1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 4-operand operation using an out-of-line helper. */ 728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, int ra, int data, gen_helper_gvec_4 *fn) 730 { 731 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 732 vec_full_reg_offset(s, rn), 733 vec_full_reg_offset(s, rm), 734 vec_full_reg_offset(s, ra), 735 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 736 } 737 738 /* 739 * Expand a 4-operand + fpstatus pointer + simd data value operation using 740 * an out-of-line helper. 741 */ 742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, bool is_fp16, int data, 744 gen_helper_gvec_4_ptr *fn) 745 { 746 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 747 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 748 vec_full_reg_offset(s, rn), 749 vec_full_reg_offset(s, rm), 750 vec_full_reg_offset(s, ra), fpst, 751 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 752 } 753 754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 755 * than the 32 bit equivalent. 756 */ 757 static inline void gen_set_NZ64(TCGv_i64 result) 758 { 759 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 760 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 761 } 762 763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 764 static inline void gen_logic_CC(int sf, TCGv_i64 result) 765 { 766 if (sf) { 767 gen_set_NZ64(result); 768 } else { 769 tcg_gen_extrl_i64_i32(cpu_ZF, result); 770 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 771 } 772 tcg_gen_movi_i32(cpu_CF, 0); 773 tcg_gen_movi_i32(cpu_VF, 0); 774 } 775 776 /* dest = T0 + T1; compute C, N, V and Z flags */ 777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 778 { 779 TCGv_i64 result, flag, tmp; 780 result = tcg_temp_new_i64(); 781 flag = tcg_temp_new_i64(); 782 tmp = tcg_temp_new_i64(); 783 784 tcg_gen_movi_i64(tmp, 0); 785 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 786 787 tcg_gen_extrl_i64_i32(cpu_CF, flag); 788 789 gen_set_NZ64(result); 790 791 tcg_gen_xor_i64(flag, result, t0); 792 tcg_gen_xor_i64(tmp, t0, t1); 793 tcg_gen_andc_i64(flag, flag, tmp); 794 tcg_gen_extrh_i64_i32(cpu_VF, flag); 795 796 tcg_gen_mov_i64(dest, result); 797 } 798 799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 TCGv_i32 t0_32 = tcg_temp_new_i32(); 802 TCGv_i32 t1_32 = tcg_temp_new_i32(); 803 TCGv_i32 tmp = tcg_temp_new_i32(); 804 805 tcg_gen_movi_i32(tmp, 0); 806 tcg_gen_extrl_i64_i32(t0_32, t0); 807 tcg_gen_extrl_i64_i32(t1_32, t1); 808 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 809 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 810 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 811 tcg_gen_xor_i32(tmp, t0_32, t1_32); 812 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 813 tcg_gen_extu_i32_i64(dest, cpu_NF); 814 } 815 816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 817 { 818 if (sf) { 819 gen_add64_CC(dest, t0, t1); 820 } else { 821 gen_add32_CC(dest, t0, t1); 822 } 823 } 824 825 /* dest = T0 - T1; compute C, N, V and Z flags */ 826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 827 { 828 /* 64 bit arithmetic */ 829 TCGv_i64 result, flag, tmp; 830 831 result = tcg_temp_new_i64(); 832 flag = tcg_temp_new_i64(); 833 tcg_gen_sub_i64(result, t0, t1); 834 835 gen_set_NZ64(result); 836 837 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 838 tcg_gen_extrl_i64_i32(cpu_CF, flag); 839 840 tcg_gen_xor_i64(flag, result, t0); 841 tmp = tcg_temp_new_i64(); 842 tcg_gen_xor_i64(tmp, t0, t1); 843 tcg_gen_and_i64(flag, flag, tmp); 844 tcg_gen_extrh_i64_i32(cpu_VF, flag); 845 tcg_gen_mov_i64(dest, result); 846 } 847 848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 849 { 850 /* 32 bit arithmetic */ 851 TCGv_i32 t0_32 = tcg_temp_new_i32(); 852 TCGv_i32 t1_32 = tcg_temp_new_i32(); 853 TCGv_i32 tmp; 854 855 tcg_gen_extrl_i64_i32(t0_32, t0); 856 tcg_gen_extrl_i64_i32(t1_32, t1); 857 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 858 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 859 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 860 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 861 tmp = tcg_temp_new_i32(); 862 tcg_gen_xor_i32(tmp, t0_32, t1_32); 863 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 864 tcg_gen_extu_i32_i64(dest, cpu_NF); 865 } 866 867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 868 { 869 if (sf) { 870 gen_sub64_CC(dest, t0, t1); 871 } else { 872 gen_sub32_CC(dest, t0, t1); 873 } 874 } 875 876 /* dest = T0 + T1 + CF; do not compute flags. */ 877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 878 { 879 TCGv_i64 flag = tcg_temp_new_i64(); 880 tcg_gen_extu_i32_i64(flag, cpu_CF); 881 tcg_gen_add_i64(dest, t0, t1); 882 tcg_gen_add_i64(dest, dest, flag); 883 884 if (!sf) { 885 tcg_gen_ext32u_i64(dest, dest); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 if (sf) { 893 TCGv_i64 result = tcg_temp_new_i64(); 894 TCGv_i64 cf_64 = tcg_temp_new_i64(); 895 TCGv_i64 vf_64 = tcg_temp_new_i64(); 896 TCGv_i64 tmp = tcg_temp_new_i64(); 897 TCGv_i64 zero = tcg_constant_i64(0); 898 899 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 900 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 901 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 902 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 903 gen_set_NZ64(result); 904 905 tcg_gen_xor_i64(vf_64, result, t0); 906 tcg_gen_xor_i64(tmp, t0, t1); 907 tcg_gen_andc_i64(vf_64, vf_64, tmp); 908 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 909 910 tcg_gen_mov_i64(dest, result); 911 } else { 912 TCGv_i32 t0_32 = tcg_temp_new_i32(); 913 TCGv_i32 t1_32 = tcg_temp_new_i32(); 914 TCGv_i32 tmp = tcg_temp_new_i32(); 915 TCGv_i32 zero = tcg_constant_i32(0); 916 917 tcg_gen_extrl_i64_i32(t0_32, t0); 918 tcg_gen_extrl_i64_i32(t1_32, t1); 919 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 920 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 921 922 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 923 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 924 tcg_gen_xor_i32(tmp, t0_32, t1_32); 925 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 926 tcg_gen_extu_i32_i64(dest, cpu_NF); 927 } 928 } 929 930 /* 931 * Load/Store generators 932 */ 933 934 /* 935 * Store from GPR register to memory. 936 */ 937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 938 TCGv_i64 tcg_addr, MemOp memop, int memidx, 939 bool iss_valid, 940 unsigned int iss_srt, 941 bool iss_sf, bool iss_ar) 942 { 943 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 944 945 if (iss_valid) { 946 uint32_t syn; 947 948 syn = syn_data_abort_with_iss(0, 949 (memop & MO_SIZE), 950 false, 951 iss_srt, 952 iss_sf, 953 iss_ar, 954 0, 0, 0, 0, 0, false); 955 disas_set_insn_syndrome(s, syn); 956 } 957 } 958 959 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 960 TCGv_i64 tcg_addr, MemOp memop, 961 bool iss_valid, 962 unsigned int iss_srt, 963 bool iss_sf, bool iss_ar) 964 { 965 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 966 iss_valid, iss_srt, iss_sf, iss_ar); 967 } 968 969 /* 970 * Load from memory to GPR register 971 */ 972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 973 MemOp memop, bool extend, int memidx, 974 bool iss_valid, unsigned int iss_srt, 975 bool iss_sf, bool iss_ar) 976 { 977 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 978 979 if (extend && (memop & MO_SIGN)) { 980 g_assert((memop & MO_SIZE) <= MO_32); 981 tcg_gen_ext32u_i64(dest, dest); 982 } 983 984 if (iss_valid) { 985 uint32_t syn; 986 987 syn = syn_data_abort_with_iss(0, 988 (memop & MO_SIZE), 989 (memop & MO_SIGN) != 0, 990 iss_srt, 991 iss_sf, 992 iss_ar, 993 0, 0, 0, 0, 0, false); 994 disas_set_insn_syndrome(s, syn); 995 } 996 } 997 998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 999 MemOp memop, bool extend, 1000 bool iss_valid, unsigned int iss_srt, 1001 bool iss_sf, bool iss_ar) 1002 { 1003 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1004 iss_valid, iss_srt, iss_sf, iss_ar); 1005 } 1006 1007 /* 1008 * Store from FP register to memory 1009 */ 1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1011 { 1012 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1013 TCGv_i64 tmplo = tcg_temp_new_i64(); 1014 1015 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1016 1017 if ((mop & MO_SIZE) < MO_128) { 1018 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1019 } else { 1020 TCGv_i64 tmphi = tcg_temp_new_i64(); 1021 TCGv_i128 t16 = tcg_temp_new_i128(); 1022 1023 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1024 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1025 1026 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1027 } 1028 } 1029 1030 /* 1031 * Load from memory to FP register 1032 */ 1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1034 { 1035 /* This always zero-extends and writes to a full 128 bit wide vector */ 1036 TCGv_i64 tmplo = tcg_temp_new_i64(); 1037 TCGv_i64 tmphi = NULL; 1038 1039 if ((mop & MO_SIZE) < MO_128) { 1040 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1041 } else { 1042 TCGv_i128 t16 = tcg_temp_new_i128(); 1043 1044 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1045 1046 tmphi = tcg_temp_new_i64(); 1047 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1048 } 1049 1050 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1051 1052 if (tmphi) { 1053 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1054 } 1055 clear_vec_high(s, tmphi != NULL, destidx); 1056 } 1057 1058 /* 1059 * Vector load/store helpers. 1060 * 1061 * The principal difference between this and a FP load is that we don't 1062 * zero extend as we are filling a partial chunk of the vector register. 1063 * These functions don't support 128 bit loads/stores, which would be 1064 * normal load/store operations. 1065 * 1066 * The _i32 versions are useful when operating on 32 bit quantities 1067 * (eg for floating point single or using Neon helper functions). 1068 */ 1069 1070 /* Get value of an element within a vector register */ 1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1072 int element, MemOp memop) 1073 { 1074 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1075 switch ((unsigned)memop) { 1076 case MO_8: 1077 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1078 break; 1079 case MO_16: 1080 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1081 break; 1082 case MO_32: 1083 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1084 break; 1085 case MO_8|MO_SIGN: 1086 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1087 break; 1088 case MO_16|MO_SIGN: 1089 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1090 break; 1091 case MO_32|MO_SIGN: 1092 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1093 break; 1094 case MO_64: 1095 case MO_64|MO_SIGN: 1096 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 default: 1099 g_assert_not_reached(); 1100 } 1101 } 1102 1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1104 int element, MemOp memop) 1105 { 1106 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1107 switch (memop) { 1108 case MO_8: 1109 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1110 break; 1111 case MO_16: 1112 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1113 break; 1114 case MO_8|MO_SIGN: 1115 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1116 break; 1117 case MO_16|MO_SIGN: 1118 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1119 break; 1120 case MO_32: 1121 case MO_32|MO_SIGN: 1122 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 default: 1125 g_assert_not_reached(); 1126 } 1127 } 1128 1129 /* Set value of an element within a vector register */ 1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1131 int element, MemOp memop) 1132 { 1133 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1134 switch (memop) { 1135 case MO_8: 1136 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1137 break; 1138 case MO_16: 1139 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1140 break; 1141 case MO_32: 1142 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1143 break; 1144 case MO_64: 1145 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1146 break; 1147 default: 1148 g_assert_not_reached(); 1149 } 1150 } 1151 1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1153 int destidx, int element, MemOp memop) 1154 { 1155 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1156 switch (memop) { 1157 case MO_8: 1158 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1159 break; 1160 case MO_16: 1161 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1162 break; 1163 case MO_32: 1164 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1165 break; 1166 default: 1167 g_assert_not_reached(); 1168 } 1169 } 1170 1171 /* Store from vector register to memory */ 1172 static void do_vec_st(DisasContext *s, int srcidx, int element, 1173 TCGv_i64 tcg_addr, MemOp mop) 1174 { 1175 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1176 1177 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1178 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1179 } 1180 1181 /* Load from memory to vector register */ 1182 static void do_vec_ld(DisasContext *s, int destidx, int element, 1183 TCGv_i64 tcg_addr, MemOp mop) 1184 { 1185 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1186 1187 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1188 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1189 } 1190 1191 /* Check that FP/Neon access is enabled. If it is, return 1192 * true. If not, emit code to generate an appropriate exception, 1193 * and return false; the caller should not emit any code for 1194 * the instruction. Note that this check must happen after all 1195 * unallocated-encoding checks (otherwise the syndrome information 1196 * for the resulting exception will be incorrect). 1197 */ 1198 static bool fp_access_check_only(DisasContext *s) 1199 { 1200 if (s->fp_excp_el) { 1201 assert(!s->fp_access_checked); 1202 s->fp_access_checked = true; 1203 1204 gen_exception_insn_el(s, 0, EXCP_UDEF, 1205 syn_fp_access_trap(1, 0xe, false, 0), 1206 s->fp_excp_el); 1207 return false; 1208 } 1209 s->fp_access_checked = true; 1210 return true; 1211 } 1212 1213 static bool fp_access_check(DisasContext *s) 1214 { 1215 if (!fp_access_check_only(s)) { 1216 return false; 1217 } 1218 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1219 gen_exception_insn(s, 0, EXCP_UDEF, 1220 syn_smetrap(SME_ET_Streaming, false)); 1221 return false; 1222 } 1223 return true; 1224 } 1225 1226 /* 1227 * Check that SVE access is enabled. If it is, return true. 1228 * If not, emit code to generate an appropriate exception and return false. 1229 * This function corresponds to CheckSVEEnabled(). 1230 */ 1231 bool sve_access_check(DisasContext *s) 1232 { 1233 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1234 assert(dc_isar_feature(aa64_sme, s)); 1235 if (!sme_sm_enabled_check(s)) { 1236 goto fail_exit; 1237 } 1238 } else if (s->sve_excp_el) { 1239 gen_exception_insn_el(s, 0, EXCP_UDEF, 1240 syn_sve_access_trap(), s->sve_excp_el); 1241 goto fail_exit; 1242 } 1243 s->sve_access_checked = true; 1244 return fp_access_check(s); 1245 1246 fail_exit: 1247 /* Assert that we only raise one exception per instruction. */ 1248 assert(!s->sve_access_checked); 1249 s->sve_access_checked = true; 1250 return false; 1251 } 1252 1253 /* 1254 * Check that SME access is enabled, raise an exception if not. 1255 * Note that this function corresponds to CheckSMEAccess and is 1256 * only used directly for cpregs. 1257 */ 1258 static bool sme_access_check(DisasContext *s) 1259 { 1260 if (s->sme_excp_el) { 1261 gen_exception_insn_el(s, 0, EXCP_UDEF, 1262 syn_smetrap(SME_ET_AccessTrap, false), 1263 s->sme_excp_el); 1264 return false; 1265 } 1266 return true; 1267 } 1268 1269 /* This function corresponds to CheckSMEEnabled. */ 1270 bool sme_enabled_check(DisasContext *s) 1271 { 1272 /* 1273 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1274 * to be zero when fp_excp_el has priority. This is because we need 1275 * sme_excp_el by itself for cpregs access checks. 1276 */ 1277 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1278 s->fp_access_checked = true; 1279 return sme_access_check(s); 1280 } 1281 return fp_access_check_only(s); 1282 } 1283 1284 /* Common subroutine for CheckSMEAnd*Enabled. */ 1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1286 { 1287 if (!sme_enabled_check(s)) { 1288 return false; 1289 } 1290 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1291 gen_exception_insn(s, 0, EXCP_UDEF, 1292 syn_smetrap(SME_ET_NotStreaming, false)); 1293 return false; 1294 } 1295 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1296 gen_exception_insn(s, 0, EXCP_UDEF, 1297 syn_smetrap(SME_ET_InactiveZA, false)); 1298 return false; 1299 } 1300 return true; 1301 } 1302 1303 /* 1304 * Expanders for AdvSIMD translation functions. 1305 */ 1306 1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1308 gen_helper_gvec_2 *fn) 1309 { 1310 if (!a->q && a->esz == MO_64) { 1311 return false; 1312 } 1313 if (fp_access_check(s)) { 1314 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1315 } 1316 return true; 1317 } 1318 1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1320 gen_helper_gvec_3 *fn) 1321 { 1322 if (!a->q && a->esz == MO_64) { 1323 return false; 1324 } 1325 if (fp_access_check(s)) { 1326 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1327 } 1328 return true; 1329 } 1330 1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1332 { 1333 if (!a->q && a->esz == MO_64) { 1334 return false; 1335 } 1336 if (fp_access_check(s)) { 1337 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1338 } 1339 return true; 1340 } 1341 1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1343 { 1344 if (a->esz == MO_64) { 1345 return false; 1346 } 1347 if (fp_access_check(s)) { 1348 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1349 } 1350 return true; 1351 } 1352 1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1354 { 1355 if (a->esz == MO_8) { 1356 return false; 1357 } 1358 return do_gvec_fn3_no64(s, a, fn); 1359 } 1360 1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1362 { 1363 if (!a->q && a->esz == MO_64) { 1364 return false; 1365 } 1366 if (fp_access_check(s)) { 1367 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1368 } 1369 return true; 1370 } 1371 1372 /* 1373 * This utility function is for doing register extension with an 1374 * optional shift. You will likely want to pass a temporary for the 1375 * destination register. See DecodeRegExtend() in the ARM ARM. 1376 */ 1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1378 int option, unsigned int shift) 1379 { 1380 int extsize = extract32(option, 0, 2); 1381 bool is_signed = extract32(option, 2, 1); 1382 1383 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1384 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1385 } 1386 1387 static inline void gen_check_sp_alignment(DisasContext *s) 1388 { 1389 /* The AArch64 architecture mandates that (if enabled via PSTATE 1390 * or SCTLR bits) there is a check that SP is 16-aligned on every 1391 * SP-relative load or store (with an exception generated if it is not). 1392 * In line with general QEMU practice regarding misaligned accesses, 1393 * we omit these checks for the sake of guest program performance. 1394 * This function is provided as a hook so we can more easily add these 1395 * checks in future (possibly as a "favour catching guest program bugs 1396 * over speed" user selectable option). 1397 */ 1398 } 1399 1400 /* 1401 * This provides a simple table based table lookup decoder. It is 1402 * intended to be used when the relevant bits for decode are too 1403 * awkwardly placed and switch/if based logic would be confusing and 1404 * deeply nested. Since it's a linear search through the table, tables 1405 * should be kept small. 1406 * 1407 * It returns the first handler where insn & mask == pattern, or 1408 * NULL if there is no match. 1409 * The table is terminated by an empty mask (i.e. 0) 1410 */ 1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1412 uint32_t insn) 1413 { 1414 const AArch64DecodeTable *tptr = table; 1415 1416 while (tptr->mask) { 1417 if ((insn & tptr->mask) == tptr->pattern) { 1418 return tptr->disas_fn; 1419 } 1420 tptr++; 1421 } 1422 return NULL; 1423 } 1424 1425 /* 1426 * The instruction disassembly implemented here matches 1427 * the instruction encoding classifications in chapter C4 1428 * of the ARM Architecture Reference Manual (DDI0487B_a); 1429 * classification names and decode diagrams here should generally 1430 * match up with those in the manual. 1431 */ 1432 1433 static bool trans_B(DisasContext *s, arg_i *a) 1434 { 1435 reset_btype(s); 1436 gen_goto_tb(s, 0, a->imm); 1437 return true; 1438 } 1439 1440 static bool trans_BL(DisasContext *s, arg_i *a) 1441 { 1442 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1443 reset_btype(s); 1444 gen_goto_tb(s, 0, a->imm); 1445 return true; 1446 } 1447 1448 1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1450 { 1451 DisasLabel match; 1452 TCGv_i64 tcg_cmp; 1453 1454 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1455 reset_btype(s); 1456 1457 match = gen_disas_label(s); 1458 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1459 tcg_cmp, 0, match.label); 1460 gen_goto_tb(s, 0, 4); 1461 set_disas_label(s, match); 1462 gen_goto_tb(s, 1, a->imm); 1463 return true; 1464 } 1465 1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1467 { 1468 DisasLabel match; 1469 TCGv_i64 tcg_cmp; 1470 1471 tcg_cmp = tcg_temp_new_i64(); 1472 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1473 1474 reset_btype(s); 1475 1476 match = gen_disas_label(s); 1477 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1478 tcg_cmp, 0, match.label); 1479 gen_goto_tb(s, 0, 4); 1480 set_disas_label(s, match); 1481 gen_goto_tb(s, 1, a->imm); 1482 return true; 1483 } 1484 1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1486 { 1487 /* BC.cond is only present with FEAT_HBC */ 1488 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1489 return false; 1490 } 1491 reset_btype(s); 1492 if (a->cond < 0x0e) { 1493 /* genuinely conditional branches */ 1494 DisasLabel match = gen_disas_label(s); 1495 arm_gen_test_cc(a->cond, match.label); 1496 gen_goto_tb(s, 0, 4); 1497 set_disas_label(s, match); 1498 gen_goto_tb(s, 1, a->imm); 1499 } else { 1500 /* 0xe and 0xf are both "always" conditions */ 1501 gen_goto_tb(s, 0, a->imm); 1502 } 1503 return true; 1504 } 1505 1506 static void set_btype_for_br(DisasContext *s, int rn) 1507 { 1508 if (dc_isar_feature(aa64_bti, s)) { 1509 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1510 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1511 } 1512 } 1513 1514 static void set_btype_for_blr(DisasContext *s) 1515 { 1516 if (dc_isar_feature(aa64_bti, s)) { 1517 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1518 set_btype(s, 2); 1519 } 1520 } 1521 1522 static bool trans_BR(DisasContext *s, arg_r *a) 1523 { 1524 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1525 set_btype_for_br(s, a->rn); 1526 s->base.is_jmp = DISAS_JUMP; 1527 return true; 1528 } 1529 1530 static bool trans_BLR(DisasContext *s, arg_r *a) 1531 { 1532 TCGv_i64 dst = cpu_reg(s, a->rn); 1533 TCGv_i64 lr = cpu_reg(s, 30); 1534 if (dst == lr) { 1535 TCGv_i64 tmp = tcg_temp_new_i64(); 1536 tcg_gen_mov_i64(tmp, dst); 1537 dst = tmp; 1538 } 1539 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1540 gen_a64_set_pc(s, dst); 1541 set_btype_for_blr(s); 1542 s->base.is_jmp = DISAS_JUMP; 1543 return true; 1544 } 1545 1546 static bool trans_RET(DisasContext *s, arg_r *a) 1547 { 1548 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1549 s->base.is_jmp = DISAS_JUMP; 1550 return true; 1551 } 1552 1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1554 TCGv_i64 modifier, bool use_key_a) 1555 { 1556 TCGv_i64 truedst; 1557 /* 1558 * Return the branch target for a BRAA/RETA/etc, which is either 1559 * just the destination dst, or that value with the pauth check 1560 * done and the code removed from the high bits. 1561 */ 1562 if (!s->pauth_active) { 1563 return dst; 1564 } 1565 1566 truedst = tcg_temp_new_i64(); 1567 if (use_key_a) { 1568 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1569 } else { 1570 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1571 } 1572 return truedst; 1573 } 1574 1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1576 { 1577 TCGv_i64 dst; 1578 1579 if (!dc_isar_feature(aa64_pauth, s)) { 1580 return false; 1581 } 1582 1583 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1584 gen_a64_set_pc(s, dst); 1585 set_btype_for_br(s, a->rn); 1586 s->base.is_jmp = DISAS_JUMP; 1587 return true; 1588 } 1589 1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1591 { 1592 TCGv_i64 dst, lr; 1593 1594 if (!dc_isar_feature(aa64_pauth, s)) { 1595 return false; 1596 } 1597 1598 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1599 lr = cpu_reg(s, 30); 1600 if (dst == lr) { 1601 TCGv_i64 tmp = tcg_temp_new_i64(); 1602 tcg_gen_mov_i64(tmp, dst); 1603 dst = tmp; 1604 } 1605 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1606 gen_a64_set_pc(s, dst); 1607 set_btype_for_blr(s); 1608 s->base.is_jmp = DISAS_JUMP; 1609 return true; 1610 } 1611 1612 static bool trans_RETA(DisasContext *s, arg_reta *a) 1613 { 1614 TCGv_i64 dst; 1615 1616 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1617 gen_a64_set_pc(s, dst); 1618 s->base.is_jmp = DISAS_JUMP; 1619 return true; 1620 } 1621 1622 static bool trans_BRA(DisasContext *s, arg_bra *a) 1623 { 1624 TCGv_i64 dst; 1625 1626 if (!dc_isar_feature(aa64_pauth, s)) { 1627 return false; 1628 } 1629 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1630 gen_a64_set_pc(s, dst); 1631 set_btype_for_br(s, a->rn); 1632 s->base.is_jmp = DISAS_JUMP; 1633 return true; 1634 } 1635 1636 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1637 { 1638 TCGv_i64 dst, lr; 1639 1640 if (!dc_isar_feature(aa64_pauth, s)) { 1641 return false; 1642 } 1643 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1644 lr = cpu_reg(s, 30); 1645 if (dst == lr) { 1646 TCGv_i64 tmp = tcg_temp_new_i64(); 1647 tcg_gen_mov_i64(tmp, dst); 1648 dst = tmp; 1649 } 1650 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1651 gen_a64_set_pc(s, dst); 1652 set_btype_for_blr(s); 1653 s->base.is_jmp = DISAS_JUMP; 1654 return true; 1655 } 1656 1657 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1658 { 1659 TCGv_i64 dst; 1660 1661 if (s->current_el == 0) { 1662 return false; 1663 } 1664 if (s->trap_eret) { 1665 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1666 return true; 1667 } 1668 dst = tcg_temp_new_i64(); 1669 tcg_gen_ld_i64(dst, tcg_env, 1670 offsetof(CPUARMState, elr_el[s->current_el])); 1671 1672 translator_io_start(&s->base); 1673 1674 gen_helper_exception_return(tcg_env, dst); 1675 /* Must exit loop to check un-masked IRQs */ 1676 s->base.is_jmp = DISAS_EXIT; 1677 return true; 1678 } 1679 1680 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1681 { 1682 TCGv_i64 dst; 1683 1684 if (!dc_isar_feature(aa64_pauth, s)) { 1685 return false; 1686 } 1687 if (s->current_el == 0) { 1688 return false; 1689 } 1690 /* The FGT trap takes precedence over an auth trap. */ 1691 if (s->trap_eret) { 1692 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1693 return true; 1694 } 1695 dst = tcg_temp_new_i64(); 1696 tcg_gen_ld_i64(dst, tcg_env, 1697 offsetof(CPUARMState, elr_el[s->current_el])); 1698 1699 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1700 1701 translator_io_start(&s->base); 1702 1703 gen_helper_exception_return(tcg_env, dst); 1704 /* Must exit loop to check un-masked IRQs */ 1705 s->base.is_jmp = DISAS_EXIT; 1706 return true; 1707 } 1708 1709 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1710 { 1711 return true; 1712 } 1713 1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1715 { 1716 /* 1717 * When running in MTTCG we don't generate jumps to the yield and 1718 * WFE helpers as it won't affect the scheduling of other vCPUs. 1719 * If we wanted to more completely model WFE/SEV so we don't busy 1720 * spin unnecessarily we would need to do something more involved. 1721 */ 1722 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1723 s->base.is_jmp = DISAS_YIELD; 1724 } 1725 return true; 1726 } 1727 1728 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1729 { 1730 s->base.is_jmp = DISAS_WFI; 1731 return true; 1732 } 1733 1734 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1735 { 1736 /* 1737 * When running in MTTCG we don't generate jumps to the yield and 1738 * WFE helpers as it won't affect the scheduling of other vCPUs. 1739 * If we wanted to more completely model WFE/SEV so we don't busy 1740 * spin unnecessarily we would need to do something more involved. 1741 */ 1742 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1743 s->base.is_jmp = DISAS_WFE; 1744 } 1745 return true; 1746 } 1747 1748 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1749 { 1750 if (s->pauth_active) { 1751 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1752 } 1753 return true; 1754 } 1755 1756 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1757 { 1758 if (s->pauth_active) { 1759 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1760 } 1761 return true; 1762 } 1763 1764 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1765 { 1766 if (s->pauth_active) { 1767 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1768 } 1769 return true; 1770 } 1771 1772 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1773 { 1774 if (s->pauth_active) { 1775 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1776 } 1777 return true; 1778 } 1779 1780 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1781 { 1782 if (s->pauth_active) { 1783 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1784 } 1785 return true; 1786 } 1787 1788 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1789 { 1790 /* Without RAS, we must implement this as NOP. */ 1791 if (dc_isar_feature(aa64_ras, s)) { 1792 /* 1793 * QEMU does not have a source of physical SErrors, 1794 * so we are only concerned with virtual SErrors. 1795 * The pseudocode in the ARM for this case is 1796 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1797 * AArch64.vESBOperation(); 1798 * Most of the condition can be evaluated at translation time. 1799 * Test for EL2 present, and defer test for SEL2 to runtime. 1800 */ 1801 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1802 gen_helper_vesb(tcg_env); 1803 } 1804 } 1805 return true; 1806 } 1807 1808 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1809 { 1810 if (s->pauth_active) { 1811 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1812 } 1813 return true; 1814 } 1815 1816 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1817 { 1818 if (s->pauth_active) { 1819 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1820 } 1821 return true; 1822 } 1823 1824 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1825 { 1826 if (s->pauth_active) { 1827 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1828 } 1829 return true; 1830 } 1831 1832 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1833 { 1834 if (s->pauth_active) { 1835 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1836 } 1837 return true; 1838 } 1839 1840 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1841 { 1842 if (s->pauth_active) { 1843 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1844 } 1845 return true; 1846 } 1847 1848 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1849 { 1850 if (s->pauth_active) { 1851 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1852 } 1853 return true; 1854 } 1855 1856 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1857 { 1858 if (s->pauth_active) { 1859 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1860 } 1861 return true; 1862 } 1863 1864 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1865 { 1866 if (s->pauth_active) { 1867 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1868 } 1869 return true; 1870 } 1871 1872 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1873 { 1874 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1875 return true; 1876 } 1877 1878 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1879 { 1880 /* We handle DSB and DMB the same way */ 1881 TCGBar bar; 1882 1883 switch (a->types) { 1884 case 1: /* MBReqTypes_Reads */ 1885 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1886 break; 1887 case 2: /* MBReqTypes_Writes */ 1888 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1889 break; 1890 default: /* MBReqTypes_All */ 1891 bar = TCG_BAR_SC | TCG_MO_ALL; 1892 break; 1893 } 1894 tcg_gen_mb(bar); 1895 return true; 1896 } 1897 1898 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1899 { 1900 /* 1901 * We need to break the TB after this insn to execute 1902 * self-modifying code correctly and also to take 1903 * any pending interrupts immediately. 1904 */ 1905 reset_btype(s); 1906 gen_goto_tb(s, 0, 4); 1907 return true; 1908 } 1909 1910 static bool trans_SB(DisasContext *s, arg_SB *a) 1911 { 1912 if (!dc_isar_feature(aa64_sb, s)) { 1913 return false; 1914 } 1915 /* 1916 * TODO: There is no speculation barrier opcode for TCG; 1917 * MB and end the TB instead. 1918 */ 1919 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1920 gen_goto_tb(s, 0, 4); 1921 return true; 1922 } 1923 1924 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1925 { 1926 if (!dc_isar_feature(aa64_condm_4, s)) { 1927 return false; 1928 } 1929 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1930 return true; 1931 } 1932 1933 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1934 { 1935 TCGv_i32 z; 1936 1937 if (!dc_isar_feature(aa64_condm_5, s)) { 1938 return false; 1939 } 1940 1941 z = tcg_temp_new_i32(); 1942 1943 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1944 1945 /* 1946 * (!C & !Z) << 31 1947 * (!(C | Z)) << 31 1948 * ~((C | Z) << 31) 1949 * ~-(C | Z) 1950 * (C | Z) - 1 1951 */ 1952 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1953 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1954 1955 /* !(Z & C) */ 1956 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1957 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1958 1959 /* (!C & Z) << 31 -> -(Z & ~C) */ 1960 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1961 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1962 1963 /* C | Z */ 1964 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1965 1966 return true; 1967 } 1968 1969 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1970 { 1971 if (!dc_isar_feature(aa64_condm_5, s)) { 1972 return false; 1973 } 1974 1975 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1976 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1977 1978 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1979 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1980 1981 tcg_gen_movi_i32(cpu_NF, 0); 1982 tcg_gen_movi_i32(cpu_VF, 0); 1983 1984 return true; 1985 } 1986 1987 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1988 { 1989 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1990 return false; 1991 } 1992 if (a->imm & 1) { 1993 set_pstate_bits(PSTATE_UAO); 1994 } else { 1995 clear_pstate_bits(PSTATE_UAO); 1996 } 1997 gen_rebuild_hflags(s); 1998 s->base.is_jmp = DISAS_TOO_MANY; 1999 return true; 2000 } 2001 2002 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 2003 { 2004 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 2005 return false; 2006 } 2007 if (a->imm & 1) { 2008 set_pstate_bits(PSTATE_PAN); 2009 } else { 2010 clear_pstate_bits(PSTATE_PAN); 2011 } 2012 gen_rebuild_hflags(s); 2013 s->base.is_jmp = DISAS_TOO_MANY; 2014 return true; 2015 } 2016 2017 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2018 { 2019 if (s->current_el == 0) { 2020 return false; 2021 } 2022 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2023 s->base.is_jmp = DISAS_TOO_MANY; 2024 return true; 2025 } 2026 2027 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2028 { 2029 if (!dc_isar_feature(aa64_ssbs, s)) { 2030 return false; 2031 } 2032 if (a->imm & 1) { 2033 set_pstate_bits(PSTATE_SSBS); 2034 } else { 2035 clear_pstate_bits(PSTATE_SSBS); 2036 } 2037 /* Don't need to rebuild hflags since SSBS is a nop */ 2038 s->base.is_jmp = DISAS_TOO_MANY; 2039 return true; 2040 } 2041 2042 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2043 { 2044 if (!dc_isar_feature(aa64_dit, s)) { 2045 return false; 2046 } 2047 if (a->imm & 1) { 2048 set_pstate_bits(PSTATE_DIT); 2049 } else { 2050 clear_pstate_bits(PSTATE_DIT); 2051 } 2052 /* There's no need to rebuild hflags because DIT is a nop */ 2053 s->base.is_jmp = DISAS_TOO_MANY; 2054 return true; 2055 } 2056 2057 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2058 { 2059 if (dc_isar_feature(aa64_mte, s)) { 2060 /* Full MTE is enabled -- set the TCO bit as directed. */ 2061 if (a->imm & 1) { 2062 set_pstate_bits(PSTATE_TCO); 2063 } else { 2064 clear_pstate_bits(PSTATE_TCO); 2065 } 2066 gen_rebuild_hflags(s); 2067 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2068 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2069 return true; 2070 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2071 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2072 return true; 2073 } else { 2074 /* Insn not present */ 2075 return false; 2076 } 2077 } 2078 2079 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2080 { 2081 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2082 s->base.is_jmp = DISAS_TOO_MANY; 2083 return true; 2084 } 2085 2086 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2087 { 2088 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2089 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2090 s->base.is_jmp = DISAS_UPDATE_EXIT; 2091 return true; 2092 } 2093 2094 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2095 { 2096 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2097 return false; 2098 } 2099 2100 if (a->imm == 0) { 2101 clear_pstate_bits(PSTATE_ALLINT); 2102 } else if (s->current_el > 1) { 2103 set_pstate_bits(PSTATE_ALLINT); 2104 } else { 2105 gen_helper_msr_set_allint_el1(tcg_env); 2106 } 2107 2108 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2109 s->base.is_jmp = DISAS_UPDATE_EXIT; 2110 return true; 2111 } 2112 2113 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2114 { 2115 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2116 return false; 2117 } 2118 if (sme_access_check(s)) { 2119 int old = s->pstate_sm | (s->pstate_za << 1); 2120 int new = a->imm * 3; 2121 2122 if ((old ^ new) & a->mask) { 2123 /* At least one bit changes. */ 2124 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2125 tcg_constant_i32(a->mask)); 2126 s->base.is_jmp = DISAS_TOO_MANY; 2127 } 2128 } 2129 return true; 2130 } 2131 2132 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2133 { 2134 TCGv_i32 tmp = tcg_temp_new_i32(); 2135 TCGv_i32 nzcv = tcg_temp_new_i32(); 2136 2137 /* build bit 31, N */ 2138 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2139 /* build bit 30, Z */ 2140 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2141 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2142 /* build bit 29, C */ 2143 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2144 /* build bit 28, V */ 2145 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2146 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2147 /* generate result */ 2148 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2149 } 2150 2151 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2152 { 2153 TCGv_i32 nzcv = tcg_temp_new_i32(); 2154 2155 /* take NZCV from R[t] */ 2156 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2157 2158 /* bit 31, N */ 2159 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2160 /* bit 30, Z */ 2161 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2162 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2163 /* bit 29, C */ 2164 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2165 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2166 /* bit 28, V */ 2167 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2168 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2169 } 2170 2171 static void gen_sysreg_undef(DisasContext *s, bool isread, 2172 uint8_t op0, uint8_t op1, uint8_t op2, 2173 uint8_t crn, uint8_t crm, uint8_t rt) 2174 { 2175 /* 2176 * Generate code to emit an UNDEF with correct syndrome 2177 * information for a failed system register access. 2178 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2179 * but if FEAT_IDST is implemented then read accesses to registers 2180 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2181 * syndrome. 2182 */ 2183 uint32_t syndrome; 2184 2185 if (isread && dc_isar_feature(aa64_ids, s) && 2186 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2187 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2188 } else { 2189 syndrome = syn_uncategorized(); 2190 } 2191 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2192 } 2193 2194 /* MRS - move from system register 2195 * MSR (register) - move to system register 2196 * SYS 2197 * SYSL 2198 * These are all essentially the same insn in 'read' and 'write' 2199 * versions, with varying op0 fields. 2200 */ 2201 static void handle_sys(DisasContext *s, bool isread, 2202 unsigned int op0, unsigned int op1, unsigned int op2, 2203 unsigned int crn, unsigned int crm, unsigned int rt) 2204 { 2205 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2206 crn, crm, op0, op1, op2); 2207 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2208 bool need_exit_tb = false; 2209 bool nv_trap_to_el2 = false; 2210 bool nv_redirect_reg = false; 2211 bool skip_fp_access_checks = false; 2212 bool nv2_mem_redirect = false; 2213 TCGv_ptr tcg_ri = NULL; 2214 TCGv_i64 tcg_rt; 2215 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2216 2217 if (crn == 11 || crn == 15) { 2218 /* 2219 * Check for TIDCP trap, which must take precedence over 2220 * the UNDEF for "no such register" etc. 2221 */ 2222 switch (s->current_el) { 2223 case 0: 2224 if (dc_isar_feature(aa64_tidcp1, s)) { 2225 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2226 } 2227 break; 2228 case 1: 2229 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2230 break; 2231 } 2232 } 2233 2234 if (!ri) { 2235 /* Unknown register; this might be a guest error or a QEMU 2236 * unimplemented feature. 2237 */ 2238 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2239 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2240 isread ? "read" : "write", op0, op1, crn, crm, op2); 2241 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2242 return; 2243 } 2244 2245 if (s->nv2 && ri->nv2_redirect_offset) { 2246 /* 2247 * Some registers always redirect to memory; some only do so if 2248 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2249 * pairs which share an offset; see the table in R_CSRPQ). 2250 */ 2251 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2252 nv2_mem_redirect = s->nv1; 2253 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2254 nv2_mem_redirect = !s->nv1; 2255 } else { 2256 nv2_mem_redirect = true; 2257 } 2258 } 2259 2260 /* Check access permissions */ 2261 if (!cp_access_ok(s->current_el, ri, isread)) { 2262 /* 2263 * FEAT_NV/NV2 handling does not do the usual FP access checks 2264 * for registers only accessible at EL2 (though it *does* do them 2265 * for registers accessible at EL1). 2266 */ 2267 skip_fp_access_checks = true; 2268 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2269 /* 2270 * This is one of the few EL2 registers which should redirect 2271 * to the equivalent EL1 register. We do that after running 2272 * the EL2 register's accessfn. 2273 */ 2274 nv_redirect_reg = true; 2275 assert(!nv2_mem_redirect); 2276 } else if (nv2_mem_redirect) { 2277 /* 2278 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2279 * UNDEF to EL1. 2280 */ 2281 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2282 /* 2283 * This register / instruction exists and is an EL2 register, so 2284 * we must trap to EL2 if accessed in nested virtualization EL1 2285 * instead of UNDEFing. We'll do that after the usual access checks. 2286 * (This makes a difference only for a couple of registers like 2287 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2288 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2289 * an accessfn which does nothing when called from EL1, because 2290 * the trap-to-EL3 controls which would apply to that register 2291 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2292 */ 2293 nv_trap_to_el2 = true; 2294 } else { 2295 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2296 return; 2297 } 2298 } 2299 2300 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2301 /* Emit code to perform further access permissions checks at 2302 * runtime; this may result in an exception. 2303 */ 2304 gen_a64_update_pc(s, 0); 2305 tcg_ri = tcg_temp_new_ptr(); 2306 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2307 tcg_constant_i32(key), 2308 tcg_constant_i32(syndrome), 2309 tcg_constant_i32(isread)); 2310 } else if (ri->type & ARM_CP_RAISES_EXC) { 2311 /* 2312 * The readfn or writefn might raise an exception; 2313 * synchronize the CPU state in case it does. 2314 */ 2315 gen_a64_update_pc(s, 0); 2316 } 2317 2318 if (!skip_fp_access_checks) { 2319 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2320 return; 2321 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2322 return; 2323 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2324 return; 2325 } 2326 } 2327 2328 if (nv_trap_to_el2) { 2329 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2330 return; 2331 } 2332 2333 if (nv_redirect_reg) { 2334 /* 2335 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2336 * Conveniently in all cases the encoding of the EL1 register is 2337 * identical to the EL2 register except that opc1 is 0. 2338 * Get the reginfo for the EL1 register to use for the actual access. 2339 * We don't use the EL1 register's access function, and 2340 * fine-grained-traps on EL1 also do not apply here. 2341 */ 2342 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2343 crn, crm, op0, 0, op2); 2344 ri = get_arm_cp_reginfo(s->cp_regs, key); 2345 assert(ri); 2346 assert(cp_access_ok(s->current_el, ri, isread)); 2347 /* 2348 * We might not have done an update_pc earlier, so check we don't 2349 * need it. We could support this in future if necessary. 2350 */ 2351 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2352 } 2353 2354 if (nv2_mem_redirect) { 2355 /* 2356 * This system register is being redirected into an EL2 memory access. 2357 * This means it is not an IO operation, doesn't change hflags, 2358 * and need not end the TB, because it has no side effects. 2359 * 2360 * The access is 64-bit single copy atomic, guaranteed aligned because 2361 * of the definition of VCNR_EL2. Its endianness depends on 2362 * SCTLR_EL2.EE, not on the data endianness of EL1. 2363 * It is done under either the EL2 translation regime or the EL2&0 2364 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2365 * PSTATE.PAN is 0. 2366 */ 2367 TCGv_i64 ptr = tcg_temp_new_i64(); 2368 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2369 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2370 int memidx = arm_to_core_mmu_idx(armmemidx); 2371 uint32_t syn; 2372 2373 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2374 2375 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2376 tcg_gen_addi_i64(ptr, ptr, 2377 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2378 tcg_rt = cpu_reg(s, rt); 2379 2380 syn = syn_data_abort_vncr(0, !isread, 0); 2381 disas_set_insn_syndrome(s, syn); 2382 if (isread) { 2383 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2384 } else { 2385 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2386 } 2387 return; 2388 } 2389 2390 /* Handle special cases first */ 2391 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2392 case 0: 2393 break; 2394 case ARM_CP_NOP: 2395 return; 2396 case ARM_CP_NZCV: 2397 tcg_rt = cpu_reg(s, rt); 2398 if (isread) { 2399 gen_get_nzcv(tcg_rt); 2400 } else { 2401 gen_set_nzcv(tcg_rt); 2402 } 2403 return; 2404 case ARM_CP_CURRENTEL: 2405 { 2406 /* 2407 * Reads as current EL value from pstate, which is 2408 * guaranteed to be constant by the tb flags. 2409 * For nested virt we should report EL2. 2410 */ 2411 int el = s->nv ? 2 : s->current_el; 2412 tcg_rt = cpu_reg(s, rt); 2413 tcg_gen_movi_i64(tcg_rt, el << 2); 2414 return; 2415 } 2416 case ARM_CP_DC_ZVA: 2417 /* Writes clear the aligned block of memory which rt points into. */ 2418 if (s->mte_active[0]) { 2419 int desc = 0; 2420 2421 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2422 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2423 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2424 2425 tcg_rt = tcg_temp_new_i64(); 2426 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2427 tcg_constant_i32(desc), cpu_reg(s, rt)); 2428 } else { 2429 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2430 } 2431 gen_helper_dc_zva(tcg_env, tcg_rt); 2432 return; 2433 case ARM_CP_DC_GVA: 2434 { 2435 TCGv_i64 clean_addr, tag; 2436 2437 /* 2438 * DC_GVA, like DC_ZVA, requires that we supply the original 2439 * pointer for an invalid page. Probe that address first. 2440 */ 2441 tcg_rt = cpu_reg(s, rt); 2442 clean_addr = clean_data_tbi(s, tcg_rt); 2443 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2444 2445 if (s->ata[0]) { 2446 /* Extract the tag from the register to match STZGM. */ 2447 tag = tcg_temp_new_i64(); 2448 tcg_gen_shri_i64(tag, tcg_rt, 56); 2449 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2450 } 2451 } 2452 return; 2453 case ARM_CP_DC_GZVA: 2454 { 2455 TCGv_i64 clean_addr, tag; 2456 2457 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2458 tcg_rt = cpu_reg(s, rt); 2459 clean_addr = clean_data_tbi(s, tcg_rt); 2460 gen_helper_dc_zva(tcg_env, clean_addr); 2461 2462 if (s->ata[0]) { 2463 /* Extract the tag from the register to match STZGM. */ 2464 tag = tcg_temp_new_i64(); 2465 tcg_gen_shri_i64(tag, tcg_rt, 56); 2466 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2467 } 2468 } 2469 return; 2470 default: 2471 g_assert_not_reached(); 2472 } 2473 2474 if (ri->type & ARM_CP_IO) { 2475 /* I/O operations must end the TB here (whether read or write) */ 2476 need_exit_tb = translator_io_start(&s->base); 2477 } 2478 2479 tcg_rt = cpu_reg(s, rt); 2480 2481 if (isread) { 2482 if (ri->type & ARM_CP_CONST) { 2483 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2484 } else if (ri->readfn) { 2485 if (!tcg_ri) { 2486 tcg_ri = gen_lookup_cp_reg(key); 2487 } 2488 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2489 } else { 2490 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2491 } 2492 } else { 2493 if (ri->type & ARM_CP_CONST) { 2494 /* If not forbidden by access permissions, treat as WI */ 2495 return; 2496 } else if (ri->writefn) { 2497 if (!tcg_ri) { 2498 tcg_ri = gen_lookup_cp_reg(key); 2499 } 2500 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2501 } else { 2502 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2503 } 2504 } 2505 2506 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2507 /* 2508 * A write to any coprocessor register that ends a TB 2509 * must rebuild the hflags for the next TB. 2510 */ 2511 gen_rebuild_hflags(s); 2512 /* 2513 * We default to ending the TB on a coprocessor register write, 2514 * but allow this to be suppressed by the register definition 2515 * (usually only necessary to work around guest bugs). 2516 */ 2517 need_exit_tb = true; 2518 } 2519 if (need_exit_tb) { 2520 s->base.is_jmp = DISAS_UPDATE_EXIT; 2521 } 2522 } 2523 2524 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2525 { 2526 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2527 return true; 2528 } 2529 2530 static bool trans_SVC(DisasContext *s, arg_i *a) 2531 { 2532 /* 2533 * For SVC, HVC and SMC we advance the single-step state 2534 * machine before taking the exception. This is architecturally 2535 * mandated, to ensure that single-stepping a system call 2536 * instruction works properly. 2537 */ 2538 uint32_t syndrome = syn_aa64_svc(a->imm); 2539 if (s->fgt_svc) { 2540 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2541 return true; 2542 } 2543 gen_ss_advance(s); 2544 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2545 return true; 2546 } 2547 2548 static bool trans_HVC(DisasContext *s, arg_i *a) 2549 { 2550 int target_el = s->current_el == 3 ? 3 : 2; 2551 2552 if (s->current_el == 0) { 2553 unallocated_encoding(s); 2554 return true; 2555 } 2556 /* 2557 * The pre HVC helper handles cases when HVC gets trapped 2558 * as an undefined insn by runtime configuration. 2559 */ 2560 gen_a64_update_pc(s, 0); 2561 gen_helper_pre_hvc(tcg_env); 2562 /* Architecture requires ss advance before we do the actual work */ 2563 gen_ss_advance(s); 2564 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2565 return true; 2566 } 2567 2568 static bool trans_SMC(DisasContext *s, arg_i *a) 2569 { 2570 if (s->current_el == 0) { 2571 unallocated_encoding(s); 2572 return true; 2573 } 2574 gen_a64_update_pc(s, 0); 2575 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2576 /* Architecture requires ss advance before we do the actual work */ 2577 gen_ss_advance(s); 2578 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2579 return true; 2580 } 2581 2582 static bool trans_BRK(DisasContext *s, arg_i *a) 2583 { 2584 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2585 return true; 2586 } 2587 2588 static bool trans_HLT(DisasContext *s, arg_i *a) 2589 { 2590 /* 2591 * HLT. This has two purposes. 2592 * Architecturally, it is an external halting debug instruction. 2593 * Since QEMU doesn't implement external debug, we treat this as 2594 * it is required for halting debug disabled: it will UNDEF. 2595 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2596 */ 2597 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2598 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2599 } else { 2600 unallocated_encoding(s); 2601 } 2602 return true; 2603 } 2604 2605 /* 2606 * Load/Store exclusive instructions are implemented by remembering 2607 * the value/address loaded, and seeing if these are the same 2608 * when the store is performed. This is not actually the architecturally 2609 * mandated semantics, but it works for typical guest code sequences 2610 * and avoids having to monitor regular stores. 2611 * 2612 * The store exclusive uses the atomic cmpxchg primitives to avoid 2613 * races in multi-threaded linux-user and when MTTCG softmmu is 2614 * enabled. 2615 */ 2616 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2617 int size, bool is_pair) 2618 { 2619 int idx = get_mem_index(s); 2620 TCGv_i64 dirty_addr, clean_addr; 2621 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2622 2623 s->is_ldex = true; 2624 dirty_addr = cpu_reg_sp(s, rn); 2625 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2626 2627 g_assert(size <= 3); 2628 if (is_pair) { 2629 g_assert(size >= 2); 2630 if (size == 2) { 2631 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2632 if (s->be_data == MO_LE) { 2633 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2634 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2635 } else { 2636 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2637 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2638 } 2639 } else { 2640 TCGv_i128 t16 = tcg_temp_new_i128(); 2641 2642 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2643 2644 if (s->be_data == MO_LE) { 2645 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2646 cpu_exclusive_high, t16); 2647 } else { 2648 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2649 cpu_exclusive_val, t16); 2650 } 2651 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2652 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2653 } 2654 } else { 2655 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2656 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2657 } 2658 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2659 } 2660 2661 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2662 int rn, int size, int is_pair) 2663 { 2664 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2665 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2666 * [addr] = {Rt}; 2667 * if (is_pair) { 2668 * [addr + datasize] = {Rt2}; 2669 * } 2670 * {Rd} = 0; 2671 * } else { 2672 * {Rd} = 1; 2673 * } 2674 * env->exclusive_addr = -1; 2675 */ 2676 TCGLabel *fail_label = gen_new_label(); 2677 TCGLabel *done_label = gen_new_label(); 2678 TCGv_i64 tmp, clean_addr; 2679 MemOp memop; 2680 2681 /* 2682 * FIXME: We are out of spec here. We have recorded only the address 2683 * from load_exclusive, not the entire range, and we assume that the 2684 * size of the access on both sides match. The architecture allows the 2685 * store to be smaller than the load, so long as the stored bytes are 2686 * within the range recorded by the load. 2687 */ 2688 2689 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2690 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2691 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2692 2693 /* 2694 * The write, and any associated faults, only happen if the virtual 2695 * and physical addresses pass the exclusive monitor check. These 2696 * faults are exceedingly unlikely, because normally the guest uses 2697 * the exact same address register for the load_exclusive, and we 2698 * would have recognized these faults there. 2699 * 2700 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2701 * unaligned 4-byte write within the range of an aligned 8-byte load. 2702 * With LSE2, the store would need to cross a 16-byte boundary when the 2703 * load did not, which would mean the store is outside the range 2704 * recorded for the monitor, which would have failed a corrected monitor 2705 * check above. For now, we assume no size change and retain the 2706 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2707 * 2708 * It is possible to trigger an MTE fault, by performing the load with 2709 * a virtual address with a valid tag and performing the store with the 2710 * same virtual address and a different invalid tag. 2711 */ 2712 memop = size + is_pair; 2713 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2714 memop |= MO_ALIGN; 2715 } 2716 memop = finalize_memop(s, memop); 2717 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2718 2719 tmp = tcg_temp_new_i64(); 2720 if (is_pair) { 2721 if (size == 2) { 2722 if (s->be_data == MO_LE) { 2723 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2724 } else { 2725 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2726 } 2727 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2728 cpu_exclusive_val, tmp, 2729 get_mem_index(s), memop); 2730 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2731 } else { 2732 TCGv_i128 t16 = tcg_temp_new_i128(); 2733 TCGv_i128 c16 = tcg_temp_new_i128(); 2734 TCGv_i64 a, b; 2735 2736 if (s->be_data == MO_LE) { 2737 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2738 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2739 cpu_exclusive_high); 2740 } else { 2741 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2742 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2743 cpu_exclusive_val); 2744 } 2745 2746 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2747 get_mem_index(s), memop); 2748 2749 a = tcg_temp_new_i64(); 2750 b = tcg_temp_new_i64(); 2751 if (s->be_data == MO_LE) { 2752 tcg_gen_extr_i128_i64(a, b, t16); 2753 } else { 2754 tcg_gen_extr_i128_i64(b, a, t16); 2755 } 2756 2757 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2758 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2759 tcg_gen_or_i64(tmp, a, b); 2760 2761 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2762 } 2763 } else { 2764 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2765 cpu_reg(s, rt), get_mem_index(s), memop); 2766 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2767 } 2768 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2769 tcg_gen_br(done_label); 2770 2771 gen_set_label(fail_label); 2772 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2773 gen_set_label(done_label); 2774 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2775 } 2776 2777 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2778 int rn, int size) 2779 { 2780 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2781 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2782 int memidx = get_mem_index(s); 2783 TCGv_i64 clean_addr; 2784 MemOp memop; 2785 2786 if (rn == 31) { 2787 gen_check_sp_alignment(s); 2788 } 2789 memop = check_atomic_align(s, rn, size); 2790 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2791 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2792 memidx, memop); 2793 } 2794 2795 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2796 int rn, int size) 2797 { 2798 TCGv_i64 s1 = cpu_reg(s, rs); 2799 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2800 TCGv_i64 t1 = cpu_reg(s, rt); 2801 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2802 TCGv_i64 clean_addr; 2803 int memidx = get_mem_index(s); 2804 MemOp memop; 2805 2806 if (rn == 31) { 2807 gen_check_sp_alignment(s); 2808 } 2809 2810 /* This is a single atomic access, despite the "pair". */ 2811 memop = check_atomic_align(s, rn, size + 1); 2812 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2813 2814 if (size == 2) { 2815 TCGv_i64 cmp = tcg_temp_new_i64(); 2816 TCGv_i64 val = tcg_temp_new_i64(); 2817 2818 if (s->be_data == MO_LE) { 2819 tcg_gen_concat32_i64(val, t1, t2); 2820 tcg_gen_concat32_i64(cmp, s1, s2); 2821 } else { 2822 tcg_gen_concat32_i64(val, t2, t1); 2823 tcg_gen_concat32_i64(cmp, s2, s1); 2824 } 2825 2826 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2827 2828 if (s->be_data == MO_LE) { 2829 tcg_gen_extr32_i64(s1, s2, cmp); 2830 } else { 2831 tcg_gen_extr32_i64(s2, s1, cmp); 2832 } 2833 } else { 2834 TCGv_i128 cmp = tcg_temp_new_i128(); 2835 TCGv_i128 val = tcg_temp_new_i128(); 2836 2837 if (s->be_data == MO_LE) { 2838 tcg_gen_concat_i64_i128(val, t1, t2); 2839 tcg_gen_concat_i64_i128(cmp, s1, s2); 2840 } else { 2841 tcg_gen_concat_i64_i128(val, t2, t1); 2842 tcg_gen_concat_i64_i128(cmp, s2, s1); 2843 } 2844 2845 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2846 2847 if (s->be_data == MO_LE) { 2848 tcg_gen_extr_i128_i64(s1, s2, cmp); 2849 } else { 2850 tcg_gen_extr_i128_i64(s2, s1, cmp); 2851 } 2852 } 2853 } 2854 2855 /* 2856 * Compute the ISS.SF bit for syndrome information if an exception 2857 * is taken on a load or store. This indicates whether the instruction 2858 * is accessing a 32-bit or 64-bit register. This logic is derived 2859 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2860 */ 2861 static bool ldst_iss_sf(int size, bool sign, bool ext) 2862 { 2863 2864 if (sign) { 2865 /* 2866 * Signed loads are 64 bit results if we are not going to 2867 * do a zero-extend from 32 to 64 after the load. 2868 * (For a store, sign and ext are always false.) 2869 */ 2870 return !ext; 2871 } else { 2872 /* Unsigned loads/stores work at the specified size */ 2873 return size == MO_64; 2874 } 2875 } 2876 2877 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2878 { 2879 if (a->rn == 31) { 2880 gen_check_sp_alignment(s); 2881 } 2882 if (a->lasr) { 2883 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2884 } 2885 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2886 return true; 2887 } 2888 2889 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2890 { 2891 if (a->rn == 31) { 2892 gen_check_sp_alignment(s); 2893 } 2894 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2895 if (a->lasr) { 2896 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2897 } 2898 return true; 2899 } 2900 2901 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2902 { 2903 TCGv_i64 clean_addr; 2904 MemOp memop; 2905 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2906 2907 /* 2908 * StoreLORelease is the same as Store-Release for QEMU, but 2909 * needs the feature-test. 2910 */ 2911 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2912 return false; 2913 } 2914 /* Generate ISS for non-exclusive accesses including LASR. */ 2915 if (a->rn == 31) { 2916 gen_check_sp_alignment(s); 2917 } 2918 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2919 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2920 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2921 true, a->rn != 31, memop); 2922 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2923 iss_sf, a->lasr); 2924 return true; 2925 } 2926 2927 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2928 { 2929 TCGv_i64 clean_addr; 2930 MemOp memop; 2931 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2932 2933 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2934 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2935 return false; 2936 } 2937 /* Generate ISS for non-exclusive accesses including LASR. */ 2938 if (a->rn == 31) { 2939 gen_check_sp_alignment(s); 2940 } 2941 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2942 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2943 false, a->rn != 31, memop); 2944 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2945 a->rt, iss_sf, a->lasr); 2946 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2947 return true; 2948 } 2949 2950 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2951 { 2952 if (a->rn == 31) { 2953 gen_check_sp_alignment(s); 2954 } 2955 if (a->lasr) { 2956 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2957 } 2958 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2959 return true; 2960 } 2961 2962 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2963 { 2964 if (a->rn == 31) { 2965 gen_check_sp_alignment(s); 2966 } 2967 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2968 if (a->lasr) { 2969 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2970 } 2971 return true; 2972 } 2973 2974 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2975 { 2976 if (!dc_isar_feature(aa64_atomics, s)) { 2977 return false; 2978 } 2979 if (((a->rt | a->rs) & 1) != 0) { 2980 return false; 2981 } 2982 2983 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2984 return true; 2985 } 2986 2987 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2988 { 2989 if (!dc_isar_feature(aa64_atomics, s)) { 2990 return false; 2991 } 2992 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2993 return true; 2994 } 2995 2996 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2997 { 2998 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2999 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 3000 TCGv_i64 clean_addr = tcg_temp_new_i64(); 3001 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3002 3003 gen_pc_plus_diff(s, clean_addr, a->imm); 3004 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3005 false, true, a->rt, iss_sf, false); 3006 return true; 3007 } 3008 3009 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3010 { 3011 /* Load register (literal), vector version */ 3012 TCGv_i64 clean_addr; 3013 MemOp memop; 3014 3015 if (!fp_access_check(s)) { 3016 return true; 3017 } 3018 memop = finalize_memop_asimd(s, a->sz); 3019 clean_addr = tcg_temp_new_i64(); 3020 gen_pc_plus_diff(s, clean_addr, a->imm); 3021 do_fp_ld(s, a->rt, clean_addr, memop); 3022 return true; 3023 } 3024 3025 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3026 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3027 uint64_t offset, bool is_store, MemOp mop) 3028 { 3029 if (a->rn == 31) { 3030 gen_check_sp_alignment(s); 3031 } 3032 3033 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3034 if (!a->p) { 3035 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3036 } 3037 3038 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3039 (a->w || a->rn != 31), 2 << a->sz, mop); 3040 } 3041 3042 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3043 TCGv_i64 dirty_addr, uint64_t offset) 3044 { 3045 if (a->w) { 3046 if (a->p) { 3047 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3048 } 3049 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3050 } 3051 } 3052 3053 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3054 { 3055 uint64_t offset = a->imm << a->sz; 3056 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3057 MemOp mop = finalize_memop(s, a->sz); 3058 3059 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3060 tcg_rt = cpu_reg(s, a->rt); 3061 tcg_rt2 = cpu_reg(s, a->rt2); 3062 /* 3063 * We built mop above for the single logical access -- rebuild it 3064 * now for the paired operation. 3065 * 3066 * With LSE2, non-sign-extending pairs are treated atomically if 3067 * aligned, and if unaligned one of the pair will be completely 3068 * within a 16-byte block and that element will be atomic. 3069 * Otherwise each element is separately atomic. 3070 * In all cases, issue one operation with the correct atomicity. 3071 */ 3072 mop = a->sz + 1; 3073 if (s->align_mem) { 3074 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3075 } 3076 mop = finalize_memop_pair(s, mop); 3077 if (a->sz == 2) { 3078 TCGv_i64 tmp = tcg_temp_new_i64(); 3079 3080 if (s->be_data == MO_LE) { 3081 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3082 } else { 3083 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3084 } 3085 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3086 } else { 3087 TCGv_i128 tmp = tcg_temp_new_i128(); 3088 3089 if (s->be_data == MO_LE) { 3090 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3091 } else { 3092 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3093 } 3094 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3095 } 3096 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3097 return true; 3098 } 3099 3100 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3101 { 3102 uint64_t offset = a->imm << a->sz; 3103 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3104 MemOp mop = finalize_memop(s, a->sz); 3105 3106 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3107 tcg_rt = cpu_reg(s, a->rt); 3108 tcg_rt2 = cpu_reg(s, a->rt2); 3109 3110 /* 3111 * We built mop above for the single logical access -- rebuild it 3112 * now for the paired operation. 3113 * 3114 * With LSE2, non-sign-extending pairs are treated atomically if 3115 * aligned, and if unaligned one of the pair will be completely 3116 * within a 16-byte block and that element will be atomic. 3117 * Otherwise each element is separately atomic. 3118 * In all cases, issue one operation with the correct atomicity. 3119 * 3120 * This treats sign-extending loads like zero-extending loads, 3121 * since that reuses the most code below. 3122 */ 3123 mop = a->sz + 1; 3124 if (s->align_mem) { 3125 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3126 } 3127 mop = finalize_memop_pair(s, mop); 3128 if (a->sz == 2) { 3129 int o2 = s->be_data == MO_LE ? 32 : 0; 3130 int o1 = o2 ^ 32; 3131 3132 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3133 if (a->sign) { 3134 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3135 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3136 } else { 3137 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3138 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3139 } 3140 } else { 3141 TCGv_i128 tmp = tcg_temp_new_i128(); 3142 3143 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3144 if (s->be_data == MO_LE) { 3145 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3146 } else { 3147 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3148 } 3149 } 3150 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3151 return true; 3152 } 3153 3154 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3155 { 3156 uint64_t offset = a->imm << a->sz; 3157 TCGv_i64 clean_addr, dirty_addr; 3158 MemOp mop; 3159 3160 if (!fp_access_check(s)) { 3161 return true; 3162 } 3163 3164 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3165 mop = finalize_memop_asimd(s, a->sz); 3166 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3167 do_fp_st(s, a->rt, clean_addr, mop); 3168 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3169 do_fp_st(s, a->rt2, clean_addr, mop); 3170 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3171 return true; 3172 } 3173 3174 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3175 { 3176 uint64_t offset = a->imm << a->sz; 3177 TCGv_i64 clean_addr, dirty_addr; 3178 MemOp mop; 3179 3180 if (!fp_access_check(s)) { 3181 return true; 3182 } 3183 3184 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3185 mop = finalize_memop_asimd(s, a->sz); 3186 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3187 do_fp_ld(s, a->rt, clean_addr, mop); 3188 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3189 do_fp_ld(s, a->rt2, clean_addr, mop); 3190 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3191 return true; 3192 } 3193 3194 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3195 { 3196 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3197 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3198 MemOp mop; 3199 TCGv_i128 tmp; 3200 3201 /* STGP only comes in one size. */ 3202 tcg_debug_assert(a->sz == MO_64); 3203 3204 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3205 return false; 3206 } 3207 3208 if (a->rn == 31) { 3209 gen_check_sp_alignment(s); 3210 } 3211 3212 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3213 if (!a->p) { 3214 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3215 } 3216 3217 clean_addr = clean_data_tbi(s, dirty_addr); 3218 tcg_rt = cpu_reg(s, a->rt); 3219 tcg_rt2 = cpu_reg(s, a->rt2); 3220 3221 /* 3222 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3223 * and one tag operation. We implement it as one single aligned 16-byte 3224 * memory operation for convenience. Note that the alignment ensures 3225 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3226 */ 3227 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3228 3229 tmp = tcg_temp_new_i128(); 3230 if (s->be_data == MO_LE) { 3231 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3232 } else { 3233 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3234 } 3235 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3236 3237 /* Perform the tag store, if tag access enabled. */ 3238 if (s->ata[0]) { 3239 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3240 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3241 } else { 3242 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3243 } 3244 } 3245 3246 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3247 return true; 3248 } 3249 3250 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3251 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3252 uint64_t offset, bool is_store, MemOp mop) 3253 { 3254 int memidx; 3255 3256 if (a->rn == 31) { 3257 gen_check_sp_alignment(s); 3258 } 3259 3260 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3261 if (!a->p) { 3262 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3263 } 3264 memidx = get_a64_user_mem_index(s, a->unpriv); 3265 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3266 a->w || a->rn != 31, 3267 mop, a->unpriv, memidx); 3268 } 3269 3270 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3271 TCGv_i64 dirty_addr, uint64_t offset) 3272 { 3273 if (a->w) { 3274 if (a->p) { 3275 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3276 } 3277 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3278 } 3279 } 3280 3281 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3282 { 3283 bool iss_sf, iss_valid = !a->w; 3284 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3285 int memidx = get_a64_user_mem_index(s, a->unpriv); 3286 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3287 3288 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3289 3290 tcg_rt = cpu_reg(s, a->rt); 3291 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3292 3293 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3294 iss_valid, a->rt, iss_sf, false); 3295 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3296 return true; 3297 } 3298 3299 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3300 { 3301 bool iss_sf, iss_valid = !a->w; 3302 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3303 int memidx = get_a64_user_mem_index(s, a->unpriv); 3304 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3305 3306 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3307 3308 tcg_rt = cpu_reg(s, a->rt); 3309 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3310 3311 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3312 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3313 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3314 return true; 3315 } 3316 3317 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3318 { 3319 TCGv_i64 clean_addr, dirty_addr; 3320 MemOp mop; 3321 3322 if (!fp_access_check(s)) { 3323 return true; 3324 } 3325 mop = finalize_memop_asimd(s, a->sz); 3326 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3327 do_fp_st(s, a->rt, clean_addr, mop); 3328 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3329 return true; 3330 } 3331 3332 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3333 { 3334 TCGv_i64 clean_addr, dirty_addr; 3335 MemOp mop; 3336 3337 if (!fp_access_check(s)) { 3338 return true; 3339 } 3340 mop = finalize_memop_asimd(s, a->sz); 3341 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3342 do_fp_ld(s, a->rt, clean_addr, mop); 3343 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3344 return true; 3345 } 3346 3347 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3348 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3349 bool is_store, MemOp memop) 3350 { 3351 TCGv_i64 tcg_rm; 3352 3353 if (a->rn == 31) { 3354 gen_check_sp_alignment(s); 3355 } 3356 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3357 3358 tcg_rm = read_cpu_reg(s, a->rm, 1); 3359 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3360 3361 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3362 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3363 } 3364 3365 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3366 { 3367 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3368 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3369 MemOp memop; 3370 3371 if (extract32(a->opt, 1, 1) == 0) { 3372 return false; 3373 } 3374 3375 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3376 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3377 tcg_rt = cpu_reg(s, a->rt); 3378 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3379 a->ext, true, a->rt, iss_sf, false); 3380 return true; 3381 } 3382 3383 static bool trans_STR(DisasContext *s, arg_ldst *a) 3384 { 3385 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3386 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3387 MemOp memop; 3388 3389 if (extract32(a->opt, 1, 1) == 0) { 3390 return false; 3391 } 3392 3393 memop = finalize_memop(s, a->sz); 3394 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3395 tcg_rt = cpu_reg(s, a->rt); 3396 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3397 return true; 3398 } 3399 3400 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3401 { 3402 TCGv_i64 clean_addr, dirty_addr; 3403 MemOp memop; 3404 3405 if (extract32(a->opt, 1, 1) == 0) { 3406 return false; 3407 } 3408 3409 if (!fp_access_check(s)) { 3410 return true; 3411 } 3412 3413 memop = finalize_memop_asimd(s, a->sz); 3414 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3415 do_fp_ld(s, a->rt, clean_addr, memop); 3416 return true; 3417 } 3418 3419 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3420 { 3421 TCGv_i64 clean_addr, dirty_addr; 3422 MemOp memop; 3423 3424 if (extract32(a->opt, 1, 1) == 0) { 3425 return false; 3426 } 3427 3428 if (!fp_access_check(s)) { 3429 return true; 3430 } 3431 3432 memop = finalize_memop_asimd(s, a->sz); 3433 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3434 do_fp_st(s, a->rt, clean_addr, memop); 3435 return true; 3436 } 3437 3438 3439 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3440 int sign, bool invert) 3441 { 3442 MemOp mop = a->sz | sign; 3443 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3444 3445 if (a->rn == 31) { 3446 gen_check_sp_alignment(s); 3447 } 3448 mop = check_atomic_align(s, a->rn, mop); 3449 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3450 a->rn != 31, mop); 3451 tcg_rs = read_cpu_reg(s, a->rs, true); 3452 tcg_rt = cpu_reg(s, a->rt); 3453 if (invert) { 3454 tcg_gen_not_i64(tcg_rs, tcg_rs); 3455 } 3456 /* 3457 * The tcg atomic primitives are all full barriers. Therefore we 3458 * can ignore the Acquire and Release bits of this instruction. 3459 */ 3460 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3461 3462 if (mop & MO_SIGN) { 3463 switch (a->sz) { 3464 case MO_8: 3465 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_16: 3468 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3469 break; 3470 case MO_32: 3471 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3472 break; 3473 case MO_64: 3474 break; 3475 default: 3476 g_assert_not_reached(); 3477 } 3478 } 3479 return true; 3480 } 3481 3482 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3483 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3484 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3485 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3486 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3487 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3488 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3489 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3490 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3491 3492 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3493 { 3494 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3495 TCGv_i64 clean_addr; 3496 MemOp mop; 3497 3498 if (!dc_isar_feature(aa64_atomics, s) || 3499 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3500 return false; 3501 } 3502 if (a->rn == 31) { 3503 gen_check_sp_alignment(s); 3504 } 3505 mop = check_atomic_align(s, a->rn, a->sz); 3506 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3507 a->rn != 31, mop); 3508 /* 3509 * LDAPR* are a special case because they are a simple load, not a 3510 * fetch-and-do-something op. 3511 * The architectural consistency requirements here are weaker than 3512 * full load-acquire (we only need "load-acquire processor consistent"), 3513 * but we choose to implement them as full LDAQ. 3514 */ 3515 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3516 true, a->rt, iss_sf, true); 3517 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3518 return true; 3519 } 3520 3521 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3522 { 3523 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3524 MemOp memop; 3525 3526 /* Load with pointer authentication */ 3527 if (!dc_isar_feature(aa64_pauth, s)) { 3528 return false; 3529 } 3530 3531 if (a->rn == 31) { 3532 gen_check_sp_alignment(s); 3533 } 3534 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3535 3536 if (s->pauth_active) { 3537 if (!a->m) { 3538 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3539 tcg_constant_i64(0)); 3540 } else { 3541 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3542 tcg_constant_i64(0)); 3543 } 3544 } 3545 3546 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3547 3548 memop = finalize_memop(s, MO_64); 3549 3550 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3551 clean_addr = gen_mte_check1(s, dirty_addr, false, 3552 a->w || a->rn != 31, memop); 3553 3554 tcg_rt = cpu_reg(s, a->rt); 3555 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3556 /* extend */ false, /* iss_valid */ !a->w, 3557 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3558 3559 if (a->w) { 3560 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3561 } 3562 return true; 3563 } 3564 3565 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3566 { 3567 TCGv_i64 clean_addr, dirty_addr; 3568 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3569 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3570 3571 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3572 return false; 3573 } 3574 3575 if (a->rn == 31) { 3576 gen_check_sp_alignment(s); 3577 } 3578 3579 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3580 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3581 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3582 clean_addr = clean_data_tbi(s, dirty_addr); 3583 3584 /* 3585 * Load-AcquirePC semantics; we implement as the slightly more 3586 * restrictive Load-Acquire. 3587 */ 3588 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3589 a->rt, iss_sf, true); 3590 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3591 return true; 3592 } 3593 3594 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3595 { 3596 TCGv_i64 clean_addr, dirty_addr; 3597 MemOp mop = a->sz; 3598 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3599 3600 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3601 return false; 3602 } 3603 3604 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3605 3606 if (a->rn == 31) { 3607 gen_check_sp_alignment(s); 3608 } 3609 3610 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3611 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3612 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3613 clean_addr = clean_data_tbi(s, dirty_addr); 3614 3615 /* Store-Release semantics */ 3616 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3617 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3618 return true; 3619 } 3620 3621 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3622 { 3623 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3624 MemOp endian, align, mop; 3625 3626 int total; /* total bytes */ 3627 int elements; /* elements per vector */ 3628 int r; 3629 int size = a->sz; 3630 3631 if (!a->p && a->rm != 0) { 3632 /* For non-postindexed accesses the Rm field must be 0 */ 3633 return false; 3634 } 3635 if (size == 3 && !a->q && a->selem != 1) { 3636 return false; 3637 } 3638 if (!fp_access_check(s)) { 3639 return true; 3640 } 3641 3642 if (a->rn == 31) { 3643 gen_check_sp_alignment(s); 3644 } 3645 3646 /* For our purposes, bytes are always little-endian. */ 3647 endian = s->be_data; 3648 if (size == 0) { 3649 endian = MO_LE; 3650 } 3651 3652 total = a->rpt * a->selem * (a->q ? 16 : 8); 3653 tcg_rn = cpu_reg_sp(s, a->rn); 3654 3655 /* 3656 * Issue the MTE check vs the logical repeat count, before we 3657 * promote consecutive little-endian elements below. 3658 */ 3659 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3660 finalize_memop_asimd(s, size)); 3661 3662 /* 3663 * Consecutive little-endian elements from a single register 3664 * can be promoted to a larger little-endian operation. 3665 */ 3666 align = MO_ALIGN; 3667 if (a->selem == 1 && endian == MO_LE) { 3668 align = pow2_align(size); 3669 size = 3; 3670 } 3671 if (!s->align_mem) { 3672 align = 0; 3673 } 3674 mop = endian | size | align; 3675 3676 elements = (a->q ? 16 : 8) >> size; 3677 tcg_ebytes = tcg_constant_i64(1 << size); 3678 for (r = 0; r < a->rpt; r++) { 3679 int e; 3680 for (e = 0; e < elements; e++) { 3681 int xs; 3682 for (xs = 0; xs < a->selem; xs++) { 3683 int tt = (a->rt + r + xs) % 32; 3684 do_vec_ld(s, tt, e, clean_addr, mop); 3685 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3686 } 3687 } 3688 } 3689 3690 /* 3691 * For non-quad operations, setting a slice of the low 64 bits of 3692 * the register clears the high 64 bits (in the ARM ARM pseudocode 3693 * this is implicit in the fact that 'rval' is a 64 bit wide 3694 * variable). For quad operations, we might still need to zero 3695 * the high bits of SVE. 3696 */ 3697 for (r = 0; r < a->rpt * a->selem; r++) { 3698 int tt = (a->rt + r) % 32; 3699 clear_vec_high(s, a->q, tt); 3700 } 3701 3702 if (a->p) { 3703 if (a->rm == 31) { 3704 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3705 } else { 3706 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3707 } 3708 } 3709 return true; 3710 } 3711 3712 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3713 { 3714 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3715 MemOp endian, align, mop; 3716 3717 int total; /* total bytes */ 3718 int elements; /* elements per vector */ 3719 int r; 3720 int size = a->sz; 3721 3722 if (!a->p && a->rm != 0) { 3723 /* For non-postindexed accesses the Rm field must be 0 */ 3724 return false; 3725 } 3726 if (size == 3 && !a->q && a->selem != 1) { 3727 return false; 3728 } 3729 if (!fp_access_check(s)) { 3730 return true; 3731 } 3732 3733 if (a->rn == 31) { 3734 gen_check_sp_alignment(s); 3735 } 3736 3737 /* For our purposes, bytes are always little-endian. */ 3738 endian = s->be_data; 3739 if (size == 0) { 3740 endian = MO_LE; 3741 } 3742 3743 total = a->rpt * a->selem * (a->q ? 16 : 8); 3744 tcg_rn = cpu_reg_sp(s, a->rn); 3745 3746 /* 3747 * Issue the MTE check vs the logical repeat count, before we 3748 * promote consecutive little-endian elements below. 3749 */ 3750 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3751 finalize_memop_asimd(s, size)); 3752 3753 /* 3754 * Consecutive little-endian elements from a single register 3755 * can be promoted to a larger little-endian operation. 3756 */ 3757 align = MO_ALIGN; 3758 if (a->selem == 1 && endian == MO_LE) { 3759 align = pow2_align(size); 3760 size = 3; 3761 } 3762 if (!s->align_mem) { 3763 align = 0; 3764 } 3765 mop = endian | size | align; 3766 3767 elements = (a->q ? 16 : 8) >> size; 3768 tcg_ebytes = tcg_constant_i64(1 << size); 3769 for (r = 0; r < a->rpt; r++) { 3770 int e; 3771 for (e = 0; e < elements; e++) { 3772 int xs; 3773 for (xs = 0; xs < a->selem; xs++) { 3774 int tt = (a->rt + r + xs) % 32; 3775 do_vec_st(s, tt, e, clean_addr, mop); 3776 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3777 } 3778 } 3779 } 3780 3781 if (a->p) { 3782 if (a->rm == 31) { 3783 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3784 } else { 3785 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3786 } 3787 } 3788 return true; 3789 } 3790 3791 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3792 { 3793 int xs, total, rt; 3794 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3795 MemOp mop; 3796 3797 if (!a->p && a->rm != 0) { 3798 return false; 3799 } 3800 if (!fp_access_check(s)) { 3801 return true; 3802 } 3803 3804 if (a->rn == 31) { 3805 gen_check_sp_alignment(s); 3806 } 3807 3808 total = a->selem << a->scale; 3809 tcg_rn = cpu_reg_sp(s, a->rn); 3810 3811 mop = finalize_memop_asimd(s, a->scale); 3812 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3813 total, mop); 3814 3815 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3816 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3817 do_vec_st(s, rt, a->index, clean_addr, mop); 3818 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3819 } 3820 3821 if (a->p) { 3822 if (a->rm == 31) { 3823 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3824 } else { 3825 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3826 } 3827 } 3828 return true; 3829 } 3830 3831 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3832 { 3833 int xs, total, rt; 3834 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3835 MemOp mop; 3836 3837 if (!a->p && a->rm != 0) { 3838 return false; 3839 } 3840 if (!fp_access_check(s)) { 3841 return true; 3842 } 3843 3844 if (a->rn == 31) { 3845 gen_check_sp_alignment(s); 3846 } 3847 3848 total = a->selem << a->scale; 3849 tcg_rn = cpu_reg_sp(s, a->rn); 3850 3851 mop = finalize_memop_asimd(s, a->scale); 3852 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3853 total, mop); 3854 3855 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3856 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3857 do_vec_ld(s, rt, a->index, clean_addr, mop); 3858 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3859 } 3860 3861 if (a->p) { 3862 if (a->rm == 31) { 3863 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3864 } else { 3865 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3866 } 3867 } 3868 return true; 3869 } 3870 3871 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3872 { 3873 int xs, total, rt; 3874 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3875 MemOp mop; 3876 3877 if (!a->p && a->rm != 0) { 3878 return false; 3879 } 3880 if (!fp_access_check(s)) { 3881 return true; 3882 } 3883 3884 if (a->rn == 31) { 3885 gen_check_sp_alignment(s); 3886 } 3887 3888 total = a->selem << a->scale; 3889 tcg_rn = cpu_reg_sp(s, a->rn); 3890 3891 mop = finalize_memop_asimd(s, a->scale); 3892 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3893 total, mop); 3894 3895 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3896 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3897 /* Load and replicate to all elements */ 3898 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3899 3900 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3901 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3902 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3903 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3904 } 3905 3906 if (a->p) { 3907 if (a->rm == 31) { 3908 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3909 } else { 3910 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3911 } 3912 } 3913 return true; 3914 } 3915 3916 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3917 { 3918 TCGv_i64 addr, clean_addr, tcg_rt; 3919 int size = 4 << s->dcz_blocksize; 3920 3921 if (!dc_isar_feature(aa64_mte, s)) { 3922 return false; 3923 } 3924 if (s->current_el == 0) { 3925 return false; 3926 } 3927 3928 if (a->rn == 31) { 3929 gen_check_sp_alignment(s); 3930 } 3931 3932 addr = read_cpu_reg_sp(s, a->rn, true); 3933 tcg_gen_addi_i64(addr, addr, a->imm); 3934 tcg_rt = cpu_reg(s, a->rt); 3935 3936 if (s->ata[0]) { 3937 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3938 } 3939 /* 3940 * The non-tags portion of STZGM is mostly like DC_ZVA, 3941 * except the alignment happens before the access. 3942 */ 3943 clean_addr = clean_data_tbi(s, addr); 3944 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3945 gen_helper_dc_zva(tcg_env, clean_addr); 3946 return true; 3947 } 3948 3949 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3950 { 3951 TCGv_i64 addr, clean_addr, tcg_rt; 3952 3953 if (!dc_isar_feature(aa64_mte, s)) { 3954 return false; 3955 } 3956 if (s->current_el == 0) { 3957 return false; 3958 } 3959 3960 if (a->rn == 31) { 3961 gen_check_sp_alignment(s); 3962 } 3963 3964 addr = read_cpu_reg_sp(s, a->rn, true); 3965 tcg_gen_addi_i64(addr, addr, a->imm); 3966 tcg_rt = cpu_reg(s, a->rt); 3967 3968 if (s->ata[0]) { 3969 gen_helper_stgm(tcg_env, addr, tcg_rt); 3970 } else { 3971 MMUAccessType acc = MMU_DATA_STORE; 3972 int size = 4 << s->gm_blocksize; 3973 3974 clean_addr = clean_data_tbi(s, addr); 3975 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3976 gen_probe_access(s, clean_addr, acc, size); 3977 } 3978 return true; 3979 } 3980 3981 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3982 { 3983 TCGv_i64 addr, clean_addr, tcg_rt; 3984 3985 if (!dc_isar_feature(aa64_mte, s)) { 3986 return false; 3987 } 3988 if (s->current_el == 0) { 3989 return false; 3990 } 3991 3992 if (a->rn == 31) { 3993 gen_check_sp_alignment(s); 3994 } 3995 3996 addr = read_cpu_reg_sp(s, a->rn, true); 3997 tcg_gen_addi_i64(addr, addr, a->imm); 3998 tcg_rt = cpu_reg(s, a->rt); 3999 4000 if (s->ata[0]) { 4001 gen_helper_ldgm(tcg_rt, tcg_env, addr); 4002 } else { 4003 MMUAccessType acc = MMU_DATA_LOAD; 4004 int size = 4 << s->gm_blocksize; 4005 4006 clean_addr = clean_data_tbi(s, addr); 4007 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4008 gen_probe_access(s, clean_addr, acc, size); 4009 /* The result tags are zeros. */ 4010 tcg_gen_movi_i64(tcg_rt, 0); 4011 } 4012 return true; 4013 } 4014 4015 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4016 { 4017 TCGv_i64 addr, clean_addr, tcg_rt; 4018 4019 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4020 return false; 4021 } 4022 4023 if (a->rn == 31) { 4024 gen_check_sp_alignment(s); 4025 } 4026 4027 addr = read_cpu_reg_sp(s, a->rn, true); 4028 if (!a->p) { 4029 /* pre-index or signed offset */ 4030 tcg_gen_addi_i64(addr, addr, a->imm); 4031 } 4032 4033 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4034 tcg_rt = cpu_reg(s, a->rt); 4035 if (s->ata[0]) { 4036 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4037 } else { 4038 /* 4039 * Tag access disabled: we must check for aborts on the load 4040 * load from [rn+offset], and then insert a 0 tag into rt. 4041 */ 4042 clean_addr = clean_data_tbi(s, addr); 4043 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4044 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4045 } 4046 4047 if (a->w) { 4048 /* pre-index or post-index */ 4049 if (a->p) { 4050 /* post-index */ 4051 tcg_gen_addi_i64(addr, addr, a->imm); 4052 } 4053 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4054 } 4055 return true; 4056 } 4057 4058 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4059 { 4060 TCGv_i64 addr, tcg_rt; 4061 4062 if (a->rn == 31) { 4063 gen_check_sp_alignment(s); 4064 } 4065 4066 addr = read_cpu_reg_sp(s, a->rn, true); 4067 if (!a->p) { 4068 /* pre-index or signed offset */ 4069 tcg_gen_addi_i64(addr, addr, a->imm); 4070 } 4071 tcg_rt = cpu_reg_sp(s, a->rt); 4072 if (!s->ata[0]) { 4073 /* 4074 * For STG and ST2G, we need to check alignment and probe memory. 4075 * TODO: For STZG and STZ2G, we could rely on the stores below, 4076 * at least for system mode; user-only won't enforce alignment. 4077 */ 4078 if (is_pair) { 4079 gen_helper_st2g_stub(tcg_env, addr); 4080 } else { 4081 gen_helper_stg_stub(tcg_env, addr); 4082 } 4083 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4084 if (is_pair) { 4085 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4088 } 4089 } else { 4090 if (is_pair) { 4091 gen_helper_st2g(tcg_env, addr, tcg_rt); 4092 } else { 4093 gen_helper_stg(tcg_env, addr, tcg_rt); 4094 } 4095 } 4096 4097 if (is_zero) { 4098 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4099 TCGv_i64 zero64 = tcg_constant_i64(0); 4100 TCGv_i128 zero128 = tcg_temp_new_i128(); 4101 int mem_index = get_mem_index(s); 4102 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4103 4104 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4105 4106 /* This is 1 or 2 atomic 16-byte operations. */ 4107 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4108 if (is_pair) { 4109 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4110 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4111 } 4112 } 4113 4114 if (a->w) { 4115 /* pre-index or post-index */ 4116 if (a->p) { 4117 /* post-index */ 4118 tcg_gen_addi_i64(addr, addr, a->imm); 4119 } 4120 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4121 } 4122 return true; 4123 } 4124 4125 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4126 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4127 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4128 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4129 4130 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4131 4132 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4133 bool is_setg, SetFn fn) 4134 { 4135 int memidx; 4136 uint32_t syndrome, desc = 0; 4137 4138 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4139 return false; 4140 } 4141 4142 /* 4143 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4144 * us to pull this check before the CheckMOPSEnabled() test 4145 * (which we do in the helper function) 4146 */ 4147 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4148 a->rd == 31 || a->rn == 31) { 4149 return false; 4150 } 4151 4152 memidx = get_a64_user_mem_index(s, a->unpriv); 4153 4154 /* 4155 * We pass option_a == true, matching our implementation; 4156 * we pass wrong_option == false: helper function may set that bit. 4157 */ 4158 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4159 is_epilogue, false, true, a->rd, a->rs, a->rn); 4160 4161 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4162 /* We may need to do MTE tag checking, so assemble the descriptor */ 4163 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4164 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4165 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4166 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4167 } 4168 /* The helper function always needs the memidx even with MTE disabled */ 4169 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4170 4171 /* 4172 * The helper needs the register numbers, but since they're in 4173 * the syndrome anyway, we let it extract them from there rather 4174 * than passing in an extra three integer arguments. 4175 */ 4176 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4177 return true; 4178 } 4179 4180 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4181 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4182 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4183 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4184 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4185 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4186 4187 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4188 4189 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4190 { 4191 int rmemidx, wmemidx; 4192 uint32_t syndrome, rdesc = 0, wdesc = 0; 4193 bool wunpriv = extract32(a->options, 0, 1); 4194 bool runpriv = extract32(a->options, 1, 1); 4195 4196 /* 4197 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4198 * us to pull this check before the CheckMOPSEnabled() test 4199 * (which we do in the helper function) 4200 */ 4201 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4202 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4203 return false; 4204 } 4205 4206 rmemidx = get_a64_user_mem_index(s, runpriv); 4207 wmemidx = get_a64_user_mem_index(s, wunpriv); 4208 4209 /* 4210 * We pass option_a == true, matching our implementation; 4211 * we pass wrong_option == false: helper function may set that bit. 4212 */ 4213 syndrome = syn_mop(false, false, a->options, is_epilogue, 4214 false, true, a->rd, a->rs, a->rn); 4215 4216 /* If we need to do MTE tag checking, assemble the descriptors */ 4217 if (s->mte_active[runpriv]) { 4218 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4219 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4220 } 4221 if (s->mte_active[wunpriv]) { 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4223 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4224 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4225 } 4226 /* The helper function needs these parts of the descriptor regardless */ 4227 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4228 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4229 4230 /* 4231 * The helper needs the register numbers, but since they're in 4232 * the syndrome anyway, we let it extract them from there rather 4233 * than passing in an extra three integer arguments. 4234 */ 4235 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4236 tcg_constant_i32(rdesc)); 4237 return true; 4238 } 4239 4240 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4241 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4242 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4243 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4244 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4245 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4246 4247 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4248 4249 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4250 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4251 { 4252 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4253 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4254 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4255 4256 fn(tcg_rd, tcg_rn, tcg_imm); 4257 if (!a->sf) { 4258 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4259 } 4260 return true; 4261 } 4262 4263 /* 4264 * PC-rel. addressing 4265 */ 4266 4267 static bool trans_ADR(DisasContext *s, arg_ri *a) 4268 { 4269 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4270 return true; 4271 } 4272 4273 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4274 { 4275 int64_t offset = (int64_t)a->imm << 12; 4276 4277 /* The page offset is ok for CF_PCREL. */ 4278 offset -= s->pc_curr & 0xfff; 4279 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4280 return true; 4281 } 4282 4283 /* 4284 * Add/subtract (immediate) 4285 */ 4286 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4287 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4288 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4289 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4290 4291 /* 4292 * Add/subtract (immediate, with tags) 4293 */ 4294 4295 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4296 bool sub_op) 4297 { 4298 TCGv_i64 tcg_rn, tcg_rd; 4299 int imm; 4300 4301 imm = a->uimm6 << LOG2_TAG_GRANULE; 4302 if (sub_op) { 4303 imm = -imm; 4304 } 4305 4306 tcg_rn = cpu_reg_sp(s, a->rn); 4307 tcg_rd = cpu_reg_sp(s, a->rd); 4308 4309 if (s->ata[0]) { 4310 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4311 tcg_constant_i32(imm), 4312 tcg_constant_i32(a->uimm4)); 4313 } else { 4314 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4315 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4316 } 4317 return true; 4318 } 4319 4320 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4321 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4322 4323 /* The input should be a value in the bottom e bits (with higher 4324 * bits zero); returns that value replicated into every element 4325 * of size e in a 64 bit integer. 4326 */ 4327 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4328 { 4329 assert(e != 0); 4330 while (e < 64) { 4331 mask |= mask << e; 4332 e *= 2; 4333 } 4334 return mask; 4335 } 4336 4337 /* 4338 * Logical (immediate) 4339 */ 4340 4341 /* 4342 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4343 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4344 * value (ie should cause a guest UNDEF exception), and true if they are 4345 * valid, in which case the decoded bit pattern is written to result. 4346 */ 4347 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4348 unsigned int imms, unsigned int immr) 4349 { 4350 uint64_t mask; 4351 unsigned e, levels, s, r; 4352 int len; 4353 4354 assert(immn < 2 && imms < 64 && immr < 64); 4355 4356 /* The bit patterns we create here are 64 bit patterns which 4357 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4358 * 64 bits each. Each element contains the same value: a run 4359 * of between 1 and e-1 non-zero bits, rotated within the 4360 * element by between 0 and e-1 bits. 4361 * 4362 * The element size and run length are encoded into immn (1 bit) 4363 * and imms (6 bits) as follows: 4364 * 64 bit elements: immn = 1, imms = <length of run - 1> 4365 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4366 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4367 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4368 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4369 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4370 * Notice that immn = 0, imms = 11111x is the only combination 4371 * not covered by one of the above options; this is reserved. 4372 * Further, <length of run - 1> all-ones is a reserved pattern. 4373 * 4374 * In all cases the rotation is by immr % e (and immr is 6 bits). 4375 */ 4376 4377 /* First determine the element size */ 4378 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4379 if (len < 1) { 4380 /* This is the immn == 0, imms == 0x11111x case */ 4381 return false; 4382 } 4383 e = 1 << len; 4384 4385 levels = e - 1; 4386 s = imms & levels; 4387 r = immr & levels; 4388 4389 if (s == levels) { 4390 /* <length of run - 1> mustn't be all-ones. */ 4391 return false; 4392 } 4393 4394 /* Create the value of one element: s+1 set bits rotated 4395 * by r within the element (which is e bits wide)... 4396 */ 4397 mask = MAKE_64BIT_MASK(0, s + 1); 4398 if (r) { 4399 mask = (mask >> r) | (mask << (e - r)); 4400 mask &= MAKE_64BIT_MASK(0, e); 4401 } 4402 /* ...then replicate the element over the whole 64 bit value */ 4403 mask = bitfield_replicate(mask, e); 4404 *result = mask; 4405 return true; 4406 } 4407 4408 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4409 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4410 { 4411 TCGv_i64 tcg_rd, tcg_rn; 4412 uint64_t imm; 4413 4414 /* Some immediate field values are reserved. */ 4415 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4416 extract32(a->dbm, 0, 6), 4417 extract32(a->dbm, 6, 6))) { 4418 return false; 4419 } 4420 if (!a->sf) { 4421 imm &= 0xffffffffull; 4422 } 4423 4424 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4425 tcg_rn = cpu_reg(s, a->rn); 4426 4427 fn(tcg_rd, tcg_rn, imm); 4428 if (set_cc) { 4429 gen_logic_CC(a->sf, tcg_rd); 4430 } 4431 if (!a->sf) { 4432 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4433 } 4434 return true; 4435 } 4436 4437 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4438 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4439 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4440 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4441 4442 /* 4443 * Move wide (immediate) 4444 */ 4445 4446 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4447 { 4448 int pos = a->hw << 4; 4449 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4450 return true; 4451 } 4452 4453 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4454 { 4455 int pos = a->hw << 4; 4456 uint64_t imm = a->imm; 4457 4458 imm = ~(imm << pos); 4459 if (!a->sf) { 4460 imm = (uint32_t)imm; 4461 } 4462 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4463 return true; 4464 } 4465 4466 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4467 { 4468 int pos = a->hw << 4; 4469 TCGv_i64 tcg_rd, tcg_im; 4470 4471 tcg_rd = cpu_reg(s, a->rd); 4472 tcg_im = tcg_constant_i64(a->imm); 4473 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4474 if (!a->sf) { 4475 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4476 } 4477 return true; 4478 } 4479 4480 /* 4481 * Bitfield 4482 */ 4483 4484 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4485 { 4486 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4487 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4488 unsigned int bitsize = a->sf ? 64 : 32; 4489 unsigned int ri = a->immr; 4490 unsigned int si = a->imms; 4491 unsigned int pos, len; 4492 4493 if (si >= ri) { 4494 /* Wd<s-r:0> = Wn<s:r> */ 4495 len = (si - ri) + 1; 4496 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4497 if (!a->sf) { 4498 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4499 } 4500 } else { 4501 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4502 len = si + 1; 4503 pos = (bitsize - ri) & (bitsize - 1); 4504 4505 if (len < ri) { 4506 /* 4507 * Sign extend the destination field from len to fill the 4508 * balance of the word. Let the deposit below insert all 4509 * of those sign bits. 4510 */ 4511 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4512 len = ri; 4513 } 4514 4515 /* 4516 * We start with zero, and we haven't modified any bits outside 4517 * bitsize, therefore no final zero-extension is unneeded for !sf. 4518 */ 4519 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4520 } 4521 return true; 4522 } 4523 4524 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4525 { 4526 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4527 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4528 unsigned int bitsize = a->sf ? 64 : 32; 4529 unsigned int ri = a->immr; 4530 unsigned int si = a->imms; 4531 unsigned int pos, len; 4532 4533 tcg_rd = cpu_reg(s, a->rd); 4534 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4535 4536 if (si >= ri) { 4537 /* Wd<s-r:0> = Wn<s:r> */ 4538 len = (si - ri) + 1; 4539 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4540 } else { 4541 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4542 len = si + 1; 4543 pos = (bitsize - ri) & (bitsize - 1); 4544 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4545 } 4546 return true; 4547 } 4548 4549 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4550 { 4551 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4552 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4553 unsigned int bitsize = a->sf ? 64 : 32; 4554 unsigned int ri = a->immr; 4555 unsigned int si = a->imms; 4556 unsigned int pos, len; 4557 4558 tcg_rd = cpu_reg(s, a->rd); 4559 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4560 4561 if (si >= ri) { 4562 /* Wd<s-r:0> = Wn<s:r> */ 4563 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4564 len = (si - ri) + 1; 4565 pos = 0; 4566 } else { 4567 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4568 len = si + 1; 4569 pos = (bitsize - ri) & (bitsize - 1); 4570 } 4571 4572 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4573 if (!a->sf) { 4574 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4575 } 4576 return true; 4577 } 4578 4579 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4580 { 4581 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4582 4583 tcg_rd = cpu_reg(s, a->rd); 4584 4585 if (unlikely(a->imm == 0)) { 4586 /* 4587 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4588 * so an extract from bit 0 is a special case. 4589 */ 4590 if (a->sf) { 4591 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4592 } else { 4593 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4594 } 4595 } else { 4596 tcg_rm = cpu_reg(s, a->rm); 4597 tcg_rn = cpu_reg(s, a->rn); 4598 4599 if (a->sf) { 4600 /* Specialization to ROR happens in EXTRACT2. */ 4601 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4602 } else { 4603 TCGv_i32 t0 = tcg_temp_new_i32(); 4604 4605 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4606 if (a->rm == a->rn) { 4607 tcg_gen_rotri_i32(t0, t0, a->imm); 4608 } else { 4609 TCGv_i32 t1 = tcg_temp_new_i32(); 4610 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4611 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4612 } 4613 tcg_gen_extu_i32_i64(tcg_rd, t0); 4614 } 4615 } 4616 return true; 4617 } 4618 4619 /* 4620 * Cryptographic AES, SHA, SHA512 4621 */ 4622 4623 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4624 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4625 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4626 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4627 4628 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4629 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4630 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4631 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4632 4633 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4634 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4635 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4636 4637 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4638 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4639 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4640 4641 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4642 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4643 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4644 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4645 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4646 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4647 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4648 4649 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4650 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4651 4652 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4653 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4654 4655 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4656 { 4657 if (!dc_isar_feature(aa64_sm3, s)) { 4658 return false; 4659 } 4660 if (fp_access_check(s)) { 4661 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4662 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4663 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4664 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4665 unsigned vsz, dofs; 4666 4667 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4668 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4669 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4670 4671 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4672 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4673 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4674 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4675 4676 /* Clear the whole register first, then store bits [127:96]. */ 4677 vsz = vec_full_reg_size(s); 4678 dofs = vec_full_reg_offset(s, a->rd); 4679 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4680 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4681 } 4682 return true; 4683 } 4684 4685 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4686 { 4687 if (fp_access_check(s)) { 4688 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4689 } 4690 return true; 4691 } 4692 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4693 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4694 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4695 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4696 4697 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4698 { 4699 if (!dc_isar_feature(aa64_sha3, s)) { 4700 return false; 4701 } 4702 if (fp_access_check(s)) { 4703 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4704 vec_full_reg_offset(s, a->rn), 4705 vec_full_reg_offset(s, a->rm), a->imm, 16, 4706 vec_full_reg_size(s)); 4707 } 4708 return true; 4709 } 4710 4711 /* 4712 * Advanced SIMD copy 4713 */ 4714 4715 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4716 { 4717 unsigned esz = ctz32(imm); 4718 if (esz <= MO_64) { 4719 *pesz = esz; 4720 *pidx = imm >> (esz + 1); 4721 return true; 4722 } 4723 return false; 4724 } 4725 4726 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4727 { 4728 MemOp esz; 4729 unsigned idx; 4730 4731 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4732 return false; 4733 } 4734 if (fp_access_check(s)) { 4735 /* 4736 * This instruction just extracts the specified element and 4737 * zero-extends it into the bottom of the destination register. 4738 */ 4739 TCGv_i64 tmp = tcg_temp_new_i64(); 4740 read_vec_element(s, tmp, a->rn, idx, esz); 4741 write_fp_dreg(s, a->rd, tmp); 4742 } 4743 return true; 4744 } 4745 4746 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4747 { 4748 MemOp esz; 4749 unsigned idx; 4750 4751 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4752 return false; 4753 } 4754 if (esz == MO_64 && !a->q) { 4755 return false; 4756 } 4757 if (fp_access_check(s)) { 4758 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4759 vec_reg_offset(s, a->rn, idx, esz), 4760 a->q ? 16 : 8, vec_full_reg_size(s)); 4761 } 4762 return true; 4763 } 4764 4765 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4766 { 4767 MemOp esz; 4768 unsigned idx; 4769 4770 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4771 return false; 4772 } 4773 if (esz == MO_64 && !a->q) { 4774 return false; 4775 } 4776 if (fp_access_check(s)) { 4777 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4778 a->q ? 16 : 8, vec_full_reg_size(s), 4779 cpu_reg(s, a->rn)); 4780 } 4781 return true; 4782 } 4783 4784 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4785 { 4786 MemOp esz; 4787 unsigned idx; 4788 4789 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4790 return false; 4791 } 4792 if (is_signed) { 4793 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4794 return false; 4795 } 4796 } else { 4797 if (esz == MO_64 ? !a->q : a->q) { 4798 return false; 4799 } 4800 } 4801 if (fp_access_check(s)) { 4802 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4803 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4804 if (is_signed && !a->q) { 4805 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4806 } 4807 } 4808 return true; 4809 } 4810 4811 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4812 TRANS(UMOV, do_smov_umov, a, 0) 4813 4814 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4815 { 4816 MemOp esz; 4817 unsigned idx; 4818 4819 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4820 return false; 4821 } 4822 if (fp_access_check(s)) { 4823 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4824 clear_vec_high(s, true, a->rd); 4825 } 4826 return true; 4827 } 4828 4829 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4830 { 4831 MemOp esz; 4832 unsigned didx, sidx; 4833 4834 if (!decode_esz_idx(a->di, &esz, &didx)) { 4835 return false; 4836 } 4837 sidx = a->si >> esz; 4838 if (fp_access_check(s)) { 4839 TCGv_i64 tmp = tcg_temp_new_i64(); 4840 4841 read_vec_element(s, tmp, a->rn, sidx, esz); 4842 write_vec_element(s, tmp, a->rd, didx, esz); 4843 4844 /* INS is considered a 128-bit write for SVE. */ 4845 clear_vec_high(s, true, a->rd); 4846 } 4847 return true; 4848 } 4849 4850 /* 4851 * Advanced SIMD three same 4852 */ 4853 4854 typedef struct FPScalar { 4855 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4856 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4857 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4858 } FPScalar; 4859 4860 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4861 { 4862 switch (a->esz) { 4863 case MO_64: 4864 if (fp_access_check(s)) { 4865 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4866 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4867 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4868 write_fp_dreg(s, a->rd, t0); 4869 } 4870 break; 4871 case MO_32: 4872 if (fp_access_check(s)) { 4873 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4874 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4875 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4876 write_fp_sreg(s, a->rd, t0); 4877 } 4878 break; 4879 case MO_16: 4880 if (!dc_isar_feature(aa64_fp16, s)) { 4881 return false; 4882 } 4883 if (fp_access_check(s)) { 4884 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4885 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4886 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4887 write_fp_sreg(s, a->rd, t0); 4888 } 4889 break; 4890 default: 4891 return false; 4892 } 4893 return true; 4894 } 4895 4896 static const FPScalar f_scalar_fadd = { 4897 gen_helper_vfp_addh, 4898 gen_helper_vfp_adds, 4899 gen_helper_vfp_addd, 4900 }; 4901 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4902 4903 static const FPScalar f_scalar_fsub = { 4904 gen_helper_vfp_subh, 4905 gen_helper_vfp_subs, 4906 gen_helper_vfp_subd, 4907 }; 4908 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4909 4910 static const FPScalar f_scalar_fdiv = { 4911 gen_helper_vfp_divh, 4912 gen_helper_vfp_divs, 4913 gen_helper_vfp_divd, 4914 }; 4915 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4916 4917 static const FPScalar f_scalar_fmul = { 4918 gen_helper_vfp_mulh, 4919 gen_helper_vfp_muls, 4920 gen_helper_vfp_muld, 4921 }; 4922 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4923 4924 static const FPScalar f_scalar_fmax = { 4925 gen_helper_advsimd_maxh, 4926 gen_helper_vfp_maxs, 4927 gen_helper_vfp_maxd, 4928 }; 4929 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4930 4931 static const FPScalar f_scalar_fmin = { 4932 gen_helper_advsimd_minh, 4933 gen_helper_vfp_mins, 4934 gen_helper_vfp_mind, 4935 }; 4936 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4937 4938 static const FPScalar f_scalar_fmaxnm = { 4939 gen_helper_advsimd_maxnumh, 4940 gen_helper_vfp_maxnums, 4941 gen_helper_vfp_maxnumd, 4942 }; 4943 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4944 4945 static const FPScalar f_scalar_fminnm = { 4946 gen_helper_advsimd_minnumh, 4947 gen_helper_vfp_minnums, 4948 gen_helper_vfp_minnumd, 4949 }; 4950 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4951 4952 static const FPScalar f_scalar_fmulx = { 4953 gen_helper_advsimd_mulxh, 4954 gen_helper_vfp_mulxs, 4955 gen_helper_vfp_mulxd, 4956 }; 4957 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4958 4959 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_mulh(d, n, m, s); 4962 gen_vfp_negh(d, d); 4963 } 4964 4965 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muls(d, n, m, s); 4968 gen_vfp_negs(d, d); 4969 } 4970 4971 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4972 { 4973 gen_helper_vfp_muld(d, n, m, s); 4974 gen_vfp_negd(d, d); 4975 } 4976 4977 static const FPScalar f_scalar_fnmul = { 4978 gen_fnmul_h, 4979 gen_fnmul_s, 4980 gen_fnmul_d, 4981 }; 4982 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4983 4984 static const FPScalar f_scalar_fcmeq = { 4985 gen_helper_advsimd_ceq_f16, 4986 gen_helper_neon_ceq_f32, 4987 gen_helper_neon_ceq_f64, 4988 }; 4989 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4990 4991 static const FPScalar f_scalar_fcmge = { 4992 gen_helper_advsimd_cge_f16, 4993 gen_helper_neon_cge_f32, 4994 gen_helper_neon_cge_f64, 4995 }; 4996 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 4997 4998 static const FPScalar f_scalar_fcmgt = { 4999 gen_helper_advsimd_cgt_f16, 5000 gen_helper_neon_cgt_f32, 5001 gen_helper_neon_cgt_f64, 5002 }; 5003 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 5004 5005 static const FPScalar f_scalar_facge = { 5006 gen_helper_advsimd_acge_f16, 5007 gen_helper_neon_acge_f32, 5008 gen_helper_neon_acge_f64, 5009 }; 5010 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5011 5012 static const FPScalar f_scalar_facgt = { 5013 gen_helper_advsimd_acgt_f16, 5014 gen_helper_neon_acgt_f32, 5015 gen_helper_neon_acgt_f64, 5016 }; 5017 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5018 5019 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5020 { 5021 gen_helper_vfp_subh(d, n, m, s); 5022 gen_vfp_absh(d, d); 5023 } 5024 5025 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5026 { 5027 gen_helper_vfp_subs(d, n, m, s); 5028 gen_vfp_abss(d, d); 5029 } 5030 5031 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5032 { 5033 gen_helper_vfp_subd(d, n, m, s); 5034 gen_vfp_absd(d, d); 5035 } 5036 5037 static const FPScalar f_scalar_fabd = { 5038 gen_fabd_h, 5039 gen_fabd_s, 5040 gen_fabd_d, 5041 }; 5042 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5043 5044 static const FPScalar f_scalar_frecps = { 5045 gen_helper_recpsf_f16, 5046 gen_helper_recpsf_f32, 5047 gen_helper_recpsf_f64, 5048 }; 5049 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5050 5051 static const FPScalar f_scalar_frsqrts = { 5052 gen_helper_rsqrtsf_f16, 5053 gen_helper_rsqrtsf_f32, 5054 gen_helper_rsqrtsf_f64, 5055 }; 5056 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5057 5058 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a, 5059 MemOp sgn_n, MemOp sgn_m, 5060 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp), 5061 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) 5062 { 5063 TCGv_i64 t0, t1, t2, qc; 5064 MemOp esz = a->esz; 5065 5066 if (!fp_access_check(s)) { 5067 return true; 5068 } 5069 5070 t0 = tcg_temp_new_i64(); 5071 t1 = tcg_temp_new_i64(); 5072 t2 = tcg_temp_new_i64(); 5073 qc = tcg_temp_new_i64(); 5074 read_vec_element(s, t1, a->rn, 0, esz | sgn_n); 5075 read_vec_element(s, t2, a->rm, 0, esz | sgn_m); 5076 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5077 5078 if (esz == MO_64) { 5079 gen_d(t0, qc, t1, t2); 5080 } else { 5081 gen_bhs(t0, qc, t1, t2, esz); 5082 tcg_gen_ext_i64(t0, t0, esz); 5083 } 5084 5085 write_fp_dreg(s, a->rd, t0); 5086 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5087 return true; 5088 } 5089 5090 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d) 5091 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d) 5092 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d) 5093 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d) 5094 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d) 5095 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d) 5096 5097 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a, 5098 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64)) 5099 { 5100 if (fp_access_check(s)) { 5101 TCGv_i64 t0 = tcg_temp_new_i64(); 5102 TCGv_i64 t1 = tcg_temp_new_i64(); 5103 5104 read_vec_element(s, t0, a->rn, 0, MO_64); 5105 read_vec_element(s, t1, a->rm, 0, MO_64); 5106 fn(t0, t0, t1); 5107 write_fp_dreg(s, a->rd, t0); 5108 } 5109 return true; 5110 } 5111 5112 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64) 5113 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64) 5114 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64) 5115 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64) 5116 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64) 5117 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64) 5118 5119 typedef struct ENVScalar2 { 5120 NeonGenTwoOpEnvFn *gen_bhs[3]; 5121 NeonGenTwo64OpEnvFn *gen_d; 5122 } ENVScalar2; 5123 5124 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f) 5125 { 5126 if (!fp_access_check(s)) { 5127 return true; 5128 } 5129 if (a->esz == MO_64) { 5130 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5131 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5132 f->gen_d(t0, tcg_env, t0, t1); 5133 write_fp_dreg(s, a->rd, t0); 5134 } else { 5135 TCGv_i32 t0 = tcg_temp_new_i32(); 5136 TCGv_i32 t1 = tcg_temp_new_i32(); 5137 5138 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5139 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5140 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 5141 write_fp_sreg(s, a->rd, t0); 5142 } 5143 return true; 5144 } 5145 5146 static const ENVScalar2 f_scalar_sqshl = { 5147 { gen_helper_neon_qshl_s8, 5148 gen_helper_neon_qshl_s16, 5149 gen_helper_neon_qshl_s32 }, 5150 gen_helper_neon_qshl_s64, 5151 }; 5152 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl) 5153 5154 static const ENVScalar2 f_scalar_uqshl = { 5155 { gen_helper_neon_qshl_u8, 5156 gen_helper_neon_qshl_u16, 5157 gen_helper_neon_qshl_u32 }, 5158 gen_helper_neon_qshl_u64, 5159 }; 5160 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl) 5161 5162 static const ENVScalar2 f_scalar_sqrshl = { 5163 { gen_helper_neon_qrshl_s8, 5164 gen_helper_neon_qrshl_s16, 5165 gen_helper_neon_qrshl_s32 }, 5166 gen_helper_neon_qrshl_s64, 5167 }; 5168 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl) 5169 5170 static const ENVScalar2 f_scalar_uqrshl = { 5171 { gen_helper_neon_qrshl_u8, 5172 gen_helper_neon_qrshl_u16, 5173 gen_helper_neon_qrshl_u32 }, 5174 gen_helper_neon_qrshl_u64, 5175 }; 5176 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl) 5177 5178 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a, 5179 const ENVScalar2 *f) 5180 { 5181 if (a->esz == MO_16 || a->esz == MO_32) { 5182 return do_env_scalar2(s, a, f); 5183 } 5184 return false; 5185 } 5186 5187 static const ENVScalar2 f_scalar_sqdmulh = { 5188 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 } 5189 }; 5190 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh) 5191 5192 static const ENVScalar2 f_scalar_sqrdmulh = { 5193 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 } 5194 }; 5195 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh) 5196 5197 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond) 5198 { 5199 if (fp_access_check(s)) { 5200 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5201 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5202 tcg_gen_negsetcond_i64(cond, t0, t0, t1); 5203 write_fp_dreg(s, a->rd, t0); 5204 } 5205 return true; 5206 } 5207 5208 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT) 5209 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU) 5210 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE) 5211 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU) 5212 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ) 5213 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE) 5214 5215 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5216 gen_helper_gvec_3_ptr * const fns[3]) 5217 { 5218 MemOp esz = a->esz; 5219 5220 switch (esz) { 5221 case MO_64: 5222 if (!a->q) { 5223 return false; 5224 } 5225 break; 5226 case MO_32: 5227 break; 5228 case MO_16: 5229 if (!dc_isar_feature(aa64_fp16, s)) { 5230 return false; 5231 } 5232 break; 5233 default: 5234 return false; 5235 } 5236 if (fp_access_check(s)) { 5237 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5238 esz == MO_16, 0, fns[esz - 1]); 5239 } 5240 return true; 5241 } 5242 5243 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5244 gen_helper_gvec_fadd_h, 5245 gen_helper_gvec_fadd_s, 5246 gen_helper_gvec_fadd_d, 5247 }; 5248 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5249 5250 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5251 gen_helper_gvec_fsub_h, 5252 gen_helper_gvec_fsub_s, 5253 gen_helper_gvec_fsub_d, 5254 }; 5255 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5256 5257 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5258 gen_helper_gvec_fdiv_h, 5259 gen_helper_gvec_fdiv_s, 5260 gen_helper_gvec_fdiv_d, 5261 }; 5262 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5263 5264 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5265 gen_helper_gvec_fmul_h, 5266 gen_helper_gvec_fmul_s, 5267 gen_helper_gvec_fmul_d, 5268 }; 5269 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5270 5271 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5272 gen_helper_gvec_fmax_h, 5273 gen_helper_gvec_fmax_s, 5274 gen_helper_gvec_fmax_d, 5275 }; 5276 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5277 5278 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5279 gen_helper_gvec_fmin_h, 5280 gen_helper_gvec_fmin_s, 5281 gen_helper_gvec_fmin_d, 5282 }; 5283 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5284 5285 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5286 gen_helper_gvec_fmaxnum_h, 5287 gen_helper_gvec_fmaxnum_s, 5288 gen_helper_gvec_fmaxnum_d, 5289 }; 5290 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5291 5292 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5293 gen_helper_gvec_fminnum_h, 5294 gen_helper_gvec_fminnum_s, 5295 gen_helper_gvec_fminnum_d, 5296 }; 5297 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5298 5299 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5300 gen_helper_gvec_fmulx_h, 5301 gen_helper_gvec_fmulx_s, 5302 gen_helper_gvec_fmulx_d, 5303 }; 5304 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5305 5306 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5307 gen_helper_gvec_vfma_h, 5308 gen_helper_gvec_vfma_s, 5309 gen_helper_gvec_vfma_d, 5310 }; 5311 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5312 5313 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5314 gen_helper_gvec_vfms_h, 5315 gen_helper_gvec_vfms_s, 5316 gen_helper_gvec_vfms_d, 5317 }; 5318 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5319 5320 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5321 gen_helper_gvec_fceq_h, 5322 gen_helper_gvec_fceq_s, 5323 gen_helper_gvec_fceq_d, 5324 }; 5325 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5326 5327 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5328 gen_helper_gvec_fcge_h, 5329 gen_helper_gvec_fcge_s, 5330 gen_helper_gvec_fcge_d, 5331 }; 5332 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5333 5334 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5335 gen_helper_gvec_fcgt_h, 5336 gen_helper_gvec_fcgt_s, 5337 gen_helper_gvec_fcgt_d, 5338 }; 5339 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5340 5341 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5342 gen_helper_gvec_facge_h, 5343 gen_helper_gvec_facge_s, 5344 gen_helper_gvec_facge_d, 5345 }; 5346 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5347 5348 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5349 gen_helper_gvec_facgt_h, 5350 gen_helper_gvec_facgt_s, 5351 gen_helper_gvec_facgt_d, 5352 }; 5353 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5354 5355 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5356 gen_helper_gvec_fabd_h, 5357 gen_helper_gvec_fabd_s, 5358 gen_helper_gvec_fabd_d, 5359 }; 5360 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5361 5362 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5363 gen_helper_gvec_recps_h, 5364 gen_helper_gvec_recps_s, 5365 gen_helper_gvec_recps_d, 5366 }; 5367 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) 5368 5369 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5370 gen_helper_gvec_rsqrts_h, 5371 gen_helper_gvec_rsqrts_s, 5372 gen_helper_gvec_rsqrts_d, 5373 }; 5374 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) 5375 5376 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5377 gen_helper_gvec_faddp_h, 5378 gen_helper_gvec_faddp_s, 5379 gen_helper_gvec_faddp_d, 5380 }; 5381 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp) 5382 5383 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5384 gen_helper_gvec_fmaxp_h, 5385 gen_helper_gvec_fmaxp_s, 5386 gen_helper_gvec_fmaxp_d, 5387 }; 5388 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp) 5389 5390 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5391 gen_helper_gvec_fminp_h, 5392 gen_helper_gvec_fminp_s, 5393 gen_helper_gvec_fminp_d, 5394 }; 5395 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp) 5396 5397 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5398 gen_helper_gvec_fmaxnump_h, 5399 gen_helper_gvec_fmaxnump_s, 5400 gen_helper_gvec_fmaxnump_d, 5401 }; 5402 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp) 5403 5404 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5405 gen_helper_gvec_fminnump_h, 5406 gen_helper_gvec_fminnump_s, 5407 gen_helper_gvec_fminnump_d, 5408 }; 5409 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp) 5410 5411 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2) 5412 { 5413 if (fp_access_check(s)) { 5414 int data = (is_2 << 1) | is_s; 5415 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5416 vec_full_reg_offset(s, a->rn), 5417 vec_full_reg_offset(s, a->rm), tcg_env, 5418 a->q ? 16 : 8, vec_full_reg_size(s), 5419 data, gen_helper_gvec_fmlal_a64); 5420 } 5421 return true; 5422 } 5423 5424 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false) 5425 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false) 5426 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true) 5427 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true) 5428 5429 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5430 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) 5431 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) 5432 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) 5433 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) 5434 5435 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and) 5436 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc) 5437 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or) 5438 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc) 5439 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor) 5440 5441 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c) 5442 { 5443 if (fp_access_check(s)) { 5444 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0); 5445 } 5446 return true; 5447 } 5448 5449 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm) 5450 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd) 5451 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn) 5452 5453 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc) 5454 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc) 5455 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc) 5456 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc) 5457 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc) 5458 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc) 5459 5460 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl) 5461 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl) 5462 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl) 5463 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl) 5464 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl) 5465 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl) 5466 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl) 5467 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl) 5468 5469 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add) 5470 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub) 5471 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd) 5472 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd) 5473 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub) 5474 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub) 5475 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd) 5476 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd) 5477 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax) 5478 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax) 5479 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin) 5480 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin) 5481 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba) 5482 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba) 5483 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd) 5484 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd) 5485 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul) 5486 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b) 5487 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla) 5488 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls) 5489 5490 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond) 5491 { 5492 if (a->esz == MO_64 && !a->q) { 5493 return false; 5494 } 5495 if (fp_access_check(s)) { 5496 tcg_gen_gvec_cmp(cond, a->esz, 5497 vec_full_reg_offset(s, a->rd), 5498 vec_full_reg_offset(s, a->rn), 5499 vec_full_reg_offset(s, a->rm), 5500 a->q ? 16 : 8, vec_full_reg_size(s)); 5501 } 5502 return true; 5503 } 5504 5505 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT) 5506 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU) 5507 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE) 5508 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU) 5509 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ) 5510 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst) 5511 5512 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc) 5513 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc) 5514 5515 /* 5516 * Advanced SIMD scalar/vector x indexed element 5517 */ 5518 5519 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5520 { 5521 switch (a->esz) { 5522 case MO_64: 5523 if (fp_access_check(s)) { 5524 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5525 TCGv_i64 t1 = tcg_temp_new_i64(); 5526 5527 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5528 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5529 write_fp_dreg(s, a->rd, t0); 5530 } 5531 break; 5532 case MO_32: 5533 if (fp_access_check(s)) { 5534 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5535 TCGv_i32 t1 = tcg_temp_new_i32(); 5536 5537 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5538 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5539 write_fp_sreg(s, a->rd, t0); 5540 } 5541 break; 5542 case MO_16: 5543 if (!dc_isar_feature(aa64_fp16, s)) { 5544 return false; 5545 } 5546 if (fp_access_check(s)) { 5547 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5548 TCGv_i32 t1 = tcg_temp_new_i32(); 5549 5550 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5551 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5552 write_fp_sreg(s, a->rd, t0); 5553 } 5554 break; 5555 default: 5556 g_assert_not_reached(); 5557 } 5558 return true; 5559 } 5560 5561 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5562 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5563 5564 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5565 { 5566 switch (a->esz) { 5567 case MO_64: 5568 if (fp_access_check(s)) { 5569 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5570 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5571 TCGv_i64 t2 = tcg_temp_new_i64(); 5572 5573 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5574 if (neg) { 5575 gen_vfp_negd(t1, t1); 5576 } 5577 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5578 write_fp_dreg(s, a->rd, t0); 5579 } 5580 break; 5581 case MO_32: 5582 if (fp_access_check(s)) { 5583 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5584 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5585 TCGv_i32 t2 = tcg_temp_new_i32(); 5586 5587 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5588 if (neg) { 5589 gen_vfp_negs(t1, t1); 5590 } 5591 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5592 write_fp_sreg(s, a->rd, t0); 5593 } 5594 break; 5595 case MO_16: 5596 if (!dc_isar_feature(aa64_fp16, s)) { 5597 return false; 5598 } 5599 if (fp_access_check(s)) { 5600 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5601 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5602 TCGv_i32 t2 = tcg_temp_new_i32(); 5603 5604 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5605 if (neg) { 5606 gen_vfp_negh(t1, t1); 5607 } 5608 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5609 fpstatus_ptr(FPST_FPCR_F16)); 5610 write_fp_sreg(s, a->rd, t0); 5611 } 5612 break; 5613 default: 5614 g_assert_not_reached(); 5615 } 5616 return true; 5617 } 5618 5619 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5620 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5621 5622 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a, 5623 const ENVScalar2 *f) 5624 { 5625 if (a->esz < MO_16 || a->esz > MO_32) { 5626 return false; 5627 } 5628 if (fp_access_check(s)) { 5629 TCGv_i32 t0 = tcg_temp_new_i32(); 5630 TCGv_i32 t1 = tcg_temp_new_i32(); 5631 5632 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5633 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 5634 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 5635 write_fp_sreg(s, a->rd, t0); 5636 } 5637 return true; 5638 } 5639 5640 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh) 5641 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh) 5642 5643 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5644 gen_helper_gvec_3_ptr * const fns[3]) 5645 { 5646 MemOp esz = a->esz; 5647 5648 switch (esz) { 5649 case MO_64: 5650 if (!a->q) { 5651 return false; 5652 } 5653 break; 5654 case MO_32: 5655 break; 5656 case MO_16: 5657 if (!dc_isar_feature(aa64_fp16, s)) { 5658 return false; 5659 } 5660 break; 5661 default: 5662 g_assert_not_reached(); 5663 } 5664 if (fp_access_check(s)) { 5665 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5666 esz == MO_16, a->idx, fns[esz - 1]); 5667 } 5668 return true; 5669 } 5670 5671 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5672 gen_helper_gvec_fmul_idx_h, 5673 gen_helper_gvec_fmul_idx_s, 5674 gen_helper_gvec_fmul_idx_d, 5675 }; 5676 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5677 5678 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5679 gen_helper_gvec_fmulx_idx_h, 5680 gen_helper_gvec_fmulx_idx_s, 5681 gen_helper_gvec_fmulx_idx_d, 5682 }; 5683 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5684 5685 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5686 { 5687 static gen_helper_gvec_4_ptr * const fns[3] = { 5688 gen_helper_gvec_fmla_idx_h, 5689 gen_helper_gvec_fmla_idx_s, 5690 gen_helper_gvec_fmla_idx_d, 5691 }; 5692 MemOp esz = a->esz; 5693 5694 switch (esz) { 5695 case MO_64: 5696 if (!a->q) { 5697 return false; 5698 } 5699 break; 5700 case MO_32: 5701 break; 5702 case MO_16: 5703 if (!dc_isar_feature(aa64_fp16, s)) { 5704 return false; 5705 } 5706 break; 5707 default: 5708 g_assert_not_reached(); 5709 } 5710 if (fp_access_check(s)) { 5711 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5712 esz == MO_16, (a->idx << 1) | neg, 5713 fns[esz - 1]); 5714 } 5715 return true; 5716 } 5717 5718 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5719 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5720 5721 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2) 5722 { 5723 if (fp_access_check(s)) { 5724 int data = (a->idx << 2) | (is_2 << 1) | is_s; 5725 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5726 vec_full_reg_offset(s, a->rn), 5727 vec_full_reg_offset(s, a->rm), tcg_env, 5728 a->q ? 16 : 8, vec_full_reg_size(s), 5729 data, gen_helper_gvec_fmlal_idx_a64); 5730 } 5731 return true; 5732 } 5733 5734 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false) 5735 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false) 5736 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true) 5737 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true) 5738 5739 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5740 gen_helper_gvec_3 * const fns[2]) 5741 { 5742 assert(a->esz == MO_16 || a->esz == MO_32); 5743 if (fp_access_check(s)) { 5744 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]); 5745 } 5746 return true; 5747 } 5748 5749 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = { 5750 gen_helper_gvec_mul_idx_h, 5751 gen_helper_gvec_mul_idx_s, 5752 }; 5753 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul) 5754 5755 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub) 5756 { 5757 static gen_helper_gvec_4 * const fns[2][2] = { 5758 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h }, 5759 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s }, 5760 }; 5761 5762 assert(a->esz == MO_16 || a->esz == MO_32); 5763 if (fp_access_check(s)) { 5764 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 5765 a->idx, fns[a->esz - 1][sub]); 5766 } 5767 return true; 5768 } 5769 5770 TRANS(MLA_vi, do_mla_vector_idx, a, false) 5771 TRANS(MLS_vi, do_mla_vector_idx, a, true) 5772 5773 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a, 5774 gen_helper_gvec_4 * const fns[2]) 5775 { 5776 assert(a->esz == MO_16 || a->esz == MO_32); 5777 if (fp_access_check(s)) { 5778 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd), 5779 vec_full_reg_offset(s, a->rn), 5780 vec_full_reg_offset(s, a->rm), 5781 offsetof(CPUARMState, vfp.qc), 5782 a->q ? 16 : 8, vec_full_reg_size(s), 5783 a->idx, fns[a->esz - 1]); 5784 } 5785 return true; 5786 } 5787 5788 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = { 5789 gen_helper_neon_sqdmulh_idx_h, 5790 gen_helper_neon_sqdmulh_idx_s, 5791 }; 5792 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh) 5793 5794 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = { 5795 gen_helper_neon_sqrdmulh_idx_h, 5796 gen_helper_neon_sqrdmulh_idx_s, 5797 }; 5798 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh) 5799 5800 /* 5801 * Advanced SIMD scalar pairwise 5802 */ 5803 5804 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 5805 { 5806 switch (a->esz) { 5807 case MO_64: 5808 if (fp_access_check(s)) { 5809 TCGv_i64 t0 = tcg_temp_new_i64(); 5810 TCGv_i64 t1 = tcg_temp_new_i64(); 5811 5812 read_vec_element(s, t0, a->rn, 0, MO_64); 5813 read_vec_element(s, t1, a->rn, 1, MO_64); 5814 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5815 write_fp_dreg(s, a->rd, t0); 5816 } 5817 break; 5818 case MO_32: 5819 if (fp_access_check(s)) { 5820 TCGv_i32 t0 = tcg_temp_new_i32(); 5821 TCGv_i32 t1 = tcg_temp_new_i32(); 5822 5823 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 5824 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 5825 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5826 write_fp_sreg(s, a->rd, t0); 5827 } 5828 break; 5829 case MO_16: 5830 if (!dc_isar_feature(aa64_fp16, s)) { 5831 return false; 5832 } 5833 if (fp_access_check(s)) { 5834 TCGv_i32 t0 = tcg_temp_new_i32(); 5835 TCGv_i32 t1 = tcg_temp_new_i32(); 5836 5837 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 5838 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 5839 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5840 write_fp_sreg(s, a->rd, t0); 5841 } 5842 break; 5843 default: 5844 g_assert_not_reached(); 5845 } 5846 return true; 5847 } 5848 5849 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 5850 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 5851 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 5852 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 5853 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 5854 5855 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 5856 { 5857 if (fp_access_check(s)) { 5858 TCGv_i64 t0 = tcg_temp_new_i64(); 5859 TCGv_i64 t1 = tcg_temp_new_i64(); 5860 5861 read_vec_element(s, t0, a->rn, 0, MO_64); 5862 read_vec_element(s, t1, a->rn, 1, MO_64); 5863 tcg_gen_add_i64(t0, t0, t1); 5864 write_fp_dreg(s, a->rd, t0); 5865 } 5866 return true; 5867 } 5868 5869 /* 5870 * Floating-point data-processing (3 source) 5871 */ 5872 5873 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n) 5874 { 5875 TCGv_ptr fpst; 5876 5877 /* 5878 * These are fused multiply-add. Note that doing the negations here 5879 * as separate steps is correct: an input NaN should come out with 5880 * its sign bit flipped if it is a negated-input. 5881 */ 5882 switch (a->esz) { 5883 case MO_64: 5884 if (fp_access_check(s)) { 5885 TCGv_i64 tn = read_fp_dreg(s, a->rn); 5886 TCGv_i64 tm = read_fp_dreg(s, a->rm); 5887 TCGv_i64 ta = read_fp_dreg(s, a->ra); 5888 5889 if (neg_a) { 5890 gen_vfp_negd(ta, ta); 5891 } 5892 if (neg_n) { 5893 gen_vfp_negd(tn, tn); 5894 } 5895 fpst = fpstatus_ptr(FPST_FPCR); 5896 gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst); 5897 write_fp_dreg(s, a->rd, ta); 5898 } 5899 break; 5900 5901 case MO_32: 5902 if (fp_access_check(s)) { 5903 TCGv_i32 tn = read_fp_sreg(s, a->rn); 5904 TCGv_i32 tm = read_fp_sreg(s, a->rm); 5905 TCGv_i32 ta = read_fp_sreg(s, a->ra); 5906 5907 if (neg_a) { 5908 gen_vfp_negs(ta, ta); 5909 } 5910 if (neg_n) { 5911 gen_vfp_negs(tn, tn); 5912 } 5913 fpst = fpstatus_ptr(FPST_FPCR); 5914 gen_helper_vfp_muladds(ta, tn, tm, ta, fpst); 5915 write_fp_sreg(s, a->rd, ta); 5916 } 5917 break; 5918 5919 case MO_16: 5920 if (!dc_isar_feature(aa64_fp16, s)) { 5921 return false; 5922 } 5923 if (fp_access_check(s)) { 5924 TCGv_i32 tn = read_fp_hreg(s, a->rn); 5925 TCGv_i32 tm = read_fp_hreg(s, a->rm); 5926 TCGv_i32 ta = read_fp_hreg(s, a->ra); 5927 5928 if (neg_a) { 5929 gen_vfp_negh(ta, ta); 5930 } 5931 if (neg_n) { 5932 gen_vfp_negh(tn, tn); 5933 } 5934 fpst = fpstatus_ptr(FPST_FPCR_F16); 5935 gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst); 5936 write_fp_sreg(s, a->rd, ta); 5937 } 5938 break; 5939 5940 default: 5941 return false; 5942 } 5943 return true; 5944 } 5945 5946 TRANS(FMADD, do_fmadd, a, false, false) 5947 TRANS(FNMADD, do_fmadd, a, true, true) 5948 TRANS(FMSUB, do_fmadd, a, false, true) 5949 TRANS(FNMSUB, do_fmadd, a, true, false) 5950 5951 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5952 * Note that it is the caller's responsibility to ensure that the 5953 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5954 * mandated semantics for out of range shifts. 5955 */ 5956 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5957 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5958 { 5959 switch (shift_type) { 5960 case A64_SHIFT_TYPE_LSL: 5961 tcg_gen_shl_i64(dst, src, shift_amount); 5962 break; 5963 case A64_SHIFT_TYPE_LSR: 5964 tcg_gen_shr_i64(dst, src, shift_amount); 5965 break; 5966 case A64_SHIFT_TYPE_ASR: 5967 if (!sf) { 5968 tcg_gen_ext32s_i64(dst, src); 5969 } 5970 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5971 break; 5972 case A64_SHIFT_TYPE_ROR: 5973 if (sf) { 5974 tcg_gen_rotr_i64(dst, src, shift_amount); 5975 } else { 5976 TCGv_i32 t0, t1; 5977 t0 = tcg_temp_new_i32(); 5978 t1 = tcg_temp_new_i32(); 5979 tcg_gen_extrl_i64_i32(t0, src); 5980 tcg_gen_extrl_i64_i32(t1, shift_amount); 5981 tcg_gen_rotr_i32(t0, t0, t1); 5982 tcg_gen_extu_i32_i64(dst, t0); 5983 } 5984 break; 5985 default: 5986 assert(FALSE); /* all shift types should be handled */ 5987 break; 5988 } 5989 5990 if (!sf) { /* zero extend final result */ 5991 tcg_gen_ext32u_i64(dst, dst); 5992 } 5993 } 5994 5995 /* Shift a TCGv src by immediate, put result in dst. 5996 * The shift amount must be in range (this should always be true as the 5997 * relevant instructions will UNDEF on bad shift immediates). 5998 */ 5999 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 6000 enum a64_shift_type shift_type, unsigned int shift_i) 6001 { 6002 assert(shift_i < (sf ? 64 : 32)); 6003 6004 if (shift_i == 0) { 6005 tcg_gen_mov_i64(dst, src); 6006 } else { 6007 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 6008 } 6009 } 6010 6011 /* Logical (shifted register) 6012 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 6013 * +----+-----+-----------+-------+---+------+--------+------+------+ 6014 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 6015 * +----+-----+-----------+-------+---+------+--------+------+------+ 6016 */ 6017 static void disas_logic_reg(DisasContext *s, uint32_t insn) 6018 { 6019 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 6020 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 6021 6022 sf = extract32(insn, 31, 1); 6023 opc = extract32(insn, 29, 2); 6024 shift_type = extract32(insn, 22, 2); 6025 invert = extract32(insn, 21, 1); 6026 rm = extract32(insn, 16, 5); 6027 shift_amount = extract32(insn, 10, 6); 6028 rn = extract32(insn, 5, 5); 6029 rd = extract32(insn, 0, 5); 6030 6031 if (!sf && (shift_amount & (1 << 5))) { 6032 unallocated_encoding(s); 6033 return; 6034 } 6035 6036 tcg_rd = cpu_reg(s, rd); 6037 6038 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 6039 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 6040 * register-register MOV and MVN, so it is worth special casing. 6041 */ 6042 tcg_rm = cpu_reg(s, rm); 6043 if (invert) { 6044 tcg_gen_not_i64(tcg_rd, tcg_rm); 6045 if (!sf) { 6046 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6047 } 6048 } else { 6049 if (sf) { 6050 tcg_gen_mov_i64(tcg_rd, tcg_rm); 6051 } else { 6052 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 6053 } 6054 } 6055 return; 6056 } 6057 6058 tcg_rm = read_cpu_reg(s, rm, sf); 6059 6060 if (shift_amount) { 6061 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 6062 } 6063 6064 tcg_rn = cpu_reg(s, rn); 6065 6066 switch (opc | (invert << 2)) { 6067 case 0: /* AND */ 6068 case 3: /* ANDS */ 6069 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 6070 break; 6071 case 1: /* ORR */ 6072 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 6073 break; 6074 case 2: /* EOR */ 6075 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 6076 break; 6077 case 4: /* BIC */ 6078 case 7: /* BICS */ 6079 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 6080 break; 6081 case 5: /* ORN */ 6082 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 6083 break; 6084 case 6: /* EON */ 6085 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 6086 break; 6087 default: 6088 assert(FALSE); 6089 break; 6090 } 6091 6092 if (!sf) { 6093 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6094 } 6095 6096 if (opc == 3) { 6097 gen_logic_CC(sf, tcg_rd); 6098 } 6099 } 6100 6101 /* 6102 * Add/subtract (extended register) 6103 * 6104 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 6105 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6106 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 6107 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6108 * 6109 * sf: 0 -> 32bit, 1 -> 64bit 6110 * op: 0 -> add , 1 -> sub 6111 * S: 1 -> set flags 6112 * opt: 00 6113 * option: extension type (see DecodeRegExtend) 6114 * imm3: optional shift to Rm 6115 * 6116 * Rd = Rn + LSL(extend(Rm), amount) 6117 */ 6118 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 6119 { 6120 int rd = extract32(insn, 0, 5); 6121 int rn = extract32(insn, 5, 5); 6122 int imm3 = extract32(insn, 10, 3); 6123 int option = extract32(insn, 13, 3); 6124 int rm = extract32(insn, 16, 5); 6125 int opt = extract32(insn, 22, 2); 6126 bool setflags = extract32(insn, 29, 1); 6127 bool sub_op = extract32(insn, 30, 1); 6128 bool sf = extract32(insn, 31, 1); 6129 6130 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 6131 TCGv_i64 tcg_rd; 6132 TCGv_i64 tcg_result; 6133 6134 if (imm3 > 4 || opt != 0) { 6135 unallocated_encoding(s); 6136 return; 6137 } 6138 6139 /* non-flag setting ops may use SP */ 6140 if (!setflags) { 6141 tcg_rd = cpu_reg_sp(s, rd); 6142 } else { 6143 tcg_rd = cpu_reg(s, rd); 6144 } 6145 tcg_rn = read_cpu_reg_sp(s, rn, sf); 6146 6147 tcg_rm = read_cpu_reg(s, rm, sf); 6148 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 6149 6150 tcg_result = tcg_temp_new_i64(); 6151 6152 if (!setflags) { 6153 if (sub_op) { 6154 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6155 } else { 6156 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6157 } 6158 } else { 6159 if (sub_op) { 6160 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6161 } else { 6162 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6163 } 6164 } 6165 6166 if (sf) { 6167 tcg_gen_mov_i64(tcg_rd, tcg_result); 6168 } else { 6169 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6170 } 6171 } 6172 6173 /* 6174 * Add/subtract (shifted register) 6175 * 6176 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 6177 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6178 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 6179 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6180 * 6181 * sf: 0 -> 32bit, 1 -> 64bit 6182 * op: 0 -> add , 1 -> sub 6183 * S: 1 -> set flags 6184 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 6185 * imm6: Shift amount to apply to Rm before the add/sub 6186 */ 6187 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 6188 { 6189 int rd = extract32(insn, 0, 5); 6190 int rn = extract32(insn, 5, 5); 6191 int imm6 = extract32(insn, 10, 6); 6192 int rm = extract32(insn, 16, 5); 6193 int shift_type = extract32(insn, 22, 2); 6194 bool setflags = extract32(insn, 29, 1); 6195 bool sub_op = extract32(insn, 30, 1); 6196 bool sf = extract32(insn, 31, 1); 6197 6198 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6199 TCGv_i64 tcg_rn, tcg_rm; 6200 TCGv_i64 tcg_result; 6201 6202 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 6203 unallocated_encoding(s); 6204 return; 6205 } 6206 6207 tcg_rn = read_cpu_reg(s, rn, sf); 6208 tcg_rm = read_cpu_reg(s, rm, sf); 6209 6210 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 6211 6212 tcg_result = tcg_temp_new_i64(); 6213 6214 if (!setflags) { 6215 if (sub_op) { 6216 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6217 } else { 6218 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6219 } 6220 } else { 6221 if (sub_op) { 6222 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6223 } else { 6224 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6225 } 6226 } 6227 6228 if (sf) { 6229 tcg_gen_mov_i64(tcg_rd, tcg_result); 6230 } else { 6231 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6232 } 6233 } 6234 6235 /* Data-processing (3 source) 6236 * 6237 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 6238 * +--+------+-----------+------+------+----+------+------+------+ 6239 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 6240 * +--+------+-----------+------+------+----+------+------+------+ 6241 */ 6242 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 6243 { 6244 int rd = extract32(insn, 0, 5); 6245 int rn = extract32(insn, 5, 5); 6246 int ra = extract32(insn, 10, 5); 6247 int rm = extract32(insn, 16, 5); 6248 int op_id = (extract32(insn, 29, 3) << 4) | 6249 (extract32(insn, 21, 3) << 1) | 6250 extract32(insn, 15, 1); 6251 bool sf = extract32(insn, 31, 1); 6252 bool is_sub = extract32(op_id, 0, 1); 6253 bool is_high = extract32(op_id, 2, 1); 6254 bool is_signed = false; 6255 TCGv_i64 tcg_op1; 6256 TCGv_i64 tcg_op2; 6257 TCGv_i64 tcg_tmp; 6258 6259 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 6260 switch (op_id) { 6261 case 0x42: /* SMADDL */ 6262 case 0x43: /* SMSUBL */ 6263 case 0x44: /* SMULH */ 6264 is_signed = true; 6265 break; 6266 case 0x0: /* MADD (32bit) */ 6267 case 0x1: /* MSUB (32bit) */ 6268 case 0x40: /* MADD (64bit) */ 6269 case 0x41: /* MSUB (64bit) */ 6270 case 0x4a: /* UMADDL */ 6271 case 0x4b: /* UMSUBL */ 6272 case 0x4c: /* UMULH */ 6273 break; 6274 default: 6275 unallocated_encoding(s); 6276 return; 6277 } 6278 6279 if (is_high) { 6280 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 6281 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6282 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6283 TCGv_i64 tcg_rm = cpu_reg(s, rm); 6284 6285 if (is_signed) { 6286 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 6287 } else { 6288 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 6289 } 6290 return; 6291 } 6292 6293 tcg_op1 = tcg_temp_new_i64(); 6294 tcg_op2 = tcg_temp_new_i64(); 6295 tcg_tmp = tcg_temp_new_i64(); 6296 6297 if (op_id < 0x42) { 6298 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 6299 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 6300 } else { 6301 if (is_signed) { 6302 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 6303 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 6304 } else { 6305 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 6306 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 6307 } 6308 } 6309 6310 if (ra == 31 && !is_sub) { 6311 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 6312 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 6313 } else { 6314 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 6315 if (is_sub) { 6316 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 6317 } else { 6318 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 6319 } 6320 } 6321 6322 if (!sf) { 6323 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 6324 } 6325 } 6326 6327 /* Add/subtract (with carry) 6328 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 6329 * +--+--+--+------------------------+------+-------------+------+-----+ 6330 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 6331 * +--+--+--+------------------------+------+-------------+------+-----+ 6332 */ 6333 6334 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 6335 { 6336 unsigned int sf, op, setflags, rm, rn, rd; 6337 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 6338 6339 sf = extract32(insn, 31, 1); 6340 op = extract32(insn, 30, 1); 6341 setflags = extract32(insn, 29, 1); 6342 rm = extract32(insn, 16, 5); 6343 rn = extract32(insn, 5, 5); 6344 rd = extract32(insn, 0, 5); 6345 6346 tcg_rd = cpu_reg(s, rd); 6347 tcg_rn = cpu_reg(s, rn); 6348 6349 if (op) { 6350 tcg_y = tcg_temp_new_i64(); 6351 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 6352 } else { 6353 tcg_y = cpu_reg(s, rm); 6354 } 6355 6356 if (setflags) { 6357 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 6358 } else { 6359 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 6360 } 6361 } 6362 6363 /* 6364 * Rotate right into flags 6365 * 31 30 29 21 15 10 5 4 0 6366 * +--+--+--+-----------------+--------+-----------+------+--+------+ 6367 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 6368 * +--+--+--+-----------------+--------+-----------+------+--+------+ 6369 */ 6370 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 6371 { 6372 int mask = extract32(insn, 0, 4); 6373 int o2 = extract32(insn, 4, 1); 6374 int rn = extract32(insn, 5, 5); 6375 int imm6 = extract32(insn, 15, 6); 6376 int sf_op_s = extract32(insn, 29, 3); 6377 TCGv_i64 tcg_rn; 6378 TCGv_i32 nzcv; 6379 6380 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 6381 unallocated_encoding(s); 6382 return; 6383 } 6384 6385 tcg_rn = read_cpu_reg(s, rn, 1); 6386 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 6387 6388 nzcv = tcg_temp_new_i32(); 6389 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 6390 6391 if (mask & 8) { /* N */ 6392 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 6393 } 6394 if (mask & 4) { /* Z */ 6395 tcg_gen_not_i32(cpu_ZF, nzcv); 6396 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 6397 } 6398 if (mask & 2) { /* C */ 6399 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 6400 } 6401 if (mask & 1) { /* V */ 6402 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 6403 } 6404 } 6405 6406 /* 6407 * Evaluate into flags 6408 * 31 30 29 21 15 14 10 5 4 0 6409 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6410 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 6411 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6412 */ 6413 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 6414 { 6415 int o3_mask = extract32(insn, 0, 5); 6416 int rn = extract32(insn, 5, 5); 6417 int o2 = extract32(insn, 15, 6); 6418 int sz = extract32(insn, 14, 1); 6419 int sf_op_s = extract32(insn, 29, 3); 6420 TCGv_i32 tmp; 6421 int shift; 6422 6423 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 6424 !dc_isar_feature(aa64_condm_4, s)) { 6425 unallocated_encoding(s); 6426 return; 6427 } 6428 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 6429 6430 tmp = tcg_temp_new_i32(); 6431 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 6432 tcg_gen_shli_i32(cpu_NF, tmp, shift); 6433 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 6434 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 6435 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 6436 } 6437 6438 /* Conditional compare (immediate / register) 6439 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6440 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6441 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 6442 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6443 * [1] y [0] [0] 6444 */ 6445 static void disas_cc(DisasContext *s, uint32_t insn) 6446 { 6447 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 6448 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 6449 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 6450 DisasCompare c; 6451 6452 if (!extract32(insn, 29, 1)) { 6453 unallocated_encoding(s); 6454 return; 6455 } 6456 if (insn & (1 << 10 | 1 << 4)) { 6457 unallocated_encoding(s); 6458 return; 6459 } 6460 sf = extract32(insn, 31, 1); 6461 op = extract32(insn, 30, 1); 6462 is_imm = extract32(insn, 11, 1); 6463 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 6464 cond = extract32(insn, 12, 4); 6465 rn = extract32(insn, 5, 5); 6466 nzcv = extract32(insn, 0, 4); 6467 6468 /* Set T0 = !COND. */ 6469 tcg_t0 = tcg_temp_new_i32(); 6470 arm_test_cc(&c, cond); 6471 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 6472 6473 /* Load the arguments for the new comparison. */ 6474 if (is_imm) { 6475 tcg_y = tcg_temp_new_i64(); 6476 tcg_gen_movi_i64(tcg_y, y); 6477 } else { 6478 tcg_y = cpu_reg(s, y); 6479 } 6480 tcg_rn = cpu_reg(s, rn); 6481 6482 /* Set the flags for the new comparison. */ 6483 tcg_tmp = tcg_temp_new_i64(); 6484 if (op) { 6485 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6486 } else { 6487 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6488 } 6489 6490 /* If COND was false, force the flags to #nzcv. Compute two masks 6491 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 6492 * For tcg hosts that support ANDC, we can make do with just T1. 6493 * In either case, allow the tcg optimizer to delete any unused mask. 6494 */ 6495 tcg_t1 = tcg_temp_new_i32(); 6496 tcg_t2 = tcg_temp_new_i32(); 6497 tcg_gen_neg_i32(tcg_t1, tcg_t0); 6498 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 6499 6500 if (nzcv & 8) { /* N */ 6501 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 6502 } else { 6503 if (TCG_TARGET_HAS_andc_i32) { 6504 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 6505 } else { 6506 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 6507 } 6508 } 6509 if (nzcv & 4) { /* Z */ 6510 if (TCG_TARGET_HAS_andc_i32) { 6511 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 6512 } else { 6513 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 6514 } 6515 } else { 6516 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 6517 } 6518 if (nzcv & 2) { /* C */ 6519 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 6520 } else { 6521 if (TCG_TARGET_HAS_andc_i32) { 6522 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 6523 } else { 6524 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 6525 } 6526 } 6527 if (nzcv & 1) { /* V */ 6528 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 6529 } else { 6530 if (TCG_TARGET_HAS_andc_i32) { 6531 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 6532 } else { 6533 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 6534 } 6535 } 6536 } 6537 6538 /* Conditional select 6539 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 6540 * +----+----+---+-----------------+------+------+-----+------+------+ 6541 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 6542 * +----+----+---+-----------------+------+------+-----+------+------+ 6543 */ 6544 static void disas_cond_select(DisasContext *s, uint32_t insn) 6545 { 6546 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 6547 TCGv_i64 tcg_rd, zero; 6548 DisasCompare64 c; 6549 6550 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 6551 /* S == 1 or op2<1> == 1 */ 6552 unallocated_encoding(s); 6553 return; 6554 } 6555 sf = extract32(insn, 31, 1); 6556 else_inv = extract32(insn, 30, 1); 6557 rm = extract32(insn, 16, 5); 6558 cond = extract32(insn, 12, 4); 6559 else_inc = extract32(insn, 10, 1); 6560 rn = extract32(insn, 5, 5); 6561 rd = extract32(insn, 0, 5); 6562 6563 tcg_rd = cpu_reg(s, rd); 6564 6565 a64_test_cc(&c, cond); 6566 zero = tcg_constant_i64(0); 6567 6568 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6569 /* CSET & CSETM. */ 6570 if (else_inv) { 6571 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6572 tcg_rd, c.value, zero); 6573 } else { 6574 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6575 tcg_rd, c.value, zero); 6576 } 6577 } else { 6578 TCGv_i64 t_true = cpu_reg(s, rn); 6579 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6580 if (else_inv && else_inc) { 6581 tcg_gen_neg_i64(t_false, t_false); 6582 } else if (else_inv) { 6583 tcg_gen_not_i64(t_false, t_false); 6584 } else if (else_inc) { 6585 tcg_gen_addi_i64(t_false, t_false, 1); 6586 } 6587 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6588 } 6589 6590 if (!sf) { 6591 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6592 } 6593 } 6594 6595 static void handle_clz(DisasContext *s, unsigned int sf, 6596 unsigned int rn, unsigned int rd) 6597 { 6598 TCGv_i64 tcg_rd, tcg_rn; 6599 tcg_rd = cpu_reg(s, rd); 6600 tcg_rn = cpu_reg(s, rn); 6601 6602 if (sf) { 6603 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6604 } else { 6605 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6606 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6607 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6608 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6609 } 6610 } 6611 6612 static void handle_cls(DisasContext *s, unsigned int sf, 6613 unsigned int rn, unsigned int rd) 6614 { 6615 TCGv_i64 tcg_rd, tcg_rn; 6616 tcg_rd = cpu_reg(s, rd); 6617 tcg_rn = cpu_reg(s, rn); 6618 6619 if (sf) { 6620 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6621 } else { 6622 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6623 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6624 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6625 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6626 } 6627 } 6628 6629 static void handle_rbit(DisasContext *s, unsigned int sf, 6630 unsigned int rn, unsigned int rd) 6631 { 6632 TCGv_i64 tcg_rd, tcg_rn; 6633 tcg_rd = cpu_reg(s, rd); 6634 tcg_rn = cpu_reg(s, rn); 6635 6636 if (sf) { 6637 gen_helper_rbit64(tcg_rd, tcg_rn); 6638 } else { 6639 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6640 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6641 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6642 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6643 } 6644 } 6645 6646 /* REV with sf==1, opcode==3 ("REV64") */ 6647 static void handle_rev64(DisasContext *s, unsigned int sf, 6648 unsigned int rn, unsigned int rd) 6649 { 6650 if (!sf) { 6651 unallocated_encoding(s); 6652 return; 6653 } 6654 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6655 } 6656 6657 /* REV with sf==0, opcode==2 6658 * REV32 (sf==1, opcode==2) 6659 */ 6660 static void handle_rev32(DisasContext *s, unsigned int sf, 6661 unsigned int rn, unsigned int rd) 6662 { 6663 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6664 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6665 6666 if (sf) { 6667 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6668 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6669 } else { 6670 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6671 } 6672 } 6673 6674 /* REV16 (opcode==1) */ 6675 static void handle_rev16(DisasContext *s, unsigned int sf, 6676 unsigned int rn, unsigned int rd) 6677 { 6678 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6679 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6680 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6681 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6682 6683 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6684 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6685 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6686 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6687 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6688 } 6689 6690 /* Data-processing (1 source) 6691 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6692 * +----+---+---+-----------------+---------+--------+------+------+ 6693 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6694 * +----+---+---+-----------------+---------+--------+------+------+ 6695 */ 6696 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6697 { 6698 unsigned int sf, opcode, opcode2, rn, rd; 6699 TCGv_i64 tcg_rd; 6700 6701 if (extract32(insn, 29, 1)) { 6702 unallocated_encoding(s); 6703 return; 6704 } 6705 6706 sf = extract32(insn, 31, 1); 6707 opcode = extract32(insn, 10, 6); 6708 opcode2 = extract32(insn, 16, 5); 6709 rn = extract32(insn, 5, 5); 6710 rd = extract32(insn, 0, 5); 6711 6712 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6713 6714 switch (MAP(sf, opcode2, opcode)) { 6715 case MAP(0, 0x00, 0x00): /* RBIT */ 6716 case MAP(1, 0x00, 0x00): 6717 handle_rbit(s, sf, rn, rd); 6718 break; 6719 case MAP(0, 0x00, 0x01): /* REV16 */ 6720 case MAP(1, 0x00, 0x01): 6721 handle_rev16(s, sf, rn, rd); 6722 break; 6723 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6724 case MAP(1, 0x00, 0x02): 6725 handle_rev32(s, sf, rn, rd); 6726 break; 6727 case MAP(1, 0x00, 0x03): /* REV64 */ 6728 handle_rev64(s, sf, rn, rd); 6729 break; 6730 case MAP(0, 0x00, 0x04): /* CLZ */ 6731 case MAP(1, 0x00, 0x04): 6732 handle_clz(s, sf, rn, rd); 6733 break; 6734 case MAP(0, 0x00, 0x05): /* CLS */ 6735 case MAP(1, 0x00, 0x05): 6736 handle_cls(s, sf, rn, rd); 6737 break; 6738 case MAP(1, 0x01, 0x00): /* PACIA */ 6739 if (s->pauth_active) { 6740 tcg_rd = cpu_reg(s, rd); 6741 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6742 } else if (!dc_isar_feature(aa64_pauth, s)) { 6743 goto do_unallocated; 6744 } 6745 break; 6746 case MAP(1, 0x01, 0x01): /* PACIB */ 6747 if (s->pauth_active) { 6748 tcg_rd = cpu_reg(s, rd); 6749 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6750 } else if (!dc_isar_feature(aa64_pauth, s)) { 6751 goto do_unallocated; 6752 } 6753 break; 6754 case MAP(1, 0x01, 0x02): /* PACDA */ 6755 if (s->pauth_active) { 6756 tcg_rd = cpu_reg(s, rd); 6757 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6758 } else if (!dc_isar_feature(aa64_pauth, s)) { 6759 goto do_unallocated; 6760 } 6761 break; 6762 case MAP(1, 0x01, 0x03): /* PACDB */ 6763 if (s->pauth_active) { 6764 tcg_rd = cpu_reg(s, rd); 6765 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6766 } else if (!dc_isar_feature(aa64_pauth, s)) { 6767 goto do_unallocated; 6768 } 6769 break; 6770 case MAP(1, 0x01, 0x04): /* AUTIA */ 6771 if (s->pauth_active) { 6772 tcg_rd = cpu_reg(s, rd); 6773 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6774 } else if (!dc_isar_feature(aa64_pauth, s)) { 6775 goto do_unallocated; 6776 } 6777 break; 6778 case MAP(1, 0x01, 0x05): /* AUTIB */ 6779 if (s->pauth_active) { 6780 tcg_rd = cpu_reg(s, rd); 6781 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6782 } else if (!dc_isar_feature(aa64_pauth, s)) { 6783 goto do_unallocated; 6784 } 6785 break; 6786 case MAP(1, 0x01, 0x06): /* AUTDA */ 6787 if (s->pauth_active) { 6788 tcg_rd = cpu_reg(s, rd); 6789 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6790 } else if (!dc_isar_feature(aa64_pauth, s)) { 6791 goto do_unallocated; 6792 } 6793 break; 6794 case MAP(1, 0x01, 0x07): /* AUTDB */ 6795 if (s->pauth_active) { 6796 tcg_rd = cpu_reg(s, rd); 6797 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6798 } else if (!dc_isar_feature(aa64_pauth, s)) { 6799 goto do_unallocated; 6800 } 6801 break; 6802 case MAP(1, 0x01, 0x08): /* PACIZA */ 6803 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6804 goto do_unallocated; 6805 } else if (s->pauth_active) { 6806 tcg_rd = cpu_reg(s, rd); 6807 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6808 } 6809 break; 6810 case MAP(1, 0x01, 0x09): /* PACIZB */ 6811 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6812 goto do_unallocated; 6813 } else if (s->pauth_active) { 6814 tcg_rd = cpu_reg(s, rd); 6815 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6816 } 6817 break; 6818 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6819 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6820 goto do_unallocated; 6821 } else if (s->pauth_active) { 6822 tcg_rd = cpu_reg(s, rd); 6823 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6824 } 6825 break; 6826 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6827 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6828 goto do_unallocated; 6829 } else if (s->pauth_active) { 6830 tcg_rd = cpu_reg(s, rd); 6831 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6832 } 6833 break; 6834 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6835 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6836 goto do_unallocated; 6837 } else if (s->pauth_active) { 6838 tcg_rd = cpu_reg(s, rd); 6839 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6840 } 6841 break; 6842 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6843 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6844 goto do_unallocated; 6845 } else if (s->pauth_active) { 6846 tcg_rd = cpu_reg(s, rd); 6847 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6848 } 6849 break; 6850 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6851 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6852 goto do_unallocated; 6853 } else if (s->pauth_active) { 6854 tcg_rd = cpu_reg(s, rd); 6855 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6856 } 6857 break; 6858 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6859 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6860 goto do_unallocated; 6861 } else if (s->pauth_active) { 6862 tcg_rd = cpu_reg(s, rd); 6863 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6864 } 6865 break; 6866 case MAP(1, 0x01, 0x10): /* XPACI */ 6867 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6868 goto do_unallocated; 6869 } else if (s->pauth_active) { 6870 tcg_rd = cpu_reg(s, rd); 6871 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6872 } 6873 break; 6874 case MAP(1, 0x01, 0x11): /* XPACD */ 6875 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6876 goto do_unallocated; 6877 } else if (s->pauth_active) { 6878 tcg_rd = cpu_reg(s, rd); 6879 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6880 } 6881 break; 6882 default: 6883 do_unallocated: 6884 unallocated_encoding(s); 6885 break; 6886 } 6887 6888 #undef MAP 6889 } 6890 6891 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6892 unsigned int rm, unsigned int rn, unsigned int rd) 6893 { 6894 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6895 tcg_rd = cpu_reg(s, rd); 6896 6897 if (!sf && is_signed) { 6898 tcg_n = tcg_temp_new_i64(); 6899 tcg_m = tcg_temp_new_i64(); 6900 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6901 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6902 } else { 6903 tcg_n = read_cpu_reg(s, rn, sf); 6904 tcg_m = read_cpu_reg(s, rm, sf); 6905 } 6906 6907 if (is_signed) { 6908 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6909 } else { 6910 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6911 } 6912 6913 if (!sf) { /* zero extend final result */ 6914 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6915 } 6916 } 6917 6918 /* LSLV, LSRV, ASRV, RORV */ 6919 static void handle_shift_reg(DisasContext *s, 6920 enum a64_shift_type shift_type, unsigned int sf, 6921 unsigned int rm, unsigned int rn, unsigned int rd) 6922 { 6923 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6924 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6925 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6926 6927 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6928 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6929 } 6930 6931 /* CRC32[BHWX], CRC32C[BHWX] */ 6932 static void handle_crc32(DisasContext *s, 6933 unsigned int sf, unsigned int sz, bool crc32c, 6934 unsigned int rm, unsigned int rn, unsigned int rd) 6935 { 6936 TCGv_i64 tcg_acc, tcg_val; 6937 TCGv_i32 tcg_bytes; 6938 6939 if (!dc_isar_feature(aa64_crc32, s) 6940 || (sf == 1 && sz != 3) 6941 || (sf == 0 && sz == 3)) { 6942 unallocated_encoding(s); 6943 return; 6944 } 6945 6946 if (sz == 3) { 6947 tcg_val = cpu_reg(s, rm); 6948 } else { 6949 uint64_t mask; 6950 switch (sz) { 6951 case 0: 6952 mask = 0xFF; 6953 break; 6954 case 1: 6955 mask = 0xFFFF; 6956 break; 6957 case 2: 6958 mask = 0xFFFFFFFF; 6959 break; 6960 default: 6961 g_assert_not_reached(); 6962 } 6963 tcg_val = tcg_temp_new_i64(); 6964 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6965 } 6966 6967 tcg_acc = cpu_reg(s, rn); 6968 tcg_bytes = tcg_constant_i32(1 << sz); 6969 6970 if (crc32c) { 6971 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6972 } else { 6973 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6974 } 6975 } 6976 6977 /* Data-processing (2 source) 6978 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6979 * +----+---+---+-----------------+------+--------+------+------+ 6980 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6981 * +----+---+---+-----------------+------+--------+------+------+ 6982 */ 6983 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6984 { 6985 unsigned int sf, rm, opcode, rn, rd, setflag; 6986 sf = extract32(insn, 31, 1); 6987 setflag = extract32(insn, 29, 1); 6988 rm = extract32(insn, 16, 5); 6989 opcode = extract32(insn, 10, 6); 6990 rn = extract32(insn, 5, 5); 6991 rd = extract32(insn, 0, 5); 6992 6993 if (setflag && opcode != 0) { 6994 unallocated_encoding(s); 6995 return; 6996 } 6997 6998 switch (opcode) { 6999 case 0: /* SUBP(S) */ 7000 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7001 goto do_unallocated; 7002 } else { 7003 TCGv_i64 tcg_n, tcg_m, tcg_d; 7004 7005 tcg_n = read_cpu_reg_sp(s, rn, true); 7006 tcg_m = read_cpu_reg_sp(s, rm, true); 7007 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 7008 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 7009 tcg_d = cpu_reg(s, rd); 7010 7011 if (setflag) { 7012 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 7013 } else { 7014 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 7015 } 7016 } 7017 break; 7018 case 2: /* UDIV */ 7019 handle_div(s, false, sf, rm, rn, rd); 7020 break; 7021 case 3: /* SDIV */ 7022 handle_div(s, true, sf, rm, rn, rd); 7023 break; 7024 case 4: /* IRG */ 7025 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7026 goto do_unallocated; 7027 } 7028 if (s->ata[0]) { 7029 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 7030 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 7031 } else { 7032 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 7033 cpu_reg_sp(s, rn)); 7034 } 7035 break; 7036 case 5: /* GMI */ 7037 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 7038 goto do_unallocated; 7039 } else { 7040 TCGv_i64 t = tcg_temp_new_i64(); 7041 7042 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 7043 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 7044 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 7045 } 7046 break; 7047 case 8: /* LSLV */ 7048 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 7049 break; 7050 case 9: /* LSRV */ 7051 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 7052 break; 7053 case 10: /* ASRV */ 7054 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 7055 break; 7056 case 11: /* RORV */ 7057 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 7058 break; 7059 case 12: /* PACGA */ 7060 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 7061 goto do_unallocated; 7062 } 7063 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 7064 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 7065 break; 7066 case 16: 7067 case 17: 7068 case 18: 7069 case 19: 7070 case 20: 7071 case 21: 7072 case 22: 7073 case 23: /* CRC32 */ 7074 { 7075 int sz = extract32(opcode, 0, 2); 7076 bool crc32c = extract32(opcode, 2, 1); 7077 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 7078 break; 7079 } 7080 default: 7081 do_unallocated: 7082 unallocated_encoding(s); 7083 break; 7084 } 7085 } 7086 7087 /* 7088 * Data processing - register 7089 * 31 30 29 28 25 21 20 16 10 0 7090 * +--+---+--+---+-------+-----+-------+-------+---------+ 7091 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 7092 * +--+---+--+---+-------+-----+-------+-------+---------+ 7093 */ 7094 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 7095 { 7096 int op0 = extract32(insn, 30, 1); 7097 int op1 = extract32(insn, 28, 1); 7098 int op2 = extract32(insn, 21, 4); 7099 int op3 = extract32(insn, 10, 6); 7100 7101 if (!op1) { 7102 if (op2 & 8) { 7103 if (op2 & 1) { 7104 /* Add/sub (extended register) */ 7105 disas_add_sub_ext_reg(s, insn); 7106 } else { 7107 /* Add/sub (shifted register) */ 7108 disas_add_sub_reg(s, insn); 7109 } 7110 } else { 7111 /* Logical (shifted register) */ 7112 disas_logic_reg(s, insn); 7113 } 7114 return; 7115 } 7116 7117 switch (op2) { 7118 case 0x0: 7119 switch (op3) { 7120 case 0x00: /* Add/subtract (with carry) */ 7121 disas_adc_sbc(s, insn); 7122 break; 7123 7124 case 0x01: /* Rotate right into flags */ 7125 case 0x21: 7126 disas_rotate_right_into_flags(s, insn); 7127 break; 7128 7129 case 0x02: /* Evaluate into flags */ 7130 case 0x12: 7131 case 0x22: 7132 case 0x32: 7133 disas_evaluate_into_flags(s, insn); 7134 break; 7135 7136 default: 7137 goto do_unallocated; 7138 } 7139 break; 7140 7141 case 0x2: /* Conditional compare */ 7142 disas_cc(s, insn); /* both imm and reg forms */ 7143 break; 7144 7145 case 0x4: /* Conditional select */ 7146 disas_cond_select(s, insn); 7147 break; 7148 7149 case 0x6: /* Data-processing */ 7150 if (op0) { /* (1 source) */ 7151 disas_data_proc_1src(s, insn); 7152 } else { /* (2 source) */ 7153 disas_data_proc_2src(s, insn); 7154 } 7155 break; 7156 case 0x8 ... 0xf: /* (3 source) */ 7157 disas_data_proc_3src(s, insn); 7158 break; 7159 7160 default: 7161 do_unallocated: 7162 unallocated_encoding(s); 7163 break; 7164 } 7165 } 7166 7167 static void handle_fp_compare(DisasContext *s, int size, 7168 unsigned int rn, unsigned int rm, 7169 bool cmp_with_zero, bool signal_all_nans) 7170 { 7171 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 7172 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7173 7174 if (size == MO_64) { 7175 TCGv_i64 tcg_vn, tcg_vm; 7176 7177 tcg_vn = read_fp_dreg(s, rn); 7178 if (cmp_with_zero) { 7179 tcg_vm = tcg_constant_i64(0); 7180 } else { 7181 tcg_vm = read_fp_dreg(s, rm); 7182 } 7183 if (signal_all_nans) { 7184 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7185 } else { 7186 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7187 } 7188 } else { 7189 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 7190 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 7191 7192 read_vec_element_i32(s, tcg_vn, rn, 0, size); 7193 if (cmp_with_zero) { 7194 tcg_gen_movi_i32(tcg_vm, 0); 7195 } else { 7196 read_vec_element_i32(s, tcg_vm, rm, 0, size); 7197 } 7198 7199 switch (size) { 7200 case MO_32: 7201 if (signal_all_nans) { 7202 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7203 } else { 7204 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7205 } 7206 break; 7207 case MO_16: 7208 if (signal_all_nans) { 7209 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7210 } else { 7211 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7212 } 7213 break; 7214 default: 7215 g_assert_not_reached(); 7216 } 7217 } 7218 7219 gen_set_nzcv(tcg_flags); 7220 } 7221 7222 /* Floating point compare 7223 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 7224 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7225 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 7226 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7227 */ 7228 static void disas_fp_compare(DisasContext *s, uint32_t insn) 7229 { 7230 unsigned int mos, type, rm, op, rn, opc, op2r; 7231 int size; 7232 7233 mos = extract32(insn, 29, 3); 7234 type = extract32(insn, 22, 2); 7235 rm = extract32(insn, 16, 5); 7236 op = extract32(insn, 14, 2); 7237 rn = extract32(insn, 5, 5); 7238 opc = extract32(insn, 3, 2); 7239 op2r = extract32(insn, 0, 3); 7240 7241 if (mos || op || op2r) { 7242 unallocated_encoding(s); 7243 return; 7244 } 7245 7246 switch (type) { 7247 case 0: 7248 size = MO_32; 7249 break; 7250 case 1: 7251 size = MO_64; 7252 break; 7253 case 3: 7254 size = MO_16; 7255 if (dc_isar_feature(aa64_fp16, s)) { 7256 break; 7257 } 7258 /* fallthru */ 7259 default: 7260 unallocated_encoding(s); 7261 return; 7262 } 7263 7264 if (!fp_access_check(s)) { 7265 return; 7266 } 7267 7268 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 7269 } 7270 7271 /* Floating point conditional compare 7272 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 7273 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7274 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 7275 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7276 */ 7277 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 7278 { 7279 unsigned int mos, type, rm, cond, rn, op, nzcv; 7280 TCGLabel *label_continue = NULL; 7281 int size; 7282 7283 mos = extract32(insn, 29, 3); 7284 type = extract32(insn, 22, 2); 7285 rm = extract32(insn, 16, 5); 7286 cond = extract32(insn, 12, 4); 7287 rn = extract32(insn, 5, 5); 7288 op = extract32(insn, 4, 1); 7289 nzcv = extract32(insn, 0, 4); 7290 7291 if (mos) { 7292 unallocated_encoding(s); 7293 return; 7294 } 7295 7296 switch (type) { 7297 case 0: 7298 size = MO_32; 7299 break; 7300 case 1: 7301 size = MO_64; 7302 break; 7303 case 3: 7304 size = MO_16; 7305 if (dc_isar_feature(aa64_fp16, s)) { 7306 break; 7307 } 7308 /* fallthru */ 7309 default: 7310 unallocated_encoding(s); 7311 return; 7312 } 7313 7314 if (!fp_access_check(s)) { 7315 return; 7316 } 7317 7318 if (cond < 0x0e) { /* not always */ 7319 TCGLabel *label_match = gen_new_label(); 7320 label_continue = gen_new_label(); 7321 arm_gen_test_cc(cond, label_match); 7322 /* nomatch: */ 7323 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 7324 tcg_gen_br(label_continue); 7325 gen_set_label(label_match); 7326 } 7327 7328 handle_fp_compare(s, size, rn, rm, false, op); 7329 7330 if (cond < 0x0e) { 7331 gen_set_label(label_continue); 7332 } 7333 } 7334 7335 /* Floating point conditional select 7336 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 7337 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 7338 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 7339 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 7340 */ 7341 static void disas_fp_csel(DisasContext *s, uint32_t insn) 7342 { 7343 unsigned int mos, type, rm, cond, rn, rd; 7344 TCGv_i64 t_true, t_false; 7345 DisasCompare64 c; 7346 MemOp sz; 7347 7348 mos = extract32(insn, 29, 3); 7349 type = extract32(insn, 22, 2); 7350 rm = extract32(insn, 16, 5); 7351 cond = extract32(insn, 12, 4); 7352 rn = extract32(insn, 5, 5); 7353 rd = extract32(insn, 0, 5); 7354 7355 if (mos) { 7356 unallocated_encoding(s); 7357 return; 7358 } 7359 7360 switch (type) { 7361 case 0: 7362 sz = MO_32; 7363 break; 7364 case 1: 7365 sz = MO_64; 7366 break; 7367 case 3: 7368 sz = MO_16; 7369 if (dc_isar_feature(aa64_fp16, s)) { 7370 break; 7371 } 7372 /* fallthru */ 7373 default: 7374 unallocated_encoding(s); 7375 return; 7376 } 7377 7378 if (!fp_access_check(s)) { 7379 return; 7380 } 7381 7382 /* Zero extend sreg & hreg inputs to 64 bits now. */ 7383 t_true = tcg_temp_new_i64(); 7384 t_false = tcg_temp_new_i64(); 7385 read_vec_element(s, t_true, rn, 0, sz); 7386 read_vec_element(s, t_false, rm, 0, sz); 7387 7388 a64_test_cc(&c, cond); 7389 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 7390 t_true, t_false); 7391 7392 /* Note that sregs & hregs write back zeros to the high bits, 7393 and we've already done the zero-extension. */ 7394 write_fp_dreg(s, rd, t_true); 7395 } 7396 7397 /* Floating-point data-processing (1 source) - half precision */ 7398 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 7399 { 7400 TCGv_ptr fpst = NULL; 7401 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 7402 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7403 7404 switch (opcode) { 7405 case 0x0: /* FMOV */ 7406 tcg_gen_mov_i32(tcg_res, tcg_op); 7407 break; 7408 case 0x1: /* FABS */ 7409 gen_vfp_absh(tcg_res, tcg_op); 7410 break; 7411 case 0x2: /* FNEG */ 7412 gen_vfp_negh(tcg_res, tcg_op); 7413 break; 7414 case 0x3: /* FSQRT */ 7415 fpst = fpstatus_ptr(FPST_FPCR_F16); 7416 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 7417 break; 7418 case 0x8: /* FRINTN */ 7419 case 0x9: /* FRINTP */ 7420 case 0xa: /* FRINTM */ 7421 case 0xb: /* FRINTZ */ 7422 case 0xc: /* FRINTA */ 7423 { 7424 TCGv_i32 tcg_rmode; 7425 7426 fpst = fpstatus_ptr(FPST_FPCR_F16); 7427 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 7428 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7429 gen_restore_rmode(tcg_rmode, fpst); 7430 break; 7431 } 7432 case 0xe: /* FRINTX */ 7433 fpst = fpstatus_ptr(FPST_FPCR_F16); 7434 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 7435 break; 7436 case 0xf: /* FRINTI */ 7437 fpst = fpstatus_ptr(FPST_FPCR_F16); 7438 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7439 break; 7440 default: 7441 g_assert_not_reached(); 7442 } 7443 7444 write_fp_sreg(s, rd, tcg_res); 7445 } 7446 7447 /* Floating-point data-processing (1 source) - single precision */ 7448 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 7449 { 7450 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 7451 TCGv_i32 tcg_op, tcg_res; 7452 TCGv_ptr fpst; 7453 int rmode = -1; 7454 7455 tcg_op = read_fp_sreg(s, rn); 7456 tcg_res = tcg_temp_new_i32(); 7457 7458 switch (opcode) { 7459 case 0x0: /* FMOV */ 7460 tcg_gen_mov_i32(tcg_res, tcg_op); 7461 goto done; 7462 case 0x1: /* FABS */ 7463 gen_vfp_abss(tcg_res, tcg_op); 7464 goto done; 7465 case 0x2: /* FNEG */ 7466 gen_vfp_negs(tcg_res, tcg_op); 7467 goto done; 7468 case 0x3: /* FSQRT */ 7469 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 7470 goto done; 7471 case 0x6: /* BFCVT */ 7472 gen_fpst = gen_helper_bfcvt; 7473 break; 7474 case 0x8: /* FRINTN */ 7475 case 0x9: /* FRINTP */ 7476 case 0xa: /* FRINTM */ 7477 case 0xb: /* FRINTZ */ 7478 case 0xc: /* FRINTA */ 7479 rmode = opcode & 7; 7480 gen_fpst = gen_helper_rints; 7481 break; 7482 case 0xe: /* FRINTX */ 7483 gen_fpst = gen_helper_rints_exact; 7484 break; 7485 case 0xf: /* FRINTI */ 7486 gen_fpst = gen_helper_rints; 7487 break; 7488 case 0x10: /* FRINT32Z */ 7489 rmode = FPROUNDING_ZERO; 7490 gen_fpst = gen_helper_frint32_s; 7491 break; 7492 case 0x11: /* FRINT32X */ 7493 gen_fpst = gen_helper_frint32_s; 7494 break; 7495 case 0x12: /* FRINT64Z */ 7496 rmode = FPROUNDING_ZERO; 7497 gen_fpst = gen_helper_frint64_s; 7498 break; 7499 case 0x13: /* FRINT64X */ 7500 gen_fpst = gen_helper_frint64_s; 7501 break; 7502 default: 7503 g_assert_not_reached(); 7504 } 7505 7506 fpst = fpstatus_ptr(FPST_FPCR); 7507 if (rmode >= 0) { 7508 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7509 gen_fpst(tcg_res, tcg_op, fpst); 7510 gen_restore_rmode(tcg_rmode, fpst); 7511 } else { 7512 gen_fpst(tcg_res, tcg_op, fpst); 7513 } 7514 7515 done: 7516 write_fp_sreg(s, rd, tcg_res); 7517 } 7518 7519 /* Floating-point data-processing (1 source) - double precision */ 7520 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 7521 { 7522 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 7523 TCGv_i64 tcg_op, tcg_res; 7524 TCGv_ptr fpst; 7525 int rmode = -1; 7526 7527 switch (opcode) { 7528 case 0x0: /* FMOV */ 7529 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 7530 return; 7531 } 7532 7533 tcg_op = read_fp_dreg(s, rn); 7534 tcg_res = tcg_temp_new_i64(); 7535 7536 switch (opcode) { 7537 case 0x1: /* FABS */ 7538 gen_vfp_absd(tcg_res, tcg_op); 7539 goto done; 7540 case 0x2: /* FNEG */ 7541 gen_vfp_negd(tcg_res, tcg_op); 7542 goto done; 7543 case 0x3: /* FSQRT */ 7544 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 7545 goto done; 7546 case 0x8: /* FRINTN */ 7547 case 0x9: /* FRINTP */ 7548 case 0xa: /* FRINTM */ 7549 case 0xb: /* FRINTZ */ 7550 case 0xc: /* FRINTA */ 7551 rmode = opcode & 7; 7552 gen_fpst = gen_helper_rintd; 7553 break; 7554 case 0xe: /* FRINTX */ 7555 gen_fpst = gen_helper_rintd_exact; 7556 break; 7557 case 0xf: /* FRINTI */ 7558 gen_fpst = gen_helper_rintd; 7559 break; 7560 case 0x10: /* FRINT32Z */ 7561 rmode = FPROUNDING_ZERO; 7562 gen_fpst = gen_helper_frint32_d; 7563 break; 7564 case 0x11: /* FRINT32X */ 7565 gen_fpst = gen_helper_frint32_d; 7566 break; 7567 case 0x12: /* FRINT64Z */ 7568 rmode = FPROUNDING_ZERO; 7569 gen_fpst = gen_helper_frint64_d; 7570 break; 7571 case 0x13: /* FRINT64X */ 7572 gen_fpst = gen_helper_frint64_d; 7573 break; 7574 default: 7575 g_assert_not_reached(); 7576 } 7577 7578 fpst = fpstatus_ptr(FPST_FPCR); 7579 if (rmode >= 0) { 7580 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7581 gen_fpst(tcg_res, tcg_op, fpst); 7582 gen_restore_rmode(tcg_rmode, fpst); 7583 } else { 7584 gen_fpst(tcg_res, tcg_op, fpst); 7585 } 7586 7587 done: 7588 write_fp_dreg(s, rd, tcg_res); 7589 } 7590 7591 static void handle_fp_fcvt(DisasContext *s, int opcode, 7592 int rd, int rn, int dtype, int ntype) 7593 { 7594 switch (ntype) { 7595 case 0x0: 7596 { 7597 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7598 if (dtype == 1) { 7599 /* Single to double */ 7600 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7601 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7602 write_fp_dreg(s, rd, tcg_rd); 7603 } else { 7604 /* Single to half */ 7605 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7606 TCGv_i32 ahp = get_ahp_flag(); 7607 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7608 7609 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7610 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7611 write_fp_sreg(s, rd, tcg_rd); 7612 } 7613 break; 7614 } 7615 case 0x1: 7616 { 7617 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7618 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7619 if (dtype == 0) { 7620 /* Double to single */ 7621 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7622 } else { 7623 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7624 TCGv_i32 ahp = get_ahp_flag(); 7625 /* Double to half */ 7626 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7627 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7628 } 7629 write_fp_sreg(s, rd, tcg_rd); 7630 break; 7631 } 7632 case 0x3: 7633 { 7634 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7635 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7636 TCGv_i32 tcg_ahp = get_ahp_flag(); 7637 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7638 if (dtype == 0) { 7639 /* Half to single */ 7640 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7641 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7642 write_fp_sreg(s, rd, tcg_rd); 7643 } else { 7644 /* Half to double */ 7645 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7646 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7647 write_fp_dreg(s, rd, tcg_rd); 7648 } 7649 break; 7650 } 7651 default: 7652 g_assert_not_reached(); 7653 } 7654 } 7655 7656 /* Floating point data-processing (1 source) 7657 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7658 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7659 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7660 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7661 */ 7662 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7663 { 7664 int mos = extract32(insn, 29, 3); 7665 int type = extract32(insn, 22, 2); 7666 int opcode = extract32(insn, 15, 6); 7667 int rn = extract32(insn, 5, 5); 7668 int rd = extract32(insn, 0, 5); 7669 7670 if (mos) { 7671 goto do_unallocated; 7672 } 7673 7674 switch (opcode) { 7675 case 0x4: case 0x5: case 0x7: 7676 { 7677 /* FCVT between half, single and double precision */ 7678 int dtype = extract32(opcode, 0, 2); 7679 if (type == 2 || dtype == type) { 7680 goto do_unallocated; 7681 } 7682 if (!fp_access_check(s)) { 7683 return; 7684 } 7685 7686 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7687 break; 7688 } 7689 7690 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7691 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7692 goto do_unallocated; 7693 } 7694 /* fall through */ 7695 case 0x0 ... 0x3: 7696 case 0x8 ... 0xc: 7697 case 0xe ... 0xf: 7698 /* 32-to-32 and 64-to-64 ops */ 7699 switch (type) { 7700 case 0: 7701 if (!fp_access_check(s)) { 7702 return; 7703 } 7704 handle_fp_1src_single(s, opcode, rd, rn); 7705 break; 7706 case 1: 7707 if (!fp_access_check(s)) { 7708 return; 7709 } 7710 handle_fp_1src_double(s, opcode, rd, rn); 7711 break; 7712 case 3: 7713 if (!dc_isar_feature(aa64_fp16, s)) { 7714 goto do_unallocated; 7715 } 7716 7717 if (!fp_access_check(s)) { 7718 return; 7719 } 7720 handle_fp_1src_half(s, opcode, rd, rn); 7721 break; 7722 default: 7723 goto do_unallocated; 7724 } 7725 break; 7726 7727 case 0x6: 7728 switch (type) { 7729 case 1: /* BFCVT */ 7730 if (!dc_isar_feature(aa64_bf16, s)) { 7731 goto do_unallocated; 7732 } 7733 if (!fp_access_check(s)) { 7734 return; 7735 } 7736 handle_fp_1src_single(s, opcode, rd, rn); 7737 break; 7738 default: 7739 goto do_unallocated; 7740 } 7741 break; 7742 7743 default: 7744 do_unallocated: 7745 unallocated_encoding(s); 7746 break; 7747 } 7748 } 7749 7750 /* Floating point immediate 7751 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7752 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7753 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7754 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7755 */ 7756 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7757 { 7758 int rd = extract32(insn, 0, 5); 7759 int imm5 = extract32(insn, 5, 5); 7760 int imm8 = extract32(insn, 13, 8); 7761 int type = extract32(insn, 22, 2); 7762 int mos = extract32(insn, 29, 3); 7763 uint64_t imm; 7764 MemOp sz; 7765 7766 if (mos || imm5) { 7767 unallocated_encoding(s); 7768 return; 7769 } 7770 7771 switch (type) { 7772 case 0: 7773 sz = MO_32; 7774 break; 7775 case 1: 7776 sz = MO_64; 7777 break; 7778 case 3: 7779 sz = MO_16; 7780 if (dc_isar_feature(aa64_fp16, s)) { 7781 break; 7782 } 7783 /* fallthru */ 7784 default: 7785 unallocated_encoding(s); 7786 return; 7787 } 7788 7789 if (!fp_access_check(s)) { 7790 return; 7791 } 7792 7793 imm = vfp_expand_imm(sz, imm8); 7794 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7795 } 7796 7797 /* Handle floating point <=> fixed point conversions. Note that we can 7798 * also deal with fp <=> integer conversions as a special case (scale == 64) 7799 * OPTME: consider handling that special case specially or at least skipping 7800 * the call to scalbn in the helpers for zero shifts. 7801 */ 7802 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7803 bool itof, int rmode, int scale, int sf, int type) 7804 { 7805 bool is_signed = !(opcode & 1); 7806 TCGv_ptr tcg_fpstatus; 7807 TCGv_i32 tcg_shift, tcg_single; 7808 TCGv_i64 tcg_double; 7809 7810 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7811 7812 tcg_shift = tcg_constant_i32(64 - scale); 7813 7814 if (itof) { 7815 TCGv_i64 tcg_int = cpu_reg(s, rn); 7816 if (!sf) { 7817 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7818 7819 if (is_signed) { 7820 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7821 } else { 7822 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7823 } 7824 7825 tcg_int = tcg_extend; 7826 } 7827 7828 switch (type) { 7829 case 1: /* float64 */ 7830 tcg_double = tcg_temp_new_i64(); 7831 if (is_signed) { 7832 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7833 tcg_shift, tcg_fpstatus); 7834 } else { 7835 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7836 tcg_shift, tcg_fpstatus); 7837 } 7838 write_fp_dreg(s, rd, tcg_double); 7839 break; 7840 7841 case 0: /* float32 */ 7842 tcg_single = tcg_temp_new_i32(); 7843 if (is_signed) { 7844 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7845 tcg_shift, tcg_fpstatus); 7846 } else { 7847 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7848 tcg_shift, tcg_fpstatus); 7849 } 7850 write_fp_sreg(s, rd, tcg_single); 7851 break; 7852 7853 case 3: /* float16 */ 7854 tcg_single = tcg_temp_new_i32(); 7855 if (is_signed) { 7856 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7857 tcg_shift, tcg_fpstatus); 7858 } else { 7859 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7860 tcg_shift, tcg_fpstatus); 7861 } 7862 write_fp_sreg(s, rd, tcg_single); 7863 break; 7864 7865 default: 7866 g_assert_not_reached(); 7867 } 7868 } else { 7869 TCGv_i64 tcg_int = cpu_reg(s, rd); 7870 TCGv_i32 tcg_rmode; 7871 7872 if (extract32(opcode, 2, 1)) { 7873 /* There are too many rounding modes to all fit into rmode, 7874 * so FCVTA[US] is a special case. 7875 */ 7876 rmode = FPROUNDING_TIEAWAY; 7877 } 7878 7879 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7880 7881 switch (type) { 7882 case 1: /* float64 */ 7883 tcg_double = read_fp_dreg(s, rn); 7884 if (is_signed) { 7885 if (!sf) { 7886 gen_helper_vfp_tosld(tcg_int, tcg_double, 7887 tcg_shift, tcg_fpstatus); 7888 } else { 7889 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7890 tcg_shift, tcg_fpstatus); 7891 } 7892 } else { 7893 if (!sf) { 7894 gen_helper_vfp_tould(tcg_int, tcg_double, 7895 tcg_shift, tcg_fpstatus); 7896 } else { 7897 gen_helper_vfp_touqd(tcg_int, tcg_double, 7898 tcg_shift, tcg_fpstatus); 7899 } 7900 } 7901 if (!sf) { 7902 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7903 } 7904 break; 7905 7906 case 0: /* float32 */ 7907 tcg_single = read_fp_sreg(s, rn); 7908 if (sf) { 7909 if (is_signed) { 7910 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7911 tcg_shift, tcg_fpstatus); 7912 } else { 7913 gen_helper_vfp_touqs(tcg_int, tcg_single, 7914 tcg_shift, tcg_fpstatus); 7915 } 7916 } else { 7917 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7918 if (is_signed) { 7919 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7920 tcg_shift, tcg_fpstatus); 7921 } else { 7922 gen_helper_vfp_touls(tcg_dest, tcg_single, 7923 tcg_shift, tcg_fpstatus); 7924 } 7925 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7926 } 7927 break; 7928 7929 case 3: /* float16 */ 7930 tcg_single = read_fp_sreg(s, rn); 7931 if (sf) { 7932 if (is_signed) { 7933 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7934 tcg_shift, tcg_fpstatus); 7935 } else { 7936 gen_helper_vfp_touqh(tcg_int, tcg_single, 7937 tcg_shift, tcg_fpstatus); 7938 } 7939 } else { 7940 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7941 if (is_signed) { 7942 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7943 tcg_shift, tcg_fpstatus); 7944 } else { 7945 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7946 tcg_shift, tcg_fpstatus); 7947 } 7948 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7949 } 7950 break; 7951 7952 default: 7953 g_assert_not_reached(); 7954 } 7955 7956 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7957 } 7958 } 7959 7960 /* Floating point <-> fixed point conversions 7961 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7962 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7963 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7964 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7965 */ 7966 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7967 { 7968 int rd = extract32(insn, 0, 5); 7969 int rn = extract32(insn, 5, 5); 7970 int scale = extract32(insn, 10, 6); 7971 int opcode = extract32(insn, 16, 3); 7972 int rmode = extract32(insn, 19, 2); 7973 int type = extract32(insn, 22, 2); 7974 bool sbit = extract32(insn, 29, 1); 7975 bool sf = extract32(insn, 31, 1); 7976 bool itof; 7977 7978 if (sbit || (!sf && scale < 32)) { 7979 unallocated_encoding(s); 7980 return; 7981 } 7982 7983 switch (type) { 7984 case 0: /* float32 */ 7985 case 1: /* float64 */ 7986 break; 7987 case 3: /* float16 */ 7988 if (dc_isar_feature(aa64_fp16, s)) { 7989 break; 7990 } 7991 /* fallthru */ 7992 default: 7993 unallocated_encoding(s); 7994 return; 7995 } 7996 7997 switch ((rmode << 3) | opcode) { 7998 case 0x2: /* SCVTF */ 7999 case 0x3: /* UCVTF */ 8000 itof = true; 8001 break; 8002 case 0x18: /* FCVTZS */ 8003 case 0x19: /* FCVTZU */ 8004 itof = false; 8005 break; 8006 default: 8007 unallocated_encoding(s); 8008 return; 8009 } 8010 8011 if (!fp_access_check(s)) { 8012 return; 8013 } 8014 8015 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 8016 } 8017 8018 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 8019 { 8020 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 8021 * without conversion. 8022 */ 8023 8024 if (itof) { 8025 TCGv_i64 tcg_rn = cpu_reg(s, rn); 8026 TCGv_i64 tmp; 8027 8028 switch (type) { 8029 case 0: 8030 /* 32 bit */ 8031 tmp = tcg_temp_new_i64(); 8032 tcg_gen_ext32u_i64(tmp, tcg_rn); 8033 write_fp_dreg(s, rd, tmp); 8034 break; 8035 case 1: 8036 /* 64 bit */ 8037 write_fp_dreg(s, rd, tcg_rn); 8038 break; 8039 case 2: 8040 /* 64 bit to top half. */ 8041 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 8042 clear_vec_high(s, true, rd); 8043 break; 8044 case 3: 8045 /* 16 bit */ 8046 tmp = tcg_temp_new_i64(); 8047 tcg_gen_ext16u_i64(tmp, tcg_rn); 8048 write_fp_dreg(s, rd, tmp); 8049 break; 8050 default: 8051 g_assert_not_reached(); 8052 } 8053 } else { 8054 TCGv_i64 tcg_rd = cpu_reg(s, rd); 8055 8056 switch (type) { 8057 case 0: 8058 /* 32 bit */ 8059 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 8060 break; 8061 case 1: 8062 /* 64 bit */ 8063 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 8064 break; 8065 case 2: 8066 /* 64 bits from top half */ 8067 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 8068 break; 8069 case 3: 8070 /* 16 bit */ 8071 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 8072 break; 8073 default: 8074 g_assert_not_reached(); 8075 } 8076 } 8077 } 8078 8079 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 8080 { 8081 TCGv_i64 t = read_fp_dreg(s, rn); 8082 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 8083 8084 gen_helper_fjcvtzs(t, t, fpstatus); 8085 8086 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 8087 tcg_gen_extrh_i64_i32(cpu_ZF, t); 8088 tcg_gen_movi_i32(cpu_CF, 0); 8089 tcg_gen_movi_i32(cpu_NF, 0); 8090 tcg_gen_movi_i32(cpu_VF, 0); 8091 } 8092 8093 /* Floating point <-> integer conversions 8094 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 8095 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8096 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 8097 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8098 */ 8099 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 8100 { 8101 int rd = extract32(insn, 0, 5); 8102 int rn = extract32(insn, 5, 5); 8103 int opcode = extract32(insn, 16, 3); 8104 int rmode = extract32(insn, 19, 2); 8105 int type = extract32(insn, 22, 2); 8106 bool sbit = extract32(insn, 29, 1); 8107 bool sf = extract32(insn, 31, 1); 8108 bool itof = false; 8109 8110 if (sbit) { 8111 goto do_unallocated; 8112 } 8113 8114 switch (opcode) { 8115 case 2: /* SCVTF */ 8116 case 3: /* UCVTF */ 8117 itof = true; 8118 /* fallthru */ 8119 case 4: /* FCVTAS */ 8120 case 5: /* FCVTAU */ 8121 if (rmode != 0) { 8122 goto do_unallocated; 8123 } 8124 /* fallthru */ 8125 case 0: /* FCVT[NPMZ]S */ 8126 case 1: /* FCVT[NPMZ]U */ 8127 switch (type) { 8128 case 0: /* float32 */ 8129 case 1: /* float64 */ 8130 break; 8131 case 3: /* float16 */ 8132 if (!dc_isar_feature(aa64_fp16, s)) { 8133 goto do_unallocated; 8134 } 8135 break; 8136 default: 8137 goto do_unallocated; 8138 } 8139 if (!fp_access_check(s)) { 8140 return; 8141 } 8142 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 8143 break; 8144 8145 default: 8146 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 8147 case 0b01100110: /* FMOV half <-> 32-bit int */ 8148 case 0b01100111: 8149 case 0b11100110: /* FMOV half <-> 64-bit int */ 8150 case 0b11100111: 8151 if (!dc_isar_feature(aa64_fp16, s)) { 8152 goto do_unallocated; 8153 } 8154 /* fallthru */ 8155 case 0b00000110: /* FMOV 32-bit */ 8156 case 0b00000111: 8157 case 0b10100110: /* FMOV 64-bit */ 8158 case 0b10100111: 8159 case 0b11001110: /* FMOV top half of 128-bit */ 8160 case 0b11001111: 8161 if (!fp_access_check(s)) { 8162 return; 8163 } 8164 itof = opcode & 1; 8165 handle_fmov(s, rd, rn, type, itof); 8166 break; 8167 8168 case 0b00111110: /* FJCVTZS */ 8169 if (!dc_isar_feature(aa64_jscvt, s)) { 8170 goto do_unallocated; 8171 } else if (fp_access_check(s)) { 8172 handle_fjcvtzs(s, rd, rn); 8173 } 8174 break; 8175 8176 default: 8177 do_unallocated: 8178 unallocated_encoding(s); 8179 return; 8180 } 8181 break; 8182 } 8183 } 8184 8185 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 8186 * 31 30 29 28 25 24 0 8187 * +---+---+---+---------+-----------------------------+ 8188 * | | 0 | | 1 1 1 1 | | 8189 * +---+---+---+---------+-----------------------------+ 8190 */ 8191 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 8192 { 8193 if (extract32(insn, 24, 1)) { 8194 unallocated_encoding(s); /* in decodetree */ 8195 } else if (extract32(insn, 21, 1) == 0) { 8196 /* Floating point to fixed point conversions */ 8197 disas_fp_fixed_conv(s, insn); 8198 } else { 8199 switch (extract32(insn, 10, 2)) { 8200 case 1: 8201 /* Floating point conditional compare */ 8202 disas_fp_ccomp(s, insn); 8203 break; 8204 case 2: 8205 /* Floating point data-processing (2 source) */ 8206 unallocated_encoding(s); /* in decodetree */ 8207 break; 8208 case 3: 8209 /* Floating point conditional select */ 8210 disas_fp_csel(s, insn); 8211 break; 8212 case 0: 8213 switch (ctz32(extract32(insn, 12, 4))) { 8214 case 0: /* [15:12] == xxx1 */ 8215 /* Floating point immediate */ 8216 disas_fp_imm(s, insn); 8217 break; 8218 case 1: /* [15:12] == xx10 */ 8219 /* Floating point compare */ 8220 disas_fp_compare(s, insn); 8221 break; 8222 case 2: /* [15:12] == x100 */ 8223 /* Floating point data-processing (1 source) */ 8224 disas_fp_1src(s, insn); 8225 break; 8226 case 3: /* [15:12] == 1000 */ 8227 unallocated_encoding(s); 8228 break; 8229 default: /* [15:12] == 0000 */ 8230 /* Floating point <-> integer conversions */ 8231 disas_fp_int_conv(s, insn); 8232 break; 8233 } 8234 break; 8235 } 8236 } 8237 } 8238 8239 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 8240 int pos) 8241 { 8242 /* Extract 64 bits from the middle of two concatenated 64 bit 8243 * vector register slices left:right. The extracted bits start 8244 * at 'pos' bits into the right (least significant) side. 8245 * We return the result in tcg_right, and guarantee not to 8246 * trash tcg_left. 8247 */ 8248 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8249 assert(pos > 0 && pos < 64); 8250 8251 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 8252 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 8253 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 8254 } 8255 8256 /* EXT 8257 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 8258 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8259 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 8260 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8261 */ 8262 static void disas_simd_ext(DisasContext *s, uint32_t insn) 8263 { 8264 int is_q = extract32(insn, 30, 1); 8265 int op2 = extract32(insn, 22, 2); 8266 int imm4 = extract32(insn, 11, 4); 8267 int rm = extract32(insn, 16, 5); 8268 int rn = extract32(insn, 5, 5); 8269 int rd = extract32(insn, 0, 5); 8270 int pos = imm4 << 3; 8271 TCGv_i64 tcg_resl, tcg_resh; 8272 8273 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 8274 unallocated_encoding(s); 8275 return; 8276 } 8277 8278 if (!fp_access_check(s)) { 8279 return; 8280 } 8281 8282 tcg_resh = tcg_temp_new_i64(); 8283 tcg_resl = tcg_temp_new_i64(); 8284 8285 /* Vd gets bits starting at pos bits into Vm:Vn. This is 8286 * either extracting 128 bits from a 128:128 concatenation, or 8287 * extracting 64 bits from a 64:64 concatenation. 8288 */ 8289 if (!is_q) { 8290 read_vec_element(s, tcg_resl, rn, 0, MO_64); 8291 if (pos != 0) { 8292 read_vec_element(s, tcg_resh, rm, 0, MO_64); 8293 do_ext64(s, tcg_resh, tcg_resl, pos); 8294 } 8295 } else { 8296 TCGv_i64 tcg_hh; 8297 typedef struct { 8298 int reg; 8299 int elt; 8300 } EltPosns; 8301 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 8302 EltPosns *elt = eltposns; 8303 8304 if (pos >= 64) { 8305 elt++; 8306 pos -= 64; 8307 } 8308 8309 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 8310 elt++; 8311 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 8312 elt++; 8313 if (pos != 0) { 8314 do_ext64(s, tcg_resh, tcg_resl, pos); 8315 tcg_hh = tcg_temp_new_i64(); 8316 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8317 do_ext64(s, tcg_hh, tcg_resh, pos); 8318 } 8319 } 8320 8321 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8322 if (is_q) { 8323 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8324 } 8325 clear_vec_high(s, is_q, rd); 8326 } 8327 8328 /* TBL/TBX 8329 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8330 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8331 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8332 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8333 */ 8334 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8335 { 8336 int op2 = extract32(insn, 22, 2); 8337 int is_q = extract32(insn, 30, 1); 8338 int rm = extract32(insn, 16, 5); 8339 int rn = extract32(insn, 5, 5); 8340 int rd = extract32(insn, 0, 5); 8341 int is_tbx = extract32(insn, 12, 1); 8342 int len = (extract32(insn, 13, 2) + 1) * 16; 8343 8344 if (op2 != 0) { 8345 unallocated_encoding(s); 8346 return; 8347 } 8348 8349 if (!fp_access_check(s)) { 8350 return; 8351 } 8352 8353 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8354 vec_full_reg_offset(s, rm), tcg_env, 8355 is_q ? 16 : 8, vec_full_reg_size(s), 8356 (len << 6) | (is_tbx << 5) | rn, 8357 gen_helper_simd_tblx); 8358 } 8359 8360 /* ZIP/UZP/TRN 8361 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8362 * +---+---+-------------+------+---+------+---+------------------+------+ 8363 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8364 * +---+---+-------------+------+---+------+---+------------------+------+ 8365 */ 8366 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8367 { 8368 int rd = extract32(insn, 0, 5); 8369 int rn = extract32(insn, 5, 5); 8370 int rm = extract32(insn, 16, 5); 8371 int size = extract32(insn, 22, 2); 8372 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8373 * bit 2 indicates 1 vs 2 variant of the insn. 8374 */ 8375 int opcode = extract32(insn, 12, 2); 8376 bool part = extract32(insn, 14, 1); 8377 bool is_q = extract32(insn, 30, 1); 8378 int esize = 8 << size; 8379 int i; 8380 int datasize = is_q ? 128 : 64; 8381 int elements = datasize / esize; 8382 TCGv_i64 tcg_res[2], tcg_ele; 8383 8384 if (opcode == 0 || (size == 3 && !is_q)) { 8385 unallocated_encoding(s); 8386 return; 8387 } 8388 8389 if (!fp_access_check(s)) { 8390 return; 8391 } 8392 8393 tcg_res[0] = tcg_temp_new_i64(); 8394 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 8395 tcg_ele = tcg_temp_new_i64(); 8396 8397 for (i = 0; i < elements; i++) { 8398 int o, w; 8399 8400 switch (opcode) { 8401 case 1: /* UZP1/2 */ 8402 { 8403 int midpoint = elements / 2; 8404 if (i < midpoint) { 8405 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8406 } else { 8407 read_vec_element(s, tcg_ele, rm, 8408 2 * (i - midpoint) + part, size); 8409 } 8410 break; 8411 } 8412 case 2: /* TRN1/2 */ 8413 if (i & 1) { 8414 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8415 } else { 8416 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8417 } 8418 break; 8419 case 3: /* ZIP1/2 */ 8420 { 8421 int base = part * elements / 2; 8422 if (i & 1) { 8423 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8424 } else { 8425 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8426 } 8427 break; 8428 } 8429 default: 8430 g_assert_not_reached(); 8431 } 8432 8433 w = (i * esize) / 64; 8434 o = (i * esize) % 64; 8435 if (o == 0) { 8436 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8437 } else { 8438 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8439 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8440 } 8441 } 8442 8443 for (i = 0; i <= is_q; ++i) { 8444 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8445 } 8446 clear_vec_high(s, is_q, rd); 8447 } 8448 8449 /* 8450 * do_reduction_op helper 8451 * 8452 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8453 * important for correct NaN propagation that we do these 8454 * operations in exactly the order specified by the pseudocode. 8455 * 8456 * This is a recursive function, TCG temps should be freed by the 8457 * calling function once it is done with the values. 8458 */ 8459 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8460 int esize, int size, int vmap, TCGv_ptr fpst) 8461 { 8462 if (esize == size) { 8463 int element; 8464 MemOp msize = esize == 16 ? MO_16 : MO_32; 8465 TCGv_i32 tcg_elem; 8466 8467 /* We should have one register left here */ 8468 assert(ctpop8(vmap) == 1); 8469 element = ctz32(vmap); 8470 assert(element < 8); 8471 8472 tcg_elem = tcg_temp_new_i32(); 8473 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8474 return tcg_elem; 8475 } else { 8476 int bits = size / 2; 8477 int shift = ctpop8(vmap) / 2; 8478 int vmap_lo = (vmap >> shift) & vmap; 8479 int vmap_hi = (vmap & ~vmap_lo); 8480 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8481 8482 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8483 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8484 tcg_res = tcg_temp_new_i32(); 8485 8486 switch (fpopcode) { 8487 case 0x0c: /* fmaxnmv half-precision */ 8488 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8489 break; 8490 case 0x0f: /* fmaxv half-precision */ 8491 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8492 break; 8493 case 0x1c: /* fminnmv half-precision */ 8494 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8495 break; 8496 case 0x1f: /* fminv half-precision */ 8497 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8498 break; 8499 case 0x2c: /* fmaxnmv */ 8500 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8501 break; 8502 case 0x2f: /* fmaxv */ 8503 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8504 break; 8505 case 0x3c: /* fminnmv */ 8506 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8507 break; 8508 case 0x3f: /* fminv */ 8509 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8510 break; 8511 default: 8512 g_assert_not_reached(); 8513 } 8514 return tcg_res; 8515 } 8516 } 8517 8518 /* AdvSIMD across lanes 8519 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8520 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8521 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8522 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8523 */ 8524 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8525 { 8526 int rd = extract32(insn, 0, 5); 8527 int rn = extract32(insn, 5, 5); 8528 int size = extract32(insn, 22, 2); 8529 int opcode = extract32(insn, 12, 5); 8530 bool is_q = extract32(insn, 30, 1); 8531 bool is_u = extract32(insn, 29, 1); 8532 bool is_fp = false; 8533 bool is_min = false; 8534 int esize; 8535 int elements; 8536 int i; 8537 TCGv_i64 tcg_res, tcg_elt; 8538 8539 switch (opcode) { 8540 case 0x1b: /* ADDV */ 8541 if (is_u) { 8542 unallocated_encoding(s); 8543 return; 8544 } 8545 /* fall through */ 8546 case 0x3: /* SADDLV, UADDLV */ 8547 case 0xa: /* SMAXV, UMAXV */ 8548 case 0x1a: /* SMINV, UMINV */ 8549 if (size == 3 || (size == 2 && !is_q)) { 8550 unallocated_encoding(s); 8551 return; 8552 } 8553 break; 8554 case 0xc: /* FMAXNMV, FMINNMV */ 8555 case 0xf: /* FMAXV, FMINV */ 8556 /* Bit 1 of size field encodes min vs max and the actual size 8557 * depends on the encoding of the U bit. If not set (and FP16 8558 * enabled) then we do half-precision float instead of single 8559 * precision. 8560 */ 8561 is_min = extract32(size, 1, 1); 8562 is_fp = true; 8563 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8564 size = 1; 8565 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8566 unallocated_encoding(s); 8567 return; 8568 } else { 8569 size = 2; 8570 } 8571 break; 8572 default: 8573 unallocated_encoding(s); 8574 return; 8575 } 8576 8577 if (!fp_access_check(s)) { 8578 return; 8579 } 8580 8581 esize = 8 << size; 8582 elements = (is_q ? 128 : 64) / esize; 8583 8584 tcg_res = tcg_temp_new_i64(); 8585 tcg_elt = tcg_temp_new_i64(); 8586 8587 /* These instructions operate across all lanes of a vector 8588 * to produce a single result. We can guarantee that a 64 8589 * bit intermediate is sufficient: 8590 * + for [US]ADDLV the maximum element size is 32 bits, and 8591 * the result type is 64 bits 8592 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8593 * same as the element size, which is 32 bits at most 8594 * For the integer operations we can choose to work at 64 8595 * or 32 bits and truncate at the end; for simplicity 8596 * we use 64 bits always. The floating point 8597 * ops do require 32 bit intermediates, though. 8598 */ 8599 if (!is_fp) { 8600 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8601 8602 for (i = 1; i < elements; i++) { 8603 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8604 8605 switch (opcode) { 8606 case 0x03: /* SADDLV / UADDLV */ 8607 case 0x1b: /* ADDV */ 8608 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8609 break; 8610 case 0x0a: /* SMAXV / UMAXV */ 8611 if (is_u) { 8612 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8613 } else { 8614 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8615 } 8616 break; 8617 case 0x1a: /* SMINV / UMINV */ 8618 if (is_u) { 8619 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8620 } else { 8621 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8622 } 8623 break; 8624 default: 8625 g_assert_not_reached(); 8626 } 8627 8628 } 8629 } else { 8630 /* Floating point vector reduction ops which work across 32 8631 * bit (single) or 16 bit (half-precision) intermediates. 8632 * Note that correct NaN propagation requires that we do these 8633 * operations in exactly the order specified by the pseudocode. 8634 */ 8635 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8636 int fpopcode = opcode | is_min << 4 | is_u << 5; 8637 int vmap = (1 << elements) - 1; 8638 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8639 (is_q ? 128 : 64), vmap, fpst); 8640 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8641 } 8642 8643 /* Now truncate the result to the width required for the final output */ 8644 if (opcode == 0x03) { 8645 /* SADDLV, UADDLV: result is 2*esize */ 8646 size++; 8647 } 8648 8649 switch (size) { 8650 case 0: 8651 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8652 break; 8653 case 1: 8654 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8655 break; 8656 case 2: 8657 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8658 break; 8659 case 3: 8660 break; 8661 default: 8662 g_assert_not_reached(); 8663 } 8664 8665 write_fp_dreg(s, rd, tcg_res); 8666 } 8667 8668 /* AdvSIMD modified immediate 8669 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8670 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8671 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8672 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8673 * 8674 * There are a number of operations that can be carried out here: 8675 * MOVI - move (shifted) imm into register 8676 * MVNI - move inverted (shifted) imm into register 8677 * ORR - bitwise OR of (shifted) imm with register 8678 * BIC - bitwise clear of (shifted) imm with register 8679 * With ARMv8.2 we also have: 8680 * FMOV half-precision 8681 */ 8682 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8683 { 8684 int rd = extract32(insn, 0, 5); 8685 int cmode = extract32(insn, 12, 4); 8686 int o2 = extract32(insn, 11, 1); 8687 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8688 bool is_neg = extract32(insn, 29, 1); 8689 bool is_q = extract32(insn, 30, 1); 8690 uint64_t imm = 0; 8691 8692 if (o2) { 8693 if (cmode != 0xf || is_neg) { 8694 unallocated_encoding(s); 8695 return; 8696 } 8697 /* FMOV (vector, immediate) - half-precision */ 8698 if (!dc_isar_feature(aa64_fp16, s)) { 8699 unallocated_encoding(s); 8700 return; 8701 } 8702 imm = vfp_expand_imm(MO_16, abcdefgh); 8703 /* now duplicate across the lanes */ 8704 imm = dup_const(MO_16, imm); 8705 } else { 8706 if (cmode == 0xf && is_neg && !is_q) { 8707 unallocated_encoding(s); 8708 return; 8709 } 8710 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8711 } 8712 8713 if (!fp_access_check(s)) { 8714 return; 8715 } 8716 8717 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8718 /* MOVI or MVNI, with MVNI negation handled above. */ 8719 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8720 vec_full_reg_size(s), imm); 8721 } else { 8722 /* ORR or BIC, with BIC negation to AND handled above. */ 8723 if (is_neg) { 8724 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8725 } else { 8726 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8727 } 8728 } 8729 } 8730 8731 /* 8732 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8733 * 8734 * This code is handles the common shifting code and is used by both 8735 * the vector and scalar code. 8736 */ 8737 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8738 TCGv_i64 tcg_rnd, bool accumulate, 8739 bool is_u, int size, int shift) 8740 { 8741 bool extended_result = false; 8742 bool round = tcg_rnd != NULL; 8743 int ext_lshift = 0; 8744 TCGv_i64 tcg_src_hi; 8745 8746 if (round && size == 3) { 8747 extended_result = true; 8748 ext_lshift = 64 - shift; 8749 tcg_src_hi = tcg_temp_new_i64(); 8750 } else if (shift == 64) { 8751 if (!accumulate && is_u) { 8752 /* result is zero */ 8753 tcg_gen_movi_i64(tcg_res, 0); 8754 return; 8755 } 8756 } 8757 8758 /* Deal with the rounding step */ 8759 if (round) { 8760 if (extended_result) { 8761 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8762 if (!is_u) { 8763 /* take care of sign extending tcg_res */ 8764 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8765 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8766 tcg_src, tcg_src_hi, 8767 tcg_rnd, tcg_zero); 8768 } else { 8769 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8770 tcg_src, tcg_zero, 8771 tcg_rnd, tcg_zero); 8772 } 8773 } else { 8774 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8775 } 8776 } 8777 8778 /* Now do the shift right */ 8779 if (round && extended_result) { 8780 /* extended case, >64 bit precision required */ 8781 if (ext_lshift == 0) { 8782 /* special case, only high bits matter */ 8783 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8784 } else { 8785 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8786 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8787 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8788 } 8789 } else { 8790 if (is_u) { 8791 if (shift == 64) { 8792 /* essentially shifting in 64 zeros */ 8793 tcg_gen_movi_i64(tcg_src, 0); 8794 } else { 8795 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8796 } 8797 } else { 8798 if (shift == 64) { 8799 /* effectively extending the sign-bit */ 8800 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8801 } else { 8802 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8803 } 8804 } 8805 } 8806 8807 if (accumulate) { 8808 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8809 } else { 8810 tcg_gen_mov_i64(tcg_res, tcg_src); 8811 } 8812 } 8813 8814 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8815 static void handle_scalar_simd_shri(DisasContext *s, 8816 bool is_u, int immh, int immb, 8817 int opcode, int rn, int rd) 8818 { 8819 const int size = 3; 8820 int immhb = immh << 3 | immb; 8821 int shift = 2 * (8 << size) - immhb; 8822 bool accumulate = false; 8823 bool round = false; 8824 bool insert = false; 8825 TCGv_i64 tcg_rn; 8826 TCGv_i64 tcg_rd; 8827 TCGv_i64 tcg_round; 8828 8829 if (!extract32(immh, 3, 1)) { 8830 unallocated_encoding(s); 8831 return; 8832 } 8833 8834 if (!fp_access_check(s)) { 8835 return; 8836 } 8837 8838 switch (opcode) { 8839 case 0x02: /* SSRA / USRA (accumulate) */ 8840 accumulate = true; 8841 break; 8842 case 0x04: /* SRSHR / URSHR (rounding) */ 8843 round = true; 8844 break; 8845 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8846 accumulate = round = true; 8847 break; 8848 case 0x08: /* SRI */ 8849 insert = true; 8850 break; 8851 } 8852 8853 if (round) { 8854 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8855 } else { 8856 tcg_round = NULL; 8857 } 8858 8859 tcg_rn = read_fp_dreg(s, rn); 8860 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8861 8862 if (insert) { 8863 /* shift count same as element size is valid but does nothing; 8864 * special case to avoid potential shift by 64. 8865 */ 8866 int esize = 8 << size; 8867 if (shift != esize) { 8868 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8869 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8870 } 8871 } else { 8872 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8873 accumulate, is_u, size, shift); 8874 } 8875 8876 write_fp_dreg(s, rd, tcg_rd); 8877 } 8878 8879 /* SHL/SLI - Scalar shift left */ 8880 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8881 int immh, int immb, int opcode, 8882 int rn, int rd) 8883 { 8884 int size = 32 - clz32(immh) - 1; 8885 int immhb = immh << 3 | immb; 8886 int shift = immhb - (8 << size); 8887 TCGv_i64 tcg_rn; 8888 TCGv_i64 tcg_rd; 8889 8890 if (!extract32(immh, 3, 1)) { 8891 unallocated_encoding(s); 8892 return; 8893 } 8894 8895 if (!fp_access_check(s)) { 8896 return; 8897 } 8898 8899 tcg_rn = read_fp_dreg(s, rn); 8900 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8901 8902 if (insert) { 8903 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8904 } else { 8905 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8906 } 8907 8908 write_fp_dreg(s, rd, tcg_rd); 8909 } 8910 8911 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8912 * (signed/unsigned) narrowing */ 8913 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8914 bool is_u_shift, bool is_u_narrow, 8915 int immh, int immb, int opcode, 8916 int rn, int rd) 8917 { 8918 int immhb = immh << 3 | immb; 8919 int size = 32 - clz32(immh) - 1; 8920 int esize = 8 << size; 8921 int shift = (2 * esize) - immhb; 8922 int elements = is_scalar ? 1 : (64 / esize); 8923 bool round = extract32(opcode, 0, 1); 8924 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8925 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8926 TCGv_i32 tcg_rd_narrowed; 8927 TCGv_i64 tcg_final; 8928 8929 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8930 { gen_helper_neon_narrow_sat_s8, 8931 gen_helper_neon_unarrow_sat8 }, 8932 { gen_helper_neon_narrow_sat_s16, 8933 gen_helper_neon_unarrow_sat16 }, 8934 { gen_helper_neon_narrow_sat_s32, 8935 gen_helper_neon_unarrow_sat32 }, 8936 { NULL, NULL }, 8937 }; 8938 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8939 gen_helper_neon_narrow_sat_u8, 8940 gen_helper_neon_narrow_sat_u16, 8941 gen_helper_neon_narrow_sat_u32, 8942 NULL 8943 }; 8944 NeonGenNarrowEnvFn *narrowfn; 8945 8946 int i; 8947 8948 assert(size < 4); 8949 8950 if (extract32(immh, 3, 1)) { 8951 unallocated_encoding(s); 8952 return; 8953 } 8954 8955 if (!fp_access_check(s)) { 8956 return; 8957 } 8958 8959 if (is_u_shift) { 8960 narrowfn = unsigned_narrow_fns[size]; 8961 } else { 8962 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8963 } 8964 8965 tcg_rn = tcg_temp_new_i64(); 8966 tcg_rd = tcg_temp_new_i64(); 8967 tcg_rd_narrowed = tcg_temp_new_i32(); 8968 tcg_final = tcg_temp_new_i64(); 8969 8970 if (round) { 8971 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8972 } else { 8973 tcg_round = NULL; 8974 } 8975 8976 for (i = 0; i < elements; i++) { 8977 read_vec_element(s, tcg_rn, rn, i, ldop); 8978 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8979 false, is_u_shift, size+1, shift); 8980 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8981 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8982 if (i == 0) { 8983 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8984 } else { 8985 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8986 } 8987 } 8988 8989 if (!is_q) { 8990 write_vec_element(s, tcg_final, rd, 0, MO_64); 8991 } else { 8992 write_vec_element(s, tcg_final, rd, 1, MO_64); 8993 } 8994 clear_vec_high(s, is_q, rd); 8995 } 8996 8997 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8998 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8999 bool src_unsigned, bool dst_unsigned, 9000 int immh, int immb, int rn, int rd) 9001 { 9002 int immhb = immh << 3 | immb; 9003 int size = 32 - clz32(immh) - 1; 9004 int shift = immhb - (8 << size); 9005 int pass; 9006 9007 assert(immh != 0); 9008 assert(!(scalar && is_q)); 9009 9010 if (!scalar) { 9011 if (!is_q && extract32(immh, 3, 1)) { 9012 unallocated_encoding(s); 9013 return; 9014 } 9015 9016 /* Since we use the variable-shift helpers we must 9017 * replicate the shift count into each element of 9018 * the tcg_shift value. 9019 */ 9020 switch (size) { 9021 case 0: 9022 shift |= shift << 8; 9023 /* fall through */ 9024 case 1: 9025 shift |= shift << 16; 9026 break; 9027 case 2: 9028 case 3: 9029 break; 9030 default: 9031 g_assert_not_reached(); 9032 } 9033 } 9034 9035 if (!fp_access_check(s)) { 9036 return; 9037 } 9038 9039 if (size == 3) { 9040 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 9041 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 9042 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 9043 { NULL, gen_helper_neon_qshl_u64 }, 9044 }; 9045 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 9046 int maxpass = is_q ? 2 : 1; 9047 9048 for (pass = 0; pass < maxpass; pass++) { 9049 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9050 9051 read_vec_element(s, tcg_op, rn, pass, MO_64); 9052 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9053 write_vec_element(s, tcg_op, rd, pass, MO_64); 9054 } 9055 clear_vec_high(s, is_q, rd); 9056 } else { 9057 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 9058 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 9059 { 9060 { gen_helper_neon_qshl_s8, 9061 gen_helper_neon_qshl_s16, 9062 gen_helper_neon_qshl_s32 }, 9063 { gen_helper_neon_qshlu_s8, 9064 gen_helper_neon_qshlu_s16, 9065 gen_helper_neon_qshlu_s32 } 9066 }, { 9067 { NULL, NULL, NULL }, 9068 { gen_helper_neon_qshl_u8, 9069 gen_helper_neon_qshl_u16, 9070 gen_helper_neon_qshl_u32 } 9071 } 9072 }; 9073 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 9074 MemOp memop = scalar ? size : MO_32; 9075 int maxpass = scalar ? 1 : is_q ? 4 : 2; 9076 9077 for (pass = 0; pass < maxpass; pass++) { 9078 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9079 9080 read_vec_element_i32(s, tcg_op, rn, pass, memop); 9081 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9082 if (scalar) { 9083 switch (size) { 9084 case 0: 9085 tcg_gen_ext8u_i32(tcg_op, tcg_op); 9086 break; 9087 case 1: 9088 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9089 break; 9090 case 2: 9091 break; 9092 default: 9093 g_assert_not_reached(); 9094 } 9095 write_fp_sreg(s, rd, tcg_op); 9096 } else { 9097 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 9098 } 9099 } 9100 9101 if (!scalar) { 9102 clear_vec_high(s, is_q, rd); 9103 } 9104 } 9105 } 9106 9107 /* Common vector code for handling integer to FP conversion */ 9108 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 9109 int elements, int is_signed, 9110 int fracbits, int size) 9111 { 9112 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9113 TCGv_i32 tcg_shift = NULL; 9114 9115 MemOp mop = size | (is_signed ? MO_SIGN : 0); 9116 int pass; 9117 9118 if (fracbits || size == MO_64) { 9119 tcg_shift = tcg_constant_i32(fracbits); 9120 } 9121 9122 if (size == MO_64) { 9123 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 9124 TCGv_i64 tcg_double = tcg_temp_new_i64(); 9125 9126 for (pass = 0; pass < elements; pass++) { 9127 read_vec_element(s, tcg_int64, rn, pass, mop); 9128 9129 if (is_signed) { 9130 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 9131 tcg_shift, tcg_fpst); 9132 } else { 9133 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 9134 tcg_shift, tcg_fpst); 9135 } 9136 if (elements == 1) { 9137 write_fp_dreg(s, rd, tcg_double); 9138 } else { 9139 write_vec_element(s, tcg_double, rd, pass, MO_64); 9140 } 9141 } 9142 } else { 9143 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 9144 TCGv_i32 tcg_float = tcg_temp_new_i32(); 9145 9146 for (pass = 0; pass < elements; pass++) { 9147 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 9148 9149 switch (size) { 9150 case MO_32: 9151 if (fracbits) { 9152 if (is_signed) { 9153 gen_helper_vfp_sltos(tcg_float, tcg_int32, 9154 tcg_shift, tcg_fpst); 9155 } else { 9156 gen_helper_vfp_ultos(tcg_float, tcg_int32, 9157 tcg_shift, tcg_fpst); 9158 } 9159 } else { 9160 if (is_signed) { 9161 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 9162 } else { 9163 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 9164 } 9165 } 9166 break; 9167 case MO_16: 9168 if (fracbits) { 9169 if (is_signed) { 9170 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 9171 tcg_shift, tcg_fpst); 9172 } else { 9173 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 9174 tcg_shift, tcg_fpst); 9175 } 9176 } else { 9177 if (is_signed) { 9178 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 9179 } else { 9180 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 9181 } 9182 } 9183 break; 9184 default: 9185 g_assert_not_reached(); 9186 } 9187 9188 if (elements == 1) { 9189 write_fp_sreg(s, rd, tcg_float); 9190 } else { 9191 write_vec_element_i32(s, tcg_float, rd, pass, size); 9192 } 9193 } 9194 } 9195 9196 clear_vec_high(s, elements << size == 16, rd); 9197 } 9198 9199 /* UCVTF/SCVTF - Integer to FP conversion */ 9200 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 9201 bool is_q, bool is_u, 9202 int immh, int immb, int opcode, 9203 int rn, int rd) 9204 { 9205 int size, elements, fracbits; 9206 int immhb = immh << 3 | immb; 9207 9208 if (immh & 8) { 9209 size = MO_64; 9210 if (!is_scalar && !is_q) { 9211 unallocated_encoding(s); 9212 return; 9213 } 9214 } else if (immh & 4) { 9215 size = MO_32; 9216 } else if (immh & 2) { 9217 size = MO_16; 9218 if (!dc_isar_feature(aa64_fp16, s)) { 9219 unallocated_encoding(s); 9220 return; 9221 } 9222 } else { 9223 /* immh == 0 would be a failure of the decode logic */ 9224 g_assert(immh == 1); 9225 unallocated_encoding(s); 9226 return; 9227 } 9228 9229 if (is_scalar) { 9230 elements = 1; 9231 } else { 9232 elements = (8 << is_q) >> size; 9233 } 9234 fracbits = (16 << size) - immhb; 9235 9236 if (!fp_access_check(s)) { 9237 return; 9238 } 9239 9240 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 9241 } 9242 9243 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 9244 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 9245 bool is_q, bool is_u, 9246 int immh, int immb, int rn, int rd) 9247 { 9248 int immhb = immh << 3 | immb; 9249 int pass, size, fracbits; 9250 TCGv_ptr tcg_fpstatus; 9251 TCGv_i32 tcg_rmode, tcg_shift; 9252 9253 if (immh & 0x8) { 9254 size = MO_64; 9255 if (!is_scalar && !is_q) { 9256 unallocated_encoding(s); 9257 return; 9258 } 9259 } else if (immh & 0x4) { 9260 size = MO_32; 9261 } else if (immh & 0x2) { 9262 size = MO_16; 9263 if (!dc_isar_feature(aa64_fp16, s)) { 9264 unallocated_encoding(s); 9265 return; 9266 } 9267 } else { 9268 /* Should have split out AdvSIMD modified immediate earlier. */ 9269 assert(immh == 1); 9270 unallocated_encoding(s); 9271 return; 9272 } 9273 9274 if (!fp_access_check(s)) { 9275 return; 9276 } 9277 9278 assert(!(is_scalar && is_q)); 9279 9280 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9281 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9282 fracbits = (16 << size) - immhb; 9283 tcg_shift = tcg_constant_i32(fracbits); 9284 9285 if (size == MO_64) { 9286 int maxpass = is_scalar ? 1 : 2; 9287 9288 for (pass = 0; pass < maxpass; pass++) { 9289 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9290 9291 read_vec_element(s, tcg_op, rn, pass, MO_64); 9292 if (is_u) { 9293 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9294 } else { 9295 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9296 } 9297 write_vec_element(s, tcg_op, rd, pass, MO_64); 9298 } 9299 clear_vec_high(s, is_q, rd); 9300 } else { 9301 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9302 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9303 9304 switch (size) { 9305 case MO_16: 9306 if (is_u) { 9307 fn = gen_helper_vfp_touhh; 9308 } else { 9309 fn = gen_helper_vfp_toshh; 9310 } 9311 break; 9312 case MO_32: 9313 if (is_u) { 9314 fn = gen_helper_vfp_touls; 9315 } else { 9316 fn = gen_helper_vfp_tosls; 9317 } 9318 break; 9319 default: 9320 g_assert_not_reached(); 9321 } 9322 9323 for (pass = 0; pass < maxpass; pass++) { 9324 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9325 9326 read_vec_element_i32(s, tcg_op, rn, pass, size); 9327 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9328 if (is_scalar) { 9329 if (size == MO_16 && !is_u) { 9330 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9331 } 9332 write_fp_sreg(s, rd, tcg_op); 9333 } else { 9334 write_vec_element_i32(s, tcg_op, rd, pass, size); 9335 } 9336 } 9337 if (!is_scalar) { 9338 clear_vec_high(s, is_q, rd); 9339 } 9340 } 9341 9342 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9343 } 9344 9345 /* AdvSIMD scalar shift by immediate 9346 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9347 * +-----+---+-------------+------+------+--------+---+------+------+ 9348 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9349 * +-----+---+-------------+------+------+--------+---+------+------+ 9350 * 9351 * This is the scalar version so it works on a fixed sized registers 9352 */ 9353 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9354 { 9355 int rd = extract32(insn, 0, 5); 9356 int rn = extract32(insn, 5, 5); 9357 int opcode = extract32(insn, 11, 5); 9358 int immb = extract32(insn, 16, 3); 9359 int immh = extract32(insn, 19, 4); 9360 bool is_u = extract32(insn, 29, 1); 9361 9362 if (immh == 0) { 9363 unallocated_encoding(s); 9364 return; 9365 } 9366 9367 switch (opcode) { 9368 case 0x08: /* SRI */ 9369 if (!is_u) { 9370 unallocated_encoding(s); 9371 return; 9372 } 9373 /* fall through */ 9374 case 0x00: /* SSHR / USHR */ 9375 case 0x02: /* SSRA / USRA */ 9376 case 0x04: /* SRSHR / URSHR */ 9377 case 0x06: /* SRSRA / URSRA */ 9378 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9379 break; 9380 case 0x0a: /* SHL / SLI */ 9381 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9382 break; 9383 case 0x1c: /* SCVTF, UCVTF */ 9384 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9385 opcode, rn, rd); 9386 break; 9387 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9388 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9389 if (!is_u) { 9390 unallocated_encoding(s); 9391 return; 9392 } 9393 handle_vec_simd_sqshrn(s, true, false, false, true, 9394 immh, immb, opcode, rn, rd); 9395 break; 9396 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9397 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9398 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9399 immh, immb, opcode, rn, rd); 9400 break; 9401 case 0xc: /* SQSHLU */ 9402 if (!is_u) { 9403 unallocated_encoding(s); 9404 return; 9405 } 9406 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9407 break; 9408 case 0xe: /* SQSHL, UQSHL */ 9409 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9410 break; 9411 case 0x1f: /* FCVTZS, FCVTZU */ 9412 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9413 break; 9414 default: 9415 unallocated_encoding(s); 9416 break; 9417 } 9418 } 9419 9420 /* AdvSIMD scalar three different 9421 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9422 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9423 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9424 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9425 */ 9426 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9427 { 9428 bool is_u = extract32(insn, 29, 1); 9429 int size = extract32(insn, 22, 2); 9430 int opcode = extract32(insn, 12, 4); 9431 int rm = extract32(insn, 16, 5); 9432 int rn = extract32(insn, 5, 5); 9433 int rd = extract32(insn, 0, 5); 9434 9435 if (is_u) { 9436 unallocated_encoding(s); 9437 return; 9438 } 9439 9440 switch (opcode) { 9441 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9442 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9443 case 0xd: /* SQDMULL, SQDMULL2 */ 9444 if (size == 0 || size == 3) { 9445 unallocated_encoding(s); 9446 return; 9447 } 9448 break; 9449 default: 9450 unallocated_encoding(s); 9451 return; 9452 } 9453 9454 if (!fp_access_check(s)) { 9455 return; 9456 } 9457 9458 if (size == 2) { 9459 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9460 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9461 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9462 9463 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9464 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9465 9466 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9467 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9468 9469 switch (opcode) { 9470 case 0xd: /* SQDMULL, SQDMULL2 */ 9471 break; 9472 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9473 tcg_gen_neg_i64(tcg_res, tcg_res); 9474 /* fall through */ 9475 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9476 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9477 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9478 tcg_res, tcg_op1); 9479 break; 9480 default: 9481 g_assert_not_reached(); 9482 } 9483 9484 write_fp_dreg(s, rd, tcg_res); 9485 } else { 9486 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9487 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9488 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9489 9490 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9491 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9492 9493 switch (opcode) { 9494 case 0xd: /* SQDMULL, SQDMULL2 */ 9495 break; 9496 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9497 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9498 /* fall through */ 9499 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9500 { 9501 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9502 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9503 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9504 tcg_res, tcg_op3); 9505 break; 9506 } 9507 default: 9508 g_assert_not_reached(); 9509 } 9510 9511 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9512 write_fp_dreg(s, rd, tcg_res); 9513 } 9514 } 9515 9516 /* AdvSIMD scalar three same extra 9517 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9518 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9519 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9520 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9521 */ 9522 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9523 uint32_t insn) 9524 { 9525 int rd = extract32(insn, 0, 5); 9526 int rn = extract32(insn, 5, 5); 9527 int opcode = extract32(insn, 11, 4); 9528 int rm = extract32(insn, 16, 5); 9529 int size = extract32(insn, 22, 2); 9530 bool u = extract32(insn, 29, 1); 9531 TCGv_i32 ele1, ele2, ele3; 9532 TCGv_i64 res; 9533 bool feature; 9534 9535 switch (u * 16 + opcode) { 9536 case 0x10: /* SQRDMLAH (vector) */ 9537 case 0x11: /* SQRDMLSH (vector) */ 9538 if (size != 1 && size != 2) { 9539 unallocated_encoding(s); 9540 return; 9541 } 9542 feature = dc_isar_feature(aa64_rdm, s); 9543 break; 9544 default: 9545 unallocated_encoding(s); 9546 return; 9547 } 9548 if (!feature) { 9549 unallocated_encoding(s); 9550 return; 9551 } 9552 if (!fp_access_check(s)) { 9553 return; 9554 } 9555 9556 /* Do a single operation on the lowest element in the vector. 9557 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9558 * with no side effects for all these operations. 9559 * OPTME: special-purpose helpers would avoid doing some 9560 * unnecessary work in the helper for the 16 bit cases. 9561 */ 9562 ele1 = tcg_temp_new_i32(); 9563 ele2 = tcg_temp_new_i32(); 9564 ele3 = tcg_temp_new_i32(); 9565 9566 read_vec_element_i32(s, ele1, rn, 0, size); 9567 read_vec_element_i32(s, ele2, rm, 0, size); 9568 read_vec_element_i32(s, ele3, rd, 0, size); 9569 9570 switch (opcode) { 9571 case 0x0: /* SQRDMLAH */ 9572 if (size == 1) { 9573 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9574 } else { 9575 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9576 } 9577 break; 9578 case 0x1: /* SQRDMLSH */ 9579 if (size == 1) { 9580 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9581 } else { 9582 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9583 } 9584 break; 9585 default: 9586 g_assert_not_reached(); 9587 } 9588 9589 res = tcg_temp_new_i64(); 9590 tcg_gen_extu_i32_i64(res, ele3); 9591 write_fp_dreg(s, rd, res); 9592 } 9593 9594 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9595 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9596 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9597 { 9598 /* Handle 64->64 opcodes which are shared between the scalar and 9599 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9600 * is valid in either group and also the double-precision fp ops. 9601 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9602 * requires them. 9603 */ 9604 TCGCond cond; 9605 9606 switch (opcode) { 9607 case 0x4: /* CLS, CLZ */ 9608 if (u) { 9609 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9610 } else { 9611 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9612 } 9613 break; 9614 case 0x5: /* NOT */ 9615 /* This opcode is shared with CNT and RBIT but we have earlier 9616 * enforced that size == 3 if and only if this is the NOT insn. 9617 */ 9618 tcg_gen_not_i64(tcg_rd, tcg_rn); 9619 break; 9620 case 0x7: /* SQABS, SQNEG */ 9621 if (u) { 9622 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9623 } else { 9624 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9625 } 9626 break; 9627 case 0xa: /* CMLT */ 9628 cond = TCG_COND_LT; 9629 do_cmop: 9630 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9631 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9632 break; 9633 case 0x8: /* CMGT, CMGE */ 9634 cond = u ? TCG_COND_GE : TCG_COND_GT; 9635 goto do_cmop; 9636 case 0x9: /* CMEQ, CMLE */ 9637 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9638 goto do_cmop; 9639 case 0xb: /* ABS, NEG */ 9640 if (u) { 9641 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9642 } else { 9643 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9644 } 9645 break; 9646 case 0x2f: /* FABS */ 9647 gen_vfp_absd(tcg_rd, tcg_rn); 9648 break; 9649 case 0x6f: /* FNEG */ 9650 gen_vfp_negd(tcg_rd, tcg_rn); 9651 break; 9652 case 0x7f: /* FSQRT */ 9653 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9654 break; 9655 case 0x1a: /* FCVTNS */ 9656 case 0x1b: /* FCVTMS */ 9657 case 0x1c: /* FCVTAS */ 9658 case 0x3a: /* FCVTPS */ 9659 case 0x3b: /* FCVTZS */ 9660 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9661 break; 9662 case 0x5a: /* FCVTNU */ 9663 case 0x5b: /* FCVTMU */ 9664 case 0x5c: /* FCVTAU */ 9665 case 0x7a: /* FCVTPU */ 9666 case 0x7b: /* FCVTZU */ 9667 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9668 break; 9669 case 0x18: /* FRINTN */ 9670 case 0x19: /* FRINTM */ 9671 case 0x38: /* FRINTP */ 9672 case 0x39: /* FRINTZ */ 9673 case 0x58: /* FRINTA */ 9674 case 0x79: /* FRINTI */ 9675 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9676 break; 9677 case 0x59: /* FRINTX */ 9678 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9679 break; 9680 case 0x1e: /* FRINT32Z */ 9681 case 0x5e: /* FRINT32X */ 9682 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9683 break; 9684 case 0x1f: /* FRINT64Z */ 9685 case 0x5f: /* FRINT64X */ 9686 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9687 break; 9688 default: 9689 g_assert_not_reached(); 9690 } 9691 } 9692 9693 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9694 bool is_scalar, bool is_u, bool is_q, 9695 int size, int rn, int rd) 9696 { 9697 bool is_double = (size == MO_64); 9698 TCGv_ptr fpst; 9699 9700 if (!fp_access_check(s)) { 9701 return; 9702 } 9703 9704 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9705 9706 if (is_double) { 9707 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9708 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9709 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9710 NeonGenTwoDoubleOpFn *genfn; 9711 bool swap = false; 9712 int pass; 9713 9714 switch (opcode) { 9715 case 0x2e: /* FCMLT (zero) */ 9716 swap = true; 9717 /* fallthrough */ 9718 case 0x2c: /* FCMGT (zero) */ 9719 genfn = gen_helper_neon_cgt_f64; 9720 break; 9721 case 0x2d: /* FCMEQ (zero) */ 9722 genfn = gen_helper_neon_ceq_f64; 9723 break; 9724 case 0x6d: /* FCMLE (zero) */ 9725 swap = true; 9726 /* fall through */ 9727 case 0x6c: /* FCMGE (zero) */ 9728 genfn = gen_helper_neon_cge_f64; 9729 break; 9730 default: 9731 g_assert_not_reached(); 9732 } 9733 9734 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9735 read_vec_element(s, tcg_op, rn, pass, MO_64); 9736 if (swap) { 9737 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9738 } else { 9739 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9740 } 9741 write_vec_element(s, tcg_res, rd, pass, MO_64); 9742 } 9743 9744 clear_vec_high(s, !is_scalar, rd); 9745 } else { 9746 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9747 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9748 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9749 NeonGenTwoSingleOpFn *genfn; 9750 bool swap = false; 9751 int pass, maxpasses; 9752 9753 if (size == MO_16) { 9754 switch (opcode) { 9755 case 0x2e: /* FCMLT (zero) */ 9756 swap = true; 9757 /* fall through */ 9758 case 0x2c: /* FCMGT (zero) */ 9759 genfn = gen_helper_advsimd_cgt_f16; 9760 break; 9761 case 0x2d: /* FCMEQ (zero) */ 9762 genfn = gen_helper_advsimd_ceq_f16; 9763 break; 9764 case 0x6d: /* FCMLE (zero) */ 9765 swap = true; 9766 /* fall through */ 9767 case 0x6c: /* FCMGE (zero) */ 9768 genfn = gen_helper_advsimd_cge_f16; 9769 break; 9770 default: 9771 g_assert_not_reached(); 9772 } 9773 } else { 9774 switch (opcode) { 9775 case 0x2e: /* FCMLT (zero) */ 9776 swap = true; 9777 /* fall through */ 9778 case 0x2c: /* FCMGT (zero) */ 9779 genfn = gen_helper_neon_cgt_f32; 9780 break; 9781 case 0x2d: /* FCMEQ (zero) */ 9782 genfn = gen_helper_neon_ceq_f32; 9783 break; 9784 case 0x6d: /* FCMLE (zero) */ 9785 swap = true; 9786 /* fall through */ 9787 case 0x6c: /* FCMGE (zero) */ 9788 genfn = gen_helper_neon_cge_f32; 9789 break; 9790 default: 9791 g_assert_not_reached(); 9792 } 9793 } 9794 9795 if (is_scalar) { 9796 maxpasses = 1; 9797 } else { 9798 int vector_size = 8 << is_q; 9799 maxpasses = vector_size >> size; 9800 } 9801 9802 for (pass = 0; pass < maxpasses; pass++) { 9803 read_vec_element_i32(s, tcg_op, rn, pass, size); 9804 if (swap) { 9805 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9806 } else { 9807 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9808 } 9809 if (is_scalar) { 9810 write_fp_sreg(s, rd, tcg_res); 9811 } else { 9812 write_vec_element_i32(s, tcg_res, rd, pass, size); 9813 } 9814 } 9815 9816 if (!is_scalar) { 9817 clear_vec_high(s, is_q, rd); 9818 } 9819 } 9820 } 9821 9822 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9823 bool is_scalar, bool is_u, bool is_q, 9824 int size, int rn, int rd) 9825 { 9826 bool is_double = (size == 3); 9827 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9828 9829 if (is_double) { 9830 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9831 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9832 int pass; 9833 9834 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9835 read_vec_element(s, tcg_op, rn, pass, MO_64); 9836 switch (opcode) { 9837 case 0x3d: /* FRECPE */ 9838 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9839 break; 9840 case 0x3f: /* FRECPX */ 9841 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9842 break; 9843 case 0x7d: /* FRSQRTE */ 9844 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9845 break; 9846 default: 9847 g_assert_not_reached(); 9848 } 9849 write_vec_element(s, tcg_res, rd, pass, MO_64); 9850 } 9851 clear_vec_high(s, !is_scalar, rd); 9852 } else { 9853 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9854 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9855 int pass, maxpasses; 9856 9857 if (is_scalar) { 9858 maxpasses = 1; 9859 } else { 9860 maxpasses = is_q ? 4 : 2; 9861 } 9862 9863 for (pass = 0; pass < maxpasses; pass++) { 9864 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9865 9866 switch (opcode) { 9867 case 0x3c: /* URECPE */ 9868 gen_helper_recpe_u32(tcg_res, tcg_op); 9869 break; 9870 case 0x3d: /* FRECPE */ 9871 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9872 break; 9873 case 0x3f: /* FRECPX */ 9874 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9875 break; 9876 case 0x7d: /* FRSQRTE */ 9877 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9878 break; 9879 default: 9880 g_assert_not_reached(); 9881 } 9882 9883 if (is_scalar) { 9884 write_fp_sreg(s, rd, tcg_res); 9885 } else { 9886 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9887 } 9888 } 9889 if (!is_scalar) { 9890 clear_vec_high(s, is_q, rd); 9891 } 9892 } 9893 } 9894 9895 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9896 int opcode, bool u, bool is_q, 9897 int size, int rn, int rd) 9898 { 9899 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9900 * in the source becomes a size element in the destination). 9901 */ 9902 int pass; 9903 TCGv_i32 tcg_res[2]; 9904 int destelt = is_q ? 2 : 0; 9905 int passes = scalar ? 1 : 2; 9906 9907 if (scalar) { 9908 tcg_res[1] = tcg_constant_i32(0); 9909 } 9910 9911 for (pass = 0; pass < passes; pass++) { 9912 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9913 NeonGenNarrowFn *genfn = NULL; 9914 NeonGenNarrowEnvFn *genenvfn = NULL; 9915 9916 if (scalar) { 9917 read_vec_element(s, tcg_op, rn, pass, size + 1); 9918 } else { 9919 read_vec_element(s, tcg_op, rn, pass, MO_64); 9920 } 9921 tcg_res[pass] = tcg_temp_new_i32(); 9922 9923 switch (opcode) { 9924 case 0x12: /* XTN, SQXTUN */ 9925 { 9926 static NeonGenNarrowFn * const xtnfns[3] = { 9927 gen_helper_neon_narrow_u8, 9928 gen_helper_neon_narrow_u16, 9929 tcg_gen_extrl_i64_i32, 9930 }; 9931 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9932 gen_helper_neon_unarrow_sat8, 9933 gen_helper_neon_unarrow_sat16, 9934 gen_helper_neon_unarrow_sat32, 9935 }; 9936 if (u) { 9937 genenvfn = sqxtunfns[size]; 9938 } else { 9939 genfn = xtnfns[size]; 9940 } 9941 break; 9942 } 9943 case 0x14: /* SQXTN, UQXTN */ 9944 { 9945 static NeonGenNarrowEnvFn * const fns[3][2] = { 9946 { gen_helper_neon_narrow_sat_s8, 9947 gen_helper_neon_narrow_sat_u8 }, 9948 { gen_helper_neon_narrow_sat_s16, 9949 gen_helper_neon_narrow_sat_u16 }, 9950 { gen_helper_neon_narrow_sat_s32, 9951 gen_helper_neon_narrow_sat_u32 }, 9952 }; 9953 genenvfn = fns[size][u]; 9954 break; 9955 } 9956 case 0x16: /* FCVTN, FCVTN2 */ 9957 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9958 if (size == 2) { 9959 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9960 } else { 9961 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9962 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9963 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9964 TCGv_i32 ahp = get_ahp_flag(); 9965 9966 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9967 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9968 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9969 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9970 } 9971 break; 9972 case 0x36: /* BFCVTN, BFCVTN2 */ 9973 { 9974 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9975 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9976 } 9977 break; 9978 case 0x56: /* FCVTXN, FCVTXN2 */ 9979 /* 64 bit to 32 bit float conversion 9980 * with von Neumann rounding (round to odd) 9981 */ 9982 assert(size == 2); 9983 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9984 break; 9985 default: 9986 g_assert_not_reached(); 9987 } 9988 9989 if (genfn) { 9990 genfn(tcg_res[pass], tcg_op); 9991 } else if (genenvfn) { 9992 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9993 } 9994 } 9995 9996 for (pass = 0; pass < 2; pass++) { 9997 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9998 } 9999 clear_vec_high(s, is_q, rd); 10000 } 10001 10002 /* AdvSIMD scalar two reg misc 10003 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10004 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10005 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10006 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10007 */ 10008 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10009 { 10010 int rd = extract32(insn, 0, 5); 10011 int rn = extract32(insn, 5, 5); 10012 int opcode = extract32(insn, 12, 5); 10013 int size = extract32(insn, 22, 2); 10014 bool u = extract32(insn, 29, 1); 10015 bool is_fcvt = false; 10016 int rmode; 10017 TCGv_i32 tcg_rmode; 10018 TCGv_ptr tcg_fpstatus; 10019 10020 switch (opcode) { 10021 case 0x7: /* SQABS / SQNEG */ 10022 break; 10023 case 0xa: /* CMLT */ 10024 if (u) { 10025 unallocated_encoding(s); 10026 return; 10027 } 10028 /* fall through */ 10029 case 0x8: /* CMGT, CMGE */ 10030 case 0x9: /* CMEQ, CMLE */ 10031 case 0xb: /* ABS, NEG */ 10032 if (size != 3) { 10033 unallocated_encoding(s); 10034 return; 10035 } 10036 break; 10037 case 0x12: /* SQXTUN */ 10038 if (!u) { 10039 unallocated_encoding(s); 10040 return; 10041 } 10042 /* fall through */ 10043 case 0x14: /* SQXTN, UQXTN */ 10044 if (size == 3) { 10045 unallocated_encoding(s); 10046 return; 10047 } 10048 if (!fp_access_check(s)) { 10049 return; 10050 } 10051 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10052 return; 10053 case 0xc ... 0xf: 10054 case 0x16 ... 0x1d: 10055 case 0x1f: 10056 /* Floating point: U, size[1] and opcode indicate operation; 10057 * size[0] indicates single or double precision. 10058 */ 10059 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10060 size = extract32(size, 0, 1) ? 3 : 2; 10061 switch (opcode) { 10062 case 0x2c: /* FCMGT (zero) */ 10063 case 0x2d: /* FCMEQ (zero) */ 10064 case 0x2e: /* FCMLT (zero) */ 10065 case 0x6c: /* FCMGE (zero) */ 10066 case 0x6d: /* FCMLE (zero) */ 10067 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10068 return; 10069 case 0x1d: /* SCVTF */ 10070 case 0x5d: /* UCVTF */ 10071 { 10072 bool is_signed = (opcode == 0x1d); 10073 if (!fp_access_check(s)) { 10074 return; 10075 } 10076 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10077 return; 10078 } 10079 case 0x3d: /* FRECPE */ 10080 case 0x3f: /* FRECPX */ 10081 case 0x7d: /* FRSQRTE */ 10082 if (!fp_access_check(s)) { 10083 return; 10084 } 10085 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10086 return; 10087 case 0x1a: /* FCVTNS */ 10088 case 0x1b: /* FCVTMS */ 10089 case 0x3a: /* FCVTPS */ 10090 case 0x3b: /* FCVTZS */ 10091 case 0x5a: /* FCVTNU */ 10092 case 0x5b: /* FCVTMU */ 10093 case 0x7a: /* FCVTPU */ 10094 case 0x7b: /* FCVTZU */ 10095 is_fcvt = true; 10096 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10097 break; 10098 case 0x1c: /* FCVTAS */ 10099 case 0x5c: /* FCVTAU */ 10100 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10101 is_fcvt = true; 10102 rmode = FPROUNDING_TIEAWAY; 10103 break; 10104 case 0x56: /* FCVTXN, FCVTXN2 */ 10105 if (size == 2) { 10106 unallocated_encoding(s); 10107 return; 10108 } 10109 if (!fp_access_check(s)) { 10110 return; 10111 } 10112 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10113 return; 10114 default: 10115 unallocated_encoding(s); 10116 return; 10117 } 10118 break; 10119 default: 10120 case 0x3: /* USQADD / SUQADD */ 10121 unallocated_encoding(s); 10122 return; 10123 } 10124 10125 if (!fp_access_check(s)) { 10126 return; 10127 } 10128 10129 if (is_fcvt) { 10130 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10131 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10132 } else { 10133 tcg_fpstatus = NULL; 10134 tcg_rmode = NULL; 10135 } 10136 10137 if (size == 3) { 10138 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10139 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10140 10141 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10142 write_fp_dreg(s, rd, tcg_rd); 10143 } else { 10144 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10145 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10146 10147 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10148 10149 switch (opcode) { 10150 case 0x7: /* SQABS, SQNEG */ 10151 { 10152 NeonGenOneOpEnvFn *genfn; 10153 static NeonGenOneOpEnvFn * const fns[3][2] = { 10154 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10155 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10156 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10157 }; 10158 genfn = fns[size][u]; 10159 genfn(tcg_rd, tcg_env, tcg_rn); 10160 break; 10161 } 10162 case 0x1a: /* FCVTNS */ 10163 case 0x1b: /* FCVTMS */ 10164 case 0x1c: /* FCVTAS */ 10165 case 0x3a: /* FCVTPS */ 10166 case 0x3b: /* FCVTZS */ 10167 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10168 tcg_fpstatus); 10169 break; 10170 case 0x5a: /* FCVTNU */ 10171 case 0x5b: /* FCVTMU */ 10172 case 0x5c: /* FCVTAU */ 10173 case 0x7a: /* FCVTPU */ 10174 case 0x7b: /* FCVTZU */ 10175 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10176 tcg_fpstatus); 10177 break; 10178 default: 10179 g_assert_not_reached(); 10180 } 10181 10182 write_fp_sreg(s, rd, tcg_rd); 10183 } 10184 10185 if (is_fcvt) { 10186 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10187 } 10188 } 10189 10190 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10191 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10192 int immh, int immb, int opcode, int rn, int rd) 10193 { 10194 int size = 32 - clz32(immh) - 1; 10195 int immhb = immh << 3 | immb; 10196 int shift = 2 * (8 << size) - immhb; 10197 GVecGen2iFn *gvec_fn; 10198 10199 if (extract32(immh, 3, 1) && !is_q) { 10200 unallocated_encoding(s); 10201 return; 10202 } 10203 tcg_debug_assert(size <= 3); 10204 10205 if (!fp_access_check(s)) { 10206 return; 10207 } 10208 10209 switch (opcode) { 10210 case 0x02: /* SSRA / USRA (accumulate) */ 10211 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10212 break; 10213 10214 case 0x08: /* SRI */ 10215 gvec_fn = gen_gvec_sri; 10216 break; 10217 10218 case 0x00: /* SSHR / USHR */ 10219 if (is_u) { 10220 if (shift == 8 << size) { 10221 /* Shift count the same size as element size produces zero. */ 10222 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10223 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10224 return; 10225 } 10226 gvec_fn = tcg_gen_gvec_shri; 10227 } else { 10228 /* Shift count the same size as element size produces all sign. */ 10229 if (shift == 8 << size) { 10230 shift -= 1; 10231 } 10232 gvec_fn = tcg_gen_gvec_sari; 10233 } 10234 break; 10235 10236 case 0x04: /* SRSHR / URSHR (rounding) */ 10237 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10238 break; 10239 10240 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10241 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10242 break; 10243 10244 default: 10245 g_assert_not_reached(); 10246 } 10247 10248 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10249 } 10250 10251 /* SHL/SLI - Vector shift left */ 10252 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10253 int immh, int immb, int opcode, int rn, int rd) 10254 { 10255 int size = 32 - clz32(immh) - 1; 10256 int immhb = immh << 3 | immb; 10257 int shift = immhb - (8 << size); 10258 10259 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10260 assert(size >= 0 && size <= 3); 10261 10262 if (extract32(immh, 3, 1) && !is_q) { 10263 unallocated_encoding(s); 10264 return; 10265 } 10266 10267 if (!fp_access_check(s)) { 10268 return; 10269 } 10270 10271 if (insert) { 10272 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10273 } else { 10274 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10275 } 10276 } 10277 10278 /* USHLL/SHLL - Vector shift left with widening */ 10279 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10280 int immh, int immb, int opcode, int rn, int rd) 10281 { 10282 int size = 32 - clz32(immh) - 1; 10283 int immhb = immh << 3 | immb; 10284 int shift = immhb - (8 << size); 10285 int dsize = 64; 10286 int esize = 8 << size; 10287 int elements = dsize/esize; 10288 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10289 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10290 int i; 10291 10292 if (size >= 3) { 10293 unallocated_encoding(s); 10294 return; 10295 } 10296 10297 if (!fp_access_check(s)) { 10298 return; 10299 } 10300 10301 /* For the LL variants the store is larger than the load, 10302 * so if rd == rn we would overwrite parts of our input. 10303 * So load everything right now and use shifts in the main loop. 10304 */ 10305 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10306 10307 for (i = 0; i < elements; i++) { 10308 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10309 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10310 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10311 write_vec_element(s, tcg_rd, rd, i, size + 1); 10312 } 10313 } 10314 10315 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10316 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10317 int immh, int immb, int opcode, int rn, int rd) 10318 { 10319 int immhb = immh << 3 | immb; 10320 int size = 32 - clz32(immh) - 1; 10321 int dsize = 64; 10322 int esize = 8 << size; 10323 int elements = dsize/esize; 10324 int shift = (2 * esize) - immhb; 10325 bool round = extract32(opcode, 0, 1); 10326 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10327 TCGv_i64 tcg_round; 10328 int i; 10329 10330 if (extract32(immh, 3, 1)) { 10331 unallocated_encoding(s); 10332 return; 10333 } 10334 10335 if (!fp_access_check(s)) { 10336 return; 10337 } 10338 10339 tcg_rn = tcg_temp_new_i64(); 10340 tcg_rd = tcg_temp_new_i64(); 10341 tcg_final = tcg_temp_new_i64(); 10342 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10343 10344 if (round) { 10345 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10346 } else { 10347 tcg_round = NULL; 10348 } 10349 10350 for (i = 0; i < elements; i++) { 10351 read_vec_element(s, tcg_rn, rn, i, size+1); 10352 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10353 false, true, size+1, shift); 10354 10355 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10356 } 10357 10358 if (!is_q) { 10359 write_vec_element(s, tcg_final, rd, 0, MO_64); 10360 } else { 10361 write_vec_element(s, tcg_final, rd, 1, MO_64); 10362 } 10363 10364 clear_vec_high(s, is_q, rd); 10365 } 10366 10367 10368 /* AdvSIMD shift by immediate 10369 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10370 * +---+---+---+-------------+------+------+--------+---+------+------+ 10371 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10372 * +---+---+---+-------------+------+------+--------+---+------+------+ 10373 */ 10374 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10375 { 10376 int rd = extract32(insn, 0, 5); 10377 int rn = extract32(insn, 5, 5); 10378 int opcode = extract32(insn, 11, 5); 10379 int immb = extract32(insn, 16, 3); 10380 int immh = extract32(insn, 19, 4); 10381 bool is_u = extract32(insn, 29, 1); 10382 bool is_q = extract32(insn, 30, 1); 10383 10384 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10385 assert(immh != 0); 10386 10387 switch (opcode) { 10388 case 0x08: /* SRI */ 10389 if (!is_u) { 10390 unallocated_encoding(s); 10391 return; 10392 } 10393 /* fall through */ 10394 case 0x00: /* SSHR / USHR */ 10395 case 0x02: /* SSRA / USRA (accumulate) */ 10396 case 0x04: /* SRSHR / URSHR (rounding) */ 10397 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10398 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10399 break; 10400 case 0x0a: /* SHL / SLI */ 10401 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10402 break; 10403 case 0x10: /* SHRN */ 10404 case 0x11: /* RSHRN / SQRSHRUN */ 10405 if (is_u) { 10406 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10407 opcode, rn, rd); 10408 } else { 10409 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10410 } 10411 break; 10412 case 0x12: /* SQSHRN / UQSHRN */ 10413 case 0x13: /* SQRSHRN / UQRSHRN */ 10414 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10415 opcode, rn, rd); 10416 break; 10417 case 0x14: /* SSHLL / USHLL */ 10418 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10419 break; 10420 case 0x1c: /* SCVTF / UCVTF */ 10421 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10422 opcode, rn, rd); 10423 break; 10424 case 0xc: /* SQSHLU */ 10425 if (!is_u) { 10426 unallocated_encoding(s); 10427 return; 10428 } 10429 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10430 break; 10431 case 0xe: /* SQSHL, UQSHL */ 10432 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10433 break; 10434 case 0x1f: /* FCVTZS/ FCVTZU */ 10435 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10436 return; 10437 default: 10438 unallocated_encoding(s); 10439 return; 10440 } 10441 } 10442 10443 /* Generate code to do a "long" addition or subtraction, ie one done in 10444 * TCGv_i64 on vector lanes twice the width specified by size. 10445 */ 10446 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10447 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10448 { 10449 static NeonGenTwo64OpFn * const fns[3][2] = { 10450 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10451 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10452 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10453 }; 10454 NeonGenTwo64OpFn *genfn; 10455 assert(size < 3); 10456 10457 genfn = fns[size][is_sub]; 10458 genfn(tcg_res, tcg_op1, tcg_op2); 10459 } 10460 10461 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10462 int opcode, int rd, int rn, int rm) 10463 { 10464 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10465 TCGv_i64 tcg_res[2]; 10466 int pass, accop; 10467 10468 tcg_res[0] = tcg_temp_new_i64(); 10469 tcg_res[1] = tcg_temp_new_i64(); 10470 10471 /* Does this op do an adding accumulate, a subtracting accumulate, 10472 * or no accumulate at all? 10473 */ 10474 switch (opcode) { 10475 case 5: 10476 case 8: 10477 case 9: 10478 accop = 1; 10479 break; 10480 case 10: 10481 case 11: 10482 accop = -1; 10483 break; 10484 default: 10485 accop = 0; 10486 break; 10487 } 10488 10489 if (accop != 0) { 10490 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10491 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10492 } 10493 10494 /* size == 2 means two 32x32->64 operations; this is worth special 10495 * casing because we can generally handle it inline. 10496 */ 10497 if (size == 2) { 10498 for (pass = 0; pass < 2; pass++) { 10499 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10500 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10501 TCGv_i64 tcg_passres; 10502 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10503 10504 int elt = pass + is_q * 2; 10505 10506 read_vec_element(s, tcg_op1, rn, elt, memop); 10507 read_vec_element(s, tcg_op2, rm, elt, memop); 10508 10509 if (accop == 0) { 10510 tcg_passres = tcg_res[pass]; 10511 } else { 10512 tcg_passres = tcg_temp_new_i64(); 10513 } 10514 10515 switch (opcode) { 10516 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10517 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10518 break; 10519 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10520 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10521 break; 10522 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10523 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10524 { 10525 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10526 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10527 10528 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10529 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10530 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10531 tcg_passres, 10532 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10533 break; 10534 } 10535 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10536 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10537 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10538 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10539 break; 10540 case 9: /* SQDMLAL, SQDMLAL2 */ 10541 case 11: /* SQDMLSL, SQDMLSL2 */ 10542 case 13: /* SQDMULL, SQDMULL2 */ 10543 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10544 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10545 tcg_passres, tcg_passres); 10546 break; 10547 default: 10548 g_assert_not_reached(); 10549 } 10550 10551 if (opcode == 9 || opcode == 11) { 10552 /* saturating accumulate ops */ 10553 if (accop < 0) { 10554 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10555 } 10556 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10557 tcg_res[pass], tcg_passres); 10558 } else if (accop > 0) { 10559 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10560 } else if (accop < 0) { 10561 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10562 } 10563 } 10564 } else { 10565 /* size 0 or 1, generally helper functions */ 10566 for (pass = 0; pass < 2; pass++) { 10567 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10568 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10569 TCGv_i64 tcg_passres; 10570 int elt = pass + is_q * 2; 10571 10572 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10573 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10574 10575 if (accop == 0) { 10576 tcg_passres = tcg_res[pass]; 10577 } else { 10578 tcg_passres = tcg_temp_new_i64(); 10579 } 10580 10581 switch (opcode) { 10582 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10583 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10584 { 10585 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10586 static NeonGenWidenFn * const widenfns[2][2] = { 10587 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10588 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10589 }; 10590 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10591 10592 widenfn(tcg_op2_64, tcg_op2); 10593 widenfn(tcg_passres, tcg_op1); 10594 gen_neon_addl(size, (opcode == 2), tcg_passres, 10595 tcg_passres, tcg_op2_64); 10596 break; 10597 } 10598 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10599 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10600 if (size == 0) { 10601 if (is_u) { 10602 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10603 } else { 10604 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10605 } 10606 } else { 10607 if (is_u) { 10608 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10609 } else { 10610 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10611 } 10612 } 10613 break; 10614 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10615 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10616 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10617 if (size == 0) { 10618 if (is_u) { 10619 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10620 } else { 10621 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10622 } 10623 } else { 10624 if (is_u) { 10625 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10626 } else { 10627 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10628 } 10629 } 10630 break; 10631 case 9: /* SQDMLAL, SQDMLAL2 */ 10632 case 11: /* SQDMLSL, SQDMLSL2 */ 10633 case 13: /* SQDMULL, SQDMULL2 */ 10634 assert(size == 1); 10635 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10636 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10637 tcg_passres, tcg_passres); 10638 break; 10639 default: 10640 g_assert_not_reached(); 10641 } 10642 10643 if (accop != 0) { 10644 if (opcode == 9 || opcode == 11) { 10645 /* saturating accumulate ops */ 10646 if (accop < 0) { 10647 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10648 } 10649 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10650 tcg_res[pass], 10651 tcg_passres); 10652 } else { 10653 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10654 tcg_res[pass], tcg_passres); 10655 } 10656 } 10657 } 10658 } 10659 10660 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10661 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10662 } 10663 10664 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10665 int opcode, int rd, int rn, int rm) 10666 { 10667 TCGv_i64 tcg_res[2]; 10668 int part = is_q ? 2 : 0; 10669 int pass; 10670 10671 for (pass = 0; pass < 2; pass++) { 10672 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10673 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10674 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10675 static NeonGenWidenFn * const widenfns[3][2] = { 10676 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10677 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10678 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10679 }; 10680 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10681 10682 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10683 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10684 widenfn(tcg_op2_wide, tcg_op2); 10685 tcg_res[pass] = tcg_temp_new_i64(); 10686 gen_neon_addl(size, (opcode == 3), 10687 tcg_res[pass], tcg_op1, tcg_op2_wide); 10688 } 10689 10690 for (pass = 0; pass < 2; pass++) { 10691 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10692 } 10693 } 10694 10695 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10696 { 10697 tcg_gen_addi_i64(in, in, 1U << 31); 10698 tcg_gen_extrh_i64_i32(res, in); 10699 } 10700 10701 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10702 int opcode, int rd, int rn, int rm) 10703 { 10704 TCGv_i32 tcg_res[2]; 10705 int part = is_q ? 2 : 0; 10706 int pass; 10707 10708 for (pass = 0; pass < 2; pass++) { 10709 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10710 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10711 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10712 static NeonGenNarrowFn * const narrowfns[3][2] = { 10713 { gen_helper_neon_narrow_high_u8, 10714 gen_helper_neon_narrow_round_high_u8 }, 10715 { gen_helper_neon_narrow_high_u16, 10716 gen_helper_neon_narrow_round_high_u16 }, 10717 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10718 }; 10719 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10720 10721 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10722 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10723 10724 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10725 10726 tcg_res[pass] = tcg_temp_new_i32(); 10727 gennarrow(tcg_res[pass], tcg_wideres); 10728 } 10729 10730 for (pass = 0; pass < 2; pass++) { 10731 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10732 } 10733 clear_vec_high(s, is_q, rd); 10734 } 10735 10736 /* AdvSIMD three different 10737 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10738 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10739 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10740 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10741 */ 10742 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10743 { 10744 /* Instructions in this group fall into three basic classes 10745 * (in each case with the operation working on each element in 10746 * the input vectors): 10747 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10748 * 128 bit input) 10749 * (2) wide 64 x 128 -> 128 10750 * (3) narrowing 128 x 128 -> 64 10751 * Here we do initial decode, catch unallocated cases and 10752 * dispatch to separate functions for each class. 10753 */ 10754 int is_q = extract32(insn, 30, 1); 10755 int is_u = extract32(insn, 29, 1); 10756 int size = extract32(insn, 22, 2); 10757 int opcode = extract32(insn, 12, 4); 10758 int rm = extract32(insn, 16, 5); 10759 int rn = extract32(insn, 5, 5); 10760 int rd = extract32(insn, 0, 5); 10761 10762 switch (opcode) { 10763 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10764 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10765 /* 64 x 128 -> 128 */ 10766 if (size == 3) { 10767 unallocated_encoding(s); 10768 return; 10769 } 10770 if (!fp_access_check(s)) { 10771 return; 10772 } 10773 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10774 break; 10775 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10776 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10777 /* 128 x 128 -> 64 */ 10778 if (size == 3) { 10779 unallocated_encoding(s); 10780 return; 10781 } 10782 if (!fp_access_check(s)) { 10783 return; 10784 } 10785 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10786 break; 10787 case 14: /* PMULL, PMULL2 */ 10788 if (is_u) { 10789 unallocated_encoding(s); 10790 return; 10791 } 10792 switch (size) { 10793 case 0: /* PMULL.P8 */ 10794 if (!fp_access_check(s)) { 10795 return; 10796 } 10797 /* The Q field specifies lo/hi half input for this insn. */ 10798 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10799 gen_helper_neon_pmull_h); 10800 break; 10801 10802 case 3: /* PMULL.P64 */ 10803 if (!dc_isar_feature(aa64_pmull, s)) { 10804 unallocated_encoding(s); 10805 return; 10806 } 10807 if (!fp_access_check(s)) { 10808 return; 10809 } 10810 /* The Q field specifies lo/hi half input for this insn. */ 10811 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10812 gen_helper_gvec_pmull_q); 10813 break; 10814 10815 default: 10816 unallocated_encoding(s); 10817 break; 10818 } 10819 return; 10820 case 9: /* SQDMLAL, SQDMLAL2 */ 10821 case 11: /* SQDMLSL, SQDMLSL2 */ 10822 case 13: /* SQDMULL, SQDMULL2 */ 10823 if (is_u || size == 0) { 10824 unallocated_encoding(s); 10825 return; 10826 } 10827 /* fall through */ 10828 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10829 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10830 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10831 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10832 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10833 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10834 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10835 /* 64 x 64 -> 128 */ 10836 if (size == 3) { 10837 unallocated_encoding(s); 10838 return; 10839 } 10840 if (!fp_access_check(s)) { 10841 return; 10842 } 10843 10844 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10845 break; 10846 default: 10847 /* opcode 15 not allocated */ 10848 unallocated_encoding(s); 10849 break; 10850 } 10851 } 10852 10853 /* AdvSIMD three same extra 10854 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 10855 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 10856 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 10857 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 10858 */ 10859 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 10860 { 10861 int rd = extract32(insn, 0, 5); 10862 int rn = extract32(insn, 5, 5); 10863 int opcode = extract32(insn, 11, 4); 10864 int rm = extract32(insn, 16, 5); 10865 int size = extract32(insn, 22, 2); 10866 bool u = extract32(insn, 29, 1); 10867 bool is_q = extract32(insn, 30, 1); 10868 bool feature; 10869 int rot; 10870 10871 switch (u * 16 + opcode) { 10872 case 0x10: /* SQRDMLAH (vector) */ 10873 case 0x11: /* SQRDMLSH (vector) */ 10874 if (size != 1 && size != 2) { 10875 unallocated_encoding(s); 10876 return; 10877 } 10878 feature = dc_isar_feature(aa64_rdm, s); 10879 break; 10880 case 0x02: /* SDOT (vector) */ 10881 case 0x12: /* UDOT (vector) */ 10882 if (size != MO_32) { 10883 unallocated_encoding(s); 10884 return; 10885 } 10886 feature = dc_isar_feature(aa64_dp, s); 10887 break; 10888 case 0x03: /* USDOT */ 10889 if (size != MO_32) { 10890 unallocated_encoding(s); 10891 return; 10892 } 10893 feature = dc_isar_feature(aa64_i8mm, s); 10894 break; 10895 case 0x04: /* SMMLA */ 10896 case 0x14: /* UMMLA */ 10897 case 0x05: /* USMMLA */ 10898 if (!is_q || size != MO_32) { 10899 unallocated_encoding(s); 10900 return; 10901 } 10902 feature = dc_isar_feature(aa64_i8mm, s); 10903 break; 10904 case 0x18: /* FCMLA, #0 */ 10905 case 0x19: /* FCMLA, #90 */ 10906 case 0x1a: /* FCMLA, #180 */ 10907 case 0x1b: /* FCMLA, #270 */ 10908 case 0x1c: /* FCADD, #90 */ 10909 case 0x1e: /* FCADD, #270 */ 10910 if (size == 0 10911 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 10912 || (size == 3 && !is_q)) { 10913 unallocated_encoding(s); 10914 return; 10915 } 10916 feature = dc_isar_feature(aa64_fcma, s); 10917 break; 10918 case 0x1d: /* BFMMLA */ 10919 if (size != MO_16 || !is_q) { 10920 unallocated_encoding(s); 10921 return; 10922 } 10923 feature = dc_isar_feature(aa64_bf16, s); 10924 break; 10925 case 0x1f: 10926 switch (size) { 10927 case 1: /* BFDOT */ 10928 case 3: /* BFMLAL{B,T} */ 10929 feature = dc_isar_feature(aa64_bf16, s); 10930 break; 10931 default: 10932 unallocated_encoding(s); 10933 return; 10934 } 10935 break; 10936 default: 10937 unallocated_encoding(s); 10938 return; 10939 } 10940 if (!feature) { 10941 unallocated_encoding(s); 10942 return; 10943 } 10944 if (!fp_access_check(s)) { 10945 return; 10946 } 10947 10948 switch (opcode) { 10949 case 0x0: /* SQRDMLAH (vector) */ 10950 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 10951 return; 10952 10953 case 0x1: /* SQRDMLSH (vector) */ 10954 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 10955 return; 10956 10957 case 0x2: /* SDOT / UDOT */ 10958 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 10959 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 10960 return; 10961 10962 case 0x3: /* USDOT */ 10963 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 10964 return; 10965 10966 case 0x04: /* SMMLA, UMMLA */ 10967 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 10968 u ? gen_helper_gvec_ummla_b 10969 : gen_helper_gvec_smmla_b); 10970 return; 10971 case 0x05: /* USMMLA */ 10972 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 10973 return; 10974 10975 case 0x8: /* FCMLA, #0 */ 10976 case 0x9: /* FCMLA, #90 */ 10977 case 0xa: /* FCMLA, #180 */ 10978 case 0xb: /* FCMLA, #270 */ 10979 rot = extract32(opcode, 0, 2); 10980 switch (size) { 10981 case 1: 10982 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 10983 gen_helper_gvec_fcmlah); 10984 break; 10985 case 2: 10986 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 10987 gen_helper_gvec_fcmlas); 10988 break; 10989 case 3: 10990 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 10991 gen_helper_gvec_fcmlad); 10992 break; 10993 default: 10994 g_assert_not_reached(); 10995 } 10996 return; 10997 10998 case 0xc: /* FCADD, #90 */ 10999 case 0xe: /* FCADD, #270 */ 11000 rot = extract32(opcode, 1, 1); 11001 switch (size) { 11002 case 1: 11003 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11004 gen_helper_gvec_fcaddh); 11005 break; 11006 case 2: 11007 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11008 gen_helper_gvec_fcadds); 11009 break; 11010 case 3: 11011 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11012 gen_helper_gvec_fcaddd); 11013 break; 11014 default: 11015 g_assert_not_reached(); 11016 } 11017 return; 11018 11019 case 0xd: /* BFMMLA */ 11020 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11021 return; 11022 case 0xf: 11023 switch (size) { 11024 case 1: /* BFDOT */ 11025 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11026 break; 11027 case 3: /* BFMLAL{B,T} */ 11028 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11029 gen_helper_gvec_bfmlal); 11030 break; 11031 default: 11032 g_assert_not_reached(); 11033 } 11034 return; 11035 11036 default: 11037 g_assert_not_reached(); 11038 } 11039 } 11040 11041 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11042 int size, int rn, int rd) 11043 { 11044 /* Handle 2-reg-misc ops which are widening (so each size element 11045 * in the source becomes a 2*size element in the destination. 11046 * The only instruction like this is FCVTL. 11047 */ 11048 int pass; 11049 11050 if (size == 3) { 11051 /* 32 -> 64 bit fp conversion */ 11052 TCGv_i64 tcg_res[2]; 11053 int srcelt = is_q ? 2 : 0; 11054 11055 for (pass = 0; pass < 2; pass++) { 11056 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11057 tcg_res[pass] = tcg_temp_new_i64(); 11058 11059 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11060 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11061 } 11062 for (pass = 0; pass < 2; pass++) { 11063 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11064 } 11065 } else { 11066 /* 16 -> 32 bit fp conversion */ 11067 int srcelt = is_q ? 4 : 0; 11068 TCGv_i32 tcg_res[4]; 11069 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11070 TCGv_i32 ahp = get_ahp_flag(); 11071 11072 for (pass = 0; pass < 4; pass++) { 11073 tcg_res[pass] = tcg_temp_new_i32(); 11074 11075 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11076 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11077 fpst, ahp); 11078 } 11079 for (pass = 0; pass < 4; pass++) { 11080 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11081 } 11082 } 11083 } 11084 11085 static void handle_rev(DisasContext *s, int opcode, bool u, 11086 bool is_q, int size, int rn, int rd) 11087 { 11088 int op = (opcode << 1) | u; 11089 int opsz = op + size; 11090 int grp_size = 3 - opsz; 11091 int dsize = is_q ? 128 : 64; 11092 int i; 11093 11094 if (opsz >= 3) { 11095 unallocated_encoding(s); 11096 return; 11097 } 11098 11099 if (!fp_access_check(s)) { 11100 return; 11101 } 11102 11103 if (size == 0) { 11104 /* Special case bytes, use bswap op on each group of elements */ 11105 int groups = dsize / (8 << grp_size); 11106 11107 for (i = 0; i < groups; i++) { 11108 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11109 11110 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11111 switch (grp_size) { 11112 case MO_16: 11113 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11114 break; 11115 case MO_32: 11116 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11117 break; 11118 case MO_64: 11119 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11120 break; 11121 default: 11122 g_assert_not_reached(); 11123 } 11124 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11125 } 11126 clear_vec_high(s, is_q, rd); 11127 } else { 11128 int revmask = (1 << grp_size) - 1; 11129 int esize = 8 << size; 11130 int elements = dsize / esize; 11131 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11132 TCGv_i64 tcg_rd[2]; 11133 11134 for (i = 0; i < 2; i++) { 11135 tcg_rd[i] = tcg_temp_new_i64(); 11136 tcg_gen_movi_i64(tcg_rd[i], 0); 11137 } 11138 11139 for (i = 0; i < elements; i++) { 11140 int e_rev = (i & 0xf) ^ revmask; 11141 int w = (e_rev * esize) / 64; 11142 int o = (e_rev * esize) % 64; 11143 11144 read_vec_element(s, tcg_rn, rn, i, size); 11145 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11146 } 11147 11148 for (i = 0; i < 2; i++) { 11149 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11150 } 11151 clear_vec_high(s, true, rd); 11152 } 11153 } 11154 11155 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11156 bool is_q, int size, int rn, int rd) 11157 { 11158 /* Implement the pairwise operations from 2-misc: 11159 * SADDLP, UADDLP, SADALP, UADALP. 11160 * These all add pairs of elements in the input to produce a 11161 * double-width result element in the output (possibly accumulating). 11162 */ 11163 bool accum = (opcode == 0x6); 11164 int maxpass = is_q ? 2 : 1; 11165 int pass; 11166 TCGv_i64 tcg_res[2]; 11167 11168 if (size == 2) { 11169 /* 32 + 32 -> 64 op */ 11170 MemOp memop = size + (u ? 0 : MO_SIGN); 11171 11172 for (pass = 0; pass < maxpass; pass++) { 11173 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11174 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11175 11176 tcg_res[pass] = tcg_temp_new_i64(); 11177 11178 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11179 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11180 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11181 if (accum) { 11182 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11183 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11184 } 11185 } 11186 } else { 11187 for (pass = 0; pass < maxpass; pass++) { 11188 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11189 NeonGenOne64OpFn *genfn; 11190 static NeonGenOne64OpFn * const fns[2][2] = { 11191 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11192 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11193 }; 11194 11195 genfn = fns[size][u]; 11196 11197 tcg_res[pass] = tcg_temp_new_i64(); 11198 11199 read_vec_element(s, tcg_op, rn, pass, MO_64); 11200 genfn(tcg_res[pass], tcg_op); 11201 11202 if (accum) { 11203 read_vec_element(s, tcg_op, rd, pass, MO_64); 11204 if (size == 0) { 11205 gen_helper_neon_addl_u16(tcg_res[pass], 11206 tcg_res[pass], tcg_op); 11207 } else { 11208 gen_helper_neon_addl_u32(tcg_res[pass], 11209 tcg_res[pass], tcg_op); 11210 } 11211 } 11212 } 11213 } 11214 if (!is_q) { 11215 tcg_res[1] = tcg_constant_i64(0); 11216 } 11217 for (pass = 0; pass < 2; pass++) { 11218 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11219 } 11220 } 11221 11222 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11223 { 11224 /* Implement SHLL and SHLL2 */ 11225 int pass; 11226 int part = is_q ? 2 : 0; 11227 TCGv_i64 tcg_res[2]; 11228 11229 for (pass = 0; pass < 2; pass++) { 11230 static NeonGenWidenFn * const widenfns[3] = { 11231 gen_helper_neon_widen_u8, 11232 gen_helper_neon_widen_u16, 11233 tcg_gen_extu_i32_i64, 11234 }; 11235 NeonGenWidenFn *widenfn = widenfns[size]; 11236 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11237 11238 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11239 tcg_res[pass] = tcg_temp_new_i64(); 11240 widenfn(tcg_res[pass], tcg_op); 11241 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11242 } 11243 11244 for (pass = 0; pass < 2; pass++) { 11245 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11246 } 11247 } 11248 11249 /* AdvSIMD two reg misc 11250 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11251 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11252 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11253 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11254 */ 11255 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11256 { 11257 int size = extract32(insn, 22, 2); 11258 int opcode = extract32(insn, 12, 5); 11259 bool u = extract32(insn, 29, 1); 11260 bool is_q = extract32(insn, 30, 1); 11261 int rn = extract32(insn, 5, 5); 11262 int rd = extract32(insn, 0, 5); 11263 bool need_fpstatus = false; 11264 int rmode = -1; 11265 TCGv_i32 tcg_rmode; 11266 TCGv_ptr tcg_fpstatus; 11267 11268 switch (opcode) { 11269 case 0x0: /* REV64, REV32 */ 11270 case 0x1: /* REV16 */ 11271 handle_rev(s, opcode, u, is_q, size, rn, rd); 11272 return; 11273 case 0x5: /* CNT, NOT, RBIT */ 11274 if (u && size == 0) { 11275 /* NOT */ 11276 break; 11277 } else if (u && size == 1) { 11278 /* RBIT */ 11279 break; 11280 } else if (!u && size == 0) { 11281 /* CNT */ 11282 break; 11283 } 11284 unallocated_encoding(s); 11285 return; 11286 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11287 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11288 if (size == 3) { 11289 unallocated_encoding(s); 11290 return; 11291 } 11292 if (!fp_access_check(s)) { 11293 return; 11294 } 11295 11296 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11297 return; 11298 case 0x4: /* CLS, CLZ */ 11299 if (size == 3) { 11300 unallocated_encoding(s); 11301 return; 11302 } 11303 break; 11304 case 0x2: /* SADDLP, UADDLP */ 11305 case 0x6: /* SADALP, UADALP */ 11306 if (size == 3) { 11307 unallocated_encoding(s); 11308 return; 11309 } 11310 if (!fp_access_check(s)) { 11311 return; 11312 } 11313 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11314 return; 11315 case 0x13: /* SHLL, SHLL2 */ 11316 if (u == 0 || size == 3) { 11317 unallocated_encoding(s); 11318 return; 11319 } 11320 if (!fp_access_check(s)) { 11321 return; 11322 } 11323 handle_shll(s, is_q, size, rn, rd); 11324 return; 11325 case 0xa: /* CMLT */ 11326 if (u == 1) { 11327 unallocated_encoding(s); 11328 return; 11329 } 11330 /* fall through */ 11331 case 0x8: /* CMGT, CMGE */ 11332 case 0x9: /* CMEQ, CMLE */ 11333 case 0xb: /* ABS, NEG */ 11334 if (size == 3 && !is_q) { 11335 unallocated_encoding(s); 11336 return; 11337 } 11338 break; 11339 case 0x7: /* SQABS, SQNEG */ 11340 if (size == 3 && !is_q) { 11341 unallocated_encoding(s); 11342 return; 11343 } 11344 break; 11345 case 0xc ... 0xf: 11346 case 0x16 ... 0x1f: 11347 { 11348 /* Floating point: U, size[1] and opcode indicate operation; 11349 * size[0] indicates single or double precision. 11350 */ 11351 int is_double = extract32(size, 0, 1); 11352 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11353 size = is_double ? 3 : 2; 11354 switch (opcode) { 11355 case 0x2f: /* FABS */ 11356 case 0x6f: /* FNEG */ 11357 if (size == 3 && !is_q) { 11358 unallocated_encoding(s); 11359 return; 11360 } 11361 break; 11362 case 0x1d: /* SCVTF */ 11363 case 0x5d: /* UCVTF */ 11364 { 11365 bool is_signed = (opcode == 0x1d) ? true : false; 11366 int elements = is_double ? 2 : is_q ? 4 : 2; 11367 if (is_double && !is_q) { 11368 unallocated_encoding(s); 11369 return; 11370 } 11371 if (!fp_access_check(s)) { 11372 return; 11373 } 11374 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11375 return; 11376 } 11377 case 0x2c: /* FCMGT (zero) */ 11378 case 0x2d: /* FCMEQ (zero) */ 11379 case 0x2e: /* FCMLT (zero) */ 11380 case 0x6c: /* FCMGE (zero) */ 11381 case 0x6d: /* FCMLE (zero) */ 11382 if (size == 3 && !is_q) { 11383 unallocated_encoding(s); 11384 return; 11385 } 11386 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11387 return; 11388 case 0x7f: /* FSQRT */ 11389 if (size == 3 && !is_q) { 11390 unallocated_encoding(s); 11391 return; 11392 } 11393 break; 11394 case 0x1a: /* FCVTNS */ 11395 case 0x1b: /* FCVTMS */ 11396 case 0x3a: /* FCVTPS */ 11397 case 0x3b: /* FCVTZS */ 11398 case 0x5a: /* FCVTNU */ 11399 case 0x5b: /* FCVTMU */ 11400 case 0x7a: /* FCVTPU */ 11401 case 0x7b: /* FCVTZU */ 11402 need_fpstatus = true; 11403 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11404 if (size == 3 && !is_q) { 11405 unallocated_encoding(s); 11406 return; 11407 } 11408 break; 11409 case 0x5c: /* FCVTAU */ 11410 case 0x1c: /* FCVTAS */ 11411 need_fpstatus = true; 11412 rmode = FPROUNDING_TIEAWAY; 11413 if (size == 3 && !is_q) { 11414 unallocated_encoding(s); 11415 return; 11416 } 11417 break; 11418 case 0x3c: /* URECPE */ 11419 if (size == 3) { 11420 unallocated_encoding(s); 11421 return; 11422 } 11423 /* fall through */ 11424 case 0x3d: /* FRECPE */ 11425 case 0x7d: /* FRSQRTE */ 11426 if (size == 3 && !is_q) { 11427 unallocated_encoding(s); 11428 return; 11429 } 11430 if (!fp_access_check(s)) { 11431 return; 11432 } 11433 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11434 return; 11435 case 0x56: /* FCVTXN, FCVTXN2 */ 11436 if (size == 2) { 11437 unallocated_encoding(s); 11438 return; 11439 } 11440 /* fall through */ 11441 case 0x16: /* FCVTN, FCVTN2 */ 11442 /* handle_2misc_narrow does a 2*size -> size operation, but these 11443 * instructions encode the source size rather than dest size. 11444 */ 11445 if (!fp_access_check(s)) { 11446 return; 11447 } 11448 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11449 return; 11450 case 0x36: /* BFCVTN, BFCVTN2 */ 11451 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11452 unallocated_encoding(s); 11453 return; 11454 } 11455 if (!fp_access_check(s)) { 11456 return; 11457 } 11458 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11459 return; 11460 case 0x17: /* FCVTL, FCVTL2 */ 11461 if (!fp_access_check(s)) { 11462 return; 11463 } 11464 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11465 return; 11466 case 0x18: /* FRINTN */ 11467 case 0x19: /* FRINTM */ 11468 case 0x38: /* FRINTP */ 11469 case 0x39: /* FRINTZ */ 11470 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11471 /* fall through */ 11472 case 0x59: /* FRINTX */ 11473 case 0x79: /* FRINTI */ 11474 need_fpstatus = true; 11475 if (size == 3 && !is_q) { 11476 unallocated_encoding(s); 11477 return; 11478 } 11479 break; 11480 case 0x58: /* FRINTA */ 11481 rmode = FPROUNDING_TIEAWAY; 11482 need_fpstatus = true; 11483 if (size == 3 && !is_q) { 11484 unallocated_encoding(s); 11485 return; 11486 } 11487 break; 11488 case 0x7c: /* URSQRTE */ 11489 if (size == 3) { 11490 unallocated_encoding(s); 11491 return; 11492 } 11493 break; 11494 case 0x1e: /* FRINT32Z */ 11495 case 0x1f: /* FRINT64Z */ 11496 rmode = FPROUNDING_ZERO; 11497 /* fall through */ 11498 case 0x5e: /* FRINT32X */ 11499 case 0x5f: /* FRINT64X */ 11500 need_fpstatus = true; 11501 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 11502 unallocated_encoding(s); 11503 return; 11504 } 11505 break; 11506 default: 11507 unallocated_encoding(s); 11508 return; 11509 } 11510 break; 11511 } 11512 default: 11513 case 0x3: /* SUQADD, USQADD */ 11514 unallocated_encoding(s); 11515 return; 11516 } 11517 11518 if (!fp_access_check(s)) { 11519 return; 11520 } 11521 11522 if (need_fpstatus || rmode >= 0) { 11523 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 11524 } else { 11525 tcg_fpstatus = NULL; 11526 } 11527 if (rmode >= 0) { 11528 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11529 } else { 11530 tcg_rmode = NULL; 11531 } 11532 11533 switch (opcode) { 11534 case 0x5: 11535 if (u && size == 0) { /* NOT */ 11536 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 11537 return; 11538 } 11539 break; 11540 case 0x8: /* CMGT, CMGE */ 11541 if (u) { 11542 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 11543 } else { 11544 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 11545 } 11546 return; 11547 case 0x9: /* CMEQ, CMLE */ 11548 if (u) { 11549 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 11550 } else { 11551 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 11552 } 11553 return; 11554 case 0xa: /* CMLT */ 11555 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 11556 return; 11557 case 0xb: 11558 if (u) { /* ABS, NEG */ 11559 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 11560 } else { 11561 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 11562 } 11563 return; 11564 } 11565 11566 if (size == 3) { 11567 /* All 64-bit element operations can be shared with scalar 2misc */ 11568 int pass; 11569 11570 /* Coverity claims (size == 3 && !is_q) has been eliminated 11571 * from all paths leading to here. 11572 */ 11573 tcg_debug_assert(is_q); 11574 for (pass = 0; pass < 2; pass++) { 11575 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11576 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11577 11578 read_vec_element(s, tcg_op, rn, pass, MO_64); 11579 11580 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 11581 tcg_rmode, tcg_fpstatus); 11582 11583 write_vec_element(s, tcg_res, rd, pass, MO_64); 11584 } 11585 } else { 11586 int pass; 11587 11588 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11589 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11590 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11591 11592 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 11593 11594 if (size == 2) { 11595 /* Special cases for 32 bit elements */ 11596 switch (opcode) { 11597 case 0x4: /* CLS */ 11598 if (u) { 11599 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 11600 } else { 11601 tcg_gen_clrsb_i32(tcg_res, tcg_op); 11602 } 11603 break; 11604 case 0x7: /* SQABS, SQNEG */ 11605 if (u) { 11606 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 11607 } else { 11608 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 11609 } 11610 break; 11611 case 0x2f: /* FABS */ 11612 gen_vfp_abss(tcg_res, tcg_op); 11613 break; 11614 case 0x6f: /* FNEG */ 11615 gen_vfp_negs(tcg_res, tcg_op); 11616 break; 11617 case 0x7f: /* FSQRT */ 11618 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 11619 break; 11620 case 0x1a: /* FCVTNS */ 11621 case 0x1b: /* FCVTMS */ 11622 case 0x1c: /* FCVTAS */ 11623 case 0x3a: /* FCVTPS */ 11624 case 0x3b: /* FCVTZS */ 11625 gen_helper_vfp_tosls(tcg_res, tcg_op, 11626 tcg_constant_i32(0), tcg_fpstatus); 11627 break; 11628 case 0x5a: /* FCVTNU */ 11629 case 0x5b: /* FCVTMU */ 11630 case 0x5c: /* FCVTAU */ 11631 case 0x7a: /* FCVTPU */ 11632 case 0x7b: /* FCVTZU */ 11633 gen_helper_vfp_touls(tcg_res, tcg_op, 11634 tcg_constant_i32(0), tcg_fpstatus); 11635 break; 11636 case 0x18: /* FRINTN */ 11637 case 0x19: /* FRINTM */ 11638 case 0x38: /* FRINTP */ 11639 case 0x39: /* FRINTZ */ 11640 case 0x58: /* FRINTA */ 11641 case 0x79: /* FRINTI */ 11642 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 11643 break; 11644 case 0x59: /* FRINTX */ 11645 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 11646 break; 11647 case 0x7c: /* URSQRTE */ 11648 gen_helper_rsqrte_u32(tcg_res, tcg_op); 11649 break; 11650 case 0x1e: /* FRINT32Z */ 11651 case 0x5e: /* FRINT32X */ 11652 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 11653 break; 11654 case 0x1f: /* FRINT64Z */ 11655 case 0x5f: /* FRINT64X */ 11656 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 11657 break; 11658 default: 11659 g_assert_not_reached(); 11660 } 11661 } else { 11662 /* Use helpers for 8 and 16 bit elements */ 11663 switch (opcode) { 11664 case 0x5: /* CNT, RBIT */ 11665 /* For these two insns size is part of the opcode specifier 11666 * (handled earlier); they always operate on byte elements. 11667 */ 11668 if (u) { 11669 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 11670 } else { 11671 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 11672 } 11673 break; 11674 case 0x7: /* SQABS, SQNEG */ 11675 { 11676 NeonGenOneOpEnvFn *genfn; 11677 static NeonGenOneOpEnvFn * const fns[2][2] = { 11678 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 11679 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 11680 }; 11681 genfn = fns[size][u]; 11682 genfn(tcg_res, tcg_env, tcg_op); 11683 break; 11684 } 11685 case 0x4: /* CLS, CLZ */ 11686 if (u) { 11687 if (size == 0) { 11688 gen_helper_neon_clz_u8(tcg_res, tcg_op); 11689 } else { 11690 gen_helper_neon_clz_u16(tcg_res, tcg_op); 11691 } 11692 } else { 11693 if (size == 0) { 11694 gen_helper_neon_cls_s8(tcg_res, tcg_op); 11695 } else { 11696 gen_helper_neon_cls_s16(tcg_res, tcg_op); 11697 } 11698 } 11699 break; 11700 default: 11701 g_assert_not_reached(); 11702 } 11703 } 11704 11705 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11706 } 11707 } 11708 clear_vec_high(s, is_q, rd); 11709 11710 if (tcg_rmode) { 11711 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 11712 } 11713 } 11714 11715 /* AdvSIMD [scalar] two register miscellaneous (FP16) 11716 * 11717 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 11718 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11719 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 11720 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11721 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 11722 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 11723 * 11724 * This actually covers two groups where scalar access is governed by 11725 * bit 28. A bunch of the instructions (float to integral) only exist 11726 * in the vector form and are un-allocated for the scalar decode. Also 11727 * in the scalar decode Q is always 1. 11728 */ 11729 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 11730 { 11731 int fpop, opcode, a, u; 11732 int rn, rd; 11733 bool is_q; 11734 bool is_scalar; 11735 bool only_in_vector = false; 11736 11737 int pass; 11738 TCGv_i32 tcg_rmode = NULL; 11739 TCGv_ptr tcg_fpstatus = NULL; 11740 bool need_fpst = true; 11741 int rmode = -1; 11742 11743 if (!dc_isar_feature(aa64_fp16, s)) { 11744 unallocated_encoding(s); 11745 return; 11746 } 11747 11748 rd = extract32(insn, 0, 5); 11749 rn = extract32(insn, 5, 5); 11750 11751 a = extract32(insn, 23, 1); 11752 u = extract32(insn, 29, 1); 11753 is_scalar = extract32(insn, 28, 1); 11754 is_q = extract32(insn, 30, 1); 11755 11756 opcode = extract32(insn, 12, 5); 11757 fpop = deposit32(opcode, 5, 1, a); 11758 fpop = deposit32(fpop, 6, 1, u); 11759 11760 switch (fpop) { 11761 case 0x1d: /* SCVTF */ 11762 case 0x5d: /* UCVTF */ 11763 { 11764 int elements; 11765 11766 if (is_scalar) { 11767 elements = 1; 11768 } else { 11769 elements = (is_q ? 8 : 4); 11770 } 11771 11772 if (!fp_access_check(s)) { 11773 return; 11774 } 11775 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 11776 return; 11777 } 11778 break; 11779 case 0x2c: /* FCMGT (zero) */ 11780 case 0x2d: /* FCMEQ (zero) */ 11781 case 0x2e: /* FCMLT (zero) */ 11782 case 0x6c: /* FCMGE (zero) */ 11783 case 0x6d: /* FCMLE (zero) */ 11784 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 11785 return; 11786 case 0x3d: /* FRECPE */ 11787 case 0x3f: /* FRECPX */ 11788 break; 11789 case 0x18: /* FRINTN */ 11790 only_in_vector = true; 11791 rmode = FPROUNDING_TIEEVEN; 11792 break; 11793 case 0x19: /* FRINTM */ 11794 only_in_vector = true; 11795 rmode = FPROUNDING_NEGINF; 11796 break; 11797 case 0x38: /* FRINTP */ 11798 only_in_vector = true; 11799 rmode = FPROUNDING_POSINF; 11800 break; 11801 case 0x39: /* FRINTZ */ 11802 only_in_vector = true; 11803 rmode = FPROUNDING_ZERO; 11804 break; 11805 case 0x58: /* FRINTA */ 11806 only_in_vector = true; 11807 rmode = FPROUNDING_TIEAWAY; 11808 break; 11809 case 0x59: /* FRINTX */ 11810 case 0x79: /* FRINTI */ 11811 only_in_vector = true; 11812 /* current rounding mode */ 11813 break; 11814 case 0x1a: /* FCVTNS */ 11815 rmode = FPROUNDING_TIEEVEN; 11816 break; 11817 case 0x1b: /* FCVTMS */ 11818 rmode = FPROUNDING_NEGINF; 11819 break; 11820 case 0x1c: /* FCVTAS */ 11821 rmode = FPROUNDING_TIEAWAY; 11822 break; 11823 case 0x3a: /* FCVTPS */ 11824 rmode = FPROUNDING_POSINF; 11825 break; 11826 case 0x3b: /* FCVTZS */ 11827 rmode = FPROUNDING_ZERO; 11828 break; 11829 case 0x5a: /* FCVTNU */ 11830 rmode = FPROUNDING_TIEEVEN; 11831 break; 11832 case 0x5b: /* FCVTMU */ 11833 rmode = FPROUNDING_NEGINF; 11834 break; 11835 case 0x5c: /* FCVTAU */ 11836 rmode = FPROUNDING_TIEAWAY; 11837 break; 11838 case 0x7a: /* FCVTPU */ 11839 rmode = FPROUNDING_POSINF; 11840 break; 11841 case 0x7b: /* FCVTZU */ 11842 rmode = FPROUNDING_ZERO; 11843 break; 11844 case 0x2f: /* FABS */ 11845 case 0x6f: /* FNEG */ 11846 need_fpst = false; 11847 break; 11848 case 0x7d: /* FRSQRTE */ 11849 case 0x7f: /* FSQRT (vector) */ 11850 break; 11851 default: 11852 unallocated_encoding(s); 11853 return; 11854 } 11855 11856 11857 /* Check additional constraints for the scalar encoding */ 11858 if (is_scalar) { 11859 if (!is_q) { 11860 unallocated_encoding(s); 11861 return; 11862 } 11863 /* FRINTxx is only in the vector form */ 11864 if (only_in_vector) { 11865 unallocated_encoding(s); 11866 return; 11867 } 11868 } 11869 11870 if (!fp_access_check(s)) { 11871 return; 11872 } 11873 11874 if (rmode >= 0 || need_fpst) { 11875 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 11876 } 11877 11878 if (rmode >= 0) { 11879 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11880 } 11881 11882 if (is_scalar) { 11883 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 11884 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11885 11886 switch (fpop) { 11887 case 0x1a: /* FCVTNS */ 11888 case 0x1b: /* FCVTMS */ 11889 case 0x1c: /* FCVTAS */ 11890 case 0x3a: /* FCVTPS */ 11891 case 0x3b: /* FCVTZS */ 11892 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11893 break; 11894 case 0x3d: /* FRECPE */ 11895 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 11896 break; 11897 case 0x3f: /* FRECPX */ 11898 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 11899 break; 11900 case 0x5a: /* FCVTNU */ 11901 case 0x5b: /* FCVTMU */ 11902 case 0x5c: /* FCVTAU */ 11903 case 0x7a: /* FCVTPU */ 11904 case 0x7b: /* FCVTZU */ 11905 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 11906 break; 11907 case 0x6f: /* FNEG */ 11908 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 11909 break; 11910 case 0x7d: /* FRSQRTE */ 11911 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 11912 break; 11913 default: 11914 g_assert_not_reached(); 11915 } 11916 11917 /* limit any sign extension going on */ 11918 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 11919 write_fp_sreg(s, rd, tcg_res); 11920 } else { 11921 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 11922 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11923 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11924 11925 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 11926 11927 switch (fpop) { 11928 case 0x1a: /* FCVTNS */ 11929 case 0x1b: /* FCVTMS */ 11930 case 0x1c: /* FCVTAS */ 11931 case 0x3a: /* FCVTPS */ 11932 case 0x3b: /* FCVTZS */ 11933 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11934 break; 11935 case 0x3d: /* FRECPE */ 11936 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 11937 break; 11938 case 0x5a: /* FCVTNU */ 11939 case 0x5b: /* FCVTMU */ 11940 case 0x5c: /* FCVTAU */ 11941 case 0x7a: /* FCVTPU */ 11942 case 0x7b: /* FCVTZU */ 11943 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 11944 break; 11945 case 0x18: /* FRINTN */ 11946 case 0x19: /* FRINTM */ 11947 case 0x38: /* FRINTP */ 11948 case 0x39: /* FRINTZ */ 11949 case 0x58: /* FRINTA */ 11950 case 0x79: /* FRINTI */ 11951 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 11952 break; 11953 case 0x59: /* FRINTX */ 11954 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 11955 break; 11956 case 0x2f: /* FABS */ 11957 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 11958 break; 11959 case 0x6f: /* FNEG */ 11960 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 11961 break; 11962 case 0x7d: /* FRSQRTE */ 11963 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 11964 break; 11965 case 0x7f: /* FSQRT */ 11966 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 11967 break; 11968 default: 11969 g_assert_not_reached(); 11970 } 11971 11972 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11973 } 11974 11975 clear_vec_high(s, is_q, rd); 11976 } 11977 11978 if (tcg_rmode) { 11979 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 11980 } 11981 } 11982 11983 /* AdvSIMD scalar x indexed element 11984 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 11985 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 11986 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 11987 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 11988 * AdvSIMD vector x indexed element 11989 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 11990 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 11991 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 11992 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 11993 */ 11994 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 11995 { 11996 /* This encoding has two kinds of instruction: 11997 * normal, where we perform elt x idxelt => elt for each 11998 * element in the vector 11999 * long, where we perform elt x idxelt and generate a result of 12000 * double the width of the input element 12001 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12002 */ 12003 bool is_scalar = extract32(insn, 28, 1); 12004 bool is_q = extract32(insn, 30, 1); 12005 bool u = extract32(insn, 29, 1); 12006 int size = extract32(insn, 22, 2); 12007 int l = extract32(insn, 21, 1); 12008 int m = extract32(insn, 20, 1); 12009 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12010 int rm = extract32(insn, 16, 4); 12011 int opcode = extract32(insn, 12, 4); 12012 int h = extract32(insn, 11, 1); 12013 int rn = extract32(insn, 5, 5); 12014 int rd = extract32(insn, 0, 5); 12015 bool is_long = false; 12016 int is_fp = 0; 12017 bool is_fp16 = false; 12018 int index; 12019 TCGv_ptr fpst; 12020 12021 switch (16 * u + opcode) { 12022 case 0x02: /* SMLAL, SMLAL2 */ 12023 case 0x12: /* UMLAL, UMLAL2 */ 12024 case 0x06: /* SMLSL, SMLSL2 */ 12025 case 0x16: /* UMLSL, UMLSL2 */ 12026 case 0x0a: /* SMULL, SMULL2 */ 12027 case 0x1a: /* UMULL, UMULL2 */ 12028 if (is_scalar) { 12029 unallocated_encoding(s); 12030 return; 12031 } 12032 is_long = true; 12033 break; 12034 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12035 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12036 case 0x0b: /* SQDMULL, SQDMULL2 */ 12037 is_long = true; 12038 break; 12039 case 0x1d: /* SQRDMLAH */ 12040 case 0x1f: /* SQRDMLSH */ 12041 if (!dc_isar_feature(aa64_rdm, s)) { 12042 unallocated_encoding(s); 12043 return; 12044 } 12045 break; 12046 case 0x0e: /* SDOT */ 12047 case 0x1e: /* UDOT */ 12048 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12049 unallocated_encoding(s); 12050 return; 12051 } 12052 break; 12053 case 0x0f: 12054 switch (size) { 12055 case 0: /* SUDOT */ 12056 case 2: /* USDOT */ 12057 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12058 unallocated_encoding(s); 12059 return; 12060 } 12061 size = MO_32; 12062 break; 12063 case 1: /* BFDOT */ 12064 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12065 unallocated_encoding(s); 12066 return; 12067 } 12068 size = MO_32; 12069 break; 12070 case 3: /* BFMLAL{B,T} */ 12071 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12072 unallocated_encoding(s); 12073 return; 12074 } 12075 /* can't set is_fp without other incorrect size checks */ 12076 size = MO_16; 12077 break; 12078 default: 12079 unallocated_encoding(s); 12080 return; 12081 } 12082 break; 12083 case 0x11: /* FCMLA #0 */ 12084 case 0x13: /* FCMLA #90 */ 12085 case 0x15: /* FCMLA #180 */ 12086 case 0x17: /* FCMLA #270 */ 12087 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12088 unallocated_encoding(s); 12089 return; 12090 } 12091 is_fp = 2; 12092 break; 12093 default: 12094 case 0x00: /* FMLAL */ 12095 case 0x01: /* FMLA */ 12096 case 0x04: /* FMLSL */ 12097 case 0x05: /* FMLS */ 12098 case 0x08: /* MUL */ 12099 case 0x09: /* FMUL */ 12100 case 0x0c: /* SQDMULH */ 12101 case 0x0d: /* SQRDMULH */ 12102 case 0x10: /* MLA */ 12103 case 0x14: /* MLS */ 12104 case 0x18: /* FMLAL2 */ 12105 case 0x19: /* FMULX */ 12106 case 0x1c: /* FMLSL2 */ 12107 unallocated_encoding(s); 12108 return; 12109 } 12110 12111 switch (is_fp) { 12112 case 1: /* normal fp */ 12113 unallocated_encoding(s); /* in decodetree */ 12114 return; 12115 12116 case 2: /* complex fp */ 12117 /* Each indexable element is a complex pair. */ 12118 size += 1; 12119 switch (size) { 12120 case MO_32: 12121 if (h && !is_q) { 12122 unallocated_encoding(s); 12123 return; 12124 } 12125 is_fp16 = true; 12126 break; 12127 case MO_64: 12128 break; 12129 default: 12130 unallocated_encoding(s); 12131 return; 12132 } 12133 break; 12134 12135 default: /* integer */ 12136 switch (size) { 12137 case MO_8: 12138 case MO_64: 12139 unallocated_encoding(s); 12140 return; 12141 } 12142 break; 12143 } 12144 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12145 unallocated_encoding(s); 12146 return; 12147 } 12148 12149 /* Given MemOp size, adjust register and indexing. */ 12150 switch (size) { 12151 case MO_16: 12152 index = h << 2 | l << 1 | m; 12153 break; 12154 case MO_32: 12155 index = h << 1 | l; 12156 rm |= m << 4; 12157 break; 12158 case MO_64: 12159 if (l || !is_q) { 12160 unallocated_encoding(s); 12161 return; 12162 } 12163 index = h; 12164 rm |= m << 4; 12165 break; 12166 default: 12167 g_assert_not_reached(); 12168 } 12169 12170 if (!fp_access_check(s)) { 12171 return; 12172 } 12173 12174 if (is_fp) { 12175 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12176 } else { 12177 fpst = NULL; 12178 } 12179 12180 switch (16 * u + opcode) { 12181 case 0x0e: /* SDOT */ 12182 case 0x1e: /* UDOT */ 12183 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12184 u ? gen_helper_gvec_udot_idx_b 12185 : gen_helper_gvec_sdot_idx_b); 12186 return; 12187 case 0x0f: 12188 switch (extract32(insn, 22, 2)) { 12189 case 0: /* SUDOT */ 12190 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12191 gen_helper_gvec_sudot_idx_b); 12192 return; 12193 case 1: /* BFDOT */ 12194 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12195 gen_helper_gvec_bfdot_idx); 12196 return; 12197 case 2: /* USDOT */ 12198 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12199 gen_helper_gvec_usdot_idx_b); 12200 return; 12201 case 3: /* BFMLAL{B,T} */ 12202 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12203 gen_helper_gvec_bfmlal_idx); 12204 return; 12205 } 12206 g_assert_not_reached(); 12207 case 0x11: /* FCMLA #0 */ 12208 case 0x13: /* FCMLA #90 */ 12209 case 0x15: /* FCMLA #180 */ 12210 case 0x17: /* FCMLA #270 */ 12211 { 12212 int rot = extract32(insn, 13, 2); 12213 int data = (index << 2) | rot; 12214 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12215 vec_full_reg_offset(s, rn), 12216 vec_full_reg_offset(s, rm), 12217 vec_full_reg_offset(s, rd), fpst, 12218 is_q ? 16 : 8, vec_full_reg_size(s), data, 12219 size == MO_64 12220 ? gen_helper_gvec_fcmlas_idx 12221 : gen_helper_gvec_fcmlah_idx); 12222 } 12223 return; 12224 } 12225 12226 if (size == 3) { 12227 g_assert_not_reached(); 12228 } else if (!is_long) { 12229 /* 32 bit floating point, or 16 or 32 bit integer. 12230 * For the 16 bit scalar case we use the usual Neon helpers and 12231 * rely on the fact that 0 op 0 == 0 with no side effects. 12232 */ 12233 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12234 int pass, maxpasses; 12235 12236 if (is_scalar) { 12237 maxpasses = 1; 12238 } else { 12239 maxpasses = is_q ? 4 : 2; 12240 } 12241 12242 read_vec_element_i32(s, tcg_idx, rm, index, size); 12243 12244 if (size == 1 && !is_scalar) { 12245 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12246 * the index into both halves of the 32 bit tcg_idx and then use 12247 * the usual Neon helpers. 12248 */ 12249 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12250 } 12251 12252 for (pass = 0; pass < maxpasses; pass++) { 12253 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12254 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12255 12256 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12257 12258 switch (16 * u + opcode) { 12259 case 0x10: /* MLA */ 12260 case 0x14: /* MLS */ 12261 { 12262 static NeonGenTwoOpFn * const fns[2][2] = { 12263 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12264 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12265 }; 12266 NeonGenTwoOpFn *genfn; 12267 bool is_sub = opcode == 0x4; 12268 12269 if (size == 1) { 12270 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12271 } else { 12272 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12273 } 12274 if (opcode == 0x8) { 12275 break; 12276 } 12277 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12278 genfn = fns[size - 1][is_sub]; 12279 genfn(tcg_res, tcg_op, tcg_res); 12280 break; 12281 } 12282 case 0x0c: /* SQDMULH */ 12283 if (size == 1) { 12284 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 12285 tcg_op, tcg_idx); 12286 } else { 12287 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 12288 tcg_op, tcg_idx); 12289 } 12290 break; 12291 case 0x0d: /* SQRDMULH */ 12292 if (size == 1) { 12293 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 12294 tcg_op, tcg_idx); 12295 } else { 12296 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 12297 tcg_op, tcg_idx); 12298 } 12299 break; 12300 case 0x1d: /* SQRDMLAH */ 12301 read_vec_element_i32(s, tcg_res, rd, pass, 12302 is_scalar ? size : MO_32); 12303 if (size == 1) { 12304 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 12305 tcg_op, tcg_idx, tcg_res); 12306 } else { 12307 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 12308 tcg_op, tcg_idx, tcg_res); 12309 } 12310 break; 12311 case 0x1f: /* SQRDMLSH */ 12312 read_vec_element_i32(s, tcg_res, rd, pass, 12313 is_scalar ? size : MO_32); 12314 if (size == 1) { 12315 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 12316 tcg_op, tcg_idx, tcg_res); 12317 } else { 12318 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 12319 tcg_op, tcg_idx, tcg_res); 12320 } 12321 break; 12322 default: 12323 case 0x01: /* FMLA */ 12324 case 0x05: /* FMLS */ 12325 case 0x09: /* FMUL */ 12326 case 0x19: /* FMULX */ 12327 g_assert_not_reached(); 12328 } 12329 12330 if (is_scalar) { 12331 write_fp_sreg(s, rd, tcg_res); 12332 } else { 12333 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12334 } 12335 } 12336 12337 clear_vec_high(s, is_q, rd); 12338 } else { 12339 /* long ops: 16x16->32 or 32x32->64 */ 12340 TCGv_i64 tcg_res[2]; 12341 int pass; 12342 bool satop = extract32(opcode, 0, 1); 12343 MemOp memop = MO_32; 12344 12345 if (satop || !u) { 12346 memop |= MO_SIGN; 12347 } 12348 12349 if (size == 2) { 12350 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12351 12352 read_vec_element(s, tcg_idx, rm, index, memop); 12353 12354 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12355 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12356 TCGv_i64 tcg_passres; 12357 int passelt; 12358 12359 if (is_scalar) { 12360 passelt = 0; 12361 } else { 12362 passelt = pass + (is_q * 2); 12363 } 12364 12365 read_vec_element(s, tcg_op, rn, passelt, memop); 12366 12367 tcg_res[pass] = tcg_temp_new_i64(); 12368 12369 if (opcode == 0xa || opcode == 0xb) { 12370 /* Non-accumulating ops */ 12371 tcg_passres = tcg_res[pass]; 12372 } else { 12373 tcg_passres = tcg_temp_new_i64(); 12374 } 12375 12376 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 12377 12378 if (satop) { 12379 /* saturating, doubling */ 12380 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 12381 tcg_passres, tcg_passres); 12382 } 12383 12384 if (opcode == 0xa || opcode == 0xb) { 12385 continue; 12386 } 12387 12388 /* Accumulating op: handle accumulate step */ 12389 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12390 12391 switch (opcode) { 12392 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12393 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12394 break; 12395 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12396 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12397 break; 12398 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12399 tcg_gen_neg_i64(tcg_passres, tcg_passres); 12400 /* fall through */ 12401 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12402 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 12403 tcg_res[pass], 12404 tcg_passres); 12405 break; 12406 default: 12407 g_assert_not_reached(); 12408 } 12409 } 12410 12411 clear_vec_high(s, !is_scalar, rd); 12412 } else { 12413 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12414 12415 assert(size == 1); 12416 read_vec_element_i32(s, tcg_idx, rm, index, size); 12417 12418 if (!is_scalar) { 12419 /* The simplest way to handle the 16x16 indexed ops is to 12420 * duplicate the index into both halves of the 32 bit tcg_idx 12421 * and then use the usual Neon helpers. 12422 */ 12423 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12424 } 12425 12426 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12427 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12428 TCGv_i64 tcg_passres; 12429 12430 if (is_scalar) { 12431 read_vec_element_i32(s, tcg_op, rn, pass, size); 12432 } else { 12433 read_vec_element_i32(s, tcg_op, rn, 12434 pass + (is_q * 2), MO_32); 12435 } 12436 12437 tcg_res[pass] = tcg_temp_new_i64(); 12438 12439 if (opcode == 0xa || opcode == 0xb) { 12440 /* Non-accumulating ops */ 12441 tcg_passres = tcg_res[pass]; 12442 } else { 12443 tcg_passres = tcg_temp_new_i64(); 12444 } 12445 12446 if (memop & MO_SIGN) { 12447 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 12448 } else { 12449 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 12450 } 12451 if (satop) { 12452 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 12453 tcg_passres, tcg_passres); 12454 } 12455 12456 if (opcode == 0xa || opcode == 0xb) { 12457 continue; 12458 } 12459 12460 /* Accumulating op: handle accumulate step */ 12461 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12462 12463 switch (opcode) { 12464 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12465 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 12466 tcg_passres); 12467 break; 12468 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12469 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 12470 tcg_passres); 12471 break; 12472 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12473 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 12474 /* fall through */ 12475 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12476 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 12477 tcg_res[pass], 12478 tcg_passres); 12479 break; 12480 default: 12481 g_assert_not_reached(); 12482 } 12483 } 12484 12485 if (is_scalar) { 12486 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 12487 } 12488 } 12489 12490 if (is_scalar) { 12491 tcg_res[1] = tcg_constant_i64(0); 12492 } 12493 12494 for (pass = 0; pass < 2; pass++) { 12495 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12496 } 12497 } 12498 } 12499 12500 /* C3.6 Data processing - SIMD, inc Crypto 12501 * 12502 * As the decode gets a little complex we are using a table based 12503 * approach for this part of the decode. 12504 */ 12505 static const AArch64DecodeTable data_proc_simd[] = { 12506 /* pattern , mask , fn */ 12507 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 12508 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 12509 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 12510 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 12511 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 12512 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 12513 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 12514 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 12515 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 12516 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 12517 { 0x2e000000, 0xbf208400, disas_simd_ext }, 12518 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 12519 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 12520 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 12521 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 12522 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 12523 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 12524 { 0x00000000, 0x00000000, NULL } 12525 }; 12526 12527 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 12528 { 12529 /* Note that this is called with all non-FP cases from 12530 * table C3-6 so it must UNDEF for entries not specifically 12531 * allocated to instructions in that table. 12532 */ 12533 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 12534 if (fn) { 12535 fn(s, insn); 12536 } else { 12537 unallocated_encoding(s); 12538 } 12539 } 12540 12541 /* C3.6 Data processing - SIMD and floating point */ 12542 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 12543 { 12544 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 12545 disas_data_proc_fp(s, insn); 12546 } else { 12547 /* SIMD, including crypto */ 12548 disas_data_proc_simd(s, insn); 12549 } 12550 } 12551 12552 static bool trans_OK(DisasContext *s, arg_OK *a) 12553 { 12554 return true; 12555 } 12556 12557 static bool trans_FAIL(DisasContext *s, arg_OK *a) 12558 { 12559 s->is_nonstreaming = true; 12560 return true; 12561 } 12562 12563 /** 12564 * is_guarded_page: 12565 * @env: The cpu environment 12566 * @s: The DisasContext 12567 * 12568 * Return true if the page is guarded. 12569 */ 12570 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 12571 { 12572 uint64_t addr = s->base.pc_first; 12573 #ifdef CONFIG_USER_ONLY 12574 return page_get_flags(addr) & PAGE_BTI; 12575 #else 12576 CPUTLBEntryFull *full; 12577 void *host; 12578 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 12579 int flags; 12580 12581 /* 12582 * We test this immediately after reading an insn, which means 12583 * that the TLB entry must be present and valid, and thus this 12584 * access will never raise an exception. 12585 */ 12586 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 12587 false, &host, &full, 0); 12588 assert(!(flags & TLB_INVALID_MASK)); 12589 12590 return full->extra.arm.guarded; 12591 #endif 12592 } 12593 12594 /** 12595 * btype_destination_ok: 12596 * @insn: The instruction at the branch destination 12597 * @bt: SCTLR_ELx.BT 12598 * @btype: PSTATE.BTYPE, and is non-zero 12599 * 12600 * On a guarded page, there are a limited number of insns 12601 * that may be present at the branch target: 12602 * - branch target identifiers, 12603 * - paciasp, pacibsp, 12604 * - BRK insn 12605 * - HLT insn 12606 * Anything else causes a Branch Target Exception. 12607 * 12608 * Return true if the branch is compatible, false to raise BTITRAP. 12609 */ 12610 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 12611 { 12612 if ((insn & 0xfffff01fu) == 0xd503201fu) { 12613 /* HINT space */ 12614 switch (extract32(insn, 5, 7)) { 12615 case 0b011001: /* PACIASP */ 12616 case 0b011011: /* PACIBSP */ 12617 /* 12618 * If SCTLR_ELx.BT, then PACI*SP are not compatible 12619 * with btype == 3. Otherwise all btype are ok. 12620 */ 12621 return !bt || btype != 3; 12622 case 0b100000: /* BTI */ 12623 /* Not compatible with any btype. */ 12624 return false; 12625 case 0b100010: /* BTI c */ 12626 /* Not compatible with btype == 3 */ 12627 return btype != 3; 12628 case 0b100100: /* BTI j */ 12629 /* Not compatible with btype == 2 */ 12630 return btype != 2; 12631 case 0b100110: /* BTI jc */ 12632 /* Compatible with any btype. */ 12633 return true; 12634 } 12635 } else { 12636 switch (insn & 0xffe0001fu) { 12637 case 0xd4200000u: /* BRK */ 12638 case 0xd4400000u: /* HLT */ 12639 /* Give priority to the breakpoint exception. */ 12640 return true; 12641 } 12642 } 12643 return false; 12644 } 12645 12646 /* C3.1 A64 instruction index by encoding */ 12647 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 12648 { 12649 switch (extract32(insn, 25, 4)) { 12650 case 0x5: 12651 case 0xd: /* Data processing - register */ 12652 disas_data_proc_reg(s, insn); 12653 break; 12654 case 0x7: 12655 case 0xf: /* Data processing - SIMD and floating point */ 12656 disas_data_proc_simd_fp(s, insn); 12657 break; 12658 default: 12659 unallocated_encoding(s); 12660 break; 12661 } 12662 } 12663 12664 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 12665 CPUState *cpu) 12666 { 12667 DisasContext *dc = container_of(dcbase, DisasContext, base); 12668 CPUARMState *env = cpu_env(cpu); 12669 ARMCPU *arm_cpu = env_archcpu(env); 12670 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 12671 int bound, core_mmu_idx; 12672 12673 dc->isar = &arm_cpu->isar; 12674 dc->condjmp = 0; 12675 dc->pc_save = dc->base.pc_first; 12676 dc->aarch64 = true; 12677 dc->thumb = false; 12678 dc->sctlr_b = 0; 12679 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 12680 dc->condexec_mask = 0; 12681 dc->condexec_cond = 0; 12682 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 12683 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 12684 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 12685 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 12686 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 12687 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 12688 #if !defined(CONFIG_USER_ONLY) 12689 dc->user = (dc->current_el == 0); 12690 #endif 12691 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 12692 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 12693 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 12694 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 12695 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 12696 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 12697 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 12698 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 12699 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 12700 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 12701 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 12702 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 12703 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 12704 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 12705 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 12706 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 12707 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 12708 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 12709 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 12710 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 12711 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 12712 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 12713 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 12714 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 12715 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 12716 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 12717 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 12718 dc->vec_len = 0; 12719 dc->vec_stride = 0; 12720 dc->cp_regs = arm_cpu->cp_regs; 12721 dc->features = env->features; 12722 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 12723 dc->gm_blocksize = arm_cpu->gm_blocksize; 12724 12725 #ifdef CONFIG_USER_ONLY 12726 /* In sve_probe_page, we assume TBI is enabled. */ 12727 tcg_debug_assert(dc->tbid & 1); 12728 #endif 12729 12730 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 12731 12732 /* Single step state. The code-generation logic here is: 12733 * SS_ACTIVE == 0: 12734 * generate code with no special handling for single-stepping (except 12735 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 12736 * this happens anyway because those changes are all system register or 12737 * PSTATE writes). 12738 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 12739 * emit code for one insn 12740 * emit code to clear PSTATE.SS 12741 * emit code to generate software step exception for completed step 12742 * end TB (as usual for having generated an exception) 12743 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 12744 * emit code to generate a software step exception 12745 * end the TB 12746 */ 12747 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 12748 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 12749 dc->is_ldex = false; 12750 12751 /* Bound the number of insns to execute to those left on the page. */ 12752 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 12753 12754 /* If architectural single step active, limit to 1. */ 12755 if (dc->ss_active) { 12756 bound = 1; 12757 } 12758 dc->base.max_insns = MIN(dc->base.max_insns, bound); 12759 } 12760 12761 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 12762 { 12763 } 12764 12765 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 12766 { 12767 DisasContext *dc = container_of(dcbase, DisasContext, base); 12768 target_ulong pc_arg = dc->base.pc_next; 12769 12770 if (tb_cflags(dcbase->tb) & CF_PCREL) { 12771 pc_arg &= ~TARGET_PAGE_MASK; 12772 } 12773 tcg_gen_insn_start(pc_arg, 0, 0); 12774 dc->insn_start_updated = false; 12775 } 12776 12777 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 12778 { 12779 DisasContext *s = container_of(dcbase, DisasContext, base); 12780 CPUARMState *env = cpu_env(cpu); 12781 uint64_t pc = s->base.pc_next; 12782 uint32_t insn; 12783 12784 /* Singlestep exceptions have the highest priority. */ 12785 if (s->ss_active && !s->pstate_ss) { 12786 /* Singlestep state is Active-pending. 12787 * If we're in this state at the start of a TB then either 12788 * a) we just took an exception to an EL which is being debugged 12789 * and this is the first insn in the exception handler 12790 * b) debug exceptions were masked and we just unmasked them 12791 * without changing EL (eg by clearing PSTATE.D) 12792 * In either case we're going to take a swstep exception in the 12793 * "did not step an insn" case, and so the syndrome ISV and EX 12794 * bits should be zero. 12795 */ 12796 assert(s->base.num_insns == 1); 12797 gen_swstep_exception(s, 0, 0); 12798 s->base.is_jmp = DISAS_NORETURN; 12799 s->base.pc_next = pc + 4; 12800 return; 12801 } 12802 12803 if (pc & 3) { 12804 /* 12805 * PC alignment fault. This has priority over the instruction abort 12806 * that we would receive from a translation fault via arm_ldl_code. 12807 * This should only be possible after an indirect branch, at the 12808 * start of the TB. 12809 */ 12810 assert(s->base.num_insns == 1); 12811 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 12812 s->base.is_jmp = DISAS_NORETURN; 12813 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 12814 return; 12815 } 12816 12817 s->pc_curr = pc; 12818 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 12819 s->insn = insn; 12820 s->base.pc_next = pc + 4; 12821 12822 s->fp_access_checked = false; 12823 s->sve_access_checked = false; 12824 12825 if (s->pstate_il) { 12826 /* 12827 * Illegal execution state. This has priority over BTI 12828 * exceptions, but comes after instruction abort exceptions. 12829 */ 12830 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 12831 return; 12832 } 12833 12834 if (dc_isar_feature(aa64_bti, s)) { 12835 if (s->base.num_insns == 1) { 12836 /* 12837 * At the first insn of the TB, compute s->guarded_page. 12838 * We delayed computing this until successfully reading 12839 * the first insn of the TB, above. This (mostly) ensures 12840 * that the softmmu tlb entry has been populated, and the 12841 * page table GP bit is available. 12842 * 12843 * Note that we need to compute this even if btype == 0, 12844 * because this value is used for BR instructions later 12845 * where ENV is not available. 12846 */ 12847 s->guarded_page = is_guarded_page(env, s); 12848 12849 /* First insn can have btype set to non-zero. */ 12850 tcg_debug_assert(s->btype >= 0); 12851 12852 /* 12853 * Note that the Branch Target Exception has fairly high 12854 * priority -- below debugging exceptions but above most 12855 * everything else. This allows us to handle this now 12856 * instead of waiting until the insn is otherwise decoded. 12857 */ 12858 if (s->btype != 0 12859 && s->guarded_page 12860 && !btype_destination_ok(insn, s->bt, s->btype)) { 12861 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 12862 return; 12863 } 12864 } else { 12865 /* Not the first insn: btype must be 0. */ 12866 tcg_debug_assert(s->btype == 0); 12867 } 12868 } 12869 12870 s->is_nonstreaming = false; 12871 if (s->sme_trap_nonstreaming) { 12872 disas_sme_fa64(s, insn); 12873 } 12874 12875 if (!disas_a64(s, insn) && 12876 !disas_sme(s, insn) && 12877 !disas_sve(s, insn)) { 12878 disas_a64_legacy(s, insn); 12879 } 12880 12881 /* 12882 * After execution of most insns, btype is reset to 0. 12883 * Note that we set btype == -1 when the insn sets btype. 12884 */ 12885 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 12886 reset_btype(s); 12887 } 12888 } 12889 12890 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 12891 { 12892 DisasContext *dc = container_of(dcbase, DisasContext, base); 12893 12894 if (unlikely(dc->ss_active)) { 12895 /* Note that this means single stepping WFI doesn't halt the CPU. 12896 * For conditional branch insns this is harmless unreachable code as 12897 * gen_goto_tb() has already handled emitting the debug exception 12898 * (and thus a tb-jump is not possible when singlestepping). 12899 */ 12900 switch (dc->base.is_jmp) { 12901 default: 12902 gen_a64_update_pc(dc, 4); 12903 /* fall through */ 12904 case DISAS_EXIT: 12905 case DISAS_JUMP: 12906 gen_step_complete_exception(dc); 12907 break; 12908 case DISAS_NORETURN: 12909 break; 12910 } 12911 } else { 12912 switch (dc->base.is_jmp) { 12913 case DISAS_NEXT: 12914 case DISAS_TOO_MANY: 12915 gen_goto_tb(dc, 1, 4); 12916 break; 12917 default: 12918 case DISAS_UPDATE_EXIT: 12919 gen_a64_update_pc(dc, 4); 12920 /* fall through */ 12921 case DISAS_EXIT: 12922 tcg_gen_exit_tb(NULL, 0); 12923 break; 12924 case DISAS_UPDATE_NOCHAIN: 12925 gen_a64_update_pc(dc, 4); 12926 /* fall through */ 12927 case DISAS_JUMP: 12928 tcg_gen_lookup_and_goto_ptr(); 12929 break; 12930 case DISAS_NORETURN: 12931 case DISAS_SWI: 12932 break; 12933 case DISAS_WFE: 12934 gen_a64_update_pc(dc, 4); 12935 gen_helper_wfe(tcg_env); 12936 break; 12937 case DISAS_YIELD: 12938 gen_a64_update_pc(dc, 4); 12939 gen_helper_yield(tcg_env); 12940 break; 12941 case DISAS_WFI: 12942 /* 12943 * This is a special case because we don't want to just halt 12944 * the CPU if trying to debug across a WFI. 12945 */ 12946 gen_a64_update_pc(dc, 4); 12947 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 12948 /* 12949 * The helper doesn't necessarily throw an exception, but we 12950 * must go back to the main loop to check for interrupts anyway. 12951 */ 12952 tcg_gen_exit_tb(NULL, 0); 12953 break; 12954 } 12955 } 12956 } 12957 12958 const TranslatorOps aarch64_translator_ops = { 12959 .init_disas_context = aarch64_tr_init_disas_context, 12960 .tb_start = aarch64_tr_tb_start, 12961 .insn_start = aarch64_tr_insn_start, 12962 .translate_insn = aarch64_tr_translate_insn, 12963 .tb_stop = aarch64_tr_tb_stop, 12964 }; 12965