1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmax = { 4919 gen_helper_advsimd_maxh, 4920 gen_helper_vfp_maxs, 4921 gen_helper_vfp_maxd, 4922 }; 4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4924 4925 static const FPScalar f_scalar_fmin = { 4926 gen_helper_advsimd_minh, 4927 gen_helper_vfp_mins, 4928 gen_helper_vfp_mind, 4929 }; 4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4931 4932 static const FPScalar f_scalar_fmaxnm = { 4933 gen_helper_advsimd_maxnumh, 4934 gen_helper_vfp_maxnums, 4935 gen_helper_vfp_maxnumd, 4936 }; 4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4938 4939 static const FPScalar f_scalar_fminnm = { 4940 gen_helper_advsimd_minnumh, 4941 gen_helper_vfp_minnums, 4942 gen_helper_vfp_minnumd, 4943 }; 4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4945 4946 static const FPScalar f_scalar_fmulx = { 4947 gen_helper_advsimd_mulxh, 4948 gen_helper_vfp_mulxs, 4949 gen_helper_vfp_mulxd, 4950 }; 4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4952 4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4954 { 4955 gen_helper_vfp_mulh(d, n, m, s); 4956 gen_vfp_negh(d, d); 4957 } 4958 4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_muls(d, n, m, s); 4962 gen_vfp_negs(d, d); 4963 } 4964 4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muld(d, n, m, s); 4968 gen_vfp_negd(d, d); 4969 } 4970 4971 static const FPScalar f_scalar_fnmul = { 4972 gen_fnmul_h, 4973 gen_fnmul_s, 4974 gen_fnmul_d, 4975 }; 4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4977 4978 static const FPScalar f_scalar_fcmeq = { 4979 gen_helper_advsimd_ceq_f16, 4980 gen_helper_neon_ceq_f32, 4981 gen_helper_neon_ceq_f64, 4982 }; 4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4984 4985 static const FPScalar f_scalar_fcmge = { 4986 gen_helper_advsimd_cge_f16, 4987 gen_helper_neon_cge_f32, 4988 gen_helper_neon_cge_f64, 4989 }; 4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 4991 4992 static const FPScalar f_scalar_fcmgt = { 4993 gen_helper_advsimd_cgt_f16, 4994 gen_helper_neon_cgt_f32, 4995 gen_helper_neon_cgt_f64, 4996 }; 4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 4998 4999 static const FPScalar f_scalar_facge = { 5000 gen_helper_advsimd_acge_f16, 5001 gen_helper_neon_acge_f32, 5002 gen_helper_neon_acge_f64, 5003 }; 5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5005 5006 static const FPScalar f_scalar_facgt = { 5007 gen_helper_advsimd_acgt_f16, 5008 gen_helper_neon_acgt_f32, 5009 gen_helper_neon_acgt_f64, 5010 }; 5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5012 5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5014 { 5015 gen_helper_vfp_subh(d, n, m, s); 5016 gen_vfp_absh(d, d); 5017 } 5018 5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5020 { 5021 gen_helper_vfp_subs(d, n, m, s); 5022 gen_vfp_abss(d, d); 5023 } 5024 5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5026 { 5027 gen_helper_vfp_subd(d, n, m, s); 5028 gen_vfp_absd(d, d); 5029 } 5030 5031 static const FPScalar f_scalar_fabd = { 5032 gen_fabd_h, 5033 gen_fabd_s, 5034 gen_fabd_d, 5035 }; 5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5037 5038 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5039 gen_helper_gvec_3_ptr * const fns[3]) 5040 { 5041 MemOp esz = a->esz; 5042 5043 switch (esz) { 5044 case MO_64: 5045 if (!a->q) { 5046 return false; 5047 } 5048 break; 5049 case MO_32: 5050 break; 5051 case MO_16: 5052 if (!dc_isar_feature(aa64_fp16, s)) { 5053 return false; 5054 } 5055 break; 5056 default: 5057 return false; 5058 } 5059 if (fp_access_check(s)) { 5060 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5061 esz == MO_16, 0, fns[esz - 1]); 5062 } 5063 return true; 5064 } 5065 5066 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5067 gen_helper_gvec_fadd_h, 5068 gen_helper_gvec_fadd_s, 5069 gen_helper_gvec_fadd_d, 5070 }; 5071 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5072 5073 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5074 gen_helper_gvec_fsub_h, 5075 gen_helper_gvec_fsub_s, 5076 gen_helper_gvec_fsub_d, 5077 }; 5078 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5079 5080 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5081 gen_helper_gvec_fdiv_h, 5082 gen_helper_gvec_fdiv_s, 5083 gen_helper_gvec_fdiv_d, 5084 }; 5085 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5086 5087 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5088 gen_helper_gvec_fmul_h, 5089 gen_helper_gvec_fmul_s, 5090 gen_helper_gvec_fmul_d, 5091 }; 5092 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5093 5094 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5095 gen_helper_gvec_fmax_h, 5096 gen_helper_gvec_fmax_s, 5097 gen_helper_gvec_fmax_d, 5098 }; 5099 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5100 5101 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5102 gen_helper_gvec_fmin_h, 5103 gen_helper_gvec_fmin_s, 5104 gen_helper_gvec_fmin_d, 5105 }; 5106 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5107 5108 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5109 gen_helper_gvec_fmaxnum_h, 5110 gen_helper_gvec_fmaxnum_s, 5111 gen_helper_gvec_fmaxnum_d, 5112 }; 5113 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5114 5115 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5116 gen_helper_gvec_fminnum_h, 5117 gen_helper_gvec_fminnum_s, 5118 gen_helper_gvec_fminnum_d, 5119 }; 5120 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5121 5122 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5123 gen_helper_gvec_fmulx_h, 5124 gen_helper_gvec_fmulx_s, 5125 gen_helper_gvec_fmulx_d, 5126 }; 5127 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5128 5129 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5130 gen_helper_gvec_vfma_h, 5131 gen_helper_gvec_vfma_s, 5132 gen_helper_gvec_vfma_d, 5133 }; 5134 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5135 5136 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5137 gen_helper_gvec_vfms_h, 5138 gen_helper_gvec_vfms_s, 5139 gen_helper_gvec_vfms_d, 5140 }; 5141 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5142 5143 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5144 gen_helper_gvec_fceq_h, 5145 gen_helper_gvec_fceq_s, 5146 gen_helper_gvec_fceq_d, 5147 }; 5148 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5149 5150 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5151 gen_helper_gvec_fcge_h, 5152 gen_helper_gvec_fcge_s, 5153 gen_helper_gvec_fcge_d, 5154 }; 5155 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5156 5157 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5158 gen_helper_gvec_fcgt_h, 5159 gen_helper_gvec_fcgt_s, 5160 gen_helper_gvec_fcgt_d, 5161 }; 5162 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5163 5164 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5165 gen_helper_gvec_facge_h, 5166 gen_helper_gvec_facge_s, 5167 gen_helper_gvec_facge_d, 5168 }; 5169 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5170 5171 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5172 gen_helper_gvec_facgt_h, 5173 gen_helper_gvec_facgt_s, 5174 gen_helper_gvec_facgt_d, 5175 }; 5176 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5177 5178 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5179 gen_helper_gvec_fabd_h, 5180 gen_helper_gvec_fabd_s, 5181 gen_helper_gvec_fabd_d, 5182 }; 5183 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5184 5185 /* 5186 * Advanced SIMD scalar/vector x indexed element 5187 */ 5188 5189 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5190 { 5191 switch (a->esz) { 5192 case MO_64: 5193 if (fp_access_check(s)) { 5194 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5195 TCGv_i64 t1 = tcg_temp_new_i64(); 5196 5197 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5198 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5199 write_fp_dreg(s, a->rd, t0); 5200 } 5201 break; 5202 case MO_32: 5203 if (fp_access_check(s)) { 5204 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5205 TCGv_i32 t1 = tcg_temp_new_i32(); 5206 5207 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5208 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5209 write_fp_sreg(s, a->rd, t0); 5210 } 5211 break; 5212 case MO_16: 5213 if (!dc_isar_feature(aa64_fp16, s)) { 5214 return false; 5215 } 5216 if (fp_access_check(s)) { 5217 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5218 TCGv_i32 t1 = tcg_temp_new_i32(); 5219 5220 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5221 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5222 write_fp_sreg(s, a->rd, t0); 5223 } 5224 break; 5225 default: 5226 g_assert_not_reached(); 5227 } 5228 return true; 5229 } 5230 5231 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5232 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5233 5234 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5235 { 5236 switch (a->esz) { 5237 case MO_64: 5238 if (fp_access_check(s)) { 5239 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5240 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5241 TCGv_i64 t2 = tcg_temp_new_i64(); 5242 5243 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5244 if (neg) { 5245 gen_vfp_negd(t1, t1); 5246 } 5247 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5248 write_fp_dreg(s, a->rd, t0); 5249 } 5250 break; 5251 case MO_32: 5252 if (fp_access_check(s)) { 5253 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5254 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5255 TCGv_i32 t2 = tcg_temp_new_i32(); 5256 5257 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5258 if (neg) { 5259 gen_vfp_negs(t1, t1); 5260 } 5261 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5262 write_fp_sreg(s, a->rd, t0); 5263 } 5264 break; 5265 case MO_16: 5266 if (!dc_isar_feature(aa64_fp16, s)) { 5267 return false; 5268 } 5269 if (fp_access_check(s)) { 5270 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5271 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5272 TCGv_i32 t2 = tcg_temp_new_i32(); 5273 5274 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5275 if (neg) { 5276 gen_vfp_negh(t1, t1); 5277 } 5278 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5279 fpstatus_ptr(FPST_FPCR_F16)); 5280 write_fp_sreg(s, a->rd, t0); 5281 } 5282 break; 5283 default: 5284 g_assert_not_reached(); 5285 } 5286 return true; 5287 } 5288 5289 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5290 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5291 5292 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5293 gen_helper_gvec_3_ptr * const fns[3]) 5294 { 5295 MemOp esz = a->esz; 5296 5297 switch (esz) { 5298 case MO_64: 5299 if (!a->q) { 5300 return false; 5301 } 5302 break; 5303 case MO_32: 5304 break; 5305 case MO_16: 5306 if (!dc_isar_feature(aa64_fp16, s)) { 5307 return false; 5308 } 5309 break; 5310 default: 5311 g_assert_not_reached(); 5312 } 5313 if (fp_access_check(s)) { 5314 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5315 esz == MO_16, a->idx, fns[esz - 1]); 5316 } 5317 return true; 5318 } 5319 5320 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5321 gen_helper_gvec_fmul_idx_h, 5322 gen_helper_gvec_fmul_idx_s, 5323 gen_helper_gvec_fmul_idx_d, 5324 }; 5325 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5326 5327 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5328 gen_helper_gvec_fmulx_idx_h, 5329 gen_helper_gvec_fmulx_idx_s, 5330 gen_helper_gvec_fmulx_idx_d, 5331 }; 5332 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5333 5334 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5335 { 5336 static gen_helper_gvec_4_ptr * const fns[3] = { 5337 gen_helper_gvec_fmla_idx_h, 5338 gen_helper_gvec_fmla_idx_s, 5339 gen_helper_gvec_fmla_idx_d, 5340 }; 5341 MemOp esz = a->esz; 5342 5343 switch (esz) { 5344 case MO_64: 5345 if (!a->q) { 5346 return false; 5347 } 5348 break; 5349 case MO_32: 5350 break; 5351 case MO_16: 5352 if (!dc_isar_feature(aa64_fp16, s)) { 5353 return false; 5354 } 5355 break; 5356 default: 5357 g_assert_not_reached(); 5358 } 5359 if (fp_access_check(s)) { 5360 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5361 esz == MO_16, (a->idx << 1) | neg, 5362 fns[esz - 1]); 5363 } 5364 return true; 5365 } 5366 5367 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5368 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5369 5370 5371 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5372 * Note that it is the caller's responsibility to ensure that the 5373 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5374 * mandated semantics for out of range shifts. 5375 */ 5376 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5377 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5378 { 5379 switch (shift_type) { 5380 case A64_SHIFT_TYPE_LSL: 5381 tcg_gen_shl_i64(dst, src, shift_amount); 5382 break; 5383 case A64_SHIFT_TYPE_LSR: 5384 tcg_gen_shr_i64(dst, src, shift_amount); 5385 break; 5386 case A64_SHIFT_TYPE_ASR: 5387 if (!sf) { 5388 tcg_gen_ext32s_i64(dst, src); 5389 } 5390 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5391 break; 5392 case A64_SHIFT_TYPE_ROR: 5393 if (sf) { 5394 tcg_gen_rotr_i64(dst, src, shift_amount); 5395 } else { 5396 TCGv_i32 t0, t1; 5397 t0 = tcg_temp_new_i32(); 5398 t1 = tcg_temp_new_i32(); 5399 tcg_gen_extrl_i64_i32(t0, src); 5400 tcg_gen_extrl_i64_i32(t1, shift_amount); 5401 tcg_gen_rotr_i32(t0, t0, t1); 5402 tcg_gen_extu_i32_i64(dst, t0); 5403 } 5404 break; 5405 default: 5406 assert(FALSE); /* all shift types should be handled */ 5407 break; 5408 } 5409 5410 if (!sf) { /* zero extend final result */ 5411 tcg_gen_ext32u_i64(dst, dst); 5412 } 5413 } 5414 5415 /* Shift a TCGv src by immediate, put result in dst. 5416 * The shift amount must be in range (this should always be true as the 5417 * relevant instructions will UNDEF on bad shift immediates). 5418 */ 5419 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5420 enum a64_shift_type shift_type, unsigned int shift_i) 5421 { 5422 assert(shift_i < (sf ? 64 : 32)); 5423 5424 if (shift_i == 0) { 5425 tcg_gen_mov_i64(dst, src); 5426 } else { 5427 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5428 } 5429 } 5430 5431 /* Logical (shifted register) 5432 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5433 * +----+-----+-----------+-------+---+------+--------+------+------+ 5434 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5435 * +----+-----+-----------+-------+---+------+--------+------+------+ 5436 */ 5437 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5438 { 5439 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5440 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5441 5442 sf = extract32(insn, 31, 1); 5443 opc = extract32(insn, 29, 2); 5444 shift_type = extract32(insn, 22, 2); 5445 invert = extract32(insn, 21, 1); 5446 rm = extract32(insn, 16, 5); 5447 shift_amount = extract32(insn, 10, 6); 5448 rn = extract32(insn, 5, 5); 5449 rd = extract32(insn, 0, 5); 5450 5451 if (!sf && (shift_amount & (1 << 5))) { 5452 unallocated_encoding(s); 5453 return; 5454 } 5455 5456 tcg_rd = cpu_reg(s, rd); 5457 5458 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5459 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5460 * register-register MOV and MVN, so it is worth special casing. 5461 */ 5462 tcg_rm = cpu_reg(s, rm); 5463 if (invert) { 5464 tcg_gen_not_i64(tcg_rd, tcg_rm); 5465 if (!sf) { 5466 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5467 } 5468 } else { 5469 if (sf) { 5470 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5471 } else { 5472 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5473 } 5474 } 5475 return; 5476 } 5477 5478 tcg_rm = read_cpu_reg(s, rm, sf); 5479 5480 if (shift_amount) { 5481 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5482 } 5483 5484 tcg_rn = cpu_reg(s, rn); 5485 5486 switch (opc | (invert << 2)) { 5487 case 0: /* AND */ 5488 case 3: /* ANDS */ 5489 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5490 break; 5491 case 1: /* ORR */ 5492 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5493 break; 5494 case 2: /* EOR */ 5495 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5496 break; 5497 case 4: /* BIC */ 5498 case 7: /* BICS */ 5499 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5500 break; 5501 case 5: /* ORN */ 5502 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5503 break; 5504 case 6: /* EON */ 5505 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5506 break; 5507 default: 5508 assert(FALSE); 5509 break; 5510 } 5511 5512 if (!sf) { 5513 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5514 } 5515 5516 if (opc == 3) { 5517 gen_logic_CC(sf, tcg_rd); 5518 } 5519 } 5520 5521 /* 5522 * Add/subtract (extended register) 5523 * 5524 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5525 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5526 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5527 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5528 * 5529 * sf: 0 -> 32bit, 1 -> 64bit 5530 * op: 0 -> add , 1 -> sub 5531 * S: 1 -> set flags 5532 * opt: 00 5533 * option: extension type (see DecodeRegExtend) 5534 * imm3: optional shift to Rm 5535 * 5536 * Rd = Rn + LSL(extend(Rm), amount) 5537 */ 5538 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5539 { 5540 int rd = extract32(insn, 0, 5); 5541 int rn = extract32(insn, 5, 5); 5542 int imm3 = extract32(insn, 10, 3); 5543 int option = extract32(insn, 13, 3); 5544 int rm = extract32(insn, 16, 5); 5545 int opt = extract32(insn, 22, 2); 5546 bool setflags = extract32(insn, 29, 1); 5547 bool sub_op = extract32(insn, 30, 1); 5548 bool sf = extract32(insn, 31, 1); 5549 5550 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5551 TCGv_i64 tcg_rd; 5552 TCGv_i64 tcg_result; 5553 5554 if (imm3 > 4 || opt != 0) { 5555 unallocated_encoding(s); 5556 return; 5557 } 5558 5559 /* non-flag setting ops may use SP */ 5560 if (!setflags) { 5561 tcg_rd = cpu_reg_sp(s, rd); 5562 } else { 5563 tcg_rd = cpu_reg(s, rd); 5564 } 5565 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5566 5567 tcg_rm = read_cpu_reg(s, rm, sf); 5568 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5569 5570 tcg_result = tcg_temp_new_i64(); 5571 5572 if (!setflags) { 5573 if (sub_op) { 5574 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5575 } else { 5576 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5577 } 5578 } else { 5579 if (sub_op) { 5580 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5581 } else { 5582 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5583 } 5584 } 5585 5586 if (sf) { 5587 tcg_gen_mov_i64(tcg_rd, tcg_result); 5588 } else { 5589 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5590 } 5591 } 5592 5593 /* 5594 * Add/subtract (shifted register) 5595 * 5596 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5597 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5598 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5599 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5600 * 5601 * sf: 0 -> 32bit, 1 -> 64bit 5602 * op: 0 -> add , 1 -> sub 5603 * S: 1 -> set flags 5604 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5605 * imm6: Shift amount to apply to Rm before the add/sub 5606 */ 5607 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5608 { 5609 int rd = extract32(insn, 0, 5); 5610 int rn = extract32(insn, 5, 5); 5611 int imm6 = extract32(insn, 10, 6); 5612 int rm = extract32(insn, 16, 5); 5613 int shift_type = extract32(insn, 22, 2); 5614 bool setflags = extract32(insn, 29, 1); 5615 bool sub_op = extract32(insn, 30, 1); 5616 bool sf = extract32(insn, 31, 1); 5617 5618 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5619 TCGv_i64 tcg_rn, tcg_rm; 5620 TCGv_i64 tcg_result; 5621 5622 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5623 unallocated_encoding(s); 5624 return; 5625 } 5626 5627 tcg_rn = read_cpu_reg(s, rn, sf); 5628 tcg_rm = read_cpu_reg(s, rm, sf); 5629 5630 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5631 5632 tcg_result = tcg_temp_new_i64(); 5633 5634 if (!setflags) { 5635 if (sub_op) { 5636 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5637 } else { 5638 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5639 } 5640 } else { 5641 if (sub_op) { 5642 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5643 } else { 5644 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5645 } 5646 } 5647 5648 if (sf) { 5649 tcg_gen_mov_i64(tcg_rd, tcg_result); 5650 } else { 5651 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5652 } 5653 } 5654 5655 /* Data-processing (3 source) 5656 * 5657 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5658 * +--+------+-----------+------+------+----+------+------+------+ 5659 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5660 * +--+------+-----------+------+------+----+------+------+------+ 5661 */ 5662 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5663 { 5664 int rd = extract32(insn, 0, 5); 5665 int rn = extract32(insn, 5, 5); 5666 int ra = extract32(insn, 10, 5); 5667 int rm = extract32(insn, 16, 5); 5668 int op_id = (extract32(insn, 29, 3) << 4) | 5669 (extract32(insn, 21, 3) << 1) | 5670 extract32(insn, 15, 1); 5671 bool sf = extract32(insn, 31, 1); 5672 bool is_sub = extract32(op_id, 0, 1); 5673 bool is_high = extract32(op_id, 2, 1); 5674 bool is_signed = false; 5675 TCGv_i64 tcg_op1; 5676 TCGv_i64 tcg_op2; 5677 TCGv_i64 tcg_tmp; 5678 5679 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5680 switch (op_id) { 5681 case 0x42: /* SMADDL */ 5682 case 0x43: /* SMSUBL */ 5683 case 0x44: /* SMULH */ 5684 is_signed = true; 5685 break; 5686 case 0x0: /* MADD (32bit) */ 5687 case 0x1: /* MSUB (32bit) */ 5688 case 0x40: /* MADD (64bit) */ 5689 case 0x41: /* MSUB (64bit) */ 5690 case 0x4a: /* UMADDL */ 5691 case 0x4b: /* UMSUBL */ 5692 case 0x4c: /* UMULH */ 5693 break; 5694 default: 5695 unallocated_encoding(s); 5696 return; 5697 } 5698 5699 if (is_high) { 5700 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5701 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5702 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5703 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5704 5705 if (is_signed) { 5706 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5707 } else { 5708 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5709 } 5710 return; 5711 } 5712 5713 tcg_op1 = tcg_temp_new_i64(); 5714 tcg_op2 = tcg_temp_new_i64(); 5715 tcg_tmp = tcg_temp_new_i64(); 5716 5717 if (op_id < 0x42) { 5718 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5719 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5720 } else { 5721 if (is_signed) { 5722 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5723 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5724 } else { 5725 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5726 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5727 } 5728 } 5729 5730 if (ra == 31 && !is_sub) { 5731 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5732 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5733 } else { 5734 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5735 if (is_sub) { 5736 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5737 } else { 5738 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5739 } 5740 } 5741 5742 if (!sf) { 5743 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5744 } 5745 } 5746 5747 /* Add/subtract (with carry) 5748 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5749 * +--+--+--+------------------------+------+-------------+------+-----+ 5750 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5751 * +--+--+--+------------------------+------+-------------+------+-----+ 5752 */ 5753 5754 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5755 { 5756 unsigned int sf, op, setflags, rm, rn, rd; 5757 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5758 5759 sf = extract32(insn, 31, 1); 5760 op = extract32(insn, 30, 1); 5761 setflags = extract32(insn, 29, 1); 5762 rm = extract32(insn, 16, 5); 5763 rn = extract32(insn, 5, 5); 5764 rd = extract32(insn, 0, 5); 5765 5766 tcg_rd = cpu_reg(s, rd); 5767 tcg_rn = cpu_reg(s, rn); 5768 5769 if (op) { 5770 tcg_y = tcg_temp_new_i64(); 5771 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5772 } else { 5773 tcg_y = cpu_reg(s, rm); 5774 } 5775 5776 if (setflags) { 5777 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5778 } else { 5779 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5780 } 5781 } 5782 5783 /* 5784 * Rotate right into flags 5785 * 31 30 29 21 15 10 5 4 0 5786 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5787 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5788 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5789 */ 5790 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5791 { 5792 int mask = extract32(insn, 0, 4); 5793 int o2 = extract32(insn, 4, 1); 5794 int rn = extract32(insn, 5, 5); 5795 int imm6 = extract32(insn, 15, 6); 5796 int sf_op_s = extract32(insn, 29, 3); 5797 TCGv_i64 tcg_rn; 5798 TCGv_i32 nzcv; 5799 5800 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5801 unallocated_encoding(s); 5802 return; 5803 } 5804 5805 tcg_rn = read_cpu_reg(s, rn, 1); 5806 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5807 5808 nzcv = tcg_temp_new_i32(); 5809 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5810 5811 if (mask & 8) { /* N */ 5812 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5813 } 5814 if (mask & 4) { /* Z */ 5815 tcg_gen_not_i32(cpu_ZF, nzcv); 5816 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5817 } 5818 if (mask & 2) { /* C */ 5819 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5820 } 5821 if (mask & 1) { /* V */ 5822 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5823 } 5824 } 5825 5826 /* 5827 * Evaluate into flags 5828 * 31 30 29 21 15 14 10 5 4 0 5829 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5830 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5831 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5832 */ 5833 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5834 { 5835 int o3_mask = extract32(insn, 0, 5); 5836 int rn = extract32(insn, 5, 5); 5837 int o2 = extract32(insn, 15, 6); 5838 int sz = extract32(insn, 14, 1); 5839 int sf_op_s = extract32(insn, 29, 3); 5840 TCGv_i32 tmp; 5841 int shift; 5842 5843 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5844 !dc_isar_feature(aa64_condm_4, s)) { 5845 unallocated_encoding(s); 5846 return; 5847 } 5848 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5849 5850 tmp = tcg_temp_new_i32(); 5851 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5852 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5853 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5854 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5855 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5856 } 5857 5858 /* Conditional compare (immediate / register) 5859 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5860 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5861 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5862 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5863 * [1] y [0] [0] 5864 */ 5865 static void disas_cc(DisasContext *s, uint32_t insn) 5866 { 5867 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5868 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5869 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5870 DisasCompare c; 5871 5872 if (!extract32(insn, 29, 1)) { 5873 unallocated_encoding(s); 5874 return; 5875 } 5876 if (insn & (1 << 10 | 1 << 4)) { 5877 unallocated_encoding(s); 5878 return; 5879 } 5880 sf = extract32(insn, 31, 1); 5881 op = extract32(insn, 30, 1); 5882 is_imm = extract32(insn, 11, 1); 5883 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5884 cond = extract32(insn, 12, 4); 5885 rn = extract32(insn, 5, 5); 5886 nzcv = extract32(insn, 0, 4); 5887 5888 /* Set T0 = !COND. */ 5889 tcg_t0 = tcg_temp_new_i32(); 5890 arm_test_cc(&c, cond); 5891 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5892 5893 /* Load the arguments for the new comparison. */ 5894 if (is_imm) { 5895 tcg_y = tcg_temp_new_i64(); 5896 tcg_gen_movi_i64(tcg_y, y); 5897 } else { 5898 tcg_y = cpu_reg(s, y); 5899 } 5900 tcg_rn = cpu_reg(s, rn); 5901 5902 /* Set the flags for the new comparison. */ 5903 tcg_tmp = tcg_temp_new_i64(); 5904 if (op) { 5905 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5906 } else { 5907 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5908 } 5909 5910 /* If COND was false, force the flags to #nzcv. Compute two masks 5911 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5912 * For tcg hosts that support ANDC, we can make do with just T1. 5913 * In either case, allow the tcg optimizer to delete any unused mask. 5914 */ 5915 tcg_t1 = tcg_temp_new_i32(); 5916 tcg_t2 = tcg_temp_new_i32(); 5917 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5918 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5919 5920 if (nzcv & 8) { /* N */ 5921 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5922 } else { 5923 if (TCG_TARGET_HAS_andc_i32) { 5924 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5925 } else { 5926 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5927 } 5928 } 5929 if (nzcv & 4) { /* Z */ 5930 if (TCG_TARGET_HAS_andc_i32) { 5931 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5932 } else { 5933 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5934 } 5935 } else { 5936 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5937 } 5938 if (nzcv & 2) { /* C */ 5939 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5940 } else { 5941 if (TCG_TARGET_HAS_andc_i32) { 5942 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5943 } else { 5944 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5945 } 5946 } 5947 if (nzcv & 1) { /* V */ 5948 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5949 } else { 5950 if (TCG_TARGET_HAS_andc_i32) { 5951 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5952 } else { 5953 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5954 } 5955 } 5956 } 5957 5958 /* Conditional select 5959 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5960 * +----+----+---+-----------------+------+------+-----+------+------+ 5961 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5962 * +----+----+---+-----------------+------+------+-----+------+------+ 5963 */ 5964 static void disas_cond_select(DisasContext *s, uint32_t insn) 5965 { 5966 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5967 TCGv_i64 tcg_rd, zero; 5968 DisasCompare64 c; 5969 5970 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5971 /* S == 1 or op2<1> == 1 */ 5972 unallocated_encoding(s); 5973 return; 5974 } 5975 sf = extract32(insn, 31, 1); 5976 else_inv = extract32(insn, 30, 1); 5977 rm = extract32(insn, 16, 5); 5978 cond = extract32(insn, 12, 4); 5979 else_inc = extract32(insn, 10, 1); 5980 rn = extract32(insn, 5, 5); 5981 rd = extract32(insn, 0, 5); 5982 5983 tcg_rd = cpu_reg(s, rd); 5984 5985 a64_test_cc(&c, cond); 5986 zero = tcg_constant_i64(0); 5987 5988 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5989 /* CSET & CSETM. */ 5990 if (else_inv) { 5991 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5992 tcg_rd, c.value, zero); 5993 } else { 5994 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5995 tcg_rd, c.value, zero); 5996 } 5997 } else { 5998 TCGv_i64 t_true = cpu_reg(s, rn); 5999 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6000 if (else_inv && else_inc) { 6001 tcg_gen_neg_i64(t_false, t_false); 6002 } else if (else_inv) { 6003 tcg_gen_not_i64(t_false, t_false); 6004 } else if (else_inc) { 6005 tcg_gen_addi_i64(t_false, t_false, 1); 6006 } 6007 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6008 } 6009 6010 if (!sf) { 6011 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6012 } 6013 } 6014 6015 static void handle_clz(DisasContext *s, unsigned int sf, 6016 unsigned int rn, unsigned int rd) 6017 { 6018 TCGv_i64 tcg_rd, tcg_rn; 6019 tcg_rd = cpu_reg(s, rd); 6020 tcg_rn = cpu_reg(s, rn); 6021 6022 if (sf) { 6023 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6024 } else { 6025 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6026 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6027 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6028 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6029 } 6030 } 6031 6032 static void handle_cls(DisasContext *s, unsigned int sf, 6033 unsigned int rn, unsigned int rd) 6034 { 6035 TCGv_i64 tcg_rd, tcg_rn; 6036 tcg_rd = cpu_reg(s, rd); 6037 tcg_rn = cpu_reg(s, rn); 6038 6039 if (sf) { 6040 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6041 } else { 6042 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6043 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6044 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6045 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6046 } 6047 } 6048 6049 static void handle_rbit(DisasContext *s, unsigned int sf, 6050 unsigned int rn, unsigned int rd) 6051 { 6052 TCGv_i64 tcg_rd, tcg_rn; 6053 tcg_rd = cpu_reg(s, rd); 6054 tcg_rn = cpu_reg(s, rn); 6055 6056 if (sf) { 6057 gen_helper_rbit64(tcg_rd, tcg_rn); 6058 } else { 6059 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6060 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6061 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6062 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6063 } 6064 } 6065 6066 /* REV with sf==1, opcode==3 ("REV64") */ 6067 static void handle_rev64(DisasContext *s, unsigned int sf, 6068 unsigned int rn, unsigned int rd) 6069 { 6070 if (!sf) { 6071 unallocated_encoding(s); 6072 return; 6073 } 6074 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6075 } 6076 6077 /* REV with sf==0, opcode==2 6078 * REV32 (sf==1, opcode==2) 6079 */ 6080 static void handle_rev32(DisasContext *s, unsigned int sf, 6081 unsigned int rn, unsigned int rd) 6082 { 6083 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6084 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6085 6086 if (sf) { 6087 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6088 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6089 } else { 6090 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6091 } 6092 } 6093 6094 /* REV16 (opcode==1) */ 6095 static void handle_rev16(DisasContext *s, unsigned int sf, 6096 unsigned int rn, unsigned int rd) 6097 { 6098 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6099 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6100 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6101 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6102 6103 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6104 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6105 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6106 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6107 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6108 } 6109 6110 /* Data-processing (1 source) 6111 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6112 * +----+---+---+-----------------+---------+--------+------+------+ 6113 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6114 * +----+---+---+-----------------+---------+--------+------+------+ 6115 */ 6116 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6117 { 6118 unsigned int sf, opcode, opcode2, rn, rd; 6119 TCGv_i64 tcg_rd; 6120 6121 if (extract32(insn, 29, 1)) { 6122 unallocated_encoding(s); 6123 return; 6124 } 6125 6126 sf = extract32(insn, 31, 1); 6127 opcode = extract32(insn, 10, 6); 6128 opcode2 = extract32(insn, 16, 5); 6129 rn = extract32(insn, 5, 5); 6130 rd = extract32(insn, 0, 5); 6131 6132 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6133 6134 switch (MAP(sf, opcode2, opcode)) { 6135 case MAP(0, 0x00, 0x00): /* RBIT */ 6136 case MAP(1, 0x00, 0x00): 6137 handle_rbit(s, sf, rn, rd); 6138 break; 6139 case MAP(0, 0x00, 0x01): /* REV16 */ 6140 case MAP(1, 0x00, 0x01): 6141 handle_rev16(s, sf, rn, rd); 6142 break; 6143 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6144 case MAP(1, 0x00, 0x02): 6145 handle_rev32(s, sf, rn, rd); 6146 break; 6147 case MAP(1, 0x00, 0x03): /* REV64 */ 6148 handle_rev64(s, sf, rn, rd); 6149 break; 6150 case MAP(0, 0x00, 0x04): /* CLZ */ 6151 case MAP(1, 0x00, 0x04): 6152 handle_clz(s, sf, rn, rd); 6153 break; 6154 case MAP(0, 0x00, 0x05): /* CLS */ 6155 case MAP(1, 0x00, 0x05): 6156 handle_cls(s, sf, rn, rd); 6157 break; 6158 case MAP(1, 0x01, 0x00): /* PACIA */ 6159 if (s->pauth_active) { 6160 tcg_rd = cpu_reg(s, rd); 6161 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6162 } else if (!dc_isar_feature(aa64_pauth, s)) { 6163 goto do_unallocated; 6164 } 6165 break; 6166 case MAP(1, 0x01, 0x01): /* PACIB */ 6167 if (s->pauth_active) { 6168 tcg_rd = cpu_reg(s, rd); 6169 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6170 } else if (!dc_isar_feature(aa64_pauth, s)) { 6171 goto do_unallocated; 6172 } 6173 break; 6174 case MAP(1, 0x01, 0x02): /* PACDA */ 6175 if (s->pauth_active) { 6176 tcg_rd = cpu_reg(s, rd); 6177 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6178 } else if (!dc_isar_feature(aa64_pauth, s)) { 6179 goto do_unallocated; 6180 } 6181 break; 6182 case MAP(1, 0x01, 0x03): /* PACDB */ 6183 if (s->pauth_active) { 6184 tcg_rd = cpu_reg(s, rd); 6185 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6186 } else if (!dc_isar_feature(aa64_pauth, s)) { 6187 goto do_unallocated; 6188 } 6189 break; 6190 case MAP(1, 0x01, 0x04): /* AUTIA */ 6191 if (s->pauth_active) { 6192 tcg_rd = cpu_reg(s, rd); 6193 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6194 } else if (!dc_isar_feature(aa64_pauth, s)) { 6195 goto do_unallocated; 6196 } 6197 break; 6198 case MAP(1, 0x01, 0x05): /* AUTIB */ 6199 if (s->pauth_active) { 6200 tcg_rd = cpu_reg(s, rd); 6201 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6202 } else if (!dc_isar_feature(aa64_pauth, s)) { 6203 goto do_unallocated; 6204 } 6205 break; 6206 case MAP(1, 0x01, 0x06): /* AUTDA */ 6207 if (s->pauth_active) { 6208 tcg_rd = cpu_reg(s, rd); 6209 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6210 } else if (!dc_isar_feature(aa64_pauth, s)) { 6211 goto do_unallocated; 6212 } 6213 break; 6214 case MAP(1, 0x01, 0x07): /* AUTDB */ 6215 if (s->pauth_active) { 6216 tcg_rd = cpu_reg(s, rd); 6217 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6218 } else if (!dc_isar_feature(aa64_pauth, s)) { 6219 goto do_unallocated; 6220 } 6221 break; 6222 case MAP(1, 0x01, 0x08): /* PACIZA */ 6223 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6224 goto do_unallocated; 6225 } else if (s->pauth_active) { 6226 tcg_rd = cpu_reg(s, rd); 6227 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6228 } 6229 break; 6230 case MAP(1, 0x01, 0x09): /* PACIZB */ 6231 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6232 goto do_unallocated; 6233 } else if (s->pauth_active) { 6234 tcg_rd = cpu_reg(s, rd); 6235 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6236 } 6237 break; 6238 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6239 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6240 goto do_unallocated; 6241 } else if (s->pauth_active) { 6242 tcg_rd = cpu_reg(s, rd); 6243 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6244 } 6245 break; 6246 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6247 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6248 goto do_unallocated; 6249 } else if (s->pauth_active) { 6250 tcg_rd = cpu_reg(s, rd); 6251 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6252 } 6253 break; 6254 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6255 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6256 goto do_unallocated; 6257 } else if (s->pauth_active) { 6258 tcg_rd = cpu_reg(s, rd); 6259 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6260 } 6261 break; 6262 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6263 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6264 goto do_unallocated; 6265 } else if (s->pauth_active) { 6266 tcg_rd = cpu_reg(s, rd); 6267 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6268 } 6269 break; 6270 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6271 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6272 goto do_unallocated; 6273 } else if (s->pauth_active) { 6274 tcg_rd = cpu_reg(s, rd); 6275 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6276 } 6277 break; 6278 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6279 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6280 goto do_unallocated; 6281 } else if (s->pauth_active) { 6282 tcg_rd = cpu_reg(s, rd); 6283 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6284 } 6285 break; 6286 case MAP(1, 0x01, 0x10): /* XPACI */ 6287 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6288 goto do_unallocated; 6289 } else if (s->pauth_active) { 6290 tcg_rd = cpu_reg(s, rd); 6291 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6292 } 6293 break; 6294 case MAP(1, 0x01, 0x11): /* XPACD */ 6295 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6296 goto do_unallocated; 6297 } else if (s->pauth_active) { 6298 tcg_rd = cpu_reg(s, rd); 6299 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6300 } 6301 break; 6302 default: 6303 do_unallocated: 6304 unallocated_encoding(s); 6305 break; 6306 } 6307 6308 #undef MAP 6309 } 6310 6311 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6312 unsigned int rm, unsigned int rn, unsigned int rd) 6313 { 6314 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6315 tcg_rd = cpu_reg(s, rd); 6316 6317 if (!sf && is_signed) { 6318 tcg_n = tcg_temp_new_i64(); 6319 tcg_m = tcg_temp_new_i64(); 6320 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6321 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6322 } else { 6323 tcg_n = read_cpu_reg(s, rn, sf); 6324 tcg_m = read_cpu_reg(s, rm, sf); 6325 } 6326 6327 if (is_signed) { 6328 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6329 } else { 6330 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6331 } 6332 6333 if (!sf) { /* zero extend final result */ 6334 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6335 } 6336 } 6337 6338 /* LSLV, LSRV, ASRV, RORV */ 6339 static void handle_shift_reg(DisasContext *s, 6340 enum a64_shift_type shift_type, unsigned int sf, 6341 unsigned int rm, unsigned int rn, unsigned int rd) 6342 { 6343 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6344 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6345 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6346 6347 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6348 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6349 } 6350 6351 /* CRC32[BHWX], CRC32C[BHWX] */ 6352 static void handle_crc32(DisasContext *s, 6353 unsigned int sf, unsigned int sz, bool crc32c, 6354 unsigned int rm, unsigned int rn, unsigned int rd) 6355 { 6356 TCGv_i64 tcg_acc, tcg_val; 6357 TCGv_i32 tcg_bytes; 6358 6359 if (!dc_isar_feature(aa64_crc32, s) 6360 || (sf == 1 && sz != 3) 6361 || (sf == 0 && sz == 3)) { 6362 unallocated_encoding(s); 6363 return; 6364 } 6365 6366 if (sz == 3) { 6367 tcg_val = cpu_reg(s, rm); 6368 } else { 6369 uint64_t mask; 6370 switch (sz) { 6371 case 0: 6372 mask = 0xFF; 6373 break; 6374 case 1: 6375 mask = 0xFFFF; 6376 break; 6377 case 2: 6378 mask = 0xFFFFFFFF; 6379 break; 6380 default: 6381 g_assert_not_reached(); 6382 } 6383 tcg_val = tcg_temp_new_i64(); 6384 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6385 } 6386 6387 tcg_acc = cpu_reg(s, rn); 6388 tcg_bytes = tcg_constant_i32(1 << sz); 6389 6390 if (crc32c) { 6391 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6392 } else { 6393 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6394 } 6395 } 6396 6397 /* Data-processing (2 source) 6398 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6399 * +----+---+---+-----------------+------+--------+------+------+ 6400 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6401 * +----+---+---+-----------------+------+--------+------+------+ 6402 */ 6403 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6404 { 6405 unsigned int sf, rm, opcode, rn, rd, setflag; 6406 sf = extract32(insn, 31, 1); 6407 setflag = extract32(insn, 29, 1); 6408 rm = extract32(insn, 16, 5); 6409 opcode = extract32(insn, 10, 6); 6410 rn = extract32(insn, 5, 5); 6411 rd = extract32(insn, 0, 5); 6412 6413 if (setflag && opcode != 0) { 6414 unallocated_encoding(s); 6415 return; 6416 } 6417 6418 switch (opcode) { 6419 case 0: /* SUBP(S) */ 6420 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6421 goto do_unallocated; 6422 } else { 6423 TCGv_i64 tcg_n, tcg_m, tcg_d; 6424 6425 tcg_n = read_cpu_reg_sp(s, rn, true); 6426 tcg_m = read_cpu_reg_sp(s, rm, true); 6427 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6428 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6429 tcg_d = cpu_reg(s, rd); 6430 6431 if (setflag) { 6432 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6433 } else { 6434 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6435 } 6436 } 6437 break; 6438 case 2: /* UDIV */ 6439 handle_div(s, false, sf, rm, rn, rd); 6440 break; 6441 case 3: /* SDIV */ 6442 handle_div(s, true, sf, rm, rn, rd); 6443 break; 6444 case 4: /* IRG */ 6445 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6446 goto do_unallocated; 6447 } 6448 if (s->ata[0]) { 6449 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6450 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6451 } else { 6452 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6453 cpu_reg_sp(s, rn)); 6454 } 6455 break; 6456 case 5: /* GMI */ 6457 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6458 goto do_unallocated; 6459 } else { 6460 TCGv_i64 t = tcg_temp_new_i64(); 6461 6462 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6463 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6464 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6465 } 6466 break; 6467 case 8: /* LSLV */ 6468 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6469 break; 6470 case 9: /* LSRV */ 6471 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6472 break; 6473 case 10: /* ASRV */ 6474 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6475 break; 6476 case 11: /* RORV */ 6477 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6478 break; 6479 case 12: /* PACGA */ 6480 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6481 goto do_unallocated; 6482 } 6483 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6484 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6485 break; 6486 case 16: 6487 case 17: 6488 case 18: 6489 case 19: 6490 case 20: 6491 case 21: 6492 case 22: 6493 case 23: /* CRC32 */ 6494 { 6495 int sz = extract32(opcode, 0, 2); 6496 bool crc32c = extract32(opcode, 2, 1); 6497 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6498 break; 6499 } 6500 default: 6501 do_unallocated: 6502 unallocated_encoding(s); 6503 break; 6504 } 6505 } 6506 6507 /* 6508 * Data processing - register 6509 * 31 30 29 28 25 21 20 16 10 0 6510 * +--+---+--+---+-------+-----+-------+-------+---------+ 6511 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6512 * +--+---+--+---+-------+-----+-------+-------+---------+ 6513 */ 6514 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6515 { 6516 int op0 = extract32(insn, 30, 1); 6517 int op1 = extract32(insn, 28, 1); 6518 int op2 = extract32(insn, 21, 4); 6519 int op3 = extract32(insn, 10, 6); 6520 6521 if (!op1) { 6522 if (op2 & 8) { 6523 if (op2 & 1) { 6524 /* Add/sub (extended register) */ 6525 disas_add_sub_ext_reg(s, insn); 6526 } else { 6527 /* Add/sub (shifted register) */ 6528 disas_add_sub_reg(s, insn); 6529 } 6530 } else { 6531 /* Logical (shifted register) */ 6532 disas_logic_reg(s, insn); 6533 } 6534 return; 6535 } 6536 6537 switch (op2) { 6538 case 0x0: 6539 switch (op3) { 6540 case 0x00: /* Add/subtract (with carry) */ 6541 disas_adc_sbc(s, insn); 6542 break; 6543 6544 case 0x01: /* Rotate right into flags */ 6545 case 0x21: 6546 disas_rotate_right_into_flags(s, insn); 6547 break; 6548 6549 case 0x02: /* Evaluate into flags */ 6550 case 0x12: 6551 case 0x22: 6552 case 0x32: 6553 disas_evaluate_into_flags(s, insn); 6554 break; 6555 6556 default: 6557 goto do_unallocated; 6558 } 6559 break; 6560 6561 case 0x2: /* Conditional compare */ 6562 disas_cc(s, insn); /* both imm and reg forms */ 6563 break; 6564 6565 case 0x4: /* Conditional select */ 6566 disas_cond_select(s, insn); 6567 break; 6568 6569 case 0x6: /* Data-processing */ 6570 if (op0) { /* (1 source) */ 6571 disas_data_proc_1src(s, insn); 6572 } else { /* (2 source) */ 6573 disas_data_proc_2src(s, insn); 6574 } 6575 break; 6576 case 0x8 ... 0xf: /* (3 source) */ 6577 disas_data_proc_3src(s, insn); 6578 break; 6579 6580 default: 6581 do_unallocated: 6582 unallocated_encoding(s); 6583 break; 6584 } 6585 } 6586 6587 static void handle_fp_compare(DisasContext *s, int size, 6588 unsigned int rn, unsigned int rm, 6589 bool cmp_with_zero, bool signal_all_nans) 6590 { 6591 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6592 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6593 6594 if (size == MO_64) { 6595 TCGv_i64 tcg_vn, tcg_vm; 6596 6597 tcg_vn = read_fp_dreg(s, rn); 6598 if (cmp_with_zero) { 6599 tcg_vm = tcg_constant_i64(0); 6600 } else { 6601 tcg_vm = read_fp_dreg(s, rm); 6602 } 6603 if (signal_all_nans) { 6604 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6605 } else { 6606 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6607 } 6608 } else { 6609 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6610 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6611 6612 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6613 if (cmp_with_zero) { 6614 tcg_gen_movi_i32(tcg_vm, 0); 6615 } else { 6616 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6617 } 6618 6619 switch (size) { 6620 case MO_32: 6621 if (signal_all_nans) { 6622 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6623 } else { 6624 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6625 } 6626 break; 6627 case MO_16: 6628 if (signal_all_nans) { 6629 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6630 } else { 6631 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6632 } 6633 break; 6634 default: 6635 g_assert_not_reached(); 6636 } 6637 } 6638 6639 gen_set_nzcv(tcg_flags); 6640 } 6641 6642 /* Floating point compare 6643 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6644 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6645 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6646 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6647 */ 6648 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6649 { 6650 unsigned int mos, type, rm, op, rn, opc, op2r; 6651 int size; 6652 6653 mos = extract32(insn, 29, 3); 6654 type = extract32(insn, 22, 2); 6655 rm = extract32(insn, 16, 5); 6656 op = extract32(insn, 14, 2); 6657 rn = extract32(insn, 5, 5); 6658 opc = extract32(insn, 3, 2); 6659 op2r = extract32(insn, 0, 3); 6660 6661 if (mos || op || op2r) { 6662 unallocated_encoding(s); 6663 return; 6664 } 6665 6666 switch (type) { 6667 case 0: 6668 size = MO_32; 6669 break; 6670 case 1: 6671 size = MO_64; 6672 break; 6673 case 3: 6674 size = MO_16; 6675 if (dc_isar_feature(aa64_fp16, s)) { 6676 break; 6677 } 6678 /* fallthru */ 6679 default: 6680 unallocated_encoding(s); 6681 return; 6682 } 6683 6684 if (!fp_access_check(s)) { 6685 return; 6686 } 6687 6688 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6689 } 6690 6691 /* Floating point conditional compare 6692 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6693 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6694 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6695 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6696 */ 6697 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6698 { 6699 unsigned int mos, type, rm, cond, rn, op, nzcv; 6700 TCGLabel *label_continue = NULL; 6701 int size; 6702 6703 mos = extract32(insn, 29, 3); 6704 type = extract32(insn, 22, 2); 6705 rm = extract32(insn, 16, 5); 6706 cond = extract32(insn, 12, 4); 6707 rn = extract32(insn, 5, 5); 6708 op = extract32(insn, 4, 1); 6709 nzcv = extract32(insn, 0, 4); 6710 6711 if (mos) { 6712 unallocated_encoding(s); 6713 return; 6714 } 6715 6716 switch (type) { 6717 case 0: 6718 size = MO_32; 6719 break; 6720 case 1: 6721 size = MO_64; 6722 break; 6723 case 3: 6724 size = MO_16; 6725 if (dc_isar_feature(aa64_fp16, s)) { 6726 break; 6727 } 6728 /* fallthru */ 6729 default: 6730 unallocated_encoding(s); 6731 return; 6732 } 6733 6734 if (!fp_access_check(s)) { 6735 return; 6736 } 6737 6738 if (cond < 0x0e) { /* not always */ 6739 TCGLabel *label_match = gen_new_label(); 6740 label_continue = gen_new_label(); 6741 arm_gen_test_cc(cond, label_match); 6742 /* nomatch: */ 6743 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6744 tcg_gen_br(label_continue); 6745 gen_set_label(label_match); 6746 } 6747 6748 handle_fp_compare(s, size, rn, rm, false, op); 6749 6750 if (cond < 0x0e) { 6751 gen_set_label(label_continue); 6752 } 6753 } 6754 6755 /* Floating point conditional select 6756 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6757 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6758 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6759 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6760 */ 6761 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6762 { 6763 unsigned int mos, type, rm, cond, rn, rd; 6764 TCGv_i64 t_true, t_false; 6765 DisasCompare64 c; 6766 MemOp sz; 6767 6768 mos = extract32(insn, 29, 3); 6769 type = extract32(insn, 22, 2); 6770 rm = extract32(insn, 16, 5); 6771 cond = extract32(insn, 12, 4); 6772 rn = extract32(insn, 5, 5); 6773 rd = extract32(insn, 0, 5); 6774 6775 if (mos) { 6776 unallocated_encoding(s); 6777 return; 6778 } 6779 6780 switch (type) { 6781 case 0: 6782 sz = MO_32; 6783 break; 6784 case 1: 6785 sz = MO_64; 6786 break; 6787 case 3: 6788 sz = MO_16; 6789 if (dc_isar_feature(aa64_fp16, s)) { 6790 break; 6791 } 6792 /* fallthru */ 6793 default: 6794 unallocated_encoding(s); 6795 return; 6796 } 6797 6798 if (!fp_access_check(s)) { 6799 return; 6800 } 6801 6802 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6803 t_true = tcg_temp_new_i64(); 6804 t_false = tcg_temp_new_i64(); 6805 read_vec_element(s, t_true, rn, 0, sz); 6806 read_vec_element(s, t_false, rm, 0, sz); 6807 6808 a64_test_cc(&c, cond); 6809 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6810 t_true, t_false); 6811 6812 /* Note that sregs & hregs write back zeros to the high bits, 6813 and we've already done the zero-extension. */ 6814 write_fp_dreg(s, rd, t_true); 6815 } 6816 6817 /* Floating-point data-processing (1 source) - half precision */ 6818 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6819 { 6820 TCGv_ptr fpst = NULL; 6821 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6822 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6823 6824 switch (opcode) { 6825 case 0x0: /* FMOV */ 6826 tcg_gen_mov_i32(tcg_res, tcg_op); 6827 break; 6828 case 0x1: /* FABS */ 6829 gen_vfp_absh(tcg_res, tcg_op); 6830 break; 6831 case 0x2: /* FNEG */ 6832 gen_vfp_negh(tcg_res, tcg_op); 6833 break; 6834 case 0x3: /* FSQRT */ 6835 fpst = fpstatus_ptr(FPST_FPCR_F16); 6836 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6837 break; 6838 case 0x8: /* FRINTN */ 6839 case 0x9: /* FRINTP */ 6840 case 0xa: /* FRINTM */ 6841 case 0xb: /* FRINTZ */ 6842 case 0xc: /* FRINTA */ 6843 { 6844 TCGv_i32 tcg_rmode; 6845 6846 fpst = fpstatus_ptr(FPST_FPCR_F16); 6847 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6848 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6849 gen_restore_rmode(tcg_rmode, fpst); 6850 break; 6851 } 6852 case 0xe: /* FRINTX */ 6853 fpst = fpstatus_ptr(FPST_FPCR_F16); 6854 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6855 break; 6856 case 0xf: /* FRINTI */ 6857 fpst = fpstatus_ptr(FPST_FPCR_F16); 6858 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6859 break; 6860 default: 6861 g_assert_not_reached(); 6862 } 6863 6864 write_fp_sreg(s, rd, tcg_res); 6865 } 6866 6867 /* Floating-point data-processing (1 source) - single precision */ 6868 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6869 { 6870 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6871 TCGv_i32 tcg_op, tcg_res; 6872 TCGv_ptr fpst; 6873 int rmode = -1; 6874 6875 tcg_op = read_fp_sreg(s, rn); 6876 tcg_res = tcg_temp_new_i32(); 6877 6878 switch (opcode) { 6879 case 0x0: /* FMOV */ 6880 tcg_gen_mov_i32(tcg_res, tcg_op); 6881 goto done; 6882 case 0x1: /* FABS */ 6883 gen_vfp_abss(tcg_res, tcg_op); 6884 goto done; 6885 case 0x2: /* FNEG */ 6886 gen_vfp_negs(tcg_res, tcg_op); 6887 goto done; 6888 case 0x3: /* FSQRT */ 6889 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6890 goto done; 6891 case 0x6: /* BFCVT */ 6892 gen_fpst = gen_helper_bfcvt; 6893 break; 6894 case 0x8: /* FRINTN */ 6895 case 0x9: /* FRINTP */ 6896 case 0xa: /* FRINTM */ 6897 case 0xb: /* FRINTZ */ 6898 case 0xc: /* FRINTA */ 6899 rmode = opcode & 7; 6900 gen_fpst = gen_helper_rints; 6901 break; 6902 case 0xe: /* FRINTX */ 6903 gen_fpst = gen_helper_rints_exact; 6904 break; 6905 case 0xf: /* FRINTI */ 6906 gen_fpst = gen_helper_rints; 6907 break; 6908 case 0x10: /* FRINT32Z */ 6909 rmode = FPROUNDING_ZERO; 6910 gen_fpst = gen_helper_frint32_s; 6911 break; 6912 case 0x11: /* FRINT32X */ 6913 gen_fpst = gen_helper_frint32_s; 6914 break; 6915 case 0x12: /* FRINT64Z */ 6916 rmode = FPROUNDING_ZERO; 6917 gen_fpst = gen_helper_frint64_s; 6918 break; 6919 case 0x13: /* FRINT64X */ 6920 gen_fpst = gen_helper_frint64_s; 6921 break; 6922 default: 6923 g_assert_not_reached(); 6924 } 6925 6926 fpst = fpstatus_ptr(FPST_FPCR); 6927 if (rmode >= 0) { 6928 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6929 gen_fpst(tcg_res, tcg_op, fpst); 6930 gen_restore_rmode(tcg_rmode, fpst); 6931 } else { 6932 gen_fpst(tcg_res, tcg_op, fpst); 6933 } 6934 6935 done: 6936 write_fp_sreg(s, rd, tcg_res); 6937 } 6938 6939 /* Floating-point data-processing (1 source) - double precision */ 6940 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6941 { 6942 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6943 TCGv_i64 tcg_op, tcg_res; 6944 TCGv_ptr fpst; 6945 int rmode = -1; 6946 6947 switch (opcode) { 6948 case 0x0: /* FMOV */ 6949 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6950 return; 6951 } 6952 6953 tcg_op = read_fp_dreg(s, rn); 6954 tcg_res = tcg_temp_new_i64(); 6955 6956 switch (opcode) { 6957 case 0x1: /* FABS */ 6958 gen_vfp_absd(tcg_res, tcg_op); 6959 goto done; 6960 case 0x2: /* FNEG */ 6961 gen_vfp_negd(tcg_res, tcg_op); 6962 goto done; 6963 case 0x3: /* FSQRT */ 6964 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6965 goto done; 6966 case 0x8: /* FRINTN */ 6967 case 0x9: /* FRINTP */ 6968 case 0xa: /* FRINTM */ 6969 case 0xb: /* FRINTZ */ 6970 case 0xc: /* FRINTA */ 6971 rmode = opcode & 7; 6972 gen_fpst = gen_helper_rintd; 6973 break; 6974 case 0xe: /* FRINTX */ 6975 gen_fpst = gen_helper_rintd_exact; 6976 break; 6977 case 0xf: /* FRINTI */ 6978 gen_fpst = gen_helper_rintd; 6979 break; 6980 case 0x10: /* FRINT32Z */ 6981 rmode = FPROUNDING_ZERO; 6982 gen_fpst = gen_helper_frint32_d; 6983 break; 6984 case 0x11: /* FRINT32X */ 6985 gen_fpst = gen_helper_frint32_d; 6986 break; 6987 case 0x12: /* FRINT64Z */ 6988 rmode = FPROUNDING_ZERO; 6989 gen_fpst = gen_helper_frint64_d; 6990 break; 6991 case 0x13: /* FRINT64X */ 6992 gen_fpst = gen_helper_frint64_d; 6993 break; 6994 default: 6995 g_assert_not_reached(); 6996 } 6997 6998 fpst = fpstatus_ptr(FPST_FPCR); 6999 if (rmode >= 0) { 7000 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7001 gen_fpst(tcg_res, tcg_op, fpst); 7002 gen_restore_rmode(tcg_rmode, fpst); 7003 } else { 7004 gen_fpst(tcg_res, tcg_op, fpst); 7005 } 7006 7007 done: 7008 write_fp_dreg(s, rd, tcg_res); 7009 } 7010 7011 static void handle_fp_fcvt(DisasContext *s, int opcode, 7012 int rd, int rn, int dtype, int ntype) 7013 { 7014 switch (ntype) { 7015 case 0x0: 7016 { 7017 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7018 if (dtype == 1) { 7019 /* Single to double */ 7020 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7021 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7022 write_fp_dreg(s, rd, tcg_rd); 7023 } else { 7024 /* Single to half */ 7025 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7026 TCGv_i32 ahp = get_ahp_flag(); 7027 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7028 7029 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7030 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7031 write_fp_sreg(s, rd, tcg_rd); 7032 } 7033 break; 7034 } 7035 case 0x1: 7036 { 7037 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7038 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7039 if (dtype == 0) { 7040 /* Double to single */ 7041 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7042 } else { 7043 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7044 TCGv_i32 ahp = get_ahp_flag(); 7045 /* Double to half */ 7046 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7047 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7048 } 7049 write_fp_sreg(s, rd, tcg_rd); 7050 break; 7051 } 7052 case 0x3: 7053 { 7054 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7055 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7056 TCGv_i32 tcg_ahp = get_ahp_flag(); 7057 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7058 if (dtype == 0) { 7059 /* Half to single */ 7060 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7061 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7062 write_fp_sreg(s, rd, tcg_rd); 7063 } else { 7064 /* Half to double */ 7065 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7066 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7067 write_fp_dreg(s, rd, tcg_rd); 7068 } 7069 break; 7070 } 7071 default: 7072 g_assert_not_reached(); 7073 } 7074 } 7075 7076 /* Floating point data-processing (1 source) 7077 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7078 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7079 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7080 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7081 */ 7082 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7083 { 7084 int mos = extract32(insn, 29, 3); 7085 int type = extract32(insn, 22, 2); 7086 int opcode = extract32(insn, 15, 6); 7087 int rn = extract32(insn, 5, 5); 7088 int rd = extract32(insn, 0, 5); 7089 7090 if (mos) { 7091 goto do_unallocated; 7092 } 7093 7094 switch (opcode) { 7095 case 0x4: case 0x5: case 0x7: 7096 { 7097 /* FCVT between half, single and double precision */ 7098 int dtype = extract32(opcode, 0, 2); 7099 if (type == 2 || dtype == type) { 7100 goto do_unallocated; 7101 } 7102 if (!fp_access_check(s)) { 7103 return; 7104 } 7105 7106 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7107 break; 7108 } 7109 7110 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7111 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7112 goto do_unallocated; 7113 } 7114 /* fall through */ 7115 case 0x0 ... 0x3: 7116 case 0x8 ... 0xc: 7117 case 0xe ... 0xf: 7118 /* 32-to-32 and 64-to-64 ops */ 7119 switch (type) { 7120 case 0: 7121 if (!fp_access_check(s)) { 7122 return; 7123 } 7124 handle_fp_1src_single(s, opcode, rd, rn); 7125 break; 7126 case 1: 7127 if (!fp_access_check(s)) { 7128 return; 7129 } 7130 handle_fp_1src_double(s, opcode, rd, rn); 7131 break; 7132 case 3: 7133 if (!dc_isar_feature(aa64_fp16, s)) { 7134 goto do_unallocated; 7135 } 7136 7137 if (!fp_access_check(s)) { 7138 return; 7139 } 7140 handle_fp_1src_half(s, opcode, rd, rn); 7141 break; 7142 default: 7143 goto do_unallocated; 7144 } 7145 break; 7146 7147 case 0x6: 7148 switch (type) { 7149 case 1: /* BFCVT */ 7150 if (!dc_isar_feature(aa64_bf16, s)) { 7151 goto do_unallocated; 7152 } 7153 if (!fp_access_check(s)) { 7154 return; 7155 } 7156 handle_fp_1src_single(s, opcode, rd, rn); 7157 break; 7158 default: 7159 goto do_unallocated; 7160 } 7161 break; 7162 7163 default: 7164 do_unallocated: 7165 unallocated_encoding(s); 7166 break; 7167 } 7168 } 7169 7170 /* Floating-point data-processing (3 source) - single precision */ 7171 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7172 int rd, int rn, int rm, int ra) 7173 { 7174 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7175 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7176 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7177 7178 tcg_op1 = read_fp_sreg(s, rn); 7179 tcg_op2 = read_fp_sreg(s, rm); 7180 tcg_op3 = read_fp_sreg(s, ra); 7181 7182 /* These are fused multiply-add, and must be done as one 7183 * floating point operation with no rounding between the 7184 * multiplication and addition steps. 7185 * NB that doing the negations here as separate steps is 7186 * correct : an input NaN should come out with its sign bit 7187 * flipped if it is a negated-input. 7188 */ 7189 if (o1 == true) { 7190 gen_vfp_negs(tcg_op3, tcg_op3); 7191 } 7192 7193 if (o0 != o1) { 7194 gen_vfp_negs(tcg_op1, tcg_op1); 7195 } 7196 7197 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7198 7199 write_fp_sreg(s, rd, tcg_res); 7200 } 7201 7202 /* Floating-point data-processing (3 source) - double precision */ 7203 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7204 int rd, int rn, int rm, int ra) 7205 { 7206 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7207 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7208 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7209 7210 tcg_op1 = read_fp_dreg(s, rn); 7211 tcg_op2 = read_fp_dreg(s, rm); 7212 tcg_op3 = read_fp_dreg(s, ra); 7213 7214 /* These are fused multiply-add, and must be done as one 7215 * floating point operation with no rounding between the 7216 * multiplication and addition steps. 7217 * NB that doing the negations here as separate steps is 7218 * correct : an input NaN should come out with its sign bit 7219 * flipped if it is a negated-input. 7220 */ 7221 if (o1 == true) { 7222 gen_vfp_negd(tcg_op3, tcg_op3); 7223 } 7224 7225 if (o0 != o1) { 7226 gen_vfp_negd(tcg_op1, tcg_op1); 7227 } 7228 7229 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7230 7231 write_fp_dreg(s, rd, tcg_res); 7232 } 7233 7234 /* Floating-point data-processing (3 source) - half precision */ 7235 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7236 int rd, int rn, int rm, int ra) 7237 { 7238 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7239 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7240 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7241 7242 tcg_op1 = read_fp_hreg(s, rn); 7243 tcg_op2 = read_fp_hreg(s, rm); 7244 tcg_op3 = read_fp_hreg(s, ra); 7245 7246 /* These are fused multiply-add, and must be done as one 7247 * floating point operation with no rounding between the 7248 * multiplication and addition steps. 7249 * NB that doing the negations here as separate steps is 7250 * correct : an input NaN should come out with its sign bit 7251 * flipped if it is a negated-input. 7252 */ 7253 if (o1 == true) { 7254 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7255 } 7256 7257 if (o0 != o1) { 7258 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7259 } 7260 7261 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7262 7263 write_fp_sreg(s, rd, tcg_res); 7264 } 7265 7266 /* Floating point data-processing (3 source) 7267 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7268 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7269 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7270 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7271 */ 7272 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7273 { 7274 int mos = extract32(insn, 29, 3); 7275 int type = extract32(insn, 22, 2); 7276 int rd = extract32(insn, 0, 5); 7277 int rn = extract32(insn, 5, 5); 7278 int ra = extract32(insn, 10, 5); 7279 int rm = extract32(insn, 16, 5); 7280 bool o0 = extract32(insn, 15, 1); 7281 bool o1 = extract32(insn, 21, 1); 7282 7283 if (mos) { 7284 unallocated_encoding(s); 7285 return; 7286 } 7287 7288 switch (type) { 7289 case 0: 7290 if (!fp_access_check(s)) { 7291 return; 7292 } 7293 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7294 break; 7295 case 1: 7296 if (!fp_access_check(s)) { 7297 return; 7298 } 7299 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7300 break; 7301 case 3: 7302 if (!dc_isar_feature(aa64_fp16, s)) { 7303 unallocated_encoding(s); 7304 return; 7305 } 7306 if (!fp_access_check(s)) { 7307 return; 7308 } 7309 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7310 break; 7311 default: 7312 unallocated_encoding(s); 7313 } 7314 } 7315 7316 /* Floating point immediate 7317 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7318 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7319 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7320 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7321 */ 7322 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7323 { 7324 int rd = extract32(insn, 0, 5); 7325 int imm5 = extract32(insn, 5, 5); 7326 int imm8 = extract32(insn, 13, 8); 7327 int type = extract32(insn, 22, 2); 7328 int mos = extract32(insn, 29, 3); 7329 uint64_t imm; 7330 MemOp sz; 7331 7332 if (mos || imm5) { 7333 unallocated_encoding(s); 7334 return; 7335 } 7336 7337 switch (type) { 7338 case 0: 7339 sz = MO_32; 7340 break; 7341 case 1: 7342 sz = MO_64; 7343 break; 7344 case 3: 7345 sz = MO_16; 7346 if (dc_isar_feature(aa64_fp16, s)) { 7347 break; 7348 } 7349 /* fallthru */ 7350 default: 7351 unallocated_encoding(s); 7352 return; 7353 } 7354 7355 if (!fp_access_check(s)) { 7356 return; 7357 } 7358 7359 imm = vfp_expand_imm(sz, imm8); 7360 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7361 } 7362 7363 /* Handle floating point <=> fixed point conversions. Note that we can 7364 * also deal with fp <=> integer conversions as a special case (scale == 64) 7365 * OPTME: consider handling that special case specially or at least skipping 7366 * the call to scalbn in the helpers for zero shifts. 7367 */ 7368 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7369 bool itof, int rmode, int scale, int sf, int type) 7370 { 7371 bool is_signed = !(opcode & 1); 7372 TCGv_ptr tcg_fpstatus; 7373 TCGv_i32 tcg_shift, tcg_single; 7374 TCGv_i64 tcg_double; 7375 7376 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7377 7378 tcg_shift = tcg_constant_i32(64 - scale); 7379 7380 if (itof) { 7381 TCGv_i64 tcg_int = cpu_reg(s, rn); 7382 if (!sf) { 7383 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7384 7385 if (is_signed) { 7386 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7387 } else { 7388 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7389 } 7390 7391 tcg_int = tcg_extend; 7392 } 7393 7394 switch (type) { 7395 case 1: /* float64 */ 7396 tcg_double = tcg_temp_new_i64(); 7397 if (is_signed) { 7398 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7399 tcg_shift, tcg_fpstatus); 7400 } else { 7401 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7402 tcg_shift, tcg_fpstatus); 7403 } 7404 write_fp_dreg(s, rd, tcg_double); 7405 break; 7406 7407 case 0: /* float32 */ 7408 tcg_single = tcg_temp_new_i32(); 7409 if (is_signed) { 7410 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7411 tcg_shift, tcg_fpstatus); 7412 } else { 7413 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7414 tcg_shift, tcg_fpstatus); 7415 } 7416 write_fp_sreg(s, rd, tcg_single); 7417 break; 7418 7419 case 3: /* float16 */ 7420 tcg_single = tcg_temp_new_i32(); 7421 if (is_signed) { 7422 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7423 tcg_shift, tcg_fpstatus); 7424 } else { 7425 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7426 tcg_shift, tcg_fpstatus); 7427 } 7428 write_fp_sreg(s, rd, tcg_single); 7429 break; 7430 7431 default: 7432 g_assert_not_reached(); 7433 } 7434 } else { 7435 TCGv_i64 tcg_int = cpu_reg(s, rd); 7436 TCGv_i32 tcg_rmode; 7437 7438 if (extract32(opcode, 2, 1)) { 7439 /* There are too many rounding modes to all fit into rmode, 7440 * so FCVTA[US] is a special case. 7441 */ 7442 rmode = FPROUNDING_TIEAWAY; 7443 } 7444 7445 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7446 7447 switch (type) { 7448 case 1: /* float64 */ 7449 tcg_double = read_fp_dreg(s, rn); 7450 if (is_signed) { 7451 if (!sf) { 7452 gen_helper_vfp_tosld(tcg_int, tcg_double, 7453 tcg_shift, tcg_fpstatus); 7454 } else { 7455 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7456 tcg_shift, tcg_fpstatus); 7457 } 7458 } else { 7459 if (!sf) { 7460 gen_helper_vfp_tould(tcg_int, tcg_double, 7461 tcg_shift, tcg_fpstatus); 7462 } else { 7463 gen_helper_vfp_touqd(tcg_int, tcg_double, 7464 tcg_shift, tcg_fpstatus); 7465 } 7466 } 7467 if (!sf) { 7468 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7469 } 7470 break; 7471 7472 case 0: /* float32 */ 7473 tcg_single = read_fp_sreg(s, rn); 7474 if (sf) { 7475 if (is_signed) { 7476 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7477 tcg_shift, tcg_fpstatus); 7478 } else { 7479 gen_helper_vfp_touqs(tcg_int, tcg_single, 7480 tcg_shift, tcg_fpstatus); 7481 } 7482 } else { 7483 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7484 if (is_signed) { 7485 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7486 tcg_shift, tcg_fpstatus); 7487 } else { 7488 gen_helper_vfp_touls(tcg_dest, tcg_single, 7489 tcg_shift, tcg_fpstatus); 7490 } 7491 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7492 } 7493 break; 7494 7495 case 3: /* float16 */ 7496 tcg_single = read_fp_sreg(s, rn); 7497 if (sf) { 7498 if (is_signed) { 7499 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7500 tcg_shift, tcg_fpstatus); 7501 } else { 7502 gen_helper_vfp_touqh(tcg_int, tcg_single, 7503 tcg_shift, tcg_fpstatus); 7504 } 7505 } else { 7506 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7507 if (is_signed) { 7508 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7509 tcg_shift, tcg_fpstatus); 7510 } else { 7511 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7512 tcg_shift, tcg_fpstatus); 7513 } 7514 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7515 } 7516 break; 7517 7518 default: 7519 g_assert_not_reached(); 7520 } 7521 7522 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7523 } 7524 } 7525 7526 /* Floating point <-> fixed point conversions 7527 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7528 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7529 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7530 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7531 */ 7532 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7533 { 7534 int rd = extract32(insn, 0, 5); 7535 int rn = extract32(insn, 5, 5); 7536 int scale = extract32(insn, 10, 6); 7537 int opcode = extract32(insn, 16, 3); 7538 int rmode = extract32(insn, 19, 2); 7539 int type = extract32(insn, 22, 2); 7540 bool sbit = extract32(insn, 29, 1); 7541 bool sf = extract32(insn, 31, 1); 7542 bool itof; 7543 7544 if (sbit || (!sf && scale < 32)) { 7545 unallocated_encoding(s); 7546 return; 7547 } 7548 7549 switch (type) { 7550 case 0: /* float32 */ 7551 case 1: /* float64 */ 7552 break; 7553 case 3: /* float16 */ 7554 if (dc_isar_feature(aa64_fp16, s)) { 7555 break; 7556 } 7557 /* fallthru */ 7558 default: 7559 unallocated_encoding(s); 7560 return; 7561 } 7562 7563 switch ((rmode << 3) | opcode) { 7564 case 0x2: /* SCVTF */ 7565 case 0x3: /* UCVTF */ 7566 itof = true; 7567 break; 7568 case 0x18: /* FCVTZS */ 7569 case 0x19: /* FCVTZU */ 7570 itof = false; 7571 break; 7572 default: 7573 unallocated_encoding(s); 7574 return; 7575 } 7576 7577 if (!fp_access_check(s)) { 7578 return; 7579 } 7580 7581 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7582 } 7583 7584 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7585 { 7586 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7587 * without conversion. 7588 */ 7589 7590 if (itof) { 7591 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7592 TCGv_i64 tmp; 7593 7594 switch (type) { 7595 case 0: 7596 /* 32 bit */ 7597 tmp = tcg_temp_new_i64(); 7598 tcg_gen_ext32u_i64(tmp, tcg_rn); 7599 write_fp_dreg(s, rd, tmp); 7600 break; 7601 case 1: 7602 /* 64 bit */ 7603 write_fp_dreg(s, rd, tcg_rn); 7604 break; 7605 case 2: 7606 /* 64 bit to top half. */ 7607 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7608 clear_vec_high(s, true, rd); 7609 break; 7610 case 3: 7611 /* 16 bit */ 7612 tmp = tcg_temp_new_i64(); 7613 tcg_gen_ext16u_i64(tmp, tcg_rn); 7614 write_fp_dreg(s, rd, tmp); 7615 break; 7616 default: 7617 g_assert_not_reached(); 7618 } 7619 } else { 7620 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7621 7622 switch (type) { 7623 case 0: 7624 /* 32 bit */ 7625 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7626 break; 7627 case 1: 7628 /* 64 bit */ 7629 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7630 break; 7631 case 2: 7632 /* 64 bits from top half */ 7633 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7634 break; 7635 case 3: 7636 /* 16 bit */ 7637 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7638 break; 7639 default: 7640 g_assert_not_reached(); 7641 } 7642 } 7643 } 7644 7645 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7646 { 7647 TCGv_i64 t = read_fp_dreg(s, rn); 7648 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7649 7650 gen_helper_fjcvtzs(t, t, fpstatus); 7651 7652 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7653 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7654 tcg_gen_movi_i32(cpu_CF, 0); 7655 tcg_gen_movi_i32(cpu_NF, 0); 7656 tcg_gen_movi_i32(cpu_VF, 0); 7657 } 7658 7659 /* Floating point <-> integer conversions 7660 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7661 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7662 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7663 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7664 */ 7665 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7666 { 7667 int rd = extract32(insn, 0, 5); 7668 int rn = extract32(insn, 5, 5); 7669 int opcode = extract32(insn, 16, 3); 7670 int rmode = extract32(insn, 19, 2); 7671 int type = extract32(insn, 22, 2); 7672 bool sbit = extract32(insn, 29, 1); 7673 bool sf = extract32(insn, 31, 1); 7674 bool itof = false; 7675 7676 if (sbit) { 7677 goto do_unallocated; 7678 } 7679 7680 switch (opcode) { 7681 case 2: /* SCVTF */ 7682 case 3: /* UCVTF */ 7683 itof = true; 7684 /* fallthru */ 7685 case 4: /* FCVTAS */ 7686 case 5: /* FCVTAU */ 7687 if (rmode != 0) { 7688 goto do_unallocated; 7689 } 7690 /* fallthru */ 7691 case 0: /* FCVT[NPMZ]S */ 7692 case 1: /* FCVT[NPMZ]U */ 7693 switch (type) { 7694 case 0: /* float32 */ 7695 case 1: /* float64 */ 7696 break; 7697 case 3: /* float16 */ 7698 if (!dc_isar_feature(aa64_fp16, s)) { 7699 goto do_unallocated; 7700 } 7701 break; 7702 default: 7703 goto do_unallocated; 7704 } 7705 if (!fp_access_check(s)) { 7706 return; 7707 } 7708 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7709 break; 7710 7711 default: 7712 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7713 case 0b01100110: /* FMOV half <-> 32-bit int */ 7714 case 0b01100111: 7715 case 0b11100110: /* FMOV half <-> 64-bit int */ 7716 case 0b11100111: 7717 if (!dc_isar_feature(aa64_fp16, s)) { 7718 goto do_unallocated; 7719 } 7720 /* fallthru */ 7721 case 0b00000110: /* FMOV 32-bit */ 7722 case 0b00000111: 7723 case 0b10100110: /* FMOV 64-bit */ 7724 case 0b10100111: 7725 case 0b11001110: /* FMOV top half of 128-bit */ 7726 case 0b11001111: 7727 if (!fp_access_check(s)) { 7728 return; 7729 } 7730 itof = opcode & 1; 7731 handle_fmov(s, rd, rn, type, itof); 7732 break; 7733 7734 case 0b00111110: /* FJCVTZS */ 7735 if (!dc_isar_feature(aa64_jscvt, s)) { 7736 goto do_unallocated; 7737 } else if (fp_access_check(s)) { 7738 handle_fjcvtzs(s, rd, rn); 7739 } 7740 break; 7741 7742 default: 7743 do_unallocated: 7744 unallocated_encoding(s); 7745 return; 7746 } 7747 break; 7748 } 7749 } 7750 7751 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7752 * 31 30 29 28 25 24 0 7753 * +---+---+---+---------+-----------------------------+ 7754 * | | 0 | | 1 1 1 1 | | 7755 * +---+---+---+---------+-----------------------------+ 7756 */ 7757 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7758 { 7759 if (extract32(insn, 24, 1)) { 7760 /* Floating point data-processing (3 source) */ 7761 disas_fp_3src(s, insn); 7762 } else if (extract32(insn, 21, 1) == 0) { 7763 /* Floating point to fixed point conversions */ 7764 disas_fp_fixed_conv(s, insn); 7765 } else { 7766 switch (extract32(insn, 10, 2)) { 7767 case 1: 7768 /* Floating point conditional compare */ 7769 disas_fp_ccomp(s, insn); 7770 break; 7771 case 2: 7772 /* Floating point data-processing (2 source) */ 7773 unallocated_encoding(s); /* in decodetree */ 7774 break; 7775 case 3: 7776 /* Floating point conditional select */ 7777 disas_fp_csel(s, insn); 7778 break; 7779 case 0: 7780 switch (ctz32(extract32(insn, 12, 4))) { 7781 case 0: /* [15:12] == xxx1 */ 7782 /* Floating point immediate */ 7783 disas_fp_imm(s, insn); 7784 break; 7785 case 1: /* [15:12] == xx10 */ 7786 /* Floating point compare */ 7787 disas_fp_compare(s, insn); 7788 break; 7789 case 2: /* [15:12] == x100 */ 7790 /* Floating point data-processing (1 source) */ 7791 disas_fp_1src(s, insn); 7792 break; 7793 case 3: /* [15:12] == 1000 */ 7794 unallocated_encoding(s); 7795 break; 7796 default: /* [15:12] == 0000 */ 7797 /* Floating point <-> integer conversions */ 7798 disas_fp_int_conv(s, insn); 7799 break; 7800 } 7801 break; 7802 } 7803 } 7804 } 7805 7806 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7807 int pos) 7808 { 7809 /* Extract 64 bits from the middle of two concatenated 64 bit 7810 * vector register slices left:right. The extracted bits start 7811 * at 'pos' bits into the right (least significant) side. 7812 * We return the result in tcg_right, and guarantee not to 7813 * trash tcg_left. 7814 */ 7815 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7816 assert(pos > 0 && pos < 64); 7817 7818 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7819 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7820 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7821 } 7822 7823 /* EXT 7824 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7825 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7826 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7827 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7828 */ 7829 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7830 { 7831 int is_q = extract32(insn, 30, 1); 7832 int op2 = extract32(insn, 22, 2); 7833 int imm4 = extract32(insn, 11, 4); 7834 int rm = extract32(insn, 16, 5); 7835 int rn = extract32(insn, 5, 5); 7836 int rd = extract32(insn, 0, 5); 7837 int pos = imm4 << 3; 7838 TCGv_i64 tcg_resl, tcg_resh; 7839 7840 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7841 unallocated_encoding(s); 7842 return; 7843 } 7844 7845 if (!fp_access_check(s)) { 7846 return; 7847 } 7848 7849 tcg_resh = tcg_temp_new_i64(); 7850 tcg_resl = tcg_temp_new_i64(); 7851 7852 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7853 * either extracting 128 bits from a 128:128 concatenation, or 7854 * extracting 64 bits from a 64:64 concatenation. 7855 */ 7856 if (!is_q) { 7857 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7858 if (pos != 0) { 7859 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7860 do_ext64(s, tcg_resh, tcg_resl, pos); 7861 } 7862 } else { 7863 TCGv_i64 tcg_hh; 7864 typedef struct { 7865 int reg; 7866 int elt; 7867 } EltPosns; 7868 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7869 EltPosns *elt = eltposns; 7870 7871 if (pos >= 64) { 7872 elt++; 7873 pos -= 64; 7874 } 7875 7876 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7877 elt++; 7878 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7879 elt++; 7880 if (pos != 0) { 7881 do_ext64(s, tcg_resh, tcg_resl, pos); 7882 tcg_hh = tcg_temp_new_i64(); 7883 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7884 do_ext64(s, tcg_hh, tcg_resh, pos); 7885 } 7886 } 7887 7888 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7889 if (is_q) { 7890 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7891 } 7892 clear_vec_high(s, is_q, rd); 7893 } 7894 7895 /* TBL/TBX 7896 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7897 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7898 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7899 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7900 */ 7901 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7902 { 7903 int op2 = extract32(insn, 22, 2); 7904 int is_q = extract32(insn, 30, 1); 7905 int rm = extract32(insn, 16, 5); 7906 int rn = extract32(insn, 5, 5); 7907 int rd = extract32(insn, 0, 5); 7908 int is_tbx = extract32(insn, 12, 1); 7909 int len = (extract32(insn, 13, 2) + 1) * 16; 7910 7911 if (op2 != 0) { 7912 unallocated_encoding(s); 7913 return; 7914 } 7915 7916 if (!fp_access_check(s)) { 7917 return; 7918 } 7919 7920 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7921 vec_full_reg_offset(s, rm), tcg_env, 7922 is_q ? 16 : 8, vec_full_reg_size(s), 7923 (len << 6) | (is_tbx << 5) | rn, 7924 gen_helper_simd_tblx); 7925 } 7926 7927 /* ZIP/UZP/TRN 7928 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7929 * +---+---+-------------+------+---+------+---+------------------+------+ 7930 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7931 * +---+---+-------------+------+---+------+---+------------------+------+ 7932 */ 7933 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7934 { 7935 int rd = extract32(insn, 0, 5); 7936 int rn = extract32(insn, 5, 5); 7937 int rm = extract32(insn, 16, 5); 7938 int size = extract32(insn, 22, 2); 7939 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7940 * bit 2 indicates 1 vs 2 variant of the insn. 7941 */ 7942 int opcode = extract32(insn, 12, 2); 7943 bool part = extract32(insn, 14, 1); 7944 bool is_q = extract32(insn, 30, 1); 7945 int esize = 8 << size; 7946 int i; 7947 int datasize = is_q ? 128 : 64; 7948 int elements = datasize / esize; 7949 TCGv_i64 tcg_res[2], tcg_ele; 7950 7951 if (opcode == 0 || (size == 3 && !is_q)) { 7952 unallocated_encoding(s); 7953 return; 7954 } 7955 7956 if (!fp_access_check(s)) { 7957 return; 7958 } 7959 7960 tcg_res[0] = tcg_temp_new_i64(); 7961 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7962 tcg_ele = tcg_temp_new_i64(); 7963 7964 for (i = 0; i < elements; i++) { 7965 int o, w; 7966 7967 switch (opcode) { 7968 case 1: /* UZP1/2 */ 7969 { 7970 int midpoint = elements / 2; 7971 if (i < midpoint) { 7972 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7973 } else { 7974 read_vec_element(s, tcg_ele, rm, 7975 2 * (i - midpoint) + part, size); 7976 } 7977 break; 7978 } 7979 case 2: /* TRN1/2 */ 7980 if (i & 1) { 7981 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7982 } else { 7983 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7984 } 7985 break; 7986 case 3: /* ZIP1/2 */ 7987 { 7988 int base = part * elements / 2; 7989 if (i & 1) { 7990 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7991 } else { 7992 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7993 } 7994 break; 7995 } 7996 default: 7997 g_assert_not_reached(); 7998 } 7999 8000 w = (i * esize) / 64; 8001 o = (i * esize) % 64; 8002 if (o == 0) { 8003 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8004 } else { 8005 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8006 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8007 } 8008 } 8009 8010 for (i = 0; i <= is_q; ++i) { 8011 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8012 } 8013 clear_vec_high(s, is_q, rd); 8014 } 8015 8016 /* 8017 * do_reduction_op helper 8018 * 8019 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8020 * important for correct NaN propagation that we do these 8021 * operations in exactly the order specified by the pseudocode. 8022 * 8023 * This is a recursive function, TCG temps should be freed by the 8024 * calling function once it is done with the values. 8025 */ 8026 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8027 int esize, int size, int vmap, TCGv_ptr fpst) 8028 { 8029 if (esize == size) { 8030 int element; 8031 MemOp msize = esize == 16 ? MO_16 : MO_32; 8032 TCGv_i32 tcg_elem; 8033 8034 /* We should have one register left here */ 8035 assert(ctpop8(vmap) == 1); 8036 element = ctz32(vmap); 8037 assert(element < 8); 8038 8039 tcg_elem = tcg_temp_new_i32(); 8040 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8041 return tcg_elem; 8042 } else { 8043 int bits = size / 2; 8044 int shift = ctpop8(vmap) / 2; 8045 int vmap_lo = (vmap >> shift) & vmap; 8046 int vmap_hi = (vmap & ~vmap_lo); 8047 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8048 8049 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8050 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8051 tcg_res = tcg_temp_new_i32(); 8052 8053 switch (fpopcode) { 8054 case 0x0c: /* fmaxnmv half-precision */ 8055 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8056 break; 8057 case 0x0f: /* fmaxv half-precision */ 8058 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8059 break; 8060 case 0x1c: /* fminnmv half-precision */ 8061 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8062 break; 8063 case 0x1f: /* fminv half-precision */ 8064 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8065 break; 8066 case 0x2c: /* fmaxnmv */ 8067 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8068 break; 8069 case 0x2f: /* fmaxv */ 8070 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8071 break; 8072 case 0x3c: /* fminnmv */ 8073 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8074 break; 8075 case 0x3f: /* fminv */ 8076 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8077 break; 8078 default: 8079 g_assert_not_reached(); 8080 } 8081 return tcg_res; 8082 } 8083 } 8084 8085 /* AdvSIMD across lanes 8086 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8087 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8088 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8089 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8090 */ 8091 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8092 { 8093 int rd = extract32(insn, 0, 5); 8094 int rn = extract32(insn, 5, 5); 8095 int size = extract32(insn, 22, 2); 8096 int opcode = extract32(insn, 12, 5); 8097 bool is_q = extract32(insn, 30, 1); 8098 bool is_u = extract32(insn, 29, 1); 8099 bool is_fp = false; 8100 bool is_min = false; 8101 int esize; 8102 int elements; 8103 int i; 8104 TCGv_i64 tcg_res, tcg_elt; 8105 8106 switch (opcode) { 8107 case 0x1b: /* ADDV */ 8108 if (is_u) { 8109 unallocated_encoding(s); 8110 return; 8111 } 8112 /* fall through */ 8113 case 0x3: /* SADDLV, UADDLV */ 8114 case 0xa: /* SMAXV, UMAXV */ 8115 case 0x1a: /* SMINV, UMINV */ 8116 if (size == 3 || (size == 2 && !is_q)) { 8117 unallocated_encoding(s); 8118 return; 8119 } 8120 break; 8121 case 0xc: /* FMAXNMV, FMINNMV */ 8122 case 0xf: /* FMAXV, FMINV */ 8123 /* Bit 1 of size field encodes min vs max and the actual size 8124 * depends on the encoding of the U bit. If not set (and FP16 8125 * enabled) then we do half-precision float instead of single 8126 * precision. 8127 */ 8128 is_min = extract32(size, 1, 1); 8129 is_fp = true; 8130 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8131 size = 1; 8132 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8133 unallocated_encoding(s); 8134 return; 8135 } else { 8136 size = 2; 8137 } 8138 break; 8139 default: 8140 unallocated_encoding(s); 8141 return; 8142 } 8143 8144 if (!fp_access_check(s)) { 8145 return; 8146 } 8147 8148 esize = 8 << size; 8149 elements = (is_q ? 128 : 64) / esize; 8150 8151 tcg_res = tcg_temp_new_i64(); 8152 tcg_elt = tcg_temp_new_i64(); 8153 8154 /* These instructions operate across all lanes of a vector 8155 * to produce a single result. We can guarantee that a 64 8156 * bit intermediate is sufficient: 8157 * + for [US]ADDLV the maximum element size is 32 bits, and 8158 * the result type is 64 bits 8159 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8160 * same as the element size, which is 32 bits at most 8161 * For the integer operations we can choose to work at 64 8162 * or 32 bits and truncate at the end; for simplicity 8163 * we use 64 bits always. The floating point 8164 * ops do require 32 bit intermediates, though. 8165 */ 8166 if (!is_fp) { 8167 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8168 8169 for (i = 1; i < elements; i++) { 8170 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8171 8172 switch (opcode) { 8173 case 0x03: /* SADDLV / UADDLV */ 8174 case 0x1b: /* ADDV */ 8175 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8176 break; 8177 case 0x0a: /* SMAXV / UMAXV */ 8178 if (is_u) { 8179 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8180 } else { 8181 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8182 } 8183 break; 8184 case 0x1a: /* SMINV / UMINV */ 8185 if (is_u) { 8186 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8187 } else { 8188 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8189 } 8190 break; 8191 default: 8192 g_assert_not_reached(); 8193 } 8194 8195 } 8196 } else { 8197 /* Floating point vector reduction ops which work across 32 8198 * bit (single) or 16 bit (half-precision) intermediates. 8199 * Note that correct NaN propagation requires that we do these 8200 * operations in exactly the order specified by the pseudocode. 8201 */ 8202 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8203 int fpopcode = opcode | is_min << 4 | is_u << 5; 8204 int vmap = (1 << elements) - 1; 8205 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8206 (is_q ? 128 : 64), vmap, fpst); 8207 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8208 } 8209 8210 /* Now truncate the result to the width required for the final output */ 8211 if (opcode == 0x03) { 8212 /* SADDLV, UADDLV: result is 2*esize */ 8213 size++; 8214 } 8215 8216 switch (size) { 8217 case 0: 8218 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8219 break; 8220 case 1: 8221 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8222 break; 8223 case 2: 8224 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8225 break; 8226 case 3: 8227 break; 8228 default: 8229 g_assert_not_reached(); 8230 } 8231 8232 write_fp_dreg(s, rd, tcg_res); 8233 } 8234 8235 /* AdvSIMD modified immediate 8236 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8237 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8238 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8239 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8240 * 8241 * There are a number of operations that can be carried out here: 8242 * MOVI - move (shifted) imm into register 8243 * MVNI - move inverted (shifted) imm into register 8244 * ORR - bitwise OR of (shifted) imm with register 8245 * BIC - bitwise clear of (shifted) imm with register 8246 * With ARMv8.2 we also have: 8247 * FMOV half-precision 8248 */ 8249 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8250 { 8251 int rd = extract32(insn, 0, 5); 8252 int cmode = extract32(insn, 12, 4); 8253 int o2 = extract32(insn, 11, 1); 8254 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8255 bool is_neg = extract32(insn, 29, 1); 8256 bool is_q = extract32(insn, 30, 1); 8257 uint64_t imm = 0; 8258 8259 if (o2) { 8260 if (cmode != 0xf || is_neg) { 8261 unallocated_encoding(s); 8262 return; 8263 } 8264 /* FMOV (vector, immediate) - half-precision */ 8265 if (!dc_isar_feature(aa64_fp16, s)) { 8266 unallocated_encoding(s); 8267 return; 8268 } 8269 imm = vfp_expand_imm(MO_16, abcdefgh); 8270 /* now duplicate across the lanes */ 8271 imm = dup_const(MO_16, imm); 8272 } else { 8273 if (cmode == 0xf && is_neg && !is_q) { 8274 unallocated_encoding(s); 8275 return; 8276 } 8277 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8278 } 8279 8280 if (!fp_access_check(s)) { 8281 return; 8282 } 8283 8284 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8285 /* MOVI or MVNI, with MVNI negation handled above. */ 8286 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8287 vec_full_reg_size(s), imm); 8288 } else { 8289 /* ORR or BIC, with BIC negation to AND handled above. */ 8290 if (is_neg) { 8291 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8292 } else { 8293 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8294 } 8295 } 8296 } 8297 8298 /* AdvSIMD scalar pairwise 8299 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8300 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8301 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8302 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8303 */ 8304 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8305 { 8306 int u = extract32(insn, 29, 1); 8307 int size = extract32(insn, 22, 2); 8308 int opcode = extract32(insn, 12, 5); 8309 int rn = extract32(insn, 5, 5); 8310 int rd = extract32(insn, 0, 5); 8311 TCGv_ptr fpst; 8312 8313 /* For some ops (the FP ones), size[1] is part of the encoding. 8314 * For ADDP strictly it is not but size[1] is always 1 for valid 8315 * encodings. 8316 */ 8317 opcode |= (extract32(size, 1, 1) << 5); 8318 8319 switch (opcode) { 8320 case 0x3b: /* ADDP */ 8321 if (u || size != 3) { 8322 unallocated_encoding(s); 8323 return; 8324 } 8325 if (!fp_access_check(s)) { 8326 return; 8327 } 8328 8329 fpst = NULL; 8330 break; 8331 case 0xc: /* FMAXNMP */ 8332 case 0xd: /* FADDP */ 8333 case 0xf: /* FMAXP */ 8334 case 0x2c: /* FMINNMP */ 8335 case 0x2f: /* FMINP */ 8336 /* FP op, size[0] is 32 or 64 bit*/ 8337 if (!u) { 8338 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8339 unallocated_encoding(s); 8340 return; 8341 } else { 8342 size = MO_16; 8343 } 8344 } else { 8345 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8346 } 8347 8348 if (!fp_access_check(s)) { 8349 return; 8350 } 8351 8352 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8353 break; 8354 default: 8355 unallocated_encoding(s); 8356 return; 8357 } 8358 8359 if (size == MO_64) { 8360 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8361 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8362 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8363 8364 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8365 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8366 8367 switch (opcode) { 8368 case 0x3b: /* ADDP */ 8369 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8370 break; 8371 case 0xc: /* FMAXNMP */ 8372 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8373 break; 8374 case 0xd: /* FADDP */ 8375 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8376 break; 8377 case 0xf: /* FMAXP */ 8378 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8379 break; 8380 case 0x2c: /* FMINNMP */ 8381 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8382 break; 8383 case 0x2f: /* FMINP */ 8384 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8385 break; 8386 default: 8387 g_assert_not_reached(); 8388 } 8389 8390 write_fp_dreg(s, rd, tcg_res); 8391 } else { 8392 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8393 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8394 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8395 8396 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8397 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8398 8399 if (size == MO_16) { 8400 switch (opcode) { 8401 case 0xc: /* FMAXNMP */ 8402 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8403 break; 8404 case 0xd: /* FADDP */ 8405 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8406 break; 8407 case 0xf: /* FMAXP */ 8408 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8409 break; 8410 case 0x2c: /* FMINNMP */ 8411 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8412 break; 8413 case 0x2f: /* FMINP */ 8414 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8415 break; 8416 default: 8417 g_assert_not_reached(); 8418 } 8419 } else { 8420 switch (opcode) { 8421 case 0xc: /* FMAXNMP */ 8422 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8423 break; 8424 case 0xd: /* FADDP */ 8425 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8426 break; 8427 case 0xf: /* FMAXP */ 8428 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8429 break; 8430 case 0x2c: /* FMINNMP */ 8431 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8432 break; 8433 case 0x2f: /* FMINP */ 8434 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8435 break; 8436 default: 8437 g_assert_not_reached(); 8438 } 8439 } 8440 8441 write_fp_sreg(s, rd, tcg_res); 8442 } 8443 } 8444 8445 /* 8446 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8447 * 8448 * This code is handles the common shifting code and is used by both 8449 * the vector and scalar code. 8450 */ 8451 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8452 TCGv_i64 tcg_rnd, bool accumulate, 8453 bool is_u, int size, int shift) 8454 { 8455 bool extended_result = false; 8456 bool round = tcg_rnd != NULL; 8457 int ext_lshift = 0; 8458 TCGv_i64 tcg_src_hi; 8459 8460 if (round && size == 3) { 8461 extended_result = true; 8462 ext_lshift = 64 - shift; 8463 tcg_src_hi = tcg_temp_new_i64(); 8464 } else if (shift == 64) { 8465 if (!accumulate && is_u) { 8466 /* result is zero */ 8467 tcg_gen_movi_i64(tcg_res, 0); 8468 return; 8469 } 8470 } 8471 8472 /* Deal with the rounding step */ 8473 if (round) { 8474 if (extended_result) { 8475 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8476 if (!is_u) { 8477 /* take care of sign extending tcg_res */ 8478 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8479 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8480 tcg_src, tcg_src_hi, 8481 tcg_rnd, tcg_zero); 8482 } else { 8483 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8484 tcg_src, tcg_zero, 8485 tcg_rnd, tcg_zero); 8486 } 8487 } else { 8488 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8489 } 8490 } 8491 8492 /* Now do the shift right */ 8493 if (round && extended_result) { 8494 /* extended case, >64 bit precision required */ 8495 if (ext_lshift == 0) { 8496 /* special case, only high bits matter */ 8497 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8498 } else { 8499 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8500 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8501 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8502 } 8503 } else { 8504 if (is_u) { 8505 if (shift == 64) { 8506 /* essentially shifting in 64 zeros */ 8507 tcg_gen_movi_i64(tcg_src, 0); 8508 } else { 8509 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8510 } 8511 } else { 8512 if (shift == 64) { 8513 /* effectively extending the sign-bit */ 8514 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8515 } else { 8516 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8517 } 8518 } 8519 } 8520 8521 if (accumulate) { 8522 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8523 } else { 8524 tcg_gen_mov_i64(tcg_res, tcg_src); 8525 } 8526 } 8527 8528 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8529 static void handle_scalar_simd_shri(DisasContext *s, 8530 bool is_u, int immh, int immb, 8531 int opcode, int rn, int rd) 8532 { 8533 const int size = 3; 8534 int immhb = immh << 3 | immb; 8535 int shift = 2 * (8 << size) - immhb; 8536 bool accumulate = false; 8537 bool round = false; 8538 bool insert = false; 8539 TCGv_i64 tcg_rn; 8540 TCGv_i64 tcg_rd; 8541 TCGv_i64 tcg_round; 8542 8543 if (!extract32(immh, 3, 1)) { 8544 unallocated_encoding(s); 8545 return; 8546 } 8547 8548 if (!fp_access_check(s)) { 8549 return; 8550 } 8551 8552 switch (opcode) { 8553 case 0x02: /* SSRA / USRA (accumulate) */ 8554 accumulate = true; 8555 break; 8556 case 0x04: /* SRSHR / URSHR (rounding) */ 8557 round = true; 8558 break; 8559 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8560 accumulate = round = true; 8561 break; 8562 case 0x08: /* SRI */ 8563 insert = true; 8564 break; 8565 } 8566 8567 if (round) { 8568 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8569 } else { 8570 tcg_round = NULL; 8571 } 8572 8573 tcg_rn = read_fp_dreg(s, rn); 8574 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8575 8576 if (insert) { 8577 /* shift count same as element size is valid but does nothing; 8578 * special case to avoid potential shift by 64. 8579 */ 8580 int esize = 8 << size; 8581 if (shift != esize) { 8582 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8583 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8584 } 8585 } else { 8586 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8587 accumulate, is_u, size, shift); 8588 } 8589 8590 write_fp_dreg(s, rd, tcg_rd); 8591 } 8592 8593 /* SHL/SLI - Scalar shift left */ 8594 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8595 int immh, int immb, int opcode, 8596 int rn, int rd) 8597 { 8598 int size = 32 - clz32(immh) - 1; 8599 int immhb = immh << 3 | immb; 8600 int shift = immhb - (8 << size); 8601 TCGv_i64 tcg_rn; 8602 TCGv_i64 tcg_rd; 8603 8604 if (!extract32(immh, 3, 1)) { 8605 unallocated_encoding(s); 8606 return; 8607 } 8608 8609 if (!fp_access_check(s)) { 8610 return; 8611 } 8612 8613 tcg_rn = read_fp_dreg(s, rn); 8614 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8615 8616 if (insert) { 8617 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8618 } else { 8619 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8620 } 8621 8622 write_fp_dreg(s, rd, tcg_rd); 8623 } 8624 8625 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8626 * (signed/unsigned) narrowing */ 8627 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8628 bool is_u_shift, bool is_u_narrow, 8629 int immh, int immb, int opcode, 8630 int rn, int rd) 8631 { 8632 int immhb = immh << 3 | immb; 8633 int size = 32 - clz32(immh) - 1; 8634 int esize = 8 << size; 8635 int shift = (2 * esize) - immhb; 8636 int elements = is_scalar ? 1 : (64 / esize); 8637 bool round = extract32(opcode, 0, 1); 8638 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8639 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8640 TCGv_i32 tcg_rd_narrowed; 8641 TCGv_i64 tcg_final; 8642 8643 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8644 { gen_helper_neon_narrow_sat_s8, 8645 gen_helper_neon_unarrow_sat8 }, 8646 { gen_helper_neon_narrow_sat_s16, 8647 gen_helper_neon_unarrow_sat16 }, 8648 { gen_helper_neon_narrow_sat_s32, 8649 gen_helper_neon_unarrow_sat32 }, 8650 { NULL, NULL }, 8651 }; 8652 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8653 gen_helper_neon_narrow_sat_u8, 8654 gen_helper_neon_narrow_sat_u16, 8655 gen_helper_neon_narrow_sat_u32, 8656 NULL 8657 }; 8658 NeonGenNarrowEnvFn *narrowfn; 8659 8660 int i; 8661 8662 assert(size < 4); 8663 8664 if (extract32(immh, 3, 1)) { 8665 unallocated_encoding(s); 8666 return; 8667 } 8668 8669 if (!fp_access_check(s)) { 8670 return; 8671 } 8672 8673 if (is_u_shift) { 8674 narrowfn = unsigned_narrow_fns[size]; 8675 } else { 8676 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8677 } 8678 8679 tcg_rn = tcg_temp_new_i64(); 8680 tcg_rd = tcg_temp_new_i64(); 8681 tcg_rd_narrowed = tcg_temp_new_i32(); 8682 tcg_final = tcg_temp_new_i64(); 8683 8684 if (round) { 8685 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8686 } else { 8687 tcg_round = NULL; 8688 } 8689 8690 for (i = 0; i < elements; i++) { 8691 read_vec_element(s, tcg_rn, rn, i, ldop); 8692 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8693 false, is_u_shift, size+1, shift); 8694 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8695 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8696 if (i == 0) { 8697 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8698 } else { 8699 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8700 } 8701 } 8702 8703 if (!is_q) { 8704 write_vec_element(s, tcg_final, rd, 0, MO_64); 8705 } else { 8706 write_vec_element(s, tcg_final, rd, 1, MO_64); 8707 } 8708 clear_vec_high(s, is_q, rd); 8709 } 8710 8711 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8712 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8713 bool src_unsigned, bool dst_unsigned, 8714 int immh, int immb, int rn, int rd) 8715 { 8716 int immhb = immh << 3 | immb; 8717 int size = 32 - clz32(immh) - 1; 8718 int shift = immhb - (8 << size); 8719 int pass; 8720 8721 assert(immh != 0); 8722 assert(!(scalar && is_q)); 8723 8724 if (!scalar) { 8725 if (!is_q && extract32(immh, 3, 1)) { 8726 unallocated_encoding(s); 8727 return; 8728 } 8729 8730 /* Since we use the variable-shift helpers we must 8731 * replicate the shift count into each element of 8732 * the tcg_shift value. 8733 */ 8734 switch (size) { 8735 case 0: 8736 shift |= shift << 8; 8737 /* fall through */ 8738 case 1: 8739 shift |= shift << 16; 8740 break; 8741 case 2: 8742 case 3: 8743 break; 8744 default: 8745 g_assert_not_reached(); 8746 } 8747 } 8748 8749 if (!fp_access_check(s)) { 8750 return; 8751 } 8752 8753 if (size == 3) { 8754 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8755 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8756 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8757 { NULL, gen_helper_neon_qshl_u64 }, 8758 }; 8759 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8760 int maxpass = is_q ? 2 : 1; 8761 8762 for (pass = 0; pass < maxpass; pass++) { 8763 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8764 8765 read_vec_element(s, tcg_op, rn, pass, MO_64); 8766 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8767 write_vec_element(s, tcg_op, rd, pass, MO_64); 8768 } 8769 clear_vec_high(s, is_q, rd); 8770 } else { 8771 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8772 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8773 { 8774 { gen_helper_neon_qshl_s8, 8775 gen_helper_neon_qshl_s16, 8776 gen_helper_neon_qshl_s32 }, 8777 { gen_helper_neon_qshlu_s8, 8778 gen_helper_neon_qshlu_s16, 8779 gen_helper_neon_qshlu_s32 } 8780 }, { 8781 { NULL, NULL, NULL }, 8782 { gen_helper_neon_qshl_u8, 8783 gen_helper_neon_qshl_u16, 8784 gen_helper_neon_qshl_u32 } 8785 } 8786 }; 8787 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8788 MemOp memop = scalar ? size : MO_32; 8789 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8790 8791 for (pass = 0; pass < maxpass; pass++) { 8792 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8793 8794 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8795 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8796 if (scalar) { 8797 switch (size) { 8798 case 0: 8799 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8800 break; 8801 case 1: 8802 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8803 break; 8804 case 2: 8805 break; 8806 default: 8807 g_assert_not_reached(); 8808 } 8809 write_fp_sreg(s, rd, tcg_op); 8810 } else { 8811 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8812 } 8813 } 8814 8815 if (!scalar) { 8816 clear_vec_high(s, is_q, rd); 8817 } 8818 } 8819 } 8820 8821 /* Common vector code for handling integer to FP conversion */ 8822 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8823 int elements, int is_signed, 8824 int fracbits, int size) 8825 { 8826 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8827 TCGv_i32 tcg_shift = NULL; 8828 8829 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8830 int pass; 8831 8832 if (fracbits || size == MO_64) { 8833 tcg_shift = tcg_constant_i32(fracbits); 8834 } 8835 8836 if (size == MO_64) { 8837 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8838 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8839 8840 for (pass = 0; pass < elements; pass++) { 8841 read_vec_element(s, tcg_int64, rn, pass, mop); 8842 8843 if (is_signed) { 8844 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8845 tcg_shift, tcg_fpst); 8846 } else { 8847 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8848 tcg_shift, tcg_fpst); 8849 } 8850 if (elements == 1) { 8851 write_fp_dreg(s, rd, tcg_double); 8852 } else { 8853 write_vec_element(s, tcg_double, rd, pass, MO_64); 8854 } 8855 } 8856 } else { 8857 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8858 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8859 8860 for (pass = 0; pass < elements; pass++) { 8861 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8862 8863 switch (size) { 8864 case MO_32: 8865 if (fracbits) { 8866 if (is_signed) { 8867 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8868 tcg_shift, tcg_fpst); 8869 } else { 8870 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8871 tcg_shift, tcg_fpst); 8872 } 8873 } else { 8874 if (is_signed) { 8875 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8876 } else { 8877 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8878 } 8879 } 8880 break; 8881 case MO_16: 8882 if (fracbits) { 8883 if (is_signed) { 8884 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8885 tcg_shift, tcg_fpst); 8886 } else { 8887 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8888 tcg_shift, tcg_fpst); 8889 } 8890 } else { 8891 if (is_signed) { 8892 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8893 } else { 8894 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8895 } 8896 } 8897 break; 8898 default: 8899 g_assert_not_reached(); 8900 } 8901 8902 if (elements == 1) { 8903 write_fp_sreg(s, rd, tcg_float); 8904 } else { 8905 write_vec_element_i32(s, tcg_float, rd, pass, size); 8906 } 8907 } 8908 } 8909 8910 clear_vec_high(s, elements << size == 16, rd); 8911 } 8912 8913 /* UCVTF/SCVTF - Integer to FP conversion */ 8914 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8915 bool is_q, bool is_u, 8916 int immh, int immb, int opcode, 8917 int rn, int rd) 8918 { 8919 int size, elements, fracbits; 8920 int immhb = immh << 3 | immb; 8921 8922 if (immh & 8) { 8923 size = MO_64; 8924 if (!is_scalar && !is_q) { 8925 unallocated_encoding(s); 8926 return; 8927 } 8928 } else if (immh & 4) { 8929 size = MO_32; 8930 } else if (immh & 2) { 8931 size = MO_16; 8932 if (!dc_isar_feature(aa64_fp16, s)) { 8933 unallocated_encoding(s); 8934 return; 8935 } 8936 } else { 8937 /* immh == 0 would be a failure of the decode logic */ 8938 g_assert(immh == 1); 8939 unallocated_encoding(s); 8940 return; 8941 } 8942 8943 if (is_scalar) { 8944 elements = 1; 8945 } else { 8946 elements = (8 << is_q) >> size; 8947 } 8948 fracbits = (16 << size) - immhb; 8949 8950 if (!fp_access_check(s)) { 8951 return; 8952 } 8953 8954 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8955 } 8956 8957 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8958 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8959 bool is_q, bool is_u, 8960 int immh, int immb, int rn, int rd) 8961 { 8962 int immhb = immh << 3 | immb; 8963 int pass, size, fracbits; 8964 TCGv_ptr tcg_fpstatus; 8965 TCGv_i32 tcg_rmode, tcg_shift; 8966 8967 if (immh & 0x8) { 8968 size = MO_64; 8969 if (!is_scalar && !is_q) { 8970 unallocated_encoding(s); 8971 return; 8972 } 8973 } else if (immh & 0x4) { 8974 size = MO_32; 8975 } else if (immh & 0x2) { 8976 size = MO_16; 8977 if (!dc_isar_feature(aa64_fp16, s)) { 8978 unallocated_encoding(s); 8979 return; 8980 } 8981 } else { 8982 /* Should have split out AdvSIMD modified immediate earlier. */ 8983 assert(immh == 1); 8984 unallocated_encoding(s); 8985 return; 8986 } 8987 8988 if (!fp_access_check(s)) { 8989 return; 8990 } 8991 8992 assert(!(is_scalar && is_q)); 8993 8994 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8995 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8996 fracbits = (16 << size) - immhb; 8997 tcg_shift = tcg_constant_i32(fracbits); 8998 8999 if (size == MO_64) { 9000 int maxpass = is_scalar ? 1 : 2; 9001 9002 for (pass = 0; pass < maxpass; pass++) { 9003 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9004 9005 read_vec_element(s, tcg_op, rn, pass, MO_64); 9006 if (is_u) { 9007 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9008 } else { 9009 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9010 } 9011 write_vec_element(s, tcg_op, rd, pass, MO_64); 9012 } 9013 clear_vec_high(s, is_q, rd); 9014 } else { 9015 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9016 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9017 9018 switch (size) { 9019 case MO_16: 9020 if (is_u) { 9021 fn = gen_helper_vfp_touhh; 9022 } else { 9023 fn = gen_helper_vfp_toshh; 9024 } 9025 break; 9026 case MO_32: 9027 if (is_u) { 9028 fn = gen_helper_vfp_touls; 9029 } else { 9030 fn = gen_helper_vfp_tosls; 9031 } 9032 break; 9033 default: 9034 g_assert_not_reached(); 9035 } 9036 9037 for (pass = 0; pass < maxpass; pass++) { 9038 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9039 9040 read_vec_element_i32(s, tcg_op, rn, pass, size); 9041 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9042 if (is_scalar) { 9043 if (size == MO_16 && !is_u) { 9044 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9045 } 9046 write_fp_sreg(s, rd, tcg_op); 9047 } else { 9048 write_vec_element_i32(s, tcg_op, rd, pass, size); 9049 } 9050 } 9051 if (!is_scalar) { 9052 clear_vec_high(s, is_q, rd); 9053 } 9054 } 9055 9056 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9057 } 9058 9059 /* AdvSIMD scalar shift by immediate 9060 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9061 * +-----+---+-------------+------+------+--------+---+------+------+ 9062 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9063 * +-----+---+-------------+------+------+--------+---+------+------+ 9064 * 9065 * This is the scalar version so it works on a fixed sized registers 9066 */ 9067 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9068 { 9069 int rd = extract32(insn, 0, 5); 9070 int rn = extract32(insn, 5, 5); 9071 int opcode = extract32(insn, 11, 5); 9072 int immb = extract32(insn, 16, 3); 9073 int immh = extract32(insn, 19, 4); 9074 bool is_u = extract32(insn, 29, 1); 9075 9076 if (immh == 0) { 9077 unallocated_encoding(s); 9078 return; 9079 } 9080 9081 switch (opcode) { 9082 case 0x08: /* SRI */ 9083 if (!is_u) { 9084 unallocated_encoding(s); 9085 return; 9086 } 9087 /* fall through */ 9088 case 0x00: /* SSHR / USHR */ 9089 case 0x02: /* SSRA / USRA */ 9090 case 0x04: /* SRSHR / URSHR */ 9091 case 0x06: /* SRSRA / URSRA */ 9092 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9093 break; 9094 case 0x0a: /* SHL / SLI */ 9095 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9096 break; 9097 case 0x1c: /* SCVTF, UCVTF */ 9098 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9099 opcode, rn, rd); 9100 break; 9101 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9102 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9103 if (!is_u) { 9104 unallocated_encoding(s); 9105 return; 9106 } 9107 handle_vec_simd_sqshrn(s, true, false, false, true, 9108 immh, immb, opcode, rn, rd); 9109 break; 9110 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9111 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9112 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9113 immh, immb, opcode, rn, rd); 9114 break; 9115 case 0xc: /* SQSHLU */ 9116 if (!is_u) { 9117 unallocated_encoding(s); 9118 return; 9119 } 9120 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9121 break; 9122 case 0xe: /* SQSHL, UQSHL */ 9123 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9124 break; 9125 case 0x1f: /* FCVTZS, FCVTZU */ 9126 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9127 break; 9128 default: 9129 unallocated_encoding(s); 9130 break; 9131 } 9132 } 9133 9134 /* AdvSIMD scalar three different 9135 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9136 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9137 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9138 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9139 */ 9140 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9141 { 9142 bool is_u = extract32(insn, 29, 1); 9143 int size = extract32(insn, 22, 2); 9144 int opcode = extract32(insn, 12, 4); 9145 int rm = extract32(insn, 16, 5); 9146 int rn = extract32(insn, 5, 5); 9147 int rd = extract32(insn, 0, 5); 9148 9149 if (is_u) { 9150 unallocated_encoding(s); 9151 return; 9152 } 9153 9154 switch (opcode) { 9155 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9156 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9157 case 0xd: /* SQDMULL, SQDMULL2 */ 9158 if (size == 0 || size == 3) { 9159 unallocated_encoding(s); 9160 return; 9161 } 9162 break; 9163 default: 9164 unallocated_encoding(s); 9165 return; 9166 } 9167 9168 if (!fp_access_check(s)) { 9169 return; 9170 } 9171 9172 if (size == 2) { 9173 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9174 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9175 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9176 9177 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9178 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9179 9180 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9181 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9182 9183 switch (opcode) { 9184 case 0xd: /* SQDMULL, SQDMULL2 */ 9185 break; 9186 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9187 tcg_gen_neg_i64(tcg_res, tcg_res); 9188 /* fall through */ 9189 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9190 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9191 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9192 tcg_res, tcg_op1); 9193 break; 9194 default: 9195 g_assert_not_reached(); 9196 } 9197 9198 write_fp_dreg(s, rd, tcg_res); 9199 } else { 9200 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9201 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9202 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9203 9204 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9205 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9206 9207 switch (opcode) { 9208 case 0xd: /* SQDMULL, SQDMULL2 */ 9209 break; 9210 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9211 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9212 /* fall through */ 9213 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9214 { 9215 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9216 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9217 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9218 tcg_res, tcg_op3); 9219 break; 9220 } 9221 default: 9222 g_assert_not_reached(); 9223 } 9224 9225 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9226 write_fp_dreg(s, rd, tcg_res); 9227 } 9228 } 9229 9230 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9231 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9232 { 9233 /* Handle 64x64->64 opcodes which are shared between the scalar 9234 * and vector 3-same groups. We cover every opcode where size == 3 9235 * is valid in either the three-reg-same (integer, not pairwise) 9236 * or scalar-three-reg-same groups. 9237 */ 9238 TCGCond cond; 9239 9240 switch (opcode) { 9241 case 0x1: /* SQADD */ 9242 if (u) { 9243 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9244 } else { 9245 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9246 } 9247 break; 9248 case 0x5: /* SQSUB */ 9249 if (u) { 9250 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9251 } else { 9252 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9253 } 9254 break; 9255 case 0x6: /* CMGT, CMHI */ 9256 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9257 do_cmop: 9258 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9259 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9260 break; 9261 case 0x7: /* CMGE, CMHS */ 9262 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9263 goto do_cmop; 9264 case 0x11: /* CMTST, CMEQ */ 9265 if (u) { 9266 cond = TCG_COND_EQ; 9267 goto do_cmop; 9268 } 9269 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9270 break; 9271 case 0x8: /* SSHL, USHL */ 9272 if (u) { 9273 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9274 } else { 9275 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9276 } 9277 break; 9278 case 0x9: /* SQSHL, UQSHL */ 9279 if (u) { 9280 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9281 } else { 9282 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9283 } 9284 break; 9285 case 0xa: /* SRSHL, URSHL */ 9286 if (u) { 9287 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9288 } else { 9289 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9290 } 9291 break; 9292 case 0xb: /* SQRSHL, UQRSHL */ 9293 if (u) { 9294 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9295 } else { 9296 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9297 } 9298 break; 9299 case 0x10: /* ADD, SUB */ 9300 if (u) { 9301 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9302 } else { 9303 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9304 } 9305 break; 9306 default: 9307 g_assert_not_reached(); 9308 } 9309 } 9310 9311 /* Handle the 3-same-operands float operations; shared by the scalar 9312 * and vector encodings. The caller must filter out any encodings 9313 * not allocated for the encoding it is dealing with. 9314 */ 9315 static void handle_3same_float(DisasContext *s, int size, int elements, 9316 int fpopcode, int rd, int rn, int rm) 9317 { 9318 int pass; 9319 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9320 9321 for (pass = 0; pass < elements; pass++) { 9322 if (size) { 9323 /* Double */ 9324 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9325 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9326 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9327 9328 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9329 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9330 9331 switch (fpopcode) { 9332 case 0x1f: /* FRECPS */ 9333 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9334 break; 9335 case 0x3f: /* FRSQRTS */ 9336 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9337 break; 9338 default: 9339 case 0x18: /* FMAXNM */ 9340 case 0x19: /* FMLA */ 9341 case 0x1a: /* FADD */ 9342 case 0x1b: /* FMULX */ 9343 case 0x1c: /* FCMEQ */ 9344 case 0x1e: /* FMAX */ 9345 case 0x38: /* FMINNM */ 9346 case 0x39: /* FMLS */ 9347 case 0x3a: /* FSUB */ 9348 case 0x3e: /* FMIN */ 9349 case 0x5b: /* FMUL */ 9350 case 0x5c: /* FCMGE */ 9351 case 0x5d: /* FACGE */ 9352 case 0x5f: /* FDIV */ 9353 case 0x7a: /* FABD */ 9354 case 0x7c: /* FCMGT */ 9355 case 0x7d: /* FACGT */ 9356 g_assert_not_reached(); 9357 } 9358 9359 write_vec_element(s, tcg_res, rd, pass, MO_64); 9360 } else { 9361 /* Single */ 9362 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9363 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9364 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9365 9366 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9367 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9368 9369 switch (fpopcode) { 9370 case 0x1f: /* FRECPS */ 9371 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9372 break; 9373 case 0x3f: /* FRSQRTS */ 9374 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9375 break; 9376 default: 9377 case 0x18: /* FMAXNM */ 9378 case 0x19: /* FMLA */ 9379 case 0x1a: /* FADD */ 9380 case 0x1b: /* FMULX */ 9381 case 0x1c: /* FCMEQ */ 9382 case 0x1e: /* FMAX */ 9383 case 0x38: /* FMINNM */ 9384 case 0x39: /* FMLS */ 9385 case 0x3a: /* FSUB */ 9386 case 0x3e: /* FMIN */ 9387 case 0x5b: /* FMUL */ 9388 case 0x5c: /* FCMGE */ 9389 case 0x5d: /* FACGE */ 9390 case 0x5f: /* FDIV */ 9391 case 0x7a: /* FABD */ 9392 case 0x7c: /* FCMGT */ 9393 case 0x7d: /* FACGT */ 9394 g_assert_not_reached(); 9395 } 9396 9397 if (elements == 1) { 9398 /* scalar single so clear high part */ 9399 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9400 9401 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9402 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9403 } else { 9404 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9405 } 9406 } 9407 } 9408 9409 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9410 } 9411 9412 /* AdvSIMD scalar three same 9413 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9414 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9415 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9416 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9417 */ 9418 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9419 { 9420 int rd = extract32(insn, 0, 5); 9421 int rn = extract32(insn, 5, 5); 9422 int opcode = extract32(insn, 11, 5); 9423 int rm = extract32(insn, 16, 5); 9424 int size = extract32(insn, 22, 2); 9425 bool u = extract32(insn, 29, 1); 9426 TCGv_i64 tcg_rd; 9427 9428 if (opcode >= 0x18) { 9429 /* Floating point: U, size[1] and opcode indicate operation */ 9430 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9431 switch (fpopcode) { 9432 case 0x1f: /* FRECPS */ 9433 case 0x3f: /* FRSQRTS */ 9434 break; 9435 default: 9436 case 0x1b: /* FMULX */ 9437 case 0x5d: /* FACGE */ 9438 case 0x7d: /* FACGT */ 9439 case 0x1c: /* FCMEQ */ 9440 case 0x5c: /* FCMGE */ 9441 case 0x7a: /* FABD */ 9442 case 0x7c: /* FCMGT */ 9443 unallocated_encoding(s); 9444 return; 9445 } 9446 9447 if (!fp_access_check(s)) { 9448 return; 9449 } 9450 9451 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9452 return; 9453 } 9454 9455 switch (opcode) { 9456 case 0x1: /* SQADD, UQADD */ 9457 case 0x5: /* SQSUB, UQSUB */ 9458 case 0x9: /* SQSHL, UQSHL */ 9459 case 0xb: /* SQRSHL, UQRSHL */ 9460 break; 9461 case 0x8: /* SSHL, USHL */ 9462 case 0xa: /* SRSHL, URSHL */ 9463 case 0x6: /* CMGT, CMHI */ 9464 case 0x7: /* CMGE, CMHS */ 9465 case 0x11: /* CMTST, CMEQ */ 9466 case 0x10: /* ADD, SUB (vector) */ 9467 if (size != 3) { 9468 unallocated_encoding(s); 9469 return; 9470 } 9471 break; 9472 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9473 if (size != 1 && size != 2) { 9474 unallocated_encoding(s); 9475 return; 9476 } 9477 break; 9478 default: 9479 unallocated_encoding(s); 9480 return; 9481 } 9482 9483 if (!fp_access_check(s)) { 9484 return; 9485 } 9486 9487 tcg_rd = tcg_temp_new_i64(); 9488 9489 if (size == 3) { 9490 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9491 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9492 9493 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9494 } else { 9495 /* Do a single operation on the lowest element in the vector. 9496 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9497 * no side effects for all these operations. 9498 * OPTME: special-purpose helpers would avoid doing some 9499 * unnecessary work in the helper for the 8 and 16 bit cases. 9500 */ 9501 NeonGenTwoOpEnvFn *genenvfn; 9502 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9503 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9504 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9505 9506 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9507 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9508 9509 switch (opcode) { 9510 case 0x1: /* SQADD, UQADD */ 9511 { 9512 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9513 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9514 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9515 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9516 }; 9517 genenvfn = fns[size][u]; 9518 break; 9519 } 9520 case 0x5: /* SQSUB, UQSUB */ 9521 { 9522 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9523 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9524 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9525 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9526 }; 9527 genenvfn = fns[size][u]; 9528 break; 9529 } 9530 case 0x9: /* SQSHL, UQSHL */ 9531 { 9532 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9533 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9534 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9535 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9536 }; 9537 genenvfn = fns[size][u]; 9538 break; 9539 } 9540 case 0xb: /* SQRSHL, UQRSHL */ 9541 { 9542 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9543 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9544 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9545 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9546 }; 9547 genenvfn = fns[size][u]; 9548 break; 9549 } 9550 case 0x16: /* SQDMULH, SQRDMULH */ 9551 { 9552 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9553 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9554 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9555 }; 9556 assert(size == 1 || size == 2); 9557 genenvfn = fns[size - 1][u]; 9558 break; 9559 } 9560 default: 9561 g_assert_not_reached(); 9562 } 9563 9564 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9565 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9566 } 9567 9568 write_fp_dreg(s, rd, tcg_rd); 9569 } 9570 9571 /* AdvSIMD scalar three same FP16 9572 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9573 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9574 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9575 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9576 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9577 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9578 */ 9579 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9580 uint32_t insn) 9581 { 9582 int rd = extract32(insn, 0, 5); 9583 int rn = extract32(insn, 5, 5); 9584 int opcode = extract32(insn, 11, 3); 9585 int rm = extract32(insn, 16, 5); 9586 bool u = extract32(insn, 29, 1); 9587 bool a = extract32(insn, 23, 1); 9588 int fpopcode = opcode | (a << 3) | (u << 4); 9589 TCGv_ptr fpst; 9590 TCGv_i32 tcg_op1; 9591 TCGv_i32 tcg_op2; 9592 TCGv_i32 tcg_res; 9593 9594 switch (fpopcode) { 9595 case 0x07: /* FRECPS */ 9596 case 0x0f: /* FRSQRTS */ 9597 break; 9598 default: 9599 case 0x03: /* FMULX */ 9600 case 0x04: /* FCMEQ (reg) */ 9601 case 0x14: /* FCMGE (reg) */ 9602 case 0x15: /* FACGE */ 9603 case 0x1a: /* FABD */ 9604 case 0x1c: /* FCMGT (reg) */ 9605 case 0x1d: /* FACGT */ 9606 unallocated_encoding(s); 9607 return; 9608 } 9609 9610 if (!dc_isar_feature(aa64_fp16, s)) { 9611 unallocated_encoding(s); 9612 } 9613 9614 if (!fp_access_check(s)) { 9615 return; 9616 } 9617 9618 fpst = fpstatus_ptr(FPST_FPCR_F16); 9619 9620 tcg_op1 = read_fp_hreg(s, rn); 9621 tcg_op2 = read_fp_hreg(s, rm); 9622 tcg_res = tcg_temp_new_i32(); 9623 9624 switch (fpopcode) { 9625 case 0x07: /* FRECPS */ 9626 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9627 break; 9628 case 0x0f: /* FRSQRTS */ 9629 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9630 break; 9631 default: 9632 case 0x03: /* FMULX */ 9633 case 0x04: /* FCMEQ (reg) */ 9634 case 0x14: /* FCMGE (reg) */ 9635 case 0x15: /* FACGE */ 9636 case 0x1a: /* FABD */ 9637 case 0x1c: /* FCMGT (reg) */ 9638 case 0x1d: /* FACGT */ 9639 g_assert_not_reached(); 9640 } 9641 9642 write_fp_sreg(s, rd, tcg_res); 9643 } 9644 9645 /* AdvSIMD scalar three same extra 9646 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9647 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9648 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9649 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9650 */ 9651 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9652 uint32_t insn) 9653 { 9654 int rd = extract32(insn, 0, 5); 9655 int rn = extract32(insn, 5, 5); 9656 int opcode = extract32(insn, 11, 4); 9657 int rm = extract32(insn, 16, 5); 9658 int size = extract32(insn, 22, 2); 9659 bool u = extract32(insn, 29, 1); 9660 TCGv_i32 ele1, ele2, ele3; 9661 TCGv_i64 res; 9662 bool feature; 9663 9664 switch (u * 16 + opcode) { 9665 case 0x10: /* SQRDMLAH (vector) */ 9666 case 0x11: /* SQRDMLSH (vector) */ 9667 if (size != 1 && size != 2) { 9668 unallocated_encoding(s); 9669 return; 9670 } 9671 feature = dc_isar_feature(aa64_rdm, s); 9672 break; 9673 default: 9674 unallocated_encoding(s); 9675 return; 9676 } 9677 if (!feature) { 9678 unallocated_encoding(s); 9679 return; 9680 } 9681 if (!fp_access_check(s)) { 9682 return; 9683 } 9684 9685 /* Do a single operation on the lowest element in the vector. 9686 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9687 * with no side effects for all these operations. 9688 * OPTME: special-purpose helpers would avoid doing some 9689 * unnecessary work in the helper for the 16 bit cases. 9690 */ 9691 ele1 = tcg_temp_new_i32(); 9692 ele2 = tcg_temp_new_i32(); 9693 ele3 = tcg_temp_new_i32(); 9694 9695 read_vec_element_i32(s, ele1, rn, 0, size); 9696 read_vec_element_i32(s, ele2, rm, 0, size); 9697 read_vec_element_i32(s, ele3, rd, 0, size); 9698 9699 switch (opcode) { 9700 case 0x0: /* SQRDMLAH */ 9701 if (size == 1) { 9702 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9703 } else { 9704 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9705 } 9706 break; 9707 case 0x1: /* SQRDMLSH */ 9708 if (size == 1) { 9709 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9710 } else { 9711 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9712 } 9713 break; 9714 default: 9715 g_assert_not_reached(); 9716 } 9717 9718 res = tcg_temp_new_i64(); 9719 tcg_gen_extu_i32_i64(res, ele3); 9720 write_fp_dreg(s, rd, res); 9721 } 9722 9723 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9724 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9725 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9726 { 9727 /* Handle 64->64 opcodes which are shared between the scalar and 9728 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9729 * is valid in either group and also the double-precision fp ops. 9730 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9731 * requires them. 9732 */ 9733 TCGCond cond; 9734 9735 switch (opcode) { 9736 case 0x4: /* CLS, CLZ */ 9737 if (u) { 9738 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9739 } else { 9740 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9741 } 9742 break; 9743 case 0x5: /* NOT */ 9744 /* This opcode is shared with CNT and RBIT but we have earlier 9745 * enforced that size == 3 if and only if this is the NOT insn. 9746 */ 9747 tcg_gen_not_i64(tcg_rd, tcg_rn); 9748 break; 9749 case 0x7: /* SQABS, SQNEG */ 9750 if (u) { 9751 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9752 } else { 9753 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9754 } 9755 break; 9756 case 0xa: /* CMLT */ 9757 cond = TCG_COND_LT; 9758 do_cmop: 9759 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9760 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9761 break; 9762 case 0x8: /* CMGT, CMGE */ 9763 cond = u ? TCG_COND_GE : TCG_COND_GT; 9764 goto do_cmop; 9765 case 0x9: /* CMEQ, CMLE */ 9766 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9767 goto do_cmop; 9768 case 0xb: /* ABS, NEG */ 9769 if (u) { 9770 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9771 } else { 9772 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9773 } 9774 break; 9775 case 0x2f: /* FABS */ 9776 gen_vfp_absd(tcg_rd, tcg_rn); 9777 break; 9778 case 0x6f: /* FNEG */ 9779 gen_vfp_negd(tcg_rd, tcg_rn); 9780 break; 9781 case 0x7f: /* FSQRT */ 9782 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9783 break; 9784 case 0x1a: /* FCVTNS */ 9785 case 0x1b: /* FCVTMS */ 9786 case 0x1c: /* FCVTAS */ 9787 case 0x3a: /* FCVTPS */ 9788 case 0x3b: /* FCVTZS */ 9789 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9790 break; 9791 case 0x5a: /* FCVTNU */ 9792 case 0x5b: /* FCVTMU */ 9793 case 0x5c: /* FCVTAU */ 9794 case 0x7a: /* FCVTPU */ 9795 case 0x7b: /* FCVTZU */ 9796 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9797 break; 9798 case 0x18: /* FRINTN */ 9799 case 0x19: /* FRINTM */ 9800 case 0x38: /* FRINTP */ 9801 case 0x39: /* FRINTZ */ 9802 case 0x58: /* FRINTA */ 9803 case 0x79: /* FRINTI */ 9804 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9805 break; 9806 case 0x59: /* FRINTX */ 9807 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9808 break; 9809 case 0x1e: /* FRINT32Z */ 9810 case 0x5e: /* FRINT32X */ 9811 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9812 break; 9813 case 0x1f: /* FRINT64Z */ 9814 case 0x5f: /* FRINT64X */ 9815 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9816 break; 9817 default: 9818 g_assert_not_reached(); 9819 } 9820 } 9821 9822 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9823 bool is_scalar, bool is_u, bool is_q, 9824 int size, int rn, int rd) 9825 { 9826 bool is_double = (size == MO_64); 9827 TCGv_ptr fpst; 9828 9829 if (!fp_access_check(s)) { 9830 return; 9831 } 9832 9833 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9834 9835 if (is_double) { 9836 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9837 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9838 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9839 NeonGenTwoDoubleOpFn *genfn; 9840 bool swap = false; 9841 int pass; 9842 9843 switch (opcode) { 9844 case 0x2e: /* FCMLT (zero) */ 9845 swap = true; 9846 /* fallthrough */ 9847 case 0x2c: /* FCMGT (zero) */ 9848 genfn = gen_helper_neon_cgt_f64; 9849 break; 9850 case 0x2d: /* FCMEQ (zero) */ 9851 genfn = gen_helper_neon_ceq_f64; 9852 break; 9853 case 0x6d: /* FCMLE (zero) */ 9854 swap = true; 9855 /* fall through */ 9856 case 0x6c: /* FCMGE (zero) */ 9857 genfn = gen_helper_neon_cge_f64; 9858 break; 9859 default: 9860 g_assert_not_reached(); 9861 } 9862 9863 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9864 read_vec_element(s, tcg_op, rn, pass, MO_64); 9865 if (swap) { 9866 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9867 } else { 9868 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9869 } 9870 write_vec_element(s, tcg_res, rd, pass, MO_64); 9871 } 9872 9873 clear_vec_high(s, !is_scalar, rd); 9874 } else { 9875 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9876 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9877 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9878 NeonGenTwoSingleOpFn *genfn; 9879 bool swap = false; 9880 int pass, maxpasses; 9881 9882 if (size == MO_16) { 9883 switch (opcode) { 9884 case 0x2e: /* FCMLT (zero) */ 9885 swap = true; 9886 /* fall through */ 9887 case 0x2c: /* FCMGT (zero) */ 9888 genfn = gen_helper_advsimd_cgt_f16; 9889 break; 9890 case 0x2d: /* FCMEQ (zero) */ 9891 genfn = gen_helper_advsimd_ceq_f16; 9892 break; 9893 case 0x6d: /* FCMLE (zero) */ 9894 swap = true; 9895 /* fall through */ 9896 case 0x6c: /* FCMGE (zero) */ 9897 genfn = gen_helper_advsimd_cge_f16; 9898 break; 9899 default: 9900 g_assert_not_reached(); 9901 } 9902 } else { 9903 switch (opcode) { 9904 case 0x2e: /* FCMLT (zero) */ 9905 swap = true; 9906 /* fall through */ 9907 case 0x2c: /* FCMGT (zero) */ 9908 genfn = gen_helper_neon_cgt_f32; 9909 break; 9910 case 0x2d: /* FCMEQ (zero) */ 9911 genfn = gen_helper_neon_ceq_f32; 9912 break; 9913 case 0x6d: /* FCMLE (zero) */ 9914 swap = true; 9915 /* fall through */ 9916 case 0x6c: /* FCMGE (zero) */ 9917 genfn = gen_helper_neon_cge_f32; 9918 break; 9919 default: 9920 g_assert_not_reached(); 9921 } 9922 } 9923 9924 if (is_scalar) { 9925 maxpasses = 1; 9926 } else { 9927 int vector_size = 8 << is_q; 9928 maxpasses = vector_size >> size; 9929 } 9930 9931 for (pass = 0; pass < maxpasses; pass++) { 9932 read_vec_element_i32(s, tcg_op, rn, pass, size); 9933 if (swap) { 9934 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9935 } else { 9936 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9937 } 9938 if (is_scalar) { 9939 write_fp_sreg(s, rd, tcg_res); 9940 } else { 9941 write_vec_element_i32(s, tcg_res, rd, pass, size); 9942 } 9943 } 9944 9945 if (!is_scalar) { 9946 clear_vec_high(s, is_q, rd); 9947 } 9948 } 9949 } 9950 9951 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9952 bool is_scalar, bool is_u, bool is_q, 9953 int size, int rn, int rd) 9954 { 9955 bool is_double = (size == 3); 9956 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9957 9958 if (is_double) { 9959 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9960 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9961 int pass; 9962 9963 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9964 read_vec_element(s, tcg_op, rn, pass, MO_64); 9965 switch (opcode) { 9966 case 0x3d: /* FRECPE */ 9967 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9968 break; 9969 case 0x3f: /* FRECPX */ 9970 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9971 break; 9972 case 0x7d: /* FRSQRTE */ 9973 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9974 break; 9975 default: 9976 g_assert_not_reached(); 9977 } 9978 write_vec_element(s, tcg_res, rd, pass, MO_64); 9979 } 9980 clear_vec_high(s, !is_scalar, rd); 9981 } else { 9982 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9983 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9984 int pass, maxpasses; 9985 9986 if (is_scalar) { 9987 maxpasses = 1; 9988 } else { 9989 maxpasses = is_q ? 4 : 2; 9990 } 9991 9992 for (pass = 0; pass < maxpasses; pass++) { 9993 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9994 9995 switch (opcode) { 9996 case 0x3c: /* URECPE */ 9997 gen_helper_recpe_u32(tcg_res, tcg_op); 9998 break; 9999 case 0x3d: /* FRECPE */ 10000 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 10001 break; 10002 case 0x3f: /* FRECPX */ 10003 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 10004 break; 10005 case 0x7d: /* FRSQRTE */ 10006 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 10007 break; 10008 default: 10009 g_assert_not_reached(); 10010 } 10011 10012 if (is_scalar) { 10013 write_fp_sreg(s, rd, tcg_res); 10014 } else { 10015 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 10016 } 10017 } 10018 if (!is_scalar) { 10019 clear_vec_high(s, is_q, rd); 10020 } 10021 } 10022 } 10023 10024 static void handle_2misc_narrow(DisasContext *s, bool scalar, 10025 int opcode, bool u, bool is_q, 10026 int size, int rn, int rd) 10027 { 10028 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 10029 * in the source becomes a size element in the destination). 10030 */ 10031 int pass; 10032 TCGv_i32 tcg_res[2]; 10033 int destelt = is_q ? 2 : 0; 10034 int passes = scalar ? 1 : 2; 10035 10036 if (scalar) { 10037 tcg_res[1] = tcg_constant_i32(0); 10038 } 10039 10040 for (pass = 0; pass < passes; pass++) { 10041 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10042 NeonGenNarrowFn *genfn = NULL; 10043 NeonGenNarrowEnvFn *genenvfn = NULL; 10044 10045 if (scalar) { 10046 read_vec_element(s, tcg_op, rn, pass, size + 1); 10047 } else { 10048 read_vec_element(s, tcg_op, rn, pass, MO_64); 10049 } 10050 tcg_res[pass] = tcg_temp_new_i32(); 10051 10052 switch (opcode) { 10053 case 0x12: /* XTN, SQXTUN */ 10054 { 10055 static NeonGenNarrowFn * const xtnfns[3] = { 10056 gen_helper_neon_narrow_u8, 10057 gen_helper_neon_narrow_u16, 10058 tcg_gen_extrl_i64_i32, 10059 }; 10060 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 10061 gen_helper_neon_unarrow_sat8, 10062 gen_helper_neon_unarrow_sat16, 10063 gen_helper_neon_unarrow_sat32, 10064 }; 10065 if (u) { 10066 genenvfn = sqxtunfns[size]; 10067 } else { 10068 genfn = xtnfns[size]; 10069 } 10070 break; 10071 } 10072 case 0x14: /* SQXTN, UQXTN */ 10073 { 10074 static NeonGenNarrowEnvFn * const fns[3][2] = { 10075 { gen_helper_neon_narrow_sat_s8, 10076 gen_helper_neon_narrow_sat_u8 }, 10077 { gen_helper_neon_narrow_sat_s16, 10078 gen_helper_neon_narrow_sat_u16 }, 10079 { gen_helper_neon_narrow_sat_s32, 10080 gen_helper_neon_narrow_sat_u32 }, 10081 }; 10082 genenvfn = fns[size][u]; 10083 break; 10084 } 10085 case 0x16: /* FCVTN, FCVTN2 */ 10086 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10087 if (size == 2) { 10088 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 10089 } else { 10090 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10091 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10092 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10093 TCGv_i32 ahp = get_ahp_flag(); 10094 10095 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10096 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10097 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10098 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10099 } 10100 break; 10101 case 0x36: /* BFCVTN, BFCVTN2 */ 10102 { 10103 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10104 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10105 } 10106 break; 10107 case 0x56: /* FCVTXN, FCVTXN2 */ 10108 /* 64 bit to 32 bit float conversion 10109 * with von Neumann rounding (round to odd) 10110 */ 10111 assert(size == 2); 10112 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10113 break; 10114 default: 10115 g_assert_not_reached(); 10116 } 10117 10118 if (genfn) { 10119 genfn(tcg_res[pass], tcg_op); 10120 } else if (genenvfn) { 10121 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10122 } 10123 } 10124 10125 for (pass = 0; pass < 2; pass++) { 10126 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10127 } 10128 clear_vec_high(s, is_q, rd); 10129 } 10130 10131 /* Remaining saturating accumulating ops */ 10132 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10133 bool is_q, int size, int rn, int rd) 10134 { 10135 bool is_double = (size == 3); 10136 10137 if (is_double) { 10138 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10139 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10140 int pass; 10141 10142 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10143 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10144 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10145 10146 if (is_u) { /* USQADD */ 10147 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10148 } else { /* SUQADD */ 10149 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10150 } 10151 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10152 } 10153 clear_vec_high(s, !is_scalar, rd); 10154 } else { 10155 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10156 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10157 int pass, maxpasses; 10158 10159 if (is_scalar) { 10160 maxpasses = 1; 10161 } else { 10162 maxpasses = is_q ? 4 : 2; 10163 } 10164 10165 for (pass = 0; pass < maxpasses; pass++) { 10166 if (is_scalar) { 10167 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10168 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10169 } else { 10170 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10171 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10172 } 10173 10174 if (is_u) { /* USQADD */ 10175 switch (size) { 10176 case 0: 10177 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10178 break; 10179 case 1: 10180 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10181 break; 10182 case 2: 10183 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10184 break; 10185 default: 10186 g_assert_not_reached(); 10187 } 10188 } else { /* SUQADD */ 10189 switch (size) { 10190 case 0: 10191 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10192 break; 10193 case 1: 10194 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10195 break; 10196 case 2: 10197 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10198 break; 10199 default: 10200 g_assert_not_reached(); 10201 } 10202 } 10203 10204 if (is_scalar) { 10205 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10206 } 10207 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10208 } 10209 clear_vec_high(s, is_q, rd); 10210 } 10211 } 10212 10213 /* AdvSIMD scalar two reg misc 10214 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10215 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10216 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10217 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10218 */ 10219 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10220 { 10221 int rd = extract32(insn, 0, 5); 10222 int rn = extract32(insn, 5, 5); 10223 int opcode = extract32(insn, 12, 5); 10224 int size = extract32(insn, 22, 2); 10225 bool u = extract32(insn, 29, 1); 10226 bool is_fcvt = false; 10227 int rmode; 10228 TCGv_i32 tcg_rmode; 10229 TCGv_ptr tcg_fpstatus; 10230 10231 switch (opcode) { 10232 case 0x3: /* USQADD / SUQADD*/ 10233 if (!fp_access_check(s)) { 10234 return; 10235 } 10236 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10237 return; 10238 case 0x7: /* SQABS / SQNEG */ 10239 break; 10240 case 0xa: /* CMLT */ 10241 if (u) { 10242 unallocated_encoding(s); 10243 return; 10244 } 10245 /* fall through */ 10246 case 0x8: /* CMGT, CMGE */ 10247 case 0x9: /* CMEQ, CMLE */ 10248 case 0xb: /* ABS, NEG */ 10249 if (size != 3) { 10250 unallocated_encoding(s); 10251 return; 10252 } 10253 break; 10254 case 0x12: /* SQXTUN */ 10255 if (!u) { 10256 unallocated_encoding(s); 10257 return; 10258 } 10259 /* fall through */ 10260 case 0x14: /* SQXTN, UQXTN */ 10261 if (size == 3) { 10262 unallocated_encoding(s); 10263 return; 10264 } 10265 if (!fp_access_check(s)) { 10266 return; 10267 } 10268 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10269 return; 10270 case 0xc ... 0xf: 10271 case 0x16 ... 0x1d: 10272 case 0x1f: 10273 /* Floating point: U, size[1] and opcode indicate operation; 10274 * size[0] indicates single or double precision. 10275 */ 10276 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10277 size = extract32(size, 0, 1) ? 3 : 2; 10278 switch (opcode) { 10279 case 0x2c: /* FCMGT (zero) */ 10280 case 0x2d: /* FCMEQ (zero) */ 10281 case 0x2e: /* FCMLT (zero) */ 10282 case 0x6c: /* FCMGE (zero) */ 10283 case 0x6d: /* FCMLE (zero) */ 10284 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10285 return; 10286 case 0x1d: /* SCVTF */ 10287 case 0x5d: /* UCVTF */ 10288 { 10289 bool is_signed = (opcode == 0x1d); 10290 if (!fp_access_check(s)) { 10291 return; 10292 } 10293 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10294 return; 10295 } 10296 case 0x3d: /* FRECPE */ 10297 case 0x3f: /* FRECPX */ 10298 case 0x7d: /* FRSQRTE */ 10299 if (!fp_access_check(s)) { 10300 return; 10301 } 10302 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10303 return; 10304 case 0x1a: /* FCVTNS */ 10305 case 0x1b: /* FCVTMS */ 10306 case 0x3a: /* FCVTPS */ 10307 case 0x3b: /* FCVTZS */ 10308 case 0x5a: /* FCVTNU */ 10309 case 0x5b: /* FCVTMU */ 10310 case 0x7a: /* FCVTPU */ 10311 case 0x7b: /* FCVTZU */ 10312 is_fcvt = true; 10313 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10314 break; 10315 case 0x1c: /* FCVTAS */ 10316 case 0x5c: /* FCVTAU */ 10317 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10318 is_fcvt = true; 10319 rmode = FPROUNDING_TIEAWAY; 10320 break; 10321 case 0x56: /* FCVTXN, FCVTXN2 */ 10322 if (size == 2) { 10323 unallocated_encoding(s); 10324 return; 10325 } 10326 if (!fp_access_check(s)) { 10327 return; 10328 } 10329 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10330 return; 10331 default: 10332 unallocated_encoding(s); 10333 return; 10334 } 10335 break; 10336 default: 10337 unallocated_encoding(s); 10338 return; 10339 } 10340 10341 if (!fp_access_check(s)) { 10342 return; 10343 } 10344 10345 if (is_fcvt) { 10346 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10347 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10348 } else { 10349 tcg_fpstatus = NULL; 10350 tcg_rmode = NULL; 10351 } 10352 10353 if (size == 3) { 10354 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10355 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10356 10357 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10358 write_fp_dreg(s, rd, tcg_rd); 10359 } else { 10360 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10361 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10362 10363 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10364 10365 switch (opcode) { 10366 case 0x7: /* SQABS, SQNEG */ 10367 { 10368 NeonGenOneOpEnvFn *genfn; 10369 static NeonGenOneOpEnvFn * const fns[3][2] = { 10370 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10371 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10372 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10373 }; 10374 genfn = fns[size][u]; 10375 genfn(tcg_rd, tcg_env, tcg_rn); 10376 break; 10377 } 10378 case 0x1a: /* FCVTNS */ 10379 case 0x1b: /* FCVTMS */ 10380 case 0x1c: /* FCVTAS */ 10381 case 0x3a: /* FCVTPS */ 10382 case 0x3b: /* FCVTZS */ 10383 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10384 tcg_fpstatus); 10385 break; 10386 case 0x5a: /* FCVTNU */ 10387 case 0x5b: /* FCVTMU */ 10388 case 0x5c: /* FCVTAU */ 10389 case 0x7a: /* FCVTPU */ 10390 case 0x7b: /* FCVTZU */ 10391 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10392 tcg_fpstatus); 10393 break; 10394 default: 10395 g_assert_not_reached(); 10396 } 10397 10398 write_fp_sreg(s, rd, tcg_rd); 10399 } 10400 10401 if (is_fcvt) { 10402 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10403 } 10404 } 10405 10406 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10407 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10408 int immh, int immb, int opcode, int rn, int rd) 10409 { 10410 int size = 32 - clz32(immh) - 1; 10411 int immhb = immh << 3 | immb; 10412 int shift = 2 * (8 << size) - immhb; 10413 GVecGen2iFn *gvec_fn; 10414 10415 if (extract32(immh, 3, 1) && !is_q) { 10416 unallocated_encoding(s); 10417 return; 10418 } 10419 tcg_debug_assert(size <= 3); 10420 10421 if (!fp_access_check(s)) { 10422 return; 10423 } 10424 10425 switch (opcode) { 10426 case 0x02: /* SSRA / USRA (accumulate) */ 10427 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10428 break; 10429 10430 case 0x08: /* SRI */ 10431 gvec_fn = gen_gvec_sri; 10432 break; 10433 10434 case 0x00: /* SSHR / USHR */ 10435 if (is_u) { 10436 if (shift == 8 << size) { 10437 /* Shift count the same size as element size produces zero. */ 10438 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10439 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10440 return; 10441 } 10442 gvec_fn = tcg_gen_gvec_shri; 10443 } else { 10444 /* Shift count the same size as element size produces all sign. */ 10445 if (shift == 8 << size) { 10446 shift -= 1; 10447 } 10448 gvec_fn = tcg_gen_gvec_sari; 10449 } 10450 break; 10451 10452 case 0x04: /* SRSHR / URSHR (rounding) */ 10453 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10454 break; 10455 10456 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10457 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10458 break; 10459 10460 default: 10461 g_assert_not_reached(); 10462 } 10463 10464 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10465 } 10466 10467 /* SHL/SLI - Vector shift left */ 10468 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10469 int immh, int immb, int opcode, int rn, int rd) 10470 { 10471 int size = 32 - clz32(immh) - 1; 10472 int immhb = immh << 3 | immb; 10473 int shift = immhb - (8 << size); 10474 10475 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10476 assert(size >= 0 && size <= 3); 10477 10478 if (extract32(immh, 3, 1) && !is_q) { 10479 unallocated_encoding(s); 10480 return; 10481 } 10482 10483 if (!fp_access_check(s)) { 10484 return; 10485 } 10486 10487 if (insert) { 10488 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10489 } else { 10490 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10491 } 10492 } 10493 10494 /* USHLL/SHLL - Vector shift left with widening */ 10495 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10496 int immh, int immb, int opcode, int rn, int rd) 10497 { 10498 int size = 32 - clz32(immh) - 1; 10499 int immhb = immh << 3 | immb; 10500 int shift = immhb - (8 << size); 10501 int dsize = 64; 10502 int esize = 8 << size; 10503 int elements = dsize/esize; 10504 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10505 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10506 int i; 10507 10508 if (size >= 3) { 10509 unallocated_encoding(s); 10510 return; 10511 } 10512 10513 if (!fp_access_check(s)) { 10514 return; 10515 } 10516 10517 /* For the LL variants the store is larger than the load, 10518 * so if rd == rn we would overwrite parts of our input. 10519 * So load everything right now and use shifts in the main loop. 10520 */ 10521 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10522 10523 for (i = 0; i < elements; i++) { 10524 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10525 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10526 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10527 write_vec_element(s, tcg_rd, rd, i, size + 1); 10528 } 10529 } 10530 10531 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10532 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10533 int immh, int immb, int opcode, int rn, int rd) 10534 { 10535 int immhb = immh << 3 | immb; 10536 int size = 32 - clz32(immh) - 1; 10537 int dsize = 64; 10538 int esize = 8 << size; 10539 int elements = dsize/esize; 10540 int shift = (2 * esize) - immhb; 10541 bool round = extract32(opcode, 0, 1); 10542 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10543 TCGv_i64 tcg_round; 10544 int i; 10545 10546 if (extract32(immh, 3, 1)) { 10547 unallocated_encoding(s); 10548 return; 10549 } 10550 10551 if (!fp_access_check(s)) { 10552 return; 10553 } 10554 10555 tcg_rn = tcg_temp_new_i64(); 10556 tcg_rd = tcg_temp_new_i64(); 10557 tcg_final = tcg_temp_new_i64(); 10558 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10559 10560 if (round) { 10561 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10562 } else { 10563 tcg_round = NULL; 10564 } 10565 10566 for (i = 0; i < elements; i++) { 10567 read_vec_element(s, tcg_rn, rn, i, size+1); 10568 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10569 false, true, size+1, shift); 10570 10571 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10572 } 10573 10574 if (!is_q) { 10575 write_vec_element(s, tcg_final, rd, 0, MO_64); 10576 } else { 10577 write_vec_element(s, tcg_final, rd, 1, MO_64); 10578 } 10579 10580 clear_vec_high(s, is_q, rd); 10581 } 10582 10583 10584 /* AdvSIMD shift by immediate 10585 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10586 * +---+---+---+-------------+------+------+--------+---+------+------+ 10587 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10588 * +---+---+---+-------------+------+------+--------+---+------+------+ 10589 */ 10590 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10591 { 10592 int rd = extract32(insn, 0, 5); 10593 int rn = extract32(insn, 5, 5); 10594 int opcode = extract32(insn, 11, 5); 10595 int immb = extract32(insn, 16, 3); 10596 int immh = extract32(insn, 19, 4); 10597 bool is_u = extract32(insn, 29, 1); 10598 bool is_q = extract32(insn, 30, 1); 10599 10600 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10601 assert(immh != 0); 10602 10603 switch (opcode) { 10604 case 0x08: /* SRI */ 10605 if (!is_u) { 10606 unallocated_encoding(s); 10607 return; 10608 } 10609 /* fall through */ 10610 case 0x00: /* SSHR / USHR */ 10611 case 0x02: /* SSRA / USRA (accumulate) */ 10612 case 0x04: /* SRSHR / URSHR (rounding) */ 10613 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10614 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10615 break; 10616 case 0x0a: /* SHL / SLI */ 10617 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10618 break; 10619 case 0x10: /* SHRN */ 10620 case 0x11: /* RSHRN / SQRSHRUN */ 10621 if (is_u) { 10622 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10623 opcode, rn, rd); 10624 } else { 10625 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10626 } 10627 break; 10628 case 0x12: /* SQSHRN / UQSHRN */ 10629 case 0x13: /* SQRSHRN / UQRSHRN */ 10630 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10631 opcode, rn, rd); 10632 break; 10633 case 0x14: /* SSHLL / USHLL */ 10634 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10635 break; 10636 case 0x1c: /* SCVTF / UCVTF */ 10637 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10638 opcode, rn, rd); 10639 break; 10640 case 0xc: /* SQSHLU */ 10641 if (!is_u) { 10642 unallocated_encoding(s); 10643 return; 10644 } 10645 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10646 break; 10647 case 0xe: /* SQSHL, UQSHL */ 10648 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10649 break; 10650 case 0x1f: /* FCVTZS/ FCVTZU */ 10651 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10652 return; 10653 default: 10654 unallocated_encoding(s); 10655 return; 10656 } 10657 } 10658 10659 /* Generate code to do a "long" addition or subtraction, ie one done in 10660 * TCGv_i64 on vector lanes twice the width specified by size. 10661 */ 10662 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10663 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10664 { 10665 static NeonGenTwo64OpFn * const fns[3][2] = { 10666 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10667 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10668 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10669 }; 10670 NeonGenTwo64OpFn *genfn; 10671 assert(size < 3); 10672 10673 genfn = fns[size][is_sub]; 10674 genfn(tcg_res, tcg_op1, tcg_op2); 10675 } 10676 10677 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10678 int opcode, int rd, int rn, int rm) 10679 { 10680 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10681 TCGv_i64 tcg_res[2]; 10682 int pass, accop; 10683 10684 tcg_res[0] = tcg_temp_new_i64(); 10685 tcg_res[1] = tcg_temp_new_i64(); 10686 10687 /* Does this op do an adding accumulate, a subtracting accumulate, 10688 * or no accumulate at all? 10689 */ 10690 switch (opcode) { 10691 case 5: 10692 case 8: 10693 case 9: 10694 accop = 1; 10695 break; 10696 case 10: 10697 case 11: 10698 accop = -1; 10699 break; 10700 default: 10701 accop = 0; 10702 break; 10703 } 10704 10705 if (accop != 0) { 10706 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10707 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10708 } 10709 10710 /* size == 2 means two 32x32->64 operations; this is worth special 10711 * casing because we can generally handle it inline. 10712 */ 10713 if (size == 2) { 10714 for (pass = 0; pass < 2; pass++) { 10715 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10716 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10717 TCGv_i64 tcg_passres; 10718 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10719 10720 int elt = pass + is_q * 2; 10721 10722 read_vec_element(s, tcg_op1, rn, elt, memop); 10723 read_vec_element(s, tcg_op2, rm, elt, memop); 10724 10725 if (accop == 0) { 10726 tcg_passres = tcg_res[pass]; 10727 } else { 10728 tcg_passres = tcg_temp_new_i64(); 10729 } 10730 10731 switch (opcode) { 10732 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10733 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10734 break; 10735 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10736 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10737 break; 10738 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10739 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10740 { 10741 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10742 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10743 10744 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10745 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10746 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10747 tcg_passres, 10748 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10749 break; 10750 } 10751 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10752 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10753 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10754 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10755 break; 10756 case 9: /* SQDMLAL, SQDMLAL2 */ 10757 case 11: /* SQDMLSL, SQDMLSL2 */ 10758 case 13: /* SQDMULL, SQDMULL2 */ 10759 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10760 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10761 tcg_passres, tcg_passres); 10762 break; 10763 default: 10764 g_assert_not_reached(); 10765 } 10766 10767 if (opcode == 9 || opcode == 11) { 10768 /* saturating accumulate ops */ 10769 if (accop < 0) { 10770 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10771 } 10772 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10773 tcg_res[pass], tcg_passres); 10774 } else if (accop > 0) { 10775 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10776 } else if (accop < 0) { 10777 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10778 } 10779 } 10780 } else { 10781 /* size 0 or 1, generally helper functions */ 10782 for (pass = 0; pass < 2; pass++) { 10783 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10784 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10785 TCGv_i64 tcg_passres; 10786 int elt = pass + is_q * 2; 10787 10788 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10789 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10790 10791 if (accop == 0) { 10792 tcg_passres = tcg_res[pass]; 10793 } else { 10794 tcg_passres = tcg_temp_new_i64(); 10795 } 10796 10797 switch (opcode) { 10798 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10799 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10800 { 10801 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10802 static NeonGenWidenFn * const widenfns[2][2] = { 10803 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10804 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10805 }; 10806 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10807 10808 widenfn(tcg_op2_64, tcg_op2); 10809 widenfn(tcg_passres, tcg_op1); 10810 gen_neon_addl(size, (opcode == 2), tcg_passres, 10811 tcg_passres, tcg_op2_64); 10812 break; 10813 } 10814 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10815 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10816 if (size == 0) { 10817 if (is_u) { 10818 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10819 } else { 10820 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10821 } 10822 } else { 10823 if (is_u) { 10824 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10825 } else { 10826 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10827 } 10828 } 10829 break; 10830 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10831 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10832 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10833 if (size == 0) { 10834 if (is_u) { 10835 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10836 } else { 10837 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10838 } 10839 } else { 10840 if (is_u) { 10841 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10842 } else { 10843 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10844 } 10845 } 10846 break; 10847 case 9: /* SQDMLAL, SQDMLAL2 */ 10848 case 11: /* SQDMLSL, SQDMLSL2 */ 10849 case 13: /* SQDMULL, SQDMULL2 */ 10850 assert(size == 1); 10851 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10852 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10853 tcg_passres, tcg_passres); 10854 break; 10855 default: 10856 g_assert_not_reached(); 10857 } 10858 10859 if (accop != 0) { 10860 if (opcode == 9 || opcode == 11) { 10861 /* saturating accumulate ops */ 10862 if (accop < 0) { 10863 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10864 } 10865 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10866 tcg_res[pass], 10867 tcg_passres); 10868 } else { 10869 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10870 tcg_res[pass], tcg_passres); 10871 } 10872 } 10873 } 10874 } 10875 10876 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10877 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10878 } 10879 10880 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10881 int opcode, int rd, int rn, int rm) 10882 { 10883 TCGv_i64 tcg_res[2]; 10884 int part = is_q ? 2 : 0; 10885 int pass; 10886 10887 for (pass = 0; pass < 2; pass++) { 10888 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10889 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10890 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10891 static NeonGenWidenFn * const widenfns[3][2] = { 10892 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10893 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10894 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10895 }; 10896 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10897 10898 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10899 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10900 widenfn(tcg_op2_wide, tcg_op2); 10901 tcg_res[pass] = tcg_temp_new_i64(); 10902 gen_neon_addl(size, (opcode == 3), 10903 tcg_res[pass], tcg_op1, tcg_op2_wide); 10904 } 10905 10906 for (pass = 0; pass < 2; pass++) { 10907 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10908 } 10909 } 10910 10911 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10912 { 10913 tcg_gen_addi_i64(in, in, 1U << 31); 10914 tcg_gen_extrh_i64_i32(res, in); 10915 } 10916 10917 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10918 int opcode, int rd, int rn, int rm) 10919 { 10920 TCGv_i32 tcg_res[2]; 10921 int part = is_q ? 2 : 0; 10922 int pass; 10923 10924 for (pass = 0; pass < 2; pass++) { 10925 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10926 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10927 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10928 static NeonGenNarrowFn * const narrowfns[3][2] = { 10929 { gen_helper_neon_narrow_high_u8, 10930 gen_helper_neon_narrow_round_high_u8 }, 10931 { gen_helper_neon_narrow_high_u16, 10932 gen_helper_neon_narrow_round_high_u16 }, 10933 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10934 }; 10935 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10936 10937 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10938 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10939 10940 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10941 10942 tcg_res[pass] = tcg_temp_new_i32(); 10943 gennarrow(tcg_res[pass], tcg_wideres); 10944 } 10945 10946 for (pass = 0; pass < 2; pass++) { 10947 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10948 } 10949 clear_vec_high(s, is_q, rd); 10950 } 10951 10952 /* AdvSIMD three different 10953 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10954 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10955 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10956 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10957 */ 10958 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10959 { 10960 /* Instructions in this group fall into three basic classes 10961 * (in each case with the operation working on each element in 10962 * the input vectors): 10963 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10964 * 128 bit input) 10965 * (2) wide 64 x 128 -> 128 10966 * (3) narrowing 128 x 128 -> 64 10967 * Here we do initial decode, catch unallocated cases and 10968 * dispatch to separate functions for each class. 10969 */ 10970 int is_q = extract32(insn, 30, 1); 10971 int is_u = extract32(insn, 29, 1); 10972 int size = extract32(insn, 22, 2); 10973 int opcode = extract32(insn, 12, 4); 10974 int rm = extract32(insn, 16, 5); 10975 int rn = extract32(insn, 5, 5); 10976 int rd = extract32(insn, 0, 5); 10977 10978 switch (opcode) { 10979 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10980 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10981 /* 64 x 128 -> 128 */ 10982 if (size == 3) { 10983 unallocated_encoding(s); 10984 return; 10985 } 10986 if (!fp_access_check(s)) { 10987 return; 10988 } 10989 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10990 break; 10991 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10992 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10993 /* 128 x 128 -> 64 */ 10994 if (size == 3) { 10995 unallocated_encoding(s); 10996 return; 10997 } 10998 if (!fp_access_check(s)) { 10999 return; 11000 } 11001 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 11002 break; 11003 case 14: /* PMULL, PMULL2 */ 11004 if (is_u) { 11005 unallocated_encoding(s); 11006 return; 11007 } 11008 switch (size) { 11009 case 0: /* PMULL.P8 */ 11010 if (!fp_access_check(s)) { 11011 return; 11012 } 11013 /* The Q field specifies lo/hi half input for this insn. */ 11014 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 11015 gen_helper_neon_pmull_h); 11016 break; 11017 11018 case 3: /* PMULL.P64 */ 11019 if (!dc_isar_feature(aa64_pmull, s)) { 11020 unallocated_encoding(s); 11021 return; 11022 } 11023 if (!fp_access_check(s)) { 11024 return; 11025 } 11026 /* The Q field specifies lo/hi half input for this insn. */ 11027 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 11028 gen_helper_gvec_pmull_q); 11029 break; 11030 11031 default: 11032 unallocated_encoding(s); 11033 break; 11034 } 11035 return; 11036 case 9: /* SQDMLAL, SQDMLAL2 */ 11037 case 11: /* SQDMLSL, SQDMLSL2 */ 11038 case 13: /* SQDMULL, SQDMULL2 */ 11039 if (is_u || size == 0) { 11040 unallocated_encoding(s); 11041 return; 11042 } 11043 /* fall through */ 11044 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 11045 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 11046 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 11047 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 11048 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 11049 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 11050 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 11051 /* 64 x 64 -> 128 */ 11052 if (size == 3) { 11053 unallocated_encoding(s); 11054 return; 11055 } 11056 if (!fp_access_check(s)) { 11057 return; 11058 } 11059 11060 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 11061 break; 11062 default: 11063 /* opcode 15 not allocated */ 11064 unallocated_encoding(s); 11065 break; 11066 } 11067 } 11068 11069 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 11070 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 11071 { 11072 int rd = extract32(insn, 0, 5); 11073 int rn = extract32(insn, 5, 5); 11074 int rm = extract32(insn, 16, 5); 11075 int size = extract32(insn, 22, 2); 11076 bool is_u = extract32(insn, 29, 1); 11077 bool is_q = extract32(insn, 30, 1); 11078 11079 if (!fp_access_check(s)) { 11080 return; 11081 } 11082 11083 switch (size + 4 * is_u) { 11084 case 0: /* AND */ 11085 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 11086 return; 11087 case 1: /* BIC */ 11088 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 11089 return; 11090 case 2: /* ORR */ 11091 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 11092 return; 11093 case 3: /* ORN */ 11094 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 11095 return; 11096 case 4: /* EOR */ 11097 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 11098 return; 11099 11100 case 5: /* BSL bitwise select */ 11101 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 11102 return; 11103 case 6: /* BIT, bitwise insert if true */ 11104 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 11105 return; 11106 case 7: /* BIF, bitwise insert if false */ 11107 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11108 return; 11109 11110 default: 11111 g_assert_not_reached(); 11112 } 11113 } 11114 11115 /* Pairwise op subgroup of C3.6.16. 11116 * 11117 * This is called directly or via the handle_3same_float for float pairwise 11118 * operations where the opcode and size are calculated differently. 11119 */ 11120 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11121 int size, int rn, int rm, int rd) 11122 { 11123 TCGv_ptr fpst; 11124 int pass; 11125 11126 /* Floating point operations need fpst */ 11127 if (opcode >= 0x58) { 11128 fpst = fpstatus_ptr(FPST_FPCR); 11129 } else { 11130 fpst = NULL; 11131 } 11132 11133 if (!fp_access_check(s)) { 11134 return; 11135 } 11136 11137 /* These operations work on the concatenated rm:rn, with each pair of 11138 * adjacent elements being operated on to produce an element in the result. 11139 */ 11140 if (size == 3) { 11141 TCGv_i64 tcg_res[2]; 11142 11143 for (pass = 0; pass < 2; pass++) { 11144 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11145 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11146 int passreg = (pass == 0) ? rn : rm; 11147 11148 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11149 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11150 tcg_res[pass] = tcg_temp_new_i64(); 11151 11152 switch (opcode) { 11153 case 0x17: /* ADDP */ 11154 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11155 break; 11156 case 0x58: /* FMAXNMP */ 11157 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11158 break; 11159 case 0x5a: /* FADDP */ 11160 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11161 break; 11162 case 0x5e: /* FMAXP */ 11163 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11164 break; 11165 case 0x78: /* FMINNMP */ 11166 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11167 break; 11168 case 0x7e: /* FMINP */ 11169 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11170 break; 11171 default: 11172 g_assert_not_reached(); 11173 } 11174 } 11175 11176 for (pass = 0; pass < 2; pass++) { 11177 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11178 } 11179 } else { 11180 int maxpass = is_q ? 4 : 2; 11181 TCGv_i32 tcg_res[4]; 11182 11183 for (pass = 0; pass < maxpass; pass++) { 11184 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11185 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11186 NeonGenTwoOpFn *genfn = NULL; 11187 int passreg = pass < (maxpass / 2) ? rn : rm; 11188 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11189 11190 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11191 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11192 tcg_res[pass] = tcg_temp_new_i32(); 11193 11194 switch (opcode) { 11195 case 0x17: /* ADDP */ 11196 { 11197 static NeonGenTwoOpFn * const fns[3] = { 11198 gen_helper_neon_padd_u8, 11199 gen_helper_neon_padd_u16, 11200 tcg_gen_add_i32, 11201 }; 11202 genfn = fns[size]; 11203 break; 11204 } 11205 case 0x14: /* SMAXP, UMAXP */ 11206 { 11207 static NeonGenTwoOpFn * const fns[3][2] = { 11208 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11209 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11210 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11211 }; 11212 genfn = fns[size][u]; 11213 break; 11214 } 11215 case 0x15: /* SMINP, UMINP */ 11216 { 11217 static NeonGenTwoOpFn * const fns[3][2] = { 11218 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11219 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11220 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11221 }; 11222 genfn = fns[size][u]; 11223 break; 11224 } 11225 /* The FP operations are all on single floats (32 bit) */ 11226 case 0x58: /* FMAXNMP */ 11227 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11228 break; 11229 case 0x5a: /* FADDP */ 11230 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11231 break; 11232 case 0x5e: /* FMAXP */ 11233 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11234 break; 11235 case 0x78: /* FMINNMP */ 11236 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11237 break; 11238 case 0x7e: /* FMINP */ 11239 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11240 break; 11241 default: 11242 g_assert_not_reached(); 11243 } 11244 11245 /* FP ops called directly, otherwise call now */ 11246 if (genfn) { 11247 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11248 } 11249 } 11250 11251 for (pass = 0; pass < maxpass; pass++) { 11252 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11253 } 11254 clear_vec_high(s, is_q, rd); 11255 } 11256 } 11257 11258 /* Floating point op subgroup of C3.6.16. */ 11259 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11260 { 11261 /* For floating point ops, the U, size[1] and opcode bits 11262 * together indicate the operation. size[0] indicates single 11263 * or double. 11264 */ 11265 int fpopcode = extract32(insn, 11, 5) 11266 | (extract32(insn, 23, 1) << 5) 11267 | (extract32(insn, 29, 1) << 6); 11268 int is_q = extract32(insn, 30, 1); 11269 int size = extract32(insn, 22, 1); 11270 int rm = extract32(insn, 16, 5); 11271 int rn = extract32(insn, 5, 5); 11272 int rd = extract32(insn, 0, 5); 11273 11274 int datasize = is_q ? 128 : 64; 11275 int esize = 32 << size; 11276 int elements = datasize / esize; 11277 11278 if (size == 1 && !is_q) { 11279 unallocated_encoding(s); 11280 return; 11281 } 11282 11283 switch (fpopcode) { 11284 case 0x58: /* FMAXNMP */ 11285 case 0x5a: /* FADDP */ 11286 case 0x5e: /* FMAXP */ 11287 case 0x78: /* FMINNMP */ 11288 case 0x7e: /* FMINP */ 11289 if (size && !is_q) { 11290 unallocated_encoding(s); 11291 return; 11292 } 11293 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11294 rn, rm, rd); 11295 return; 11296 case 0x1f: /* FRECPS */ 11297 case 0x3f: /* FRSQRTS */ 11298 if (!fp_access_check(s)) { 11299 return; 11300 } 11301 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11302 return; 11303 11304 case 0x1d: /* FMLAL */ 11305 case 0x3d: /* FMLSL */ 11306 case 0x59: /* FMLAL2 */ 11307 case 0x79: /* FMLSL2 */ 11308 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11309 unallocated_encoding(s); 11310 return; 11311 } 11312 if (fp_access_check(s)) { 11313 int is_s = extract32(insn, 23, 1); 11314 int is_2 = extract32(insn, 29, 1); 11315 int data = (is_2 << 1) | is_s; 11316 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11317 vec_full_reg_offset(s, rn), 11318 vec_full_reg_offset(s, rm), tcg_env, 11319 is_q ? 16 : 8, vec_full_reg_size(s), 11320 data, gen_helper_gvec_fmlal_a64); 11321 } 11322 return; 11323 11324 default: 11325 case 0x18: /* FMAXNM */ 11326 case 0x19: /* FMLA */ 11327 case 0x1a: /* FADD */ 11328 case 0x1b: /* FMULX */ 11329 case 0x1c: /* FCMEQ */ 11330 case 0x1e: /* FMAX */ 11331 case 0x38: /* FMINNM */ 11332 case 0x39: /* FMLS */ 11333 case 0x3a: /* FSUB */ 11334 case 0x3e: /* FMIN */ 11335 case 0x5b: /* FMUL */ 11336 case 0x5c: /* FCMGE */ 11337 case 0x5d: /* FACGE */ 11338 case 0x5f: /* FDIV */ 11339 case 0x7a: /* FABD */ 11340 case 0x7d: /* FACGT */ 11341 case 0x7c: /* FCMGT */ 11342 unallocated_encoding(s); 11343 return; 11344 } 11345 } 11346 11347 /* Integer op subgroup of C3.6.16. */ 11348 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11349 { 11350 int is_q = extract32(insn, 30, 1); 11351 int u = extract32(insn, 29, 1); 11352 int size = extract32(insn, 22, 2); 11353 int opcode = extract32(insn, 11, 5); 11354 int rm = extract32(insn, 16, 5); 11355 int rn = extract32(insn, 5, 5); 11356 int rd = extract32(insn, 0, 5); 11357 int pass; 11358 TCGCond cond; 11359 11360 switch (opcode) { 11361 case 0x13: /* MUL, PMUL */ 11362 if (u && size != 0) { 11363 unallocated_encoding(s); 11364 return; 11365 } 11366 /* fall through */ 11367 case 0x0: /* SHADD, UHADD */ 11368 case 0x2: /* SRHADD, URHADD */ 11369 case 0x4: /* SHSUB, UHSUB */ 11370 case 0xc: /* SMAX, UMAX */ 11371 case 0xd: /* SMIN, UMIN */ 11372 case 0xe: /* SABD, UABD */ 11373 case 0xf: /* SABA, UABA */ 11374 case 0x12: /* MLA, MLS */ 11375 if (size == 3) { 11376 unallocated_encoding(s); 11377 return; 11378 } 11379 break; 11380 case 0x16: /* SQDMULH, SQRDMULH */ 11381 if (size == 0 || size == 3) { 11382 unallocated_encoding(s); 11383 return; 11384 } 11385 break; 11386 default: 11387 if (size == 3 && !is_q) { 11388 unallocated_encoding(s); 11389 return; 11390 } 11391 break; 11392 } 11393 11394 if (!fp_access_check(s)) { 11395 return; 11396 } 11397 11398 switch (opcode) { 11399 case 0x01: /* SQADD, UQADD */ 11400 if (u) { 11401 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11402 } else { 11403 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11404 } 11405 return; 11406 case 0x05: /* SQSUB, UQSUB */ 11407 if (u) { 11408 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11409 } else { 11410 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11411 } 11412 return; 11413 case 0x08: /* SSHL, USHL */ 11414 if (u) { 11415 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11416 } else { 11417 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11418 } 11419 return; 11420 case 0x0c: /* SMAX, UMAX */ 11421 if (u) { 11422 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11423 } else { 11424 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11425 } 11426 return; 11427 case 0x0d: /* SMIN, UMIN */ 11428 if (u) { 11429 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11430 } else { 11431 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11432 } 11433 return; 11434 case 0xe: /* SABD, UABD */ 11435 if (u) { 11436 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11437 } else { 11438 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11439 } 11440 return; 11441 case 0xf: /* SABA, UABA */ 11442 if (u) { 11443 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11444 } else { 11445 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11446 } 11447 return; 11448 case 0x10: /* ADD, SUB */ 11449 if (u) { 11450 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11451 } else { 11452 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11453 } 11454 return; 11455 case 0x13: /* MUL, PMUL */ 11456 if (!u) { /* MUL */ 11457 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11458 } else { /* PMUL */ 11459 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11460 } 11461 return; 11462 case 0x12: /* MLA, MLS */ 11463 if (u) { 11464 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11465 } else { 11466 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11467 } 11468 return; 11469 case 0x16: /* SQDMULH, SQRDMULH */ 11470 { 11471 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11472 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11473 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11474 }; 11475 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11476 } 11477 return; 11478 case 0x11: 11479 if (!u) { /* CMTST */ 11480 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11481 return; 11482 } 11483 /* else CMEQ */ 11484 cond = TCG_COND_EQ; 11485 goto do_gvec_cmp; 11486 case 0x06: /* CMGT, CMHI */ 11487 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11488 goto do_gvec_cmp; 11489 case 0x07: /* CMGE, CMHS */ 11490 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11491 do_gvec_cmp: 11492 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11493 vec_full_reg_offset(s, rn), 11494 vec_full_reg_offset(s, rm), 11495 is_q ? 16 : 8, vec_full_reg_size(s)); 11496 return; 11497 } 11498 11499 if (size == 3) { 11500 assert(is_q); 11501 for (pass = 0; pass < 2; pass++) { 11502 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11503 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11504 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11505 11506 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11507 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11508 11509 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11510 11511 write_vec_element(s, tcg_res, rd, pass, MO_64); 11512 } 11513 } else { 11514 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11515 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11516 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11517 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11518 NeonGenTwoOpFn *genfn = NULL; 11519 NeonGenTwoOpEnvFn *genenvfn = NULL; 11520 11521 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11522 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11523 11524 switch (opcode) { 11525 case 0x0: /* SHADD, UHADD */ 11526 { 11527 static NeonGenTwoOpFn * const fns[3][2] = { 11528 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11529 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11530 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11531 }; 11532 genfn = fns[size][u]; 11533 break; 11534 } 11535 case 0x2: /* SRHADD, URHADD */ 11536 { 11537 static NeonGenTwoOpFn * const fns[3][2] = { 11538 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11539 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11540 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11541 }; 11542 genfn = fns[size][u]; 11543 break; 11544 } 11545 case 0x4: /* SHSUB, UHSUB */ 11546 { 11547 static NeonGenTwoOpFn * const fns[3][2] = { 11548 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11549 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11550 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11551 }; 11552 genfn = fns[size][u]; 11553 break; 11554 } 11555 case 0x9: /* SQSHL, UQSHL */ 11556 { 11557 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11558 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11559 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11560 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11561 }; 11562 genenvfn = fns[size][u]; 11563 break; 11564 } 11565 case 0xa: /* SRSHL, URSHL */ 11566 { 11567 static NeonGenTwoOpFn * const fns[3][2] = { 11568 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11569 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11570 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11571 }; 11572 genfn = fns[size][u]; 11573 break; 11574 } 11575 case 0xb: /* SQRSHL, UQRSHL */ 11576 { 11577 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11578 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11579 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11580 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11581 }; 11582 genenvfn = fns[size][u]; 11583 break; 11584 } 11585 default: 11586 g_assert_not_reached(); 11587 } 11588 11589 if (genenvfn) { 11590 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11591 } else { 11592 genfn(tcg_res, tcg_op1, tcg_op2); 11593 } 11594 11595 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11596 } 11597 } 11598 clear_vec_high(s, is_q, rd); 11599 } 11600 11601 /* AdvSIMD three same 11602 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11603 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11604 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11605 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11606 */ 11607 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11608 { 11609 int opcode = extract32(insn, 11, 5); 11610 11611 switch (opcode) { 11612 case 0x3: /* logic ops */ 11613 disas_simd_3same_logic(s, insn); 11614 break; 11615 case 0x17: /* ADDP */ 11616 case 0x14: /* SMAXP, UMAXP */ 11617 case 0x15: /* SMINP, UMINP */ 11618 { 11619 /* Pairwise operations */ 11620 int is_q = extract32(insn, 30, 1); 11621 int u = extract32(insn, 29, 1); 11622 int size = extract32(insn, 22, 2); 11623 int rm = extract32(insn, 16, 5); 11624 int rn = extract32(insn, 5, 5); 11625 int rd = extract32(insn, 0, 5); 11626 if (opcode == 0x17) { 11627 if (u || (size == 3 && !is_q)) { 11628 unallocated_encoding(s); 11629 return; 11630 } 11631 } else { 11632 if (size == 3) { 11633 unallocated_encoding(s); 11634 return; 11635 } 11636 } 11637 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11638 break; 11639 } 11640 case 0x18 ... 0x31: 11641 /* floating point ops, sz[1] and U are part of opcode */ 11642 disas_simd_3same_float(s, insn); 11643 break; 11644 default: 11645 disas_simd_3same_int(s, insn); 11646 break; 11647 } 11648 } 11649 11650 /* 11651 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11652 * 11653 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11654 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11655 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11656 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11657 * 11658 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11659 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11660 * 11661 */ 11662 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11663 { 11664 int opcode = extract32(insn, 11, 3); 11665 int u = extract32(insn, 29, 1); 11666 int a = extract32(insn, 23, 1); 11667 int is_q = extract32(insn, 30, 1); 11668 int rm = extract32(insn, 16, 5); 11669 int rn = extract32(insn, 5, 5); 11670 int rd = extract32(insn, 0, 5); 11671 /* 11672 * For these floating point ops, the U, a and opcode bits 11673 * together indicate the operation. 11674 */ 11675 int fpopcode = opcode | (a << 3) | (u << 4); 11676 int datasize = is_q ? 128 : 64; 11677 int elements = datasize / 16; 11678 bool pairwise; 11679 TCGv_ptr fpst; 11680 int pass; 11681 11682 switch (fpopcode) { 11683 case 0x7: /* FRECPS */ 11684 case 0xf: /* FRSQRTS */ 11685 pairwise = false; 11686 break; 11687 case 0x10: /* FMAXNMP */ 11688 case 0x12: /* FADDP */ 11689 case 0x16: /* FMAXP */ 11690 case 0x18: /* FMINNMP */ 11691 case 0x1e: /* FMINP */ 11692 pairwise = true; 11693 break; 11694 default: 11695 case 0x0: /* FMAXNM */ 11696 case 0x1: /* FMLA */ 11697 case 0x2: /* FADD */ 11698 case 0x3: /* FMULX */ 11699 case 0x4: /* FCMEQ */ 11700 case 0x6: /* FMAX */ 11701 case 0x8: /* FMINNM */ 11702 case 0x9: /* FMLS */ 11703 case 0xa: /* FSUB */ 11704 case 0xe: /* FMIN */ 11705 case 0x13: /* FMUL */ 11706 case 0x14: /* FCMGE */ 11707 case 0x15: /* FACGE */ 11708 case 0x17: /* FDIV */ 11709 case 0x1a: /* FABD */ 11710 case 0x1c: /* FCMGT */ 11711 case 0x1d: /* FACGT */ 11712 unallocated_encoding(s); 11713 return; 11714 } 11715 11716 if (!dc_isar_feature(aa64_fp16, s)) { 11717 unallocated_encoding(s); 11718 return; 11719 } 11720 11721 if (!fp_access_check(s)) { 11722 return; 11723 } 11724 11725 fpst = fpstatus_ptr(FPST_FPCR_F16); 11726 11727 if (pairwise) { 11728 int maxpass = is_q ? 8 : 4; 11729 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11730 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11731 TCGv_i32 tcg_res[8]; 11732 11733 for (pass = 0; pass < maxpass; pass++) { 11734 int passreg = pass < (maxpass / 2) ? rn : rm; 11735 int passelt = (pass << 1) & (maxpass - 1); 11736 11737 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11738 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11739 tcg_res[pass] = tcg_temp_new_i32(); 11740 11741 switch (fpopcode) { 11742 case 0x10: /* FMAXNMP */ 11743 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11744 fpst); 11745 break; 11746 case 0x12: /* FADDP */ 11747 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11748 break; 11749 case 0x16: /* FMAXP */ 11750 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11751 break; 11752 case 0x18: /* FMINNMP */ 11753 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11754 fpst); 11755 break; 11756 case 0x1e: /* FMINP */ 11757 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11758 break; 11759 default: 11760 g_assert_not_reached(); 11761 } 11762 } 11763 11764 for (pass = 0; pass < maxpass; pass++) { 11765 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11766 } 11767 } else { 11768 for (pass = 0; pass < elements; pass++) { 11769 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11770 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11771 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11772 11773 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11774 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11775 11776 switch (fpopcode) { 11777 case 0x7: /* FRECPS */ 11778 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11779 break; 11780 case 0xf: /* FRSQRTS */ 11781 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11782 break; 11783 default: 11784 case 0x0: /* FMAXNM */ 11785 case 0x1: /* FMLA */ 11786 case 0x2: /* FADD */ 11787 case 0x3: /* FMULX */ 11788 case 0x4: /* FCMEQ */ 11789 case 0x6: /* FMAX */ 11790 case 0x8: /* FMINNM */ 11791 case 0x9: /* FMLS */ 11792 case 0xa: /* FSUB */ 11793 case 0xe: /* FMIN */ 11794 case 0x13: /* FMUL */ 11795 case 0x14: /* FCMGE */ 11796 case 0x15: /* FACGE */ 11797 case 0x17: /* FDIV */ 11798 case 0x1a: /* FABD */ 11799 case 0x1c: /* FCMGT */ 11800 case 0x1d: /* FACGT */ 11801 g_assert_not_reached(); 11802 } 11803 11804 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11805 } 11806 } 11807 11808 clear_vec_high(s, is_q, rd); 11809 } 11810 11811 /* AdvSIMD three same extra 11812 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11813 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11814 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11815 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11816 */ 11817 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11818 { 11819 int rd = extract32(insn, 0, 5); 11820 int rn = extract32(insn, 5, 5); 11821 int opcode = extract32(insn, 11, 4); 11822 int rm = extract32(insn, 16, 5); 11823 int size = extract32(insn, 22, 2); 11824 bool u = extract32(insn, 29, 1); 11825 bool is_q = extract32(insn, 30, 1); 11826 bool feature; 11827 int rot; 11828 11829 switch (u * 16 + opcode) { 11830 case 0x10: /* SQRDMLAH (vector) */ 11831 case 0x11: /* SQRDMLSH (vector) */ 11832 if (size != 1 && size != 2) { 11833 unallocated_encoding(s); 11834 return; 11835 } 11836 feature = dc_isar_feature(aa64_rdm, s); 11837 break; 11838 case 0x02: /* SDOT (vector) */ 11839 case 0x12: /* UDOT (vector) */ 11840 if (size != MO_32) { 11841 unallocated_encoding(s); 11842 return; 11843 } 11844 feature = dc_isar_feature(aa64_dp, s); 11845 break; 11846 case 0x03: /* USDOT */ 11847 if (size != MO_32) { 11848 unallocated_encoding(s); 11849 return; 11850 } 11851 feature = dc_isar_feature(aa64_i8mm, s); 11852 break; 11853 case 0x04: /* SMMLA */ 11854 case 0x14: /* UMMLA */ 11855 case 0x05: /* USMMLA */ 11856 if (!is_q || size != MO_32) { 11857 unallocated_encoding(s); 11858 return; 11859 } 11860 feature = dc_isar_feature(aa64_i8mm, s); 11861 break; 11862 case 0x18: /* FCMLA, #0 */ 11863 case 0x19: /* FCMLA, #90 */ 11864 case 0x1a: /* FCMLA, #180 */ 11865 case 0x1b: /* FCMLA, #270 */ 11866 case 0x1c: /* FCADD, #90 */ 11867 case 0x1e: /* FCADD, #270 */ 11868 if (size == 0 11869 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11870 || (size == 3 && !is_q)) { 11871 unallocated_encoding(s); 11872 return; 11873 } 11874 feature = dc_isar_feature(aa64_fcma, s); 11875 break; 11876 case 0x1d: /* BFMMLA */ 11877 if (size != MO_16 || !is_q) { 11878 unallocated_encoding(s); 11879 return; 11880 } 11881 feature = dc_isar_feature(aa64_bf16, s); 11882 break; 11883 case 0x1f: 11884 switch (size) { 11885 case 1: /* BFDOT */ 11886 case 3: /* BFMLAL{B,T} */ 11887 feature = dc_isar_feature(aa64_bf16, s); 11888 break; 11889 default: 11890 unallocated_encoding(s); 11891 return; 11892 } 11893 break; 11894 default: 11895 unallocated_encoding(s); 11896 return; 11897 } 11898 if (!feature) { 11899 unallocated_encoding(s); 11900 return; 11901 } 11902 if (!fp_access_check(s)) { 11903 return; 11904 } 11905 11906 switch (opcode) { 11907 case 0x0: /* SQRDMLAH (vector) */ 11908 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11909 return; 11910 11911 case 0x1: /* SQRDMLSH (vector) */ 11912 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11913 return; 11914 11915 case 0x2: /* SDOT / UDOT */ 11916 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11917 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11918 return; 11919 11920 case 0x3: /* USDOT */ 11921 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11922 return; 11923 11924 case 0x04: /* SMMLA, UMMLA */ 11925 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11926 u ? gen_helper_gvec_ummla_b 11927 : gen_helper_gvec_smmla_b); 11928 return; 11929 case 0x05: /* USMMLA */ 11930 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11931 return; 11932 11933 case 0x8: /* FCMLA, #0 */ 11934 case 0x9: /* FCMLA, #90 */ 11935 case 0xa: /* FCMLA, #180 */ 11936 case 0xb: /* FCMLA, #270 */ 11937 rot = extract32(opcode, 0, 2); 11938 switch (size) { 11939 case 1: 11940 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11941 gen_helper_gvec_fcmlah); 11942 break; 11943 case 2: 11944 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11945 gen_helper_gvec_fcmlas); 11946 break; 11947 case 3: 11948 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11949 gen_helper_gvec_fcmlad); 11950 break; 11951 default: 11952 g_assert_not_reached(); 11953 } 11954 return; 11955 11956 case 0xc: /* FCADD, #90 */ 11957 case 0xe: /* FCADD, #270 */ 11958 rot = extract32(opcode, 1, 1); 11959 switch (size) { 11960 case 1: 11961 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11962 gen_helper_gvec_fcaddh); 11963 break; 11964 case 2: 11965 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11966 gen_helper_gvec_fcadds); 11967 break; 11968 case 3: 11969 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11970 gen_helper_gvec_fcaddd); 11971 break; 11972 default: 11973 g_assert_not_reached(); 11974 } 11975 return; 11976 11977 case 0xd: /* BFMMLA */ 11978 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11979 return; 11980 case 0xf: 11981 switch (size) { 11982 case 1: /* BFDOT */ 11983 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11984 break; 11985 case 3: /* BFMLAL{B,T} */ 11986 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11987 gen_helper_gvec_bfmlal); 11988 break; 11989 default: 11990 g_assert_not_reached(); 11991 } 11992 return; 11993 11994 default: 11995 g_assert_not_reached(); 11996 } 11997 } 11998 11999 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 12000 int size, int rn, int rd) 12001 { 12002 /* Handle 2-reg-misc ops which are widening (so each size element 12003 * in the source becomes a 2*size element in the destination. 12004 * The only instruction like this is FCVTL. 12005 */ 12006 int pass; 12007 12008 if (size == 3) { 12009 /* 32 -> 64 bit fp conversion */ 12010 TCGv_i64 tcg_res[2]; 12011 int srcelt = is_q ? 2 : 0; 12012 12013 for (pass = 0; pass < 2; pass++) { 12014 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12015 tcg_res[pass] = tcg_temp_new_i64(); 12016 12017 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 12018 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 12019 } 12020 for (pass = 0; pass < 2; pass++) { 12021 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12022 } 12023 } else { 12024 /* 16 -> 32 bit fp conversion */ 12025 int srcelt = is_q ? 4 : 0; 12026 TCGv_i32 tcg_res[4]; 12027 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 12028 TCGv_i32 ahp = get_ahp_flag(); 12029 12030 for (pass = 0; pass < 4; pass++) { 12031 tcg_res[pass] = tcg_temp_new_i32(); 12032 12033 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 12034 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 12035 fpst, ahp); 12036 } 12037 for (pass = 0; pass < 4; pass++) { 12038 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 12039 } 12040 } 12041 } 12042 12043 static void handle_rev(DisasContext *s, int opcode, bool u, 12044 bool is_q, int size, int rn, int rd) 12045 { 12046 int op = (opcode << 1) | u; 12047 int opsz = op + size; 12048 int grp_size = 3 - opsz; 12049 int dsize = is_q ? 128 : 64; 12050 int i; 12051 12052 if (opsz >= 3) { 12053 unallocated_encoding(s); 12054 return; 12055 } 12056 12057 if (!fp_access_check(s)) { 12058 return; 12059 } 12060 12061 if (size == 0) { 12062 /* Special case bytes, use bswap op on each group of elements */ 12063 int groups = dsize / (8 << grp_size); 12064 12065 for (i = 0; i < groups; i++) { 12066 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12067 12068 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12069 switch (grp_size) { 12070 case MO_16: 12071 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12072 break; 12073 case MO_32: 12074 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12075 break; 12076 case MO_64: 12077 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12078 break; 12079 default: 12080 g_assert_not_reached(); 12081 } 12082 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12083 } 12084 clear_vec_high(s, is_q, rd); 12085 } else { 12086 int revmask = (1 << grp_size) - 1; 12087 int esize = 8 << size; 12088 int elements = dsize / esize; 12089 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12090 TCGv_i64 tcg_rd[2]; 12091 12092 for (i = 0; i < 2; i++) { 12093 tcg_rd[i] = tcg_temp_new_i64(); 12094 tcg_gen_movi_i64(tcg_rd[i], 0); 12095 } 12096 12097 for (i = 0; i < elements; i++) { 12098 int e_rev = (i & 0xf) ^ revmask; 12099 int w = (e_rev * esize) / 64; 12100 int o = (e_rev * esize) % 64; 12101 12102 read_vec_element(s, tcg_rn, rn, i, size); 12103 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12104 } 12105 12106 for (i = 0; i < 2; i++) { 12107 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12108 } 12109 clear_vec_high(s, true, rd); 12110 } 12111 } 12112 12113 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12114 bool is_q, int size, int rn, int rd) 12115 { 12116 /* Implement the pairwise operations from 2-misc: 12117 * SADDLP, UADDLP, SADALP, UADALP. 12118 * These all add pairs of elements in the input to produce a 12119 * double-width result element in the output (possibly accumulating). 12120 */ 12121 bool accum = (opcode == 0x6); 12122 int maxpass = is_q ? 2 : 1; 12123 int pass; 12124 TCGv_i64 tcg_res[2]; 12125 12126 if (size == 2) { 12127 /* 32 + 32 -> 64 op */ 12128 MemOp memop = size + (u ? 0 : MO_SIGN); 12129 12130 for (pass = 0; pass < maxpass; pass++) { 12131 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12132 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12133 12134 tcg_res[pass] = tcg_temp_new_i64(); 12135 12136 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12137 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12138 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12139 if (accum) { 12140 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12141 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12142 } 12143 } 12144 } else { 12145 for (pass = 0; pass < maxpass; pass++) { 12146 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12147 NeonGenOne64OpFn *genfn; 12148 static NeonGenOne64OpFn * const fns[2][2] = { 12149 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12150 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12151 }; 12152 12153 genfn = fns[size][u]; 12154 12155 tcg_res[pass] = tcg_temp_new_i64(); 12156 12157 read_vec_element(s, tcg_op, rn, pass, MO_64); 12158 genfn(tcg_res[pass], tcg_op); 12159 12160 if (accum) { 12161 read_vec_element(s, tcg_op, rd, pass, MO_64); 12162 if (size == 0) { 12163 gen_helper_neon_addl_u16(tcg_res[pass], 12164 tcg_res[pass], tcg_op); 12165 } else { 12166 gen_helper_neon_addl_u32(tcg_res[pass], 12167 tcg_res[pass], tcg_op); 12168 } 12169 } 12170 } 12171 } 12172 if (!is_q) { 12173 tcg_res[1] = tcg_constant_i64(0); 12174 } 12175 for (pass = 0; pass < 2; pass++) { 12176 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12177 } 12178 } 12179 12180 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12181 { 12182 /* Implement SHLL and SHLL2 */ 12183 int pass; 12184 int part = is_q ? 2 : 0; 12185 TCGv_i64 tcg_res[2]; 12186 12187 for (pass = 0; pass < 2; pass++) { 12188 static NeonGenWidenFn * const widenfns[3] = { 12189 gen_helper_neon_widen_u8, 12190 gen_helper_neon_widen_u16, 12191 tcg_gen_extu_i32_i64, 12192 }; 12193 NeonGenWidenFn *widenfn = widenfns[size]; 12194 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12195 12196 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12197 tcg_res[pass] = tcg_temp_new_i64(); 12198 widenfn(tcg_res[pass], tcg_op); 12199 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12200 } 12201 12202 for (pass = 0; pass < 2; pass++) { 12203 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12204 } 12205 } 12206 12207 /* AdvSIMD two reg misc 12208 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12209 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12210 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12211 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12212 */ 12213 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12214 { 12215 int size = extract32(insn, 22, 2); 12216 int opcode = extract32(insn, 12, 5); 12217 bool u = extract32(insn, 29, 1); 12218 bool is_q = extract32(insn, 30, 1); 12219 int rn = extract32(insn, 5, 5); 12220 int rd = extract32(insn, 0, 5); 12221 bool need_fpstatus = false; 12222 int rmode = -1; 12223 TCGv_i32 tcg_rmode; 12224 TCGv_ptr tcg_fpstatus; 12225 12226 switch (opcode) { 12227 case 0x0: /* REV64, REV32 */ 12228 case 0x1: /* REV16 */ 12229 handle_rev(s, opcode, u, is_q, size, rn, rd); 12230 return; 12231 case 0x5: /* CNT, NOT, RBIT */ 12232 if (u && size == 0) { 12233 /* NOT */ 12234 break; 12235 } else if (u && size == 1) { 12236 /* RBIT */ 12237 break; 12238 } else if (!u && size == 0) { 12239 /* CNT */ 12240 break; 12241 } 12242 unallocated_encoding(s); 12243 return; 12244 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12245 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12246 if (size == 3) { 12247 unallocated_encoding(s); 12248 return; 12249 } 12250 if (!fp_access_check(s)) { 12251 return; 12252 } 12253 12254 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12255 return; 12256 case 0x4: /* CLS, CLZ */ 12257 if (size == 3) { 12258 unallocated_encoding(s); 12259 return; 12260 } 12261 break; 12262 case 0x2: /* SADDLP, UADDLP */ 12263 case 0x6: /* SADALP, UADALP */ 12264 if (size == 3) { 12265 unallocated_encoding(s); 12266 return; 12267 } 12268 if (!fp_access_check(s)) { 12269 return; 12270 } 12271 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12272 return; 12273 case 0x13: /* SHLL, SHLL2 */ 12274 if (u == 0 || size == 3) { 12275 unallocated_encoding(s); 12276 return; 12277 } 12278 if (!fp_access_check(s)) { 12279 return; 12280 } 12281 handle_shll(s, is_q, size, rn, rd); 12282 return; 12283 case 0xa: /* CMLT */ 12284 if (u == 1) { 12285 unallocated_encoding(s); 12286 return; 12287 } 12288 /* fall through */ 12289 case 0x8: /* CMGT, CMGE */ 12290 case 0x9: /* CMEQ, CMLE */ 12291 case 0xb: /* ABS, NEG */ 12292 if (size == 3 && !is_q) { 12293 unallocated_encoding(s); 12294 return; 12295 } 12296 break; 12297 case 0x3: /* SUQADD, USQADD */ 12298 if (size == 3 && !is_q) { 12299 unallocated_encoding(s); 12300 return; 12301 } 12302 if (!fp_access_check(s)) { 12303 return; 12304 } 12305 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12306 return; 12307 case 0x7: /* SQABS, SQNEG */ 12308 if (size == 3 && !is_q) { 12309 unallocated_encoding(s); 12310 return; 12311 } 12312 break; 12313 case 0xc ... 0xf: 12314 case 0x16 ... 0x1f: 12315 { 12316 /* Floating point: U, size[1] and opcode indicate operation; 12317 * size[0] indicates single or double precision. 12318 */ 12319 int is_double = extract32(size, 0, 1); 12320 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12321 size = is_double ? 3 : 2; 12322 switch (opcode) { 12323 case 0x2f: /* FABS */ 12324 case 0x6f: /* FNEG */ 12325 if (size == 3 && !is_q) { 12326 unallocated_encoding(s); 12327 return; 12328 } 12329 break; 12330 case 0x1d: /* SCVTF */ 12331 case 0x5d: /* UCVTF */ 12332 { 12333 bool is_signed = (opcode == 0x1d) ? true : false; 12334 int elements = is_double ? 2 : is_q ? 4 : 2; 12335 if (is_double && !is_q) { 12336 unallocated_encoding(s); 12337 return; 12338 } 12339 if (!fp_access_check(s)) { 12340 return; 12341 } 12342 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12343 return; 12344 } 12345 case 0x2c: /* FCMGT (zero) */ 12346 case 0x2d: /* FCMEQ (zero) */ 12347 case 0x2e: /* FCMLT (zero) */ 12348 case 0x6c: /* FCMGE (zero) */ 12349 case 0x6d: /* FCMLE (zero) */ 12350 if (size == 3 && !is_q) { 12351 unallocated_encoding(s); 12352 return; 12353 } 12354 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12355 return; 12356 case 0x7f: /* FSQRT */ 12357 if (size == 3 && !is_q) { 12358 unallocated_encoding(s); 12359 return; 12360 } 12361 break; 12362 case 0x1a: /* FCVTNS */ 12363 case 0x1b: /* FCVTMS */ 12364 case 0x3a: /* FCVTPS */ 12365 case 0x3b: /* FCVTZS */ 12366 case 0x5a: /* FCVTNU */ 12367 case 0x5b: /* FCVTMU */ 12368 case 0x7a: /* FCVTPU */ 12369 case 0x7b: /* FCVTZU */ 12370 need_fpstatus = true; 12371 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12372 if (size == 3 && !is_q) { 12373 unallocated_encoding(s); 12374 return; 12375 } 12376 break; 12377 case 0x5c: /* FCVTAU */ 12378 case 0x1c: /* FCVTAS */ 12379 need_fpstatus = true; 12380 rmode = FPROUNDING_TIEAWAY; 12381 if (size == 3 && !is_q) { 12382 unallocated_encoding(s); 12383 return; 12384 } 12385 break; 12386 case 0x3c: /* URECPE */ 12387 if (size == 3) { 12388 unallocated_encoding(s); 12389 return; 12390 } 12391 /* fall through */ 12392 case 0x3d: /* FRECPE */ 12393 case 0x7d: /* FRSQRTE */ 12394 if (size == 3 && !is_q) { 12395 unallocated_encoding(s); 12396 return; 12397 } 12398 if (!fp_access_check(s)) { 12399 return; 12400 } 12401 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12402 return; 12403 case 0x56: /* FCVTXN, FCVTXN2 */ 12404 if (size == 2) { 12405 unallocated_encoding(s); 12406 return; 12407 } 12408 /* fall through */ 12409 case 0x16: /* FCVTN, FCVTN2 */ 12410 /* handle_2misc_narrow does a 2*size -> size operation, but these 12411 * instructions encode the source size rather than dest size. 12412 */ 12413 if (!fp_access_check(s)) { 12414 return; 12415 } 12416 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12417 return; 12418 case 0x36: /* BFCVTN, BFCVTN2 */ 12419 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12420 unallocated_encoding(s); 12421 return; 12422 } 12423 if (!fp_access_check(s)) { 12424 return; 12425 } 12426 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12427 return; 12428 case 0x17: /* FCVTL, FCVTL2 */ 12429 if (!fp_access_check(s)) { 12430 return; 12431 } 12432 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12433 return; 12434 case 0x18: /* FRINTN */ 12435 case 0x19: /* FRINTM */ 12436 case 0x38: /* FRINTP */ 12437 case 0x39: /* FRINTZ */ 12438 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12439 /* fall through */ 12440 case 0x59: /* FRINTX */ 12441 case 0x79: /* FRINTI */ 12442 need_fpstatus = true; 12443 if (size == 3 && !is_q) { 12444 unallocated_encoding(s); 12445 return; 12446 } 12447 break; 12448 case 0x58: /* FRINTA */ 12449 rmode = FPROUNDING_TIEAWAY; 12450 need_fpstatus = true; 12451 if (size == 3 && !is_q) { 12452 unallocated_encoding(s); 12453 return; 12454 } 12455 break; 12456 case 0x7c: /* URSQRTE */ 12457 if (size == 3) { 12458 unallocated_encoding(s); 12459 return; 12460 } 12461 break; 12462 case 0x1e: /* FRINT32Z */ 12463 case 0x1f: /* FRINT64Z */ 12464 rmode = FPROUNDING_ZERO; 12465 /* fall through */ 12466 case 0x5e: /* FRINT32X */ 12467 case 0x5f: /* FRINT64X */ 12468 need_fpstatus = true; 12469 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12470 unallocated_encoding(s); 12471 return; 12472 } 12473 break; 12474 default: 12475 unallocated_encoding(s); 12476 return; 12477 } 12478 break; 12479 } 12480 default: 12481 unallocated_encoding(s); 12482 return; 12483 } 12484 12485 if (!fp_access_check(s)) { 12486 return; 12487 } 12488 12489 if (need_fpstatus || rmode >= 0) { 12490 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12491 } else { 12492 tcg_fpstatus = NULL; 12493 } 12494 if (rmode >= 0) { 12495 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12496 } else { 12497 tcg_rmode = NULL; 12498 } 12499 12500 switch (opcode) { 12501 case 0x5: 12502 if (u && size == 0) { /* NOT */ 12503 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12504 return; 12505 } 12506 break; 12507 case 0x8: /* CMGT, CMGE */ 12508 if (u) { 12509 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12510 } else { 12511 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12512 } 12513 return; 12514 case 0x9: /* CMEQ, CMLE */ 12515 if (u) { 12516 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12517 } else { 12518 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12519 } 12520 return; 12521 case 0xa: /* CMLT */ 12522 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12523 return; 12524 case 0xb: 12525 if (u) { /* ABS, NEG */ 12526 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12527 } else { 12528 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12529 } 12530 return; 12531 } 12532 12533 if (size == 3) { 12534 /* All 64-bit element operations can be shared with scalar 2misc */ 12535 int pass; 12536 12537 /* Coverity claims (size == 3 && !is_q) has been eliminated 12538 * from all paths leading to here. 12539 */ 12540 tcg_debug_assert(is_q); 12541 for (pass = 0; pass < 2; pass++) { 12542 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12543 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12544 12545 read_vec_element(s, tcg_op, rn, pass, MO_64); 12546 12547 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12548 tcg_rmode, tcg_fpstatus); 12549 12550 write_vec_element(s, tcg_res, rd, pass, MO_64); 12551 } 12552 } else { 12553 int pass; 12554 12555 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12556 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12557 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12558 12559 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12560 12561 if (size == 2) { 12562 /* Special cases for 32 bit elements */ 12563 switch (opcode) { 12564 case 0x4: /* CLS */ 12565 if (u) { 12566 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12567 } else { 12568 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12569 } 12570 break; 12571 case 0x7: /* SQABS, SQNEG */ 12572 if (u) { 12573 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12574 } else { 12575 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12576 } 12577 break; 12578 case 0x2f: /* FABS */ 12579 gen_vfp_abss(tcg_res, tcg_op); 12580 break; 12581 case 0x6f: /* FNEG */ 12582 gen_vfp_negs(tcg_res, tcg_op); 12583 break; 12584 case 0x7f: /* FSQRT */ 12585 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12586 break; 12587 case 0x1a: /* FCVTNS */ 12588 case 0x1b: /* FCVTMS */ 12589 case 0x1c: /* FCVTAS */ 12590 case 0x3a: /* FCVTPS */ 12591 case 0x3b: /* FCVTZS */ 12592 gen_helper_vfp_tosls(tcg_res, tcg_op, 12593 tcg_constant_i32(0), tcg_fpstatus); 12594 break; 12595 case 0x5a: /* FCVTNU */ 12596 case 0x5b: /* FCVTMU */ 12597 case 0x5c: /* FCVTAU */ 12598 case 0x7a: /* FCVTPU */ 12599 case 0x7b: /* FCVTZU */ 12600 gen_helper_vfp_touls(tcg_res, tcg_op, 12601 tcg_constant_i32(0), tcg_fpstatus); 12602 break; 12603 case 0x18: /* FRINTN */ 12604 case 0x19: /* FRINTM */ 12605 case 0x38: /* FRINTP */ 12606 case 0x39: /* FRINTZ */ 12607 case 0x58: /* FRINTA */ 12608 case 0x79: /* FRINTI */ 12609 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12610 break; 12611 case 0x59: /* FRINTX */ 12612 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12613 break; 12614 case 0x7c: /* URSQRTE */ 12615 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12616 break; 12617 case 0x1e: /* FRINT32Z */ 12618 case 0x5e: /* FRINT32X */ 12619 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12620 break; 12621 case 0x1f: /* FRINT64Z */ 12622 case 0x5f: /* FRINT64X */ 12623 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12624 break; 12625 default: 12626 g_assert_not_reached(); 12627 } 12628 } else { 12629 /* Use helpers for 8 and 16 bit elements */ 12630 switch (opcode) { 12631 case 0x5: /* CNT, RBIT */ 12632 /* For these two insns size is part of the opcode specifier 12633 * (handled earlier); they always operate on byte elements. 12634 */ 12635 if (u) { 12636 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12637 } else { 12638 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12639 } 12640 break; 12641 case 0x7: /* SQABS, SQNEG */ 12642 { 12643 NeonGenOneOpEnvFn *genfn; 12644 static NeonGenOneOpEnvFn * const fns[2][2] = { 12645 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12646 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12647 }; 12648 genfn = fns[size][u]; 12649 genfn(tcg_res, tcg_env, tcg_op); 12650 break; 12651 } 12652 case 0x4: /* CLS, CLZ */ 12653 if (u) { 12654 if (size == 0) { 12655 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12656 } else { 12657 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12658 } 12659 } else { 12660 if (size == 0) { 12661 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12662 } else { 12663 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12664 } 12665 } 12666 break; 12667 default: 12668 g_assert_not_reached(); 12669 } 12670 } 12671 12672 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12673 } 12674 } 12675 clear_vec_high(s, is_q, rd); 12676 12677 if (tcg_rmode) { 12678 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12679 } 12680 } 12681 12682 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12683 * 12684 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12685 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12686 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12687 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12688 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12689 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12690 * 12691 * This actually covers two groups where scalar access is governed by 12692 * bit 28. A bunch of the instructions (float to integral) only exist 12693 * in the vector form and are un-allocated for the scalar decode. Also 12694 * in the scalar decode Q is always 1. 12695 */ 12696 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12697 { 12698 int fpop, opcode, a, u; 12699 int rn, rd; 12700 bool is_q; 12701 bool is_scalar; 12702 bool only_in_vector = false; 12703 12704 int pass; 12705 TCGv_i32 tcg_rmode = NULL; 12706 TCGv_ptr tcg_fpstatus = NULL; 12707 bool need_fpst = true; 12708 int rmode = -1; 12709 12710 if (!dc_isar_feature(aa64_fp16, s)) { 12711 unallocated_encoding(s); 12712 return; 12713 } 12714 12715 rd = extract32(insn, 0, 5); 12716 rn = extract32(insn, 5, 5); 12717 12718 a = extract32(insn, 23, 1); 12719 u = extract32(insn, 29, 1); 12720 is_scalar = extract32(insn, 28, 1); 12721 is_q = extract32(insn, 30, 1); 12722 12723 opcode = extract32(insn, 12, 5); 12724 fpop = deposit32(opcode, 5, 1, a); 12725 fpop = deposit32(fpop, 6, 1, u); 12726 12727 switch (fpop) { 12728 case 0x1d: /* SCVTF */ 12729 case 0x5d: /* UCVTF */ 12730 { 12731 int elements; 12732 12733 if (is_scalar) { 12734 elements = 1; 12735 } else { 12736 elements = (is_q ? 8 : 4); 12737 } 12738 12739 if (!fp_access_check(s)) { 12740 return; 12741 } 12742 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12743 return; 12744 } 12745 break; 12746 case 0x2c: /* FCMGT (zero) */ 12747 case 0x2d: /* FCMEQ (zero) */ 12748 case 0x2e: /* FCMLT (zero) */ 12749 case 0x6c: /* FCMGE (zero) */ 12750 case 0x6d: /* FCMLE (zero) */ 12751 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12752 return; 12753 case 0x3d: /* FRECPE */ 12754 case 0x3f: /* FRECPX */ 12755 break; 12756 case 0x18: /* FRINTN */ 12757 only_in_vector = true; 12758 rmode = FPROUNDING_TIEEVEN; 12759 break; 12760 case 0x19: /* FRINTM */ 12761 only_in_vector = true; 12762 rmode = FPROUNDING_NEGINF; 12763 break; 12764 case 0x38: /* FRINTP */ 12765 only_in_vector = true; 12766 rmode = FPROUNDING_POSINF; 12767 break; 12768 case 0x39: /* FRINTZ */ 12769 only_in_vector = true; 12770 rmode = FPROUNDING_ZERO; 12771 break; 12772 case 0x58: /* FRINTA */ 12773 only_in_vector = true; 12774 rmode = FPROUNDING_TIEAWAY; 12775 break; 12776 case 0x59: /* FRINTX */ 12777 case 0x79: /* FRINTI */ 12778 only_in_vector = true; 12779 /* current rounding mode */ 12780 break; 12781 case 0x1a: /* FCVTNS */ 12782 rmode = FPROUNDING_TIEEVEN; 12783 break; 12784 case 0x1b: /* FCVTMS */ 12785 rmode = FPROUNDING_NEGINF; 12786 break; 12787 case 0x1c: /* FCVTAS */ 12788 rmode = FPROUNDING_TIEAWAY; 12789 break; 12790 case 0x3a: /* FCVTPS */ 12791 rmode = FPROUNDING_POSINF; 12792 break; 12793 case 0x3b: /* FCVTZS */ 12794 rmode = FPROUNDING_ZERO; 12795 break; 12796 case 0x5a: /* FCVTNU */ 12797 rmode = FPROUNDING_TIEEVEN; 12798 break; 12799 case 0x5b: /* FCVTMU */ 12800 rmode = FPROUNDING_NEGINF; 12801 break; 12802 case 0x5c: /* FCVTAU */ 12803 rmode = FPROUNDING_TIEAWAY; 12804 break; 12805 case 0x7a: /* FCVTPU */ 12806 rmode = FPROUNDING_POSINF; 12807 break; 12808 case 0x7b: /* FCVTZU */ 12809 rmode = FPROUNDING_ZERO; 12810 break; 12811 case 0x2f: /* FABS */ 12812 case 0x6f: /* FNEG */ 12813 need_fpst = false; 12814 break; 12815 case 0x7d: /* FRSQRTE */ 12816 case 0x7f: /* FSQRT (vector) */ 12817 break; 12818 default: 12819 unallocated_encoding(s); 12820 return; 12821 } 12822 12823 12824 /* Check additional constraints for the scalar encoding */ 12825 if (is_scalar) { 12826 if (!is_q) { 12827 unallocated_encoding(s); 12828 return; 12829 } 12830 /* FRINTxx is only in the vector form */ 12831 if (only_in_vector) { 12832 unallocated_encoding(s); 12833 return; 12834 } 12835 } 12836 12837 if (!fp_access_check(s)) { 12838 return; 12839 } 12840 12841 if (rmode >= 0 || need_fpst) { 12842 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12843 } 12844 12845 if (rmode >= 0) { 12846 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12847 } 12848 12849 if (is_scalar) { 12850 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12851 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12852 12853 switch (fpop) { 12854 case 0x1a: /* FCVTNS */ 12855 case 0x1b: /* FCVTMS */ 12856 case 0x1c: /* FCVTAS */ 12857 case 0x3a: /* FCVTPS */ 12858 case 0x3b: /* FCVTZS */ 12859 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12860 break; 12861 case 0x3d: /* FRECPE */ 12862 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12863 break; 12864 case 0x3f: /* FRECPX */ 12865 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12866 break; 12867 case 0x5a: /* FCVTNU */ 12868 case 0x5b: /* FCVTMU */ 12869 case 0x5c: /* FCVTAU */ 12870 case 0x7a: /* FCVTPU */ 12871 case 0x7b: /* FCVTZU */ 12872 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12873 break; 12874 case 0x6f: /* FNEG */ 12875 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12876 break; 12877 case 0x7d: /* FRSQRTE */ 12878 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12879 break; 12880 default: 12881 g_assert_not_reached(); 12882 } 12883 12884 /* limit any sign extension going on */ 12885 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12886 write_fp_sreg(s, rd, tcg_res); 12887 } else { 12888 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12889 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12890 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12891 12892 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12893 12894 switch (fpop) { 12895 case 0x1a: /* FCVTNS */ 12896 case 0x1b: /* FCVTMS */ 12897 case 0x1c: /* FCVTAS */ 12898 case 0x3a: /* FCVTPS */ 12899 case 0x3b: /* FCVTZS */ 12900 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12901 break; 12902 case 0x3d: /* FRECPE */ 12903 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12904 break; 12905 case 0x5a: /* FCVTNU */ 12906 case 0x5b: /* FCVTMU */ 12907 case 0x5c: /* FCVTAU */ 12908 case 0x7a: /* FCVTPU */ 12909 case 0x7b: /* FCVTZU */ 12910 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12911 break; 12912 case 0x18: /* FRINTN */ 12913 case 0x19: /* FRINTM */ 12914 case 0x38: /* FRINTP */ 12915 case 0x39: /* FRINTZ */ 12916 case 0x58: /* FRINTA */ 12917 case 0x79: /* FRINTI */ 12918 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12919 break; 12920 case 0x59: /* FRINTX */ 12921 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12922 break; 12923 case 0x2f: /* FABS */ 12924 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12925 break; 12926 case 0x6f: /* FNEG */ 12927 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12928 break; 12929 case 0x7d: /* FRSQRTE */ 12930 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12931 break; 12932 case 0x7f: /* FSQRT */ 12933 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12934 break; 12935 default: 12936 g_assert_not_reached(); 12937 } 12938 12939 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12940 } 12941 12942 clear_vec_high(s, is_q, rd); 12943 } 12944 12945 if (tcg_rmode) { 12946 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12947 } 12948 } 12949 12950 /* AdvSIMD scalar x indexed element 12951 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12952 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12953 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12954 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12955 * AdvSIMD vector x indexed element 12956 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12957 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12958 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12959 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12960 */ 12961 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12962 { 12963 /* This encoding has two kinds of instruction: 12964 * normal, where we perform elt x idxelt => elt for each 12965 * element in the vector 12966 * long, where we perform elt x idxelt and generate a result of 12967 * double the width of the input element 12968 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12969 */ 12970 bool is_scalar = extract32(insn, 28, 1); 12971 bool is_q = extract32(insn, 30, 1); 12972 bool u = extract32(insn, 29, 1); 12973 int size = extract32(insn, 22, 2); 12974 int l = extract32(insn, 21, 1); 12975 int m = extract32(insn, 20, 1); 12976 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12977 int rm = extract32(insn, 16, 4); 12978 int opcode = extract32(insn, 12, 4); 12979 int h = extract32(insn, 11, 1); 12980 int rn = extract32(insn, 5, 5); 12981 int rd = extract32(insn, 0, 5); 12982 bool is_long = false; 12983 int is_fp = 0; 12984 bool is_fp16 = false; 12985 int index; 12986 TCGv_ptr fpst; 12987 12988 switch (16 * u + opcode) { 12989 case 0x08: /* MUL */ 12990 case 0x10: /* MLA */ 12991 case 0x14: /* MLS */ 12992 if (is_scalar) { 12993 unallocated_encoding(s); 12994 return; 12995 } 12996 break; 12997 case 0x02: /* SMLAL, SMLAL2 */ 12998 case 0x12: /* UMLAL, UMLAL2 */ 12999 case 0x06: /* SMLSL, SMLSL2 */ 13000 case 0x16: /* UMLSL, UMLSL2 */ 13001 case 0x0a: /* SMULL, SMULL2 */ 13002 case 0x1a: /* UMULL, UMULL2 */ 13003 if (is_scalar) { 13004 unallocated_encoding(s); 13005 return; 13006 } 13007 is_long = true; 13008 break; 13009 case 0x03: /* SQDMLAL, SQDMLAL2 */ 13010 case 0x07: /* SQDMLSL, SQDMLSL2 */ 13011 case 0x0b: /* SQDMULL, SQDMULL2 */ 13012 is_long = true; 13013 break; 13014 case 0x0c: /* SQDMULH */ 13015 case 0x0d: /* SQRDMULH */ 13016 break; 13017 case 0x1d: /* SQRDMLAH */ 13018 case 0x1f: /* SQRDMLSH */ 13019 if (!dc_isar_feature(aa64_rdm, s)) { 13020 unallocated_encoding(s); 13021 return; 13022 } 13023 break; 13024 case 0x0e: /* SDOT */ 13025 case 0x1e: /* UDOT */ 13026 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 13027 unallocated_encoding(s); 13028 return; 13029 } 13030 break; 13031 case 0x0f: 13032 switch (size) { 13033 case 0: /* SUDOT */ 13034 case 2: /* USDOT */ 13035 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 13036 unallocated_encoding(s); 13037 return; 13038 } 13039 size = MO_32; 13040 break; 13041 case 1: /* BFDOT */ 13042 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13043 unallocated_encoding(s); 13044 return; 13045 } 13046 size = MO_32; 13047 break; 13048 case 3: /* BFMLAL{B,T} */ 13049 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13050 unallocated_encoding(s); 13051 return; 13052 } 13053 /* can't set is_fp without other incorrect size checks */ 13054 size = MO_16; 13055 break; 13056 default: 13057 unallocated_encoding(s); 13058 return; 13059 } 13060 break; 13061 case 0x11: /* FCMLA #0 */ 13062 case 0x13: /* FCMLA #90 */ 13063 case 0x15: /* FCMLA #180 */ 13064 case 0x17: /* FCMLA #270 */ 13065 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13066 unallocated_encoding(s); 13067 return; 13068 } 13069 is_fp = 2; 13070 break; 13071 case 0x00: /* FMLAL */ 13072 case 0x04: /* FMLSL */ 13073 case 0x18: /* FMLAL2 */ 13074 case 0x1c: /* FMLSL2 */ 13075 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13076 unallocated_encoding(s); 13077 return; 13078 } 13079 size = MO_16; 13080 /* is_fp, but we pass tcg_env not fp_status. */ 13081 break; 13082 default: 13083 case 0x01: /* FMLA */ 13084 case 0x05: /* FMLS */ 13085 case 0x09: /* FMUL */ 13086 case 0x19: /* FMULX */ 13087 unallocated_encoding(s); 13088 return; 13089 } 13090 13091 switch (is_fp) { 13092 case 1: /* normal fp */ 13093 unallocated_encoding(s); /* in decodetree */ 13094 return; 13095 13096 case 2: /* complex fp */ 13097 /* Each indexable element is a complex pair. */ 13098 size += 1; 13099 switch (size) { 13100 case MO_32: 13101 if (h && !is_q) { 13102 unallocated_encoding(s); 13103 return; 13104 } 13105 is_fp16 = true; 13106 break; 13107 case MO_64: 13108 break; 13109 default: 13110 unallocated_encoding(s); 13111 return; 13112 } 13113 break; 13114 13115 default: /* integer */ 13116 switch (size) { 13117 case MO_8: 13118 case MO_64: 13119 unallocated_encoding(s); 13120 return; 13121 } 13122 break; 13123 } 13124 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13125 unallocated_encoding(s); 13126 return; 13127 } 13128 13129 /* Given MemOp size, adjust register and indexing. */ 13130 switch (size) { 13131 case MO_16: 13132 index = h << 2 | l << 1 | m; 13133 break; 13134 case MO_32: 13135 index = h << 1 | l; 13136 rm |= m << 4; 13137 break; 13138 case MO_64: 13139 if (l || !is_q) { 13140 unallocated_encoding(s); 13141 return; 13142 } 13143 index = h; 13144 rm |= m << 4; 13145 break; 13146 default: 13147 g_assert_not_reached(); 13148 } 13149 13150 if (!fp_access_check(s)) { 13151 return; 13152 } 13153 13154 if (is_fp) { 13155 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13156 } else { 13157 fpst = NULL; 13158 } 13159 13160 switch (16 * u + opcode) { 13161 case 0x0e: /* SDOT */ 13162 case 0x1e: /* UDOT */ 13163 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13164 u ? gen_helper_gvec_udot_idx_b 13165 : gen_helper_gvec_sdot_idx_b); 13166 return; 13167 case 0x0f: 13168 switch (extract32(insn, 22, 2)) { 13169 case 0: /* SUDOT */ 13170 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13171 gen_helper_gvec_sudot_idx_b); 13172 return; 13173 case 1: /* BFDOT */ 13174 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13175 gen_helper_gvec_bfdot_idx); 13176 return; 13177 case 2: /* USDOT */ 13178 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13179 gen_helper_gvec_usdot_idx_b); 13180 return; 13181 case 3: /* BFMLAL{B,T} */ 13182 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13183 gen_helper_gvec_bfmlal_idx); 13184 return; 13185 } 13186 g_assert_not_reached(); 13187 case 0x11: /* FCMLA #0 */ 13188 case 0x13: /* FCMLA #90 */ 13189 case 0x15: /* FCMLA #180 */ 13190 case 0x17: /* FCMLA #270 */ 13191 { 13192 int rot = extract32(insn, 13, 2); 13193 int data = (index << 2) | rot; 13194 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13195 vec_full_reg_offset(s, rn), 13196 vec_full_reg_offset(s, rm), 13197 vec_full_reg_offset(s, rd), fpst, 13198 is_q ? 16 : 8, vec_full_reg_size(s), data, 13199 size == MO_64 13200 ? gen_helper_gvec_fcmlas_idx 13201 : gen_helper_gvec_fcmlah_idx); 13202 } 13203 return; 13204 13205 case 0x00: /* FMLAL */ 13206 case 0x04: /* FMLSL */ 13207 case 0x18: /* FMLAL2 */ 13208 case 0x1c: /* FMLSL2 */ 13209 { 13210 int is_s = extract32(opcode, 2, 1); 13211 int is_2 = u; 13212 int data = (index << 2) | (is_2 << 1) | is_s; 13213 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13214 vec_full_reg_offset(s, rn), 13215 vec_full_reg_offset(s, rm), tcg_env, 13216 is_q ? 16 : 8, vec_full_reg_size(s), 13217 data, gen_helper_gvec_fmlal_idx_a64); 13218 } 13219 return; 13220 13221 case 0x08: /* MUL */ 13222 if (!is_long && !is_scalar) { 13223 static gen_helper_gvec_3 * const fns[3] = { 13224 gen_helper_gvec_mul_idx_h, 13225 gen_helper_gvec_mul_idx_s, 13226 gen_helper_gvec_mul_idx_d, 13227 }; 13228 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13229 vec_full_reg_offset(s, rn), 13230 vec_full_reg_offset(s, rm), 13231 is_q ? 16 : 8, vec_full_reg_size(s), 13232 index, fns[size - 1]); 13233 return; 13234 } 13235 break; 13236 13237 case 0x10: /* MLA */ 13238 if (!is_long && !is_scalar) { 13239 static gen_helper_gvec_4 * const fns[3] = { 13240 gen_helper_gvec_mla_idx_h, 13241 gen_helper_gvec_mla_idx_s, 13242 gen_helper_gvec_mla_idx_d, 13243 }; 13244 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13245 vec_full_reg_offset(s, rn), 13246 vec_full_reg_offset(s, rm), 13247 vec_full_reg_offset(s, rd), 13248 is_q ? 16 : 8, vec_full_reg_size(s), 13249 index, fns[size - 1]); 13250 return; 13251 } 13252 break; 13253 13254 case 0x14: /* MLS */ 13255 if (!is_long && !is_scalar) { 13256 static gen_helper_gvec_4 * const fns[3] = { 13257 gen_helper_gvec_mls_idx_h, 13258 gen_helper_gvec_mls_idx_s, 13259 gen_helper_gvec_mls_idx_d, 13260 }; 13261 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13262 vec_full_reg_offset(s, rn), 13263 vec_full_reg_offset(s, rm), 13264 vec_full_reg_offset(s, rd), 13265 is_q ? 16 : 8, vec_full_reg_size(s), 13266 index, fns[size - 1]); 13267 return; 13268 } 13269 break; 13270 } 13271 13272 if (size == 3) { 13273 g_assert_not_reached(); 13274 } else if (!is_long) { 13275 /* 32 bit floating point, or 16 or 32 bit integer. 13276 * For the 16 bit scalar case we use the usual Neon helpers and 13277 * rely on the fact that 0 op 0 == 0 with no side effects. 13278 */ 13279 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13280 int pass, maxpasses; 13281 13282 if (is_scalar) { 13283 maxpasses = 1; 13284 } else { 13285 maxpasses = is_q ? 4 : 2; 13286 } 13287 13288 read_vec_element_i32(s, tcg_idx, rm, index, size); 13289 13290 if (size == 1 && !is_scalar) { 13291 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13292 * the index into both halves of the 32 bit tcg_idx and then use 13293 * the usual Neon helpers. 13294 */ 13295 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13296 } 13297 13298 for (pass = 0; pass < maxpasses; pass++) { 13299 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13300 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13301 13302 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13303 13304 switch (16 * u + opcode) { 13305 case 0x08: /* MUL */ 13306 case 0x10: /* MLA */ 13307 case 0x14: /* MLS */ 13308 { 13309 static NeonGenTwoOpFn * const fns[2][2] = { 13310 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13311 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13312 }; 13313 NeonGenTwoOpFn *genfn; 13314 bool is_sub = opcode == 0x4; 13315 13316 if (size == 1) { 13317 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13318 } else { 13319 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13320 } 13321 if (opcode == 0x8) { 13322 break; 13323 } 13324 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13325 genfn = fns[size - 1][is_sub]; 13326 genfn(tcg_res, tcg_op, tcg_res); 13327 break; 13328 } 13329 case 0x0c: /* SQDMULH */ 13330 if (size == 1) { 13331 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13332 tcg_op, tcg_idx); 13333 } else { 13334 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13335 tcg_op, tcg_idx); 13336 } 13337 break; 13338 case 0x0d: /* SQRDMULH */ 13339 if (size == 1) { 13340 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13341 tcg_op, tcg_idx); 13342 } else { 13343 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13344 tcg_op, tcg_idx); 13345 } 13346 break; 13347 case 0x1d: /* SQRDMLAH */ 13348 read_vec_element_i32(s, tcg_res, rd, pass, 13349 is_scalar ? size : MO_32); 13350 if (size == 1) { 13351 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13352 tcg_op, tcg_idx, tcg_res); 13353 } else { 13354 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13355 tcg_op, tcg_idx, tcg_res); 13356 } 13357 break; 13358 case 0x1f: /* SQRDMLSH */ 13359 read_vec_element_i32(s, tcg_res, rd, pass, 13360 is_scalar ? size : MO_32); 13361 if (size == 1) { 13362 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13363 tcg_op, tcg_idx, tcg_res); 13364 } else { 13365 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13366 tcg_op, tcg_idx, tcg_res); 13367 } 13368 break; 13369 default: 13370 case 0x01: /* FMLA */ 13371 case 0x05: /* FMLS */ 13372 case 0x09: /* FMUL */ 13373 case 0x19: /* FMULX */ 13374 g_assert_not_reached(); 13375 } 13376 13377 if (is_scalar) { 13378 write_fp_sreg(s, rd, tcg_res); 13379 } else { 13380 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13381 } 13382 } 13383 13384 clear_vec_high(s, is_q, rd); 13385 } else { 13386 /* long ops: 16x16->32 or 32x32->64 */ 13387 TCGv_i64 tcg_res[2]; 13388 int pass; 13389 bool satop = extract32(opcode, 0, 1); 13390 MemOp memop = MO_32; 13391 13392 if (satop || !u) { 13393 memop |= MO_SIGN; 13394 } 13395 13396 if (size == 2) { 13397 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13398 13399 read_vec_element(s, tcg_idx, rm, index, memop); 13400 13401 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13402 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13403 TCGv_i64 tcg_passres; 13404 int passelt; 13405 13406 if (is_scalar) { 13407 passelt = 0; 13408 } else { 13409 passelt = pass + (is_q * 2); 13410 } 13411 13412 read_vec_element(s, tcg_op, rn, passelt, memop); 13413 13414 tcg_res[pass] = tcg_temp_new_i64(); 13415 13416 if (opcode == 0xa || opcode == 0xb) { 13417 /* Non-accumulating ops */ 13418 tcg_passres = tcg_res[pass]; 13419 } else { 13420 tcg_passres = tcg_temp_new_i64(); 13421 } 13422 13423 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13424 13425 if (satop) { 13426 /* saturating, doubling */ 13427 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13428 tcg_passres, tcg_passres); 13429 } 13430 13431 if (opcode == 0xa || opcode == 0xb) { 13432 continue; 13433 } 13434 13435 /* Accumulating op: handle accumulate step */ 13436 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13437 13438 switch (opcode) { 13439 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13440 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13441 break; 13442 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13443 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13444 break; 13445 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13446 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13447 /* fall through */ 13448 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13449 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13450 tcg_res[pass], 13451 tcg_passres); 13452 break; 13453 default: 13454 g_assert_not_reached(); 13455 } 13456 } 13457 13458 clear_vec_high(s, !is_scalar, rd); 13459 } else { 13460 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13461 13462 assert(size == 1); 13463 read_vec_element_i32(s, tcg_idx, rm, index, size); 13464 13465 if (!is_scalar) { 13466 /* The simplest way to handle the 16x16 indexed ops is to 13467 * duplicate the index into both halves of the 32 bit tcg_idx 13468 * and then use the usual Neon helpers. 13469 */ 13470 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13471 } 13472 13473 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13474 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13475 TCGv_i64 tcg_passres; 13476 13477 if (is_scalar) { 13478 read_vec_element_i32(s, tcg_op, rn, pass, size); 13479 } else { 13480 read_vec_element_i32(s, tcg_op, rn, 13481 pass + (is_q * 2), MO_32); 13482 } 13483 13484 tcg_res[pass] = tcg_temp_new_i64(); 13485 13486 if (opcode == 0xa || opcode == 0xb) { 13487 /* Non-accumulating ops */ 13488 tcg_passres = tcg_res[pass]; 13489 } else { 13490 tcg_passres = tcg_temp_new_i64(); 13491 } 13492 13493 if (memop & MO_SIGN) { 13494 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13495 } else { 13496 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13497 } 13498 if (satop) { 13499 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13500 tcg_passres, tcg_passres); 13501 } 13502 13503 if (opcode == 0xa || opcode == 0xb) { 13504 continue; 13505 } 13506 13507 /* Accumulating op: handle accumulate step */ 13508 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13509 13510 switch (opcode) { 13511 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13512 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13513 tcg_passres); 13514 break; 13515 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13516 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13517 tcg_passres); 13518 break; 13519 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13520 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13521 /* fall through */ 13522 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13523 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13524 tcg_res[pass], 13525 tcg_passres); 13526 break; 13527 default: 13528 g_assert_not_reached(); 13529 } 13530 } 13531 13532 if (is_scalar) { 13533 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13534 } 13535 } 13536 13537 if (is_scalar) { 13538 tcg_res[1] = tcg_constant_i64(0); 13539 } 13540 13541 for (pass = 0; pass < 2; pass++) { 13542 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13543 } 13544 } 13545 } 13546 13547 /* C3.6 Data processing - SIMD, inc Crypto 13548 * 13549 * As the decode gets a little complex we are using a table based 13550 * approach for this part of the decode. 13551 */ 13552 static const AArch64DecodeTable data_proc_simd[] = { 13553 /* pattern , mask , fn */ 13554 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13555 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13556 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13557 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13558 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13559 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13560 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13561 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13562 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13563 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13564 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13565 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13566 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13567 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13568 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13569 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13570 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13571 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13572 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13573 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13574 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13575 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13576 { 0x00000000, 0x00000000, NULL } 13577 }; 13578 13579 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13580 { 13581 /* Note that this is called with all non-FP cases from 13582 * table C3-6 so it must UNDEF for entries not specifically 13583 * allocated to instructions in that table. 13584 */ 13585 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13586 if (fn) { 13587 fn(s, insn); 13588 } else { 13589 unallocated_encoding(s); 13590 } 13591 } 13592 13593 /* C3.6 Data processing - SIMD and floating point */ 13594 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13595 { 13596 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13597 disas_data_proc_fp(s, insn); 13598 } else { 13599 /* SIMD, including crypto */ 13600 disas_data_proc_simd(s, insn); 13601 } 13602 } 13603 13604 static bool trans_OK(DisasContext *s, arg_OK *a) 13605 { 13606 return true; 13607 } 13608 13609 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13610 { 13611 s->is_nonstreaming = true; 13612 return true; 13613 } 13614 13615 /** 13616 * is_guarded_page: 13617 * @env: The cpu environment 13618 * @s: The DisasContext 13619 * 13620 * Return true if the page is guarded. 13621 */ 13622 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13623 { 13624 uint64_t addr = s->base.pc_first; 13625 #ifdef CONFIG_USER_ONLY 13626 return page_get_flags(addr) & PAGE_BTI; 13627 #else 13628 CPUTLBEntryFull *full; 13629 void *host; 13630 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13631 int flags; 13632 13633 /* 13634 * We test this immediately after reading an insn, which means 13635 * that the TLB entry must be present and valid, and thus this 13636 * access will never raise an exception. 13637 */ 13638 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13639 false, &host, &full, 0); 13640 assert(!(flags & TLB_INVALID_MASK)); 13641 13642 return full->extra.arm.guarded; 13643 #endif 13644 } 13645 13646 /** 13647 * btype_destination_ok: 13648 * @insn: The instruction at the branch destination 13649 * @bt: SCTLR_ELx.BT 13650 * @btype: PSTATE.BTYPE, and is non-zero 13651 * 13652 * On a guarded page, there are a limited number of insns 13653 * that may be present at the branch target: 13654 * - branch target identifiers, 13655 * - paciasp, pacibsp, 13656 * - BRK insn 13657 * - HLT insn 13658 * Anything else causes a Branch Target Exception. 13659 * 13660 * Return true if the branch is compatible, false to raise BTITRAP. 13661 */ 13662 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13663 { 13664 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13665 /* HINT space */ 13666 switch (extract32(insn, 5, 7)) { 13667 case 0b011001: /* PACIASP */ 13668 case 0b011011: /* PACIBSP */ 13669 /* 13670 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13671 * with btype == 3. Otherwise all btype are ok. 13672 */ 13673 return !bt || btype != 3; 13674 case 0b100000: /* BTI */ 13675 /* Not compatible with any btype. */ 13676 return false; 13677 case 0b100010: /* BTI c */ 13678 /* Not compatible with btype == 3 */ 13679 return btype != 3; 13680 case 0b100100: /* BTI j */ 13681 /* Not compatible with btype == 2 */ 13682 return btype != 2; 13683 case 0b100110: /* BTI jc */ 13684 /* Compatible with any btype. */ 13685 return true; 13686 } 13687 } else { 13688 switch (insn & 0xffe0001fu) { 13689 case 0xd4200000u: /* BRK */ 13690 case 0xd4400000u: /* HLT */ 13691 /* Give priority to the breakpoint exception. */ 13692 return true; 13693 } 13694 } 13695 return false; 13696 } 13697 13698 /* C3.1 A64 instruction index by encoding */ 13699 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13700 { 13701 switch (extract32(insn, 25, 4)) { 13702 case 0x5: 13703 case 0xd: /* Data processing - register */ 13704 disas_data_proc_reg(s, insn); 13705 break; 13706 case 0x7: 13707 case 0xf: /* Data processing - SIMD and floating point */ 13708 disas_data_proc_simd_fp(s, insn); 13709 break; 13710 default: 13711 unallocated_encoding(s); 13712 break; 13713 } 13714 } 13715 13716 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13717 CPUState *cpu) 13718 { 13719 DisasContext *dc = container_of(dcbase, DisasContext, base); 13720 CPUARMState *env = cpu_env(cpu); 13721 ARMCPU *arm_cpu = env_archcpu(env); 13722 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13723 int bound, core_mmu_idx; 13724 13725 dc->isar = &arm_cpu->isar; 13726 dc->condjmp = 0; 13727 dc->pc_save = dc->base.pc_first; 13728 dc->aarch64 = true; 13729 dc->thumb = false; 13730 dc->sctlr_b = 0; 13731 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13732 dc->condexec_mask = 0; 13733 dc->condexec_cond = 0; 13734 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13735 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13736 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13737 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13738 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13739 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13740 #if !defined(CONFIG_USER_ONLY) 13741 dc->user = (dc->current_el == 0); 13742 #endif 13743 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13744 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13745 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13746 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13747 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13748 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13749 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13750 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13751 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13752 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13753 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13754 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13755 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13756 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13757 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13758 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13759 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13760 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13761 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13762 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13763 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13764 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13765 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13766 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13767 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13768 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13769 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13770 dc->vec_len = 0; 13771 dc->vec_stride = 0; 13772 dc->cp_regs = arm_cpu->cp_regs; 13773 dc->features = env->features; 13774 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13775 dc->gm_blocksize = arm_cpu->gm_blocksize; 13776 13777 #ifdef CONFIG_USER_ONLY 13778 /* In sve_probe_page, we assume TBI is enabled. */ 13779 tcg_debug_assert(dc->tbid & 1); 13780 #endif 13781 13782 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13783 13784 /* Single step state. The code-generation logic here is: 13785 * SS_ACTIVE == 0: 13786 * generate code with no special handling for single-stepping (except 13787 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13788 * this happens anyway because those changes are all system register or 13789 * PSTATE writes). 13790 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13791 * emit code for one insn 13792 * emit code to clear PSTATE.SS 13793 * emit code to generate software step exception for completed step 13794 * end TB (as usual for having generated an exception) 13795 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13796 * emit code to generate a software step exception 13797 * end the TB 13798 */ 13799 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13800 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13801 dc->is_ldex = false; 13802 13803 /* Bound the number of insns to execute to those left on the page. */ 13804 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13805 13806 /* If architectural single step active, limit to 1. */ 13807 if (dc->ss_active) { 13808 bound = 1; 13809 } 13810 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13811 } 13812 13813 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13814 { 13815 } 13816 13817 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13818 { 13819 DisasContext *dc = container_of(dcbase, DisasContext, base); 13820 target_ulong pc_arg = dc->base.pc_next; 13821 13822 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13823 pc_arg &= ~TARGET_PAGE_MASK; 13824 } 13825 tcg_gen_insn_start(pc_arg, 0, 0); 13826 dc->insn_start_updated = false; 13827 } 13828 13829 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13830 { 13831 DisasContext *s = container_of(dcbase, DisasContext, base); 13832 CPUARMState *env = cpu_env(cpu); 13833 uint64_t pc = s->base.pc_next; 13834 uint32_t insn; 13835 13836 /* Singlestep exceptions have the highest priority. */ 13837 if (s->ss_active && !s->pstate_ss) { 13838 /* Singlestep state is Active-pending. 13839 * If we're in this state at the start of a TB then either 13840 * a) we just took an exception to an EL which is being debugged 13841 * and this is the first insn in the exception handler 13842 * b) debug exceptions were masked and we just unmasked them 13843 * without changing EL (eg by clearing PSTATE.D) 13844 * In either case we're going to take a swstep exception in the 13845 * "did not step an insn" case, and so the syndrome ISV and EX 13846 * bits should be zero. 13847 */ 13848 assert(s->base.num_insns == 1); 13849 gen_swstep_exception(s, 0, 0); 13850 s->base.is_jmp = DISAS_NORETURN; 13851 s->base.pc_next = pc + 4; 13852 return; 13853 } 13854 13855 if (pc & 3) { 13856 /* 13857 * PC alignment fault. This has priority over the instruction abort 13858 * that we would receive from a translation fault via arm_ldl_code. 13859 * This should only be possible after an indirect branch, at the 13860 * start of the TB. 13861 */ 13862 assert(s->base.num_insns == 1); 13863 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13864 s->base.is_jmp = DISAS_NORETURN; 13865 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13866 return; 13867 } 13868 13869 s->pc_curr = pc; 13870 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13871 s->insn = insn; 13872 s->base.pc_next = pc + 4; 13873 13874 s->fp_access_checked = false; 13875 s->sve_access_checked = false; 13876 13877 if (s->pstate_il) { 13878 /* 13879 * Illegal execution state. This has priority over BTI 13880 * exceptions, but comes after instruction abort exceptions. 13881 */ 13882 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13883 return; 13884 } 13885 13886 if (dc_isar_feature(aa64_bti, s)) { 13887 if (s->base.num_insns == 1) { 13888 /* 13889 * At the first insn of the TB, compute s->guarded_page. 13890 * We delayed computing this until successfully reading 13891 * the first insn of the TB, above. This (mostly) ensures 13892 * that the softmmu tlb entry has been populated, and the 13893 * page table GP bit is available. 13894 * 13895 * Note that we need to compute this even if btype == 0, 13896 * because this value is used for BR instructions later 13897 * where ENV is not available. 13898 */ 13899 s->guarded_page = is_guarded_page(env, s); 13900 13901 /* First insn can have btype set to non-zero. */ 13902 tcg_debug_assert(s->btype >= 0); 13903 13904 /* 13905 * Note that the Branch Target Exception has fairly high 13906 * priority -- below debugging exceptions but above most 13907 * everything else. This allows us to handle this now 13908 * instead of waiting until the insn is otherwise decoded. 13909 */ 13910 if (s->btype != 0 13911 && s->guarded_page 13912 && !btype_destination_ok(insn, s->bt, s->btype)) { 13913 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13914 return; 13915 } 13916 } else { 13917 /* Not the first insn: btype must be 0. */ 13918 tcg_debug_assert(s->btype == 0); 13919 } 13920 } 13921 13922 s->is_nonstreaming = false; 13923 if (s->sme_trap_nonstreaming) { 13924 disas_sme_fa64(s, insn); 13925 } 13926 13927 if (!disas_a64(s, insn) && 13928 !disas_sme(s, insn) && 13929 !disas_sve(s, insn)) { 13930 disas_a64_legacy(s, insn); 13931 } 13932 13933 /* 13934 * After execution of most insns, btype is reset to 0. 13935 * Note that we set btype == -1 when the insn sets btype. 13936 */ 13937 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13938 reset_btype(s); 13939 } 13940 } 13941 13942 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13943 { 13944 DisasContext *dc = container_of(dcbase, DisasContext, base); 13945 13946 if (unlikely(dc->ss_active)) { 13947 /* Note that this means single stepping WFI doesn't halt the CPU. 13948 * For conditional branch insns this is harmless unreachable code as 13949 * gen_goto_tb() has already handled emitting the debug exception 13950 * (and thus a tb-jump is not possible when singlestepping). 13951 */ 13952 switch (dc->base.is_jmp) { 13953 default: 13954 gen_a64_update_pc(dc, 4); 13955 /* fall through */ 13956 case DISAS_EXIT: 13957 case DISAS_JUMP: 13958 gen_step_complete_exception(dc); 13959 break; 13960 case DISAS_NORETURN: 13961 break; 13962 } 13963 } else { 13964 switch (dc->base.is_jmp) { 13965 case DISAS_NEXT: 13966 case DISAS_TOO_MANY: 13967 gen_goto_tb(dc, 1, 4); 13968 break; 13969 default: 13970 case DISAS_UPDATE_EXIT: 13971 gen_a64_update_pc(dc, 4); 13972 /* fall through */ 13973 case DISAS_EXIT: 13974 tcg_gen_exit_tb(NULL, 0); 13975 break; 13976 case DISAS_UPDATE_NOCHAIN: 13977 gen_a64_update_pc(dc, 4); 13978 /* fall through */ 13979 case DISAS_JUMP: 13980 tcg_gen_lookup_and_goto_ptr(); 13981 break; 13982 case DISAS_NORETURN: 13983 case DISAS_SWI: 13984 break; 13985 case DISAS_WFE: 13986 gen_a64_update_pc(dc, 4); 13987 gen_helper_wfe(tcg_env); 13988 break; 13989 case DISAS_YIELD: 13990 gen_a64_update_pc(dc, 4); 13991 gen_helper_yield(tcg_env); 13992 break; 13993 case DISAS_WFI: 13994 /* 13995 * This is a special case because we don't want to just halt 13996 * the CPU if trying to debug across a WFI. 13997 */ 13998 gen_a64_update_pc(dc, 4); 13999 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14000 /* 14001 * The helper doesn't necessarily throw an exception, but we 14002 * must go back to the main loop to check for interrupts anyway. 14003 */ 14004 tcg_gen_exit_tb(NULL, 0); 14005 break; 14006 } 14007 } 14008 } 14009 14010 const TranslatorOps aarch64_translator_ops = { 14011 .init_disas_context = aarch64_tr_init_disas_context, 14012 .tb_start = aarch64_tr_tb_start, 14013 .insn_start = aarch64_tr_insn_start, 14014 .translate_insn = aarch64_tr_translate_insn, 14015 .tb_stop = aarch64_tr_tb_stop, 14016 }; 14017