ 8622 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8623 { 8624 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8625 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8626 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8627 tcg_res, tcg_op3); 8628 break; 8629 } 8630 default: 8631 g_assert_not_reached(); 8632 } 8633 8634 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8635 write_fp_dreg(s, rd, tcg_res); 8636 } 8637 } 8638 8639 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8640 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8641 { 8642 /* Handle 64x64->64 opcodes which are shared between the scalar 8643 * and vector 3-same groups. We cover every opcode where size == 3 8644 * is valid in either the three-reg-same (integer, not pairwise) 8645 * or scalar-three-reg-same groups. 8646 */ 8647 TCGCond cond; 8648 8649 switch (opcode) { 8650 case 0x1: /* SQADD */ 8651 if (u) { 8652 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8653 } else { 8654 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8655 } 8656 break; 8657 case 0x5: /* SQSUB */ 8658 if (u) { 8659 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8660 } else { 8661 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8662 } 8663 break; 8664 case 0x6: /* CMGT, CMHI */ 8665 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8666 do_cmop: 8667 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8668 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8669 break; 8670 case 0x7: /* CMGE, CMHS */ 8671 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8672 goto do_cmop; 8673 case 0x11: /* CMTST, CMEQ */ 8674 if (u) { 8675 cond = TCG_COND_EQ; 8676 goto do_cmop; 8677 } 8678 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8679 break; 8680 case 0x8: /* SSHL, USHL */ 8681 if (u) { 8682 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8683 } else { 8684 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8685 } 8686 break; 8687 case 0x9: /* SQSHL, UQSHL */ 8688 if (u) { 8689 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8690 } else { 8691 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8692 } 8693 break; 8694 case 0xa: /* SRSHL, URSHL */ 8695 if (u) { 8696 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8697 } else { 8698 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8699 } 8700 break; 8701 case 0xb: /* SQRSHL, UQRSHL */ 8702 if (u) { 8703 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8704 } else { 8705 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8706 } 8707 break; 8708 case 0x10: /* ADD, SUB */ 8709 if (u) { 8710 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8711 } else { 8712 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8713 } 8714 break; 8715 default: 8716 g_assert_not_reached(); 8717 } 8718 } 8719 8720 /* Handle the 3-same-operands float operations; shared by the scalar 8721 * and vector encodings. The caller must filter out any encodings 8722 * not allocated for the encoding it is dealing with. 8723 */ 8724 static void handle_3same_float(DisasContext *s, int size, int elements, 8725 int fpopcode, int rd, int rn, int rm) 8726 { 8727 int pass; 8728 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8729 8730 for (pass = 0; pass < elements; pass++) { 8731 if (size) { 8732 /* Double */ 8733 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8734 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8735 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8736 8737 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8738 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8739 8740 switch (fpopcode) { 8741 case 0x39: /* FMLS */ 8742 /* As usual for ARM, separate negation for fused multiply-add */ 8743 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8744 /* fall through */ 8745 case 0x19: /* FMLA */ 8746 read_vec_element(s, tcg_res, rd, pass, MO_64); 8747 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8748 tcg_res, fpst); 8749 break; 8750 case 0x18: /* FMAXNM */ 8751 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8752 break; 8753 case 0x1a: /* FADD */ 8754 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8755 break; 8756 case 0x1b: /* FMULX */ 8757 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8758 break; 8759 case 0x1c: /* FCMEQ */ 8760 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8761 break; 8762 case 0x1e: /* FMAX */ 8763 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8764 break; 8765 case 0x1f: /* FRECPS */ 8766 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8767 break; 8768 case 0x38: /* FMINNM */ 8769 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8770 break; 8771 case 0x3a: /* FSUB */ 8772 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8773 break; 8774 case 0x3e: /* FMIN */ 8775 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8776 break; 8777 case 0x3f: /* FRSQRTS */ 8778 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8779 break; 8780 case 0x5b: /* FMUL */ 8781 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8782 break; 8783 case 0x5c: /* FCMGE */ 8784 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8785 break; 8786 case 0x5d: /* FACGE */ 8787 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8788 break; 8789 case 0x5f: /* FDIV */ 8790 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8791 break; 8792 case 0x7a: /* FABD */ 8793 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8794 gen_helper_vfp_absd(tcg_res, tcg_res); 8795 break; 8796 case 0x7c: /* FCMGT */ 8797 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8798 break; 8799 case 0x7d: /* FACGT */ 8800 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8801 break; 8802 default: 8803 g_assert_not_reached(); 8804 } 8805 8806 write_vec_element(s, tcg_res, rd, pass, MO_64); 8807 } else { 8808 /* Single */ 8809 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8810 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8811 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8812 8813 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 8814 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 8815 8816 switch (fpopcode) { 8817 case 0x39: /* FMLS */ 8818 /* As usual for ARM, separate negation for fused multiply-add */ 8819 gen_helper_vfp_negs(tcg_op1, tcg_op1); 8820 /* fall through */ 8821 case 0x19: /* FMLA */ 8822 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8823 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 8824 tcg_res, fpst); 8825 break; 8826 case 0x1a: /* FADD */ 8827 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8828 break; 8829 case 0x1b: /* FMULX */ 8830 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 8831 break; 8832 case 0x1c: /* FCMEQ */ 8833 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8834 break; 8835 case 0x1e: /* FMAX */ 8836 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8837 break; 8838 case 0x1f: /* FRECPS */ 8839 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8840 break; 8841 case 0x18: /* FMAXNM */ 8842 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8843 break; 8844 case 0x38: /* FMINNM */ 8845 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8846 break; 8847 case 0x3a: /* FSUB */ 8848 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8849 break; 8850 case 0x3e: /* FMIN */ 8851 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8852 break; 8853 case 0x3f: /* FRSQRTS */ 8854 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8855 break; 8856 case 0x5b: /* FMUL */ 8857 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 8858 break; 8859 case 0x5c: /* FCMGE */ 8860 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8861 break; 8862 case 0x5d: /* FACGE */ 8863 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8864 break; 8865 case 0x5f: /* FDIV */ 8866 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 8867 break; 8868 case 0x7a: /* FABD */ 8869 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8870 gen_helper_vfp_abss(tcg_res, tcg_res); 8871 break; 8872 case 0x7c: /* FCMGT */ 8873 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8874 break; 8875 case 0x7d: /* FACGT */ 8876 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8877 break; 8878 default: 8879 g_assert_not_reached(); 8880 } 8881 8882 if (elements == 1) { 8883 /* scalar single so clear high part */ 8884 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8885 8886 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 8887 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 8888 } else { 8889 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8890 } 8891 } 8892 } 8893 8894 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 8895 } 8896 8897 /* AdvSIMD scalar three same 8898 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 8899 * +-----+---+-----------+------+---+------+--------+---+------+------+ 8900 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 8901 * +-----+---+-----------+------+---+------+--------+---+------+------+ 8902 */ 8903 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 8904 { 8905 int rd = extract32(insn, 0, 5); 8906 int rn = extract32(insn, 5, 5); 8907 int opcode = extract32(insn, 11, 5); 8908 int rm = extract32(insn, 16, 5); 8909 int size = extract32(insn, 22, 2); 8910 bool u = extract32(insn, 29, 1); 8911 TCGv_i64 tcg_rd; 8912 8913 if (opcode >= 0x18) { 8914 /* Floating point: U, size[1] and opcode indicate operation */ 8915 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 8916 switch (fpopcode) { 8917 case 0x1b: /* FMULX */ 8918 case 0x1f: /* FRECPS */ 8919 case 0x3f: /* FRSQRTS */ 8920 case 0x5d: /* FACGE */ 8921 case 0x7d: /* FACGT */ 8922 case 0x1c: /* FCMEQ */ 8923 case 0x5c: /* FCMGE */ 8924 case 0x7c: /* FCMGT */ 8925 case 0x7a: /* FABD */ 8926 break; 8927 default: 8928 unallocated_encoding(s); 8929 return; 8930 } 8931 8932 if (!fp_access_check(s)) { 8933 return; 8934 } 8935 8936 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 8937 return; 8938 } 8939 8940 switch (opcode) { 8941 case 0x1: /* SQADD, UQADD */ 8942 case 0x5: /* SQSUB, UQSUB */ 8943 case 0x9: /* SQSHL, UQSHL */ 8944 case 0xb: /* SQRSHL, UQRSHL */ 8945 break; 8946 case 0x8: /* SSHL, USHL */ 8947 case 0xa: /* SRSHL, URSHL */ 8948 case 0x6: /* CMGT, CMHI */ 8949 case 0x7: /* CMGE, CMHS */ 8950 case 0x11: /* CMTST, CMEQ */ 8951 case 0x10: /* ADD, SUB (vector) */ 8952 if (size != 3) { 8953 unallocated_encoding(s); 8954 return; 8955 } 8956 break; 8957 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 8958 if (size != 1 && size != 2) { 8959 unallocated_encoding(s); 8960 return; 8961 } 8962 break; 8963 default: 8964 unallocated_encoding(s); 8965 return; 8966 } 8967 8968 if (!fp_access_check(s)) { 8969 return; 8970 } 8971 8972 tcg_rd = tcg_temp_new_i64(); 8973 8974 if (size == 3) { 8975 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 8976 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 8977 8978 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 8979 } else { 8980 /* Do a single operation on the lowest element in the vector. 8981 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 8982 * no side effects for all these operations. 8983 * OPTME: special-purpose helpers would avoid doing some 8984 * unnecessary work in the helper for the 8 and 16 bit cases. 8985 */ 8986 NeonGenTwoOpEnvFn *genenvfn; 8987 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 8988 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 8989 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 8990 8991 read_vec_element_i32(s, tcg_rn, rn, 0, size); 8992 read_vec_element_i32(s, tcg_rm, rm, 0, size); 8993 8994 switch (opcode) { 8995 case 0x1: /* SQADD, UQADD */ 8996 { 8997 static NeonGenTwoOpEnvFn * const fns[3][2] = { 8998 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 8999 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9000 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9001 }; 9002 genenvfn = fns[size][u]; 9003 break; 9004 } 9005 case 0x5: /* SQSUB, UQSUB */ 9006 { 9007 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9008 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9009 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9010 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9011 }; 9012 genenvfn = fns[size][u]; 9013 break; 9014 } 9015 case 0x9: /* SQSHL, UQSHL */ 9016 { 9017 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9018 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9019 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9020 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9021 }; 9022 genenvfn = fns[size][u]; 9023 break; 9024 } 9025 case 0xb: /* SQRSHL, UQRSHL */ 9026 { 9027 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9028 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9029 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9030 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9031 }; 9032 genenvfn = fns[size][u]; 9033 break; 9034 } 9035 case 0x16: /* SQDMULH, SQRDMULH */ 9036 { 9037 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9038 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9039 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9040 }; 9041 assert(size == 1 || size == 2); 9042 genenvfn = fns[size - 1][u]; 9043 break; 9044 } 9045 default: 9046 g_assert_not_reached(); 9047 } 9048 9049 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9050 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9051 } 9052 9053 write_fp_dreg(s, rd, tcg_rd); 9054 } 9055 9056 /* AdvSIMD scalar three same FP16 9057 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9058 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9059 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9060 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9061 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9062 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9063 */ 9064 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9065 uint32_t insn) 9066 { 9067 int rd = extract32(insn, 0, 5); 9068 int rn = extract32(insn, 5, 5); 9069 int opcode = extract32(insn, 11, 3); 9070 int rm = extract32(insn, 16, 5); 9071 bool u = extract32(insn, 29, 1); 9072 bool a = extract32(insn, 23, 1); 9073 int fpopcode = opcode | (a << 3) | (u << 4); 9074 TCGv_ptr fpst; 9075 TCGv_i32 tcg_op1; 9076 TCGv_i32 tcg_op2; 9077 TCGv_i32 tcg_res; 9078 9079 switch (fpopcode) { 9080 case 0x03: /* FMULX */ 9081 case 0x04: /* FCMEQ (reg) */ 9082 case 0x07: /* FRECPS */ 9083 case 0x0f: /* FRSQRTS */ 9084 case 0x14: /* FCMGE (reg) */ 9085 case 0x15: /* FACGE */ 9086 case 0x1a: /* FABD */ 9087 case 0x1c: /* FCMGT (reg) */ 9088 case 0x1d: /* FACGT */ 9089 break; 9090 default: 9091 unallocated_encoding(s); 9092 return; 9093 } 9094 9095 if (!dc_isar_feature(aa64_fp16, s)) { 9096 unallocated_encoding(s); 9097 } 9098 9099 if (!fp_access_check(s)) { 9100 return; 9101 } 9102 9103 fpst = fpstatus_ptr(FPST_FPCR_F16); 9104 9105 tcg_op1 = read_fp_hreg(s, rn); 9106 tcg_op2 = read_fp_hreg(s, rm); 9107 tcg_res = tcg_temp_new_i32(); 9108 9109 switch (fpopcode) { 9110 case 0x03: /* FMULX */ 9111 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9112 break; 9113 case 0x04: /* FCMEQ (reg) */ 9114 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9115 break; 9116 case 0x07: /* FRECPS */ 9117 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9118 break; 9119 case 0x0f: /* FRSQRTS */ 9120 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9121 break; 9122 case 0x14: /* FCMGE (reg) */ 9123 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9124 break; 9125 case 0x15: /* FACGE */ 9126 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9127 break; 9128 case 0x1a: /* FABD */ 9129 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9130 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9131 break; 9132 case 0x1c: /* FCMGT (reg) */ 9133 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9134 break; 9135 case 0x1d: /* FACGT */ 9136 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9137 break; 9138 default: 9139 g_assert_not_reached(); 9140 } 9141 9142 write_fp_sreg(s, rd, tcg_res); 9143 } 9144 9145 /* AdvSIMD scalar three same extra 9146 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9147 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9148 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9149 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9150 */ 9151 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9152 uint32_t insn) 9153 { 9154 int rd = extract32(insn, 0, 5); 9155 int rn = extract32(insn, 5, 5); 9156 int opcode = extract32(insn, 11, 4); 9157 int rm = extract32(insn, 16, 5); 9158 int size = extract32(insn, 22, 2); 9159 bool u = extract32(insn, 29, 1); 9160 TCGv_i32 ele1, ele2, ele3; 9161 TCGv_i64 res; 9162 bool feature; 9163 9164 switch (u * 16 + opcode) { 9165 case 0x10: /* SQRDMLAH (vector) */ 9166 case 0x11: /* SQRDMLSH (vector) */ 9167 if (size != 1 && size != 2) { 9168 unallocated_encoding(s); 9169 return; 9170 } 9171 feature = dc_isar_feature(aa64_rdm, s); 9172 break; 9173 default: 9174 unallocated_encoding(s); 9175 return; 9176 } 9177 if (!feature) { 9178 unallocated_encoding(s); 9179 return; 9180 } 9181 if (!fp_access_check(s)) { 9182 return; 9183 } 9184 9185 /* Do a single operation on the lowest element in the vector. 9186 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9187 * with no side effects for all these operations. 9188 * OPTME: special-purpose helpers would avoid doing some 9189 * unnecessary work in the helper for the 16 bit cases. 9190 */ 9191 ele1 = tcg_temp_new_i32(); 9192 ele2 = tcg_temp_new_i32(); 9193 ele3 = tcg_temp_new_i32(); 9194 9195 read_vec_element_i32(s, ele1, rn, 0, size); 9196 read_vec_element_i32(s, ele2, rm, 0, size); 9197 read_vec_element_i32(s, ele3, rd, 0, size); 9198 9199 switch (opcode) { 9200 case 0x0: /* SQRDMLAH */ 9201 if (size == 1) { 9202 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9203 } else { 9204 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9205 } 9206 break; 9207 case 0x1: /* SQRDMLSH */ 9208 if (size == 1) { 9209 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9210 } else { 9211 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9212 } 9213 break; 9214 default: 9215 g_assert_not_reached(); 9216 } 9217 9218 res = tcg_temp_new_i64(); 9219 tcg_gen_extu_i32_i64(res, ele3); 9220 write_fp_dreg(s, rd, res); 9221 } 9222 9223 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9224 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9225 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9226 { 9227 /* Handle 64->64 opcodes which are shared between the scalar and 9228 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9229 * is valid in either group and also the double-precision fp ops. 9230 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9231 * requires them. 9232 */ 9233 TCGCond cond; 9234 9235 switch (opcode) { 9236 case 0x4: /* CLS, CLZ */ 9237 if (u) { 9238 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9239 } else { 9240 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9241 } 9242 break; 9243 case 0x5: /* NOT */ 9244 /* This opcode is shared with CNT and RBIT but we have earlier 9245 * enforced that size == 3 if and only if this is the NOT insn. 9246 */ 9247 tcg_gen_not_i64(tcg_rd, tcg_rn); 9248 break; 9249 case 0x7: /* SQABS, SQNEG */ 9250 if (u) { 9251 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9252 } else { 9253 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9254 } 9255 break; 9256 case 0xa: /* CMLT */ 9257 cond = TCG_COND_LT; 9258 do_cmop: 9259 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9260 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9261 break; 9262 case 0x8: /* CMGT, CMGE */ 9263 cond = u ? TCG_COND_GE : TCG_COND_GT; 9264 goto do_cmop; 9265 case 0x9: /* CMEQ, CMLE */ 9266 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9267 goto do_cmop; 9268 case 0xb: /* ABS, NEG */ 9269 if (u) { 9270 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9271 } else { 9272 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9273 } 9274 break; 9275 case 0x2f: /* FABS */ 9276 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9277 break; 9278 case 0x6f: /* FNEG */ 9279 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9280 break; 9281 case 0x7f: /* FSQRT */ 9282 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9283 break; 9284 case 0x1a: /* FCVTNS */ 9285 case 0x1b: /* FCVTMS */ 9286 case 0x1c: /* FCVTAS */ 9287 case 0x3a: /* FCVTPS */ 9288 case 0x3b: /* FCVTZS */ 9289 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9290 break; 9291 case 0x5a: /* FCVTNU */ 9292 case 0x5b: /* FCVTMU */ 9293 case 0x5c: /* FCVTAU */ 9294 case 0x7a: /* FCVTPU */ 9295 case 0x7b: /* FCVTZU */ 9296 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9297 break; 9298 case 0x18: /* FRINTN */ 9299 case 0x19: /* FRINTM */ 9300 case 0x38: /* FRINTP */ 9301 case 0x39: /* FRINTZ */ 9302 case 0x58: /* FRINTA */ 9303 case 0x79: /* FRINTI */ 9304 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9305 break; 9306 case 0x59: /* FRINTX */ 9307 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9308 break; 9309 case 0x1e: /* FRINT32Z */ 9310 case 0x5e: /* FRINT32X */ 9311 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9312 break; 9313 case 0x1f: /* FRINT64Z */ 9314 case 0x5f: /* FRINT64X */ 9315 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9316 break; 9317 default: 9318 g_assert_not_reached(); 9319 } 9320 } 9321 9322 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9323 bool is_scalar, bool is_u, bool is_q, 9324 int size, int rn, int rd) 9325 { 9326 bool is_double = (size == MO_64); 9327 TCGv_ptr fpst; 9328 9329 if (!fp_access_check(s)) { 9330 return; 9331 } 9332 9333 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9334 9335 if (is_double) { 9336 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9337 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9338 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9339 NeonGenTwoDoubleOpFn *genfn; 9340 bool swap = false; 9341 int pass; 9342 9343 switch (opcode) { 9344 case 0x2e: /* FCMLT (zero) */ 9345 swap = true; 9346 /* fallthrough */ 9347 case 0x2c: /* FCMGT (zero) */ 9348 genfn = gen_helper_neon_cgt_f64; 9349 break; 9350 case 0x2d: /* FCMEQ (zero) */ 9351 genfn = gen_helper_neon_ceq_f64; 9352 break; 9353 case 0x6d: /* FCMLE (zero) */ 9354 swap = true; 9355 /* fall through */ 9356 case 0x6c: /* FCMGE (zero) */ 9357 genfn = gen_helper_neon_cge_f64; 9358 break; 9359 default: 9360 g_assert_not_reached(); 9361 } 9362 9363 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9364 read_vec_element(s, tcg_op, rn, pass, MO_64); 9365 if (swap) { 9366 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9367 } else { 9368 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9369 } 9370 write_vec_element(s, tcg_res, rd, pass, MO_64); 9371 } 9372 9373 clear_vec_high(s, !is_scalar, rd); 9374 } else { 9375 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9376 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9377 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9378 NeonGenTwoSingleOpFn *genfn; 9379 bool swap = false; 9380 int pass, maxpasses; 9381 9382 if (size == MO_16) { 9383 switch (opcode) { 9384 case 0x2e: /* FCMLT (zero) */ 9385 swap = true; 9386 /* fall through */ 9387 case 0x2c: /* FCMGT (zero) */ 9388 genfn = gen_helper_advsimd_cgt_f16; 9389 break; 9390 case 0x2d: /* FCMEQ (zero) */ 9391 genfn = gen_helper_advsimd_ceq_f16; 9392 break; 9393 case 0x6d: /* FCMLE (zero) */ 9394 swap = true; 9395 /* fall through */ 9396 case 0x6c: /* FCMGE (zero) */ 9397 genfn = gen_helper_advsimd_cge_f16; 9398 break; 9399 default: 9400 g_assert_not_reached(); 9401 } 9402 } else { 9403 switch (opcode) { 9404 case 0x2e: /* FCMLT (zero) */ 9405 swap = true; 9406 /* fall through */ 9407 case 0x2c: /* FCMGT (zero) */ 9408 genfn = gen_helper_neon_cgt_f32; 9409 break; 9410 case 0x2d: /* FCMEQ (zero) */ 9411 genfn = gen_helper_neon_ceq_f32; 9412 break; 9413 case 0x6d: /* FCMLE (zero) */ 9414 swap = true; 9415 /* fall through */ 9416 case 0x6c: /* FCMGE (zero) */ 9417 genfn = gen_helper_neon_cge_f32; 9418 break; 9419 default: 9420 g_assert_not_reached(); 9421 } 9422 } 9423 9424 if (is_scalar) { 9425 maxpasses = 1; 9426 } else { 9427 int vector_size = 8 << is_q; 9428 maxpasses = vector_size >> size; 9429 } 9430 9431 for (pass = 0; pass < maxpasses; pass++) { 9432 read_vec_element_i32(s, tcg_op, rn, pass, size); 9433 if (swap) { 9434 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9435 } else { 9436 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9437 } 9438 if (is_scalar) { 9439 write_fp_sreg(s, rd, tcg_res); 9440 } else { 9441 write_vec_element_i32(s, tcg_res, rd, pass, size); 9442 } 9443 } 9444 9445 if (!is_scalar) { 9446 clear_vec_high(s, is_q, rd); 9447 } 9448 } 9449 } 9450 9451 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9452 bool is_scalar, bool is_u, bool is_q, 9453 int size, int rn, int rd) 9454 { 9455 bool is_double = (size == 3); 9456 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9457 9458 if (is_double) { 9459 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9460 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9461 int pass; 9462 9463 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9464 read_vec_element(s, tcg_op, rn, pass, MO_64); 9465 switch (opcode) { 9466 case 0x3d: /* FRECPE */ 9467 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9468 break; 9469 case 0x3f: /* FRECPX */ 9470 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9471 break; 9472 case 0x7d: /* FRSQRTE */ 9473 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9474 break; 9475 default: 9476 g_assert_not_reached(); 9477 } 9478 write_vec_element(s, tcg_res, rd, pass, MO_64); 9479 } 9480 clear_vec_high(s, !is_scalar, rd); 9481 } else { 9482 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9483 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9484 int pass, maxpasses; 9485 9486 if (is_scalar) { 9487 maxpasses = 1; 9488 } else { 9489 maxpasses = is_q ? 4 : 2; 9490 } 9491 9492 for (pass = 0; pass < maxpasses; pass++) { 9493 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9494 9495 switch (opcode) { 9496 case 0x3c: /* URECPE */ 9497 gen_helper_recpe_u32(tcg_res, tcg_op); 9498 break; 9499 case 0x3d: /* FRECPE */ 9500 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9501 break; 9502 case 0x3f: /* FRECPX */ 9503 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9504 break; 9505 case 0x7d: /* FRSQRTE */ 9506 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9507 break; 9508 default: 9509 g_assert_not_reached(); 9510 } 9511 9512 if (is_scalar) { 9513 write_fp_sreg(s, rd, tcg_res); 9514 } else { 9515 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9516 } 9517 } 9518 if (!is_scalar) { 9519 clear_vec_high(s, is_q, rd); 9520 } 9521 } 9522 } 9523 9524 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9525 int opcode, bool u, bool is_q, 9526 int size, int rn, int rd) 9527 { 9528 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9529 * in the source becomes a size element in the destination). 9530 */ 9531 int pass; 9532 TCGv_i32 tcg_res[2]; 9533 int destelt = is_q ? 2 : 0; 9534 int passes = scalar ? 1 : 2; 9535 9536 if (scalar) { 9537 tcg_res[1] = tcg_constant_i32(0); 9538 } 9539 9540 for (pass = 0; pass < passes; pass++) { 9541 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9542 NeonGenNarrowFn *genfn = NULL; 9543 NeonGenNarrowEnvFn *genenvfn = NULL; 9544 9545 if (scalar) { 9546 read_vec_element(s, tcg_op, rn, pass, size + 1); 9547 } else { 9548 read_vec_element(s, tcg_op, rn, pass, MO_64); 9549 } 9550 tcg_res[pass] = tcg_temp_new_i32(); 9551 9552 switch (opcode) { 9553 case 0x12: /* XTN, SQXTUN */ 9554 { 9555 static NeonGenNarrowFn * const xtnfns[3] = { 9556 gen_helper_neon_narrow_u8, 9557 gen_helper_neon_narrow_u16, 9558 tcg_gen_extrl_i64_i32, 9559 }; 9560 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9561 gen_helper_neon_unarrow_sat8, 9562 gen_helper_neon_unarrow_sat16, 9563 gen_helper_neon_unarrow_sat32, 9564 }; 9565 if (u) { 9566 genenvfn = sqxtunfns[size]; 9567 } else { 9568 genfn = xtnfns[size]; 9569 } 9570 break; 9571 } 9572 case 0x14: /* SQXTN, UQXTN */ 9573 { 9574 static NeonGenNarrowEnvFn * const fns[3][2] = { 9575 { gen_helper_neon_narrow_sat_s8, 9576 gen_helper_neon_narrow_sat_u8 }, 9577 { gen_helper_neon_narrow_sat_s16, 9578 gen_helper_neon_narrow_sat_u16 }, 9579 { gen_helper_neon_narrow_sat_s32, 9580 gen_helper_neon_narrow_sat_u32 }, 9581 }; 9582 genenvfn = fns[size][u]; 9583 break; 9584 } 9585 case 0x16: /* FCVTN, FCVTN2 */ 9586 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9587 if (size == 2) { 9588 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9589 } else { 9590 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9591 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9592 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9593 TCGv_i32 ahp = get_ahp_flag(); 9594 9595 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9596 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9597 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9598 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9599 } 9600 break; 9601 case 0x36: /* BFCVTN, BFCVTN2 */ 9602 { 9603 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9604 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9605 } 9606 break; 9607 case 0x56: /* FCVTXN, FCVTXN2 */ 9608 /* 64 bit to 32 bit float conversion 9609 * with von Neumann rounding (round to odd) 9610 */ 9611 assert(size == 2); 9612 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9613 break; 9614 default: 9615 g_assert_not_reached(); 9616 } 9617 9618 if (genfn) { 9619 genfn(tcg_res[pass], tcg_op); 9620 } else if (genenvfn) { 9621 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9622 } 9623 } 9624 9625 for (pass = 0; pass < 2; pass++) { 9626 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9627 } 9628 clear_vec_high(s, is_q, rd); 9629 } 9630 9631 /* Remaining saturating accumulating ops */ 9632 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9633 bool is_q, int size, int rn, int rd) 9634 { 9635 bool is_double = (size == 3); 9636 9637 if (is_double) { 9638 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9639 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9640 int pass; 9641 9642 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9643 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9644 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9645 9646 if (is_u) { /* USQADD */ 9647 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9648 } else { /* SUQADD */ 9649 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9650 } 9651 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9652 } 9653 clear_vec_high(s, !is_scalar, rd); 9654 } else { 9655 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9656 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9657 int pass, maxpasses; 9658 9659 if (is_scalar) { 9660 maxpasses = 1; 9661 } else { 9662 maxpasses = is_q ? 4 : 2; 9663 } 9664 9665 for (pass = 0; pass < maxpasses; pass++) { 9666 if (is_scalar) { 9667 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9668 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9669 } else { 9670 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9671 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9672 } 9673 9674 if (is_u) { /* USQADD */ 9675 switch (size) { 9676 case 0: 9677 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9678 break; 9679 case 1: 9680 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9681 break; 9682 case 2: 9683 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9684 break; 9685 default: 9686 g_assert_not_reached(); 9687 } 9688 } else { /* SUQADD */ 9689 switch (size) { 9690 case 0: 9691 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9692 break; 9693 case 1: 9694 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9695 break; 9696 case 2: 9697 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9698 break; 9699 default: 9700 g_assert_not_reached(); 9701 } 9702 } 9703 9704 if (is_scalar) { 9705 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9706 } 9707 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9708 } 9709 clear_vec_high(s, is_q, rd); 9710 } 9711 } 9712 9713 /* AdvSIMD scalar two reg misc 9714 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9715 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9716 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9717 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9718 */ 9719 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9720 { 9721 int rd = extract32(insn, 0, 5); 9722 int rn = extract32(insn, 5, 5); 9723 int opcode = extract32(insn, 12, 5); 9724 int size = extract32(insn, 22, 2); 9725 bool u = extract32(insn, 29, 1); 9726 bool is_fcvt = false; 9727 int rmode; 9728 TCGv_i32 tcg_rmode; 9729 TCGv_ptr tcg_fpstatus; 9730 9731 switch (opcode) { 9732 case 0x3: /* USQADD / SUQADD*/ 9733 if (!fp_access_check(s)) { 9734 return; 9735 } 9736 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9737 return; 9738 case 0x7: /* SQABS / SQNEG */ 9739 break; 9740 case 0xa: /* CMLT */ 9741 if (u) { 9742 unallocated_encoding(s); 9743 return; 9744 } 9745 /* fall through */ 9746 case 0x8: /* CMGT, CMGE */ 9747 case 0x9: /* CMEQ, CMLE */ 9748 case 0xb: /* ABS, NEG */ 9749 if (size != 3) { 9750 unallocated_encoding(s); 9751 return; 9752 } 9753 break; 9754 case 0x12: /* SQXTUN */ 9755 if (!u) { 9756 unallocated_encoding(s); 9757 return; 9758 } 9759 /* fall through */ 9760 case 0x14: /* SQXTN, UQXTN */ 9761 if (size == 3) { 9762 unallocated_encoding(s); 9763 return; 9764 } 9765 if (!fp_access_check(s)) { 9766 return; 9767 } 9768 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9769 return; 9770 case 0xc ... 0xf: 9771 case 0x16 ... 0x1d: 9772 case 0x1f: 9773 /* Floating point: U, size[1] and opcode indicate operation; 9774 * size[0] indicates single or double precision. 9775 */ 9776 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9777 size = extract32(size, 0, 1) ? 3 : 2; 9778 switch (opcode) { 9779 case 0x2c: /* FCMGT (zero) */ 9780 case 0x2d: /* FCMEQ (zero) */ 9781 case 0x2e: /* FCMLT (zero) */ 9782 case 0x6c: /* FCMGE (zero) */ 9783 case 0x6d: /* FCMLE (zero) */ 9784 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9785 return; 9786 case 0x1d: /* SCVTF */ 9787 case 0x5d: /* UCVTF */ 9788 { 9789 bool is_signed = (opcode == 0x1d); 9790 if (!fp_access_check(s)) { 9791 return; 9792 } 9793 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9794 return; 9795 } 9796 case 0x3d: /* FRECPE */ 9797 case 0x3f: /* FRECPX */ 9798 case 0x7d: /* FRSQRTE */ 9799 if (!fp_access_check(s)) { 9800 return; 9801 } 9802 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9803 return; 9804 case 0x1a: /* FCVTNS */ 9805 case 0x1b: /* FCVTMS */ 9806 case 0x3a: /* FCVTPS */ 9807 case 0x3b: /* FCVTZS */ 9808 case 0x5a: /* FCVTNU */ 9809 case 0x5b: /* FCVTMU */ 9810 case 0x7a: /* FCVTPU */ 9811 case 0x7b: /* FCVTZU */ 9812 is_fcvt = true; 9813 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 9814 break; 9815 case 0x1c: /* FCVTAS */ 9816 case 0x5c: /* FCVTAU */ 9817 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 9818 is_fcvt = true; 9819 rmode = FPROUNDING_TIEAWAY; 9820 break; 9821 case 0x56: /* FCVTXN, FCVTXN2 */ 9822 if (size == 2) { 9823 unallocated_encoding(s); 9824 return; 9825 } 9826 if (!fp_access_check(s)) { 9827 return; 9828 } 9829 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 9830 return; 9831 default: 9832 unallocated_encoding(s); 9833 return; 9834 } 9835 break; 9836 default: 9837 unallocated_encoding(s); 9838 return; 9839 } 9840 9841 if (!fp_access_check(s)) { 9842 return; 9843 } 9844 9845 if (is_fcvt) { 9846 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 9847 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9848 } else { 9849 tcg_fpstatus = NULL; 9850 tcg_rmode = NULL; 9851 } 9852 9853 if (size == 3) { 9854 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9855 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9856 9857 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 9858 write_fp_dreg(s, rd, tcg_rd); 9859 } else { 9860 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9861 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9862 9863 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9864 9865 switch (opcode) { 9866 case 0x7: /* SQABS, SQNEG */ 9867 { 9868 NeonGenOneOpEnvFn *genfn; 9869 static NeonGenOneOpEnvFn * const fns[3][2] = { 9870 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 9871 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 9872 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 9873 }; 9874 genfn = fns[size][u]; 9875 genfn(tcg_rd, cpu_env, tcg_rn); 9876 break; 9877 } 9878 case 0x1a: /* FCVTNS */ 9879 case 0x1b: /* FCVTMS */ 9880 case 0x1c: /* FCVTAS */ 9881 case 0x3a: /* FCVTPS */ 9882 case 0x3b: /* FCVTZS */ 9883 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 9884 tcg_fpstatus); 9885 break; 9886 case 0x5a: /* FCVTNU */ 9887 case 0x5b: /* FCVTMU */ 9888 case 0x5c: /* FCVTAU */ 9889 case 0x7a: /* FCVTPU */ 9890 case 0x7b: /* FCVTZU */ 9891 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 9892 tcg_fpstatus); 9893 break; 9894 default: 9895 g_assert_not_reached(); 9896 } 9897 9898 write_fp_sreg(s, rd, tcg_rd); 9899 } 9900 9901 if (is_fcvt) { 9902 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9903 } 9904 } 9905 9906 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 9907 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 9908 int immh, int immb, int opcode, int rn, int rd) 9909 { 9910 int size = 32 - clz32(immh) - 1; 9911 int immhb = immh << 3 | immb; 9912 int shift = 2 * (8 << size) - immhb; 9913 GVecGen2iFn *gvec_fn; 9914 9915 if (extract32(immh, 3, 1) && !is_q) { 9916 unallocated_encoding(s); 9917 return; 9918 } 9919 tcg_debug_assert(size <= 3); 9920 9921 if (!fp_access_check(s)) { 9922 return; 9923 } 9924 9925 switch (opcode) { 9926 case 0x02: /* SSRA / USRA (accumulate) */ 9927 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 9928 break; 9929 9930 case 0x08: /* SRI */ 9931 gvec_fn = gen_gvec_sri; 9932 break; 9933 9934 case 0x00: /* SSHR / USHR */ 9935 if (is_u) { 9936 if (shift == 8 << size) { 9937 /* Shift count the same size as element size produces zero. */ 9938 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 9939 is_q ? 16 : 8, vec_full_reg_size(s), 0); 9940 return; 9941 } 9942 gvec_fn = tcg_gen_gvec_shri; 9943 } else { 9944 /* Shift count the same size as element size produces all sign. */ 9945 if (shift == 8 << size) { 9946 shift -= 1; 9947 } 9948 gvec_fn = tcg_gen_gvec_sari; 9949 } 9950 break; 9951 9952 case 0x04: /* SRSHR / URSHR (rounding) */ 9953 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 9954 break; 9955 9956 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 9957 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 9958 break; 9959 9960 default: 9961 g_assert_not_reached(); 9962 } 9963 9964 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 9965 } 9966 9967 /* SHL/SLI - Vector shift left */ 9968 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 9969 int immh, int immb, int opcode, int rn, int rd) 9970 { 9971 int size = 32 - clz32(immh) - 1; 9972 int immhb = immh << 3 | immb; 9973 int shift = immhb - (8 << size); 9974 9975 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 9976 assert(size >= 0 && size <= 3); 9977 9978 if (extract32(immh, 3, 1) && !is_q) { 9979 unallocated_encoding(s); 9980 return; 9981 } 9982 9983 if (!fp_access_check(s)) { 9984 return; 9985 } 9986 9987 if (insert) { 9988 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 9989 } else { 9990 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 9991 } 9992 } 9993 9994 /* USHLL/SHLL - Vector shift left with widening */ 9995 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 9996 int immh, int immb, int opcode, int rn, int rd) 9997 { 9998 int size = 32 - clz32(immh) - 1; 9999 int immhb = immh << 3 | immb; 10000 int shift = immhb - (8 << size); 10001 int dsize = 64; 10002 int esize = 8 << size; 10003 int elements = dsize/esize; 10004 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10005 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10006 int i; 10007 10008 if (size >= 3) { 10009 unallocated_encoding(s); 10010 return; 10011 } 10012 10013 if (!fp_access_check(s)) { 10014 return; 10015 } 10016 10017 /* For the LL variants the store is larger than the load, 10018 * so if rd == rn we would overwrite parts of our input. 10019 * So load everything right now and use shifts in the main loop. 10020 */ 10021 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10022 10023 for (i = 0; i < elements; i++) { 10024 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10025 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10026 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10027 write_vec_element(s, tcg_rd, rd, i, size + 1); 10028 } 10029 } 10030 10031 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10032 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10033 int immh, int immb, int opcode, int rn, int rd) 10034 { 10035 int immhb = immh << 3 | immb; 10036 int size = 32 - clz32(immh) - 1; 10037 int dsize = 64; 10038 int esize = 8 << size; 10039 int elements = dsize/esize; 10040 int shift = (2 * esize) - immhb; 10041 bool round = extract32(opcode, 0, 1); 10042 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10043 TCGv_i64 tcg_round; 10044 int i; 10045 10046 if (extract32(immh, 3, 1)) { 10047 unallocated_encoding(s); 10048 return; 10049 } 10050 10051 if (!fp_access_check(s)) { 10052 return; 10053 } 10054 10055 tcg_rn = tcg_temp_new_i64(); 10056 tcg_rd = tcg_temp_new_i64(); 10057 tcg_final = tcg_temp_new_i64(); 10058 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10059 10060 if (round) { 10061 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10062 } else { 10063 tcg_round = NULL; 10064 } 10065 10066 for (i = 0; i < elements; i++) { 10067 read_vec_element(s, tcg_rn, rn, i, size+1); 10068 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10069 false, true, size+1, shift); 10070 10071 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10072 } 10073 10074 if (!is_q) { 10075 write_vec_element(s, tcg_final, rd, 0, MO_64); 10076 } else { 10077 write_vec_element(s, tcg_final, rd, 1, MO_64); 10078 } 10079 10080 clear_vec_high(s, is_q, rd); 10081 } 10082 10083 10084 /* AdvSIMD shift by immediate 10085 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10086 * +---+---+---+-------------+------+------+--------+---+------+------+ 10087 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10088 * +---+---+---+-------------+------+------+--------+---+------+------+ 10089 */ 10090 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10091 { 10092 int rd = extract32(insn, 0, 5); 10093 int rn = extract32(insn, 5, 5); 10094 int opcode = extract32(insn, 11, 5); 10095 int immb = extract32(insn, 16, 3); 10096 int immh = extract32(insn, 19, 4); 10097 bool is_u = extract32(insn, 29, 1); 10098 bool is_q = extract32(insn, 30, 1); 10099 10100 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10101 assert(immh != 0); 10102 10103 switch (opcode) { 10104 case 0x08: /* SRI */ 10105 if (!is_u) { 10106 unallocated_encoding(s); 10107 return; 10108 } 10109 /* fall through */ 10110 case 0x00: /* SSHR / USHR */ 10111 case 0x02: /* SSRA / USRA (accumulate) */ 10112 case 0x04: /* SRSHR / URSHR (rounding) */ 10113 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10114 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10115 break; 10116 case 0x0a: /* SHL / SLI */ 10117 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10118 break; 10119 case 0x10: /* SHRN */ 10120 case 0x11: /* RSHRN / SQRSHRUN */ 10121 if (is_u) { 10122 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10123 opcode, rn, rd); 10124 } else { 10125 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10126 } 10127 break; 10128 case 0x12: /* SQSHRN / UQSHRN */ 10129 case 0x13: /* SQRSHRN / UQRSHRN */ 10130 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10131 opcode, rn, rd); 10132 break; 10133 case 0x14: /* SSHLL / USHLL */ 10134 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10135 break; 10136 case 0x1c: /* SCVTF / UCVTF */ 10137 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10138 opcode, rn, rd); 10139 break; 10140 case 0xc: /* SQSHLU */ 10141 if (!is_u) { 10142 unallocated_encoding(s); 10143 return; 10144 } 10145 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10146 break; 10147 case 0xe: /* SQSHL, UQSHL */ 10148 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10149 break; 10150 case 0x1f: /* FCVTZS/ FCVTZU */ 10151 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10152 return; 10153 default: 10154 unallocated_encoding(s); 10155 return; 10156 } 10157 } 10158 10159 /* Generate code to do a "long" addition or subtraction, ie one done in 10160 * TCGv_i64 on vector lanes twice the width specified by size. 10161 */ 10162 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10163 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10164 { 10165 static NeonGenTwo64OpFn * const fns[3][2] = { 10166 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10167 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10168 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10169 }; 10170 NeonGenTwo64OpFn *genfn; 10171 assert(size < 3); 10172 10173 genfn = fns[size][is_sub]; 10174 genfn(tcg_res, tcg_op1, tcg_op2); 10175 } 10176 10177 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10178 int opcode, int rd, int rn, int rm) 10179 { 10180 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10181 TCGv_i64 tcg_res[2]; 10182 int pass, accop; 10183 10184 tcg_res[0] = tcg_temp_new_i64(); 10185 tcg_res[1] = tcg_temp_new_i64(); 10186 10187 /* Does this op do an adding accumulate, a subtracting accumulate, 10188 * or no accumulate at all? 10189 */ 10190 switch (opcode) { 10191 case 5: 10192 case 8: 10193 case 9: 10194 accop = 1; 10195 break; 10196 case 10: 10197 case 11: 10198 accop = -1; 10199 break; 10200 default: 10201 accop = 0; 10202 break; 10203 } 10204 10205 if (accop != 0) { 10206 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10207 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10208 } 10209 10210 /* size == 2 means two 32x32->64 operations; this is worth special 10211 * casing because we can generally handle it inline. 10212 */ 10213 if (size == 2) { 10214 for (pass = 0; pass < 2; pass++) { 10215 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10216 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10217 TCGv_i64 tcg_passres; 10218 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10219 10220 int elt = pass + is_q * 2; 10221 10222 read_vec_element(s, tcg_op1, rn, elt, memop); 10223 read_vec_element(s, tcg_op2, rm, elt, memop); 10224 10225 if (accop == 0) { 10226 tcg_passres = tcg_res[pass]; 10227 } else { 10228 tcg_passres = tcg_temp_new_i64(); 10229 } 10230 10231 switch (opcode) { 10232 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10233 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10234 break; 10235 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10236 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10237 break; 10238 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10239 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10240 { 10241 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10242 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10243 10244 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10245 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10246 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10247 tcg_passres, 10248 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10249 break; 10250 } 10251 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10252 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10253 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10254 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10255 break; 10256 case 9: /* SQDMLAL, SQDMLAL2 */ 10257 case 11: /* SQDMLSL, SQDMLSL2 */ 10258 case 13: /* SQDMULL, SQDMULL2 */ 10259 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10260 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10261 tcg_passres, tcg_passres); 10262 break; 10263 default: 10264 g_assert_not_reached(); 10265 } 10266 10267 if (opcode == 9 || opcode == 11) { 10268 /* saturating accumulate ops */ 10269 if (accop < 0) { 10270 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10271 } 10272 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10273 tcg_res[pass], tcg_passres); 10274 } else if (accop > 0) { 10275 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10276 } else if (accop < 0) { 10277 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10278 } 10279 } 10280 } else { 10281 /* size 0 or 1, generally helper functions */ 10282 for (pass = 0; pass < 2; pass++) { 10283 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10284 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10285 TCGv_i64 tcg_passres; 10286 int elt = pass + is_q * 2; 10287 10288 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10289 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10290 10291 if (accop == 0) { 10292 tcg_passres = tcg_res[pass]; 10293 } else { 10294 tcg_passres = tcg_temp_new_i64(); 10295 } 10296 10297 switch (opcode) { 10298 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10299 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10300 { 10301 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10302 static NeonGenWidenFn * const widenfns[2][2] = { 10303 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10304 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10305 }; 10306 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10307 10308 widenfn(tcg_op2_64, tcg_op2); 10309 widenfn(tcg_passres, tcg_op1); 10310 gen_neon_addl(size, (opcode == 2), tcg_passres, 10311 tcg_passres, tcg_op2_64); 10312 break; 10313 } 10314 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10315 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10316 if (size == 0) { 10317 if (is_u) { 10318 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10319 } else { 10320 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10321 } 10322 } else { 10323 if (is_u) { 10324 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10325 } else { 10326 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10327 } 10328 } 10329 break; 10330 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10331 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10332 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10333 if (size == 0) { 10334 if (is_u) { 10335 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10336 } else { 10337 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10338 } 10339 } else { 10340 if (is_u) { 10341 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10342 } else { 10343 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10344 } 10345 } 10346 break; 10347 case 9: /* SQDMLAL, SQDMLAL2 */ 10348 case 11: /* SQDMLSL, SQDMLSL2 */ 10349 case 13: /* SQDMULL, SQDMULL2 */ 10350 assert(size == 1); 10351 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10352 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10353 tcg_passres, tcg_passres); 10354 break; 10355 default: 10356 g_assert_not_reached(); 10357 } 10358 10359 if (accop != 0) { 10360 if (opcode == 9 || opcode == 11) { 10361 /* saturating accumulate ops */ 10362 if (accop < 0) { 10363 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10364 } 10365 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10366 tcg_res[pass], 10367 tcg_passres); 10368 } else { 10369 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10370 tcg_res[pass], tcg_passres); 10371 } 10372 } 10373 } 10374 } 10375 10376 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10377 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10378 } 10379 10380 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10381 int opcode, int rd, int rn, int rm) 10382 { 10383 TCGv_i64 tcg_res[2]; 10384 int part = is_q ? 2 : 0; 10385 int pass; 10386 10387 for (pass = 0; pass < 2; pass++) { 10388 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10389 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10390 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10391 static NeonGenWidenFn * const widenfns[3][2] = { 10392 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10393 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10394 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10395 }; 10396 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10397 10398 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10399 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10400 widenfn(tcg_op2_wide, tcg_op2); 10401 tcg_res[pass] = tcg_temp_new_i64(); 10402 gen_neon_addl(size, (opcode == 3), 10403 tcg_res[pass], tcg_op1, tcg_op2_wide); 10404 } 10405 10406 for (pass = 0; pass < 2; pass++) { 10407 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10408 } 10409 } 10410 10411 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10412 { 10413 tcg_gen_addi_i64(in, in, 1U << 31); 10414 tcg_gen_extrh_i64_i32(res, in); 10415 } 10416 10417 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10418 int opcode, int rd, int rn, int rm) 10419 { 10420 TCGv_i32 tcg_res[2]; 10421 int part = is_q ? 2 : 0; 10422 int pass; 10423 10424 for (pass = 0; pass < 2; pass++) { 10425 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10426 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10427 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10428 static NeonGenNarrowFn * const narrowfns[3][2] = { 10429 { gen_helper_neon_narrow_high_u8, 10430 gen_helper_neon_narrow_round_high_u8 }, 10431 { gen_helper_neon_narrow_high_u16, 10432 gen_helper_neon_narrow_round_high_u16 }, 10433 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10434 }; 10435 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10436 10437 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10438 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10439 10440 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10441 10442 tcg_res[pass] = tcg_temp_new_i32(); 10443 gennarrow(tcg_res[pass], tcg_wideres); 10444 } 10445 10446 for (pass = 0; pass < 2; pass++) { 10447 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10448 } 10449 clear_vec_high(s, is_q, rd); 10450 } 10451 10452 /* AdvSIMD three different 10453 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10454 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10455 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10456 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10457 */ 10458 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10459 { 10460 /* Instructions in this group fall into three basic classes 10461 * (in each case with the operation working on each element in 10462 * the input vectors): 10463 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10464 * 128 bit input) 10465 * (2) wide 64 x 128 -> 128 10466 * (3) narrowing 128 x 128 -> 64 10467 * Here we do initial decode, catch unallocated cases and 10468 * dispatch to separate functions for each class. 10469 */ 10470 int is_q = extract32(insn, 30, 1); 10471 int is_u = extract32(insn, 29, 1); 10472 int size = extract32(insn, 22, 2); 10473 int opcode = extract32(insn, 12, 4); 10474 int rm = extract32(insn, 16, 5); 10475 int rn = extract32(insn, 5, 5); 10476 int rd = extract32(insn, 0, 5); 10477 10478 switch (opcode) { 10479 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10480 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10481 /* 64 x 128 -> 128 */ 10482 if (size == 3) { 10483 unallocated_encoding(s); 10484 return; 10485 } 10486 if (!fp_access_check(s)) { 10487 return; 10488 } 10489 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10490 break; 10491 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10492 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10493 /* 128 x 128 -> 64 */ 10494 if (size == 3) { 10495 unallocated_encoding(s); 10496 return; 10497 } 10498 if (!fp_access_check(s)) { 10499 return; 10500 } 10501 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10502 break; 10503 case 14: /* PMULL, PMULL2 */ 10504 if (is_u) { 10505 unallocated_encoding(s); 10506 return; 10507 } 10508 switch (size) { 10509 case 0: /* PMULL.P8 */ 10510 if (!fp_access_check(s)) { 10511 return; 10512 } 10513 /* The Q field specifies lo/hi half input for this insn. */ 10514 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10515 gen_helper_neon_pmull_h); 10516 break; 10517 10518 case 3: /* PMULL.P64 */ 10519 if (!dc_isar_feature(aa64_pmull, s)) { 10520 unallocated_encoding(s); 10521 return; 10522 } 10523 if (!fp_access_check(s)) { 10524 return; 10525 } 10526 /* The Q field specifies lo/hi half input for this insn. */ 10527 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10528 gen_helper_gvec_pmull_q); 10529 break; 10530 10531 default: 10532 unallocated_encoding(s); 10533 break; 10534 } 10535 return; 10536 case 9: /* SQDMLAL, SQDMLAL2 */ 10537 case 11: /* SQDMLSL, SQDMLSL2 */ 10538 case 13: /* SQDMULL, SQDMULL2 */ 10539 if (is_u || size == 0) { 10540 unallocated_encoding(s); 10541 return; 10542 } 10543 /* fall through */ 10544 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10545 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10546 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10547 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10548 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10549 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10550 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10551 /* 64 x 64 -> 128 */ 10552 if (size == 3) { 10553 unallocated_encoding(s); 10554 return; 10555 } 10556 if (!fp_access_check(s)) { 10557 return; 10558 } 10559 10560 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10561 break; 10562 default: 10563 /* opcode 15 not allocated */ 10564 unallocated_encoding(s); 10565 break; 10566 } 10567 } 10568 10569 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10570 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10571 { 10572 int rd = extract32(insn, 0, 5); 10573 int rn = extract32(insn, 5, 5); 10574 int rm = extract32(insn, 16, 5); 10575 int size = extract32(insn, 22, 2); 10576 bool is_u = extract32(insn, 29, 1); 10577 bool is_q = extract32(insn, 30, 1); 10578 10579 if (!fp_access_check(s)) { 10580 return; 10581 } 10582 10583 switch (size + 4 * is_u) { 10584 case 0: /* AND */ 10585 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10586 return; 10587 case 1: /* BIC */ 10588 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10589 return; 10590 case 2: /* ORR */ 10591 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10592 return; 10593 case 3: /* ORN */ 10594 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10595 return; 10596 case 4: /* EOR */ 10597 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10598 return; 10599 10600 case 5: /* BSL bitwise select */ 10601 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10602 return; 10603 case 6: /* BIT, bitwise insert if true */ 10604 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10605 return; 10606 case 7: /* BIF, bitwise insert if false */ 10607 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10608 return; 10609 10610 default: 10611 g_assert_not_reached(); 10612 } 10613 } 10614 10615 /* Pairwise op subgroup of C3.6.16. 10616 * 10617 * This is called directly or via the handle_3same_float for float pairwise 10618 * operations where the opcode and size are calculated differently. 10619 */ 10620 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10621 int size, int rn, int rm, int rd) 10622 { 10623 TCGv_ptr fpst; 10624 int pass; 10625 10626 /* Floating point operations need fpst */ 10627 if (opcode >= 0x58) { 10628 fpst = fpstatus_ptr(FPST_FPCR); 10629 } else { 10630 fpst = NULL; 10631 } 10632 10633 if (!fp_access_check(s)) { 10634 return; 10635 } 10636 10637 /* These operations work on the concatenated rm:rn, with each pair of 10638 * adjacent elements being operated on to produce an element in the result. 10639 */ 10640 if (size == 3) { 10641 TCGv_i64 tcg_res[2]; 10642 10643 for (pass = 0; pass < 2; pass++) { 10644 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10645 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10646 int passreg = (pass == 0) ? rn : rm; 10647 10648 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10649 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10650 tcg_res[pass] = tcg_temp_new_i64(); 10651 10652 switch (opcode) { 10653 case 0x17: /* ADDP */ 10654 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10655 break; 10656 case 0x58: /* FMAXNMP */ 10657 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10658 break; 10659 case 0x5a: /* FADDP */ 10660 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10661 break; 10662 case 0x5e: /* FMAXP */ 10663 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10664 break; 10665 case 0x78: /* FMINNMP */ 10666 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10667 break; 10668 case 0x7e: /* FMINP */ 10669 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10670 break; 10671 default: 10672 g_assert_not_reached(); 10673 } 10674 } 10675 10676 for (pass = 0; pass < 2; pass++) { 10677 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10678 } 10679 } else { 10680 int maxpass = is_q ? 4 : 2; 10681 TCGv_i32 tcg_res[4]; 10682 10683 for (pass = 0; pass < maxpass; pass++) { 10684 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10685 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10686 NeonGenTwoOpFn *genfn = NULL; 10687 int passreg = pass < (maxpass / 2) ? rn : rm; 10688 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10689 10690 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10691 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10692 tcg_res[pass] = tcg_temp_new_i32(); 10693 10694 switch (opcode) { 10695 case 0x17: /* ADDP */ 10696 { 10697 static NeonGenTwoOpFn * const fns[3] = { 10698 gen_helper_neon_padd_u8, 10699 gen_helper_neon_padd_u16, 10700 tcg_gen_add_i32, 10701 }; 10702 genfn = fns[size]; 10703 break; 10704 } 10705 case 0x14: /* SMAXP, UMAXP */ 10706 { 10707 static NeonGenTwoOpFn * const fns[3][2] = { 10708 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10709 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10710 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10711 }; 10712 genfn = fns[size][u]; 10713 break; 10714 } 10715 case 0x15: /* SMINP, UMINP */ 10716 { 10717 static NeonGenTwoOpFn * const fns[3][2] = { 10718 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10719 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10720 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10721 }; 10722 genfn = fns[size][u]; 10723 break; 10724 } 10725 /* The FP operations are all on single floats (32 bit) */ 10726 case 0x58: /* FMAXNMP */ 10727 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10728 break; 10729 case 0x5a: /* FADDP */ 10730 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10731 break; 10732 case 0x5e: /* FMAXP */ 10733 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10734 break; 10735 case 0x78: /* FMINNMP */ 10736 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10737 break; 10738 case 0x7e: /* FMINP */ 10739 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10740 break; 10741 default: 10742 g_assert_not_reached(); 10743 } 10744 10745 /* FP ops called directly, otherwise call now */ 10746 if (genfn) { 10747 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10748 } 10749 } 10750 10751 for (pass = 0; pass < maxpass; pass++) { 10752 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10753 } 10754 clear_vec_high(s, is_q, rd); 10755 } 10756 } 10757 10758 /* Floating point op subgroup of C3.6.16. */ 10759 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10760 { 10761 /* For floating point ops, the U, size[1] and opcode bits 10762 * together indicate the operation. size[0] indicates single 10763 * or double. 10764 */ 10765 int fpopcode = extract32(insn, 11, 5) 10766 | (extract32(insn, 23, 1) << 5) 10767 | (extract32(insn, 29, 1) << 6); 10768 int is_q = extract32(insn, 30, 1); 10769 int size = extract32(insn, 22, 1); 10770 int rm = extract32(insn, 16, 5); 10771 int rn = extract32(insn, 5, 5); 10772 int rd = extract32(insn, 0, 5); 10773 10774 int datasize = is_q ? 128 : 64; 10775 int esize = 32 << size; 10776 int elements = datasize / esize; 10777 10778 if (size == 1 && !is_q) { 10779 unallocated_encoding(s); 10780 return; 10781 } 10782 10783 switch (fpopcode) { 10784 case 0x58: /* FMAXNMP */ 10785 case 0x5a: /* FADDP */ 10786 case 0x5e: /* FMAXP */ 10787 case 0x78: /* FMINNMP */ 10788 case 0x7e: /* FMINP */ 10789 if (size && !is_q) { 10790 unallocated_encoding(s); 10791 return; 10792 } 10793 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10794 rn, rm, rd); 10795 return; 10796 case 0x1b: /* FMULX */ 10797 case 0x1f: /* FRECPS */ 10798 case 0x3f: /* FRSQRTS */ 10799 case 0x5d: /* FACGE */ 10800 case 0x7d: /* FACGT */ 10801 case 0x19: /* FMLA */ 10802 case 0x39: /* FMLS */ 10803 case 0x18: /* FMAXNM */ 10804 case 0x1a: /* FADD */ 10805 case 0x1c: /* FCMEQ */ 10806 case 0x1e: /* FMAX */ 10807 case 0x38: /* FMINNM */ 10808 case 0x3a: /* FSUB */ 10809 case 0x3e: /* FMIN */ 10810 case 0x5b: /* FMUL */ 10811 case 0x5c: /* FCMGE */ 10812 case 0x5f: /* FDIV */ 10813 case 0x7a: /* FABD */ 10814 case 0x7c: /* FCMGT */ 10815 if (!fp_access_check(s)) { 10816 return; 10817 } 10818 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 10819 return; 10820 10821 case 0x1d: /* FMLAL */ 10822 case 0x3d: /* FMLSL */ 10823 case 0x59: /* FMLAL2 */ 10824 case 0x79: /* FMLSL2 */ 10825 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10826 unallocated_encoding(s); 10827 return; 10828 } 10829 if (fp_access_check(s)) { 10830 int is_s = extract32(insn, 23, 1); 10831 int is_2 = extract32(insn, 29, 1); 10832 int data = (is_2 << 1) | is_s; 10833 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10834 vec_full_reg_offset(s, rn), 10835 vec_full_reg_offset(s, rm), cpu_env, 10836 is_q ? 16 : 8, vec_full_reg_size(s), 10837 data, gen_helper_gvec_fmlal_a64); 10838 } 10839 return; 10840 10841 default: 10842 unallocated_encoding(s); 10843 return; 10844 } 10845 } 10846 10847 /* Integer op subgroup of C3.6.16. */ 10848 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10849 { 10850 int is_q = extract32(insn, 30, 1); 10851 int u = extract32(insn, 29, 1); 10852 int size = extract32(insn, 22, 2); 10853 int opcode = extract32(insn, 11, 5); 10854 int rm = extract32(insn, 16, 5); 10855 int rn = extract32(insn, 5, 5); 10856 int rd = extract32(insn, 0, 5); 10857 int pass; 10858 TCGCond cond; 10859 10860 switch (opcode) { 10861 case 0x13: /* MUL, PMUL */ 10862 if (u && size != 0) { 10863 unallocated_encoding(s); 10864 return; 10865 } 10866 /* fall through */ 10867 case 0x0: /* SHADD, UHADD */ 10868 case 0x2: /* SRHADD, URHADD */ 10869 case 0x4: /* SHSUB, UHSUB */ 10870 case 0xc: /* SMAX, UMAX */ 10871 case 0xd: /* SMIN, UMIN */ 10872 case 0xe: /* SABD, UABD */ 10873 case 0xf: /* SABA, UABA */ 10874 case 0x12: /* MLA, MLS */ 10875 if (size == 3) { 10876 unallocated_encoding(s); 10877 return; 10878 } 10879 break; 10880 case 0x16: /* SQDMULH, SQRDMULH */ 10881 if (size == 0 || size == 3) { 10882 unallocated_encoding(s); 10883 return; 10884 } 10885 break; 10886 default: 10887 if (size == 3 && !is_q) { 10888 unallocated_encoding(s); 10889 return; 10890 } 10891 break; 10892 } 10893 10894 if (!fp_access_check(s)) { 10895 return; 10896 } 10897 10898 switch (opcode) { 10899 case 0x01: /* SQADD, UQADD */ 10900 if (u) { 10901 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 10902 } else { 10903 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 10904 } 10905 return; 10906 case 0x05: /* SQSUB, UQSUB */ 10907 if (u) { 10908 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 10909 } else { 10910 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 10911 } 10912 return; 10913 case 0x08: /* SSHL, USHL */ 10914 if (u) { 10915 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 10916 } else { 10917 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 10918 } 10919 return; 10920 case 0x0c: /* SMAX, UMAX */ 10921 if (u) { 10922 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 10923 } else { 10924 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 10925 } 10926 return; 10927 case 0x0d: /* SMIN, UMIN */ 10928 if (u) { 10929 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 10930 } else { 10931 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 10932 } 10933 return; 10934 case 0xe: /* SABD, UABD */ 10935 if (u) { 10936 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 10937 } else { 10938 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 10939 } 10940 return; 10941 case 0xf: /* SABA, UABA */ 10942 if (u) { 10943 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 10944 } else { 10945 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 10946 } 10947 return; 10948 case 0x10: /* ADD, SUB */ 10949 if (u) { 10950 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 10951 } else { 10952 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 10953 } 10954 return; 10955 case 0x13: /* MUL, PMUL */ 10956 if (!u) { /* MUL */ 10957 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 10958 } else { /* PMUL */ 10959 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 10960 } 10961 return; 10962 case 0x12: /* MLA, MLS */ 10963 if (u) { 10964 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 10965 } else { 10966 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 10967 } 10968 return; 10969 case 0x16: /* SQDMULH, SQRDMULH */ 10970 { 10971 static gen_helper_gvec_3_ptr * const fns[2][2] = { 10972 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 10973 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 10974 }; 10975 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 10976 } 10977 return; 10978 case 0x11: 10979 if (!u) { /* CMTST */ 10980 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 10981 return; 10982 } 10983 /* else CMEQ */ 10984 cond = TCG_COND_EQ; 10985 goto do_gvec_cmp; 10986 case 0x06: /* CMGT, CMHI */ 10987 cond = u ? TCG_COND_GTU : TCG_COND_GT; 10988 goto do_gvec_cmp; 10989 case 0x07: /* CMGE, CMHS */ 10990 cond = u ? TCG_COND_GEU : TCG_COND_GE; 10991 do_gvec_cmp: 10992 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 10993 vec_full_reg_offset(s, rn), 10994 vec_full_reg_offset(s, rm), 10995 is_q ? 16 : 8, vec_full_reg_size(s)); 10996 return; 10997 } 10998 10999 if (size == 3) { 11000 assert(is_q); 11001 for (pass = 0; pass < 2; pass++) { 11002 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11003 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11004 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11005 11006 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11007 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11008 11009 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11010 11011 write_vec_element(s, tcg_res, rd, pass, MO_64); 11012 } 11013 } else { 11014 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11015 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11016 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11017 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11018 NeonGenTwoOpFn *genfn = NULL; 11019 NeonGenTwoOpEnvFn *genenvfn = NULL; 11020 11021 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11022 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11023 11024 switch (opcode) { 11025 case 0x0: /* SHADD, UHADD */ 11026 { 11027 static NeonGenTwoOpFn * const fns[3][2] = { 11028 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11029 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11030 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11031 }; 11032 genfn = fns[size][u]; 11033 break; 11034 } 11035 case 0x2: /* SRHADD, URHADD */ 11036 { 11037 static NeonGenTwoOpFn * const fns[3][2] = { 11038 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11039 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11040 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11041 }; 11042 genfn = fns[size][u]; 11043 break; 11044 } 11045 case 0x4: /* SHSUB, UHSUB */ 11046 { 11047 static NeonGenTwoOpFn * const fns[3][2] = { 11048 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11049 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11050 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11051 }; 11052 genfn = fns[size][u]; 11053 break; 11054 } 11055 case 0x9: /* SQSHL, UQSHL */ 11056 { 11057 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11058 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11059 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11060 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11061 }; 11062 genenvfn = fns[size][u]; 11063 break; 11064 } 11065 case 0xa: /* SRSHL, URSHL */ 11066 { 11067 static NeonGenTwoOpFn * const fns[3][2] = { 11068 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11069 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11070 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11071 }; 11072 genfn = fns[size][u]; 11073 break; 11074 } 11075 case 0xb: /* SQRSHL, UQRSHL */ 11076 { 11077 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11078 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11079 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11080 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11081 }; 11082 genenvfn = fns[size][u]; 11083 break; 11084 } 11085 default: 11086 g_assert_not_reached(); 11087 } 11088 11089 if (genenvfn) { 11090 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11091 } else { 11092 genfn(tcg_res, tcg_op1, tcg_op2); 11093 } 11094 11095 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11096 } 11097 } 11098 clear_vec_high(s, is_q, rd); 11099 } 11100 11101 /* AdvSIMD three same 11102 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11103 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11104 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11105 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11106 */ 11107 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11108 { 11109 int opcode = extract32(insn, 11, 5); 11110 11111 switch (opcode) { 11112 case 0x3: /* logic ops */ 11113 disas_simd_3same_logic(s, insn); 11114 break; 11115 case 0x17: /* ADDP */ 11116 case 0x14: /* SMAXP, UMAXP */ 11117 case 0x15: /* SMINP, UMINP */ 11118 { 11119 /* Pairwise operations */ 11120 int is_q = extract32(insn, 30, 1); 11121 int u = extract32(insn, 29, 1); 11122 int size = extract32(insn, 22, 2); 11123 int rm = extract32(insn, 16, 5); 11124 int rn = extract32(insn, 5, 5); 11125 int rd = extract32(insn, 0, 5); 11126 if (opcode == 0x17) { 11127 if (u || (size == 3 && !is_q)) { 11128 unallocated_encoding(s); 11129 return; 11130 } 11131 } else { 11132 if (size == 3) { 11133 unallocated_encoding(s); 11134 return; 11135 } 11136 } 11137 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11138 break; 11139 } 11140 case 0x18 ... 0x31: 11141 /* floating point ops, sz[1] and U are part of opcode */ 11142 disas_simd_3same_float(s, insn); 11143 break; 11144 default: 11145 disas_simd_3same_int(s, insn); 11146 break; 11147 } 11148 } 11149 11150 /* 11151 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11152 * 11153 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11154 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11155 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11156 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11157 * 11158 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11159 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11160 * 11161 */ 11162 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11163 { 11164 int opcode = extract32(insn, 11, 3); 11165 int u = extract32(insn, 29, 1); 11166 int a = extract32(insn, 23, 1); 11167 int is_q = extract32(insn, 30, 1); 11168 int rm = extract32(insn, 16, 5); 11169 int rn = extract32(insn, 5, 5); 11170 int rd = extract32(insn, 0, 5); 11171 /* 11172 * For these floating point ops, the U, a and opcode bits 11173 * together indicate the operation. 11174 */ 11175 int fpopcode = opcode | (a << 3) | (u << 4); 11176 int datasize = is_q ? 128 : 64; 11177 int elements = datasize / 16; 11178 bool pairwise; 11179 TCGv_ptr fpst; 11180 int pass; 11181 11182 switch (fpopcode) { 11183 case 0x0: /* FMAXNM */ 11184 case 0x1: /* FMLA */ 11185 case 0x2: /* FADD */ 11186 case 0x3: /* FMULX */ 11187 case 0x4: /* FCMEQ */ 11188 case 0x6: /* FMAX */ 11189 case 0x7: /* FRECPS */ 11190 case 0x8: /* FMINNM */ 11191 case 0x9: /* FMLS */ 11192 case 0xa: /* FSUB */ 11193 case 0xe: /* FMIN */ 11194 case 0xf: /* FRSQRTS */ 11195 case 0x13: /* FMUL */ 11196 case 0x14: /* FCMGE */ 11197 case 0x15: /* FACGE */ 11198 case 0x17: /* FDIV */ 11199 case 0x1a: /* FABD */ 11200 case 0x1c: /* FCMGT */ 11201 case 0x1d: /* FACGT */ 11202 pairwise = false; 11203 break; 11204 case 0x10: /* FMAXNMP */ 11205 case 0x12: /* FADDP */ 11206 case 0x16: /* FMAXP */ 11207 case 0x18: /* FMINNMP */ 11208 case 0x1e: /* FMINP */ 11209 pairwise = true; 11210 break; 11211 default: 11212 unallocated_encoding(s); 11213 return; 11214 } 11215 11216 if (!dc_isar_feature(aa64_fp16, s)) { 11217 unallocated_encoding(s); 11218 return; 11219 } 11220 11221 if (!fp_access_check(s)) { 11222 return; 11223 } 11224 11225 fpst = fpstatus_ptr(FPST_FPCR_F16); 11226 11227 if (pairwise) { 11228 int maxpass = is_q ? 8 : 4; 11229 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11230 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11231 TCGv_i32 tcg_res[8]; 11232 11233 for (pass = 0; pass < maxpass; pass++) { 11234 int passreg = pass < (maxpass / 2) ? rn : rm; 11235 int passelt = (pass << 1) & (maxpass - 1); 11236 11237 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11238 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11239 tcg_res[pass] = tcg_temp_new_i32(); 11240 11241 switch (fpopcode) { 11242 case 0x10: /* FMAXNMP */ 11243 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11244 fpst); 11245 break; 11246 case 0x12: /* FADDP */ 11247 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11248 break; 11249 case 0x16: /* FMAXP */ 11250 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11251 break; 11252 case 0x18: /* FMINNMP */ 11253 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11254 fpst); 11255 break; 11256 case 0x1e: /* FMINP */ 11257 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11258 break; 11259 default: 11260 g_assert_not_reached(); 11261 } 11262 } 11263 11264 for (pass = 0; pass < maxpass; pass++) { 11265 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11266 } 11267 } else { 11268 for (pass = 0; pass < elements; pass++) { 11269 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11270 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11271 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11272 11273 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11274 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11275 11276 switch (fpopcode) { 11277 case 0x0: /* FMAXNM */ 11278 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11279 break; 11280 case 0x1: /* FMLA */ 11281 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11282 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11283 fpst); 11284 break; 11285 case 0x2: /* FADD */ 11286 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11287 break; 11288 case 0x3: /* FMULX */ 11289 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11290 break; 11291 case 0x4: /* FCMEQ */ 11292 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11293 break; 11294 case 0x6: /* FMAX */ 11295 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11296 break; 11297 case 0x7: /* FRECPS */ 11298 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11299 break; 11300 case 0x8: /* FMINNM */ 11301 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11302 break; 11303 case 0x9: /* FMLS */ 11304 /* As usual for ARM, separate negation for fused multiply-add */ 11305 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11306 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11307 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11308 fpst); 11309 break; 11310 case 0xa: /* FSUB */ 11311 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11312 break; 11313 case 0xe: /* FMIN */ 11314 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11315 break; 11316 case 0xf: /* FRSQRTS */ 11317 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11318 break; 11319 case 0x13: /* FMUL */ 11320 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11321 break; 11322 case 0x14: /* FCMGE */ 11323 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11324 break; 11325 case 0x15: /* FACGE */ 11326 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11327 break; 11328 case 0x17: /* FDIV */ 11329 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11330 break; 11331 case 0x1a: /* FABD */ 11332 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11333 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11334 break; 11335 case 0x1c: /* FCMGT */ 11336 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11337 break; 11338 case 0x1d: /* FACGT */ 11339 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11340 break; 11341 default: 11342 g_assert_not_reached(); 11343 } 11344 11345 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11346 } 11347 } 11348 11349 clear_vec_high(s, is_q, rd); 11350 } 11351 11352 /* AdvSIMD three same extra 11353 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11354 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11355 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11356 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11357 */ 11358 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11359 { 11360 int rd = extract32(insn, 0, 5); 11361 int rn = extract32(insn, 5, 5); 11362 int opcode = extract32(insn, 11, 4); 11363 int rm = extract32(insn, 16, 5); 11364 int size = extract32(insn, 22, 2); 11365 bool u = extract32(insn, 29, 1); 11366 bool is_q = extract32(insn, 30, 1); 11367 bool feature; 11368 int rot; 11369 11370 switch (u * 16 + opcode) { 11371 case 0x10: /* SQRDMLAH (vector) */ 11372 case 0x11: /* SQRDMLSH (vector) */ 11373 if (size != 1 && size != 2) { 11374 unallocated_encoding(s); 11375 return; 11376 } 11377 feature = dc_isar_feature(aa64_rdm, s); 11378 break; 11379 case 0x02: /* SDOT (vector) */ 11380 case 0x12: /* UDOT (vector) */ 11381 if (size != MO_32) { 11382 unallocated_encoding(s); 11383 return; 11384 } 11385 feature = dc_isar_feature(aa64_dp, s); 11386 break; 11387 case 0x03: /* USDOT */ 11388 if (size != MO_32) { 11389 unallocated_encoding(s); 11390 return; 11391 } 11392 feature = dc_isar_feature(aa64_i8mm, s); 11393 break; 11394 case 0x04: /* SMMLA */ 11395 case 0x14: /* UMMLA */ 11396 case 0x05: /* USMMLA */ 11397 if (!is_q || size != MO_32) { 11398 unallocated_encoding(s); 11399 return; 11400 } 11401 feature = dc_isar_feature(aa64_i8mm, s); 11402 break; 11403 case 0x18: /* FCMLA, #0 */ 11404 case 0x19: /* FCMLA, #90 */ 11405 case 0x1a: /* FCMLA, #180 */ 11406 case 0x1b: /* FCMLA, #270 */ 11407 case 0x1c: /* FCADD, #90 */ 11408 case 0x1e: /* FCADD, #270 */ 11409 if (size == 0 11410 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11411 || (size == 3 && !is_q)) { 11412 unallocated_encoding(s); 11413 return; 11414 } 11415 feature = dc_isar_feature(aa64_fcma, s); 11416 break; 11417 case 0x1d: /* BFMMLA */ 11418 if (size != MO_16 || !is_q) { 11419 unallocated_encoding(s); 11420 return; 11421 } 11422 feature = dc_isar_feature(aa64_bf16, s); 11423 break; 11424 case 0x1f: 11425 switch (size) { 11426 case 1: /* BFDOT */ 11427 case 3: /* BFMLAL{B,T} */ 11428 feature = dc_isar_feature(aa64_bf16, s); 11429 break; 11430 default: 11431 unallocated_encoding(s); 11432 return; 11433 } 11434 break; 11435 default: 11436 unallocated_encoding(s); 11437 return; 11438 } 11439 if (!feature) { 11440 unallocated_encoding(s); 11441 return; 11442 } 11443 if (!fp_access_check(s)) { 11444 return; 11445 } 11446 11447 switch (opcode) { 11448 case 0x0: /* SQRDMLAH (vector) */ 11449 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11450 return; 11451 11452 case 0x1: /* SQRDMLSH (vector) */ 11453 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11454 return; 11455 11456 case 0x2: /* SDOT / UDOT */ 11457 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11458 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11459 return; 11460 11461 case 0x3: /* USDOT */ 11462 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11463 return; 11464 11465 case 0x04: /* SMMLA, UMMLA */ 11466 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11467 u ? gen_helper_gvec_ummla_b 11468 : gen_helper_gvec_smmla_b); 11469 return; 11470 case 0x05: /* USMMLA */ 11471 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11472 return; 11473 11474 case 0x8: /* FCMLA, #0 */ 11475 case 0x9: /* FCMLA, #90 */ 11476 case 0xa: /* FCMLA, #180 */ 11477 case 0xb: /* FCMLA, #270 */ 11478 rot = extract32(opcode, 0, 2); 11479 switch (size) { 11480 case 1: 11481 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11482 gen_helper_gvec_fcmlah); 11483 break; 11484 case 2: 11485 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11486 gen_helper_gvec_fcmlas); 11487 break; 11488 case 3: 11489 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11490 gen_helper_gvec_fcmlad); 11491 break; 11492 default: 11493 g_assert_not_reached(); 11494 } 11495 return; 11496 11497 case 0xc: /* FCADD, #90 */ 11498 case 0xe: /* FCADD, #270 */ 11499 rot = extract32(opcode, 1, 1); 11500 switch (size) { 11501 case 1: 11502 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11503 gen_helper_gvec_fcaddh); 11504 break; 11505 case 2: 11506 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11507 gen_helper_gvec_fcadds); 11508 break; 11509 case 3: 11510 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11511 gen_helper_gvec_fcaddd); 11512 break; 11513 default: 11514 g_assert_not_reached(); 11515 } 11516 return; 11517 11518 case 0xd: /* BFMMLA */ 11519 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11520 return; 11521 case 0xf: 11522 switch (size) { 11523 case 1: /* BFDOT */ 11524 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11525 break; 11526 case 3: /* BFMLAL{B,T} */ 11527 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11528 gen_helper_gvec_bfmlal); 11529 break; 11530 default: 11531 g_assert_not_reached(); 11532 } 11533 return; 11534 11535 default: 11536 g_assert_not_reached(); 11537 } 11538 } 11539 11540 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11541 int size, int rn, int rd) 11542 { 11543 /* Handle 2-reg-misc ops which are widening (so each size element 11544 * in the source becomes a 2*size element in the destination. 11545 * The only instruction like this is FCVTL. 11546 */ 11547 int pass; 11548 11549 if (size == 3) { 11550 /* 32 -> 64 bit fp conversion */ 11551 TCGv_i64 tcg_res[2]; 11552 int srcelt = is_q ? 2 : 0; 11553 11554 for (pass = 0; pass < 2; pass++) { 11555 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11556 tcg_res[pass] = tcg_temp_new_i64(); 11557 11558 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11559 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11560 } 11561 for (pass = 0; pass < 2; pass++) { 11562 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11563 } 11564 } else { 11565 /* 16 -> 32 bit fp conversion */ 11566 int srcelt = is_q ? 4 : 0; 11567 TCGv_i32 tcg_res[4]; 11568 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11569 TCGv_i32 ahp = get_ahp_flag(); 11570 11571 for (pass = 0; pass < 4; pass++) { 11572 tcg_res[pass] = tcg_temp_new_i32(); 11573 11574 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11575 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11576 fpst, ahp); 11577 } 11578 for (pass = 0; pass < 4; pass++) { 11579 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11580 } 11581 } 11582 } 11583 11584 static void handle_rev(DisasContext *s, int opcode, bool u, 11585 bool is_q, int size, int rn, int rd) 11586 { 11587 int op = (opcode << 1) | u; 11588 int opsz = op + size; 11589 int grp_size = 3 - opsz; 11590 int dsize = is_q ? 128 : 64; 11591 int i; 11592 11593 if (opsz >= 3) { 11594 unallocated_encoding(s); 11595 return; 11596 } 11597 11598 if (!fp_access_check(s)) { 11599 return; 11600 } 11601 11602 if (size == 0) { 11603 /* Special case bytes, use bswap op on each group of elements */ 11604 int groups = dsize / (8 << grp_size); 11605 11606 for (i = 0; i < groups; i++) { 11607 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11608 11609 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11610 switch (grp_size) { 11611 case MO_16: 11612 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11613 break; 11614 case MO_32: 11615 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11616 break; 11617 case MO_64: 11618 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11619 break; 11620 default: 11621 g_assert_not_reached(); 11622 } 11623 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11624 } 11625 clear_vec_high(s, is_q, rd); 11626 } else { 11627 int revmask = (1 << grp_size) - 1; 11628 int esize = 8 << size; 11629 int elements = dsize / esize; 11630 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11631 TCGv_i64 tcg_rd[2]; 11632 11633 for (i = 0; i < 2; i++) { 11634 tcg_rd[i] = tcg_temp_new_i64(); 11635 tcg_gen_movi_i64(tcg_rd[i], 0); 11636 } 11637 11638 for (i = 0; i < elements; i++) { 11639 int e_rev = (i & 0xf) ^ revmask; 11640 int w = (e_rev * esize) / 64; 11641 int o = (e_rev * esize) % 64; 11642 11643 read_vec_element(s, tcg_rn, rn, i, size); 11644 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11645 } 11646 11647 for (i = 0; i < 2; i++) { 11648 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11649 } 11650 clear_vec_high(s, true, rd); 11651 } 11652 } 11653 11654 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11655 bool is_q, int size, int rn, int rd) 11656 { 11657 /* Implement the pairwise operations from 2-misc: 11658 * SADDLP, UADDLP, SADALP, UADALP. 11659 * These all add pairs of elements in the input to produce a 11660 * double-width result element in the output (possibly accumulating). 11661 */ 11662 bool accum = (opcode == 0x6); 11663 int maxpass = is_q ? 2 : 1; 11664 int pass; 11665 TCGv_i64 tcg_res[2]; 11666 11667 if (size == 2) { 11668 /* 32 + 32 -> 64 op */ 11669 MemOp memop = size + (u ? 0 : MO_SIGN); 11670 11671 for (pass = 0; pass < maxpass; pass++) { 11672 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11673 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11674 11675 tcg_res[pass] = tcg_temp_new_i64(); 11676 11677 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11678 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11679 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11680 if (accum) { 11681 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11682 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11683 } 11684 } 11685 } else { 11686 for (pass = 0; pass < maxpass; pass++) { 11687 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11688 NeonGenOne64OpFn *genfn; 11689 static NeonGenOne64OpFn * const fns[2][2] = { 11690 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11691 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11692 }; 11693 11694 genfn = fns[size][u]; 11695 11696 tcg_res[pass] = tcg_temp_new_i64(); 11697 11698 read_vec_element(s, tcg_op, rn, pass, MO_64); 11699 genfn(tcg_res[pass], tcg_op); 11700 11701 if (accum) { 11702 read_vec_element(s, tcg_op, rd, pass, MO_64); 11703 if (size == 0) { 11704 gen_helper_neon_addl_u16(tcg_res[pass], 11705 tcg_res[pass], tcg_op); 11706 } else { 11707 gen_helper_neon_addl_u32(tcg_res[pass], 11708 tcg_res[pass], tcg_op); 11709 } 11710 } 11711 } 11712 } 11713 if (!is_q) { 11714 tcg_res[1] = tcg_constant_i64(0); 11715 } 11716 for (pass = 0; pass < 2; pass++) { 11717 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11718 } 11719 } 11720 11721 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11722 { 11723 /* Implement SHLL and SHLL2 */ 11724 int pass; 11725 int part = is_q ? 2 : 0; 11726 TCGv_i64 tcg_res[2]; 11727 11728 for (pass = 0; pass < 2; pass++) { 11729 static NeonGenWidenFn * const widenfns[3] = { 11730 gen_helper_neon_widen_u8, 11731 gen_helper_neon_widen_u16, 11732 tcg_gen_extu_i32_i64, 11733 }; 11734 NeonGenWidenFn *widenfn = widenfns[size]; 11735 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11736 11737 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11738 tcg_res[pass] = tcg_temp_new_i64(); 11739 widenfn(tcg_res[pass], tcg_op); 11740 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11741 } 11742 11743 for (pass = 0; pass < 2; pass++) { 11744 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11745 } 11746 } 11747 11748 /* AdvSIMD two reg misc 11749 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11750 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11751 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11752 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11753 */ 11754 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11755 { 11756 int size = extract32(insn, 22, 2); 11757 int opcode = extract32(insn, 12, 5); 11758 bool u = extract32(insn, 29, 1); 11759 bool is_q = extract32(insn, 30, 1); 11760 int rn = extract32(insn, 5, 5); 11761 int rd = extract32(insn, 0, 5); 11762 bool need_fpstatus = false; 11763 int rmode = -1; 11764 TCGv_i32 tcg_rmode; 11765 TCGv_ptr tcg_fpstatus; 11766 11767 switch (opcode) { 11768 case 0x0: /* REV64, REV32 */ 11769 case 0x1: /* REV16 */ 11770 handle_rev(s, opcode, u, is_q, size, rn, rd); 11771 return; 11772 case 0x5: /* CNT, NOT, RBIT */ 11773 if (u && size == 0) { 11774 /* NOT */ 11775 break; 11776 } else if (u && size == 1) { 11777 /* RBIT */ 11778 break; 11779 } else if (!u && size == 0) { 11780 /* CNT */ 11781 break; 11782 } 11783 unallocated_encoding(s); 11784 return; 11785 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11786 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11787 if (size == 3) { 11788 unallocated_encoding(s); 11789 return; 11790 } 11791 if (!fp_access_check(s)) { 11792 return; 11793 } 11794 11795 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11796 return; 11797 case 0x4: /* CLS, CLZ */ 11798 if (size == 3) { 11799 unallocated_encoding(s); 11800 return; 11801 } 11802 break; 11803 case 0x2: /* SADDLP, UADDLP */ 11804 case 0x6: /* SADALP, UADALP */ 11805 if (size == 3) { 11806 unallocated_encoding(s); 11807 return; 11808 } 11809 if (!fp_access_check(s)) { 11810 return; 11811 } 11812 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11813 return; 11814 case 0x13: /* SHLL, SHLL2 */ 11815 if (u == 0 || size == 3) { 11816 unallocated_encoding(s); 11817 return; 11818 } 11819 if (!fp_access_check(s)) { 11820 return; 11821 } 11822 handle_shll(s, is_q, size, rn, rd); 11823 return; 11824 case 0xa: /* CMLT */ 11825 if (u == 1) { 11826 unallocated_encoding(s); 11827 return; 11828 } 11829 /* fall through */ 11830 case 0x8: /* CMGT, CMGE */ 11831 case 0x9: /* CMEQ, CMLE */ 11832 case 0xb: /* ABS, NEG */ 11833 if (size == 3 && !is_q) { 11834 unallocated_encoding(s); 11835 return; 11836 } 11837 break; 11838 case 0x3: /* SUQADD, USQADD */ 11839 if (size == 3 && !is_q) { 11840 unallocated_encoding(s); 11841 return; 11842 } 11843 if (!fp_access_check(s)) { 11844 return; 11845 } 11846 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11847 return; 11848 case 0x7: /* SQABS, SQNEG */ 11849 if (size == 3 && !is_q) { 11850 unallocated_encoding(s); 11851 return; 11852 } 11853 break; 11854 case 0xc ... 0xf: 11855 case 0x16 ... 0x1f: 11856 { 11857 /* Floating point: U, size[1] and opcode indicate operation; 11858 * size[0] indicates single or double precision. 11859 */ 11860 int is_double = extract32(size, 0, 1); 11861 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11862 size = is_double ? 3 : 2; 11863 switch (opcode) { 11864 case 0x2f: /* FABS */ 11865 case 0x6f: /* FNEG */ 11866 if (size == 3 && !is_q) { 11867 unallocated_encoding(s); 11868 return; 11869 } 11870 break; 11871 case 0x1d: /* SCVTF */ 11872 case 0x5d: /* UCVTF */ 11873 { 11874 bool is_signed = (opcode == 0x1d) ? true : false; 11875 int elements = is_double ? 2 : is_q ? 4 : 2; 11876 if (is_double && !is_q) { 11877 unallocated_encoding(s); 11878 return; 11879 } 11880 if (!fp_access_check(s)) { 11881 return; 11882 } 11883 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11884 return; 11885 } 11886 case 0x2c: /* FCMGT (zero) */ 11887 case 0x2d: /* FCMEQ (zero) */ 11888 case 0x2e: /* FCMLT (zero) */ 11889 case 0x6c: /* FCMGE (zero) */ 11890 case 0x6d: /* FCMLE (zero) */ 11891 if (size == 3 && !is_q) { 11892 unallocated_encoding(s); 11893 return; 11894 } 11895 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11896 return; 11897 case 0x7f: /* FSQRT */ 11898 if (size == 3 && !is_q) { 11899 unallocated_encoding(s); 11900 return; 11901 } 11902 break; 11903 case 0x1a: /* FCVTNS */ 11904 case 0x1b: /* FCVTMS */ 11905 case 0x3a: /* FCVTPS */ 11906 case 0x3b: /* FCVTZS */ 11907 case 0x5a: /* FCVTNU */ 11908 case 0x5b: /* FCVTMU */ 11909 case 0x7a: /* FCVTPU */ 11910 case 0x7b: /* FCVTZU */ 11911 need_fpstatus = true; 11912 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11913 if (size == 3 && !is_q) { 11914 unallocated_encoding(s); 11915 return; 11916 } 11917 break; 11918 case 0x5c: /* FCVTAU */ 11919 case 0x1c: /* FCVTAS */ 11920 need_fpstatus = true; 11921 rmode = FPROUNDING_TIEAWAY; 11922 if (size == 3 && !is_q) { 11923 unallocated_encoding(s); 11924 return; 11925 } 11926 break; 11927 case 0x3c: /* URECPE */ 11928 if (size == 3) { 11929 unallocated_encoding(s); 11930 return; 11931 } 11932 /* fall through */ 11933 case 0x3d: /* FRECPE */ 11934 case 0x7d: /* FRSQRTE */ 11935 if (size == 3 && !is_q) { 11936 unallocated_encoding(s); 11937 return; 11938 } 11939 if (!fp_access_check(s)) { 11940 return; 11941 } 11942 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11943 return; 11944 case 0x56: /* FCVTXN, FCVTXN2 */ 11945 if (size == 2) { 11946 unallocated_encoding(s); 11947 return; 11948 } 11949 /* fall through */ 11950 case 0x16: /* FCVTN, FCVTN2 */ 11951 /* handle_2misc_narrow does a 2*size -> size operation, but these 11952 * instructions encode the source size rather than dest size. 11953 */ 11954 if (!fp_access_check(s)) { 11955 return; 11956 } 11957 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11958 return; 11959 case 0x36: /* BFCVTN, BFCVTN2 */ 11960 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11961 unallocated_encoding(s); 11962 return; 11963 } 11964 if (!fp_access_check(s)) { 11965 return; 11966 } 11967 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11968 return; 11969 case 0x17: /* FCVTL, FCVTL2 */ 11970 if (!fp_access_check(s)) { 11971 return; 11972 } 11973 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11974 return; 11975 case 0x18: /* FRINTN */ 11976 case 0x19: /* FRINTM */ 11977 case 0x38: /* FRINTP */ 11978 case 0x39: /* FRINTZ */ 11979 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11980 /* fall through */ 11981 case 0x59: /* FRINTX */ 11982 case 0x79: /* FRINTI */ 11983 need_fpstatus = true; 11984 if (size == 3 && !is_q) { 11985 unallocated_encoding(s); 11986 return; 11987 } 11988 break; 11989 case 0x58: /* FRINTA */ 11990 rmode = FPROUNDING_TIEAWAY; 11991 need_fpstatus = true; 11992 if (size == 3 && !is_q) { 11993 unallocated_encoding(s); 11994 return; 11995 } 11996 break; 11997 case 0x7c: /* URSQRTE */ 11998 if (size == 3) { 11999 unallocated_encoding(s); 12000 return; 12001 } 12002 break; 12003 case 0x1e: /* FRINT32Z */ 12004 case 0x1f: /* FRINT64Z */ 12005 rmode = FPROUNDING_ZERO; 12006 /* fall through */ 12007 case 0x5e: /* FRINT32X */ 12008 case 0x5f: /* FRINT64X */ 12009 need_fpstatus = true; 12010 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12011 unallocated_encoding(s); 12012 return; 12013 } 12014 break; 12015 default: 12016 unallocated_encoding(s); 12017 return; 12018 } 12019 break; 12020 } 12021 default: 12022 unallocated_encoding(s); 12023 return; 12024 } 12025 12026 if (!fp_access_check(s)) { 12027 return; 12028 } 12029 12030 if (need_fpstatus || rmode >= 0) { 12031 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12032 } else { 12033 tcg_fpstatus = NULL; 12034 } 12035 if (rmode >= 0) { 12036 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12037 } else { 12038 tcg_rmode = NULL; 12039 } 12040 12041 switch (opcode) { 12042 case 0x5: 12043 if (u && size == 0) { /* NOT */ 12044 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12045 return; 12046 } 12047 break; 12048 case 0x8: /* CMGT, CMGE */ 12049 if (u) { 12050 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12051 } else { 12052 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12053 } 12054 return; 12055 case 0x9: /* CMEQ, CMLE */ 12056 if (u) { 12057 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12058 } else { 12059 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12060 } 12061 return; 12062 case 0xa: /* CMLT */ 12063 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12064 return; 12065 case 0xb: 12066 if (u) { /* ABS, NEG */ 12067 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12068 } else { 12069 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12070 } 12071 return; 12072 } 12073 12074 if (size == 3) { 12075 /* All 64-bit element operations can be shared with scalar 2misc */ 12076 int pass; 12077 12078 /* Coverity claims (size == 3 && !is_q) has been eliminated 12079 * from all paths leading to here. 12080 */ 12081 tcg_debug_assert(is_q); 12082 for (pass = 0; pass < 2; pass++) { 12083 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12084 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12085 12086 read_vec_element(s, tcg_op, rn, pass, MO_64); 12087 12088 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12089 tcg_rmode, tcg_fpstatus); 12090 12091 write_vec_element(s, tcg_res, rd, pass, MO_64); 12092 } 12093 } else { 12094 int pass; 12095 12096 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12097 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12098 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12099 12100 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12101 12102 if (size == 2) { 12103 /* Special cases for 32 bit elements */ 12104 switch (opcode) { 12105 case 0x4: /* CLS */ 12106 if (u) { 12107 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12108 } else { 12109 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12110 } 12111 break; 12112 case 0x7: /* SQABS, SQNEG */ 12113 if (u) { 12114 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12115 } else { 12116 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12117 } 12118 break; 12119 case 0x2f: /* FABS */ 12120 gen_helper_vfp_abss(tcg_res, tcg_op); 12121 break; 12122 case 0x6f: /* FNEG */ 12123 gen_helper_vfp_negs(tcg_res, tcg_op); 12124 break; 12125 case 0x7f: /* FSQRT */ 12126 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12127 break; 12128 case 0x1a: /* FCVTNS */ 12129 case 0x1b: /* FCVTMS */ 12130 case 0x1c: /* FCVTAS */ 12131 case 0x3a: /* FCVTPS */ 12132 case 0x3b: /* FCVTZS */ 12133 gen_helper_vfp_tosls(tcg_res, tcg_op, 12134 tcg_constant_i32(0), tcg_fpstatus); 12135 break; 12136 case 0x5a: /* FCVTNU */ 12137 case 0x5b: /* FCVTMU */ 12138 case 0x5c: /* FCVTAU */ 12139 case 0x7a: /* FCVTPU */ 12140 case 0x7b: /* FCVTZU */ 12141 gen_helper_vfp_touls(tcg_res, tcg_op, 12142 tcg_constant_i32(0), tcg_fpstatus); 12143 break; 12144 case 0x18: /* FRINTN */ 12145 case 0x19: /* FRINTM */ 12146 case 0x38: /* FRINTP */ 12147 case 0x39: /* FRINTZ */ 12148 case 0x58: /* FRINTA */ 12149 case 0x79: /* FRINTI */ 12150 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12151 break; 12152 case 0x59: /* FRINTX */ 12153 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12154 break; 12155 case 0x7c: /* URSQRTE */ 12156 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12157 break; 12158 case 0x1e: /* FRINT32Z */ 12159 case 0x5e: /* FRINT32X */ 12160 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12161 break; 12162 case 0x1f: /* FRINT64Z */ 12163 case 0x5f: /* FRINT64X */ 12164 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12165 break; 12166 default: 12167 g_assert_not_reached(); 12168 } 12169 } else { 12170 /* Use helpers for 8 and 16 bit elements */ 12171 switch (opcode) { 12172 case 0x5: /* CNT, RBIT */ 12173 /* For these two insns size is part of the opcode specifier 12174 * (handled earlier); they always operate on byte elements. 12175 */ 12176 if (u) { 12177 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12178 } else { 12179 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12180 } 12181 break; 12182 case 0x7: /* SQABS, SQNEG */ 12183 { 12184 NeonGenOneOpEnvFn *genfn; 12185 static NeonGenOneOpEnvFn * const fns[2][2] = { 12186 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12187 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12188 }; 12189 genfn = fns[size][u]; 12190 genfn(tcg_res, cpu_env, tcg_op); 12191 break; 12192 } 12193 case 0x4: /* CLS, CLZ */ 12194 if (u) { 12195 if (size == 0) { 12196 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12197 } else { 12198 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12199 } 12200 } else { 12201 if (size == 0) { 12202 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12203 } else { 12204 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12205 } 12206 } 12207 break; 12208 default: 12209 g_assert_not_reached(); 12210 } 12211 } 12212 12213 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12214 } 12215 } 12216 clear_vec_high(s, is_q, rd); 12217 12218 if (tcg_rmode) { 12219 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12220 } 12221 } 12222 12223 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12224 * 12225 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12226 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12227 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12228 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12229 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12230 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12231 * 12232 * This actually covers two groups where scalar access is governed by 12233 * bit 28. A bunch of the instructions (float to integral) only exist 12234 * in the vector form and are un-allocated for the scalar decode. Also 12235 * in the scalar decode Q is always 1. 12236 */ 12237 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12238 { 12239 int fpop, opcode, a, u; 12240 int rn, rd; 12241 bool is_q; 12242 bool is_scalar; 12243 bool only_in_vector = false; 12244 12245 int pass; 12246 TCGv_i32 tcg_rmode = NULL; 12247 TCGv_ptr tcg_fpstatus = NULL; 12248 bool need_fpst = true; 12249 int rmode = -1; 12250 12251 if (!dc_isar_feature(aa64_fp16, s)) { 12252 unallocated_encoding(s); 12253 return; 12254 } 12255 12256 rd = extract32(insn, 0, 5); 12257 rn = extract32(insn, 5, 5); 12258 12259 a = extract32(insn, 23, 1); 12260 u = extract32(insn, 29, 1); 12261 is_scalar = extract32(insn, 28, 1); 12262 is_q = extract32(insn, 30, 1); 12263 12264 opcode = extract32(insn, 12, 5); 12265 fpop = deposit32(opcode, 5, 1, a); 12266 fpop = deposit32(fpop, 6, 1, u); 12267 12268 switch (fpop) { 12269 case 0x1d: /* SCVTF */ 12270 case 0x5d: /* UCVTF */ 12271 { 12272 int elements; 12273 12274 if (is_scalar) { 12275 elements = 1; 12276 } else { 12277 elements = (is_q ? 8 : 4); 12278 } 12279 12280 if (!fp_access_check(s)) { 12281 return; 12282 } 12283 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12284 return; 12285 } 12286 break; 12287 case 0x2c: /* FCMGT (zero) */ 12288 case 0x2d: /* FCMEQ (zero) */ 12289 case 0x2e: /* FCMLT (zero) */ 12290 case 0x6c: /* FCMGE (zero) */ 12291 case 0x6d: /* FCMLE (zero) */ 12292 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12293 return; 12294 case 0x3d: /* FRECPE */ 12295 case 0x3f: /* FRECPX */ 12296 break; 12297 case 0x18: /* FRINTN */ 12298 only_in_vector = true; 12299 rmode = FPROUNDING_TIEEVEN; 12300 break; 12301 case 0x19: /* FRINTM */ 12302 only_in_vector = true; 12303 rmode = FPROUNDING_NEGINF; 12304 break; 12305 case 0x38: /* FRINTP */ 12306 only_in_vector = true; 12307 rmode = FPROUNDING_POSINF; 12308 break; 12309 case 0x39: /* FRINTZ */ 12310 only_in_vector = true; 12311 rmode = FPROUNDING_ZERO; 12312 break; 12313 case 0x58: /* FRINTA */ 12314 only_in_vector = true; 12315 rmode = FPROUNDING_TIEAWAY; 12316 break; 12317 case 0x59: /* FRINTX */ 12318 case 0x79: /* FRINTI */ 12319 only_in_vector = true; 12320 /* current rounding mode */ 12321 break; 12322 case 0x1a: /* FCVTNS */ 12323 rmode = FPROUNDING_TIEEVEN; 12324 break; 12325 case 0x1b: /* FCVTMS */ 12326 rmode = FPROUNDING_NEGINF; 12327 break; 12328 case 0x1c: /* FCVTAS */ 12329 rmode = FPROUNDING_TIEAWAY; 12330 break; 12331 case 0x3a: /* FCVTPS */ 12332 rmode = FPROUNDING_POSINF; 12333 break; 12334 case 0x3b: /* FCVTZS */ 12335 rmode = FPROUNDING_ZERO; 12336 break; 12337 case 0x5a: /* FCVTNU */ 12338 rmode = FPROUNDING_TIEEVEN; 12339 break; 12340 case 0x5b: /* FCVTMU */ 12341 rmode = FPROUNDING_NEGINF; 12342 break; 12343 case 0x5c: /* FCVTAU */ 12344 rmode = FPROUNDING_TIEAWAY; 12345 break; 12346 case 0x7a: /* FCVTPU */ 12347 rmode = FPROUNDING_POSINF; 12348 break; 12349 case 0x7b: /* FCVTZU */ 12350 rmode = FPROUNDING_ZERO; 12351 break; 12352 case 0x2f: /* FABS */ 12353 case 0x6f: /* FNEG */ 12354 need_fpst = false; 12355 break; 12356 case 0x7d: /* FRSQRTE */ 12357 case 0x7f: /* FSQRT (vector) */ 12358 break; 12359 default: 12360 unallocated_encoding(s); 12361 return; 12362 } 12363 12364 12365 /* Check additional constraints for the scalar encoding */ 12366 if (is_scalar) { 12367 if (!is_q) { 12368 unallocated_encoding(s); 12369 return; 12370 } 12371 /* FRINTxx is only in the vector form */ 12372 if (only_in_vector) { 12373 unallocated_encoding(s); 12374 return; 12375 } 12376 } 12377 12378 if (!fp_access_check(s)) { 12379 return; 12380 } 12381 12382 if (rmode >= 0 || need_fpst) { 12383 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12384 } 12385 12386 if (rmode >= 0) { 12387 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12388 } 12389 12390 if (is_scalar) { 12391 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12392 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12393 12394 switch (fpop) { 12395 case 0x1a: /* FCVTNS */ 12396 case 0x1b: /* FCVTMS */ 12397 case 0x1c: /* FCVTAS */ 12398 case 0x3a: /* FCVTPS */ 12399 case 0x3b: /* FCVTZS */ 12400 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12401 break; 12402 case 0x3d: /* FRECPE */ 12403 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12404 break; 12405 case 0x3f: /* FRECPX */ 12406 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12407 break; 12408 case 0x5a: /* FCVTNU */ 12409 case 0x5b: /* FCVTMU */ 12410 case 0x5c: /* FCVTAU */ 12411 case 0x7a: /* FCVTPU */ 12412 case 0x7b: /* FCVTZU */ 12413 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12414 break; 12415 case 0x6f: /* FNEG */ 12416 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12417 break; 12418 case 0x7d: /* FRSQRTE */ 12419 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12420 break; 12421 default: 12422 g_assert_not_reached(); 12423 } 12424 12425 /* limit any sign extension going on */ 12426 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12427 write_fp_sreg(s, rd, tcg_res); 12428 } else { 12429 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12430 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12431 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12432 12433 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12434 12435 switch (fpop) { 12436 case 0x1a: /* FCVTNS */ 12437 case 0x1b: /* FCVTMS */ 12438 case 0x1c: /* FCVTAS */ 12439 case 0x3a: /* FCVTPS */ 12440 case 0x3b: /* FCVTZS */ 12441 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12442 break; 12443 case 0x3d: /* FRECPE */ 12444 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12445 break; 12446 case 0x5a: /* FCVTNU */ 12447 case 0x5b: /* FCVTMU */ 12448 case 0x5c: /* FCVTAU */ 12449 case 0x7a: /* FCVTPU */ 12450 case 0x7b: /* FCVTZU */ 12451 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12452 break; 12453 case 0x18: /* FRINTN */ 12454 case 0x19: /* FRINTM */ 12455 case 0x38: /* FRINTP */ 12456 case 0x39: /* FRINTZ */ 12457 case 0x58: /* FRINTA */ 12458 case 0x79: /* FRINTI */ 12459 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12460 break; 12461 case 0x59: /* FRINTX */ 12462 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12463 break; 12464 case 0x2f: /* FABS */ 12465 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12466 break; 12467 case 0x6f: /* FNEG */ 12468 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12469 break; 12470 case 0x7d: /* FRSQRTE */ 12471 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12472 break; 12473 case 0x7f: /* FSQRT */ 12474 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12475 break; 12476 default: 12477 g_assert_not_reached(); 12478 } 12479 12480 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12481 } 12482 12483 clear_vec_high(s, is_q, rd); 12484 } 12485 12486 if (tcg_rmode) { 12487 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12488 } 12489 } 12490 12491 /* AdvSIMD scalar x indexed element 12492 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12493 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12494 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12495 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12496 * AdvSIMD vector x indexed element 12497 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12498 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12499 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12500 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12501 */ 12502 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12503 { 12504 /* This encoding has two kinds of instruction: 12505 * normal, where we perform elt x idxelt => elt for each 12506 * element in the vector 12507 * long, where we perform elt x idxelt and generate a result of 12508 * double the width of the input element 12509 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12510 */ 12511 bool is_scalar = extract32(insn, 28, 1); 12512 bool is_q = extract32(insn, 30, 1); 12513 bool u = extract32(insn, 29, 1); 12514 int size = extract32(insn, 22, 2); 12515 int l = extract32(insn, 21, 1); 12516 int m = extract32(insn, 20, 1); 12517 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12518 int rm = extract32(insn, 16, 4); 12519 int opcode = extract32(insn, 12, 4); 12520 int h = extract32(insn, 11, 1); 12521 int rn = extract32(insn, 5, 5); 12522 int rd = extract32(insn, 0, 5); 12523 bool is_long = false; 12524 int is_fp = 0; 12525 bool is_fp16 = false; 12526 int index; 12527 TCGv_ptr fpst; 12528 12529 switch (16 * u + opcode) { 12530 case 0x08: /* MUL */ 12531 case 0x10: /* MLA */ 12532 case 0x14: /* MLS */ 12533 if (is_scalar) { 12534 unallocated_encoding(s); 12535 return; 12536 } 12537 break; 12538 case 0x02: /* SMLAL, SMLAL2 */ 12539 case 0x12: /* UMLAL, UMLAL2 */ 12540 case 0x06: /* SMLSL, SMLSL2 */ 12541 case 0x16: /* UMLSL, UMLSL2 */ 12542 case 0x0a: /* SMULL, SMULL2 */ 12543 case 0x1a: /* UMULL, UMULL2 */ 12544 if (is_scalar) { 12545 unallocated_encoding(s); 12546 return; 12547 } 12548 is_long = true; 12549 break; 12550 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12551 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12552 case 0x0b: /* SQDMULL, SQDMULL2 */ 12553 is_long = true; 12554 break; 12555 case 0x0c: /* SQDMULH */ 12556 case 0x0d: /* SQRDMULH */ 12557 break; 12558 case 0x01: /* FMLA */ 12559 case 0x05: /* FMLS */ 12560 case 0x09: /* FMUL */ 12561 case 0x19: /* FMULX */ 12562 is_fp = 1; 12563 break; 12564 case 0x1d: /* SQRDMLAH */ 12565 case 0x1f: /* SQRDMLSH */ 12566 if (!dc_isar_feature(aa64_rdm, s)) { 12567 unallocated_encoding(s); 12568 return; 12569 } 12570 break; 12571 case 0x0e: /* SDOT */ 12572 case 0x1e: /* UDOT */ 12573 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12574 unallocated_encoding(s); 12575 return; 12576 } 12577 break; 12578 case 0x0f: 12579 switch (size) { 12580 case 0: /* SUDOT */ 12581 case 2: /* USDOT */ 12582 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12583 unallocated_encoding(s); 12584 return; 12585 } 12586 size = MO_32; 12587 break; 12588 case 1: /* BFDOT */ 12589 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12590 unallocated_encoding(s); 12591 return; 12592 } 12593 size = MO_32; 12594 break; 12595 case 3: /* BFMLAL{B,T} */ 12596 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12597 unallocated_encoding(s); 12598 return; 12599 } 12600 /* can't set is_fp without other incorrect size checks */ 12601 size = MO_16; 12602 break; 12603 default: 12604 unallocated_encoding(s); 12605 return; 12606 } 12607 break; 12608 case 0x11: /* FCMLA #0 */ 12609 case 0x13: /* FCMLA #90 */ 12610 case 0x15: /* FCMLA #180 */ 12611 case 0x17: /* FCMLA #270 */ 12612 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12613 unallocated_encoding(s); 12614 return; 12615 } 12616 is_fp = 2; 12617 break; 12618 case 0x00: /* FMLAL */ 12619 case 0x04: /* FMLSL */ 12620 case 0x18: /* FMLAL2 */ 12621 case 0x1c: /* FMLSL2 */ 12622 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12623 unallocated_encoding(s); 12624 return; 12625 } 12626 size = MO_16; 12627 /* is_fp, but we pass cpu_env not fp_status. */ 12628 break; 12629 default: 12630 unallocated_encoding(s); 12631 return; 12632 } 12633 12634 switch (is_fp) { 12635 case 1: /* normal fp */ 12636 /* convert insn encoded size to MemOp size */ 12637 switch (size) { 12638 case 0: /* half-precision */ 12639 size = MO_16; 12640 is_fp16 = true; 12641 break; 12642 case MO_32: /* single precision */ 12643 case MO_64: /* double precision */ 12644 break; 12645 default: 12646 unallocated_encoding(s); 12647 return; 12648 } 12649 break; 12650 12651 case 2: /* complex fp */ 12652 /* Each indexable element is a complex pair. */ 12653 size += 1; 12654 switch (size) { 12655 case MO_32: 12656 if (h && !is_q) { 12657 unallocated_encoding(s); 12658 return; 12659 } 12660 is_fp16 = true; 12661 break; 12662 case MO_64: 12663 break; 12664 default: 12665 unallocated_encoding(s); 12666 return; 12667 } 12668 break; 12669 12670 default: /* integer */ 12671 switch (size) { 12672 case MO_8: 12673 case MO_64: 12674 unallocated_encoding(s); 12675 return; 12676 } 12677 break; 12678 } 12679 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12680 unallocated_encoding(s); 12681 return; 12682 } 12683 12684 /* Given MemOp size, adjust register and indexing. */ 12685 switch (size) { 12686 case MO_16: 12687 index = h << 2 | l << 1 | m; 12688 break; 12689 case MO_32: 12690 index = h << 1 | l; 12691 rm |= m << 4; 12692 break; 12693 case MO_64: 12694 if (l || !is_q) { 12695 unallocated_encoding(s); 12696 return; 12697 } 12698 index = h; 12699 rm |= m << 4; 12700 break; 12701 default: 12702 g_assert_not_reached(); 12703 } 12704 12705 if (!fp_access_check(s)) { 12706 return; 12707 } 12708 12709 if (is_fp) { 12710 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12711 } else { 12712 fpst = NULL; 12713 } 12714 12715 switch (16 * u + opcode) { 12716 case 0x0e: /* SDOT */ 12717 case 0x1e: /* UDOT */ 12718 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12719 u ? gen_helper_gvec_udot_idx_b 12720 : gen_helper_gvec_sdot_idx_b); 12721 return; 12722 case 0x0f: 12723 switch (extract32(insn, 22, 2)) { 12724 case 0: /* SUDOT */ 12725 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12726 gen_helper_gvec_sudot_idx_b); 12727 return; 12728 case 1: /* BFDOT */ 12729 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12730 gen_helper_gvec_bfdot_idx); 12731 return; 12732 case 2: /* USDOT */ 12733 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12734 gen_helper_gvec_usdot_idx_b); 12735 return; 12736 case 3: /* BFMLAL{B,T} */ 12737 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12738 gen_helper_gvec_bfmlal_idx); 12739 return; 12740 } 12741 g_assert_not_reached(); 12742 case 0x11: /* FCMLA #0 */ 12743 case 0x13: /* FCMLA #90 */ 12744 case 0x15: /* FCMLA #180 */ 12745 case 0x17: /* FCMLA #270 */ 12746 { 12747 int rot = extract32(insn, 13, 2); 12748 int data = (index << 2) | rot; 12749 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12750 vec_full_reg_offset(s, rn), 12751 vec_full_reg_offset(s, rm), 12752 vec_full_reg_offset(s, rd), fpst, 12753 is_q ? 16 : 8, vec_full_reg_size(s), data, 12754 size == MO_64 12755 ? gen_helper_gvec_fcmlas_idx 12756 : gen_helper_gvec_fcmlah_idx); 12757 } 12758 return; 12759 12760 case 0x00: /* FMLAL */ 12761 case 0x04: /* FMLSL */ 12762 case 0x18: /* FMLAL2 */ 12763 case 0x1c: /* FMLSL2 */ 12764 { 12765 int is_s = extract32(opcode, 2, 1); 12766 int is_2 = u; 12767 int data = (index << 2) | (is_2 << 1) | is_s; 12768 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12769 vec_full_reg_offset(s, rn), 12770 vec_full_reg_offset(s, rm), cpu_env, 12771 is_q ? 16 : 8, vec_full_reg_size(s), 12772 data, gen_helper_gvec_fmlal_idx_a64); 12773 } 12774 return; 12775 12776 case 0x08: /* MUL */ 12777 if (!is_long && !is_scalar) { 12778 static gen_helper_gvec_3 * const fns[3] = { 12779 gen_helper_gvec_mul_idx_h, 12780 gen_helper_gvec_mul_idx_s, 12781 gen_helper_gvec_mul_idx_d, 12782 }; 12783 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12784 vec_full_reg_offset(s, rn), 12785 vec_full_reg_offset(s, rm), 12786 is_q ? 16 : 8, vec_full_reg_size(s), 12787 index, fns[size - 1]); 12788 return; 12789 } 12790 break; 12791 12792 case 0x10: /* MLA */ 12793 if (!is_long && !is_scalar) { 12794 static gen_helper_gvec_4 * const fns[3] = { 12795 gen_helper_gvec_mla_idx_h, 12796 gen_helper_gvec_mla_idx_s, 12797 gen_helper_gvec_mla_idx_d, 12798 }; 12799 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12800 vec_full_reg_offset(s, rn), 12801 vec_full_reg_offset(s, rm), 12802 vec_full_reg_offset(s, rd), 12803 is_q ? 16 : 8, vec_full_reg_size(s), 12804 index, fns[size - 1]); 12805 return; 12806 } 12807 break; 12808 12809 case 0x14: /* MLS */ 12810 if (!is_long && !is_scalar) { 12811 static gen_helper_gvec_4 * const fns[3] = { 12812 gen_helper_gvec_mls_idx_h, 12813 gen_helper_gvec_mls_idx_s, 12814 gen_helper_gvec_mls_idx_d, 12815 }; 12816 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12817 vec_full_reg_offset(s, rn), 12818 vec_full_reg_offset(s, rm), 12819 vec_full_reg_offset(s, rd), 12820 is_q ? 16 : 8, vec_full_reg_size(s), 12821 index, fns[size - 1]); 12822 return; 12823 } 12824 break; 12825 } 12826 12827 if (size == 3) { 12828 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12829 int pass; 12830 12831 assert(is_fp && is_q && !is_long); 12832 12833 read_vec_element(s, tcg_idx, rm, index, MO_64); 12834 12835 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12836 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12837 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12838 12839 read_vec_element(s, tcg_op, rn, pass, MO_64); 12840 12841 switch (16 * u + opcode) { 12842 case 0x05: /* FMLS */ 12843 /* As usual for ARM, separate negation for fused multiply-add */ 12844 gen_helper_vfp_negd(tcg_op, tcg_op); 12845 /* fall through */ 12846 case 0x01: /* FMLA */ 12847 read_vec_element(s, tcg_res, rd, pass, MO_64); 12848 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 12849 break; 12850 case 0x09: /* FMUL */ 12851 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 12852 break; 12853 case 0x19: /* FMULX */ 12854 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 12855 break; 12856 default: 12857 g_assert_not_reached(); 12858 } 12859 12860 write_vec_element(s, tcg_res, rd, pass, MO_64); 12861 } 12862 12863 clear_vec_high(s, !is_scalar, rd); 12864 } else if (!is_long) { 12865 /* 32 bit floating point, or 16 or 32 bit integer. 12866 * For the 16 bit scalar case we use the usual Neon helpers and 12867 * rely on the fact that 0 op 0 == 0 with no side effects. 12868 */ 12869 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12870 int pass, maxpasses; 12871 12872 if (is_scalar) { 12873 maxpasses = 1; 12874 } else { 12875 maxpasses = is_q ? 4 : 2; 12876 } 12877 12878 read_vec_element_i32(s, tcg_idx, rm, index, size); 12879 12880 if (size == 1 && !is_scalar) { 12881 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12882 * the index into both halves of the 32 bit tcg_idx and then use 12883 * the usual Neon helpers. 12884 */ 12885 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12886 } 12887 12888 for (pass = 0; pass < maxpasses; pass++) { 12889 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12890 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12891 12892 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12893 12894 switch (16 * u + opcode) { 12895 case 0x08: /* MUL */ 12896 case 0x10: /* MLA */ 12897 case 0x14: /* MLS */ 12898 { 12899 static NeonGenTwoOpFn * const fns[2][2] = { 12900 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12901 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12902 }; 12903 NeonGenTwoOpFn *genfn; 12904 bool is_sub = opcode == 0x4; 12905 12906 if (size == 1) { 12907 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12908 } else { 12909 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12910 } 12911 if (opcode == 0x8) { 12912 break; 12913 } 12914 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12915 genfn = fns[size - 1][is_sub]; 12916 genfn(tcg_res, tcg_op, tcg_res); 12917 break; 12918 } 12919 case 0x05: /* FMLS */ 12920 case 0x01: /* FMLA */ 12921 read_vec_element_i32(s, tcg_res, rd, pass, 12922 is_scalar ? size : MO_32); 12923 switch (size) { 12924 case 1: 12925 if (opcode == 0x5) { 12926 /* As usual for ARM, separate negation for fused 12927 * multiply-add */ 12928 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 12929 } 12930 if (is_scalar) { 12931 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 12932 tcg_res, fpst); 12933 } else { 12934 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 12935 tcg_res, fpst); 12936 } 12937 break; 12938 case 2: 12939 if (opcode == 0x5) { 12940 /* As usual for ARM, separate negation for 12941 * fused multiply-add */ 12942 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 12943 } 12944 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 12945 tcg_res, fpst); 12946 break; 12947 default: 12948 g_assert_not_reached(); 12949 } 12950 break; 12951 case 0x09: /* FMUL */ 12952 switch (size) { 12953 case 1: 12954 if (is_scalar) { 12955 gen_helper_advsimd_mulh(tcg_res, tcg_op, 12956 tcg_idx, fpst); 12957 } else { 12958 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 12959 tcg_idx, fpst); 12960 } 12961 break; 12962 case 2: 12963 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 12964 break; 12965 default: 12966 g_assert_not_reached(); 12967 } 12968 break; 12969 case 0x19: /* FMULX */ 12970 switch (size) { 12971 case 1: 12972 if (is_scalar) { 12973 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 12974 tcg_idx, fpst); 12975 } else { 12976 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 12977 tcg_idx, fpst); 12978 } 12979 break; 12980 case 2: 12981 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 12982 break; 12983 default: 12984 g_assert_not_reached(); 12985 } 12986 break; 12987 case 0x0c: /* SQDMULH */ 12988 if (size == 1) { 12989 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 12990 tcg_op, tcg_idx); 12991 } else { 12992 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 12993 tcg_op, tcg_idx); 12994 } 12995 break; 12996 case 0x0d: /* SQRDMULH */ 12997 if (size == 1) { 12998 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 12999 tcg_op, tcg_idx); 13000 } else { 13001 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13002 tcg_op, tcg_idx); 13003 } 13004 break; 13005 case 0x1d: /* SQRDMLAH */ 13006 read_vec_element_i32(s, tcg_res, rd, pass, 13007 is_scalar ? size : MO_32); 13008 if (size == 1) { 13009 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13010 tcg_op, tcg_idx, tcg_res); 13011 } else { 13012 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13013 tcg_op, tcg_idx, tcg_res); 13014 } 13015 break; 13016 case 0x1f: /* SQRDMLSH */ 13017 read_vec_element_i32(s, tcg_res, rd, pass, 13018 is_scalar ? size : MO_32); 13019 if (size == 1) { 13020 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13021 tcg_op, tcg_idx, tcg_res); 13022 } else { 13023 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13024 tcg_op, tcg_idx, tcg_res); 13025 } 13026 break; 13027 default: 13028 g_assert_not_reached(); 13029 } 13030 13031 if (is_scalar) { 13032 write_fp_sreg(s, rd, tcg_res); 13033 } else { 13034 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13035 } 13036 } 13037 13038 clear_vec_high(s, is_q, rd); 13039 } else { 13040 /* long ops: 16x16->32 or 32x32->64 */ 13041 TCGv_i64 tcg_res[2]; 13042 int pass; 13043 bool satop = extract32(opcode, 0, 1); 13044 MemOp memop = MO_32; 13045 13046 if (satop || !u) { 13047 memop |= MO_SIGN; 13048 } 13049 13050 if (size == 2) { 13051 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13052 13053 read_vec_element(s, tcg_idx, rm, index, memop); 13054 13055 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13056 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13057 TCGv_i64 tcg_passres; 13058 int passelt; 13059 13060 if (is_scalar) { 13061 passelt = 0; 13062 } else { 13063 passelt = pass + (is_q * 2); 13064 } 13065 13066 read_vec_element(s, tcg_op, rn, passelt, memop); 13067 13068 tcg_res[pass] = tcg_temp_new_i64(); 13069 13070 if (opcode == 0xa || opcode == 0xb) { 13071 /* Non-accumulating ops */ 13072 tcg_passres = tcg_res[pass]; 13073 } else { 13074 tcg_passres = tcg_temp_new_i64(); 13075 } 13076 13077 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13078 13079 if (satop) { 13080 /* saturating, doubling */ 13081 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13082 tcg_passres, tcg_passres); 13083 } 13084 13085 if (opcode == 0xa || opcode == 0xb) { 13086 continue; 13087 } 13088 13089 /* Accumulating op: handle accumulate step */ 13090 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13091 13092 switch (opcode) { 13093 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13094 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13095 break; 13096 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13097 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13098 break; 13099 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13100 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13101 /* fall through */ 13102 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13103 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13104 tcg_res[pass], 13105 tcg_passres); 13106 break; 13107 default: 13108 g_assert_not_reached(); 13109 } 13110 } 13111 13112 clear_vec_high(s, !is_scalar, rd); 13113 } else { 13114 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13115 13116 assert(size == 1); 13117 read_vec_element_i32(s, tcg_idx, rm, index, size); 13118 13119 if (!is_scalar) { 13120 /* The simplest way to handle the 16x16 indexed ops is to 13121 * duplicate the index into both halves of the 32 bit tcg_idx 13122 * and then use the usual Neon helpers. 13123 */ 13124 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13125 } 13126 13127 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13128 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13129 TCGv_i64 tcg_passres; 13130 13131 if (is_scalar) { 13132 read_vec_element_i32(s, tcg_op, rn, pass, size); 13133 } else { 13134 read_vec_element_i32(s, tcg_op, rn, 13135 pass + (is_q * 2), MO_32); 13136 } 13137 13138 tcg_res[pass] = tcg_temp_new_i64(); 13139 13140 if (opcode == 0xa || opcode == 0xb) { 13141 /* Non-accumulating ops */ 13142 tcg_passres = tcg_res[pass]; 13143 } else { 13144 tcg_passres = tcg_temp_new_i64(); 13145 } 13146 13147 if (memop & MO_SIGN) { 13148 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13149 } else { 13150 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13151 } 13152 if (satop) { 13153 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13154 tcg_passres, tcg_passres); 13155 } 13156 13157 if (opcode == 0xa || opcode == 0xb) { 13158 continue; 13159 } 13160 13161 /* Accumulating op: handle accumulate step */ 13162 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13163 13164 switch (opcode) { 13165 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13166 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13167 tcg_passres); 13168 break; 13169 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13170 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13171 tcg_passres); 13172 break; 13173 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13174 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13175 /* fall through */ 13176 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13177 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13178 tcg_res[pass], 13179 tcg_passres); 13180 break; 13181 default: 13182 g_assert_not_reached(); 13183 } 13184 } 13185 13186 if (is_scalar) { 13187 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13188 } 13189 } 13190 13191 if (is_scalar) { 13192 tcg_res[1] = tcg_constant_i64(0); 13193 } 13194 13195 for (pass = 0; pass < 2; pass++) { 13196 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13197 } 13198 } 13199 } 13200 13201 /* Crypto AES 13202 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13203 * +-----------------+------+-----------+--------+-----+------+------+ 13204 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13205 * +-----------------+------+-----------+--------+-----+------+------+ 13206 */ 13207 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13208 { 13209 int size = extract32(insn, 22, 2); 13210 int opcode = extract32(insn, 12, 5); 13211 int rn = extract32(insn, 5, 5); 13212 int rd = extract32(insn, 0, 5); 13213 gen_helper_gvec_2 *genfn2 = NULL; 13214 gen_helper_gvec_3 *genfn3 = NULL; 13215 13216 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13217 unallocated_encoding(s); 13218 return; 13219 } 13220 13221 switch (opcode) { 13222 case 0x4: /* AESE */ 13223 genfn3 = gen_helper_crypto_aese; 13224 break; 13225 case 0x6: /* AESMC */ 13226 genfn2 = gen_helper_crypto_aesmc; 13227 break; 13228 case 0x5: /* AESD */ 13229 genfn3 = gen_helper_crypto_aesd; 13230 break; 13231 case 0x7: /* AESIMC */ 13232 genfn2 = gen_helper_crypto_aesimc; 13233 break; 13234 default: 13235 unallocated_encoding(s); 13236 return; 13237 } 13238 13239 if (!fp_access_check(s)) { 13240 return; 13241 } 13242 if (genfn2) { 13243 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13244 } else { 13245 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13246 } 13247 } 13248 13249 /* Crypto three-reg SHA 13250 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13251 * +-----------------+------+---+------+---+--------+-----+------+------+ 13252 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13253 * +-----------------+------+---+------+---+--------+-----+------+------+ 13254 */ 13255 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13256 { 13257 int size = extract32(insn, 22, 2); 13258 int opcode = extract32(insn, 12, 3); 13259 int rm = extract32(insn, 16, 5); 13260 int rn = extract32(insn, 5, 5); 13261 int rd = extract32(insn, 0, 5); 13262 gen_helper_gvec_3 *genfn; 13263 bool feature; 13264 13265 if (size != 0) { 13266 unallocated_encoding(s); 13267 return; 13268 } 13269 13270 switch (opcode) { 13271 case 0: /* SHA1C */ 13272 genfn = gen_helper_crypto_sha1c; 13273 feature = dc_isar_feature(aa64_sha1, s); 13274 break; 13275 case 1: /* SHA1P */ 13276 genfn = gen_helper_crypto_sha1p; 13277 feature = dc_isar_feature(aa64_sha1, s); 13278 break; 13279 case 2: /* SHA1M */ 13280 genfn = gen_helper_crypto_sha1m; 13281 feature = dc_isar_feature(aa64_sha1, s); 13282 break; 13283 case 3: /* SHA1SU0 */ 13284 genfn = gen_helper_crypto_sha1su0; 13285 feature = dc_isar_feature(aa64_sha1, s); 13286 break; 13287 case 4: /* SHA256H */ 13288 genfn = gen_helper_crypto_sha256h; 13289 feature = dc_isar_feature(aa64_sha256, s); 13290 break; 13291 case 5: /* SHA256H2 */ 13292 genfn = gen_helper_crypto_sha256h2; 13293 feature = dc_isar_feature(aa64_sha256, s); 13294 break; 13295 case 6: /* SHA256SU1 */ 13296 genfn = gen_helper_crypto_sha256su1; 13297 feature = dc_isar_feature(aa64_sha256, s); 13298 break; 13299 default: 13300 unallocated_encoding(s); 13301 return; 13302 } 13303 13304 if (!feature) { 13305 unallocated_encoding(s); 13306 return; 13307 } 13308 13309 if (!fp_access_check(s)) { 13310 return; 13311 } 13312 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13313 } 13314 13315 /* Crypto two-reg SHA 13316 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13317 * +-----------------+------+-----------+--------+-----+------+------+ 13318 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13319 * +-----------------+------+-----------+--------+-----+------+------+ 13320 */ 13321 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13322 { 13323 int size = extract32(insn, 22, 2); 13324 int opcode = extract32(insn, 12, 5); 13325 int rn = extract32(insn, 5, 5); 13326 int rd = extract32(insn, 0, 5); 13327 gen_helper_gvec_2 *genfn; 13328 bool feature; 13329 13330 if (size != 0) { 13331 unallocated_encoding(s); 13332 return; 13333 } 13334 13335 switch (opcode) { 13336 case 0: /* SHA1H */ 13337 feature = dc_isar_feature(aa64_sha1, s); 13338 genfn = gen_helper_crypto_sha1h; 13339 break; 13340 case 1: /* SHA1SU1 */ 13341 feature = dc_isar_feature(aa64_sha1, s); 13342 genfn = gen_helper_crypto_sha1su1; 13343 break; 13344 case 2: /* SHA256SU0 */ 13345 feature = dc_isar_feature(aa64_sha256, s); 13346 genfn = gen_helper_crypto_sha256su0; 13347 break; 13348 default: 13349 unallocated_encoding(s); 13350 return; 13351 } 13352 13353 if (!feature) { 13354 unallocated_encoding(s); 13355 return; 13356 } 13357 13358 if (!fp_access_check(s)) { 13359 return; 13360 } 13361 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13362 } 13363 13364 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13365 { 13366 tcg_gen_rotli_i64(d, m, 1); 13367 tcg_gen_xor_i64(d, d, n); 13368 } 13369 13370 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13371 { 13372 tcg_gen_rotli_vec(vece, d, m, 1); 13373 tcg_gen_xor_vec(vece, d, d, n); 13374 } 13375 13376 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13377 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13378 { 13379 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13380 static const GVecGen3 op = { 13381 .fni8 = gen_rax1_i64, 13382 .fniv = gen_rax1_vec, 13383 .opt_opc = vecop_list, 13384 .fno = gen_helper_crypto_rax1, 13385 .vece = MO_64, 13386 }; 13387 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13388 } 13389 13390 /* Crypto three-reg SHA512 13391 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13392 * +-----------------------+------+---+---+-----+--------+------+------+ 13393 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13394 * +-----------------------+------+---+---+-----+--------+------+------+ 13395 */ 13396 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13397 { 13398 int opcode = extract32(insn, 10, 2); 13399 int o = extract32(insn, 14, 1); 13400 int rm = extract32(insn, 16, 5); 13401 int rn = extract32(insn, 5, 5); 13402 int rd = extract32(insn, 0, 5); 13403 bool feature; 13404 gen_helper_gvec_3 *oolfn = NULL; 13405 GVecGen3Fn *gvecfn = NULL; 13406 13407 if (o == 0) { 13408 switch (opcode) { 13409 case 0: /* SHA512H */ 13410 feature = dc_isar_feature(aa64_sha512, s); 13411 oolfn = gen_helper_crypto_sha512h; 13412 break; 13413 case 1: /* SHA512H2 */ 13414 feature = dc_isar_feature(aa64_sha512, s); 13415 oolfn = gen_helper_crypto_sha512h2; 13416 break; 13417 case 2: /* SHA512SU1 */ 13418 feature = dc_isar_feature(aa64_sha512, s); 13419 oolfn = gen_helper_crypto_sha512su1; 13420 break; 13421 case 3: /* RAX1 */ 13422 feature = dc_isar_feature(aa64_sha3, s); 13423 gvecfn = gen_gvec_rax1; 13424 break; 13425 default: 13426 g_assert_not_reached(); 13427 } 13428 } else { 13429 switch (opcode) { 13430 case 0: /* SM3PARTW1 */ 13431 feature = dc_isar_feature(aa64_sm3, s); 13432 oolfn = gen_helper_crypto_sm3partw1; 13433 break; 13434 case 1: /* SM3PARTW2 */ 13435 feature = dc_isar_feature(aa64_sm3, s); 13436 oolfn = gen_helper_crypto_sm3partw2; 13437 break; 13438 case 2: /* SM4EKEY */ 13439 feature = dc_isar_feature(aa64_sm4, s); 13440 oolfn = gen_helper_crypto_sm4ekey; 13441 break; 13442 default: 13443 unallocated_encoding(s); 13444 return; 13445 } 13446 } 13447 13448 if (!feature) { 13449 unallocated_encoding(s); 13450 return; 13451 } 13452 13453 if (!fp_access_check(s)) { 13454 return; 13455 } 13456 13457 if (oolfn) { 13458 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13459 } else { 13460 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13461 } 13462 } 13463 13464 /* Crypto two-reg SHA512 13465 * 31 12 11 10 9 5 4 0 13466 * +-----------------------------------------+--------+------+------+ 13467 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13468 * +-----------------------------------------+--------+------+------+ 13469 */ 13470 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13471 { 13472 int opcode = extract32(insn, 10, 2); 13473 int rn = extract32(insn, 5, 5); 13474 int rd = extract32(insn, 0, 5); 13475 bool feature; 13476 13477 switch (opcode) { 13478 case 0: /* SHA512SU0 */ 13479 feature = dc_isar_feature(aa64_sha512, s); 13480 break; 13481 case 1: /* SM4E */ 13482 feature = dc_isar_feature(aa64_sm4, s); 13483 break; 13484 default: 13485 unallocated_encoding(s); 13486 return; 13487 } 13488 13489 if (!feature) { 13490 unallocated_encoding(s); 13491 return; 13492 } 13493 13494 if (!fp_access_check(s)) { 13495 return; 13496 } 13497 13498 switch (opcode) { 13499 case 0: /* SHA512SU0 */ 13500 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13501 break; 13502 case 1: /* SM4E */ 13503 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13504 break; 13505 default: 13506 g_assert_not_reached(); 13507 } 13508 } 13509 13510 /* Crypto four-register 13511 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13512 * +-------------------+-----+------+---+------+------+------+ 13513 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13514 * +-------------------+-----+------+---+------+------+------+ 13515 */ 13516 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13517 { 13518 int op0 = extract32(insn, 21, 2); 13519 int rm = extract32(insn, 16, 5); 13520 int ra = extract32(insn, 10, 5); 13521 int rn = extract32(insn, 5, 5); 13522 int rd = extract32(insn, 0, 5); 13523 bool feature; 13524 13525 switch (op0) { 13526 case 0: /* EOR3 */ 13527 case 1: /* BCAX */ 13528 feature = dc_isar_feature(aa64_sha3, s); 13529 break; 13530 case 2: /* SM3SS1 */ 13531 feature = dc_isar_feature(aa64_sm3, s); 13532 break; 13533 default: 13534 unallocated_encoding(s); 13535 return; 13536 } 13537 13538 if (!feature) { 13539 unallocated_encoding(s); 13540 return; 13541 } 13542 13543 if (!fp_access_check(s)) { 13544 return; 13545 } 13546 13547 if (op0 < 2) { 13548 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13549 int pass; 13550 13551 tcg_op1 = tcg_temp_new_i64(); 13552 tcg_op2 = tcg_temp_new_i64(); 13553 tcg_op3 = tcg_temp_new_i64(); 13554 tcg_res[0] = tcg_temp_new_i64(); 13555 tcg_res[1] = tcg_temp_new_i64(); 13556 13557 for (pass = 0; pass < 2; pass++) { 13558 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13559 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13560 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13561 13562 if (op0 == 0) { 13563 /* EOR3 */ 13564 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13565 } else { 13566 /* BCAX */ 13567 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13568 } 13569 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13570 } 13571 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13572 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13573 } else { 13574 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13575 13576 tcg_op1 = tcg_temp_new_i32(); 13577 tcg_op2 = tcg_temp_new_i32(); 13578 tcg_op3 = tcg_temp_new_i32(); 13579 tcg_res = tcg_temp_new_i32(); 13580 tcg_zero = tcg_constant_i32(0); 13581 13582 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13583 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13584 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13585 13586 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13587 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13588 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13589 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13590 13591 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13592 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13593 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13594 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13595 } 13596 } 13597 13598 /* Crypto XAR 13599 * 31 21 20 16 15 10 9 5 4 0 13600 * +-----------------------+------+--------+------+------+ 13601 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13602 * +-----------------------+------+--------+------+------+ 13603 */ 13604 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13605 { 13606 int rm = extract32(insn, 16, 5); 13607 int imm6 = extract32(insn, 10, 6); 13608 int rn = extract32(insn, 5, 5); 13609 int rd = extract32(insn, 0, 5); 13610 13611 if (!dc_isar_feature(aa64_sha3, s)) { 13612 unallocated_encoding(s); 13613 return; 13614 } 13615 13616 if (!fp_access_check(s)) { 13617 return; 13618 } 13619 13620 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13621 vec_full_reg_offset(s, rn), 13622 vec_full_reg_offset(s, rm), imm6, 16, 13623 vec_full_reg_size(s)); 13624 } 13625 13626 /* Crypto three-reg imm2 13627 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13628 * +-----------------------+------+-----+------+--------+------+------+ 13629 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13630 * +-----------------------+------+-----+------+--------+------+------+ 13631 */ 13632 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13633 { 13634 static gen_helper_gvec_3 * const fns[4] = { 13635 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13636 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13637 }; 13638 int opcode = extract32(insn, 10, 2); 13639 int imm2 = extract32(insn, 12, 2); 13640 int rm = extract32(insn, 16, 5); 13641 int rn = extract32(insn, 5, 5); 13642 int rd = extract32(insn, 0, 5); 13643 13644 if (!dc_isar_feature(aa64_sm3, s)) { 13645 unallocated_encoding(s); 13646 return; 13647 } 13648 13649 if (!fp_access_check(s)) { 13650 return; 13651 } 13652 13653 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13654 } 13655 13656 /* C3.6 Data processing - SIMD, inc Crypto 13657 * 13658 * As the decode gets a little complex we are using a table based 13659 * approach for this part of the decode. 13660 */ 13661 static const AArch64DecodeTable data_proc_simd[] = { 13662 /* pattern , mask , fn */ 13663 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13664 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13665 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13666 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13667 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13668 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13669 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13670 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13671 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13672 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13673 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13674 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13675 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13676 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13677 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13678 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13679 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13680 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13681 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13682 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13683 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13684 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13685 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13686 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13687 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13688 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13689 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13690 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13691 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13692 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13693 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13694 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13695 { 0x00000000, 0x00000000, NULL } 13696 }; 13697 13698 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13699 { 13700 /* Note that this is called with all non-FP cases from 13701 * table C3-6 so it must UNDEF for entries not specifically 13702 * allocated to instructions in that table. 13703 */ 13704 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13705 if (fn) { 13706 fn(s, insn); 13707 } else { 13708 unallocated_encoding(s); 13709 } 13710 } 13711 13712 /* C3.6 Data processing - SIMD and floating point */ 13713 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13714 { 13715 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13716 disas_data_proc_fp(s, insn); 13717 } else { 13718 /* SIMD, including crypto */ 13719 disas_data_proc_simd(s, insn); 13720 } 13721 } 13722 13723 static bool trans_OK(DisasContext *s, arg_OK *a) 13724 { 13725 return true; 13726 } 13727 13728 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13729 { 13730 s->is_nonstreaming = true; 13731 return true; 13732 } 13733 13734 /** 13735 * is_guarded_page: 13736 * @env: The cpu environment 13737 * @s: The DisasContext 13738 * 13739 * Return true if the page is guarded. 13740 */ 13741 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13742 { 13743 uint64_t addr = s->base.pc_first; 13744 #ifdef CONFIG_USER_ONLY 13745 return page_get_flags(addr) & PAGE_BTI; 13746 #else 13747 CPUTLBEntryFull *full; 13748 void *host; 13749 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13750 int flags; 13751 13752 /* 13753 * We test this immediately after reading an insn, which means 13754 * that the TLB entry must be present and valid, and thus this 13755 * access will never raise an exception. 13756 */ 13757 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13758 false, &host, &full, 0); 13759 assert(!(flags & TLB_INVALID_MASK)); 13760 13761 return full->guarded; 13762 #endif 13763 } 13764 13765 /** 13766 * btype_destination_ok: 13767 * @insn: The instruction at the branch destination 13768 * @bt: SCTLR_ELx.BT 13769 * @btype: PSTATE.BTYPE, and is non-zero 13770 * 13771 * On a guarded page, there are a limited number of insns 13772 * that may be present at the branch target: 13773 * - branch target identifiers, 13774 * - paciasp, pacibsp, 13775 * - BRK insn 13776 * - HLT insn 13777 * Anything else causes a Branch Target Exception. 13778 * 13779 * Return true if the branch is compatible, false to raise BTITRAP. 13780 */ 13781 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13782 { 13783 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13784 /* HINT space */ 13785 switch (extract32(insn, 5, 7)) { 13786 case 0b011001: /* PACIASP */ 13787 case 0b011011: /* PACIBSP */ 13788 /* 13789 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13790 * with btype == 3. Otherwise all btype are ok. 13791 */ 13792 return !bt || btype != 3; 13793 case 0b100000: /* BTI */ 13794 /* Not compatible with any btype. */ 13795 return false; 13796 case 0b100010: /* BTI c */ 13797 /* Not compatible with btype == 3 */ 13798 return btype != 3; 13799 case 0b100100: /* BTI j */ 13800 /* Not compatible with btype == 2 */ 13801 return btype != 2; 13802 case 0b100110: /* BTI jc */ 13803 /* Compatible with any btype. */ 13804 return true; 13805 } 13806 } else { 13807 switch (insn & 0xffe0001fu) { 13808 case 0xd4200000u: /* BRK */ 13809 case 0xd4400000u: /* HLT */ 13810 /* Give priority to the breakpoint exception. */ 13811 return true; 13812 } 13813 } 13814 return false; 13815 } 13816 13817 /* C3.1 A64 instruction index by encoding */ 13818 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13819 { 13820 switch (extract32(insn, 25, 4)) { 13821 case 0x5: 13822 case 0xd: /* Data processing - register */ 13823 disas_data_proc_reg(s, insn); 13824 break; 13825 case 0x7: 13826 case 0xf: /* Data processing - SIMD and floating point */ 13827 disas_data_proc_simd_fp(s, insn); 13828 break; 13829 default: 13830 unallocated_encoding(s); 13831 break; 13832 } 13833 } 13834 13835 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13836 CPUState *cpu) 13837 { 13838 DisasContext *dc = container_of(dcbase, DisasContext, base); 13839 CPUARMState *env = cpu->env_ptr; 13840 ARMCPU *arm_cpu = env_archcpu(env); 13841 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13842 int bound, core_mmu_idx; 13843 13844 dc->isar = &arm_cpu->isar; 13845 dc->condjmp = 0; 13846 dc->pc_save = dc->base.pc_first; 13847 dc->aarch64 = true; 13848 dc->thumb = false; 13849 dc->sctlr_b = 0; 13850 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13851 dc->condexec_mask = 0; 13852 dc->condexec_cond = 0; 13853 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13854 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13855 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13856 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13857 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13858 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13859 #if !defined(CONFIG_USER_ONLY) 13860 dc->user = (dc->current_el == 0); 13861 #endif 13862 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13863 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13864 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13865 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13866 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13867 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 13868 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13869 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13870 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13871 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13872 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13873 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13874 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13875 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13876 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 13877 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13878 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13879 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13880 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13881 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13882 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13883 dc->vec_len = 0; 13884 dc->vec_stride = 0; 13885 dc->cp_regs = arm_cpu->cp_regs; 13886 dc->features = env->features; 13887 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13888 dc->gm_blocksize = arm_cpu->gm_blocksize; 13889 13890 #ifdef CONFIG_USER_ONLY 13891 /* In sve_probe_page, we assume TBI is enabled. */ 13892 tcg_debug_assert(dc->tbid & 1); 13893 #endif 13894 13895 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13896 13897 /* Single step state. The code-generation logic here is: 13898 * SS_ACTIVE == 0: 13899 * generate code with no special handling for single-stepping (except 13900 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13901 * this happens anyway because those changes are all system register or 13902 * PSTATE writes). 13903 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13904 * emit code for one insn 13905 * emit code to clear PSTATE.SS 13906 * emit code to generate software step exception for completed step 13907 * end TB (as usual for having generated an exception) 13908 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13909 * emit code to generate a software step exception 13910 * end the TB 13911 */ 13912 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13913 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13914 dc->is_ldex = false; 13915 13916 /* Bound the number of insns to execute to those left on the page. */ 13917 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13918 13919 /* If architectural single step active, limit to 1. */ 13920 if (dc->ss_active) { 13921 bound = 1; 13922 } 13923 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13924 } 13925 13926 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13927 { 13928 } 13929 13930 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13931 { 13932 DisasContext *dc = container_of(dcbase, DisasContext, base); 13933 target_ulong pc_arg = dc->base.pc_next; 13934 13935 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13936 pc_arg &= ~TARGET_PAGE_MASK; 13937 } 13938 tcg_gen_insn_start(pc_arg, 0, 0); 13939 dc->insn_start = tcg_last_op(); 13940 } 13941 13942 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13943 { 13944 DisasContext *s = container_of(dcbase, DisasContext, base); 13945 CPUARMState *env = cpu->env_ptr; 13946 uint64_t pc = s->base.pc_next; 13947 uint32_t insn; 13948 13949 /* Singlestep exceptions have the highest priority. */ 13950 if (s->ss_active && !s->pstate_ss) { 13951 /* Singlestep state is Active-pending. 13952 * If we're in this state at the start of a TB then either 13953 * a) we just took an exception to an EL which is being debugged 13954 * and this is the first insn in the exception handler 13955 * b) debug exceptions were masked and we just unmasked them 13956 * without changing EL (eg by clearing PSTATE.D) 13957 * In either case we're going to take a swstep exception in the 13958 * "did not step an insn" case, and so the syndrome ISV and EX 13959 * bits should be zero. 13960 */ 13961 assert(s->base.num_insns == 1); 13962 gen_swstep_exception(s, 0, 0); 13963 s->base.is_jmp = DISAS_NORETURN; 13964 s->base.pc_next = pc + 4; 13965 return; 13966 } 13967 13968 if (pc & 3) { 13969 /* 13970 * PC alignment fault. This has priority over the instruction abort 13971 * that we would receive from a translation fault via arm_ldl_code. 13972 * This should only be possible after an indirect branch, at the 13973 * start of the TB. 13974 */ 13975 assert(s->base.num_insns == 1); 13976 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 13977 s->base.is_jmp = DISAS_NORETURN; 13978 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13979 return; 13980 } 13981 13982 s->pc_curr = pc; 13983 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13984 s->insn = insn; 13985 s->base.pc_next = pc + 4; 13986 13987 s->fp_access_checked = false; 13988 s->sve_access_checked = false; 13989 13990 if (s->pstate_il) { 13991 /* 13992 * Illegal execution state. This has priority over BTI 13993 * exceptions, but comes after instruction abort exceptions. 13994 */ 13995 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13996 return; 13997 } 13998 13999 if (dc_isar_feature(aa64_bti, s)) { 14000 if (s->base.num_insns == 1) { 14001 /* 14002 * At the first insn of the TB, compute s->guarded_page. 14003 * We delayed computing this until successfully reading 14004 * the first insn of the TB, above. This (mostly) ensures 14005 * that the softmmu tlb entry has been populated, and the 14006 * page table GP bit is available. 14007 * 14008 * Note that we need to compute this even if btype == 0, 14009 * because this value is used for BR instructions later 14010 * where ENV is not available. 14011 */ 14012 s->guarded_page = is_guarded_page(env, s); 14013 14014 /* First insn can have btype set to non-zero. */ 14015 tcg_debug_assert(s->btype >= 0); 14016 14017 /* 14018 * Note that the Branch Target Exception has fairly high 14019 * priority -- below debugging exceptions but above most 14020 * everything else. This allows us to handle this now 14021 * instead of waiting until the insn is otherwise decoded. 14022 */ 14023 if (s->btype != 0 14024 && s->guarded_page 14025 && !btype_destination_ok(insn, s->bt, s->btype)) { 14026 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14027 return; 14028 } 14029 } else { 14030 /* Not the first insn: btype must be 0. */ 14031 tcg_debug_assert(s->btype == 0); 14032 } 14033 } 14034 14035 s->is_nonstreaming = false; 14036 if (s->sme_trap_nonstreaming) { 14037 disas_sme_fa64(s, insn); 14038 } 14039 14040 if (!disas_a64(s, insn) && 14041 !disas_sme(s, insn) && 14042 !disas_sve(s, insn)) { 14043 disas_a64_legacy(s, insn); 14044 } 14045 14046 /* 14047 * After execution of most insns, btype is reset to 0. 14048 * Note that we set btype == -1 when the insn sets btype. 14049 */ 14050 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14051 reset_btype(s); 14052 } 14053 } 14054 14055 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14056 { 14057 DisasContext *dc = container_of(dcbase, DisasContext, base); 14058 14059 if (unlikely(dc->ss_active)) { 14060 /* Note that this means single stepping WFI doesn't halt the CPU. 14061 * For conditional branch insns this is harmless unreachable code as 14062 * gen_goto_tb() has already handled emitting the debug exception 14063 * (and thus a tb-jump is not possible when singlestepping). 14064 */ 14065 switch (dc->base.is_jmp) { 14066 default: 14067 gen_a64_update_pc(dc, 4); 14068 /* fall through */ 14069 case DISAS_EXIT: 14070 case DISAS_JUMP: 14071 gen_step_complete_exception(dc); 14072 break; 14073 case DISAS_NORETURN: 14074 break; 14075 } 14076 } else { 14077 switch (dc->base.is_jmp) { 14078 case DISAS_NEXT: 14079 case DISAS_TOO_MANY: 14080 gen_goto_tb(dc, 1, 4); 14081 break; 14082 default: 14083 case DISAS_UPDATE_EXIT: 14084 gen_a64_update_pc(dc, 4); 14085 /* fall through */ 14086 case DISAS_EXIT: 14087 tcg_gen_exit_tb(NULL, 0); 14088 break; 14089 case DISAS_UPDATE_NOCHAIN: 14090 gen_a64_update_pc(dc, 4); 14091 /* fall through */ 14092 case DISAS_JUMP: 14093 tcg_gen_lookup_and_goto_ptr(); 14094 break; 14095 case DISAS_NORETURN: 14096 case DISAS_SWI: 14097 break; 14098 case DISAS_WFE: 14099 gen_a64_update_pc(dc, 4); 14100 gen_helper_wfe(cpu_env); 14101 break; 14102 case DISAS_YIELD: 14103 gen_a64_update_pc(dc, 4); 14104 gen_helper_yield(cpu_env); 14105 break; 14106 case DISAS_WFI: 14107 /* 14108 * This is a special case because we don't want to just halt 14109 * the CPU if trying to debug across a WFI. 14110 */ 14111 gen_a64_update_pc(dc, 4); 14112 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14113 /* 14114 * The helper doesn't necessarily throw an exception, but we 14115 * must go back to the main loop to check for interrupts anyway. 14116 */ 14117 tcg_gen_exit_tb(NULL, 0); 14118 break; 14119 } 14120 } 14121 } 14122 14123 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14124 CPUState *cpu, FILE *logfile) 14125 { 14126 DisasContext *dc = container_of(dcbase, DisasContext, base); 14127 14128 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14129 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14130 } 14131 14132 const TranslatorOps aarch64_translator_ops = { 14133 .init_disas_context = aarch64_tr_init_disas_context, 14134 .tb_start = aarch64_tr_tb_start, 14135 .insn_start = aarch64_tr_insn_start, 14136 .translate_insn = aarch64_tr_translate_insn, 14137 .tb_stop = aarch64_tr_tb_stop, 14138 .disas_log = aarch64_tr_disas_log, 14139 }; 14140