xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 43454734)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1356 {
1357     if (!a->q && a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 /*
1367  * This utility function is for doing register extension with an
1368  * optional shift. You will likely want to pass a temporary for the
1369  * destination register. See DecodeRegExtend() in the ARM ARM.
1370  */
1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1372                               int option, unsigned int shift)
1373 {
1374     int extsize = extract32(option, 0, 2);
1375     bool is_signed = extract32(option, 2, 1);
1376 
1377     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1378     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1379 }
1380 
1381 static inline void gen_check_sp_alignment(DisasContext *s)
1382 {
1383     /* The AArch64 architecture mandates that (if enabled via PSTATE
1384      * or SCTLR bits) there is a check that SP is 16-aligned on every
1385      * SP-relative load or store (with an exception generated if it is not).
1386      * In line with general QEMU practice regarding misaligned accesses,
1387      * we omit these checks for the sake of guest program performance.
1388      * This function is provided as a hook so we can more easily add these
1389      * checks in future (possibly as a "favour catching guest program bugs
1390      * over speed" user selectable option).
1391      */
1392 }
1393 
1394 /*
1395  * This provides a simple table based table lookup decoder. It is
1396  * intended to be used when the relevant bits for decode are too
1397  * awkwardly placed and switch/if based logic would be confusing and
1398  * deeply nested. Since it's a linear search through the table, tables
1399  * should be kept small.
1400  *
1401  * It returns the first handler where insn & mask == pattern, or
1402  * NULL if there is no match.
1403  * The table is terminated by an empty mask (i.e. 0)
1404  */
1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1406                                                uint32_t insn)
1407 {
1408     const AArch64DecodeTable *tptr = table;
1409 
1410     while (tptr->mask) {
1411         if ((insn & tptr->mask) == tptr->pattern) {
1412             return tptr->disas_fn;
1413         }
1414         tptr++;
1415     }
1416     return NULL;
1417 }
1418 
1419 /*
1420  * The instruction disassembly implemented here matches
1421  * the instruction encoding classifications in chapter C4
1422  * of the ARM Architecture Reference Manual (DDI0487B_a);
1423  * classification names and decode diagrams here should generally
1424  * match up with those in the manual.
1425  */
1426 
1427 static bool trans_B(DisasContext *s, arg_i *a)
1428 {
1429     reset_btype(s);
1430     gen_goto_tb(s, 0, a->imm);
1431     return true;
1432 }
1433 
1434 static bool trans_BL(DisasContext *s, arg_i *a)
1435 {
1436     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1437     reset_btype(s);
1438     gen_goto_tb(s, 0, a->imm);
1439     return true;
1440 }
1441 
1442 
1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1444 {
1445     DisasLabel match;
1446     TCGv_i64 tcg_cmp;
1447 
1448     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1449     reset_btype(s);
1450 
1451     match = gen_disas_label(s);
1452     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1453                         tcg_cmp, 0, match.label);
1454     gen_goto_tb(s, 0, 4);
1455     set_disas_label(s, match);
1456     gen_goto_tb(s, 1, a->imm);
1457     return true;
1458 }
1459 
1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1461 {
1462     DisasLabel match;
1463     TCGv_i64 tcg_cmp;
1464 
1465     tcg_cmp = tcg_temp_new_i64();
1466     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1467 
1468     reset_btype(s);
1469 
1470     match = gen_disas_label(s);
1471     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1472                         tcg_cmp, 0, match.label);
1473     gen_goto_tb(s, 0, 4);
1474     set_disas_label(s, match);
1475     gen_goto_tb(s, 1, a->imm);
1476     return true;
1477 }
1478 
1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1480 {
1481     /* BC.cond is only present with FEAT_HBC */
1482     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1483         return false;
1484     }
1485     reset_btype(s);
1486     if (a->cond < 0x0e) {
1487         /* genuinely conditional branches */
1488         DisasLabel match = gen_disas_label(s);
1489         arm_gen_test_cc(a->cond, match.label);
1490         gen_goto_tb(s, 0, 4);
1491         set_disas_label(s, match);
1492         gen_goto_tb(s, 1, a->imm);
1493     } else {
1494         /* 0xe and 0xf are both "always" conditions */
1495         gen_goto_tb(s, 0, a->imm);
1496     }
1497     return true;
1498 }
1499 
1500 static void set_btype_for_br(DisasContext *s, int rn)
1501 {
1502     if (dc_isar_feature(aa64_bti, s)) {
1503         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1504         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1505     }
1506 }
1507 
1508 static void set_btype_for_blr(DisasContext *s)
1509 {
1510     if (dc_isar_feature(aa64_bti, s)) {
1511         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1512         set_btype(s, 2);
1513     }
1514 }
1515 
1516 static bool trans_BR(DisasContext *s, arg_r *a)
1517 {
1518     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1519     set_btype_for_br(s, a->rn);
1520     s->base.is_jmp = DISAS_JUMP;
1521     return true;
1522 }
1523 
1524 static bool trans_BLR(DisasContext *s, arg_r *a)
1525 {
1526     TCGv_i64 dst = cpu_reg(s, a->rn);
1527     TCGv_i64 lr = cpu_reg(s, 30);
1528     if (dst == lr) {
1529         TCGv_i64 tmp = tcg_temp_new_i64();
1530         tcg_gen_mov_i64(tmp, dst);
1531         dst = tmp;
1532     }
1533     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1534     gen_a64_set_pc(s, dst);
1535     set_btype_for_blr(s);
1536     s->base.is_jmp = DISAS_JUMP;
1537     return true;
1538 }
1539 
1540 static bool trans_RET(DisasContext *s, arg_r *a)
1541 {
1542     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1543     s->base.is_jmp = DISAS_JUMP;
1544     return true;
1545 }
1546 
1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1548                                    TCGv_i64 modifier, bool use_key_a)
1549 {
1550     TCGv_i64 truedst;
1551     /*
1552      * Return the branch target for a BRAA/RETA/etc, which is either
1553      * just the destination dst, or that value with the pauth check
1554      * done and the code removed from the high bits.
1555      */
1556     if (!s->pauth_active) {
1557         return dst;
1558     }
1559 
1560     truedst = tcg_temp_new_i64();
1561     if (use_key_a) {
1562         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1563     } else {
1564         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1565     }
1566     return truedst;
1567 }
1568 
1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1570 {
1571     TCGv_i64 dst;
1572 
1573     if (!dc_isar_feature(aa64_pauth, s)) {
1574         return false;
1575     }
1576 
1577     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1578     gen_a64_set_pc(s, dst);
1579     set_btype_for_br(s, a->rn);
1580     s->base.is_jmp = DISAS_JUMP;
1581     return true;
1582 }
1583 
1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1585 {
1586     TCGv_i64 dst, lr;
1587 
1588     if (!dc_isar_feature(aa64_pauth, s)) {
1589         return false;
1590     }
1591 
1592     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1593     lr = cpu_reg(s, 30);
1594     if (dst == lr) {
1595         TCGv_i64 tmp = tcg_temp_new_i64();
1596         tcg_gen_mov_i64(tmp, dst);
1597         dst = tmp;
1598     }
1599     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1600     gen_a64_set_pc(s, dst);
1601     set_btype_for_blr(s);
1602     s->base.is_jmp = DISAS_JUMP;
1603     return true;
1604 }
1605 
1606 static bool trans_RETA(DisasContext *s, arg_reta *a)
1607 {
1608     TCGv_i64 dst;
1609 
1610     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1611     gen_a64_set_pc(s, dst);
1612     s->base.is_jmp = DISAS_JUMP;
1613     return true;
1614 }
1615 
1616 static bool trans_BRA(DisasContext *s, arg_bra *a)
1617 {
1618     TCGv_i64 dst;
1619 
1620     if (!dc_isar_feature(aa64_pauth, s)) {
1621         return false;
1622     }
1623     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1624     gen_a64_set_pc(s, dst);
1625     set_btype_for_br(s, a->rn);
1626     s->base.is_jmp = DISAS_JUMP;
1627     return true;
1628 }
1629 
1630 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1631 {
1632     TCGv_i64 dst, lr;
1633 
1634     if (!dc_isar_feature(aa64_pauth, s)) {
1635         return false;
1636     }
1637     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1638     lr = cpu_reg(s, 30);
1639     if (dst == lr) {
1640         TCGv_i64 tmp = tcg_temp_new_i64();
1641         tcg_gen_mov_i64(tmp, dst);
1642         dst = tmp;
1643     }
1644     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1645     gen_a64_set_pc(s, dst);
1646     set_btype_for_blr(s);
1647     s->base.is_jmp = DISAS_JUMP;
1648     return true;
1649 }
1650 
1651 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1652 {
1653     TCGv_i64 dst;
1654 
1655     if (s->current_el == 0) {
1656         return false;
1657     }
1658     if (s->trap_eret) {
1659         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1660         return true;
1661     }
1662     dst = tcg_temp_new_i64();
1663     tcg_gen_ld_i64(dst, tcg_env,
1664                    offsetof(CPUARMState, elr_el[s->current_el]));
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(tcg_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1675 {
1676     TCGv_i64 dst;
1677 
1678     if (!dc_isar_feature(aa64_pauth, s)) {
1679         return false;
1680     }
1681     if (s->current_el == 0) {
1682         return false;
1683     }
1684     /* The FGT trap takes precedence over an auth trap. */
1685     if (s->trap_eret) {
1686         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1687         return true;
1688     }
1689     dst = tcg_temp_new_i64();
1690     tcg_gen_ld_i64(dst, tcg_env,
1691                    offsetof(CPUARMState, elr_el[s->current_el]));
1692 
1693     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1694 
1695     translator_io_start(&s->base);
1696 
1697     gen_helper_exception_return(tcg_env, dst);
1698     /* Must exit loop to check un-masked IRQs */
1699     s->base.is_jmp = DISAS_EXIT;
1700     return true;
1701 }
1702 
1703 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1704 {
1705     return true;
1706 }
1707 
1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1709 {
1710     /*
1711      * When running in MTTCG we don't generate jumps to the yield and
1712      * WFE helpers as it won't affect the scheduling of other vCPUs.
1713      * If we wanted to more completely model WFE/SEV so we don't busy
1714      * spin unnecessarily we would need to do something more involved.
1715      */
1716     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1717         s->base.is_jmp = DISAS_YIELD;
1718     }
1719     return true;
1720 }
1721 
1722 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1723 {
1724     s->base.is_jmp = DISAS_WFI;
1725     return true;
1726 }
1727 
1728 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1729 {
1730     /*
1731      * When running in MTTCG we don't generate jumps to the yield and
1732      * WFE helpers as it won't affect the scheduling of other vCPUs.
1733      * If we wanted to more completely model WFE/SEV so we don't busy
1734      * spin unnecessarily we would need to do something more involved.
1735      */
1736     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1737         s->base.is_jmp = DISAS_WFE;
1738     }
1739     return true;
1740 }
1741 
1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1743 {
1744     if (s->pauth_active) {
1745         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1746     }
1747     return true;
1748 }
1749 
1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1751 {
1752     if (s->pauth_active) {
1753         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1754     }
1755     return true;
1756 }
1757 
1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1759 {
1760     if (s->pauth_active) {
1761         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1762     }
1763     return true;
1764 }
1765 
1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1767 {
1768     if (s->pauth_active) {
1769         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1770     }
1771     return true;
1772 }
1773 
1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1775 {
1776     if (s->pauth_active) {
1777         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1778     }
1779     return true;
1780 }
1781 
1782 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1783 {
1784     /* Without RAS, we must implement this as NOP. */
1785     if (dc_isar_feature(aa64_ras, s)) {
1786         /*
1787          * QEMU does not have a source of physical SErrors,
1788          * so we are only concerned with virtual SErrors.
1789          * The pseudocode in the ARM for this case is
1790          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1791          *      AArch64.vESBOperation();
1792          * Most of the condition can be evaluated at translation time.
1793          * Test for EL2 present, and defer test for SEL2 to runtime.
1794          */
1795         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1796             gen_helper_vesb(tcg_env);
1797         }
1798     }
1799     return true;
1800 }
1801 
1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1803 {
1804     if (s->pauth_active) {
1805         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1806     }
1807     return true;
1808 }
1809 
1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1811 {
1812     if (s->pauth_active) {
1813         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1814     }
1815     return true;
1816 }
1817 
1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1819 {
1820     if (s->pauth_active) {
1821         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1822     }
1823     return true;
1824 }
1825 
1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1827 {
1828     if (s->pauth_active) {
1829         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1830     }
1831     return true;
1832 }
1833 
1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1835 {
1836     if (s->pauth_active) {
1837         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1838     }
1839     return true;
1840 }
1841 
1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1843 {
1844     if (s->pauth_active) {
1845         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1846     }
1847     return true;
1848 }
1849 
1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1851 {
1852     if (s->pauth_active) {
1853         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854     }
1855     return true;
1856 }
1857 
1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1859 {
1860     if (s->pauth_active) {
1861         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862     }
1863     return true;
1864 }
1865 
1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1867 {
1868     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1869     return true;
1870 }
1871 
1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1873 {
1874     /* We handle DSB and DMB the same way */
1875     TCGBar bar;
1876 
1877     switch (a->types) {
1878     case 1: /* MBReqTypes_Reads */
1879         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1880         break;
1881     case 2: /* MBReqTypes_Writes */
1882         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1883         break;
1884     default: /* MBReqTypes_All */
1885         bar = TCG_BAR_SC | TCG_MO_ALL;
1886         break;
1887     }
1888     tcg_gen_mb(bar);
1889     return true;
1890 }
1891 
1892 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1893 {
1894     /*
1895      * We need to break the TB after this insn to execute
1896      * self-modifying code correctly and also to take
1897      * any pending interrupts immediately.
1898      */
1899     reset_btype(s);
1900     gen_goto_tb(s, 0, 4);
1901     return true;
1902 }
1903 
1904 static bool trans_SB(DisasContext *s, arg_SB *a)
1905 {
1906     if (!dc_isar_feature(aa64_sb, s)) {
1907         return false;
1908     }
1909     /*
1910      * TODO: There is no speculation barrier opcode for TCG;
1911      * MB and end the TB instead.
1912      */
1913     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1914     gen_goto_tb(s, 0, 4);
1915     return true;
1916 }
1917 
1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1919 {
1920     if (!dc_isar_feature(aa64_condm_4, s)) {
1921         return false;
1922     }
1923     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1924     return true;
1925 }
1926 
1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1928 {
1929     TCGv_i32 z;
1930 
1931     if (!dc_isar_feature(aa64_condm_5, s)) {
1932         return false;
1933     }
1934 
1935     z = tcg_temp_new_i32();
1936 
1937     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1938 
1939     /*
1940      * (!C & !Z) << 31
1941      * (!(C | Z)) << 31
1942      * ~((C | Z) << 31)
1943      * ~-(C | Z)
1944      * (C | Z) - 1
1945      */
1946     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1947     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1948 
1949     /* !(Z & C) */
1950     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1951     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1952 
1953     /* (!C & Z) << 31 -> -(Z & ~C) */
1954     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1955     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1956 
1957     /* C | Z */
1958     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1959 
1960     return true;
1961 }
1962 
1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1964 {
1965     if (!dc_isar_feature(aa64_condm_5, s)) {
1966         return false;
1967     }
1968 
1969     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1970     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1971 
1972     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1973     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1974 
1975     tcg_gen_movi_i32(cpu_NF, 0);
1976     tcg_gen_movi_i32(cpu_VF, 0);
1977 
1978     return true;
1979 }
1980 
1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1982 {
1983     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1984         return false;
1985     }
1986     if (a->imm & 1) {
1987         set_pstate_bits(PSTATE_UAO);
1988     } else {
1989         clear_pstate_bits(PSTATE_UAO);
1990     }
1991     gen_rebuild_hflags(s);
1992     s->base.is_jmp = DISAS_TOO_MANY;
1993     return true;
1994 }
1995 
1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1997 {
1998     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1999         return false;
2000     }
2001     if (a->imm & 1) {
2002         set_pstate_bits(PSTATE_PAN);
2003     } else {
2004         clear_pstate_bits(PSTATE_PAN);
2005     }
2006     gen_rebuild_hflags(s);
2007     s->base.is_jmp = DISAS_TOO_MANY;
2008     return true;
2009 }
2010 
2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2012 {
2013     if (s->current_el == 0) {
2014         return false;
2015     }
2016     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2017     s->base.is_jmp = DISAS_TOO_MANY;
2018     return true;
2019 }
2020 
2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2022 {
2023     if (!dc_isar_feature(aa64_ssbs, s)) {
2024         return false;
2025     }
2026     if (a->imm & 1) {
2027         set_pstate_bits(PSTATE_SSBS);
2028     } else {
2029         clear_pstate_bits(PSTATE_SSBS);
2030     }
2031     /* Don't need to rebuild hflags since SSBS is a nop */
2032     s->base.is_jmp = DISAS_TOO_MANY;
2033     return true;
2034 }
2035 
2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2037 {
2038     if (!dc_isar_feature(aa64_dit, s)) {
2039         return false;
2040     }
2041     if (a->imm & 1) {
2042         set_pstate_bits(PSTATE_DIT);
2043     } else {
2044         clear_pstate_bits(PSTATE_DIT);
2045     }
2046     /* There's no need to rebuild hflags because DIT is a nop */
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2052 {
2053     if (dc_isar_feature(aa64_mte, s)) {
2054         /* Full MTE is enabled -- set the TCO bit as directed. */
2055         if (a->imm & 1) {
2056             set_pstate_bits(PSTATE_TCO);
2057         } else {
2058             clear_pstate_bits(PSTATE_TCO);
2059         }
2060         gen_rebuild_hflags(s);
2061         /* Many factors, including TCO, go into MTE_ACTIVE. */
2062         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2063         return true;
2064     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2065         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2066         return true;
2067     } else {
2068         /* Insn not present */
2069         return false;
2070     }
2071 }
2072 
2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2074 {
2075     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2076     s->base.is_jmp = DISAS_TOO_MANY;
2077     return true;
2078 }
2079 
2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2081 {
2082     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2083     /* Exit the cpu loop to re-evaluate pending IRQs. */
2084     s->base.is_jmp = DISAS_UPDATE_EXIT;
2085     return true;
2086 }
2087 
2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2089 {
2090     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2091         return false;
2092     }
2093 
2094     if (a->imm == 0) {
2095         clear_pstate_bits(PSTATE_ALLINT);
2096     } else if (s->current_el > 1) {
2097         set_pstate_bits(PSTATE_ALLINT);
2098     } else {
2099         gen_helper_msr_set_allint_el1(tcg_env);
2100     }
2101 
2102     /* Exit the cpu loop to re-evaluate pending IRQs. */
2103     s->base.is_jmp = DISAS_UPDATE_EXIT;
2104     return true;
2105 }
2106 
2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2108 {
2109     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2110         return false;
2111     }
2112     if (sme_access_check(s)) {
2113         int old = s->pstate_sm | (s->pstate_za << 1);
2114         int new = a->imm * 3;
2115 
2116         if ((old ^ new) & a->mask) {
2117             /* At least one bit changes. */
2118             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2119                                 tcg_constant_i32(a->mask));
2120             s->base.is_jmp = DISAS_TOO_MANY;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2127 {
2128     TCGv_i32 tmp = tcg_temp_new_i32();
2129     TCGv_i32 nzcv = tcg_temp_new_i32();
2130 
2131     /* build bit 31, N */
2132     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2133     /* build bit 30, Z */
2134     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2135     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2136     /* build bit 29, C */
2137     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2138     /* build bit 28, V */
2139     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2140     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2141     /* generate result */
2142     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2143 }
2144 
2145 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2146 {
2147     TCGv_i32 nzcv = tcg_temp_new_i32();
2148 
2149     /* take NZCV from R[t] */
2150     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2151 
2152     /* bit 31, N */
2153     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2154     /* bit 30, Z */
2155     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2156     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2157     /* bit 29, C */
2158     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2159     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2160     /* bit 28, V */
2161     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2162     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2163 }
2164 
2165 static void gen_sysreg_undef(DisasContext *s, bool isread,
2166                              uint8_t op0, uint8_t op1, uint8_t op2,
2167                              uint8_t crn, uint8_t crm, uint8_t rt)
2168 {
2169     /*
2170      * Generate code to emit an UNDEF with correct syndrome
2171      * information for a failed system register access.
2172      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2173      * but if FEAT_IDST is implemented then read accesses to registers
2174      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2175      * syndrome.
2176      */
2177     uint32_t syndrome;
2178 
2179     if (isread && dc_isar_feature(aa64_ids, s) &&
2180         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182     } else {
2183         syndrome = syn_uncategorized();
2184     }
2185     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2186 }
2187 
2188 /* MRS - move from system register
2189  * MSR (register) - move to system register
2190  * SYS
2191  * SYSL
2192  * These are all essentially the same insn in 'read' and 'write'
2193  * versions, with varying op0 fields.
2194  */
2195 static void handle_sys(DisasContext *s, bool isread,
2196                        unsigned int op0, unsigned int op1, unsigned int op2,
2197                        unsigned int crn, unsigned int crm, unsigned int rt)
2198 {
2199     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2200                                       crn, crm, op0, op1, op2);
2201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2202     bool need_exit_tb = false;
2203     bool nv_trap_to_el2 = false;
2204     bool nv_redirect_reg = false;
2205     bool skip_fp_access_checks = false;
2206     bool nv2_mem_redirect = false;
2207     TCGv_ptr tcg_ri = NULL;
2208     TCGv_i64 tcg_rt;
2209     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2210 
2211     if (crn == 11 || crn == 15) {
2212         /*
2213          * Check for TIDCP trap, which must take precedence over
2214          * the UNDEF for "no such register" etc.
2215          */
2216         switch (s->current_el) {
2217         case 0:
2218             if (dc_isar_feature(aa64_tidcp1, s)) {
2219                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2220             }
2221             break;
2222         case 1:
2223             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2224             break;
2225         }
2226     }
2227 
2228     if (!ri) {
2229         /* Unknown register; this might be a guest error or a QEMU
2230          * unimplemented feature.
2231          */
2232         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2233                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2234                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2235         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2236         return;
2237     }
2238 
2239     if (s->nv2 && ri->nv2_redirect_offset) {
2240         /*
2241          * Some registers always redirect to memory; some only do so if
2242          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2243          * pairs which share an offset; see the table in R_CSRPQ).
2244          */
2245         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2246             nv2_mem_redirect = s->nv1;
2247         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2248             nv2_mem_redirect = !s->nv1;
2249         } else {
2250             nv2_mem_redirect = true;
2251         }
2252     }
2253 
2254     /* Check access permissions */
2255     if (!cp_access_ok(s->current_el, ri, isread)) {
2256         /*
2257          * FEAT_NV/NV2 handling does not do the usual FP access checks
2258          * for registers only accessible at EL2 (though it *does* do them
2259          * for registers accessible at EL1).
2260          */
2261         skip_fp_access_checks = true;
2262         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2263             /*
2264              * This is one of the few EL2 registers which should redirect
2265              * to the equivalent EL1 register. We do that after running
2266              * the EL2 register's accessfn.
2267              */
2268             nv_redirect_reg = true;
2269             assert(!nv2_mem_redirect);
2270         } else if (nv2_mem_redirect) {
2271             /*
2272              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2273              * UNDEF to EL1.
2274              */
2275         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2276             /*
2277              * This register / instruction exists and is an EL2 register, so
2278              * we must trap to EL2 if accessed in nested virtualization EL1
2279              * instead of UNDEFing. We'll do that after the usual access checks.
2280              * (This makes a difference only for a couple of registers like
2281              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2282              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2283              * an accessfn which does nothing when called from EL1, because
2284              * the trap-to-EL3 controls which would apply to that register
2285              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2286              */
2287             nv_trap_to_el2 = true;
2288         } else {
2289             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290             return;
2291         }
2292     }
2293 
2294     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2295         /* Emit code to perform further access permissions checks at
2296          * runtime; this may result in an exception.
2297          */
2298         gen_a64_update_pc(s, 0);
2299         tcg_ri = tcg_temp_new_ptr();
2300         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2301                                        tcg_constant_i32(key),
2302                                        tcg_constant_i32(syndrome),
2303                                        tcg_constant_i32(isread));
2304     } else if (ri->type & ARM_CP_RAISES_EXC) {
2305         /*
2306          * The readfn or writefn might raise an exception;
2307          * synchronize the CPU state in case it does.
2308          */
2309         gen_a64_update_pc(s, 0);
2310     }
2311 
2312     if (!skip_fp_access_checks) {
2313         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2314             return;
2315         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2316             return;
2317         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2318             return;
2319         }
2320     }
2321 
2322     if (nv_trap_to_el2) {
2323         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2324         return;
2325     }
2326 
2327     if (nv_redirect_reg) {
2328         /*
2329          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2330          * Conveniently in all cases the encoding of the EL1 register is
2331          * identical to the EL2 register except that opc1 is 0.
2332          * Get the reginfo for the EL1 register to use for the actual access.
2333          * We don't use the EL1 register's access function, and
2334          * fine-grained-traps on EL1 also do not apply here.
2335          */
2336         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2337                                  crn, crm, op0, 0, op2);
2338         ri = get_arm_cp_reginfo(s->cp_regs, key);
2339         assert(ri);
2340         assert(cp_access_ok(s->current_el, ri, isread));
2341         /*
2342          * We might not have done an update_pc earlier, so check we don't
2343          * need it. We could support this in future if necessary.
2344          */
2345         assert(!(ri->type & ARM_CP_RAISES_EXC));
2346     }
2347 
2348     if (nv2_mem_redirect) {
2349         /*
2350          * This system register is being redirected into an EL2 memory access.
2351          * This means it is not an IO operation, doesn't change hflags,
2352          * and need not end the TB, because it has no side effects.
2353          *
2354          * The access is 64-bit single copy atomic, guaranteed aligned because
2355          * of the definition of VCNR_EL2. Its endianness depends on
2356          * SCTLR_EL2.EE, not on the data endianness of EL1.
2357          * It is done under either the EL2 translation regime or the EL2&0
2358          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2359          * PSTATE.PAN is 0.
2360          */
2361         TCGv_i64 ptr = tcg_temp_new_i64();
2362         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2363         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2364         int memidx = arm_to_core_mmu_idx(armmemidx);
2365         uint32_t syn;
2366 
2367         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2368 
2369         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2370         tcg_gen_addi_i64(ptr, ptr,
2371                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2372         tcg_rt = cpu_reg(s, rt);
2373 
2374         syn = syn_data_abort_vncr(0, !isread, 0);
2375         disas_set_insn_syndrome(s, syn);
2376         if (isread) {
2377             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2378         } else {
2379             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2380         }
2381         return;
2382     }
2383 
2384     /* Handle special cases first */
2385     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2386     case 0:
2387         break;
2388     case ARM_CP_NOP:
2389         return;
2390     case ARM_CP_NZCV:
2391         tcg_rt = cpu_reg(s, rt);
2392         if (isread) {
2393             gen_get_nzcv(tcg_rt);
2394         } else {
2395             gen_set_nzcv(tcg_rt);
2396         }
2397         return;
2398     case ARM_CP_CURRENTEL:
2399     {
2400         /*
2401          * Reads as current EL value from pstate, which is
2402          * guaranteed to be constant by the tb flags.
2403          * For nested virt we should report EL2.
2404          */
2405         int el = s->nv ? 2 : s->current_el;
2406         tcg_rt = cpu_reg(s, rt);
2407         tcg_gen_movi_i64(tcg_rt, el << 2);
2408         return;
2409     }
2410     case ARM_CP_DC_ZVA:
2411         /* Writes clear the aligned block of memory which rt points into. */
2412         if (s->mte_active[0]) {
2413             int desc = 0;
2414 
2415             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2416             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2417             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2418 
2419             tcg_rt = tcg_temp_new_i64();
2420             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2421                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2422         } else {
2423             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2424         }
2425         gen_helper_dc_zva(tcg_env, tcg_rt);
2426         return;
2427     case ARM_CP_DC_GVA:
2428         {
2429             TCGv_i64 clean_addr, tag;
2430 
2431             /*
2432              * DC_GVA, like DC_ZVA, requires that we supply the original
2433              * pointer for an invalid page.  Probe that address first.
2434              */
2435             tcg_rt = cpu_reg(s, rt);
2436             clean_addr = clean_data_tbi(s, tcg_rt);
2437             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2438 
2439             if (s->ata[0]) {
2440                 /* Extract the tag from the register to match STZGM.  */
2441                 tag = tcg_temp_new_i64();
2442                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2443                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2444             }
2445         }
2446         return;
2447     case ARM_CP_DC_GZVA:
2448         {
2449             TCGv_i64 clean_addr, tag;
2450 
2451             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2452             tcg_rt = cpu_reg(s, rt);
2453             clean_addr = clean_data_tbi(s, tcg_rt);
2454             gen_helper_dc_zva(tcg_env, clean_addr);
2455 
2456             if (s->ata[0]) {
2457                 /* Extract the tag from the register to match STZGM.  */
2458                 tag = tcg_temp_new_i64();
2459                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2460                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2461             }
2462         }
2463         return;
2464     default:
2465         g_assert_not_reached();
2466     }
2467 
2468     if (ri->type & ARM_CP_IO) {
2469         /* I/O operations must end the TB here (whether read or write) */
2470         need_exit_tb = translator_io_start(&s->base);
2471     }
2472 
2473     tcg_rt = cpu_reg(s, rt);
2474 
2475     if (isread) {
2476         if (ri->type & ARM_CP_CONST) {
2477             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2478         } else if (ri->readfn) {
2479             if (!tcg_ri) {
2480                 tcg_ri = gen_lookup_cp_reg(key);
2481             }
2482             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2483         } else {
2484             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2485         }
2486     } else {
2487         if (ri->type & ARM_CP_CONST) {
2488             /* If not forbidden by access permissions, treat as WI */
2489             return;
2490         } else if (ri->writefn) {
2491             if (!tcg_ri) {
2492                 tcg_ri = gen_lookup_cp_reg(key);
2493             }
2494             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2495         } else {
2496             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497         }
2498     }
2499 
2500     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2501         /*
2502          * A write to any coprocessor register that ends a TB
2503          * must rebuild the hflags for the next TB.
2504          */
2505         gen_rebuild_hflags(s);
2506         /*
2507          * We default to ending the TB on a coprocessor register write,
2508          * but allow this to be suppressed by the register definition
2509          * (usually only necessary to work around guest bugs).
2510          */
2511         need_exit_tb = true;
2512     }
2513     if (need_exit_tb) {
2514         s->base.is_jmp = DISAS_UPDATE_EXIT;
2515     }
2516 }
2517 
2518 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2519 {
2520     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2521     return true;
2522 }
2523 
2524 static bool trans_SVC(DisasContext *s, arg_i *a)
2525 {
2526     /*
2527      * For SVC, HVC and SMC we advance the single-step state
2528      * machine before taking the exception. This is architecturally
2529      * mandated, to ensure that single-stepping a system call
2530      * instruction works properly.
2531      */
2532     uint32_t syndrome = syn_aa64_svc(a->imm);
2533     if (s->fgt_svc) {
2534         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2535         return true;
2536     }
2537     gen_ss_advance(s);
2538     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2539     return true;
2540 }
2541 
2542 static bool trans_HVC(DisasContext *s, arg_i *a)
2543 {
2544     int target_el = s->current_el == 3 ? 3 : 2;
2545 
2546     if (s->current_el == 0) {
2547         unallocated_encoding(s);
2548         return true;
2549     }
2550     /*
2551      * The pre HVC helper handles cases when HVC gets trapped
2552      * as an undefined insn by runtime configuration.
2553      */
2554     gen_a64_update_pc(s, 0);
2555     gen_helper_pre_hvc(tcg_env);
2556     /* Architecture requires ss advance before we do the actual work */
2557     gen_ss_advance(s);
2558     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2559     return true;
2560 }
2561 
2562 static bool trans_SMC(DisasContext *s, arg_i *a)
2563 {
2564     if (s->current_el == 0) {
2565         unallocated_encoding(s);
2566         return true;
2567     }
2568     gen_a64_update_pc(s, 0);
2569     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2570     /* Architecture requires ss advance before we do the actual work */
2571     gen_ss_advance(s);
2572     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2573     return true;
2574 }
2575 
2576 static bool trans_BRK(DisasContext *s, arg_i *a)
2577 {
2578     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2579     return true;
2580 }
2581 
2582 static bool trans_HLT(DisasContext *s, arg_i *a)
2583 {
2584     /*
2585      * HLT. This has two purposes.
2586      * Architecturally, it is an external halting debug instruction.
2587      * Since QEMU doesn't implement external debug, we treat this as
2588      * it is required for halting debug disabled: it will UNDEF.
2589      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2590      */
2591     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2592         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2593     } else {
2594         unallocated_encoding(s);
2595     }
2596     return true;
2597 }
2598 
2599 /*
2600  * Load/Store exclusive instructions are implemented by remembering
2601  * the value/address loaded, and seeing if these are the same
2602  * when the store is performed. This is not actually the architecturally
2603  * mandated semantics, but it works for typical guest code sequences
2604  * and avoids having to monitor regular stores.
2605  *
2606  * The store exclusive uses the atomic cmpxchg primitives to avoid
2607  * races in multi-threaded linux-user and when MTTCG softmmu is
2608  * enabled.
2609  */
2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2611                                int size, bool is_pair)
2612 {
2613     int idx = get_mem_index(s);
2614     TCGv_i64 dirty_addr, clean_addr;
2615     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2616 
2617     s->is_ldex = true;
2618     dirty_addr = cpu_reg_sp(s, rn);
2619     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2620 
2621     g_assert(size <= 3);
2622     if (is_pair) {
2623         g_assert(size >= 2);
2624         if (size == 2) {
2625             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2626             if (s->be_data == MO_LE) {
2627                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2628                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2629             } else {
2630                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2631                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2632             }
2633         } else {
2634             TCGv_i128 t16 = tcg_temp_new_i128();
2635 
2636             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2637 
2638             if (s->be_data == MO_LE) {
2639                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2640                                       cpu_exclusive_high, t16);
2641             } else {
2642                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2643                                       cpu_exclusive_val, t16);
2644             }
2645             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2646             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2647         }
2648     } else {
2649         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2650         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2651     }
2652     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2653 }
2654 
2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2656                                 int rn, int size, int is_pair)
2657 {
2658     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2659      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2660      *     [addr] = {Rt};
2661      *     if (is_pair) {
2662      *         [addr + datasize] = {Rt2};
2663      *     }
2664      *     {Rd} = 0;
2665      * } else {
2666      *     {Rd} = 1;
2667      * }
2668      * env->exclusive_addr = -1;
2669      */
2670     TCGLabel *fail_label = gen_new_label();
2671     TCGLabel *done_label = gen_new_label();
2672     TCGv_i64 tmp, clean_addr;
2673     MemOp memop;
2674 
2675     /*
2676      * FIXME: We are out of spec here.  We have recorded only the address
2677      * from load_exclusive, not the entire range, and we assume that the
2678      * size of the access on both sides match.  The architecture allows the
2679      * store to be smaller than the load, so long as the stored bytes are
2680      * within the range recorded by the load.
2681      */
2682 
2683     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2684     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2685     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2686 
2687     /*
2688      * The write, and any associated faults, only happen if the virtual
2689      * and physical addresses pass the exclusive monitor check.  These
2690      * faults are exceedingly unlikely, because normally the guest uses
2691      * the exact same address register for the load_exclusive, and we
2692      * would have recognized these faults there.
2693      *
2694      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2695      * unaligned 4-byte write within the range of an aligned 8-byte load.
2696      * With LSE2, the store would need to cross a 16-byte boundary when the
2697      * load did not, which would mean the store is outside the range
2698      * recorded for the monitor, which would have failed a corrected monitor
2699      * check above.  For now, we assume no size change and retain the
2700      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2701      *
2702      * It is possible to trigger an MTE fault, by performing the load with
2703      * a virtual address with a valid tag and performing the store with the
2704      * same virtual address and a different invalid tag.
2705      */
2706     memop = size + is_pair;
2707     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2708         memop |= MO_ALIGN;
2709     }
2710     memop = finalize_memop(s, memop);
2711     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2712 
2713     tmp = tcg_temp_new_i64();
2714     if (is_pair) {
2715         if (size == 2) {
2716             if (s->be_data == MO_LE) {
2717                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2718             } else {
2719                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2720             }
2721             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2722                                        cpu_exclusive_val, tmp,
2723                                        get_mem_index(s), memop);
2724             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2725         } else {
2726             TCGv_i128 t16 = tcg_temp_new_i128();
2727             TCGv_i128 c16 = tcg_temp_new_i128();
2728             TCGv_i64 a, b;
2729 
2730             if (s->be_data == MO_LE) {
2731                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2732                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2733                                         cpu_exclusive_high);
2734             } else {
2735                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2736                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2737                                         cpu_exclusive_val);
2738             }
2739 
2740             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2741                                         get_mem_index(s), memop);
2742 
2743             a = tcg_temp_new_i64();
2744             b = tcg_temp_new_i64();
2745             if (s->be_data == MO_LE) {
2746                 tcg_gen_extr_i128_i64(a, b, t16);
2747             } else {
2748                 tcg_gen_extr_i128_i64(b, a, t16);
2749             }
2750 
2751             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2752             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2753             tcg_gen_or_i64(tmp, a, b);
2754 
2755             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2756         }
2757     } else {
2758         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2759                                    cpu_reg(s, rt), get_mem_index(s), memop);
2760         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2761     }
2762     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2763     tcg_gen_br(done_label);
2764 
2765     gen_set_label(fail_label);
2766     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2767     gen_set_label(done_label);
2768     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2769 }
2770 
2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2772                                  int rn, int size)
2773 {
2774     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2775     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776     int memidx = get_mem_index(s);
2777     TCGv_i64 clean_addr;
2778     MemOp memop;
2779 
2780     if (rn == 31) {
2781         gen_check_sp_alignment(s);
2782     }
2783     memop = check_atomic_align(s, rn, size);
2784     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2785     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2786                                memidx, memop);
2787 }
2788 
2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2790                                       int rn, int size)
2791 {
2792     TCGv_i64 s1 = cpu_reg(s, rs);
2793     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2794     TCGv_i64 t1 = cpu_reg(s, rt);
2795     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2796     TCGv_i64 clean_addr;
2797     int memidx = get_mem_index(s);
2798     MemOp memop;
2799 
2800     if (rn == 31) {
2801         gen_check_sp_alignment(s);
2802     }
2803 
2804     /* This is a single atomic access, despite the "pair". */
2805     memop = check_atomic_align(s, rn, size + 1);
2806     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2807 
2808     if (size == 2) {
2809         TCGv_i64 cmp = tcg_temp_new_i64();
2810         TCGv_i64 val = tcg_temp_new_i64();
2811 
2812         if (s->be_data == MO_LE) {
2813             tcg_gen_concat32_i64(val, t1, t2);
2814             tcg_gen_concat32_i64(cmp, s1, s2);
2815         } else {
2816             tcg_gen_concat32_i64(val, t2, t1);
2817             tcg_gen_concat32_i64(cmp, s2, s1);
2818         }
2819 
2820         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2821 
2822         if (s->be_data == MO_LE) {
2823             tcg_gen_extr32_i64(s1, s2, cmp);
2824         } else {
2825             tcg_gen_extr32_i64(s2, s1, cmp);
2826         }
2827     } else {
2828         TCGv_i128 cmp = tcg_temp_new_i128();
2829         TCGv_i128 val = tcg_temp_new_i128();
2830 
2831         if (s->be_data == MO_LE) {
2832             tcg_gen_concat_i64_i128(val, t1, t2);
2833             tcg_gen_concat_i64_i128(cmp, s1, s2);
2834         } else {
2835             tcg_gen_concat_i64_i128(val, t2, t1);
2836             tcg_gen_concat_i64_i128(cmp, s2, s1);
2837         }
2838 
2839         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2840 
2841         if (s->be_data == MO_LE) {
2842             tcg_gen_extr_i128_i64(s1, s2, cmp);
2843         } else {
2844             tcg_gen_extr_i128_i64(s2, s1, cmp);
2845         }
2846     }
2847 }
2848 
2849 /*
2850  * Compute the ISS.SF bit for syndrome information if an exception
2851  * is taken on a load or store. This indicates whether the instruction
2852  * is accessing a 32-bit or 64-bit register. This logic is derived
2853  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2854  */
2855 static bool ldst_iss_sf(int size, bool sign, bool ext)
2856 {
2857 
2858     if (sign) {
2859         /*
2860          * Signed loads are 64 bit results if we are not going to
2861          * do a zero-extend from 32 to 64 after the load.
2862          * (For a store, sign and ext are always false.)
2863          */
2864         return !ext;
2865     } else {
2866         /* Unsigned loads/stores work at the specified size */
2867         return size == MO_64;
2868     }
2869 }
2870 
2871 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2872 {
2873     if (a->rn == 31) {
2874         gen_check_sp_alignment(s);
2875     }
2876     if (a->lasr) {
2877         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2878     }
2879     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2880     return true;
2881 }
2882 
2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2884 {
2885     if (a->rn == 31) {
2886         gen_check_sp_alignment(s);
2887     }
2888     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2889     if (a->lasr) {
2890         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2891     }
2892     return true;
2893 }
2894 
2895 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2896 {
2897     TCGv_i64 clean_addr;
2898     MemOp memop;
2899     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2900 
2901     /*
2902      * StoreLORelease is the same as Store-Release for QEMU, but
2903      * needs the feature-test.
2904      */
2905     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2906         return false;
2907     }
2908     /* Generate ISS for non-exclusive accesses including LASR.  */
2909     if (a->rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2913     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2914     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2915                                 true, a->rn != 31, memop);
2916     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2917               iss_sf, a->lasr);
2918     return true;
2919 }
2920 
2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2922 {
2923     TCGv_i64 clean_addr;
2924     MemOp memop;
2925     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2926 
2927     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2928     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2929         return false;
2930     }
2931     /* Generate ISS for non-exclusive accesses including LASR.  */
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2936     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2937                                 false, a->rn != 31, memop);
2938     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2939               a->rt, iss_sf, a->lasr);
2940     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2941     return true;
2942 }
2943 
2944 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2945 {
2946     if (a->rn == 31) {
2947         gen_check_sp_alignment(s);
2948     }
2949     if (a->lasr) {
2950         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2951     }
2952     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2953     return true;
2954 }
2955 
2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2957 {
2958     if (a->rn == 31) {
2959         gen_check_sp_alignment(s);
2960     }
2961     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2962     if (a->lasr) {
2963         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2964     }
2965     return true;
2966 }
2967 
2968 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2969 {
2970     if (!dc_isar_feature(aa64_atomics, s)) {
2971         return false;
2972     }
2973     if (((a->rt | a->rs) & 1) != 0) {
2974         return false;
2975     }
2976 
2977     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2978     return true;
2979 }
2980 
2981 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2982 {
2983     if (!dc_isar_feature(aa64_atomics, s)) {
2984         return false;
2985     }
2986     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2987     return true;
2988 }
2989 
2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2991 {
2992     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2993     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2994     TCGv_i64 clean_addr = tcg_temp_new_i64();
2995     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2996 
2997     gen_pc_plus_diff(s, clean_addr, a->imm);
2998     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2999               false, true, a->rt, iss_sf, false);
3000     return true;
3001 }
3002 
3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3004 {
3005     /* Load register (literal), vector version */
3006     TCGv_i64 clean_addr;
3007     MemOp memop;
3008 
3009     if (!fp_access_check(s)) {
3010         return true;
3011     }
3012     memop = finalize_memop_asimd(s, a->sz);
3013     clean_addr = tcg_temp_new_i64();
3014     gen_pc_plus_diff(s, clean_addr, a->imm);
3015     do_fp_ld(s, a->rt, clean_addr, memop);
3016     return true;
3017 }
3018 
3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3020                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3021                                  uint64_t offset, bool is_store, MemOp mop)
3022 {
3023     if (a->rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3028     if (!a->p) {
3029         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3030     }
3031 
3032     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3033                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3034 }
3035 
3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3037                                   TCGv_i64 dirty_addr, uint64_t offset)
3038 {
3039     if (a->w) {
3040         if (a->p) {
3041             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3042         }
3043         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3044     }
3045 }
3046 
3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3048 {
3049     uint64_t offset = a->imm << a->sz;
3050     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3051     MemOp mop = finalize_memop(s, a->sz);
3052 
3053     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3054     tcg_rt = cpu_reg(s, a->rt);
3055     tcg_rt2 = cpu_reg(s, a->rt2);
3056     /*
3057      * We built mop above for the single logical access -- rebuild it
3058      * now for the paired operation.
3059      *
3060      * With LSE2, non-sign-extending pairs are treated atomically if
3061      * aligned, and if unaligned one of the pair will be completely
3062      * within a 16-byte block and that element will be atomic.
3063      * Otherwise each element is separately atomic.
3064      * In all cases, issue one operation with the correct atomicity.
3065      */
3066     mop = a->sz + 1;
3067     if (s->align_mem) {
3068         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3069     }
3070     mop = finalize_memop_pair(s, mop);
3071     if (a->sz == 2) {
3072         TCGv_i64 tmp = tcg_temp_new_i64();
3073 
3074         if (s->be_data == MO_LE) {
3075             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3076         } else {
3077             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3078         }
3079         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3080     } else {
3081         TCGv_i128 tmp = tcg_temp_new_i128();
3082 
3083         if (s->be_data == MO_LE) {
3084             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3085         } else {
3086             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3087         }
3088         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3089     }
3090     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3091     return true;
3092 }
3093 
3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103 
3104     /*
3105      * We built mop above for the single logical access -- rebuild it
3106      * now for the paired operation.
3107      *
3108      * With LSE2, non-sign-extending pairs are treated atomically if
3109      * aligned, and if unaligned one of the pair will be completely
3110      * within a 16-byte block and that element will be atomic.
3111      * Otherwise each element is separately atomic.
3112      * In all cases, issue one operation with the correct atomicity.
3113      *
3114      * This treats sign-extending loads like zero-extending loads,
3115      * since that reuses the most code below.
3116      */
3117     mop = a->sz + 1;
3118     if (s->align_mem) {
3119         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3120     }
3121     mop = finalize_memop_pair(s, mop);
3122     if (a->sz == 2) {
3123         int o2 = s->be_data == MO_LE ? 32 : 0;
3124         int o1 = o2 ^ 32;
3125 
3126         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3127         if (a->sign) {
3128             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3129             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3130         } else {
3131             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3132             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3133         }
3134     } else {
3135         TCGv_i128 tmp = tcg_temp_new_i128();
3136 
3137         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3138         if (s->be_data == MO_LE) {
3139             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3140         } else {
3141             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3142         }
3143     }
3144     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145     return true;
3146 }
3147 
3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3149 {
3150     uint64_t offset = a->imm << a->sz;
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157 
3158     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3159     mop = finalize_memop_asimd(s, a->sz);
3160     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3161     do_fp_st(s, a->rt, clean_addr, mop);
3162     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3163     do_fp_st(s, a->rt2, clean_addr, mop);
3164     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3165     return true;
3166 }
3167 
3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3169 {
3170     uint64_t offset = a->imm << a->sz;
3171     TCGv_i64 clean_addr, dirty_addr;
3172     MemOp mop;
3173 
3174     if (!fp_access_check(s)) {
3175         return true;
3176     }
3177 
3178     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3179     mop = finalize_memop_asimd(s, a->sz);
3180     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3181     do_fp_ld(s, a->rt, clean_addr, mop);
3182     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3183     do_fp_ld(s, a->rt2, clean_addr, mop);
3184     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3185     return true;
3186 }
3187 
3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3189 {
3190     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3191     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3192     MemOp mop;
3193     TCGv_i128 tmp;
3194 
3195     /* STGP only comes in one size. */
3196     tcg_debug_assert(a->sz == MO_64);
3197 
3198     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3199         return false;
3200     }
3201 
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205 
3206     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3207     if (!a->p) {
3208         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209     }
3210 
3211     clean_addr = clean_data_tbi(s, dirty_addr);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     tcg_rt2 = cpu_reg(s, a->rt2);
3214 
3215     /*
3216      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3217      * and one tag operation.  We implement it as one single aligned 16-byte
3218      * memory operation for convenience.  Note that the alignment ensures
3219      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3220      */
3221     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3222 
3223     tmp = tcg_temp_new_i128();
3224     if (s->be_data == MO_LE) {
3225         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3226     } else {
3227         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3228     }
3229     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3230 
3231     /* Perform the tag store, if tag access enabled. */
3232     if (s->ata[0]) {
3233         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3234             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3235         } else {
3236             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3237         }
3238     }
3239 
3240     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3241     return true;
3242 }
3243 
3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3245                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3246                                  uint64_t offset, bool is_store, MemOp mop)
3247 {
3248     int memidx;
3249 
3250     if (a->rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253 
3254     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3255     if (!a->p) {
3256         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3257     }
3258     memidx = get_a64_user_mem_index(s, a->unpriv);
3259     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3260                                         a->w || a->rn != 31,
3261                                         mop, a->unpriv, memidx);
3262 }
3263 
3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3265                                   TCGv_i64 dirty_addr, uint64_t offset)
3266 {
3267     if (a->w) {
3268         if (a->p) {
3269             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3270         }
3271         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3272     }
3273 }
3274 
3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3276 {
3277     bool iss_sf, iss_valid = !a->w;
3278     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3279     int memidx = get_a64_user_mem_index(s, a->unpriv);
3280     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3281 
3282     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3283 
3284     tcg_rt = cpu_reg(s, a->rt);
3285     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3286 
3287     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3288                      iss_valid, a->rt, iss_sf, false);
3289     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3290     return true;
3291 }
3292 
3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3294 {
3295     bool iss_sf, iss_valid = !a->w;
3296     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3297     int memidx = get_a64_user_mem_index(s, a->unpriv);
3298     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3299 
3300     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3301 
3302     tcg_rt = cpu_reg(s, a->rt);
3303     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3304 
3305     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3306                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3307     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3308     return true;
3309 }
3310 
3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3312 {
3313     TCGv_i64 clean_addr, dirty_addr;
3314     MemOp mop;
3315 
3316     if (!fp_access_check(s)) {
3317         return true;
3318     }
3319     mop = finalize_memop_asimd(s, a->sz);
3320     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3321     do_fp_st(s, a->rt, clean_addr, mop);
3322     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp mop;
3330 
3331     if (!fp_access_check(s)) {
3332         return true;
3333     }
3334     mop = finalize_memop_asimd(s, a->sz);
3335     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3336     do_fp_ld(s, a->rt, clean_addr, mop);
3337     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3338     return true;
3339 }
3340 
3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3342                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3343                              bool is_store, MemOp memop)
3344 {
3345     TCGv_i64 tcg_rm;
3346 
3347     if (a->rn == 31) {
3348         gen_check_sp_alignment(s);
3349     }
3350     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3351 
3352     tcg_rm = read_cpu_reg(s, a->rm, 1);
3353     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3354 
3355     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3356     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3357 }
3358 
3359 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3360 {
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3362     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3363     MemOp memop;
3364 
3365     if (extract32(a->opt, 1, 1) == 0) {
3366         return false;
3367     }
3368 
3369     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               a->ext, true, a->rt, iss_sf, false);
3374     return true;
3375 }
3376 
3377 static bool trans_STR(DisasContext *s, arg_ldst *a)
3378 {
3379     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3380     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3381     MemOp memop;
3382 
3383     if (extract32(a->opt, 1, 1) == 0) {
3384         return false;
3385     }
3386 
3387     memop = finalize_memop(s, a->sz);
3388     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3389     tcg_rt = cpu_reg(s, a->rt);
3390     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3391     return true;
3392 }
3393 
3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3395 {
3396     TCGv_i64 clean_addr, dirty_addr;
3397     MemOp memop;
3398 
3399     if (extract32(a->opt, 1, 1) == 0) {
3400         return false;
3401     }
3402 
3403     if (!fp_access_check(s)) {
3404         return true;
3405     }
3406 
3407     memop = finalize_memop_asimd(s, a->sz);
3408     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3409     do_fp_ld(s, a->rt, clean_addr, memop);
3410     return true;
3411 }
3412 
3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3414 {
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp memop;
3417 
3418     if (extract32(a->opt, 1, 1) == 0) {
3419         return false;
3420     }
3421 
3422     if (!fp_access_check(s)) {
3423         return true;
3424     }
3425 
3426     memop = finalize_memop_asimd(s, a->sz);
3427     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3428     do_fp_st(s, a->rt, clean_addr, memop);
3429     return true;
3430 }
3431 
3432 
3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3434                          int sign, bool invert)
3435 {
3436     MemOp mop = a->sz | sign;
3437     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3438 
3439     if (a->rn == 31) {
3440         gen_check_sp_alignment(s);
3441     }
3442     mop = check_atomic_align(s, a->rn, mop);
3443     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3444                                 a->rn != 31, mop);
3445     tcg_rs = read_cpu_reg(s, a->rs, true);
3446     tcg_rt = cpu_reg(s, a->rt);
3447     if (invert) {
3448         tcg_gen_not_i64(tcg_rs, tcg_rs);
3449     }
3450     /*
3451      * The tcg atomic primitives are all full barriers.  Therefore we
3452      * can ignore the Acquire and Release bits of this instruction.
3453      */
3454     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3455 
3456     if (mop & MO_SIGN) {
3457         switch (a->sz) {
3458         case MO_8:
3459             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3460             break;
3461         case MO_16:
3462             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3463             break;
3464         case MO_32:
3465             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3466             break;
3467         case MO_64:
3468             break;
3469         default:
3470             g_assert_not_reached();
3471         }
3472     }
3473     return true;
3474 }
3475 
3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3485 
3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3487 {
3488     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3489     TCGv_i64 clean_addr;
3490     MemOp mop;
3491 
3492     if (!dc_isar_feature(aa64_atomics, s) ||
3493         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3494         return false;
3495     }
3496     if (a->rn == 31) {
3497         gen_check_sp_alignment(s);
3498     }
3499     mop = check_atomic_align(s, a->rn, a->sz);
3500     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3501                                 a->rn != 31, mop);
3502     /*
3503      * LDAPR* are a special case because they are a simple load, not a
3504      * fetch-and-do-something op.
3505      * The architectural consistency requirements here are weaker than
3506      * full load-acquire (we only need "load-acquire processor consistent"),
3507      * but we choose to implement them as full LDAQ.
3508      */
3509     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3510               true, a->rt, iss_sf, true);
3511     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3512     return true;
3513 }
3514 
3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3516 {
3517     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3518     MemOp memop;
3519 
3520     /* Load with pointer authentication */
3521     if (!dc_isar_feature(aa64_pauth, s)) {
3522         return false;
3523     }
3524 
3525     if (a->rn == 31) {
3526         gen_check_sp_alignment(s);
3527     }
3528     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3529 
3530     if (s->pauth_active) {
3531         if (!a->m) {
3532             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3533                                       tcg_constant_i64(0));
3534         } else {
3535             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3536                                       tcg_constant_i64(0));
3537         }
3538     }
3539 
3540     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3541 
3542     memop = finalize_memop(s, MO_64);
3543 
3544     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3545     clean_addr = gen_mte_check1(s, dirty_addr, false,
3546                                 a->w || a->rn != 31, memop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3550               /* extend */ false, /* iss_valid */ !a->w,
3551               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3552 
3553     if (a->w) {
3554         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3555     }
3556     return true;
3557 }
3558 
3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3560 {
3561     TCGv_i64 clean_addr, dirty_addr;
3562     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3563     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3564 
3565     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3566         return false;
3567     }
3568 
3569     if (a->rn == 31) {
3570         gen_check_sp_alignment(s);
3571     }
3572 
3573     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3574     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3575     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3576     clean_addr = clean_data_tbi(s, dirty_addr);
3577 
3578     /*
3579      * Load-AcquirePC semantics; we implement as the slightly more
3580      * restrictive Load-Acquire.
3581      */
3582     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3583               a->rt, iss_sf, true);
3584     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3585     return true;
3586 }
3587 
3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3589 {
3590     TCGv_i64 clean_addr, dirty_addr;
3591     MemOp mop = a->sz;
3592     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3593 
3594     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3595         return false;
3596     }
3597 
3598     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3599 
3600     if (a->rn == 31) {
3601         gen_check_sp_alignment(s);
3602     }
3603 
3604     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3605     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3606     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3607     clean_addr = clean_data_tbi(s, dirty_addr);
3608 
3609     /* Store-Release semantics */
3610     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3611     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3612     return true;
3613 }
3614 
3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3616 {
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int r;
3623     int size = a->sz;
3624 
3625     if (!a->p && a->rm != 0) {
3626         /* For non-postindexed accesses the Rm field must be 0 */
3627         return false;
3628     }
3629     if (size == 3 && !a->q && a->selem != 1) {
3630         return false;
3631     }
3632     if (!fp_access_check(s)) {
3633         return true;
3634     }
3635 
3636     if (a->rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     /* For our purposes, bytes are always little-endian.  */
3641     endian = s->be_data;
3642     if (size == 0) {
3643         endian = MO_LE;
3644     }
3645 
3646     total = a->rpt * a->selem * (a->q ? 16 : 8);
3647     tcg_rn = cpu_reg_sp(s, a->rn);
3648 
3649     /*
3650      * Issue the MTE check vs the logical repeat count, before we
3651      * promote consecutive little-endian elements below.
3652      */
3653     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3654                                 finalize_memop_asimd(s, size));
3655 
3656     /*
3657      * Consecutive little-endian elements from a single register
3658      * can be promoted to a larger little-endian operation.
3659      */
3660     align = MO_ALIGN;
3661     if (a->selem == 1 && endian == MO_LE) {
3662         align = pow2_align(size);
3663         size = 3;
3664     }
3665     if (!s->align_mem) {
3666         align = 0;
3667     }
3668     mop = endian | size | align;
3669 
3670     elements = (a->q ? 16 : 8) >> size;
3671     tcg_ebytes = tcg_constant_i64(1 << size);
3672     for (r = 0; r < a->rpt; r++) {
3673         int e;
3674         for (e = 0; e < elements; e++) {
3675             int xs;
3676             for (xs = 0; xs < a->selem; xs++) {
3677                 int tt = (a->rt + r + xs) % 32;
3678                 do_vec_ld(s, tt, e, clean_addr, mop);
3679                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3680             }
3681         }
3682     }
3683 
3684     /*
3685      * For non-quad operations, setting a slice of the low 64 bits of
3686      * the register clears the high 64 bits (in the ARM ARM pseudocode
3687      * this is implicit in the fact that 'rval' is a 64 bit wide
3688      * variable).  For quad operations, we might still need to zero
3689      * the high bits of SVE.
3690      */
3691     for (r = 0; r < a->rpt * a->selem; r++) {
3692         int tt = (a->rt + r) % 32;
3693         clear_vec_high(s, a->q, tt);
3694     }
3695 
3696     if (a->p) {
3697         if (a->rm == 31) {
3698             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699         } else {
3700             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701         }
3702     }
3703     return true;
3704 }
3705 
3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3707 {
3708     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3709     MemOp endian, align, mop;
3710 
3711     int total;    /* total bytes */
3712     int elements; /* elements per vector */
3713     int r;
3714     int size = a->sz;
3715 
3716     if (!a->p && a->rm != 0) {
3717         /* For non-postindexed accesses the Rm field must be 0 */
3718         return false;
3719     }
3720     if (size == 3 && !a->q && a->selem != 1) {
3721         return false;
3722     }
3723     if (!fp_access_check(s)) {
3724         return true;
3725     }
3726 
3727     if (a->rn == 31) {
3728         gen_check_sp_alignment(s);
3729     }
3730 
3731     /* For our purposes, bytes are always little-endian.  */
3732     endian = s->be_data;
3733     if (size == 0) {
3734         endian = MO_LE;
3735     }
3736 
3737     total = a->rpt * a->selem * (a->q ? 16 : 8);
3738     tcg_rn = cpu_reg_sp(s, a->rn);
3739 
3740     /*
3741      * Issue the MTE check vs the logical repeat count, before we
3742      * promote consecutive little-endian elements below.
3743      */
3744     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3745                                 finalize_memop_asimd(s, size));
3746 
3747     /*
3748      * Consecutive little-endian elements from a single register
3749      * can be promoted to a larger little-endian operation.
3750      */
3751     align = MO_ALIGN;
3752     if (a->selem == 1 && endian == MO_LE) {
3753         align = pow2_align(size);
3754         size = 3;
3755     }
3756     if (!s->align_mem) {
3757         align = 0;
3758     }
3759     mop = endian | size | align;
3760 
3761     elements = (a->q ? 16 : 8) >> size;
3762     tcg_ebytes = tcg_constant_i64(1 << size);
3763     for (r = 0; r < a->rpt; r++) {
3764         int e;
3765         for (e = 0; e < elements; e++) {
3766             int xs;
3767             for (xs = 0; xs < a->selem; xs++) {
3768                 int tt = (a->rt + r + xs) % 32;
3769                 do_vec_st(s, tt, e, clean_addr, mop);
3770                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771             }
3772         }
3773     }
3774 
3775     if (a->p) {
3776         if (a->rm == 31) {
3777             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3778         } else {
3779             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3780         }
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3786 {
3787     int xs, total, rt;
3788     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3789     MemOp mop;
3790 
3791     if (!a->p && a->rm != 0) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     total = a->selem << a->scale;
3803     tcg_rn = cpu_reg_sp(s, a->rn);
3804 
3805     mop = finalize_memop_asimd(s, a->scale);
3806     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3807                                 total, mop);
3808 
3809     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3810     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3811         do_vec_st(s, rt, a->index, clean_addr, mop);
3812         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3813     }
3814 
3815     if (a->p) {
3816         if (a->rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3820         }
3821     }
3822     return true;
3823 }
3824 
3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3826 {
3827     int xs, total, rt;
3828     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3829     MemOp mop;
3830 
3831     if (!a->p && a->rm != 0) {
3832         return false;
3833     }
3834     if (!fp_access_check(s)) {
3835         return true;
3836     }
3837 
3838     if (a->rn == 31) {
3839         gen_check_sp_alignment(s);
3840     }
3841 
3842     total = a->selem << a->scale;
3843     tcg_rn = cpu_reg_sp(s, a->rn);
3844 
3845     mop = finalize_memop_asimd(s, a->scale);
3846     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3847                                 total, mop);
3848 
3849     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3850     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3851         do_vec_ld(s, rt, a->index, clean_addr, mop);
3852         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3853     }
3854 
3855     if (a->p) {
3856         if (a->rm == 31) {
3857             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3858         } else {
3859             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3860         }
3861     }
3862     return true;
3863 }
3864 
3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3866 {
3867     int xs, total, rt;
3868     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3869     MemOp mop;
3870 
3871     if (!a->p && a->rm != 0) {
3872         return false;
3873     }
3874     if (!fp_access_check(s)) {
3875         return true;
3876     }
3877 
3878     if (a->rn == 31) {
3879         gen_check_sp_alignment(s);
3880     }
3881 
3882     total = a->selem << a->scale;
3883     tcg_rn = cpu_reg_sp(s, a->rn);
3884 
3885     mop = finalize_memop_asimd(s, a->scale);
3886     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3887                                 total, mop);
3888 
3889     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3890     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3891         /* Load and replicate to all elements */
3892         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3893 
3894         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3895         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3896                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3897         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3898     }
3899 
3900     if (a->p) {
3901         if (a->rm == 31) {
3902             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3903         } else {
3904             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3905         }
3906     }
3907     return true;
3908 }
3909 
3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3911 {
3912     TCGv_i64 addr, clean_addr, tcg_rt;
3913     int size = 4 << s->dcz_blocksize;
3914 
3915     if (!dc_isar_feature(aa64_mte, s)) {
3916         return false;
3917     }
3918     if (s->current_el == 0) {
3919         return false;
3920     }
3921 
3922     if (a->rn == 31) {
3923         gen_check_sp_alignment(s);
3924     }
3925 
3926     addr = read_cpu_reg_sp(s, a->rn, true);
3927     tcg_gen_addi_i64(addr, addr, a->imm);
3928     tcg_rt = cpu_reg(s, a->rt);
3929 
3930     if (s->ata[0]) {
3931         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3932     }
3933     /*
3934      * The non-tags portion of STZGM is mostly like DC_ZVA,
3935      * except the alignment happens before the access.
3936      */
3937     clean_addr = clean_data_tbi(s, addr);
3938     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3939     gen_helper_dc_zva(tcg_env, clean_addr);
3940     return true;
3941 }
3942 
3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3944 {
3945     TCGv_i64 addr, clean_addr, tcg_rt;
3946 
3947     if (!dc_isar_feature(aa64_mte, s)) {
3948         return false;
3949     }
3950     if (s->current_el == 0) {
3951         return false;
3952     }
3953 
3954     if (a->rn == 31) {
3955         gen_check_sp_alignment(s);
3956     }
3957 
3958     addr = read_cpu_reg_sp(s, a->rn, true);
3959     tcg_gen_addi_i64(addr, addr, a->imm);
3960     tcg_rt = cpu_reg(s, a->rt);
3961 
3962     if (s->ata[0]) {
3963         gen_helper_stgm(tcg_env, addr, tcg_rt);
3964     } else {
3965         MMUAccessType acc = MMU_DATA_STORE;
3966         int size = 4 << s->gm_blocksize;
3967 
3968         clean_addr = clean_data_tbi(s, addr);
3969         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3970         gen_probe_access(s, clean_addr, acc, size);
3971     }
3972     return true;
3973 }
3974 
3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3976 {
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     if (!dc_isar_feature(aa64_mte, s)) {
3980         return false;
3981     }
3982     if (s->current_el == 0) {
3983         return false;
3984     }
3985 
3986     if (a->rn == 31) {
3987         gen_check_sp_alignment(s);
3988     }
3989 
3990     addr = read_cpu_reg_sp(s, a->rn, true);
3991     tcg_gen_addi_i64(addr, addr, a->imm);
3992     tcg_rt = cpu_reg(s, a->rt);
3993 
3994     if (s->ata[0]) {
3995         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3996     } else {
3997         MMUAccessType acc = MMU_DATA_LOAD;
3998         int size = 4 << s->gm_blocksize;
3999 
4000         clean_addr = clean_data_tbi(s, addr);
4001         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4002         gen_probe_access(s, clean_addr, acc, size);
4003         /* The result tags are zeros.  */
4004         tcg_gen_movi_i64(tcg_rt, 0);
4005     }
4006     return true;
4007 }
4008 
4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4010 {
4011     TCGv_i64 addr, clean_addr, tcg_rt;
4012 
4013     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4014         return false;
4015     }
4016 
4017     if (a->rn == 31) {
4018         gen_check_sp_alignment(s);
4019     }
4020 
4021     addr = read_cpu_reg_sp(s, a->rn, true);
4022     if (!a->p) {
4023         /* pre-index or signed offset */
4024         tcg_gen_addi_i64(addr, addr, a->imm);
4025     }
4026 
4027     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4028     tcg_rt = cpu_reg(s, a->rt);
4029     if (s->ata[0]) {
4030         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4031     } else {
4032         /*
4033          * Tag access disabled: we must check for aborts on the load
4034          * load from [rn+offset], and then insert a 0 tag into rt.
4035          */
4036         clean_addr = clean_data_tbi(s, addr);
4037         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4038         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4039     }
4040 
4041     if (a->w) {
4042         /* pre-index or post-index */
4043         if (a->p) {
4044             /* post-index */
4045             tcg_gen_addi_i64(addr, addr, a->imm);
4046         }
4047         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4048     }
4049     return true;
4050 }
4051 
4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4053 {
4054     TCGv_i64 addr, tcg_rt;
4055 
4056     if (a->rn == 31) {
4057         gen_check_sp_alignment(s);
4058     }
4059 
4060     addr = read_cpu_reg_sp(s, a->rn, true);
4061     if (!a->p) {
4062         /* pre-index or signed offset */
4063         tcg_gen_addi_i64(addr, addr, a->imm);
4064     }
4065     tcg_rt = cpu_reg_sp(s, a->rt);
4066     if (!s->ata[0]) {
4067         /*
4068          * For STG and ST2G, we need to check alignment and probe memory.
4069          * TODO: For STZG and STZ2G, we could rely on the stores below,
4070          * at least for system mode; user-only won't enforce alignment.
4071          */
4072         if (is_pair) {
4073             gen_helper_st2g_stub(tcg_env, addr);
4074         } else {
4075             gen_helper_stg_stub(tcg_env, addr);
4076         }
4077     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4078         if (is_pair) {
4079             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4080         } else {
4081             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4082         }
4083     } else {
4084         if (is_pair) {
4085             gen_helper_st2g(tcg_env, addr, tcg_rt);
4086         } else {
4087             gen_helper_stg(tcg_env, addr, tcg_rt);
4088         }
4089     }
4090 
4091     if (is_zero) {
4092         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4093         TCGv_i64 zero64 = tcg_constant_i64(0);
4094         TCGv_i128 zero128 = tcg_temp_new_i128();
4095         int mem_index = get_mem_index(s);
4096         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4097 
4098         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4099 
4100         /* This is 1 or 2 atomic 16-byte operations. */
4101         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4102         if (is_pair) {
4103             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4104             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4105         }
4106     }
4107 
4108     if (a->w) {
4109         /* pre-index or post-index */
4110         if (a->p) {
4111             /* post-index */
4112             tcg_gen_addi_i64(addr, addr, a->imm);
4113         }
4114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4115     }
4116     return true;
4117 }
4118 
4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4123 
4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4125 
4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4127                    bool is_setg, SetFn fn)
4128 {
4129     int memidx;
4130     uint32_t syndrome, desc = 0;
4131 
4132     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4133         return false;
4134     }
4135 
4136     /*
4137      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4138      * us to pull this check before the CheckMOPSEnabled() test
4139      * (which we do in the helper function)
4140      */
4141     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4142         a->rd == 31 || a->rn == 31) {
4143         return false;
4144     }
4145 
4146     memidx = get_a64_user_mem_index(s, a->unpriv);
4147 
4148     /*
4149      * We pass option_a == true, matching our implementation;
4150      * we pass wrong_option == false: helper function may set that bit.
4151      */
4152     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4153                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4154 
4155     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4156         /* We may need to do MTE tag checking, so assemble the descriptor */
4157         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4158         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4159         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4160         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4161     }
4162     /* The helper function always needs the memidx even with MTE disabled */
4163     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4164 
4165     /*
4166      * The helper needs the register numbers, but since they're in
4167      * the syndrome anyway, we let it extract them from there rather
4168      * than passing in an extra three integer arguments.
4169      */
4170     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4171     return true;
4172 }
4173 
4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4180 
4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4182 
4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4184 {
4185     int rmemidx, wmemidx;
4186     uint32_t syndrome, rdesc = 0, wdesc = 0;
4187     bool wunpriv = extract32(a->options, 0, 1);
4188     bool runpriv = extract32(a->options, 1, 1);
4189 
4190     /*
4191      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192      * us to pull this check before the CheckMOPSEnabled() test
4193      * (which we do in the helper function)
4194      */
4195     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4197         return false;
4198     }
4199 
4200     rmemidx = get_a64_user_mem_index(s, runpriv);
4201     wmemidx = get_a64_user_mem_index(s, wunpriv);
4202 
4203     /*
4204      * We pass option_a == true, matching our implementation;
4205      * we pass wrong_option == false: helper function may set that bit.
4206      */
4207     syndrome = syn_mop(false, false, a->options, is_epilogue,
4208                        false, true, a->rd, a->rs, a->rn);
4209 
4210     /* If we need to do MTE tag checking, assemble the descriptors */
4211     if (s->mte_active[runpriv]) {
4212         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4213         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4214     }
4215     if (s->mte_active[wunpriv]) {
4216         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4217         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4218         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4219     }
4220     /* The helper function needs these parts of the descriptor regardless */
4221     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4222     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4223 
4224     /*
4225      * The helper needs the register numbers, but since they're in
4226      * the syndrome anyway, we let it extract them from there rather
4227      * than passing in an extra three integer arguments.
4228      */
4229     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4230        tcg_constant_i32(rdesc));
4231     return true;
4232 }
4233 
4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4240 
4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4242 
4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4244                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4245 {
4246     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4247     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4248     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4249 
4250     fn(tcg_rd, tcg_rn, tcg_imm);
4251     if (!a->sf) {
4252         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4253     }
4254     return true;
4255 }
4256 
4257 /*
4258  * PC-rel. addressing
4259  */
4260 
4261 static bool trans_ADR(DisasContext *s, arg_ri *a)
4262 {
4263     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4264     return true;
4265 }
4266 
4267 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4268 {
4269     int64_t offset = (int64_t)a->imm << 12;
4270 
4271     /* The page offset is ok for CF_PCREL. */
4272     offset -= s->pc_curr & 0xfff;
4273     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4274     return true;
4275 }
4276 
4277 /*
4278  * Add/subtract (immediate)
4279  */
4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4284 
4285 /*
4286  * Add/subtract (immediate, with tags)
4287  */
4288 
4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4290                                       bool sub_op)
4291 {
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     imm = a->uimm6 << LOG2_TAG_GRANULE;
4296     if (sub_op) {
4297         imm = -imm;
4298     }
4299 
4300     tcg_rn = cpu_reg_sp(s, a->rn);
4301     tcg_rd = cpu_reg_sp(s, a->rd);
4302 
4303     if (s->ata[0]) {
4304         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4305                            tcg_constant_i32(imm),
4306                            tcg_constant_i32(a->uimm4));
4307     } else {
4308         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4309         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4310     }
4311     return true;
4312 }
4313 
4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4316 
4317 /* The input should be a value in the bottom e bits (with higher
4318  * bits zero); returns that value replicated into every element
4319  * of size e in a 64 bit integer.
4320  */
4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4322 {
4323     assert(e != 0);
4324     while (e < 64) {
4325         mask |= mask << e;
4326         e *= 2;
4327     }
4328     return mask;
4329 }
4330 
4331 /*
4332  * Logical (immediate)
4333  */
4334 
4335 /*
4336  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4337  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4338  * value (ie should cause a guest UNDEF exception), and true if they are
4339  * valid, in which case the decoded bit pattern is written to result.
4340  */
4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4342                             unsigned int imms, unsigned int immr)
4343 {
4344     uint64_t mask;
4345     unsigned e, levels, s, r;
4346     int len;
4347 
4348     assert(immn < 2 && imms < 64 && immr < 64);
4349 
4350     /* The bit patterns we create here are 64 bit patterns which
4351      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4352      * 64 bits each. Each element contains the same value: a run
4353      * of between 1 and e-1 non-zero bits, rotated within the
4354      * element by between 0 and e-1 bits.
4355      *
4356      * The element size and run length are encoded into immn (1 bit)
4357      * and imms (6 bits) as follows:
4358      * 64 bit elements: immn = 1, imms = <length of run - 1>
4359      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4360      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4361      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4362      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4363      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4364      * Notice that immn = 0, imms = 11111x is the only combination
4365      * not covered by one of the above options; this is reserved.
4366      * Further, <length of run - 1> all-ones is a reserved pattern.
4367      *
4368      * In all cases the rotation is by immr % e (and immr is 6 bits).
4369      */
4370 
4371     /* First determine the element size */
4372     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4373     if (len < 1) {
4374         /* This is the immn == 0, imms == 0x11111x case */
4375         return false;
4376     }
4377     e = 1 << len;
4378 
4379     levels = e - 1;
4380     s = imms & levels;
4381     r = immr & levels;
4382 
4383     if (s == levels) {
4384         /* <length of run - 1> mustn't be all-ones. */
4385         return false;
4386     }
4387 
4388     /* Create the value of one element: s+1 set bits rotated
4389      * by r within the element (which is e bits wide)...
4390      */
4391     mask = MAKE_64BIT_MASK(0, s + 1);
4392     if (r) {
4393         mask = (mask >> r) | (mask << (e - r));
4394         mask &= MAKE_64BIT_MASK(0, e);
4395     }
4396     /* ...then replicate the element over the whole 64 bit value */
4397     mask = bitfield_replicate(mask, e);
4398     *result = mask;
4399     return true;
4400 }
4401 
4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4403                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4404 {
4405     TCGv_i64 tcg_rd, tcg_rn;
4406     uint64_t imm;
4407 
4408     /* Some immediate field values are reserved. */
4409     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4410                                 extract32(a->dbm, 0, 6),
4411                                 extract32(a->dbm, 6, 6))) {
4412         return false;
4413     }
4414     if (!a->sf) {
4415         imm &= 0xffffffffull;
4416     }
4417 
4418     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4419     tcg_rn = cpu_reg(s, a->rn);
4420 
4421     fn(tcg_rd, tcg_rn, imm);
4422     if (set_cc) {
4423         gen_logic_CC(a->sf, tcg_rd);
4424     }
4425     if (!a->sf) {
4426         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4427     }
4428     return true;
4429 }
4430 
4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4435 
4436 /*
4437  * Move wide (immediate)
4438  */
4439 
4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4441 {
4442     int pos = a->hw << 4;
4443     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4444     return true;
4445 }
4446 
4447 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4448 {
4449     int pos = a->hw << 4;
4450     uint64_t imm = a->imm;
4451 
4452     imm = ~(imm << pos);
4453     if (!a->sf) {
4454         imm = (uint32_t)imm;
4455     }
4456     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4457     return true;
4458 }
4459 
4460 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4461 {
4462     int pos = a->hw << 4;
4463     TCGv_i64 tcg_rd, tcg_im;
4464 
4465     tcg_rd = cpu_reg(s, a->rd);
4466     tcg_im = tcg_constant_i64(a->imm);
4467     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4468     if (!a->sf) {
4469         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4470     }
4471     return true;
4472 }
4473 
4474 /*
4475  * Bitfield
4476  */
4477 
4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4479 {
4480     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4481     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482     unsigned int bitsize = a->sf ? 64 : 32;
4483     unsigned int ri = a->immr;
4484     unsigned int si = a->imms;
4485     unsigned int pos, len;
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         len = (si - ri) + 1;
4490         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4491         if (!a->sf) {
4492             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4493         }
4494     } else {
4495         /* Wd<32+s-r,32-r> = Wn<s:0> */
4496         len = si + 1;
4497         pos = (bitsize - ri) & (bitsize - 1);
4498 
4499         if (len < ri) {
4500             /*
4501              * Sign extend the destination field from len to fill the
4502              * balance of the word.  Let the deposit below insert all
4503              * of those sign bits.
4504              */
4505             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4506             len = ri;
4507         }
4508 
4509         /*
4510          * We start with zero, and we haven't modified any bits outside
4511          * bitsize, therefore no final zero-extension is unneeded for !sf.
4512          */
4513         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4514     }
4515     return true;
4516 }
4517 
4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4519 {
4520     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4521     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4522     unsigned int bitsize = a->sf ? 64 : 32;
4523     unsigned int ri = a->immr;
4524     unsigned int si = a->imms;
4525     unsigned int pos, len;
4526 
4527     tcg_rd = cpu_reg(s, a->rd);
4528     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 
4530     if (si >= ri) {
4531         /* Wd<s-r:0> = Wn<s:r> */
4532         len = (si - ri) + 1;
4533         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534     } else {
4535         /* Wd<32+s-r,32-r> = Wn<s:0> */
4536         len = si + 1;
4537         pos = (bitsize - ri) & (bitsize - 1);
4538         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4539     }
4540     return true;
4541 }
4542 
4543 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4544 {
4545     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4546     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4547     unsigned int bitsize = a->sf ? 64 : 32;
4548     unsigned int ri = a->immr;
4549     unsigned int si = a->imms;
4550     unsigned int pos, len;
4551 
4552     tcg_rd = cpu_reg(s, a->rd);
4553     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4554 
4555     if (si >= ri) {
4556         /* Wd<s-r:0> = Wn<s:r> */
4557         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4558         len = (si - ri) + 1;
4559         pos = 0;
4560     } else {
4561         /* Wd<32+s-r,32-r> = Wn<s:0> */
4562         len = si + 1;
4563         pos = (bitsize - ri) & (bitsize - 1);
4564     }
4565 
4566     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4567     if (!a->sf) {
4568         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4569     }
4570     return true;
4571 }
4572 
4573 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4574 {
4575     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4576 
4577     tcg_rd = cpu_reg(s, a->rd);
4578 
4579     if (unlikely(a->imm == 0)) {
4580         /*
4581          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4582          * so an extract from bit 0 is a special case.
4583          */
4584         if (a->sf) {
4585             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4586         } else {
4587             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4588         }
4589     } else {
4590         tcg_rm = cpu_reg(s, a->rm);
4591         tcg_rn = cpu_reg(s, a->rn);
4592 
4593         if (a->sf) {
4594             /* Specialization to ROR happens in EXTRACT2.  */
4595             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4596         } else {
4597             TCGv_i32 t0 = tcg_temp_new_i32();
4598 
4599             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4600             if (a->rm == a->rn) {
4601                 tcg_gen_rotri_i32(t0, t0, a->imm);
4602             } else {
4603                 TCGv_i32 t1 = tcg_temp_new_i32();
4604                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4605                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4606             }
4607             tcg_gen_extu_i32_i64(tcg_rd, t0);
4608         }
4609     }
4610     return true;
4611 }
4612 
4613 /*
4614  * Cryptographic AES, SHA, SHA512
4615  */
4616 
4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4621 
4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4626 
4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4630 
4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4634 
4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4642 
4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4645 
4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4648 
4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4650 {
4651     if (!dc_isar_feature(aa64_sm3, s)) {
4652         return false;
4653     }
4654     if (fp_access_check(s)) {
4655         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4656         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4657         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4658         TCGv_i32 tcg_res = tcg_temp_new_i32();
4659         unsigned vsz, dofs;
4660 
4661         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4662         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4663         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4664 
4665         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4666         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4667         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4668         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4669 
4670         /* Clear the whole register first, then store bits [127:96]. */
4671         vsz = vec_full_reg_size(s);
4672         dofs = vec_full_reg_offset(s, a->rd);
4673         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4674         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4675     }
4676     return true;
4677 }
4678 
4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4680 {
4681     if (fp_access_check(s)) {
4682         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4683     }
4684     return true;
4685 }
4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4690 
4691 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4692 {
4693     if (!dc_isar_feature(aa64_sha3, s)) {
4694         return false;
4695     }
4696     if (fp_access_check(s)) {
4697         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4698                      vec_full_reg_offset(s, a->rn),
4699                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4700                      vec_full_reg_size(s));
4701     }
4702     return true;
4703 }
4704 
4705 /*
4706  * Advanced SIMD copy
4707  */
4708 
4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4710 {
4711     unsigned esz = ctz32(imm);
4712     if (esz <= MO_64) {
4713         *pesz = esz;
4714         *pidx = imm >> (esz + 1);
4715         return true;
4716     }
4717     return false;
4718 }
4719 
4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4721 {
4722     MemOp esz;
4723     unsigned idx;
4724 
4725     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4726         return false;
4727     }
4728     if (fp_access_check(s)) {
4729         /*
4730          * This instruction just extracts the specified element and
4731          * zero-extends it into the bottom of the destination register.
4732          */
4733         TCGv_i64 tmp = tcg_temp_new_i64();
4734         read_vec_element(s, tmp, a->rn, idx, esz);
4735         write_fp_dreg(s, a->rd, tmp);
4736     }
4737     return true;
4738 }
4739 
4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4741 {
4742     MemOp esz;
4743     unsigned idx;
4744 
4745     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4746         return false;
4747     }
4748     if (esz == MO_64 && !a->q) {
4749         return false;
4750     }
4751     if (fp_access_check(s)) {
4752         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4753                              vec_reg_offset(s, a->rn, idx, esz),
4754                              a->q ? 16 : 8, vec_full_reg_size(s));
4755     }
4756     return true;
4757 }
4758 
4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4760 {
4761     MemOp esz;
4762     unsigned idx;
4763 
4764     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4765         return false;
4766     }
4767     if (esz == MO_64 && !a->q) {
4768         return false;
4769     }
4770     if (fp_access_check(s)) {
4771         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4772                              a->q ? 16 : 8, vec_full_reg_size(s),
4773                              cpu_reg(s, a->rn));
4774     }
4775     return true;
4776 }
4777 
4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4779 {
4780     MemOp esz;
4781     unsigned idx;
4782 
4783     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4784         return false;
4785     }
4786     if (is_signed) {
4787         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4788             return false;
4789         }
4790     } else {
4791         if (esz == MO_64 ? !a->q : a->q) {
4792             return false;
4793         }
4794     }
4795     if (fp_access_check(s)) {
4796         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4797         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4798         if (is_signed && !a->q) {
4799             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4800         }
4801     }
4802     return true;
4803 }
4804 
4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4806 TRANS(UMOV, do_smov_umov, a, 0)
4807 
4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4809 {
4810     MemOp esz;
4811     unsigned idx;
4812 
4813     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4814         return false;
4815     }
4816     if (fp_access_check(s)) {
4817         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4818         clear_vec_high(s, true, a->rd);
4819     }
4820     return true;
4821 }
4822 
4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4824 {
4825     MemOp esz;
4826     unsigned didx, sidx;
4827 
4828     if (!decode_esz_idx(a->di, &esz, &didx)) {
4829         return false;
4830     }
4831     sidx = a->si >> esz;
4832     if (fp_access_check(s)) {
4833         TCGv_i64 tmp = tcg_temp_new_i64();
4834 
4835         read_vec_element(s, tmp, a->rn, sidx, esz);
4836         write_vec_element(s, tmp, a->rd, didx, esz);
4837 
4838         /* INS is considered a 128-bit write for SVE. */
4839         clear_vec_high(s, true, a->rd);
4840     }
4841     return true;
4842 }
4843 
4844 /*
4845  * Advanced SIMD three same
4846  */
4847 
4848 typedef struct FPScalar {
4849     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4850     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4851     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4852 } FPScalar;
4853 
4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4855 {
4856     switch (a->esz) {
4857     case MO_64:
4858         if (fp_access_check(s)) {
4859             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4860             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4861             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4862             write_fp_dreg(s, a->rd, t0);
4863         }
4864         break;
4865     case MO_32:
4866         if (fp_access_check(s)) {
4867             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4868             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4869             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4870             write_fp_sreg(s, a->rd, t0);
4871         }
4872         break;
4873     case MO_16:
4874         if (!dc_isar_feature(aa64_fp16, s)) {
4875             return false;
4876         }
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     default:
4885         return false;
4886     }
4887     return true;
4888 }
4889 
4890 static const FPScalar f_scalar_fadd = {
4891     gen_helper_vfp_addh,
4892     gen_helper_vfp_adds,
4893     gen_helper_vfp_addd,
4894 };
4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4896 
4897 static const FPScalar f_scalar_fsub = {
4898     gen_helper_vfp_subh,
4899     gen_helper_vfp_subs,
4900     gen_helper_vfp_subd,
4901 };
4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4903 
4904 static const FPScalar f_scalar_fdiv = {
4905     gen_helper_vfp_divh,
4906     gen_helper_vfp_divs,
4907     gen_helper_vfp_divd,
4908 };
4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4910 
4911 static const FPScalar f_scalar_fmul = {
4912     gen_helper_vfp_mulh,
4913     gen_helper_vfp_muls,
4914     gen_helper_vfp_muld,
4915 };
4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4917 
4918 static const FPScalar f_scalar_fmax = {
4919     gen_helper_advsimd_maxh,
4920     gen_helper_vfp_maxs,
4921     gen_helper_vfp_maxd,
4922 };
4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4924 
4925 static const FPScalar f_scalar_fmin = {
4926     gen_helper_advsimd_minh,
4927     gen_helper_vfp_mins,
4928     gen_helper_vfp_mind,
4929 };
4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4931 
4932 static const FPScalar f_scalar_fmaxnm = {
4933     gen_helper_advsimd_maxnumh,
4934     gen_helper_vfp_maxnums,
4935     gen_helper_vfp_maxnumd,
4936 };
4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4938 
4939 static const FPScalar f_scalar_fminnm = {
4940     gen_helper_advsimd_minnumh,
4941     gen_helper_vfp_minnums,
4942     gen_helper_vfp_minnumd,
4943 };
4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4945 
4946 static const FPScalar f_scalar_fmulx = {
4947     gen_helper_advsimd_mulxh,
4948     gen_helper_vfp_mulxs,
4949     gen_helper_vfp_mulxd,
4950 };
4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4952 
4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4954 {
4955     gen_helper_vfp_mulh(d, n, m, s);
4956     gen_vfp_negh(d, d);
4957 }
4958 
4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4960 {
4961     gen_helper_vfp_muls(d, n, m, s);
4962     gen_vfp_negs(d, d);
4963 }
4964 
4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4966 {
4967     gen_helper_vfp_muld(d, n, m, s);
4968     gen_vfp_negd(d, d);
4969 }
4970 
4971 static const FPScalar f_scalar_fnmul = {
4972     gen_fnmul_h,
4973     gen_fnmul_s,
4974     gen_fnmul_d,
4975 };
4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4977 
4978 static const FPScalar f_scalar_fcmeq = {
4979     gen_helper_advsimd_ceq_f16,
4980     gen_helper_neon_ceq_f32,
4981     gen_helper_neon_ceq_f64,
4982 };
4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
4984 
4985 static const FPScalar f_scalar_fcmge = {
4986     gen_helper_advsimd_cge_f16,
4987     gen_helper_neon_cge_f32,
4988     gen_helper_neon_cge_f64,
4989 };
4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
4991 
4992 static const FPScalar f_scalar_fcmgt = {
4993     gen_helper_advsimd_cgt_f16,
4994     gen_helper_neon_cgt_f32,
4995     gen_helper_neon_cgt_f64,
4996 };
4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
4998 
4999 static const FPScalar f_scalar_facge = {
5000     gen_helper_advsimd_acge_f16,
5001     gen_helper_neon_acge_f32,
5002     gen_helper_neon_acge_f64,
5003 };
5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5005 
5006 static const FPScalar f_scalar_facgt = {
5007     gen_helper_advsimd_acgt_f16,
5008     gen_helper_neon_acgt_f32,
5009     gen_helper_neon_acgt_f64,
5010 };
5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5012 
5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5014 {
5015     gen_helper_vfp_subh(d, n, m, s);
5016     gen_vfp_absh(d, d);
5017 }
5018 
5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5020 {
5021     gen_helper_vfp_subs(d, n, m, s);
5022     gen_vfp_abss(d, d);
5023 }
5024 
5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5026 {
5027     gen_helper_vfp_subd(d, n, m, s);
5028     gen_vfp_absd(d, d);
5029 }
5030 
5031 static const FPScalar f_scalar_fabd = {
5032     gen_fabd_h,
5033     gen_fabd_s,
5034     gen_fabd_d,
5035 };
5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5037 
5038 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5039                           gen_helper_gvec_3_ptr * const fns[3])
5040 {
5041     MemOp esz = a->esz;
5042 
5043     switch (esz) {
5044     case MO_64:
5045         if (!a->q) {
5046             return false;
5047         }
5048         break;
5049     case MO_32:
5050         break;
5051     case MO_16:
5052         if (!dc_isar_feature(aa64_fp16, s)) {
5053             return false;
5054         }
5055         break;
5056     default:
5057         return false;
5058     }
5059     if (fp_access_check(s)) {
5060         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5061                           esz == MO_16, 0, fns[esz - 1]);
5062     }
5063     return true;
5064 }
5065 
5066 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5067     gen_helper_gvec_fadd_h,
5068     gen_helper_gvec_fadd_s,
5069     gen_helper_gvec_fadd_d,
5070 };
5071 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5072 
5073 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5074     gen_helper_gvec_fsub_h,
5075     gen_helper_gvec_fsub_s,
5076     gen_helper_gvec_fsub_d,
5077 };
5078 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5079 
5080 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5081     gen_helper_gvec_fdiv_h,
5082     gen_helper_gvec_fdiv_s,
5083     gen_helper_gvec_fdiv_d,
5084 };
5085 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5086 
5087 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5088     gen_helper_gvec_fmul_h,
5089     gen_helper_gvec_fmul_s,
5090     gen_helper_gvec_fmul_d,
5091 };
5092 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5093 
5094 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5095     gen_helper_gvec_fmax_h,
5096     gen_helper_gvec_fmax_s,
5097     gen_helper_gvec_fmax_d,
5098 };
5099 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5100 
5101 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5102     gen_helper_gvec_fmin_h,
5103     gen_helper_gvec_fmin_s,
5104     gen_helper_gvec_fmin_d,
5105 };
5106 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5107 
5108 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5109     gen_helper_gvec_fmaxnum_h,
5110     gen_helper_gvec_fmaxnum_s,
5111     gen_helper_gvec_fmaxnum_d,
5112 };
5113 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5114 
5115 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5116     gen_helper_gvec_fminnum_h,
5117     gen_helper_gvec_fminnum_s,
5118     gen_helper_gvec_fminnum_d,
5119 };
5120 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5121 
5122 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5123     gen_helper_gvec_fmulx_h,
5124     gen_helper_gvec_fmulx_s,
5125     gen_helper_gvec_fmulx_d,
5126 };
5127 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5128 
5129 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5130     gen_helper_gvec_vfma_h,
5131     gen_helper_gvec_vfma_s,
5132     gen_helper_gvec_vfma_d,
5133 };
5134 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5135 
5136 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5137     gen_helper_gvec_vfms_h,
5138     gen_helper_gvec_vfms_s,
5139     gen_helper_gvec_vfms_d,
5140 };
5141 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5142 
5143 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5144     gen_helper_gvec_fceq_h,
5145     gen_helper_gvec_fceq_s,
5146     gen_helper_gvec_fceq_d,
5147 };
5148 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5149 
5150 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5151     gen_helper_gvec_fcge_h,
5152     gen_helper_gvec_fcge_s,
5153     gen_helper_gvec_fcge_d,
5154 };
5155 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5156 
5157 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5158     gen_helper_gvec_fcgt_h,
5159     gen_helper_gvec_fcgt_s,
5160     gen_helper_gvec_fcgt_d,
5161 };
5162 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5163 
5164 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5165     gen_helper_gvec_facge_h,
5166     gen_helper_gvec_facge_s,
5167     gen_helper_gvec_facge_d,
5168 };
5169 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5170 
5171 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5172     gen_helper_gvec_facgt_h,
5173     gen_helper_gvec_facgt_s,
5174     gen_helper_gvec_facgt_d,
5175 };
5176 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5177 
5178 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5179     gen_helper_gvec_fabd_h,
5180     gen_helper_gvec_fabd_s,
5181     gen_helper_gvec_fabd_d,
5182 };
5183 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5184 
5185 /*
5186  * Advanced SIMD scalar/vector x indexed element
5187  */
5188 
5189 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5190 {
5191     switch (a->esz) {
5192     case MO_64:
5193         if (fp_access_check(s)) {
5194             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5195             TCGv_i64 t1 = tcg_temp_new_i64();
5196 
5197             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5198             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5199             write_fp_dreg(s, a->rd, t0);
5200         }
5201         break;
5202     case MO_32:
5203         if (fp_access_check(s)) {
5204             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5205             TCGv_i32 t1 = tcg_temp_new_i32();
5206 
5207             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5208             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5209             write_fp_sreg(s, a->rd, t0);
5210         }
5211         break;
5212     case MO_16:
5213         if (!dc_isar_feature(aa64_fp16, s)) {
5214             return false;
5215         }
5216         if (fp_access_check(s)) {
5217             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5218             TCGv_i32 t1 = tcg_temp_new_i32();
5219 
5220             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5221             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5222             write_fp_sreg(s, a->rd, t0);
5223         }
5224         break;
5225     default:
5226         g_assert_not_reached();
5227     }
5228     return true;
5229 }
5230 
5231 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5232 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5233 
5234 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5235 {
5236     switch (a->esz) {
5237     case MO_64:
5238         if (fp_access_check(s)) {
5239             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5240             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5241             TCGv_i64 t2 = tcg_temp_new_i64();
5242 
5243             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5244             if (neg) {
5245                 gen_vfp_negd(t1, t1);
5246             }
5247             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5248             write_fp_dreg(s, a->rd, t0);
5249         }
5250         break;
5251     case MO_32:
5252         if (fp_access_check(s)) {
5253             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5254             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5255             TCGv_i32 t2 = tcg_temp_new_i32();
5256 
5257             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5258             if (neg) {
5259                 gen_vfp_negs(t1, t1);
5260             }
5261             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5262             write_fp_sreg(s, a->rd, t0);
5263         }
5264         break;
5265     case MO_16:
5266         if (!dc_isar_feature(aa64_fp16, s)) {
5267             return false;
5268         }
5269         if (fp_access_check(s)) {
5270             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5271             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5272             TCGv_i32 t2 = tcg_temp_new_i32();
5273 
5274             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5275             if (neg) {
5276                 gen_vfp_negh(t1, t1);
5277             }
5278             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5279                                        fpstatus_ptr(FPST_FPCR_F16));
5280             write_fp_sreg(s, a->rd, t0);
5281         }
5282         break;
5283     default:
5284         g_assert_not_reached();
5285     }
5286     return true;
5287 }
5288 
5289 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5290 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5291 
5292 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5293                               gen_helper_gvec_3_ptr * const fns[3])
5294 {
5295     MemOp esz = a->esz;
5296 
5297     switch (esz) {
5298     case MO_64:
5299         if (!a->q) {
5300             return false;
5301         }
5302         break;
5303     case MO_32:
5304         break;
5305     case MO_16:
5306         if (!dc_isar_feature(aa64_fp16, s)) {
5307             return false;
5308         }
5309         break;
5310     default:
5311         g_assert_not_reached();
5312     }
5313     if (fp_access_check(s)) {
5314         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5315                           esz == MO_16, a->idx, fns[esz - 1]);
5316     }
5317     return true;
5318 }
5319 
5320 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5321     gen_helper_gvec_fmul_idx_h,
5322     gen_helper_gvec_fmul_idx_s,
5323     gen_helper_gvec_fmul_idx_d,
5324 };
5325 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5326 
5327 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5328     gen_helper_gvec_fmulx_idx_h,
5329     gen_helper_gvec_fmulx_idx_s,
5330     gen_helper_gvec_fmulx_idx_d,
5331 };
5332 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5333 
5334 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5335 {
5336     static gen_helper_gvec_4_ptr * const fns[3] = {
5337         gen_helper_gvec_fmla_idx_h,
5338         gen_helper_gvec_fmla_idx_s,
5339         gen_helper_gvec_fmla_idx_d,
5340     };
5341     MemOp esz = a->esz;
5342 
5343     switch (esz) {
5344     case MO_64:
5345         if (!a->q) {
5346             return false;
5347         }
5348         break;
5349     case MO_32:
5350         break;
5351     case MO_16:
5352         if (!dc_isar_feature(aa64_fp16, s)) {
5353             return false;
5354         }
5355         break;
5356     default:
5357         g_assert_not_reached();
5358     }
5359     if (fp_access_check(s)) {
5360         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5361                           esz == MO_16, (a->idx << 1) | neg,
5362                           fns[esz - 1]);
5363     }
5364     return true;
5365 }
5366 
5367 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5368 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5369 
5370 
5371 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5372  * Note that it is the caller's responsibility to ensure that the
5373  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5374  * mandated semantics for out of range shifts.
5375  */
5376 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5377                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5378 {
5379     switch (shift_type) {
5380     case A64_SHIFT_TYPE_LSL:
5381         tcg_gen_shl_i64(dst, src, shift_amount);
5382         break;
5383     case A64_SHIFT_TYPE_LSR:
5384         tcg_gen_shr_i64(dst, src, shift_amount);
5385         break;
5386     case A64_SHIFT_TYPE_ASR:
5387         if (!sf) {
5388             tcg_gen_ext32s_i64(dst, src);
5389         }
5390         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5391         break;
5392     case A64_SHIFT_TYPE_ROR:
5393         if (sf) {
5394             tcg_gen_rotr_i64(dst, src, shift_amount);
5395         } else {
5396             TCGv_i32 t0, t1;
5397             t0 = tcg_temp_new_i32();
5398             t1 = tcg_temp_new_i32();
5399             tcg_gen_extrl_i64_i32(t0, src);
5400             tcg_gen_extrl_i64_i32(t1, shift_amount);
5401             tcg_gen_rotr_i32(t0, t0, t1);
5402             tcg_gen_extu_i32_i64(dst, t0);
5403         }
5404         break;
5405     default:
5406         assert(FALSE); /* all shift types should be handled */
5407         break;
5408     }
5409 
5410     if (!sf) { /* zero extend final result */
5411         tcg_gen_ext32u_i64(dst, dst);
5412     }
5413 }
5414 
5415 /* Shift a TCGv src by immediate, put result in dst.
5416  * The shift amount must be in range (this should always be true as the
5417  * relevant instructions will UNDEF on bad shift immediates).
5418  */
5419 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5420                           enum a64_shift_type shift_type, unsigned int shift_i)
5421 {
5422     assert(shift_i < (sf ? 64 : 32));
5423 
5424     if (shift_i == 0) {
5425         tcg_gen_mov_i64(dst, src);
5426     } else {
5427         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5428     }
5429 }
5430 
5431 /* Logical (shifted register)
5432  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5433  * +----+-----+-----------+-------+---+------+--------+------+------+
5434  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5435  * +----+-----+-----------+-------+---+------+--------+------+------+
5436  */
5437 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5438 {
5439     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5440     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5441 
5442     sf = extract32(insn, 31, 1);
5443     opc = extract32(insn, 29, 2);
5444     shift_type = extract32(insn, 22, 2);
5445     invert = extract32(insn, 21, 1);
5446     rm = extract32(insn, 16, 5);
5447     shift_amount = extract32(insn, 10, 6);
5448     rn = extract32(insn, 5, 5);
5449     rd = extract32(insn, 0, 5);
5450 
5451     if (!sf && (shift_amount & (1 << 5))) {
5452         unallocated_encoding(s);
5453         return;
5454     }
5455 
5456     tcg_rd = cpu_reg(s, rd);
5457 
5458     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5459         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5460          * register-register MOV and MVN, so it is worth special casing.
5461          */
5462         tcg_rm = cpu_reg(s, rm);
5463         if (invert) {
5464             tcg_gen_not_i64(tcg_rd, tcg_rm);
5465             if (!sf) {
5466                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5467             }
5468         } else {
5469             if (sf) {
5470                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5471             } else {
5472                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5473             }
5474         }
5475         return;
5476     }
5477 
5478     tcg_rm = read_cpu_reg(s, rm, sf);
5479 
5480     if (shift_amount) {
5481         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5482     }
5483 
5484     tcg_rn = cpu_reg(s, rn);
5485 
5486     switch (opc | (invert << 2)) {
5487     case 0: /* AND */
5488     case 3: /* ANDS */
5489         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5490         break;
5491     case 1: /* ORR */
5492         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5493         break;
5494     case 2: /* EOR */
5495         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5496         break;
5497     case 4: /* BIC */
5498     case 7: /* BICS */
5499         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5500         break;
5501     case 5: /* ORN */
5502         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5503         break;
5504     case 6: /* EON */
5505         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5506         break;
5507     default:
5508         assert(FALSE);
5509         break;
5510     }
5511 
5512     if (!sf) {
5513         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5514     }
5515 
5516     if (opc == 3) {
5517         gen_logic_CC(sf, tcg_rd);
5518     }
5519 }
5520 
5521 /*
5522  * Add/subtract (extended register)
5523  *
5524  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5525  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5526  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5527  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5528  *
5529  *  sf: 0 -> 32bit, 1 -> 64bit
5530  *  op: 0 -> add  , 1 -> sub
5531  *   S: 1 -> set flags
5532  * opt: 00
5533  * option: extension type (see DecodeRegExtend)
5534  * imm3: optional shift to Rm
5535  *
5536  * Rd = Rn + LSL(extend(Rm), amount)
5537  */
5538 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5539 {
5540     int rd = extract32(insn, 0, 5);
5541     int rn = extract32(insn, 5, 5);
5542     int imm3 = extract32(insn, 10, 3);
5543     int option = extract32(insn, 13, 3);
5544     int rm = extract32(insn, 16, 5);
5545     int opt = extract32(insn, 22, 2);
5546     bool setflags = extract32(insn, 29, 1);
5547     bool sub_op = extract32(insn, 30, 1);
5548     bool sf = extract32(insn, 31, 1);
5549 
5550     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5551     TCGv_i64 tcg_rd;
5552     TCGv_i64 tcg_result;
5553 
5554     if (imm3 > 4 || opt != 0) {
5555         unallocated_encoding(s);
5556         return;
5557     }
5558 
5559     /* non-flag setting ops may use SP */
5560     if (!setflags) {
5561         tcg_rd = cpu_reg_sp(s, rd);
5562     } else {
5563         tcg_rd = cpu_reg(s, rd);
5564     }
5565     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5566 
5567     tcg_rm = read_cpu_reg(s, rm, sf);
5568     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5569 
5570     tcg_result = tcg_temp_new_i64();
5571 
5572     if (!setflags) {
5573         if (sub_op) {
5574             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5575         } else {
5576             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5577         }
5578     } else {
5579         if (sub_op) {
5580             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5581         } else {
5582             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5583         }
5584     }
5585 
5586     if (sf) {
5587         tcg_gen_mov_i64(tcg_rd, tcg_result);
5588     } else {
5589         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5590     }
5591 }
5592 
5593 /*
5594  * Add/subtract (shifted register)
5595  *
5596  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5597  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5598  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5599  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5600  *
5601  *    sf: 0 -> 32bit, 1 -> 64bit
5602  *    op: 0 -> add  , 1 -> sub
5603  *     S: 1 -> set flags
5604  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5605  *  imm6: Shift amount to apply to Rm before the add/sub
5606  */
5607 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5608 {
5609     int rd = extract32(insn, 0, 5);
5610     int rn = extract32(insn, 5, 5);
5611     int imm6 = extract32(insn, 10, 6);
5612     int rm = extract32(insn, 16, 5);
5613     int shift_type = extract32(insn, 22, 2);
5614     bool setflags = extract32(insn, 29, 1);
5615     bool sub_op = extract32(insn, 30, 1);
5616     bool sf = extract32(insn, 31, 1);
5617 
5618     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5619     TCGv_i64 tcg_rn, tcg_rm;
5620     TCGv_i64 tcg_result;
5621 
5622     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5623         unallocated_encoding(s);
5624         return;
5625     }
5626 
5627     tcg_rn = read_cpu_reg(s, rn, sf);
5628     tcg_rm = read_cpu_reg(s, rm, sf);
5629 
5630     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5631 
5632     tcg_result = tcg_temp_new_i64();
5633 
5634     if (!setflags) {
5635         if (sub_op) {
5636             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5637         } else {
5638             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5639         }
5640     } else {
5641         if (sub_op) {
5642             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5643         } else {
5644             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5645         }
5646     }
5647 
5648     if (sf) {
5649         tcg_gen_mov_i64(tcg_rd, tcg_result);
5650     } else {
5651         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5652     }
5653 }
5654 
5655 /* Data-processing (3 source)
5656  *
5657  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5658  *  +--+------+-----------+------+------+----+------+------+------+
5659  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5660  *  +--+------+-----------+------+------+----+------+------+------+
5661  */
5662 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5663 {
5664     int rd = extract32(insn, 0, 5);
5665     int rn = extract32(insn, 5, 5);
5666     int ra = extract32(insn, 10, 5);
5667     int rm = extract32(insn, 16, 5);
5668     int op_id = (extract32(insn, 29, 3) << 4) |
5669         (extract32(insn, 21, 3) << 1) |
5670         extract32(insn, 15, 1);
5671     bool sf = extract32(insn, 31, 1);
5672     bool is_sub = extract32(op_id, 0, 1);
5673     bool is_high = extract32(op_id, 2, 1);
5674     bool is_signed = false;
5675     TCGv_i64 tcg_op1;
5676     TCGv_i64 tcg_op2;
5677     TCGv_i64 tcg_tmp;
5678 
5679     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5680     switch (op_id) {
5681     case 0x42: /* SMADDL */
5682     case 0x43: /* SMSUBL */
5683     case 0x44: /* SMULH */
5684         is_signed = true;
5685         break;
5686     case 0x0: /* MADD (32bit) */
5687     case 0x1: /* MSUB (32bit) */
5688     case 0x40: /* MADD (64bit) */
5689     case 0x41: /* MSUB (64bit) */
5690     case 0x4a: /* UMADDL */
5691     case 0x4b: /* UMSUBL */
5692     case 0x4c: /* UMULH */
5693         break;
5694     default:
5695         unallocated_encoding(s);
5696         return;
5697     }
5698 
5699     if (is_high) {
5700         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5701         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5702         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5703         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5704 
5705         if (is_signed) {
5706             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5707         } else {
5708             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5709         }
5710         return;
5711     }
5712 
5713     tcg_op1 = tcg_temp_new_i64();
5714     tcg_op2 = tcg_temp_new_i64();
5715     tcg_tmp = tcg_temp_new_i64();
5716 
5717     if (op_id < 0x42) {
5718         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5719         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5720     } else {
5721         if (is_signed) {
5722             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5723             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5724         } else {
5725             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5726             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5727         }
5728     }
5729 
5730     if (ra == 31 && !is_sub) {
5731         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5732         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5733     } else {
5734         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5735         if (is_sub) {
5736             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5737         } else {
5738             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5739         }
5740     }
5741 
5742     if (!sf) {
5743         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5744     }
5745 }
5746 
5747 /* Add/subtract (with carry)
5748  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5749  * +--+--+--+------------------------+------+-------------+------+-----+
5750  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5751  * +--+--+--+------------------------+------+-------------+------+-----+
5752  */
5753 
5754 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5755 {
5756     unsigned int sf, op, setflags, rm, rn, rd;
5757     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5758 
5759     sf = extract32(insn, 31, 1);
5760     op = extract32(insn, 30, 1);
5761     setflags = extract32(insn, 29, 1);
5762     rm = extract32(insn, 16, 5);
5763     rn = extract32(insn, 5, 5);
5764     rd = extract32(insn, 0, 5);
5765 
5766     tcg_rd = cpu_reg(s, rd);
5767     tcg_rn = cpu_reg(s, rn);
5768 
5769     if (op) {
5770         tcg_y = tcg_temp_new_i64();
5771         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5772     } else {
5773         tcg_y = cpu_reg(s, rm);
5774     }
5775 
5776     if (setflags) {
5777         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5778     } else {
5779         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5780     }
5781 }
5782 
5783 /*
5784  * Rotate right into flags
5785  *  31 30 29                21       15          10      5  4      0
5786  * +--+--+--+-----------------+--------+-----------+------+--+------+
5787  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5788  * +--+--+--+-----------------+--------+-----------+------+--+------+
5789  */
5790 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5791 {
5792     int mask = extract32(insn, 0, 4);
5793     int o2 = extract32(insn, 4, 1);
5794     int rn = extract32(insn, 5, 5);
5795     int imm6 = extract32(insn, 15, 6);
5796     int sf_op_s = extract32(insn, 29, 3);
5797     TCGv_i64 tcg_rn;
5798     TCGv_i32 nzcv;
5799 
5800     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5801         unallocated_encoding(s);
5802         return;
5803     }
5804 
5805     tcg_rn = read_cpu_reg(s, rn, 1);
5806     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5807 
5808     nzcv = tcg_temp_new_i32();
5809     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5810 
5811     if (mask & 8) { /* N */
5812         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5813     }
5814     if (mask & 4) { /* Z */
5815         tcg_gen_not_i32(cpu_ZF, nzcv);
5816         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5817     }
5818     if (mask & 2) { /* C */
5819         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5820     }
5821     if (mask & 1) { /* V */
5822         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5823     }
5824 }
5825 
5826 /*
5827  * Evaluate into flags
5828  *  31 30 29                21        15   14        10      5  4      0
5829  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5830  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5831  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5832  */
5833 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5834 {
5835     int o3_mask = extract32(insn, 0, 5);
5836     int rn = extract32(insn, 5, 5);
5837     int o2 = extract32(insn, 15, 6);
5838     int sz = extract32(insn, 14, 1);
5839     int sf_op_s = extract32(insn, 29, 3);
5840     TCGv_i32 tmp;
5841     int shift;
5842 
5843     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5844         !dc_isar_feature(aa64_condm_4, s)) {
5845         unallocated_encoding(s);
5846         return;
5847     }
5848     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5849 
5850     tmp = tcg_temp_new_i32();
5851     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5852     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5853     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5854     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5855     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5856 }
5857 
5858 /* Conditional compare (immediate / register)
5859  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5860  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5861  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5862  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5863  *        [1]                             y                [0]       [0]
5864  */
5865 static void disas_cc(DisasContext *s, uint32_t insn)
5866 {
5867     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5868     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5869     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5870     DisasCompare c;
5871 
5872     if (!extract32(insn, 29, 1)) {
5873         unallocated_encoding(s);
5874         return;
5875     }
5876     if (insn & (1 << 10 | 1 << 4)) {
5877         unallocated_encoding(s);
5878         return;
5879     }
5880     sf = extract32(insn, 31, 1);
5881     op = extract32(insn, 30, 1);
5882     is_imm = extract32(insn, 11, 1);
5883     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5884     cond = extract32(insn, 12, 4);
5885     rn = extract32(insn, 5, 5);
5886     nzcv = extract32(insn, 0, 4);
5887 
5888     /* Set T0 = !COND.  */
5889     tcg_t0 = tcg_temp_new_i32();
5890     arm_test_cc(&c, cond);
5891     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5892 
5893     /* Load the arguments for the new comparison.  */
5894     if (is_imm) {
5895         tcg_y = tcg_temp_new_i64();
5896         tcg_gen_movi_i64(tcg_y, y);
5897     } else {
5898         tcg_y = cpu_reg(s, y);
5899     }
5900     tcg_rn = cpu_reg(s, rn);
5901 
5902     /* Set the flags for the new comparison.  */
5903     tcg_tmp = tcg_temp_new_i64();
5904     if (op) {
5905         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5906     } else {
5907         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5908     }
5909 
5910     /* If COND was false, force the flags to #nzcv.  Compute two masks
5911      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5912      * For tcg hosts that support ANDC, we can make do with just T1.
5913      * In either case, allow the tcg optimizer to delete any unused mask.
5914      */
5915     tcg_t1 = tcg_temp_new_i32();
5916     tcg_t2 = tcg_temp_new_i32();
5917     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5918     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5919 
5920     if (nzcv & 8) { /* N */
5921         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5922     } else {
5923         if (TCG_TARGET_HAS_andc_i32) {
5924             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5925         } else {
5926             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5927         }
5928     }
5929     if (nzcv & 4) { /* Z */
5930         if (TCG_TARGET_HAS_andc_i32) {
5931             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5932         } else {
5933             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5934         }
5935     } else {
5936         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5937     }
5938     if (nzcv & 2) { /* C */
5939         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5940     } else {
5941         if (TCG_TARGET_HAS_andc_i32) {
5942             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5943         } else {
5944             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5945         }
5946     }
5947     if (nzcv & 1) { /* V */
5948         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5949     } else {
5950         if (TCG_TARGET_HAS_andc_i32) {
5951             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5952         } else {
5953             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5954         }
5955     }
5956 }
5957 
5958 /* Conditional select
5959  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5960  * +----+----+---+-----------------+------+------+-----+------+------+
5961  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5962  * +----+----+---+-----------------+------+------+-----+------+------+
5963  */
5964 static void disas_cond_select(DisasContext *s, uint32_t insn)
5965 {
5966     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5967     TCGv_i64 tcg_rd, zero;
5968     DisasCompare64 c;
5969 
5970     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5971         /* S == 1 or op2<1> == 1 */
5972         unallocated_encoding(s);
5973         return;
5974     }
5975     sf = extract32(insn, 31, 1);
5976     else_inv = extract32(insn, 30, 1);
5977     rm = extract32(insn, 16, 5);
5978     cond = extract32(insn, 12, 4);
5979     else_inc = extract32(insn, 10, 1);
5980     rn = extract32(insn, 5, 5);
5981     rd = extract32(insn, 0, 5);
5982 
5983     tcg_rd = cpu_reg(s, rd);
5984 
5985     a64_test_cc(&c, cond);
5986     zero = tcg_constant_i64(0);
5987 
5988     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5989         /* CSET & CSETM.  */
5990         if (else_inv) {
5991             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5992                                    tcg_rd, c.value, zero);
5993         } else {
5994             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5995                                 tcg_rd, c.value, zero);
5996         }
5997     } else {
5998         TCGv_i64 t_true = cpu_reg(s, rn);
5999         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6000         if (else_inv && else_inc) {
6001             tcg_gen_neg_i64(t_false, t_false);
6002         } else if (else_inv) {
6003             tcg_gen_not_i64(t_false, t_false);
6004         } else if (else_inc) {
6005             tcg_gen_addi_i64(t_false, t_false, 1);
6006         }
6007         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6008     }
6009 
6010     if (!sf) {
6011         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6012     }
6013 }
6014 
6015 static void handle_clz(DisasContext *s, unsigned int sf,
6016                        unsigned int rn, unsigned int rd)
6017 {
6018     TCGv_i64 tcg_rd, tcg_rn;
6019     tcg_rd = cpu_reg(s, rd);
6020     tcg_rn = cpu_reg(s, rn);
6021 
6022     if (sf) {
6023         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6024     } else {
6025         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6026         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6027         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6028         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6029     }
6030 }
6031 
6032 static void handle_cls(DisasContext *s, unsigned int sf,
6033                        unsigned int rn, unsigned int rd)
6034 {
6035     TCGv_i64 tcg_rd, tcg_rn;
6036     tcg_rd = cpu_reg(s, rd);
6037     tcg_rn = cpu_reg(s, rn);
6038 
6039     if (sf) {
6040         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6041     } else {
6042         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6043         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6044         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6045         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6046     }
6047 }
6048 
6049 static void handle_rbit(DisasContext *s, unsigned int sf,
6050                         unsigned int rn, unsigned int rd)
6051 {
6052     TCGv_i64 tcg_rd, tcg_rn;
6053     tcg_rd = cpu_reg(s, rd);
6054     tcg_rn = cpu_reg(s, rn);
6055 
6056     if (sf) {
6057         gen_helper_rbit64(tcg_rd, tcg_rn);
6058     } else {
6059         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6060         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6061         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6062         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6063     }
6064 }
6065 
6066 /* REV with sf==1, opcode==3 ("REV64") */
6067 static void handle_rev64(DisasContext *s, unsigned int sf,
6068                          unsigned int rn, unsigned int rd)
6069 {
6070     if (!sf) {
6071         unallocated_encoding(s);
6072         return;
6073     }
6074     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6075 }
6076 
6077 /* REV with sf==0, opcode==2
6078  * REV32 (sf==1, opcode==2)
6079  */
6080 static void handle_rev32(DisasContext *s, unsigned int sf,
6081                          unsigned int rn, unsigned int rd)
6082 {
6083     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6084     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6085 
6086     if (sf) {
6087         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6088         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6089     } else {
6090         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6091     }
6092 }
6093 
6094 /* REV16 (opcode==1) */
6095 static void handle_rev16(DisasContext *s, unsigned int sf,
6096                          unsigned int rn, unsigned int rd)
6097 {
6098     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6099     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6100     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6101     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6102 
6103     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6104     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6105     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6106     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6107     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6108 }
6109 
6110 /* Data-processing (1 source)
6111  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6112  * +----+---+---+-----------------+---------+--------+------+------+
6113  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6114  * +----+---+---+-----------------+---------+--------+------+------+
6115  */
6116 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6117 {
6118     unsigned int sf, opcode, opcode2, rn, rd;
6119     TCGv_i64 tcg_rd;
6120 
6121     if (extract32(insn, 29, 1)) {
6122         unallocated_encoding(s);
6123         return;
6124     }
6125 
6126     sf = extract32(insn, 31, 1);
6127     opcode = extract32(insn, 10, 6);
6128     opcode2 = extract32(insn, 16, 5);
6129     rn = extract32(insn, 5, 5);
6130     rd = extract32(insn, 0, 5);
6131 
6132 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6133 
6134     switch (MAP(sf, opcode2, opcode)) {
6135     case MAP(0, 0x00, 0x00): /* RBIT */
6136     case MAP(1, 0x00, 0x00):
6137         handle_rbit(s, sf, rn, rd);
6138         break;
6139     case MAP(0, 0x00, 0x01): /* REV16 */
6140     case MAP(1, 0x00, 0x01):
6141         handle_rev16(s, sf, rn, rd);
6142         break;
6143     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6144     case MAP(1, 0x00, 0x02):
6145         handle_rev32(s, sf, rn, rd);
6146         break;
6147     case MAP(1, 0x00, 0x03): /* REV64 */
6148         handle_rev64(s, sf, rn, rd);
6149         break;
6150     case MAP(0, 0x00, 0x04): /* CLZ */
6151     case MAP(1, 0x00, 0x04):
6152         handle_clz(s, sf, rn, rd);
6153         break;
6154     case MAP(0, 0x00, 0x05): /* CLS */
6155     case MAP(1, 0x00, 0x05):
6156         handle_cls(s, sf, rn, rd);
6157         break;
6158     case MAP(1, 0x01, 0x00): /* PACIA */
6159         if (s->pauth_active) {
6160             tcg_rd = cpu_reg(s, rd);
6161             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6162         } else if (!dc_isar_feature(aa64_pauth, s)) {
6163             goto do_unallocated;
6164         }
6165         break;
6166     case MAP(1, 0x01, 0x01): /* PACIB */
6167         if (s->pauth_active) {
6168             tcg_rd = cpu_reg(s, rd);
6169             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6170         } else if (!dc_isar_feature(aa64_pauth, s)) {
6171             goto do_unallocated;
6172         }
6173         break;
6174     case MAP(1, 0x01, 0x02): /* PACDA */
6175         if (s->pauth_active) {
6176             tcg_rd = cpu_reg(s, rd);
6177             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6178         } else if (!dc_isar_feature(aa64_pauth, s)) {
6179             goto do_unallocated;
6180         }
6181         break;
6182     case MAP(1, 0x01, 0x03): /* PACDB */
6183         if (s->pauth_active) {
6184             tcg_rd = cpu_reg(s, rd);
6185             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6186         } else if (!dc_isar_feature(aa64_pauth, s)) {
6187             goto do_unallocated;
6188         }
6189         break;
6190     case MAP(1, 0x01, 0x04): /* AUTIA */
6191         if (s->pauth_active) {
6192             tcg_rd = cpu_reg(s, rd);
6193             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6194         } else if (!dc_isar_feature(aa64_pauth, s)) {
6195             goto do_unallocated;
6196         }
6197         break;
6198     case MAP(1, 0x01, 0x05): /* AUTIB */
6199         if (s->pauth_active) {
6200             tcg_rd = cpu_reg(s, rd);
6201             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6202         } else if (!dc_isar_feature(aa64_pauth, s)) {
6203             goto do_unallocated;
6204         }
6205         break;
6206     case MAP(1, 0x01, 0x06): /* AUTDA */
6207         if (s->pauth_active) {
6208             tcg_rd = cpu_reg(s, rd);
6209             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6210         } else if (!dc_isar_feature(aa64_pauth, s)) {
6211             goto do_unallocated;
6212         }
6213         break;
6214     case MAP(1, 0x01, 0x07): /* AUTDB */
6215         if (s->pauth_active) {
6216             tcg_rd = cpu_reg(s, rd);
6217             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6218         } else if (!dc_isar_feature(aa64_pauth, s)) {
6219             goto do_unallocated;
6220         }
6221         break;
6222     case MAP(1, 0x01, 0x08): /* PACIZA */
6223         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6224             goto do_unallocated;
6225         } else if (s->pauth_active) {
6226             tcg_rd = cpu_reg(s, rd);
6227             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6228         }
6229         break;
6230     case MAP(1, 0x01, 0x09): /* PACIZB */
6231         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6232             goto do_unallocated;
6233         } else if (s->pauth_active) {
6234             tcg_rd = cpu_reg(s, rd);
6235             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6236         }
6237         break;
6238     case MAP(1, 0x01, 0x0a): /* PACDZA */
6239         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6240             goto do_unallocated;
6241         } else if (s->pauth_active) {
6242             tcg_rd = cpu_reg(s, rd);
6243             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6244         }
6245         break;
6246     case MAP(1, 0x01, 0x0b): /* PACDZB */
6247         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6248             goto do_unallocated;
6249         } else if (s->pauth_active) {
6250             tcg_rd = cpu_reg(s, rd);
6251             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6252         }
6253         break;
6254     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6255         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6256             goto do_unallocated;
6257         } else if (s->pauth_active) {
6258             tcg_rd = cpu_reg(s, rd);
6259             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6260         }
6261         break;
6262     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6263         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6264             goto do_unallocated;
6265         } else if (s->pauth_active) {
6266             tcg_rd = cpu_reg(s, rd);
6267             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6268         }
6269         break;
6270     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6271         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6272             goto do_unallocated;
6273         } else if (s->pauth_active) {
6274             tcg_rd = cpu_reg(s, rd);
6275             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6276         }
6277         break;
6278     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6279         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6280             goto do_unallocated;
6281         } else if (s->pauth_active) {
6282             tcg_rd = cpu_reg(s, rd);
6283             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6284         }
6285         break;
6286     case MAP(1, 0x01, 0x10): /* XPACI */
6287         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6288             goto do_unallocated;
6289         } else if (s->pauth_active) {
6290             tcg_rd = cpu_reg(s, rd);
6291             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6292         }
6293         break;
6294     case MAP(1, 0x01, 0x11): /* XPACD */
6295         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6296             goto do_unallocated;
6297         } else if (s->pauth_active) {
6298             tcg_rd = cpu_reg(s, rd);
6299             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6300         }
6301         break;
6302     default:
6303     do_unallocated:
6304         unallocated_encoding(s);
6305         break;
6306     }
6307 
6308 #undef MAP
6309 }
6310 
6311 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6312                        unsigned int rm, unsigned int rn, unsigned int rd)
6313 {
6314     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6315     tcg_rd = cpu_reg(s, rd);
6316 
6317     if (!sf && is_signed) {
6318         tcg_n = tcg_temp_new_i64();
6319         tcg_m = tcg_temp_new_i64();
6320         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6321         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6322     } else {
6323         tcg_n = read_cpu_reg(s, rn, sf);
6324         tcg_m = read_cpu_reg(s, rm, sf);
6325     }
6326 
6327     if (is_signed) {
6328         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6329     } else {
6330         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6331     }
6332 
6333     if (!sf) { /* zero extend final result */
6334         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6335     }
6336 }
6337 
6338 /* LSLV, LSRV, ASRV, RORV */
6339 static void handle_shift_reg(DisasContext *s,
6340                              enum a64_shift_type shift_type, unsigned int sf,
6341                              unsigned int rm, unsigned int rn, unsigned int rd)
6342 {
6343     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6344     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6345     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6346 
6347     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6348     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6349 }
6350 
6351 /* CRC32[BHWX], CRC32C[BHWX] */
6352 static void handle_crc32(DisasContext *s,
6353                          unsigned int sf, unsigned int sz, bool crc32c,
6354                          unsigned int rm, unsigned int rn, unsigned int rd)
6355 {
6356     TCGv_i64 tcg_acc, tcg_val;
6357     TCGv_i32 tcg_bytes;
6358 
6359     if (!dc_isar_feature(aa64_crc32, s)
6360         || (sf == 1 && sz != 3)
6361         || (sf == 0 && sz == 3)) {
6362         unallocated_encoding(s);
6363         return;
6364     }
6365 
6366     if (sz == 3) {
6367         tcg_val = cpu_reg(s, rm);
6368     } else {
6369         uint64_t mask;
6370         switch (sz) {
6371         case 0:
6372             mask = 0xFF;
6373             break;
6374         case 1:
6375             mask = 0xFFFF;
6376             break;
6377         case 2:
6378             mask = 0xFFFFFFFF;
6379             break;
6380         default:
6381             g_assert_not_reached();
6382         }
6383         tcg_val = tcg_temp_new_i64();
6384         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6385     }
6386 
6387     tcg_acc = cpu_reg(s, rn);
6388     tcg_bytes = tcg_constant_i32(1 << sz);
6389 
6390     if (crc32c) {
6391         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6392     } else {
6393         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6394     }
6395 }
6396 
6397 /* Data-processing (2 source)
6398  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6399  * +----+---+---+-----------------+------+--------+------+------+
6400  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6401  * +----+---+---+-----------------+------+--------+------+------+
6402  */
6403 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6404 {
6405     unsigned int sf, rm, opcode, rn, rd, setflag;
6406     sf = extract32(insn, 31, 1);
6407     setflag = extract32(insn, 29, 1);
6408     rm = extract32(insn, 16, 5);
6409     opcode = extract32(insn, 10, 6);
6410     rn = extract32(insn, 5, 5);
6411     rd = extract32(insn, 0, 5);
6412 
6413     if (setflag && opcode != 0) {
6414         unallocated_encoding(s);
6415         return;
6416     }
6417 
6418     switch (opcode) {
6419     case 0: /* SUBP(S) */
6420         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6421             goto do_unallocated;
6422         } else {
6423             TCGv_i64 tcg_n, tcg_m, tcg_d;
6424 
6425             tcg_n = read_cpu_reg_sp(s, rn, true);
6426             tcg_m = read_cpu_reg_sp(s, rm, true);
6427             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6428             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6429             tcg_d = cpu_reg(s, rd);
6430 
6431             if (setflag) {
6432                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6433             } else {
6434                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6435             }
6436         }
6437         break;
6438     case 2: /* UDIV */
6439         handle_div(s, false, sf, rm, rn, rd);
6440         break;
6441     case 3: /* SDIV */
6442         handle_div(s, true, sf, rm, rn, rd);
6443         break;
6444     case 4: /* IRG */
6445         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6446             goto do_unallocated;
6447         }
6448         if (s->ata[0]) {
6449             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6450                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6451         } else {
6452             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6453                                              cpu_reg_sp(s, rn));
6454         }
6455         break;
6456     case 5: /* GMI */
6457         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6458             goto do_unallocated;
6459         } else {
6460             TCGv_i64 t = tcg_temp_new_i64();
6461 
6462             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6463             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6464             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6465         }
6466         break;
6467     case 8: /* LSLV */
6468         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6469         break;
6470     case 9: /* LSRV */
6471         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6472         break;
6473     case 10: /* ASRV */
6474         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6475         break;
6476     case 11: /* RORV */
6477         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6478         break;
6479     case 12: /* PACGA */
6480         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6481             goto do_unallocated;
6482         }
6483         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6484                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6485         break;
6486     case 16:
6487     case 17:
6488     case 18:
6489     case 19:
6490     case 20:
6491     case 21:
6492     case 22:
6493     case 23: /* CRC32 */
6494     {
6495         int sz = extract32(opcode, 0, 2);
6496         bool crc32c = extract32(opcode, 2, 1);
6497         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6498         break;
6499     }
6500     default:
6501     do_unallocated:
6502         unallocated_encoding(s);
6503         break;
6504     }
6505 }
6506 
6507 /*
6508  * Data processing - register
6509  *  31  30 29  28      25    21  20  16      10         0
6510  * +--+---+--+---+-------+-----+-------+-------+---------+
6511  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6512  * +--+---+--+---+-------+-----+-------+-------+---------+
6513  */
6514 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6515 {
6516     int op0 = extract32(insn, 30, 1);
6517     int op1 = extract32(insn, 28, 1);
6518     int op2 = extract32(insn, 21, 4);
6519     int op3 = extract32(insn, 10, 6);
6520 
6521     if (!op1) {
6522         if (op2 & 8) {
6523             if (op2 & 1) {
6524                 /* Add/sub (extended register) */
6525                 disas_add_sub_ext_reg(s, insn);
6526             } else {
6527                 /* Add/sub (shifted register) */
6528                 disas_add_sub_reg(s, insn);
6529             }
6530         } else {
6531             /* Logical (shifted register) */
6532             disas_logic_reg(s, insn);
6533         }
6534         return;
6535     }
6536 
6537     switch (op2) {
6538     case 0x0:
6539         switch (op3) {
6540         case 0x00: /* Add/subtract (with carry) */
6541             disas_adc_sbc(s, insn);
6542             break;
6543 
6544         case 0x01: /* Rotate right into flags */
6545         case 0x21:
6546             disas_rotate_right_into_flags(s, insn);
6547             break;
6548 
6549         case 0x02: /* Evaluate into flags */
6550         case 0x12:
6551         case 0x22:
6552         case 0x32:
6553             disas_evaluate_into_flags(s, insn);
6554             break;
6555 
6556         default:
6557             goto do_unallocated;
6558         }
6559         break;
6560 
6561     case 0x2: /* Conditional compare */
6562         disas_cc(s, insn); /* both imm and reg forms */
6563         break;
6564 
6565     case 0x4: /* Conditional select */
6566         disas_cond_select(s, insn);
6567         break;
6568 
6569     case 0x6: /* Data-processing */
6570         if (op0) {    /* (1 source) */
6571             disas_data_proc_1src(s, insn);
6572         } else {      /* (2 source) */
6573             disas_data_proc_2src(s, insn);
6574         }
6575         break;
6576     case 0x8 ... 0xf: /* (3 source) */
6577         disas_data_proc_3src(s, insn);
6578         break;
6579 
6580     default:
6581     do_unallocated:
6582         unallocated_encoding(s);
6583         break;
6584     }
6585 }
6586 
6587 static void handle_fp_compare(DisasContext *s, int size,
6588                               unsigned int rn, unsigned int rm,
6589                               bool cmp_with_zero, bool signal_all_nans)
6590 {
6591     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6592     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6593 
6594     if (size == MO_64) {
6595         TCGv_i64 tcg_vn, tcg_vm;
6596 
6597         tcg_vn = read_fp_dreg(s, rn);
6598         if (cmp_with_zero) {
6599             tcg_vm = tcg_constant_i64(0);
6600         } else {
6601             tcg_vm = read_fp_dreg(s, rm);
6602         }
6603         if (signal_all_nans) {
6604             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6605         } else {
6606             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6607         }
6608     } else {
6609         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6610         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6611 
6612         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6613         if (cmp_with_zero) {
6614             tcg_gen_movi_i32(tcg_vm, 0);
6615         } else {
6616             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6617         }
6618 
6619         switch (size) {
6620         case MO_32:
6621             if (signal_all_nans) {
6622                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6623             } else {
6624                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6625             }
6626             break;
6627         case MO_16:
6628             if (signal_all_nans) {
6629                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6630             } else {
6631                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6632             }
6633             break;
6634         default:
6635             g_assert_not_reached();
6636         }
6637     }
6638 
6639     gen_set_nzcv(tcg_flags);
6640 }
6641 
6642 /* Floating point compare
6643  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6644  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6645  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6646  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6647  */
6648 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6649 {
6650     unsigned int mos, type, rm, op, rn, opc, op2r;
6651     int size;
6652 
6653     mos = extract32(insn, 29, 3);
6654     type = extract32(insn, 22, 2);
6655     rm = extract32(insn, 16, 5);
6656     op = extract32(insn, 14, 2);
6657     rn = extract32(insn, 5, 5);
6658     opc = extract32(insn, 3, 2);
6659     op2r = extract32(insn, 0, 3);
6660 
6661     if (mos || op || op2r) {
6662         unallocated_encoding(s);
6663         return;
6664     }
6665 
6666     switch (type) {
6667     case 0:
6668         size = MO_32;
6669         break;
6670     case 1:
6671         size = MO_64;
6672         break;
6673     case 3:
6674         size = MO_16;
6675         if (dc_isar_feature(aa64_fp16, s)) {
6676             break;
6677         }
6678         /* fallthru */
6679     default:
6680         unallocated_encoding(s);
6681         return;
6682     }
6683 
6684     if (!fp_access_check(s)) {
6685         return;
6686     }
6687 
6688     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6689 }
6690 
6691 /* Floating point conditional compare
6692  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6693  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6694  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6695  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6696  */
6697 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6698 {
6699     unsigned int mos, type, rm, cond, rn, op, nzcv;
6700     TCGLabel *label_continue = NULL;
6701     int size;
6702 
6703     mos = extract32(insn, 29, 3);
6704     type = extract32(insn, 22, 2);
6705     rm = extract32(insn, 16, 5);
6706     cond = extract32(insn, 12, 4);
6707     rn = extract32(insn, 5, 5);
6708     op = extract32(insn, 4, 1);
6709     nzcv = extract32(insn, 0, 4);
6710 
6711     if (mos) {
6712         unallocated_encoding(s);
6713         return;
6714     }
6715 
6716     switch (type) {
6717     case 0:
6718         size = MO_32;
6719         break;
6720     case 1:
6721         size = MO_64;
6722         break;
6723     case 3:
6724         size = MO_16;
6725         if (dc_isar_feature(aa64_fp16, s)) {
6726             break;
6727         }
6728         /* fallthru */
6729     default:
6730         unallocated_encoding(s);
6731         return;
6732     }
6733 
6734     if (!fp_access_check(s)) {
6735         return;
6736     }
6737 
6738     if (cond < 0x0e) { /* not always */
6739         TCGLabel *label_match = gen_new_label();
6740         label_continue = gen_new_label();
6741         arm_gen_test_cc(cond, label_match);
6742         /* nomatch: */
6743         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6744         tcg_gen_br(label_continue);
6745         gen_set_label(label_match);
6746     }
6747 
6748     handle_fp_compare(s, size, rn, rm, false, op);
6749 
6750     if (cond < 0x0e) {
6751         gen_set_label(label_continue);
6752     }
6753 }
6754 
6755 /* Floating point conditional select
6756  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6757  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6758  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6759  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6760  */
6761 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6762 {
6763     unsigned int mos, type, rm, cond, rn, rd;
6764     TCGv_i64 t_true, t_false;
6765     DisasCompare64 c;
6766     MemOp sz;
6767 
6768     mos = extract32(insn, 29, 3);
6769     type = extract32(insn, 22, 2);
6770     rm = extract32(insn, 16, 5);
6771     cond = extract32(insn, 12, 4);
6772     rn = extract32(insn, 5, 5);
6773     rd = extract32(insn, 0, 5);
6774 
6775     if (mos) {
6776         unallocated_encoding(s);
6777         return;
6778     }
6779 
6780     switch (type) {
6781     case 0:
6782         sz = MO_32;
6783         break;
6784     case 1:
6785         sz = MO_64;
6786         break;
6787     case 3:
6788         sz = MO_16;
6789         if (dc_isar_feature(aa64_fp16, s)) {
6790             break;
6791         }
6792         /* fallthru */
6793     default:
6794         unallocated_encoding(s);
6795         return;
6796     }
6797 
6798     if (!fp_access_check(s)) {
6799         return;
6800     }
6801 
6802     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6803     t_true = tcg_temp_new_i64();
6804     t_false = tcg_temp_new_i64();
6805     read_vec_element(s, t_true, rn, 0, sz);
6806     read_vec_element(s, t_false, rm, 0, sz);
6807 
6808     a64_test_cc(&c, cond);
6809     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6810                         t_true, t_false);
6811 
6812     /* Note that sregs & hregs write back zeros to the high bits,
6813        and we've already done the zero-extension.  */
6814     write_fp_dreg(s, rd, t_true);
6815 }
6816 
6817 /* Floating-point data-processing (1 source) - half precision */
6818 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6819 {
6820     TCGv_ptr fpst = NULL;
6821     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6822     TCGv_i32 tcg_res = tcg_temp_new_i32();
6823 
6824     switch (opcode) {
6825     case 0x0: /* FMOV */
6826         tcg_gen_mov_i32(tcg_res, tcg_op);
6827         break;
6828     case 0x1: /* FABS */
6829         gen_vfp_absh(tcg_res, tcg_op);
6830         break;
6831     case 0x2: /* FNEG */
6832         gen_vfp_negh(tcg_res, tcg_op);
6833         break;
6834     case 0x3: /* FSQRT */
6835         fpst = fpstatus_ptr(FPST_FPCR_F16);
6836         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6837         break;
6838     case 0x8: /* FRINTN */
6839     case 0x9: /* FRINTP */
6840     case 0xa: /* FRINTM */
6841     case 0xb: /* FRINTZ */
6842     case 0xc: /* FRINTA */
6843     {
6844         TCGv_i32 tcg_rmode;
6845 
6846         fpst = fpstatus_ptr(FPST_FPCR_F16);
6847         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6848         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6849         gen_restore_rmode(tcg_rmode, fpst);
6850         break;
6851     }
6852     case 0xe: /* FRINTX */
6853         fpst = fpstatus_ptr(FPST_FPCR_F16);
6854         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6855         break;
6856     case 0xf: /* FRINTI */
6857         fpst = fpstatus_ptr(FPST_FPCR_F16);
6858         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6859         break;
6860     default:
6861         g_assert_not_reached();
6862     }
6863 
6864     write_fp_sreg(s, rd, tcg_res);
6865 }
6866 
6867 /* Floating-point data-processing (1 source) - single precision */
6868 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6869 {
6870     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6871     TCGv_i32 tcg_op, tcg_res;
6872     TCGv_ptr fpst;
6873     int rmode = -1;
6874 
6875     tcg_op = read_fp_sreg(s, rn);
6876     tcg_res = tcg_temp_new_i32();
6877 
6878     switch (opcode) {
6879     case 0x0: /* FMOV */
6880         tcg_gen_mov_i32(tcg_res, tcg_op);
6881         goto done;
6882     case 0x1: /* FABS */
6883         gen_vfp_abss(tcg_res, tcg_op);
6884         goto done;
6885     case 0x2: /* FNEG */
6886         gen_vfp_negs(tcg_res, tcg_op);
6887         goto done;
6888     case 0x3: /* FSQRT */
6889         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6890         goto done;
6891     case 0x6: /* BFCVT */
6892         gen_fpst = gen_helper_bfcvt;
6893         break;
6894     case 0x8: /* FRINTN */
6895     case 0x9: /* FRINTP */
6896     case 0xa: /* FRINTM */
6897     case 0xb: /* FRINTZ */
6898     case 0xc: /* FRINTA */
6899         rmode = opcode & 7;
6900         gen_fpst = gen_helper_rints;
6901         break;
6902     case 0xe: /* FRINTX */
6903         gen_fpst = gen_helper_rints_exact;
6904         break;
6905     case 0xf: /* FRINTI */
6906         gen_fpst = gen_helper_rints;
6907         break;
6908     case 0x10: /* FRINT32Z */
6909         rmode = FPROUNDING_ZERO;
6910         gen_fpst = gen_helper_frint32_s;
6911         break;
6912     case 0x11: /* FRINT32X */
6913         gen_fpst = gen_helper_frint32_s;
6914         break;
6915     case 0x12: /* FRINT64Z */
6916         rmode = FPROUNDING_ZERO;
6917         gen_fpst = gen_helper_frint64_s;
6918         break;
6919     case 0x13: /* FRINT64X */
6920         gen_fpst = gen_helper_frint64_s;
6921         break;
6922     default:
6923         g_assert_not_reached();
6924     }
6925 
6926     fpst = fpstatus_ptr(FPST_FPCR);
6927     if (rmode >= 0) {
6928         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6929         gen_fpst(tcg_res, tcg_op, fpst);
6930         gen_restore_rmode(tcg_rmode, fpst);
6931     } else {
6932         gen_fpst(tcg_res, tcg_op, fpst);
6933     }
6934 
6935  done:
6936     write_fp_sreg(s, rd, tcg_res);
6937 }
6938 
6939 /* Floating-point data-processing (1 source) - double precision */
6940 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6941 {
6942     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6943     TCGv_i64 tcg_op, tcg_res;
6944     TCGv_ptr fpst;
6945     int rmode = -1;
6946 
6947     switch (opcode) {
6948     case 0x0: /* FMOV */
6949         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6950         return;
6951     }
6952 
6953     tcg_op = read_fp_dreg(s, rn);
6954     tcg_res = tcg_temp_new_i64();
6955 
6956     switch (opcode) {
6957     case 0x1: /* FABS */
6958         gen_vfp_absd(tcg_res, tcg_op);
6959         goto done;
6960     case 0x2: /* FNEG */
6961         gen_vfp_negd(tcg_res, tcg_op);
6962         goto done;
6963     case 0x3: /* FSQRT */
6964         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6965         goto done;
6966     case 0x8: /* FRINTN */
6967     case 0x9: /* FRINTP */
6968     case 0xa: /* FRINTM */
6969     case 0xb: /* FRINTZ */
6970     case 0xc: /* FRINTA */
6971         rmode = opcode & 7;
6972         gen_fpst = gen_helper_rintd;
6973         break;
6974     case 0xe: /* FRINTX */
6975         gen_fpst = gen_helper_rintd_exact;
6976         break;
6977     case 0xf: /* FRINTI */
6978         gen_fpst = gen_helper_rintd;
6979         break;
6980     case 0x10: /* FRINT32Z */
6981         rmode = FPROUNDING_ZERO;
6982         gen_fpst = gen_helper_frint32_d;
6983         break;
6984     case 0x11: /* FRINT32X */
6985         gen_fpst = gen_helper_frint32_d;
6986         break;
6987     case 0x12: /* FRINT64Z */
6988         rmode = FPROUNDING_ZERO;
6989         gen_fpst = gen_helper_frint64_d;
6990         break;
6991     case 0x13: /* FRINT64X */
6992         gen_fpst = gen_helper_frint64_d;
6993         break;
6994     default:
6995         g_assert_not_reached();
6996     }
6997 
6998     fpst = fpstatus_ptr(FPST_FPCR);
6999     if (rmode >= 0) {
7000         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7001         gen_fpst(tcg_res, tcg_op, fpst);
7002         gen_restore_rmode(tcg_rmode, fpst);
7003     } else {
7004         gen_fpst(tcg_res, tcg_op, fpst);
7005     }
7006 
7007  done:
7008     write_fp_dreg(s, rd, tcg_res);
7009 }
7010 
7011 static void handle_fp_fcvt(DisasContext *s, int opcode,
7012                            int rd, int rn, int dtype, int ntype)
7013 {
7014     switch (ntype) {
7015     case 0x0:
7016     {
7017         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7018         if (dtype == 1) {
7019             /* Single to double */
7020             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7021             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7022             write_fp_dreg(s, rd, tcg_rd);
7023         } else {
7024             /* Single to half */
7025             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7026             TCGv_i32 ahp = get_ahp_flag();
7027             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7028 
7029             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7030             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7031             write_fp_sreg(s, rd, tcg_rd);
7032         }
7033         break;
7034     }
7035     case 0x1:
7036     {
7037         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7038         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7039         if (dtype == 0) {
7040             /* Double to single */
7041             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7042         } else {
7043             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7044             TCGv_i32 ahp = get_ahp_flag();
7045             /* Double to half */
7046             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7047             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7048         }
7049         write_fp_sreg(s, rd, tcg_rd);
7050         break;
7051     }
7052     case 0x3:
7053     {
7054         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7055         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7056         TCGv_i32 tcg_ahp = get_ahp_flag();
7057         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7058         if (dtype == 0) {
7059             /* Half to single */
7060             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7061             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7062             write_fp_sreg(s, rd, tcg_rd);
7063         } else {
7064             /* Half to double */
7065             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7066             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7067             write_fp_dreg(s, rd, tcg_rd);
7068         }
7069         break;
7070     }
7071     default:
7072         g_assert_not_reached();
7073     }
7074 }
7075 
7076 /* Floating point data-processing (1 source)
7077  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7078  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7079  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7080  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7081  */
7082 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7083 {
7084     int mos = extract32(insn, 29, 3);
7085     int type = extract32(insn, 22, 2);
7086     int opcode = extract32(insn, 15, 6);
7087     int rn = extract32(insn, 5, 5);
7088     int rd = extract32(insn, 0, 5);
7089 
7090     if (mos) {
7091         goto do_unallocated;
7092     }
7093 
7094     switch (opcode) {
7095     case 0x4: case 0x5: case 0x7:
7096     {
7097         /* FCVT between half, single and double precision */
7098         int dtype = extract32(opcode, 0, 2);
7099         if (type == 2 || dtype == type) {
7100             goto do_unallocated;
7101         }
7102         if (!fp_access_check(s)) {
7103             return;
7104         }
7105 
7106         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7107         break;
7108     }
7109 
7110     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7111         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7112             goto do_unallocated;
7113         }
7114         /* fall through */
7115     case 0x0 ... 0x3:
7116     case 0x8 ... 0xc:
7117     case 0xe ... 0xf:
7118         /* 32-to-32 and 64-to-64 ops */
7119         switch (type) {
7120         case 0:
7121             if (!fp_access_check(s)) {
7122                 return;
7123             }
7124             handle_fp_1src_single(s, opcode, rd, rn);
7125             break;
7126         case 1:
7127             if (!fp_access_check(s)) {
7128                 return;
7129             }
7130             handle_fp_1src_double(s, opcode, rd, rn);
7131             break;
7132         case 3:
7133             if (!dc_isar_feature(aa64_fp16, s)) {
7134                 goto do_unallocated;
7135             }
7136 
7137             if (!fp_access_check(s)) {
7138                 return;
7139             }
7140             handle_fp_1src_half(s, opcode, rd, rn);
7141             break;
7142         default:
7143             goto do_unallocated;
7144         }
7145         break;
7146 
7147     case 0x6:
7148         switch (type) {
7149         case 1: /* BFCVT */
7150             if (!dc_isar_feature(aa64_bf16, s)) {
7151                 goto do_unallocated;
7152             }
7153             if (!fp_access_check(s)) {
7154                 return;
7155             }
7156             handle_fp_1src_single(s, opcode, rd, rn);
7157             break;
7158         default:
7159             goto do_unallocated;
7160         }
7161         break;
7162 
7163     default:
7164     do_unallocated:
7165         unallocated_encoding(s);
7166         break;
7167     }
7168 }
7169 
7170 /* Floating-point data-processing (3 source) - single precision */
7171 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7172                                   int rd, int rn, int rm, int ra)
7173 {
7174     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7175     TCGv_i32 tcg_res = tcg_temp_new_i32();
7176     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7177 
7178     tcg_op1 = read_fp_sreg(s, rn);
7179     tcg_op2 = read_fp_sreg(s, rm);
7180     tcg_op3 = read_fp_sreg(s, ra);
7181 
7182     /* These are fused multiply-add, and must be done as one
7183      * floating point operation with no rounding between the
7184      * multiplication and addition steps.
7185      * NB that doing the negations here as separate steps is
7186      * correct : an input NaN should come out with its sign bit
7187      * flipped if it is a negated-input.
7188      */
7189     if (o1 == true) {
7190         gen_vfp_negs(tcg_op3, tcg_op3);
7191     }
7192 
7193     if (o0 != o1) {
7194         gen_vfp_negs(tcg_op1, tcg_op1);
7195     }
7196 
7197     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7198 
7199     write_fp_sreg(s, rd, tcg_res);
7200 }
7201 
7202 /* Floating-point data-processing (3 source) - double precision */
7203 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7204                                   int rd, int rn, int rm, int ra)
7205 {
7206     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7207     TCGv_i64 tcg_res = tcg_temp_new_i64();
7208     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7209 
7210     tcg_op1 = read_fp_dreg(s, rn);
7211     tcg_op2 = read_fp_dreg(s, rm);
7212     tcg_op3 = read_fp_dreg(s, ra);
7213 
7214     /* These are fused multiply-add, and must be done as one
7215      * floating point operation with no rounding between the
7216      * multiplication and addition steps.
7217      * NB that doing the negations here as separate steps is
7218      * correct : an input NaN should come out with its sign bit
7219      * flipped if it is a negated-input.
7220      */
7221     if (o1 == true) {
7222         gen_vfp_negd(tcg_op3, tcg_op3);
7223     }
7224 
7225     if (o0 != o1) {
7226         gen_vfp_negd(tcg_op1, tcg_op1);
7227     }
7228 
7229     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7230 
7231     write_fp_dreg(s, rd, tcg_res);
7232 }
7233 
7234 /* Floating-point data-processing (3 source) - half precision */
7235 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7236                                 int rd, int rn, int rm, int ra)
7237 {
7238     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7239     TCGv_i32 tcg_res = tcg_temp_new_i32();
7240     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7241 
7242     tcg_op1 = read_fp_hreg(s, rn);
7243     tcg_op2 = read_fp_hreg(s, rm);
7244     tcg_op3 = read_fp_hreg(s, ra);
7245 
7246     /* These are fused multiply-add, and must be done as one
7247      * floating point operation with no rounding between the
7248      * multiplication and addition steps.
7249      * NB that doing the negations here as separate steps is
7250      * correct : an input NaN should come out with its sign bit
7251      * flipped if it is a negated-input.
7252      */
7253     if (o1 == true) {
7254         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7255     }
7256 
7257     if (o0 != o1) {
7258         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7259     }
7260 
7261     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7262 
7263     write_fp_sreg(s, rd, tcg_res);
7264 }
7265 
7266 /* Floating point data-processing (3 source)
7267  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7268  * +---+---+---+-----------+------+----+------+----+------+------+------+
7269  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7270  * +---+---+---+-----------+------+----+------+----+------+------+------+
7271  */
7272 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7273 {
7274     int mos = extract32(insn, 29, 3);
7275     int type = extract32(insn, 22, 2);
7276     int rd = extract32(insn, 0, 5);
7277     int rn = extract32(insn, 5, 5);
7278     int ra = extract32(insn, 10, 5);
7279     int rm = extract32(insn, 16, 5);
7280     bool o0 = extract32(insn, 15, 1);
7281     bool o1 = extract32(insn, 21, 1);
7282 
7283     if (mos) {
7284         unallocated_encoding(s);
7285         return;
7286     }
7287 
7288     switch (type) {
7289     case 0:
7290         if (!fp_access_check(s)) {
7291             return;
7292         }
7293         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7294         break;
7295     case 1:
7296         if (!fp_access_check(s)) {
7297             return;
7298         }
7299         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7300         break;
7301     case 3:
7302         if (!dc_isar_feature(aa64_fp16, s)) {
7303             unallocated_encoding(s);
7304             return;
7305         }
7306         if (!fp_access_check(s)) {
7307             return;
7308         }
7309         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7310         break;
7311     default:
7312         unallocated_encoding(s);
7313     }
7314 }
7315 
7316 /* Floating point immediate
7317  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7318  * +---+---+---+-----------+------+---+------------+-------+------+------+
7319  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7320  * +---+---+---+-----------+------+---+------------+-------+------+------+
7321  */
7322 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7323 {
7324     int rd = extract32(insn, 0, 5);
7325     int imm5 = extract32(insn, 5, 5);
7326     int imm8 = extract32(insn, 13, 8);
7327     int type = extract32(insn, 22, 2);
7328     int mos = extract32(insn, 29, 3);
7329     uint64_t imm;
7330     MemOp sz;
7331 
7332     if (mos || imm5) {
7333         unallocated_encoding(s);
7334         return;
7335     }
7336 
7337     switch (type) {
7338     case 0:
7339         sz = MO_32;
7340         break;
7341     case 1:
7342         sz = MO_64;
7343         break;
7344     case 3:
7345         sz = MO_16;
7346         if (dc_isar_feature(aa64_fp16, s)) {
7347             break;
7348         }
7349         /* fallthru */
7350     default:
7351         unallocated_encoding(s);
7352         return;
7353     }
7354 
7355     if (!fp_access_check(s)) {
7356         return;
7357     }
7358 
7359     imm = vfp_expand_imm(sz, imm8);
7360     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7361 }
7362 
7363 /* Handle floating point <=> fixed point conversions. Note that we can
7364  * also deal with fp <=> integer conversions as a special case (scale == 64)
7365  * OPTME: consider handling that special case specially or at least skipping
7366  * the call to scalbn in the helpers for zero shifts.
7367  */
7368 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7369                            bool itof, int rmode, int scale, int sf, int type)
7370 {
7371     bool is_signed = !(opcode & 1);
7372     TCGv_ptr tcg_fpstatus;
7373     TCGv_i32 tcg_shift, tcg_single;
7374     TCGv_i64 tcg_double;
7375 
7376     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7377 
7378     tcg_shift = tcg_constant_i32(64 - scale);
7379 
7380     if (itof) {
7381         TCGv_i64 tcg_int = cpu_reg(s, rn);
7382         if (!sf) {
7383             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7384 
7385             if (is_signed) {
7386                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7387             } else {
7388                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7389             }
7390 
7391             tcg_int = tcg_extend;
7392         }
7393 
7394         switch (type) {
7395         case 1: /* float64 */
7396             tcg_double = tcg_temp_new_i64();
7397             if (is_signed) {
7398                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7399                                      tcg_shift, tcg_fpstatus);
7400             } else {
7401                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7402                                      tcg_shift, tcg_fpstatus);
7403             }
7404             write_fp_dreg(s, rd, tcg_double);
7405             break;
7406 
7407         case 0: /* float32 */
7408             tcg_single = tcg_temp_new_i32();
7409             if (is_signed) {
7410                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7411                                      tcg_shift, tcg_fpstatus);
7412             } else {
7413                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7414                                      tcg_shift, tcg_fpstatus);
7415             }
7416             write_fp_sreg(s, rd, tcg_single);
7417             break;
7418 
7419         case 3: /* float16 */
7420             tcg_single = tcg_temp_new_i32();
7421             if (is_signed) {
7422                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7423                                      tcg_shift, tcg_fpstatus);
7424             } else {
7425                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7426                                      tcg_shift, tcg_fpstatus);
7427             }
7428             write_fp_sreg(s, rd, tcg_single);
7429             break;
7430 
7431         default:
7432             g_assert_not_reached();
7433         }
7434     } else {
7435         TCGv_i64 tcg_int = cpu_reg(s, rd);
7436         TCGv_i32 tcg_rmode;
7437 
7438         if (extract32(opcode, 2, 1)) {
7439             /* There are too many rounding modes to all fit into rmode,
7440              * so FCVTA[US] is a special case.
7441              */
7442             rmode = FPROUNDING_TIEAWAY;
7443         }
7444 
7445         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7446 
7447         switch (type) {
7448         case 1: /* float64 */
7449             tcg_double = read_fp_dreg(s, rn);
7450             if (is_signed) {
7451                 if (!sf) {
7452                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7453                                          tcg_shift, tcg_fpstatus);
7454                 } else {
7455                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7456                                          tcg_shift, tcg_fpstatus);
7457                 }
7458             } else {
7459                 if (!sf) {
7460                     gen_helper_vfp_tould(tcg_int, tcg_double,
7461                                          tcg_shift, tcg_fpstatus);
7462                 } else {
7463                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7464                                          tcg_shift, tcg_fpstatus);
7465                 }
7466             }
7467             if (!sf) {
7468                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7469             }
7470             break;
7471 
7472         case 0: /* float32 */
7473             tcg_single = read_fp_sreg(s, rn);
7474             if (sf) {
7475                 if (is_signed) {
7476                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7477                                          tcg_shift, tcg_fpstatus);
7478                 } else {
7479                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7480                                          tcg_shift, tcg_fpstatus);
7481                 }
7482             } else {
7483                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7484                 if (is_signed) {
7485                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7486                                          tcg_shift, tcg_fpstatus);
7487                 } else {
7488                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7489                                          tcg_shift, tcg_fpstatus);
7490                 }
7491                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7492             }
7493             break;
7494 
7495         case 3: /* float16 */
7496             tcg_single = read_fp_sreg(s, rn);
7497             if (sf) {
7498                 if (is_signed) {
7499                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7500                                          tcg_shift, tcg_fpstatus);
7501                 } else {
7502                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7503                                          tcg_shift, tcg_fpstatus);
7504                 }
7505             } else {
7506                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7507                 if (is_signed) {
7508                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7509                                          tcg_shift, tcg_fpstatus);
7510                 } else {
7511                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7512                                          tcg_shift, tcg_fpstatus);
7513                 }
7514                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7515             }
7516             break;
7517 
7518         default:
7519             g_assert_not_reached();
7520         }
7521 
7522         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7523     }
7524 }
7525 
7526 /* Floating point <-> fixed point conversions
7527  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7528  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7529  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7530  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7531  */
7532 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7533 {
7534     int rd = extract32(insn, 0, 5);
7535     int rn = extract32(insn, 5, 5);
7536     int scale = extract32(insn, 10, 6);
7537     int opcode = extract32(insn, 16, 3);
7538     int rmode = extract32(insn, 19, 2);
7539     int type = extract32(insn, 22, 2);
7540     bool sbit = extract32(insn, 29, 1);
7541     bool sf = extract32(insn, 31, 1);
7542     bool itof;
7543 
7544     if (sbit || (!sf && scale < 32)) {
7545         unallocated_encoding(s);
7546         return;
7547     }
7548 
7549     switch (type) {
7550     case 0: /* float32 */
7551     case 1: /* float64 */
7552         break;
7553     case 3: /* float16 */
7554         if (dc_isar_feature(aa64_fp16, s)) {
7555             break;
7556         }
7557         /* fallthru */
7558     default:
7559         unallocated_encoding(s);
7560         return;
7561     }
7562 
7563     switch ((rmode << 3) | opcode) {
7564     case 0x2: /* SCVTF */
7565     case 0x3: /* UCVTF */
7566         itof = true;
7567         break;
7568     case 0x18: /* FCVTZS */
7569     case 0x19: /* FCVTZU */
7570         itof = false;
7571         break;
7572     default:
7573         unallocated_encoding(s);
7574         return;
7575     }
7576 
7577     if (!fp_access_check(s)) {
7578         return;
7579     }
7580 
7581     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7582 }
7583 
7584 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7585 {
7586     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7587      * without conversion.
7588      */
7589 
7590     if (itof) {
7591         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7592         TCGv_i64 tmp;
7593 
7594         switch (type) {
7595         case 0:
7596             /* 32 bit */
7597             tmp = tcg_temp_new_i64();
7598             tcg_gen_ext32u_i64(tmp, tcg_rn);
7599             write_fp_dreg(s, rd, tmp);
7600             break;
7601         case 1:
7602             /* 64 bit */
7603             write_fp_dreg(s, rd, tcg_rn);
7604             break;
7605         case 2:
7606             /* 64 bit to top half. */
7607             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7608             clear_vec_high(s, true, rd);
7609             break;
7610         case 3:
7611             /* 16 bit */
7612             tmp = tcg_temp_new_i64();
7613             tcg_gen_ext16u_i64(tmp, tcg_rn);
7614             write_fp_dreg(s, rd, tmp);
7615             break;
7616         default:
7617             g_assert_not_reached();
7618         }
7619     } else {
7620         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7621 
7622         switch (type) {
7623         case 0:
7624             /* 32 bit */
7625             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7626             break;
7627         case 1:
7628             /* 64 bit */
7629             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7630             break;
7631         case 2:
7632             /* 64 bits from top half */
7633             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7634             break;
7635         case 3:
7636             /* 16 bit */
7637             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7638             break;
7639         default:
7640             g_assert_not_reached();
7641         }
7642     }
7643 }
7644 
7645 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7646 {
7647     TCGv_i64 t = read_fp_dreg(s, rn);
7648     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7649 
7650     gen_helper_fjcvtzs(t, t, fpstatus);
7651 
7652     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7653     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7654     tcg_gen_movi_i32(cpu_CF, 0);
7655     tcg_gen_movi_i32(cpu_NF, 0);
7656     tcg_gen_movi_i32(cpu_VF, 0);
7657 }
7658 
7659 /* Floating point <-> integer conversions
7660  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7661  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7662  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7663  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7664  */
7665 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7666 {
7667     int rd = extract32(insn, 0, 5);
7668     int rn = extract32(insn, 5, 5);
7669     int opcode = extract32(insn, 16, 3);
7670     int rmode = extract32(insn, 19, 2);
7671     int type = extract32(insn, 22, 2);
7672     bool sbit = extract32(insn, 29, 1);
7673     bool sf = extract32(insn, 31, 1);
7674     bool itof = false;
7675 
7676     if (sbit) {
7677         goto do_unallocated;
7678     }
7679 
7680     switch (opcode) {
7681     case 2: /* SCVTF */
7682     case 3: /* UCVTF */
7683         itof = true;
7684         /* fallthru */
7685     case 4: /* FCVTAS */
7686     case 5: /* FCVTAU */
7687         if (rmode != 0) {
7688             goto do_unallocated;
7689         }
7690         /* fallthru */
7691     case 0: /* FCVT[NPMZ]S */
7692     case 1: /* FCVT[NPMZ]U */
7693         switch (type) {
7694         case 0: /* float32 */
7695         case 1: /* float64 */
7696             break;
7697         case 3: /* float16 */
7698             if (!dc_isar_feature(aa64_fp16, s)) {
7699                 goto do_unallocated;
7700             }
7701             break;
7702         default:
7703             goto do_unallocated;
7704         }
7705         if (!fp_access_check(s)) {
7706             return;
7707         }
7708         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7709         break;
7710 
7711     default:
7712         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7713         case 0b01100110: /* FMOV half <-> 32-bit int */
7714         case 0b01100111:
7715         case 0b11100110: /* FMOV half <-> 64-bit int */
7716         case 0b11100111:
7717             if (!dc_isar_feature(aa64_fp16, s)) {
7718                 goto do_unallocated;
7719             }
7720             /* fallthru */
7721         case 0b00000110: /* FMOV 32-bit */
7722         case 0b00000111:
7723         case 0b10100110: /* FMOV 64-bit */
7724         case 0b10100111:
7725         case 0b11001110: /* FMOV top half of 128-bit */
7726         case 0b11001111:
7727             if (!fp_access_check(s)) {
7728                 return;
7729             }
7730             itof = opcode & 1;
7731             handle_fmov(s, rd, rn, type, itof);
7732             break;
7733 
7734         case 0b00111110: /* FJCVTZS */
7735             if (!dc_isar_feature(aa64_jscvt, s)) {
7736                 goto do_unallocated;
7737             } else if (fp_access_check(s)) {
7738                 handle_fjcvtzs(s, rd, rn);
7739             }
7740             break;
7741 
7742         default:
7743         do_unallocated:
7744             unallocated_encoding(s);
7745             return;
7746         }
7747         break;
7748     }
7749 }
7750 
7751 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7752  *   31  30  29 28     25 24                          0
7753  * +---+---+---+---------+-----------------------------+
7754  * |   | 0 |   | 1 1 1 1 |                             |
7755  * +---+---+---+---------+-----------------------------+
7756  */
7757 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7758 {
7759     if (extract32(insn, 24, 1)) {
7760         /* Floating point data-processing (3 source) */
7761         disas_fp_3src(s, insn);
7762     } else if (extract32(insn, 21, 1) == 0) {
7763         /* Floating point to fixed point conversions */
7764         disas_fp_fixed_conv(s, insn);
7765     } else {
7766         switch (extract32(insn, 10, 2)) {
7767         case 1:
7768             /* Floating point conditional compare */
7769             disas_fp_ccomp(s, insn);
7770             break;
7771         case 2:
7772             /* Floating point data-processing (2 source) */
7773             unallocated_encoding(s); /* in decodetree */
7774             break;
7775         case 3:
7776             /* Floating point conditional select */
7777             disas_fp_csel(s, insn);
7778             break;
7779         case 0:
7780             switch (ctz32(extract32(insn, 12, 4))) {
7781             case 0: /* [15:12] == xxx1 */
7782                 /* Floating point immediate */
7783                 disas_fp_imm(s, insn);
7784                 break;
7785             case 1: /* [15:12] == xx10 */
7786                 /* Floating point compare */
7787                 disas_fp_compare(s, insn);
7788                 break;
7789             case 2: /* [15:12] == x100 */
7790                 /* Floating point data-processing (1 source) */
7791                 disas_fp_1src(s, insn);
7792                 break;
7793             case 3: /* [15:12] == 1000 */
7794                 unallocated_encoding(s);
7795                 break;
7796             default: /* [15:12] == 0000 */
7797                 /* Floating point <-> integer conversions */
7798                 disas_fp_int_conv(s, insn);
7799                 break;
7800             }
7801             break;
7802         }
7803     }
7804 }
7805 
7806 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7807                      int pos)
7808 {
7809     /* Extract 64 bits from the middle of two concatenated 64 bit
7810      * vector register slices left:right. The extracted bits start
7811      * at 'pos' bits into the right (least significant) side.
7812      * We return the result in tcg_right, and guarantee not to
7813      * trash tcg_left.
7814      */
7815     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7816     assert(pos > 0 && pos < 64);
7817 
7818     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7819     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7820     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7821 }
7822 
7823 /* EXT
7824  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7825  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7826  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7827  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7828  */
7829 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7830 {
7831     int is_q = extract32(insn, 30, 1);
7832     int op2 = extract32(insn, 22, 2);
7833     int imm4 = extract32(insn, 11, 4);
7834     int rm = extract32(insn, 16, 5);
7835     int rn = extract32(insn, 5, 5);
7836     int rd = extract32(insn, 0, 5);
7837     int pos = imm4 << 3;
7838     TCGv_i64 tcg_resl, tcg_resh;
7839 
7840     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7841         unallocated_encoding(s);
7842         return;
7843     }
7844 
7845     if (!fp_access_check(s)) {
7846         return;
7847     }
7848 
7849     tcg_resh = tcg_temp_new_i64();
7850     tcg_resl = tcg_temp_new_i64();
7851 
7852     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7853      * either extracting 128 bits from a 128:128 concatenation, or
7854      * extracting 64 bits from a 64:64 concatenation.
7855      */
7856     if (!is_q) {
7857         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7858         if (pos != 0) {
7859             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7860             do_ext64(s, tcg_resh, tcg_resl, pos);
7861         }
7862     } else {
7863         TCGv_i64 tcg_hh;
7864         typedef struct {
7865             int reg;
7866             int elt;
7867         } EltPosns;
7868         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7869         EltPosns *elt = eltposns;
7870 
7871         if (pos >= 64) {
7872             elt++;
7873             pos -= 64;
7874         }
7875 
7876         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7877         elt++;
7878         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7879         elt++;
7880         if (pos != 0) {
7881             do_ext64(s, tcg_resh, tcg_resl, pos);
7882             tcg_hh = tcg_temp_new_i64();
7883             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7884             do_ext64(s, tcg_hh, tcg_resh, pos);
7885         }
7886     }
7887 
7888     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7889     if (is_q) {
7890         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7891     }
7892     clear_vec_high(s, is_q, rd);
7893 }
7894 
7895 /* TBL/TBX
7896  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7897  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7898  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7899  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7900  */
7901 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7902 {
7903     int op2 = extract32(insn, 22, 2);
7904     int is_q = extract32(insn, 30, 1);
7905     int rm = extract32(insn, 16, 5);
7906     int rn = extract32(insn, 5, 5);
7907     int rd = extract32(insn, 0, 5);
7908     int is_tbx = extract32(insn, 12, 1);
7909     int len = (extract32(insn, 13, 2) + 1) * 16;
7910 
7911     if (op2 != 0) {
7912         unallocated_encoding(s);
7913         return;
7914     }
7915 
7916     if (!fp_access_check(s)) {
7917         return;
7918     }
7919 
7920     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7921                        vec_full_reg_offset(s, rm), tcg_env,
7922                        is_q ? 16 : 8, vec_full_reg_size(s),
7923                        (len << 6) | (is_tbx << 5) | rn,
7924                        gen_helper_simd_tblx);
7925 }
7926 
7927 /* ZIP/UZP/TRN
7928  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7929  * +---+---+-------------+------+---+------+---+------------------+------+
7930  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7931  * +---+---+-------------+------+---+------+---+------------------+------+
7932  */
7933 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7934 {
7935     int rd = extract32(insn, 0, 5);
7936     int rn = extract32(insn, 5, 5);
7937     int rm = extract32(insn, 16, 5);
7938     int size = extract32(insn, 22, 2);
7939     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7940      * bit 2 indicates 1 vs 2 variant of the insn.
7941      */
7942     int opcode = extract32(insn, 12, 2);
7943     bool part = extract32(insn, 14, 1);
7944     bool is_q = extract32(insn, 30, 1);
7945     int esize = 8 << size;
7946     int i;
7947     int datasize = is_q ? 128 : 64;
7948     int elements = datasize / esize;
7949     TCGv_i64 tcg_res[2], tcg_ele;
7950 
7951     if (opcode == 0 || (size == 3 && !is_q)) {
7952         unallocated_encoding(s);
7953         return;
7954     }
7955 
7956     if (!fp_access_check(s)) {
7957         return;
7958     }
7959 
7960     tcg_res[0] = tcg_temp_new_i64();
7961     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7962     tcg_ele = tcg_temp_new_i64();
7963 
7964     for (i = 0; i < elements; i++) {
7965         int o, w;
7966 
7967         switch (opcode) {
7968         case 1: /* UZP1/2 */
7969         {
7970             int midpoint = elements / 2;
7971             if (i < midpoint) {
7972                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7973             } else {
7974                 read_vec_element(s, tcg_ele, rm,
7975                                  2 * (i - midpoint) + part, size);
7976             }
7977             break;
7978         }
7979         case 2: /* TRN1/2 */
7980             if (i & 1) {
7981                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7982             } else {
7983                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7984             }
7985             break;
7986         case 3: /* ZIP1/2 */
7987         {
7988             int base = part * elements / 2;
7989             if (i & 1) {
7990                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7991             } else {
7992                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7993             }
7994             break;
7995         }
7996         default:
7997             g_assert_not_reached();
7998         }
7999 
8000         w = (i * esize) / 64;
8001         o = (i * esize) % 64;
8002         if (o == 0) {
8003             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8004         } else {
8005             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8006             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8007         }
8008     }
8009 
8010     for (i = 0; i <= is_q; ++i) {
8011         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8012     }
8013     clear_vec_high(s, is_q, rd);
8014 }
8015 
8016 /*
8017  * do_reduction_op helper
8018  *
8019  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8020  * important for correct NaN propagation that we do these
8021  * operations in exactly the order specified by the pseudocode.
8022  *
8023  * This is a recursive function, TCG temps should be freed by the
8024  * calling function once it is done with the values.
8025  */
8026 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8027                                 int esize, int size, int vmap, TCGv_ptr fpst)
8028 {
8029     if (esize == size) {
8030         int element;
8031         MemOp msize = esize == 16 ? MO_16 : MO_32;
8032         TCGv_i32 tcg_elem;
8033 
8034         /* We should have one register left here */
8035         assert(ctpop8(vmap) == 1);
8036         element = ctz32(vmap);
8037         assert(element < 8);
8038 
8039         tcg_elem = tcg_temp_new_i32();
8040         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8041         return tcg_elem;
8042     } else {
8043         int bits = size / 2;
8044         int shift = ctpop8(vmap) / 2;
8045         int vmap_lo = (vmap >> shift) & vmap;
8046         int vmap_hi = (vmap & ~vmap_lo);
8047         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8048 
8049         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8050         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8051         tcg_res = tcg_temp_new_i32();
8052 
8053         switch (fpopcode) {
8054         case 0x0c: /* fmaxnmv half-precision */
8055             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8056             break;
8057         case 0x0f: /* fmaxv half-precision */
8058             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8059             break;
8060         case 0x1c: /* fminnmv half-precision */
8061             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8062             break;
8063         case 0x1f: /* fminv half-precision */
8064             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8065             break;
8066         case 0x2c: /* fmaxnmv */
8067             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8068             break;
8069         case 0x2f: /* fmaxv */
8070             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8071             break;
8072         case 0x3c: /* fminnmv */
8073             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8074             break;
8075         case 0x3f: /* fminv */
8076             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8077             break;
8078         default:
8079             g_assert_not_reached();
8080         }
8081         return tcg_res;
8082     }
8083 }
8084 
8085 /* AdvSIMD across lanes
8086  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8087  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8088  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8089  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8090  */
8091 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8092 {
8093     int rd = extract32(insn, 0, 5);
8094     int rn = extract32(insn, 5, 5);
8095     int size = extract32(insn, 22, 2);
8096     int opcode = extract32(insn, 12, 5);
8097     bool is_q = extract32(insn, 30, 1);
8098     bool is_u = extract32(insn, 29, 1);
8099     bool is_fp = false;
8100     bool is_min = false;
8101     int esize;
8102     int elements;
8103     int i;
8104     TCGv_i64 tcg_res, tcg_elt;
8105 
8106     switch (opcode) {
8107     case 0x1b: /* ADDV */
8108         if (is_u) {
8109             unallocated_encoding(s);
8110             return;
8111         }
8112         /* fall through */
8113     case 0x3: /* SADDLV, UADDLV */
8114     case 0xa: /* SMAXV, UMAXV */
8115     case 0x1a: /* SMINV, UMINV */
8116         if (size == 3 || (size == 2 && !is_q)) {
8117             unallocated_encoding(s);
8118             return;
8119         }
8120         break;
8121     case 0xc: /* FMAXNMV, FMINNMV */
8122     case 0xf: /* FMAXV, FMINV */
8123         /* Bit 1 of size field encodes min vs max and the actual size
8124          * depends on the encoding of the U bit. If not set (and FP16
8125          * enabled) then we do half-precision float instead of single
8126          * precision.
8127          */
8128         is_min = extract32(size, 1, 1);
8129         is_fp = true;
8130         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8131             size = 1;
8132         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8133             unallocated_encoding(s);
8134             return;
8135         } else {
8136             size = 2;
8137         }
8138         break;
8139     default:
8140         unallocated_encoding(s);
8141         return;
8142     }
8143 
8144     if (!fp_access_check(s)) {
8145         return;
8146     }
8147 
8148     esize = 8 << size;
8149     elements = (is_q ? 128 : 64) / esize;
8150 
8151     tcg_res = tcg_temp_new_i64();
8152     tcg_elt = tcg_temp_new_i64();
8153 
8154     /* These instructions operate across all lanes of a vector
8155      * to produce a single result. We can guarantee that a 64
8156      * bit intermediate is sufficient:
8157      *  + for [US]ADDLV the maximum element size is 32 bits, and
8158      *    the result type is 64 bits
8159      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8160      *    same as the element size, which is 32 bits at most
8161      * For the integer operations we can choose to work at 64
8162      * or 32 bits and truncate at the end; for simplicity
8163      * we use 64 bits always. The floating point
8164      * ops do require 32 bit intermediates, though.
8165      */
8166     if (!is_fp) {
8167         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8168 
8169         for (i = 1; i < elements; i++) {
8170             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8171 
8172             switch (opcode) {
8173             case 0x03: /* SADDLV / UADDLV */
8174             case 0x1b: /* ADDV */
8175                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8176                 break;
8177             case 0x0a: /* SMAXV / UMAXV */
8178                 if (is_u) {
8179                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8180                 } else {
8181                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8182                 }
8183                 break;
8184             case 0x1a: /* SMINV / UMINV */
8185                 if (is_u) {
8186                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8187                 } else {
8188                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8189                 }
8190                 break;
8191             default:
8192                 g_assert_not_reached();
8193             }
8194 
8195         }
8196     } else {
8197         /* Floating point vector reduction ops which work across 32
8198          * bit (single) or 16 bit (half-precision) intermediates.
8199          * Note that correct NaN propagation requires that we do these
8200          * operations in exactly the order specified by the pseudocode.
8201          */
8202         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8203         int fpopcode = opcode | is_min << 4 | is_u << 5;
8204         int vmap = (1 << elements) - 1;
8205         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8206                                              (is_q ? 128 : 64), vmap, fpst);
8207         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8208     }
8209 
8210     /* Now truncate the result to the width required for the final output */
8211     if (opcode == 0x03) {
8212         /* SADDLV, UADDLV: result is 2*esize */
8213         size++;
8214     }
8215 
8216     switch (size) {
8217     case 0:
8218         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8219         break;
8220     case 1:
8221         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8222         break;
8223     case 2:
8224         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8225         break;
8226     case 3:
8227         break;
8228     default:
8229         g_assert_not_reached();
8230     }
8231 
8232     write_fp_dreg(s, rd, tcg_res);
8233 }
8234 
8235 /* AdvSIMD modified immediate
8236  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8237  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8238  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8239  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8240  *
8241  * There are a number of operations that can be carried out here:
8242  *   MOVI - move (shifted) imm into register
8243  *   MVNI - move inverted (shifted) imm into register
8244  *   ORR  - bitwise OR of (shifted) imm with register
8245  *   BIC  - bitwise clear of (shifted) imm with register
8246  * With ARMv8.2 we also have:
8247  *   FMOV half-precision
8248  */
8249 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8250 {
8251     int rd = extract32(insn, 0, 5);
8252     int cmode = extract32(insn, 12, 4);
8253     int o2 = extract32(insn, 11, 1);
8254     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8255     bool is_neg = extract32(insn, 29, 1);
8256     bool is_q = extract32(insn, 30, 1);
8257     uint64_t imm = 0;
8258 
8259     if (o2) {
8260         if (cmode != 0xf || is_neg) {
8261             unallocated_encoding(s);
8262             return;
8263         }
8264         /* FMOV (vector, immediate) - half-precision */
8265         if (!dc_isar_feature(aa64_fp16, s)) {
8266             unallocated_encoding(s);
8267             return;
8268         }
8269         imm = vfp_expand_imm(MO_16, abcdefgh);
8270         /* now duplicate across the lanes */
8271         imm = dup_const(MO_16, imm);
8272     } else {
8273         if (cmode == 0xf && is_neg && !is_q) {
8274             unallocated_encoding(s);
8275             return;
8276         }
8277         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8278     }
8279 
8280     if (!fp_access_check(s)) {
8281         return;
8282     }
8283 
8284     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8285         /* MOVI or MVNI, with MVNI negation handled above.  */
8286         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8287                              vec_full_reg_size(s), imm);
8288     } else {
8289         /* ORR or BIC, with BIC negation to AND handled above.  */
8290         if (is_neg) {
8291             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8292         } else {
8293             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8294         }
8295     }
8296 }
8297 
8298 /* AdvSIMD scalar pairwise
8299  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8300  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8301  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8302  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8303  */
8304 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8305 {
8306     int u = extract32(insn, 29, 1);
8307     int size = extract32(insn, 22, 2);
8308     int opcode = extract32(insn, 12, 5);
8309     int rn = extract32(insn, 5, 5);
8310     int rd = extract32(insn, 0, 5);
8311     TCGv_ptr fpst;
8312 
8313     /* For some ops (the FP ones), size[1] is part of the encoding.
8314      * For ADDP strictly it is not but size[1] is always 1 for valid
8315      * encodings.
8316      */
8317     opcode |= (extract32(size, 1, 1) << 5);
8318 
8319     switch (opcode) {
8320     case 0x3b: /* ADDP */
8321         if (u || size != 3) {
8322             unallocated_encoding(s);
8323             return;
8324         }
8325         if (!fp_access_check(s)) {
8326             return;
8327         }
8328 
8329         fpst = NULL;
8330         break;
8331     case 0xc: /* FMAXNMP */
8332     case 0xd: /* FADDP */
8333     case 0xf: /* FMAXP */
8334     case 0x2c: /* FMINNMP */
8335     case 0x2f: /* FMINP */
8336         /* FP op, size[0] is 32 or 64 bit*/
8337         if (!u) {
8338             if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) {
8339                 unallocated_encoding(s);
8340                 return;
8341             } else {
8342                 size = MO_16;
8343             }
8344         } else {
8345             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8346         }
8347 
8348         if (!fp_access_check(s)) {
8349             return;
8350         }
8351 
8352         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8353         break;
8354     default:
8355         unallocated_encoding(s);
8356         return;
8357     }
8358 
8359     if (size == MO_64) {
8360         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8361         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8362         TCGv_i64 tcg_res = tcg_temp_new_i64();
8363 
8364         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8365         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8366 
8367         switch (opcode) {
8368         case 0x3b: /* ADDP */
8369             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8370             break;
8371         case 0xc: /* FMAXNMP */
8372             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8373             break;
8374         case 0xd: /* FADDP */
8375             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8376             break;
8377         case 0xf: /* FMAXP */
8378             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8379             break;
8380         case 0x2c: /* FMINNMP */
8381             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8382             break;
8383         case 0x2f: /* FMINP */
8384             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8385             break;
8386         default:
8387             g_assert_not_reached();
8388         }
8389 
8390         write_fp_dreg(s, rd, tcg_res);
8391     } else {
8392         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8393         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8394         TCGv_i32 tcg_res = tcg_temp_new_i32();
8395 
8396         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8397         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8398 
8399         if (size == MO_16) {
8400             switch (opcode) {
8401             case 0xc: /* FMAXNMP */
8402                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8403                 break;
8404             case 0xd: /* FADDP */
8405                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8406                 break;
8407             case 0xf: /* FMAXP */
8408                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8409                 break;
8410             case 0x2c: /* FMINNMP */
8411                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8412                 break;
8413             case 0x2f: /* FMINP */
8414                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8415                 break;
8416             default:
8417                 g_assert_not_reached();
8418             }
8419         } else {
8420             switch (opcode) {
8421             case 0xc: /* FMAXNMP */
8422                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8423                 break;
8424             case 0xd: /* FADDP */
8425                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8426                 break;
8427             case 0xf: /* FMAXP */
8428                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8429                 break;
8430             case 0x2c: /* FMINNMP */
8431                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8432                 break;
8433             case 0x2f: /* FMINP */
8434                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8435                 break;
8436             default:
8437                 g_assert_not_reached();
8438             }
8439         }
8440 
8441         write_fp_sreg(s, rd, tcg_res);
8442     }
8443 }
8444 
8445 /*
8446  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8447  *
8448  * This code is handles the common shifting code and is used by both
8449  * the vector and scalar code.
8450  */
8451 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8452                                     TCGv_i64 tcg_rnd, bool accumulate,
8453                                     bool is_u, int size, int shift)
8454 {
8455     bool extended_result = false;
8456     bool round = tcg_rnd != NULL;
8457     int ext_lshift = 0;
8458     TCGv_i64 tcg_src_hi;
8459 
8460     if (round && size == 3) {
8461         extended_result = true;
8462         ext_lshift = 64 - shift;
8463         tcg_src_hi = tcg_temp_new_i64();
8464     } else if (shift == 64) {
8465         if (!accumulate && is_u) {
8466             /* result is zero */
8467             tcg_gen_movi_i64(tcg_res, 0);
8468             return;
8469         }
8470     }
8471 
8472     /* Deal with the rounding step */
8473     if (round) {
8474         if (extended_result) {
8475             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8476             if (!is_u) {
8477                 /* take care of sign extending tcg_res */
8478                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8479                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8480                                  tcg_src, tcg_src_hi,
8481                                  tcg_rnd, tcg_zero);
8482             } else {
8483                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8484                                  tcg_src, tcg_zero,
8485                                  tcg_rnd, tcg_zero);
8486             }
8487         } else {
8488             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8489         }
8490     }
8491 
8492     /* Now do the shift right */
8493     if (round && extended_result) {
8494         /* extended case, >64 bit precision required */
8495         if (ext_lshift == 0) {
8496             /* special case, only high bits matter */
8497             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8498         } else {
8499             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8500             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8501             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8502         }
8503     } else {
8504         if (is_u) {
8505             if (shift == 64) {
8506                 /* essentially shifting in 64 zeros */
8507                 tcg_gen_movi_i64(tcg_src, 0);
8508             } else {
8509                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8510             }
8511         } else {
8512             if (shift == 64) {
8513                 /* effectively extending the sign-bit */
8514                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8515             } else {
8516                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8517             }
8518         }
8519     }
8520 
8521     if (accumulate) {
8522         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8523     } else {
8524         tcg_gen_mov_i64(tcg_res, tcg_src);
8525     }
8526 }
8527 
8528 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8529 static void handle_scalar_simd_shri(DisasContext *s,
8530                                     bool is_u, int immh, int immb,
8531                                     int opcode, int rn, int rd)
8532 {
8533     const int size = 3;
8534     int immhb = immh << 3 | immb;
8535     int shift = 2 * (8 << size) - immhb;
8536     bool accumulate = false;
8537     bool round = false;
8538     bool insert = false;
8539     TCGv_i64 tcg_rn;
8540     TCGv_i64 tcg_rd;
8541     TCGv_i64 tcg_round;
8542 
8543     if (!extract32(immh, 3, 1)) {
8544         unallocated_encoding(s);
8545         return;
8546     }
8547 
8548     if (!fp_access_check(s)) {
8549         return;
8550     }
8551 
8552     switch (opcode) {
8553     case 0x02: /* SSRA / USRA (accumulate) */
8554         accumulate = true;
8555         break;
8556     case 0x04: /* SRSHR / URSHR (rounding) */
8557         round = true;
8558         break;
8559     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8560         accumulate = round = true;
8561         break;
8562     case 0x08: /* SRI */
8563         insert = true;
8564         break;
8565     }
8566 
8567     if (round) {
8568         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8569     } else {
8570         tcg_round = NULL;
8571     }
8572 
8573     tcg_rn = read_fp_dreg(s, rn);
8574     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8575 
8576     if (insert) {
8577         /* shift count same as element size is valid but does nothing;
8578          * special case to avoid potential shift by 64.
8579          */
8580         int esize = 8 << size;
8581         if (shift != esize) {
8582             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8583             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8584         }
8585     } else {
8586         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8587                                 accumulate, is_u, size, shift);
8588     }
8589 
8590     write_fp_dreg(s, rd, tcg_rd);
8591 }
8592 
8593 /* SHL/SLI - Scalar shift left */
8594 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8595                                     int immh, int immb, int opcode,
8596                                     int rn, int rd)
8597 {
8598     int size = 32 - clz32(immh) - 1;
8599     int immhb = immh << 3 | immb;
8600     int shift = immhb - (8 << size);
8601     TCGv_i64 tcg_rn;
8602     TCGv_i64 tcg_rd;
8603 
8604     if (!extract32(immh, 3, 1)) {
8605         unallocated_encoding(s);
8606         return;
8607     }
8608 
8609     if (!fp_access_check(s)) {
8610         return;
8611     }
8612 
8613     tcg_rn = read_fp_dreg(s, rn);
8614     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8615 
8616     if (insert) {
8617         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8618     } else {
8619         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8620     }
8621 
8622     write_fp_dreg(s, rd, tcg_rd);
8623 }
8624 
8625 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8626  * (signed/unsigned) narrowing */
8627 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8628                                    bool is_u_shift, bool is_u_narrow,
8629                                    int immh, int immb, int opcode,
8630                                    int rn, int rd)
8631 {
8632     int immhb = immh << 3 | immb;
8633     int size = 32 - clz32(immh) - 1;
8634     int esize = 8 << size;
8635     int shift = (2 * esize) - immhb;
8636     int elements = is_scalar ? 1 : (64 / esize);
8637     bool round = extract32(opcode, 0, 1);
8638     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8639     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8640     TCGv_i32 tcg_rd_narrowed;
8641     TCGv_i64 tcg_final;
8642 
8643     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8644         { gen_helper_neon_narrow_sat_s8,
8645           gen_helper_neon_unarrow_sat8 },
8646         { gen_helper_neon_narrow_sat_s16,
8647           gen_helper_neon_unarrow_sat16 },
8648         { gen_helper_neon_narrow_sat_s32,
8649           gen_helper_neon_unarrow_sat32 },
8650         { NULL, NULL },
8651     };
8652     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8653         gen_helper_neon_narrow_sat_u8,
8654         gen_helper_neon_narrow_sat_u16,
8655         gen_helper_neon_narrow_sat_u32,
8656         NULL
8657     };
8658     NeonGenNarrowEnvFn *narrowfn;
8659 
8660     int i;
8661 
8662     assert(size < 4);
8663 
8664     if (extract32(immh, 3, 1)) {
8665         unallocated_encoding(s);
8666         return;
8667     }
8668 
8669     if (!fp_access_check(s)) {
8670         return;
8671     }
8672 
8673     if (is_u_shift) {
8674         narrowfn = unsigned_narrow_fns[size];
8675     } else {
8676         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8677     }
8678 
8679     tcg_rn = tcg_temp_new_i64();
8680     tcg_rd = tcg_temp_new_i64();
8681     tcg_rd_narrowed = tcg_temp_new_i32();
8682     tcg_final = tcg_temp_new_i64();
8683 
8684     if (round) {
8685         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8686     } else {
8687         tcg_round = NULL;
8688     }
8689 
8690     for (i = 0; i < elements; i++) {
8691         read_vec_element(s, tcg_rn, rn, i, ldop);
8692         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8693                                 false, is_u_shift, size+1, shift);
8694         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8695         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8696         if (i == 0) {
8697             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8698         } else {
8699             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8700         }
8701     }
8702 
8703     if (!is_q) {
8704         write_vec_element(s, tcg_final, rd, 0, MO_64);
8705     } else {
8706         write_vec_element(s, tcg_final, rd, 1, MO_64);
8707     }
8708     clear_vec_high(s, is_q, rd);
8709 }
8710 
8711 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8712 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8713                              bool src_unsigned, bool dst_unsigned,
8714                              int immh, int immb, int rn, int rd)
8715 {
8716     int immhb = immh << 3 | immb;
8717     int size = 32 - clz32(immh) - 1;
8718     int shift = immhb - (8 << size);
8719     int pass;
8720 
8721     assert(immh != 0);
8722     assert(!(scalar && is_q));
8723 
8724     if (!scalar) {
8725         if (!is_q && extract32(immh, 3, 1)) {
8726             unallocated_encoding(s);
8727             return;
8728         }
8729 
8730         /* Since we use the variable-shift helpers we must
8731          * replicate the shift count into each element of
8732          * the tcg_shift value.
8733          */
8734         switch (size) {
8735         case 0:
8736             shift |= shift << 8;
8737             /* fall through */
8738         case 1:
8739             shift |= shift << 16;
8740             break;
8741         case 2:
8742         case 3:
8743             break;
8744         default:
8745             g_assert_not_reached();
8746         }
8747     }
8748 
8749     if (!fp_access_check(s)) {
8750         return;
8751     }
8752 
8753     if (size == 3) {
8754         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8755         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8756             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8757             { NULL, gen_helper_neon_qshl_u64 },
8758         };
8759         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8760         int maxpass = is_q ? 2 : 1;
8761 
8762         for (pass = 0; pass < maxpass; pass++) {
8763             TCGv_i64 tcg_op = tcg_temp_new_i64();
8764 
8765             read_vec_element(s, tcg_op, rn, pass, MO_64);
8766             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8767             write_vec_element(s, tcg_op, rd, pass, MO_64);
8768         }
8769         clear_vec_high(s, is_q, rd);
8770     } else {
8771         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8772         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8773             {
8774                 { gen_helper_neon_qshl_s8,
8775                   gen_helper_neon_qshl_s16,
8776                   gen_helper_neon_qshl_s32 },
8777                 { gen_helper_neon_qshlu_s8,
8778                   gen_helper_neon_qshlu_s16,
8779                   gen_helper_neon_qshlu_s32 }
8780             }, {
8781                 { NULL, NULL, NULL },
8782                 { gen_helper_neon_qshl_u8,
8783                   gen_helper_neon_qshl_u16,
8784                   gen_helper_neon_qshl_u32 }
8785             }
8786         };
8787         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8788         MemOp memop = scalar ? size : MO_32;
8789         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8790 
8791         for (pass = 0; pass < maxpass; pass++) {
8792             TCGv_i32 tcg_op = tcg_temp_new_i32();
8793 
8794             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8795             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8796             if (scalar) {
8797                 switch (size) {
8798                 case 0:
8799                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8800                     break;
8801                 case 1:
8802                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8803                     break;
8804                 case 2:
8805                     break;
8806                 default:
8807                     g_assert_not_reached();
8808                 }
8809                 write_fp_sreg(s, rd, tcg_op);
8810             } else {
8811                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8812             }
8813         }
8814 
8815         if (!scalar) {
8816             clear_vec_high(s, is_q, rd);
8817         }
8818     }
8819 }
8820 
8821 /* Common vector code for handling integer to FP conversion */
8822 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8823                                    int elements, int is_signed,
8824                                    int fracbits, int size)
8825 {
8826     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8827     TCGv_i32 tcg_shift = NULL;
8828 
8829     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8830     int pass;
8831 
8832     if (fracbits || size == MO_64) {
8833         tcg_shift = tcg_constant_i32(fracbits);
8834     }
8835 
8836     if (size == MO_64) {
8837         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8838         TCGv_i64 tcg_double = tcg_temp_new_i64();
8839 
8840         for (pass = 0; pass < elements; pass++) {
8841             read_vec_element(s, tcg_int64, rn, pass, mop);
8842 
8843             if (is_signed) {
8844                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8845                                      tcg_shift, tcg_fpst);
8846             } else {
8847                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8848                                      tcg_shift, tcg_fpst);
8849             }
8850             if (elements == 1) {
8851                 write_fp_dreg(s, rd, tcg_double);
8852             } else {
8853                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8854             }
8855         }
8856     } else {
8857         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8858         TCGv_i32 tcg_float = tcg_temp_new_i32();
8859 
8860         for (pass = 0; pass < elements; pass++) {
8861             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8862 
8863             switch (size) {
8864             case MO_32:
8865                 if (fracbits) {
8866                     if (is_signed) {
8867                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8868                                              tcg_shift, tcg_fpst);
8869                     } else {
8870                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8871                                              tcg_shift, tcg_fpst);
8872                     }
8873                 } else {
8874                     if (is_signed) {
8875                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8876                     } else {
8877                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8878                     }
8879                 }
8880                 break;
8881             case MO_16:
8882                 if (fracbits) {
8883                     if (is_signed) {
8884                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8885                                              tcg_shift, tcg_fpst);
8886                     } else {
8887                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8888                                              tcg_shift, tcg_fpst);
8889                     }
8890                 } else {
8891                     if (is_signed) {
8892                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8893                     } else {
8894                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8895                     }
8896                 }
8897                 break;
8898             default:
8899                 g_assert_not_reached();
8900             }
8901 
8902             if (elements == 1) {
8903                 write_fp_sreg(s, rd, tcg_float);
8904             } else {
8905                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8906             }
8907         }
8908     }
8909 
8910     clear_vec_high(s, elements << size == 16, rd);
8911 }
8912 
8913 /* UCVTF/SCVTF - Integer to FP conversion */
8914 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8915                                          bool is_q, bool is_u,
8916                                          int immh, int immb, int opcode,
8917                                          int rn, int rd)
8918 {
8919     int size, elements, fracbits;
8920     int immhb = immh << 3 | immb;
8921 
8922     if (immh & 8) {
8923         size = MO_64;
8924         if (!is_scalar && !is_q) {
8925             unallocated_encoding(s);
8926             return;
8927         }
8928     } else if (immh & 4) {
8929         size = MO_32;
8930     } else if (immh & 2) {
8931         size = MO_16;
8932         if (!dc_isar_feature(aa64_fp16, s)) {
8933             unallocated_encoding(s);
8934             return;
8935         }
8936     } else {
8937         /* immh == 0 would be a failure of the decode logic */
8938         g_assert(immh == 1);
8939         unallocated_encoding(s);
8940         return;
8941     }
8942 
8943     if (is_scalar) {
8944         elements = 1;
8945     } else {
8946         elements = (8 << is_q) >> size;
8947     }
8948     fracbits = (16 << size) - immhb;
8949 
8950     if (!fp_access_check(s)) {
8951         return;
8952     }
8953 
8954     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8955 }
8956 
8957 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8958 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8959                                          bool is_q, bool is_u,
8960                                          int immh, int immb, int rn, int rd)
8961 {
8962     int immhb = immh << 3 | immb;
8963     int pass, size, fracbits;
8964     TCGv_ptr tcg_fpstatus;
8965     TCGv_i32 tcg_rmode, tcg_shift;
8966 
8967     if (immh & 0x8) {
8968         size = MO_64;
8969         if (!is_scalar && !is_q) {
8970             unallocated_encoding(s);
8971             return;
8972         }
8973     } else if (immh & 0x4) {
8974         size = MO_32;
8975     } else if (immh & 0x2) {
8976         size = MO_16;
8977         if (!dc_isar_feature(aa64_fp16, s)) {
8978             unallocated_encoding(s);
8979             return;
8980         }
8981     } else {
8982         /* Should have split out AdvSIMD modified immediate earlier.  */
8983         assert(immh == 1);
8984         unallocated_encoding(s);
8985         return;
8986     }
8987 
8988     if (!fp_access_check(s)) {
8989         return;
8990     }
8991 
8992     assert(!(is_scalar && is_q));
8993 
8994     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8995     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8996     fracbits = (16 << size) - immhb;
8997     tcg_shift = tcg_constant_i32(fracbits);
8998 
8999     if (size == MO_64) {
9000         int maxpass = is_scalar ? 1 : 2;
9001 
9002         for (pass = 0; pass < maxpass; pass++) {
9003             TCGv_i64 tcg_op = tcg_temp_new_i64();
9004 
9005             read_vec_element(s, tcg_op, rn, pass, MO_64);
9006             if (is_u) {
9007                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9008             } else {
9009                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9010             }
9011             write_vec_element(s, tcg_op, rd, pass, MO_64);
9012         }
9013         clear_vec_high(s, is_q, rd);
9014     } else {
9015         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9016         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9017 
9018         switch (size) {
9019         case MO_16:
9020             if (is_u) {
9021                 fn = gen_helper_vfp_touhh;
9022             } else {
9023                 fn = gen_helper_vfp_toshh;
9024             }
9025             break;
9026         case MO_32:
9027             if (is_u) {
9028                 fn = gen_helper_vfp_touls;
9029             } else {
9030                 fn = gen_helper_vfp_tosls;
9031             }
9032             break;
9033         default:
9034             g_assert_not_reached();
9035         }
9036 
9037         for (pass = 0; pass < maxpass; pass++) {
9038             TCGv_i32 tcg_op = tcg_temp_new_i32();
9039 
9040             read_vec_element_i32(s, tcg_op, rn, pass, size);
9041             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9042             if (is_scalar) {
9043                 if (size == MO_16 && !is_u) {
9044                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9045                 }
9046                 write_fp_sreg(s, rd, tcg_op);
9047             } else {
9048                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9049             }
9050         }
9051         if (!is_scalar) {
9052             clear_vec_high(s, is_q, rd);
9053         }
9054     }
9055 
9056     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9057 }
9058 
9059 /* AdvSIMD scalar shift by immediate
9060  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9061  * +-----+---+-------------+------+------+--------+---+------+------+
9062  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9063  * +-----+---+-------------+------+------+--------+---+------+------+
9064  *
9065  * This is the scalar version so it works on a fixed sized registers
9066  */
9067 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9068 {
9069     int rd = extract32(insn, 0, 5);
9070     int rn = extract32(insn, 5, 5);
9071     int opcode = extract32(insn, 11, 5);
9072     int immb = extract32(insn, 16, 3);
9073     int immh = extract32(insn, 19, 4);
9074     bool is_u = extract32(insn, 29, 1);
9075 
9076     if (immh == 0) {
9077         unallocated_encoding(s);
9078         return;
9079     }
9080 
9081     switch (opcode) {
9082     case 0x08: /* SRI */
9083         if (!is_u) {
9084             unallocated_encoding(s);
9085             return;
9086         }
9087         /* fall through */
9088     case 0x00: /* SSHR / USHR */
9089     case 0x02: /* SSRA / USRA */
9090     case 0x04: /* SRSHR / URSHR */
9091     case 0x06: /* SRSRA / URSRA */
9092         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9093         break;
9094     case 0x0a: /* SHL / SLI */
9095         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9096         break;
9097     case 0x1c: /* SCVTF, UCVTF */
9098         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9099                                      opcode, rn, rd);
9100         break;
9101     case 0x10: /* SQSHRUN, SQSHRUN2 */
9102     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9103         if (!is_u) {
9104             unallocated_encoding(s);
9105             return;
9106         }
9107         handle_vec_simd_sqshrn(s, true, false, false, true,
9108                                immh, immb, opcode, rn, rd);
9109         break;
9110     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9111     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9112         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9113                                immh, immb, opcode, rn, rd);
9114         break;
9115     case 0xc: /* SQSHLU */
9116         if (!is_u) {
9117             unallocated_encoding(s);
9118             return;
9119         }
9120         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9121         break;
9122     case 0xe: /* SQSHL, UQSHL */
9123         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9124         break;
9125     case 0x1f: /* FCVTZS, FCVTZU */
9126         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9127         break;
9128     default:
9129         unallocated_encoding(s);
9130         break;
9131     }
9132 }
9133 
9134 /* AdvSIMD scalar three different
9135  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9136  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9137  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9138  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9139  */
9140 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9141 {
9142     bool is_u = extract32(insn, 29, 1);
9143     int size = extract32(insn, 22, 2);
9144     int opcode = extract32(insn, 12, 4);
9145     int rm = extract32(insn, 16, 5);
9146     int rn = extract32(insn, 5, 5);
9147     int rd = extract32(insn, 0, 5);
9148 
9149     if (is_u) {
9150         unallocated_encoding(s);
9151         return;
9152     }
9153 
9154     switch (opcode) {
9155     case 0x9: /* SQDMLAL, SQDMLAL2 */
9156     case 0xb: /* SQDMLSL, SQDMLSL2 */
9157     case 0xd: /* SQDMULL, SQDMULL2 */
9158         if (size == 0 || size == 3) {
9159             unallocated_encoding(s);
9160             return;
9161         }
9162         break;
9163     default:
9164         unallocated_encoding(s);
9165         return;
9166     }
9167 
9168     if (!fp_access_check(s)) {
9169         return;
9170     }
9171 
9172     if (size == 2) {
9173         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9174         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9175         TCGv_i64 tcg_res = tcg_temp_new_i64();
9176 
9177         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9178         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9179 
9180         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9181         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9182 
9183         switch (opcode) {
9184         case 0xd: /* SQDMULL, SQDMULL2 */
9185             break;
9186         case 0xb: /* SQDMLSL, SQDMLSL2 */
9187             tcg_gen_neg_i64(tcg_res, tcg_res);
9188             /* fall through */
9189         case 0x9: /* SQDMLAL, SQDMLAL2 */
9190             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9191             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9192                                               tcg_res, tcg_op1);
9193             break;
9194         default:
9195             g_assert_not_reached();
9196         }
9197 
9198         write_fp_dreg(s, rd, tcg_res);
9199     } else {
9200         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9201         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9202         TCGv_i64 tcg_res = tcg_temp_new_i64();
9203 
9204         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9205         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9206 
9207         switch (opcode) {
9208         case 0xd: /* SQDMULL, SQDMULL2 */
9209             break;
9210         case 0xb: /* SQDMLSL, SQDMLSL2 */
9211             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9212             /* fall through */
9213         case 0x9: /* SQDMLAL, SQDMLAL2 */
9214         {
9215             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9216             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9217             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9218                                               tcg_res, tcg_op3);
9219             break;
9220         }
9221         default:
9222             g_assert_not_reached();
9223         }
9224 
9225         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9226         write_fp_dreg(s, rd, tcg_res);
9227     }
9228 }
9229 
9230 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9231                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9232 {
9233     /* Handle 64x64->64 opcodes which are shared between the scalar
9234      * and vector 3-same groups. We cover every opcode where size == 3
9235      * is valid in either the three-reg-same (integer, not pairwise)
9236      * or scalar-three-reg-same groups.
9237      */
9238     TCGCond cond;
9239 
9240     switch (opcode) {
9241     case 0x1: /* SQADD */
9242         if (u) {
9243             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9244         } else {
9245             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9246         }
9247         break;
9248     case 0x5: /* SQSUB */
9249         if (u) {
9250             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9251         } else {
9252             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9253         }
9254         break;
9255     case 0x6: /* CMGT, CMHI */
9256         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9257     do_cmop:
9258         /* 64 bit integer comparison, result = test ? -1 : 0. */
9259         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9260         break;
9261     case 0x7: /* CMGE, CMHS */
9262         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9263         goto do_cmop;
9264     case 0x11: /* CMTST, CMEQ */
9265         if (u) {
9266             cond = TCG_COND_EQ;
9267             goto do_cmop;
9268         }
9269         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9270         break;
9271     case 0x8: /* SSHL, USHL */
9272         if (u) {
9273             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9274         } else {
9275             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9276         }
9277         break;
9278     case 0x9: /* SQSHL, UQSHL */
9279         if (u) {
9280             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9281         } else {
9282             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9283         }
9284         break;
9285     case 0xa: /* SRSHL, URSHL */
9286         if (u) {
9287             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9288         } else {
9289             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9290         }
9291         break;
9292     case 0xb: /* SQRSHL, UQRSHL */
9293         if (u) {
9294             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9295         } else {
9296             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9297         }
9298         break;
9299     case 0x10: /* ADD, SUB */
9300         if (u) {
9301             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9302         } else {
9303             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9304         }
9305         break;
9306     default:
9307         g_assert_not_reached();
9308     }
9309 }
9310 
9311 /* Handle the 3-same-operands float operations; shared by the scalar
9312  * and vector encodings. The caller must filter out any encodings
9313  * not allocated for the encoding it is dealing with.
9314  */
9315 static void handle_3same_float(DisasContext *s, int size, int elements,
9316                                int fpopcode, int rd, int rn, int rm)
9317 {
9318     int pass;
9319     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9320 
9321     for (pass = 0; pass < elements; pass++) {
9322         if (size) {
9323             /* Double */
9324             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9325             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9326             TCGv_i64 tcg_res = tcg_temp_new_i64();
9327 
9328             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9329             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9330 
9331             switch (fpopcode) {
9332             case 0x1f: /* FRECPS */
9333                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9334                 break;
9335             case 0x3f: /* FRSQRTS */
9336                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9337                 break;
9338             default:
9339             case 0x18: /* FMAXNM */
9340             case 0x19: /* FMLA */
9341             case 0x1a: /* FADD */
9342             case 0x1b: /* FMULX */
9343             case 0x1c: /* FCMEQ */
9344             case 0x1e: /* FMAX */
9345             case 0x38: /* FMINNM */
9346             case 0x39: /* FMLS */
9347             case 0x3a: /* FSUB */
9348             case 0x3e: /* FMIN */
9349             case 0x5b: /* FMUL */
9350             case 0x5c: /* FCMGE */
9351             case 0x5d: /* FACGE */
9352             case 0x5f: /* FDIV */
9353             case 0x7a: /* FABD */
9354             case 0x7c: /* FCMGT */
9355             case 0x7d: /* FACGT */
9356                 g_assert_not_reached();
9357             }
9358 
9359             write_vec_element(s, tcg_res, rd, pass, MO_64);
9360         } else {
9361             /* Single */
9362             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9363             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9364             TCGv_i32 tcg_res = tcg_temp_new_i32();
9365 
9366             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9367             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9368 
9369             switch (fpopcode) {
9370             case 0x1f: /* FRECPS */
9371                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9372                 break;
9373             case 0x3f: /* FRSQRTS */
9374                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9375                 break;
9376             default:
9377             case 0x18: /* FMAXNM */
9378             case 0x19: /* FMLA */
9379             case 0x1a: /* FADD */
9380             case 0x1b: /* FMULX */
9381             case 0x1c: /* FCMEQ */
9382             case 0x1e: /* FMAX */
9383             case 0x38: /* FMINNM */
9384             case 0x39: /* FMLS */
9385             case 0x3a: /* FSUB */
9386             case 0x3e: /* FMIN */
9387             case 0x5b: /* FMUL */
9388             case 0x5c: /* FCMGE */
9389             case 0x5d: /* FACGE */
9390             case 0x5f: /* FDIV */
9391             case 0x7a: /* FABD */
9392             case 0x7c: /* FCMGT */
9393             case 0x7d: /* FACGT */
9394                 g_assert_not_reached();
9395             }
9396 
9397             if (elements == 1) {
9398                 /* scalar single so clear high part */
9399                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9400 
9401                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9402                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9403             } else {
9404                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9405             }
9406         }
9407     }
9408 
9409     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9410 }
9411 
9412 /* AdvSIMD scalar three same
9413  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9414  * +-----+---+-----------+------+---+------+--------+---+------+------+
9415  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9416  * +-----+---+-----------+------+---+------+--------+---+------+------+
9417  */
9418 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9419 {
9420     int rd = extract32(insn, 0, 5);
9421     int rn = extract32(insn, 5, 5);
9422     int opcode = extract32(insn, 11, 5);
9423     int rm = extract32(insn, 16, 5);
9424     int size = extract32(insn, 22, 2);
9425     bool u = extract32(insn, 29, 1);
9426     TCGv_i64 tcg_rd;
9427 
9428     if (opcode >= 0x18) {
9429         /* Floating point: U, size[1] and opcode indicate operation */
9430         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9431         switch (fpopcode) {
9432         case 0x1f: /* FRECPS */
9433         case 0x3f: /* FRSQRTS */
9434             break;
9435         default:
9436         case 0x1b: /* FMULX */
9437         case 0x5d: /* FACGE */
9438         case 0x7d: /* FACGT */
9439         case 0x1c: /* FCMEQ */
9440         case 0x5c: /* FCMGE */
9441         case 0x7a: /* FABD */
9442         case 0x7c: /* FCMGT */
9443             unallocated_encoding(s);
9444             return;
9445         }
9446 
9447         if (!fp_access_check(s)) {
9448             return;
9449         }
9450 
9451         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9452         return;
9453     }
9454 
9455     switch (opcode) {
9456     case 0x1: /* SQADD, UQADD */
9457     case 0x5: /* SQSUB, UQSUB */
9458     case 0x9: /* SQSHL, UQSHL */
9459     case 0xb: /* SQRSHL, UQRSHL */
9460         break;
9461     case 0x8: /* SSHL, USHL */
9462     case 0xa: /* SRSHL, URSHL */
9463     case 0x6: /* CMGT, CMHI */
9464     case 0x7: /* CMGE, CMHS */
9465     case 0x11: /* CMTST, CMEQ */
9466     case 0x10: /* ADD, SUB (vector) */
9467         if (size != 3) {
9468             unallocated_encoding(s);
9469             return;
9470         }
9471         break;
9472     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9473         if (size != 1 && size != 2) {
9474             unallocated_encoding(s);
9475             return;
9476         }
9477         break;
9478     default:
9479         unallocated_encoding(s);
9480         return;
9481     }
9482 
9483     if (!fp_access_check(s)) {
9484         return;
9485     }
9486 
9487     tcg_rd = tcg_temp_new_i64();
9488 
9489     if (size == 3) {
9490         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9491         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9492 
9493         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9494     } else {
9495         /* Do a single operation on the lowest element in the vector.
9496          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9497          * no side effects for all these operations.
9498          * OPTME: special-purpose helpers would avoid doing some
9499          * unnecessary work in the helper for the 8 and 16 bit cases.
9500          */
9501         NeonGenTwoOpEnvFn *genenvfn;
9502         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9503         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9504         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9505 
9506         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9507         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9508 
9509         switch (opcode) {
9510         case 0x1: /* SQADD, UQADD */
9511         {
9512             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9513                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9514                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9515                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9516             };
9517             genenvfn = fns[size][u];
9518             break;
9519         }
9520         case 0x5: /* SQSUB, UQSUB */
9521         {
9522             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9523                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9524                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9525                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9526             };
9527             genenvfn = fns[size][u];
9528             break;
9529         }
9530         case 0x9: /* SQSHL, UQSHL */
9531         {
9532             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9533                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9534                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9535                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9536             };
9537             genenvfn = fns[size][u];
9538             break;
9539         }
9540         case 0xb: /* SQRSHL, UQRSHL */
9541         {
9542             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9543                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9544                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9545                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9546             };
9547             genenvfn = fns[size][u];
9548             break;
9549         }
9550         case 0x16: /* SQDMULH, SQRDMULH */
9551         {
9552             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9553                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9554                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9555             };
9556             assert(size == 1 || size == 2);
9557             genenvfn = fns[size - 1][u];
9558             break;
9559         }
9560         default:
9561             g_assert_not_reached();
9562         }
9563 
9564         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9565         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9566     }
9567 
9568     write_fp_dreg(s, rd, tcg_rd);
9569 }
9570 
9571 /* AdvSIMD scalar three same FP16
9572  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9573  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9574  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9575  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9576  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9577  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9578  */
9579 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9580                                                   uint32_t insn)
9581 {
9582     int rd = extract32(insn, 0, 5);
9583     int rn = extract32(insn, 5, 5);
9584     int opcode = extract32(insn, 11, 3);
9585     int rm = extract32(insn, 16, 5);
9586     bool u = extract32(insn, 29, 1);
9587     bool a = extract32(insn, 23, 1);
9588     int fpopcode = opcode | (a << 3) |  (u << 4);
9589     TCGv_ptr fpst;
9590     TCGv_i32 tcg_op1;
9591     TCGv_i32 tcg_op2;
9592     TCGv_i32 tcg_res;
9593 
9594     switch (fpopcode) {
9595     case 0x07: /* FRECPS */
9596     case 0x0f: /* FRSQRTS */
9597         break;
9598     default:
9599     case 0x03: /* FMULX */
9600     case 0x04: /* FCMEQ (reg) */
9601     case 0x14: /* FCMGE (reg) */
9602     case 0x15: /* FACGE */
9603     case 0x1a: /* FABD */
9604     case 0x1c: /* FCMGT (reg) */
9605     case 0x1d: /* FACGT */
9606         unallocated_encoding(s);
9607         return;
9608     }
9609 
9610     if (!dc_isar_feature(aa64_fp16, s)) {
9611         unallocated_encoding(s);
9612     }
9613 
9614     if (!fp_access_check(s)) {
9615         return;
9616     }
9617 
9618     fpst = fpstatus_ptr(FPST_FPCR_F16);
9619 
9620     tcg_op1 = read_fp_hreg(s, rn);
9621     tcg_op2 = read_fp_hreg(s, rm);
9622     tcg_res = tcg_temp_new_i32();
9623 
9624     switch (fpopcode) {
9625     case 0x07: /* FRECPS */
9626         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9627         break;
9628     case 0x0f: /* FRSQRTS */
9629         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9630         break;
9631     default:
9632     case 0x03: /* FMULX */
9633     case 0x04: /* FCMEQ (reg) */
9634     case 0x14: /* FCMGE (reg) */
9635     case 0x15: /* FACGE */
9636     case 0x1a: /* FABD */
9637     case 0x1c: /* FCMGT (reg) */
9638     case 0x1d: /* FACGT */
9639         g_assert_not_reached();
9640     }
9641 
9642     write_fp_sreg(s, rd, tcg_res);
9643 }
9644 
9645 /* AdvSIMD scalar three same extra
9646  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9647  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9648  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9649  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9650  */
9651 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9652                                                    uint32_t insn)
9653 {
9654     int rd = extract32(insn, 0, 5);
9655     int rn = extract32(insn, 5, 5);
9656     int opcode = extract32(insn, 11, 4);
9657     int rm = extract32(insn, 16, 5);
9658     int size = extract32(insn, 22, 2);
9659     bool u = extract32(insn, 29, 1);
9660     TCGv_i32 ele1, ele2, ele3;
9661     TCGv_i64 res;
9662     bool feature;
9663 
9664     switch (u * 16 + opcode) {
9665     case 0x10: /* SQRDMLAH (vector) */
9666     case 0x11: /* SQRDMLSH (vector) */
9667         if (size != 1 && size != 2) {
9668             unallocated_encoding(s);
9669             return;
9670         }
9671         feature = dc_isar_feature(aa64_rdm, s);
9672         break;
9673     default:
9674         unallocated_encoding(s);
9675         return;
9676     }
9677     if (!feature) {
9678         unallocated_encoding(s);
9679         return;
9680     }
9681     if (!fp_access_check(s)) {
9682         return;
9683     }
9684 
9685     /* Do a single operation on the lowest element in the vector.
9686      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9687      * with no side effects for all these operations.
9688      * OPTME: special-purpose helpers would avoid doing some
9689      * unnecessary work in the helper for the 16 bit cases.
9690      */
9691     ele1 = tcg_temp_new_i32();
9692     ele2 = tcg_temp_new_i32();
9693     ele3 = tcg_temp_new_i32();
9694 
9695     read_vec_element_i32(s, ele1, rn, 0, size);
9696     read_vec_element_i32(s, ele2, rm, 0, size);
9697     read_vec_element_i32(s, ele3, rd, 0, size);
9698 
9699     switch (opcode) {
9700     case 0x0: /* SQRDMLAH */
9701         if (size == 1) {
9702             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9703         } else {
9704             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9705         }
9706         break;
9707     case 0x1: /* SQRDMLSH */
9708         if (size == 1) {
9709             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9710         } else {
9711             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9712         }
9713         break;
9714     default:
9715         g_assert_not_reached();
9716     }
9717 
9718     res = tcg_temp_new_i64();
9719     tcg_gen_extu_i32_i64(res, ele3);
9720     write_fp_dreg(s, rd, res);
9721 }
9722 
9723 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9724                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9725                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9726 {
9727     /* Handle 64->64 opcodes which are shared between the scalar and
9728      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9729      * is valid in either group and also the double-precision fp ops.
9730      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9731      * requires them.
9732      */
9733     TCGCond cond;
9734 
9735     switch (opcode) {
9736     case 0x4: /* CLS, CLZ */
9737         if (u) {
9738             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9739         } else {
9740             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9741         }
9742         break;
9743     case 0x5: /* NOT */
9744         /* This opcode is shared with CNT and RBIT but we have earlier
9745          * enforced that size == 3 if and only if this is the NOT insn.
9746          */
9747         tcg_gen_not_i64(tcg_rd, tcg_rn);
9748         break;
9749     case 0x7: /* SQABS, SQNEG */
9750         if (u) {
9751             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9752         } else {
9753             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9754         }
9755         break;
9756     case 0xa: /* CMLT */
9757         cond = TCG_COND_LT;
9758     do_cmop:
9759         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9760         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9761         break;
9762     case 0x8: /* CMGT, CMGE */
9763         cond = u ? TCG_COND_GE : TCG_COND_GT;
9764         goto do_cmop;
9765     case 0x9: /* CMEQ, CMLE */
9766         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9767         goto do_cmop;
9768     case 0xb: /* ABS, NEG */
9769         if (u) {
9770             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9771         } else {
9772             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9773         }
9774         break;
9775     case 0x2f: /* FABS */
9776         gen_vfp_absd(tcg_rd, tcg_rn);
9777         break;
9778     case 0x6f: /* FNEG */
9779         gen_vfp_negd(tcg_rd, tcg_rn);
9780         break;
9781     case 0x7f: /* FSQRT */
9782         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9783         break;
9784     case 0x1a: /* FCVTNS */
9785     case 0x1b: /* FCVTMS */
9786     case 0x1c: /* FCVTAS */
9787     case 0x3a: /* FCVTPS */
9788     case 0x3b: /* FCVTZS */
9789         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9790         break;
9791     case 0x5a: /* FCVTNU */
9792     case 0x5b: /* FCVTMU */
9793     case 0x5c: /* FCVTAU */
9794     case 0x7a: /* FCVTPU */
9795     case 0x7b: /* FCVTZU */
9796         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9797         break;
9798     case 0x18: /* FRINTN */
9799     case 0x19: /* FRINTM */
9800     case 0x38: /* FRINTP */
9801     case 0x39: /* FRINTZ */
9802     case 0x58: /* FRINTA */
9803     case 0x79: /* FRINTI */
9804         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9805         break;
9806     case 0x59: /* FRINTX */
9807         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9808         break;
9809     case 0x1e: /* FRINT32Z */
9810     case 0x5e: /* FRINT32X */
9811         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9812         break;
9813     case 0x1f: /* FRINT64Z */
9814     case 0x5f: /* FRINT64X */
9815         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9816         break;
9817     default:
9818         g_assert_not_reached();
9819     }
9820 }
9821 
9822 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9823                                    bool is_scalar, bool is_u, bool is_q,
9824                                    int size, int rn, int rd)
9825 {
9826     bool is_double = (size == MO_64);
9827     TCGv_ptr fpst;
9828 
9829     if (!fp_access_check(s)) {
9830         return;
9831     }
9832 
9833     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9834 
9835     if (is_double) {
9836         TCGv_i64 tcg_op = tcg_temp_new_i64();
9837         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9838         TCGv_i64 tcg_res = tcg_temp_new_i64();
9839         NeonGenTwoDoubleOpFn *genfn;
9840         bool swap = false;
9841         int pass;
9842 
9843         switch (opcode) {
9844         case 0x2e: /* FCMLT (zero) */
9845             swap = true;
9846             /* fallthrough */
9847         case 0x2c: /* FCMGT (zero) */
9848             genfn = gen_helper_neon_cgt_f64;
9849             break;
9850         case 0x2d: /* FCMEQ (zero) */
9851             genfn = gen_helper_neon_ceq_f64;
9852             break;
9853         case 0x6d: /* FCMLE (zero) */
9854             swap = true;
9855             /* fall through */
9856         case 0x6c: /* FCMGE (zero) */
9857             genfn = gen_helper_neon_cge_f64;
9858             break;
9859         default:
9860             g_assert_not_reached();
9861         }
9862 
9863         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9864             read_vec_element(s, tcg_op, rn, pass, MO_64);
9865             if (swap) {
9866                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9867             } else {
9868                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9869             }
9870             write_vec_element(s, tcg_res, rd, pass, MO_64);
9871         }
9872 
9873         clear_vec_high(s, !is_scalar, rd);
9874     } else {
9875         TCGv_i32 tcg_op = tcg_temp_new_i32();
9876         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9877         TCGv_i32 tcg_res = tcg_temp_new_i32();
9878         NeonGenTwoSingleOpFn *genfn;
9879         bool swap = false;
9880         int pass, maxpasses;
9881 
9882         if (size == MO_16) {
9883             switch (opcode) {
9884             case 0x2e: /* FCMLT (zero) */
9885                 swap = true;
9886                 /* fall through */
9887             case 0x2c: /* FCMGT (zero) */
9888                 genfn = gen_helper_advsimd_cgt_f16;
9889                 break;
9890             case 0x2d: /* FCMEQ (zero) */
9891                 genfn = gen_helper_advsimd_ceq_f16;
9892                 break;
9893             case 0x6d: /* FCMLE (zero) */
9894                 swap = true;
9895                 /* fall through */
9896             case 0x6c: /* FCMGE (zero) */
9897                 genfn = gen_helper_advsimd_cge_f16;
9898                 break;
9899             default:
9900                 g_assert_not_reached();
9901             }
9902         } else {
9903             switch (opcode) {
9904             case 0x2e: /* FCMLT (zero) */
9905                 swap = true;
9906                 /* fall through */
9907             case 0x2c: /* FCMGT (zero) */
9908                 genfn = gen_helper_neon_cgt_f32;
9909                 break;
9910             case 0x2d: /* FCMEQ (zero) */
9911                 genfn = gen_helper_neon_ceq_f32;
9912                 break;
9913             case 0x6d: /* FCMLE (zero) */
9914                 swap = true;
9915                 /* fall through */
9916             case 0x6c: /* FCMGE (zero) */
9917                 genfn = gen_helper_neon_cge_f32;
9918                 break;
9919             default:
9920                 g_assert_not_reached();
9921             }
9922         }
9923 
9924         if (is_scalar) {
9925             maxpasses = 1;
9926         } else {
9927             int vector_size = 8 << is_q;
9928             maxpasses = vector_size >> size;
9929         }
9930 
9931         for (pass = 0; pass < maxpasses; pass++) {
9932             read_vec_element_i32(s, tcg_op, rn, pass, size);
9933             if (swap) {
9934                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9935             } else {
9936                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9937             }
9938             if (is_scalar) {
9939                 write_fp_sreg(s, rd, tcg_res);
9940             } else {
9941                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9942             }
9943         }
9944 
9945         if (!is_scalar) {
9946             clear_vec_high(s, is_q, rd);
9947         }
9948     }
9949 }
9950 
9951 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9952                                     bool is_scalar, bool is_u, bool is_q,
9953                                     int size, int rn, int rd)
9954 {
9955     bool is_double = (size == 3);
9956     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9957 
9958     if (is_double) {
9959         TCGv_i64 tcg_op = tcg_temp_new_i64();
9960         TCGv_i64 tcg_res = tcg_temp_new_i64();
9961         int pass;
9962 
9963         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9964             read_vec_element(s, tcg_op, rn, pass, MO_64);
9965             switch (opcode) {
9966             case 0x3d: /* FRECPE */
9967                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9968                 break;
9969             case 0x3f: /* FRECPX */
9970                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9971                 break;
9972             case 0x7d: /* FRSQRTE */
9973                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9974                 break;
9975             default:
9976                 g_assert_not_reached();
9977             }
9978             write_vec_element(s, tcg_res, rd, pass, MO_64);
9979         }
9980         clear_vec_high(s, !is_scalar, rd);
9981     } else {
9982         TCGv_i32 tcg_op = tcg_temp_new_i32();
9983         TCGv_i32 tcg_res = tcg_temp_new_i32();
9984         int pass, maxpasses;
9985 
9986         if (is_scalar) {
9987             maxpasses = 1;
9988         } else {
9989             maxpasses = is_q ? 4 : 2;
9990         }
9991 
9992         for (pass = 0; pass < maxpasses; pass++) {
9993             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9994 
9995             switch (opcode) {
9996             case 0x3c: /* URECPE */
9997                 gen_helper_recpe_u32(tcg_res, tcg_op);
9998                 break;
9999             case 0x3d: /* FRECPE */
10000                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10001                 break;
10002             case 0x3f: /* FRECPX */
10003                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10004                 break;
10005             case 0x7d: /* FRSQRTE */
10006                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10007                 break;
10008             default:
10009                 g_assert_not_reached();
10010             }
10011 
10012             if (is_scalar) {
10013                 write_fp_sreg(s, rd, tcg_res);
10014             } else {
10015                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10016             }
10017         }
10018         if (!is_scalar) {
10019             clear_vec_high(s, is_q, rd);
10020         }
10021     }
10022 }
10023 
10024 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10025                                 int opcode, bool u, bool is_q,
10026                                 int size, int rn, int rd)
10027 {
10028     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10029      * in the source becomes a size element in the destination).
10030      */
10031     int pass;
10032     TCGv_i32 tcg_res[2];
10033     int destelt = is_q ? 2 : 0;
10034     int passes = scalar ? 1 : 2;
10035 
10036     if (scalar) {
10037         tcg_res[1] = tcg_constant_i32(0);
10038     }
10039 
10040     for (pass = 0; pass < passes; pass++) {
10041         TCGv_i64 tcg_op = tcg_temp_new_i64();
10042         NeonGenNarrowFn *genfn = NULL;
10043         NeonGenNarrowEnvFn *genenvfn = NULL;
10044 
10045         if (scalar) {
10046             read_vec_element(s, tcg_op, rn, pass, size + 1);
10047         } else {
10048             read_vec_element(s, tcg_op, rn, pass, MO_64);
10049         }
10050         tcg_res[pass] = tcg_temp_new_i32();
10051 
10052         switch (opcode) {
10053         case 0x12: /* XTN, SQXTUN */
10054         {
10055             static NeonGenNarrowFn * const xtnfns[3] = {
10056                 gen_helper_neon_narrow_u8,
10057                 gen_helper_neon_narrow_u16,
10058                 tcg_gen_extrl_i64_i32,
10059             };
10060             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10061                 gen_helper_neon_unarrow_sat8,
10062                 gen_helper_neon_unarrow_sat16,
10063                 gen_helper_neon_unarrow_sat32,
10064             };
10065             if (u) {
10066                 genenvfn = sqxtunfns[size];
10067             } else {
10068                 genfn = xtnfns[size];
10069             }
10070             break;
10071         }
10072         case 0x14: /* SQXTN, UQXTN */
10073         {
10074             static NeonGenNarrowEnvFn * const fns[3][2] = {
10075                 { gen_helper_neon_narrow_sat_s8,
10076                   gen_helper_neon_narrow_sat_u8 },
10077                 { gen_helper_neon_narrow_sat_s16,
10078                   gen_helper_neon_narrow_sat_u16 },
10079                 { gen_helper_neon_narrow_sat_s32,
10080                   gen_helper_neon_narrow_sat_u32 },
10081             };
10082             genenvfn = fns[size][u];
10083             break;
10084         }
10085         case 0x16: /* FCVTN, FCVTN2 */
10086             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10087             if (size == 2) {
10088                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10089             } else {
10090                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10091                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10092                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10093                 TCGv_i32 ahp = get_ahp_flag();
10094 
10095                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10096                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10097                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10098                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10099             }
10100             break;
10101         case 0x36: /* BFCVTN, BFCVTN2 */
10102             {
10103                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10104                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10105             }
10106             break;
10107         case 0x56:  /* FCVTXN, FCVTXN2 */
10108             /* 64 bit to 32 bit float conversion
10109              * with von Neumann rounding (round to odd)
10110              */
10111             assert(size == 2);
10112             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10113             break;
10114         default:
10115             g_assert_not_reached();
10116         }
10117 
10118         if (genfn) {
10119             genfn(tcg_res[pass], tcg_op);
10120         } else if (genenvfn) {
10121             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10122         }
10123     }
10124 
10125     for (pass = 0; pass < 2; pass++) {
10126         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10127     }
10128     clear_vec_high(s, is_q, rd);
10129 }
10130 
10131 /* Remaining saturating accumulating ops */
10132 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10133                                 bool is_q, int size, int rn, int rd)
10134 {
10135     bool is_double = (size == 3);
10136 
10137     if (is_double) {
10138         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10139         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10140         int pass;
10141 
10142         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10143             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10144             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10145 
10146             if (is_u) { /* USQADD */
10147                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10148             } else { /* SUQADD */
10149                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10150             }
10151             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10152         }
10153         clear_vec_high(s, !is_scalar, rd);
10154     } else {
10155         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10156         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10157         int pass, maxpasses;
10158 
10159         if (is_scalar) {
10160             maxpasses = 1;
10161         } else {
10162             maxpasses = is_q ? 4 : 2;
10163         }
10164 
10165         for (pass = 0; pass < maxpasses; pass++) {
10166             if (is_scalar) {
10167                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10168                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10169             } else {
10170                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10171                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10172             }
10173 
10174             if (is_u) { /* USQADD */
10175                 switch (size) {
10176                 case 0:
10177                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10178                     break;
10179                 case 1:
10180                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10181                     break;
10182                 case 2:
10183                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10184                     break;
10185                 default:
10186                     g_assert_not_reached();
10187                 }
10188             } else { /* SUQADD */
10189                 switch (size) {
10190                 case 0:
10191                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10192                     break;
10193                 case 1:
10194                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10195                     break;
10196                 case 2:
10197                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10198                     break;
10199                 default:
10200                     g_assert_not_reached();
10201                 }
10202             }
10203 
10204             if (is_scalar) {
10205                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10206             }
10207             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10208         }
10209         clear_vec_high(s, is_q, rd);
10210     }
10211 }
10212 
10213 /* AdvSIMD scalar two reg misc
10214  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10215  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10216  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10217  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10218  */
10219 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10220 {
10221     int rd = extract32(insn, 0, 5);
10222     int rn = extract32(insn, 5, 5);
10223     int opcode = extract32(insn, 12, 5);
10224     int size = extract32(insn, 22, 2);
10225     bool u = extract32(insn, 29, 1);
10226     bool is_fcvt = false;
10227     int rmode;
10228     TCGv_i32 tcg_rmode;
10229     TCGv_ptr tcg_fpstatus;
10230 
10231     switch (opcode) {
10232     case 0x3: /* USQADD / SUQADD*/
10233         if (!fp_access_check(s)) {
10234             return;
10235         }
10236         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10237         return;
10238     case 0x7: /* SQABS / SQNEG */
10239         break;
10240     case 0xa: /* CMLT */
10241         if (u) {
10242             unallocated_encoding(s);
10243             return;
10244         }
10245         /* fall through */
10246     case 0x8: /* CMGT, CMGE */
10247     case 0x9: /* CMEQ, CMLE */
10248     case 0xb: /* ABS, NEG */
10249         if (size != 3) {
10250             unallocated_encoding(s);
10251             return;
10252         }
10253         break;
10254     case 0x12: /* SQXTUN */
10255         if (!u) {
10256             unallocated_encoding(s);
10257             return;
10258         }
10259         /* fall through */
10260     case 0x14: /* SQXTN, UQXTN */
10261         if (size == 3) {
10262             unallocated_encoding(s);
10263             return;
10264         }
10265         if (!fp_access_check(s)) {
10266             return;
10267         }
10268         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10269         return;
10270     case 0xc ... 0xf:
10271     case 0x16 ... 0x1d:
10272     case 0x1f:
10273         /* Floating point: U, size[1] and opcode indicate operation;
10274          * size[0] indicates single or double precision.
10275          */
10276         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10277         size = extract32(size, 0, 1) ? 3 : 2;
10278         switch (opcode) {
10279         case 0x2c: /* FCMGT (zero) */
10280         case 0x2d: /* FCMEQ (zero) */
10281         case 0x2e: /* FCMLT (zero) */
10282         case 0x6c: /* FCMGE (zero) */
10283         case 0x6d: /* FCMLE (zero) */
10284             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10285             return;
10286         case 0x1d: /* SCVTF */
10287         case 0x5d: /* UCVTF */
10288         {
10289             bool is_signed = (opcode == 0x1d);
10290             if (!fp_access_check(s)) {
10291                 return;
10292             }
10293             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10294             return;
10295         }
10296         case 0x3d: /* FRECPE */
10297         case 0x3f: /* FRECPX */
10298         case 0x7d: /* FRSQRTE */
10299             if (!fp_access_check(s)) {
10300                 return;
10301             }
10302             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10303             return;
10304         case 0x1a: /* FCVTNS */
10305         case 0x1b: /* FCVTMS */
10306         case 0x3a: /* FCVTPS */
10307         case 0x3b: /* FCVTZS */
10308         case 0x5a: /* FCVTNU */
10309         case 0x5b: /* FCVTMU */
10310         case 0x7a: /* FCVTPU */
10311         case 0x7b: /* FCVTZU */
10312             is_fcvt = true;
10313             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10314             break;
10315         case 0x1c: /* FCVTAS */
10316         case 0x5c: /* FCVTAU */
10317             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10318             is_fcvt = true;
10319             rmode = FPROUNDING_TIEAWAY;
10320             break;
10321         case 0x56: /* FCVTXN, FCVTXN2 */
10322             if (size == 2) {
10323                 unallocated_encoding(s);
10324                 return;
10325             }
10326             if (!fp_access_check(s)) {
10327                 return;
10328             }
10329             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10330             return;
10331         default:
10332             unallocated_encoding(s);
10333             return;
10334         }
10335         break;
10336     default:
10337         unallocated_encoding(s);
10338         return;
10339     }
10340 
10341     if (!fp_access_check(s)) {
10342         return;
10343     }
10344 
10345     if (is_fcvt) {
10346         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10347         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10348     } else {
10349         tcg_fpstatus = NULL;
10350         tcg_rmode = NULL;
10351     }
10352 
10353     if (size == 3) {
10354         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10355         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10356 
10357         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10358         write_fp_dreg(s, rd, tcg_rd);
10359     } else {
10360         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10361         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10362 
10363         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10364 
10365         switch (opcode) {
10366         case 0x7: /* SQABS, SQNEG */
10367         {
10368             NeonGenOneOpEnvFn *genfn;
10369             static NeonGenOneOpEnvFn * const fns[3][2] = {
10370                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10371                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10372                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10373             };
10374             genfn = fns[size][u];
10375             genfn(tcg_rd, tcg_env, tcg_rn);
10376             break;
10377         }
10378         case 0x1a: /* FCVTNS */
10379         case 0x1b: /* FCVTMS */
10380         case 0x1c: /* FCVTAS */
10381         case 0x3a: /* FCVTPS */
10382         case 0x3b: /* FCVTZS */
10383             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10384                                  tcg_fpstatus);
10385             break;
10386         case 0x5a: /* FCVTNU */
10387         case 0x5b: /* FCVTMU */
10388         case 0x5c: /* FCVTAU */
10389         case 0x7a: /* FCVTPU */
10390         case 0x7b: /* FCVTZU */
10391             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10392                                  tcg_fpstatus);
10393             break;
10394         default:
10395             g_assert_not_reached();
10396         }
10397 
10398         write_fp_sreg(s, rd, tcg_rd);
10399     }
10400 
10401     if (is_fcvt) {
10402         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10403     }
10404 }
10405 
10406 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10407 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10408                                  int immh, int immb, int opcode, int rn, int rd)
10409 {
10410     int size = 32 - clz32(immh) - 1;
10411     int immhb = immh << 3 | immb;
10412     int shift = 2 * (8 << size) - immhb;
10413     GVecGen2iFn *gvec_fn;
10414 
10415     if (extract32(immh, 3, 1) && !is_q) {
10416         unallocated_encoding(s);
10417         return;
10418     }
10419     tcg_debug_assert(size <= 3);
10420 
10421     if (!fp_access_check(s)) {
10422         return;
10423     }
10424 
10425     switch (opcode) {
10426     case 0x02: /* SSRA / USRA (accumulate) */
10427         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10428         break;
10429 
10430     case 0x08: /* SRI */
10431         gvec_fn = gen_gvec_sri;
10432         break;
10433 
10434     case 0x00: /* SSHR / USHR */
10435         if (is_u) {
10436             if (shift == 8 << size) {
10437                 /* Shift count the same size as element size produces zero.  */
10438                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10439                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10440                 return;
10441             }
10442             gvec_fn = tcg_gen_gvec_shri;
10443         } else {
10444             /* Shift count the same size as element size produces all sign.  */
10445             if (shift == 8 << size) {
10446                 shift -= 1;
10447             }
10448             gvec_fn = tcg_gen_gvec_sari;
10449         }
10450         break;
10451 
10452     case 0x04: /* SRSHR / URSHR (rounding) */
10453         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10454         break;
10455 
10456     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10457         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10458         break;
10459 
10460     default:
10461         g_assert_not_reached();
10462     }
10463 
10464     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10465 }
10466 
10467 /* SHL/SLI - Vector shift left */
10468 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10469                                  int immh, int immb, int opcode, int rn, int rd)
10470 {
10471     int size = 32 - clz32(immh) - 1;
10472     int immhb = immh << 3 | immb;
10473     int shift = immhb - (8 << size);
10474 
10475     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10476     assert(size >= 0 && size <= 3);
10477 
10478     if (extract32(immh, 3, 1) && !is_q) {
10479         unallocated_encoding(s);
10480         return;
10481     }
10482 
10483     if (!fp_access_check(s)) {
10484         return;
10485     }
10486 
10487     if (insert) {
10488         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10489     } else {
10490         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10491     }
10492 }
10493 
10494 /* USHLL/SHLL - Vector shift left with widening */
10495 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10496                                  int immh, int immb, int opcode, int rn, int rd)
10497 {
10498     int size = 32 - clz32(immh) - 1;
10499     int immhb = immh << 3 | immb;
10500     int shift = immhb - (8 << size);
10501     int dsize = 64;
10502     int esize = 8 << size;
10503     int elements = dsize/esize;
10504     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10505     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10506     int i;
10507 
10508     if (size >= 3) {
10509         unallocated_encoding(s);
10510         return;
10511     }
10512 
10513     if (!fp_access_check(s)) {
10514         return;
10515     }
10516 
10517     /* For the LL variants the store is larger than the load,
10518      * so if rd == rn we would overwrite parts of our input.
10519      * So load everything right now and use shifts in the main loop.
10520      */
10521     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10522 
10523     for (i = 0; i < elements; i++) {
10524         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10525         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10526         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10527         write_vec_element(s, tcg_rd, rd, i, size + 1);
10528     }
10529 }
10530 
10531 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10532 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10533                                  int immh, int immb, int opcode, int rn, int rd)
10534 {
10535     int immhb = immh << 3 | immb;
10536     int size = 32 - clz32(immh) - 1;
10537     int dsize = 64;
10538     int esize = 8 << size;
10539     int elements = dsize/esize;
10540     int shift = (2 * esize) - immhb;
10541     bool round = extract32(opcode, 0, 1);
10542     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10543     TCGv_i64 tcg_round;
10544     int i;
10545 
10546     if (extract32(immh, 3, 1)) {
10547         unallocated_encoding(s);
10548         return;
10549     }
10550 
10551     if (!fp_access_check(s)) {
10552         return;
10553     }
10554 
10555     tcg_rn = tcg_temp_new_i64();
10556     tcg_rd = tcg_temp_new_i64();
10557     tcg_final = tcg_temp_new_i64();
10558     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10559 
10560     if (round) {
10561         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10562     } else {
10563         tcg_round = NULL;
10564     }
10565 
10566     for (i = 0; i < elements; i++) {
10567         read_vec_element(s, tcg_rn, rn, i, size+1);
10568         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10569                                 false, true, size+1, shift);
10570 
10571         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10572     }
10573 
10574     if (!is_q) {
10575         write_vec_element(s, tcg_final, rd, 0, MO_64);
10576     } else {
10577         write_vec_element(s, tcg_final, rd, 1, MO_64);
10578     }
10579 
10580     clear_vec_high(s, is_q, rd);
10581 }
10582 
10583 
10584 /* AdvSIMD shift by immediate
10585  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10586  * +---+---+---+-------------+------+------+--------+---+------+------+
10587  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10588  * +---+---+---+-------------+------+------+--------+---+------+------+
10589  */
10590 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10591 {
10592     int rd = extract32(insn, 0, 5);
10593     int rn = extract32(insn, 5, 5);
10594     int opcode = extract32(insn, 11, 5);
10595     int immb = extract32(insn, 16, 3);
10596     int immh = extract32(insn, 19, 4);
10597     bool is_u = extract32(insn, 29, 1);
10598     bool is_q = extract32(insn, 30, 1);
10599 
10600     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10601     assert(immh != 0);
10602 
10603     switch (opcode) {
10604     case 0x08: /* SRI */
10605         if (!is_u) {
10606             unallocated_encoding(s);
10607             return;
10608         }
10609         /* fall through */
10610     case 0x00: /* SSHR / USHR */
10611     case 0x02: /* SSRA / USRA (accumulate) */
10612     case 0x04: /* SRSHR / URSHR (rounding) */
10613     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10614         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10615         break;
10616     case 0x0a: /* SHL / SLI */
10617         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10618         break;
10619     case 0x10: /* SHRN */
10620     case 0x11: /* RSHRN / SQRSHRUN */
10621         if (is_u) {
10622             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10623                                    opcode, rn, rd);
10624         } else {
10625             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10626         }
10627         break;
10628     case 0x12: /* SQSHRN / UQSHRN */
10629     case 0x13: /* SQRSHRN / UQRSHRN */
10630         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10631                                opcode, rn, rd);
10632         break;
10633     case 0x14: /* SSHLL / USHLL */
10634         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10635         break;
10636     case 0x1c: /* SCVTF / UCVTF */
10637         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10638                                      opcode, rn, rd);
10639         break;
10640     case 0xc: /* SQSHLU */
10641         if (!is_u) {
10642             unallocated_encoding(s);
10643             return;
10644         }
10645         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10646         break;
10647     case 0xe: /* SQSHL, UQSHL */
10648         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10649         break;
10650     case 0x1f: /* FCVTZS/ FCVTZU */
10651         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10652         return;
10653     default:
10654         unallocated_encoding(s);
10655         return;
10656     }
10657 }
10658 
10659 /* Generate code to do a "long" addition or subtraction, ie one done in
10660  * TCGv_i64 on vector lanes twice the width specified by size.
10661  */
10662 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10663                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10664 {
10665     static NeonGenTwo64OpFn * const fns[3][2] = {
10666         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10667         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10668         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10669     };
10670     NeonGenTwo64OpFn *genfn;
10671     assert(size < 3);
10672 
10673     genfn = fns[size][is_sub];
10674     genfn(tcg_res, tcg_op1, tcg_op2);
10675 }
10676 
10677 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10678                                 int opcode, int rd, int rn, int rm)
10679 {
10680     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10681     TCGv_i64 tcg_res[2];
10682     int pass, accop;
10683 
10684     tcg_res[0] = tcg_temp_new_i64();
10685     tcg_res[1] = tcg_temp_new_i64();
10686 
10687     /* Does this op do an adding accumulate, a subtracting accumulate,
10688      * or no accumulate at all?
10689      */
10690     switch (opcode) {
10691     case 5:
10692     case 8:
10693     case 9:
10694         accop = 1;
10695         break;
10696     case 10:
10697     case 11:
10698         accop = -1;
10699         break;
10700     default:
10701         accop = 0;
10702         break;
10703     }
10704 
10705     if (accop != 0) {
10706         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10707         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10708     }
10709 
10710     /* size == 2 means two 32x32->64 operations; this is worth special
10711      * casing because we can generally handle it inline.
10712      */
10713     if (size == 2) {
10714         for (pass = 0; pass < 2; pass++) {
10715             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10716             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10717             TCGv_i64 tcg_passres;
10718             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10719 
10720             int elt = pass + is_q * 2;
10721 
10722             read_vec_element(s, tcg_op1, rn, elt, memop);
10723             read_vec_element(s, tcg_op2, rm, elt, memop);
10724 
10725             if (accop == 0) {
10726                 tcg_passres = tcg_res[pass];
10727             } else {
10728                 tcg_passres = tcg_temp_new_i64();
10729             }
10730 
10731             switch (opcode) {
10732             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10733                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10734                 break;
10735             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10736                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10737                 break;
10738             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10739             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10740             {
10741                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10742                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10743 
10744                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10745                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10746                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10747                                     tcg_passres,
10748                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10749                 break;
10750             }
10751             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10752             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10753             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10754                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10755                 break;
10756             case 9: /* SQDMLAL, SQDMLAL2 */
10757             case 11: /* SQDMLSL, SQDMLSL2 */
10758             case 13: /* SQDMULL, SQDMULL2 */
10759                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10760                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10761                                                   tcg_passres, tcg_passres);
10762                 break;
10763             default:
10764                 g_assert_not_reached();
10765             }
10766 
10767             if (opcode == 9 || opcode == 11) {
10768                 /* saturating accumulate ops */
10769                 if (accop < 0) {
10770                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10771                 }
10772                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10773                                                   tcg_res[pass], tcg_passres);
10774             } else if (accop > 0) {
10775                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10776             } else if (accop < 0) {
10777                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10778             }
10779         }
10780     } else {
10781         /* size 0 or 1, generally helper functions */
10782         for (pass = 0; pass < 2; pass++) {
10783             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10784             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10785             TCGv_i64 tcg_passres;
10786             int elt = pass + is_q * 2;
10787 
10788             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10789             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10790 
10791             if (accop == 0) {
10792                 tcg_passres = tcg_res[pass];
10793             } else {
10794                 tcg_passres = tcg_temp_new_i64();
10795             }
10796 
10797             switch (opcode) {
10798             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10799             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10800             {
10801                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10802                 static NeonGenWidenFn * const widenfns[2][2] = {
10803                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10804                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10805                 };
10806                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10807 
10808                 widenfn(tcg_op2_64, tcg_op2);
10809                 widenfn(tcg_passres, tcg_op1);
10810                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10811                               tcg_passres, tcg_op2_64);
10812                 break;
10813             }
10814             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10815             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10816                 if (size == 0) {
10817                     if (is_u) {
10818                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10819                     } else {
10820                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10821                     }
10822                 } else {
10823                     if (is_u) {
10824                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10825                     } else {
10826                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10827                     }
10828                 }
10829                 break;
10830             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10831             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10832             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10833                 if (size == 0) {
10834                     if (is_u) {
10835                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10836                     } else {
10837                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10838                     }
10839                 } else {
10840                     if (is_u) {
10841                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10842                     } else {
10843                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10844                     }
10845                 }
10846                 break;
10847             case 9: /* SQDMLAL, SQDMLAL2 */
10848             case 11: /* SQDMLSL, SQDMLSL2 */
10849             case 13: /* SQDMULL, SQDMULL2 */
10850                 assert(size == 1);
10851                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10852                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10853                                                   tcg_passres, tcg_passres);
10854                 break;
10855             default:
10856                 g_assert_not_reached();
10857             }
10858 
10859             if (accop != 0) {
10860                 if (opcode == 9 || opcode == 11) {
10861                     /* saturating accumulate ops */
10862                     if (accop < 0) {
10863                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10864                     }
10865                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10866                                                       tcg_res[pass],
10867                                                       tcg_passres);
10868                 } else {
10869                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10870                                   tcg_res[pass], tcg_passres);
10871                 }
10872             }
10873         }
10874     }
10875 
10876     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10877     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10878 }
10879 
10880 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10881                             int opcode, int rd, int rn, int rm)
10882 {
10883     TCGv_i64 tcg_res[2];
10884     int part = is_q ? 2 : 0;
10885     int pass;
10886 
10887     for (pass = 0; pass < 2; pass++) {
10888         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10889         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10890         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10891         static NeonGenWidenFn * const widenfns[3][2] = {
10892             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10893             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10894             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10895         };
10896         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10897 
10898         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10899         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10900         widenfn(tcg_op2_wide, tcg_op2);
10901         tcg_res[pass] = tcg_temp_new_i64();
10902         gen_neon_addl(size, (opcode == 3),
10903                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10904     }
10905 
10906     for (pass = 0; pass < 2; pass++) {
10907         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10908     }
10909 }
10910 
10911 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10912 {
10913     tcg_gen_addi_i64(in, in, 1U << 31);
10914     tcg_gen_extrh_i64_i32(res, in);
10915 }
10916 
10917 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10918                                  int opcode, int rd, int rn, int rm)
10919 {
10920     TCGv_i32 tcg_res[2];
10921     int part = is_q ? 2 : 0;
10922     int pass;
10923 
10924     for (pass = 0; pass < 2; pass++) {
10925         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10926         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10927         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10928         static NeonGenNarrowFn * const narrowfns[3][2] = {
10929             { gen_helper_neon_narrow_high_u8,
10930               gen_helper_neon_narrow_round_high_u8 },
10931             { gen_helper_neon_narrow_high_u16,
10932               gen_helper_neon_narrow_round_high_u16 },
10933             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10934         };
10935         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10936 
10937         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10938         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10939 
10940         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10941 
10942         tcg_res[pass] = tcg_temp_new_i32();
10943         gennarrow(tcg_res[pass], tcg_wideres);
10944     }
10945 
10946     for (pass = 0; pass < 2; pass++) {
10947         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10948     }
10949     clear_vec_high(s, is_q, rd);
10950 }
10951 
10952 /* AdvSIMD three different
10953  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10954  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10955  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10956  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10957  */
10958 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10959 {
10960     /* Instructions in this group fall into three basic classes
10961      * (in each case with the operation working on each element in
10962      * the input vectors):
10963      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10964      *     128 bit input)
10965      * (2) wide 64 x 128 -> 128
10966      * (3) narrowing 128 x 128 -> 64
10967      * Here we do initial decode, catch unallocated cases and
10968      * dispatch to separate functions for each class.
10969      */
10970     int is_q = extract32(insn, 30, 1);
10971     int is_u = extract32(insn, 29, 1);
10972     int size = extract32(insn, 22, 2);
10973     int opcode = extract32(insn, 12, 4);
10974     int rm = extract32(insn, 16, 5);
10975     int rn = extract32(insn, 5, 5);
10976     int rd = extract32(insn, 0, 5);
10977 
10978     switch (opcode) {
10979     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10980     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10981         /* 64 x 128 -> 128 */
10982         if (size == 3) {
10983             unallocated_encoding(s);
10984             return;
10985         }
10986         if (!fp_access_check(s)) {
10987             return;
10988         }
10989         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10990         break;
10991     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10992     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10993         /* 128 x 128 -> 64 */
10994         if (size == 3) {
10995             unallocated_encoding(s);
10996             return;
10997         }
10998         if (!fp_access_check(s)) {
10999             return;
11000         }
11001         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11002         break;
11003     case 14: /* PMULL, PMULL2 */
11004         if (is_u) {
11005             unallocated_encoding(s);
11006             return;
11007         }
11008         switch (size) {
11009         case 0: /* PMULL.P8 */
11010             if (!fp_access_check(s)) {
11011                 return;
11012             }
11013             /* The Q field specifies lo/hi half input for this insn.  */
11014             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11015                              gen_helper_neon_pmull_h);
11016             break;
11017 
11018         case 3: /* PMULL.P64 */
11019             if (!dc_isar_feature(aa64_pmull, s)) {
11020                 unallocated_encoding(s);
11021                 return;
11022             }
11023             if (!fp_access_check(s)) {
11024                 return;
11025             }
11026             /* The Q field specifies lo/hi half input for this insn.  */
11027             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11028                              gen_helper_gvec_pmull_q);
11029             break;
11030 
11031         default:
11032             unallocated_encoding(s);
11033             break;
11034         }
11035         return;
11036     case 9: /* SQDMLAL, SQDMLAL2 */
11037     case 11: /* SQDMLSL, SQDMLSL2 */
11038     case 13: /* SQDMULL, SQDMULL2 */
11039         if (is_u || size == 0) {
11040             unallocated_encoding(s);
11041             return;
11042         }
11043         /* fall through */
11044     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11045     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11046     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11047     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11048     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11049     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11050     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11051         /* 64 x 64 -> 128 */
11052         if (size == 3) {
11053             unallocated_encoding(s);
11054             return;
11055         }
11056         if (!fp_access_check(s)) {
11057             return;
11058         }
11059 
11060         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11061         break;
11062     default:
11063         /* opcode 15 not allocated */
11064         unallocated_encoding(s);
11065         break;
11066     }
11067 }
11068 
11069 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11070 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11071 {
11072     int rd = extract32(insn, 0, 5);
11073     int rn = extract32(insn, 5, 5);
11074     int rm = extract32(insn, 16, 5);
11075     int size = extract32(insn, 22, 2);
11076     bool is_u = extract32(insn, 29, 1);
11077     bool is_q = extract32(insn, 30, 1);
11078 
11079     if (!fp_access_check(s)) {
11080         return;
11081     }
11082 
11083     switch (size + 4 * is_u) {
11084     case 0: /* AND */
11085         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11086         return;
11087     case 1: /* BIC */
11088         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11089         return;
11090     case 2: /* ORR */
11091         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11092         return;
11093     case 3: /* ORN */
11094         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11095         return;
11096     case 4: /* EOR */
11097         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11098         return;
11099 
11100     case 5: /* BSL bitwise select */
11101         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11102         return;
11103     case 6: /* BIT, bitwise insert if true */
11104         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11105         return;
11106     case 7: /* BIF, bitwise insert if false */
11107         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11108         return;
11109 
11110     default:
11111         g_assert_not_reached();
11112     }
11113 }
11114 
11115 /* Pairwise op subgroup of C3.6.16.
11116  *
11117  * This is called directly or via the handle_3same_float for float pairwise
11118  * operations where the opcode and size are calculated differently.
11119  */
11120 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11121                                    int size, int rn, int rm, int rd)
11122 {
11123     TCGv_ptr fpst;
11124     int pass;
11125 
11126     /* Floating point operations need fpst */
11127     if (opcode >= 0x58) {
11128         fpst = fpstatus_ptr(FPST_FPCR);
11129     } else {
11130         fpst = NULL;
11131     }
11132 
11133     if (!fp_access_check(s)) {
11134         return;
11135     }
11136 
11137     /* These operations work on the concatenated rm:rn, with each pair of
11138      * adjacent elements being operated on to produce an element in the result.
11139      */
11140     if (size == 3) {
11141         TCGv_i64 tcg_res[2];
11142 
11143         for (pass = 0; pass < 2; pass++) {
11144             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11145             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11146             int passreg = (pass == 0) ? rn : rm;
11147 
11148             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11149             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11150             tcg_res[pass] = tcg_temp_new_i64();
11151 
11152             switch (opcode) {
11153             case 0x17: /* ADDP */
11154                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11155                 break;
11156             case 0x58: /* FMAXNMP */
11157                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11158                 break;
11159             case 0x5a: /* FADDP */
11160                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11161                 break;
11162             case 0x5e: /* FMAXP */
11163                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11164                 break;
11165             case 0x78: /* FMINNMP */
11166                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11167                 break;
11168             case 0x7e: /* FMINP */
11169                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11170                 break;
11171             default:
11172                 g_assert_not_reached();
11173             }
11174         }
11175 
11176         for (pass = 0; pass < 2; pass++) {
11177             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11178         }
11179     } else {
11180         int maxpass = is_q ? 4 : 2;
11181         TCGv_i32 tcg_res[4];
11182 
11183         for (pass = 0; pass < maxpass; pass++) {
11184             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11185             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11186             NeonGenTwoOpFn *genfn = NULL;
11187             int passreg = pass < (maxpass / 2) ? rn : rm;
11188             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11189 
11190             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11191             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11192             tcg_res[pass] = tcg_temp_new_i32();
11193 
11194             switch (opcode) {
11195             case 0x17: /* ADDP */
11196             {
11197                 static NeonGenTwoOpFn * const fns[3] = {
11198                     gen_helper_neon_padd_u8,
11199                     gen_helper_neon_padd_u16,
11200                     tcg_gen_add_i32,
11201                 };
11202                 genfn = fns[size];
11203                 break;
11204             }
11205             case 0x14: /* SMAXP, UMAXP */
11206             {
11207                 static NeonGenTwoOpFn * const fns[3][2] = {
11208                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11209                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11210                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11211                 };
11212                 genfn = fns[size][u];
11213                 break;
11214             }
11215             case 0x15: /* SMINP, UMINP */
11216             {
11217                 static NeonGenTwoOpFn * const fns[3][2] = {
11218                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11219                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11220                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11221                 };
11222                 genfn = fns[size][u];
11223                 break;
11224             }
11225             /* The FP operations are all on single floats (32 bit) */
11226             case 0x58: /* FMAXNMP */
11227                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11228                 break;
11229             case 0x5a: /* FADDP */
11230                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11231                 break;
11232             case 0x5e: /* FMAXP */
11233                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11234                 break;
11235             case 0x78: /* FMINNMP */
11236                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11237                 break;
11238             case 0x7e: /* FMINP */
11239                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11240                 break;
11241             default:
11242                 g_assert_not_reached();
11243             }
11244 
11245             /* FP ops called directly, otherwise call now */
11246             if (genfn) {
11247                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11248             }
11249         }
11250 
11251         for (pass = 0; pass < maxpass; pass++) {
11252             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11253         }
11254         clear_vec_high(s, is_q, rd);
11255     }
11256 }
11257 
11258 /* Floating point op subgroup of C3.6.16. */
11259 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11260 {
11261     /* For floating point ops, the U, size[1] and opcode bits
11262      * together indicate the operation. size[0] indicates single
11263      * or double.
11264      */
11265     int fpopcode = extract32(insn, 11, 5)
11266         | (extract32(insn, 23, 1) << 5)
11267         | (extract32(insn, 29, 1) << 6);
11268     int is_q = extract32(insn, 30, 1);
11269     int size = extract32(insn, 22, 1);
11270     int rm = extract32(insn, 16, 5);
11271     int rn = extract32(insn, 5, 5);
11272     int rd = extract32(insn, 0, 5);
11273 
11274     int datasize = is_q ? 128 : 64;
11275     int esize = 32 << size;
11276     int elements = datasize / esize;
11277 
11278     if (size == 1 && !is_q) {
11279         unallocated_encoding(s);
11280         return;
11281     }
11282 
11283     switch (fpopcode) {
11284     case 0x58: /* FMAXNMP */
11285     case 0x5a: /* FADDP */
11286     case 0x5e: /* FMAXP */
11287     case 0x78: /* FMINNMP */
11288     case 0x7e: /* FMINP */
11289         if (size && !is_q) {
11290             unallocated_encoding(s);
11291             return;
11292         }
11293         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11294                                rn, rm, rd);
11295         return;
11296     case 0x1f: /* FRECPS */
11297     case 0x3f: /* FRSQRTS */
11298         if (!fp_access_check(s)) {
11299             return;
11300         }
11301         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11302         return;
11303 
11304     case 0x1d: /* FMLAL  */
11305     case 0x3d: /* FMLSL  */
11306     case 0x59: /* FMLAL2 */
11307     case 0x79: /* FMLSL2 */
11308         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11309             unallocated_encoding(s);
11310             return;
11311         }
11312         if (fp_access_check(s)) {
11313             int is_s = extract32(insn, 23, 1);
11314             int is_2 = extract32(insn, 29, 1);
11315             int data = (is_2 << 1) | is_s;
11316             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11317                                vec_full_reg_offset(s, rn),
11318                                vec_full_reg_offset(s, rm), tcg_env,
11319                                is_q ? 16 : 8, vec_full_reg_size(s),
11320                                data, gen_helper_gvec_fmlal_a64);
11321         }
11322         return;
11323 
11324     default:
11325     case 0x18: /* FMAXNM */
11326     case 0x19: /* FMLA */
11327     case 0x1a: /* FADD */
11328     case 0x1b: /* FMULX */
11329     case 0x1c: /* FCMEQ */
11330     case 0x1e: /* FMAX */
11331     case 0x38: /* FMINNM */
11332     case 0x39: /* FMLS */
11333     case 0x3a: /* FSUB */
11334     case 0x3e: /* FMIN */
11335     case 0x5b: /* FMUL */
11336     case 0x5c: /* FCMGE */
11337     case 0x5d: /* FACGE */
11338     case 0x5f: /* FDIV */
11339     case 0x7a: /* FABD */
11340     case 0x7d: /* FACGT */
11341     case 0x7c: /* FCMGT */
11342         unallocated_encoding(s);
11343         return;
11344     }
11345 }
11346 
11347 /* Integer op subgroup of C3.6.16. */
11348 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11349 {
11350     int is_q = extract32(insn, 30, 1);
11351     int u = extract32(insn, 29, 1);
11352     int size = extract32(insn, 22, 2);
11353     int opcode = extract32(insn, 11, 5);
11354     int rm = extract32(insn, 16, 5);
11355     int rn = extract32(insn, 5, 5);
11356     int rd = extract32(insn, 0, 5);
11357     int pass;
11358     TCGCond cond;
11359 
11360     switch (opcode) {
11361     case 0x13: /* MUL, PMUL */
11362         if (u && size != 0) {
11363             unallocated_encoding(s);
11364             return;
11365         }
11366         /* fall through */
11367     case 0x0: /* SHADD, UHADD */
11368     case 0x2: /* SRHADD, URHADD */
11369     case 0x4: /* SHSUB, UHSUB */
11370     case 0xc: /* SMAX, UMAX */
11371     case 0xd: /* SMIN, UMIN */
11372     case 0xe: /* SABD, UABD */
11373     case 0xf: /* SABA, UABA */
11374     case 0x12: /* MLA, MLS */
11375         if (size == 3) {
11376             unallocated_encoding(s);
11377             return;
11378         }
11379         break;
11380     case 0x16: /* SQDMULH, SQRDMULH */
11381         if (size == 0 || size == 3) {
11382             unallocated_encoding(s);
11383             return;
11384         }
11385         break;
11386     default:
11387         if (size == 3 && !is_q) {
11388             unallocated_encoding(s);
11389             return;
11390         }
11391         break;
11392     }
11393 
11394     if (!fp_access_check(s)) {
11395         return;
11396     }
11397 
11398     switch (opcode) {
11399     case 0x01: /* SQADD, UQADD */
11400         if (u) {
11401             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11402         } else {
11403             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11404         }
11405         return;
11406     case 0x05: /* SQSUB, UQSUB */
11407         if (u) {
11408             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11409         } else {
11410             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11411         }
11412         return;
11413     case 0x08: /* SSHL, USHL */
11414         if (u) {
11415             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11416         } else {
11417             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11418         }
11419         return;
11420     case 0x0c: /* SMAX, UMAX */
11421         if (u) {
11422             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11423         } else {
11424             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11425         }
11426         return;
11427     case 0x0d: /* SMIN, UMIN */
11428         if (u) {
11429             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11430         } else {
11431             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11432         }
11433         return;
11434     case 0xe: /* SABD, UABD */
11435         if (u) {
11436             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11437         } else {
11438             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11439         }
11440         return;
11441     case 0xf: /* SABA, UABA */
11442         if (u) {
11443             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11444         } else {
11445             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11446         }
11447         return;
11448     case 0x10: /* ADD, SUB */
11449         if (u) {
11450             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11451         } else {
11452             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11453         }
11454         return;
11455     case 0x13: /* MUL, PMUL */
11456         if (!u) { /* MUL */
11457             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11458         } else {  /* PMUL */
11459             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11460         }
11461         return;
11462     case 0x12: /* MLA, MLS */
11463         if (u) {
11464             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11465         } else {
11466             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11467         }
11468         return;
11469     case 0x16: /* SQDMULH, SQRDMULH */
11470         {
11471             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11472                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11473                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11474             };
11475             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11476         }
11477         return;
11478     case 0x11:
11479         if (!u) { /* CMTST */
11480             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11481             return;
11482         }
11483         /* else CMEQ */
11484         cond = TCG_COND_EQ;
11485         goto do_gvec_cmp;
11486     case 0x06: /* CMGT, CMHI */
11487         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11488         goto do_gvec_cmp;
11489     case 0x07: /* CMGE, CMHS */
11490         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11491     do_gvec_cmp:
11492         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11493                          vec_full_reg_offset(s, rn),
11494                          vec_full_reg_offset(s, rm),
11495                          is_q ? 16 : 8, vec_full_reg_size(s));
11496         return;
11497     }
11498 
11499     if (size == 3) {
11500         assert(is_q);
11501         for (pass = 0; pass < 2; pass++) {
11502             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11503             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11504             TCGv_i64 tcg_res = tcg_temp_new_i64();
11505 
11506             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11507             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11508 
11509             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11510 
11511             write_vec_element(s, tcg_res, rd, pass, MO_64);
11512         }
11513     } else {
11514         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11515             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11516             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11517             TCGv_i32 tcg_res = tcg_temp_new_i32();
11518             NeonGenTwoOpFn *genfn = NULL;
11519             NeonGenTwoOpEnvFn *genenvfn = NULL;
11520 
11521             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11522             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11523 
11524             switch (opcode) {
11525             case 0x0: /* SHADD, UHADD */
11526             {
11527                 static NeonGenTwoOpFn * const fns[3][2] = {
11528                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11529                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11530                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11531                 };
11532                 genfn = fns[size][u];
11533                 break;
11534             }
11535             case 0x2: /* SRHADD, URHADD */
11536             {
11537                 static NeonGenTwoOpFn * const fns[3][2] = {
11538                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11539                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11540                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11541                 };
11542                 genfn = fns[size][u];
11543                 break;
11544             }
11545             case 0x4: /* SHSUB, UHSUB */
11546             {
11547                 static NeonGenTwoOpFn * const fns[3][2] = {
11548                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11549                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11550                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11551                 };
11552                 genfn = fns[size][u];
11553                 break;
11554             }
11555             case 0x9: /* SQSHL, UQSHL */
11556             {
11557                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11558                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11559                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11560                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11561                 };
11562                 genenvfn = fns[size][u];
11563                 break;
11564             }
11565             case 0xa: /* SRSHL, URSHL */
11566             {
11567                 static NeonGenTwoOpFn * const fns[3][2] = {
11568                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11569                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11570                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11571                 };
11572                 genfn = fns[size][u];
11573                 break;
11574             }
11575             case 0xb: /* SQRSHL, UQRSHL */
11576             {
11577                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11578                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11579                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11580                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11581                 };
11582                 genenvfn = fns[size][u];
11583                 break;
11584             }
11585             default:
11586                 g_assert_not_reached();
11587             }
11588 
11589             if (genenvfn) {
11590                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11591             } else {
11592                 genfn(tcg_res, tcg_op1, tcg_op2);
11593             }
11594 
11595             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11596         }
11597     }
11598     clear_vec_high(s, is_q, rd);
11599 }
11600 
11601 /* AdvSIMD three same
11602  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11603  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11604  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11605  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11606  */
11607 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11608 {
11609     int opcode = extract32(insn, 11, 5);
11610 
11611     switch (opcode) {
11612     case 0x3: /* logic ops */
11613         disas_simd_3same_logic(s, insn);
11614         break;
11615     case 0x17: /* ADDP */
11616     case 0x14: /* SMAXP, UMAXP */
11617     case 0x15: /* SMINP, UMINP */
11618     {
11619         /* Pairwise operations */
11620         int is_q = extract32(insn, 30, 1);
11621         int u = extract32(insn, 29, 1);
11622         int size = extract32(insn, 22, 2);
11623         int rm = extract32(insn, 16, 5);
11624         int rn = extract32(insn, 5, 5);
11625         int rd = extract32(insn, 0, 5);
11626         if (opcode == 0x17) {
11627             if (u || (size == 3 && !is_q)) {
11628                 unallocated_encoding(s);
11629                 return;
11630             }
11631         } else {
11632             if (size == 3) {
11633                 unallocated_encoding(s);
11634                 return;
11635             }
11636         }
11637         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11638         break;
11639     }
11640     case 0x18 ... 0x31:
11641         /* floating point ops, sz[1] and U are part of opcode */
11642         disas_simd_3same_float(s, insn);
11643         break;
11644     default:
11645         disas_simd_3same_int(s, insn);
11646         break;
11647     }
11648 }
11649 
11650 /*
11651  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11652  *
11653  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11654  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11655  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11656  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11657  *
11658  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11659  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11660  *
11661  */
11662 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11663 {
11664     int opcode = extract32(insn, 11, 3);
11665     int u = extract32(insn, 29, 1);
11666     int a = extract32(insn, 23, 1);
11667     int is_q = extract32(insn, 30, 1);
11668     int rm = extract32(insn, 16, 5);
11669     int rn = extract32(insn, 5, 5);
11670     int rd = extract32(insn, 0, 5);
11671     /*
11672      * For these floating point ops, the U, a and opcode bits
11673      * together indicate the operation.
11674      */
11675     int fpopcode = opcode | (a << 3) | (u << 4);
11676     int datasize = is_q ? 128 : 64;
11677     int elements = datasize / 16;
11678     bool pairwise;
11679     TCGv_ptr fpst;
11680     int pass;
11681 
11682     switch (fpopcode) {
11683     case 0x7: /* FRECPS */
11684     case 0xf: /* FRSQRTS */
11685         pairwise = false;
11686         break;
11687     case 0x10: /* FMAXNMP */
11688     case 0x12: /* FADDP */
11689     case 0x16: /* FMAXP */
11690     case 0x18: /* FMINNMP */
11691     case 0x1e: /* FMINP */
11692         pairwise = true;
11693         break;
11694     default:
11695     case 0x0: /* FMAXNM */
11696     case 0x1: /* FMLA */
11697     case 0x2: /* FADD */
11698     case 0x3: /* FMULX */
11699     case 0x4: /* FCMEQ */
11700     case 0x6: /* FMAX */
11701     case 0x8: /* FMINNM */
11702     case 0x9: /* FMLS */
11703     case 0xa: /* FSUB */
11704     case 0xe: /* FMIN */
11705     case 0x13: /* FMUL */
11706     case 0x14: /* FCMGE */
11707     case 0x15: /* FACGE */
11708     case 0x17: /* FDIV */
11709     case 0x1a: /* FABD */
11710     case 0x1c: /* FCMGT */
11711     case 0x1d: /* FACGT */
11712         unallocated_encoding(s);
11713         return;
11714     }
11715 
11716     if (!dc_isar_feature(aa64_fp16, s)) {
11717         unallocated_encoding(s);
11718         return;
11719     }
11720 
11721     if (!fp_access_check(s)) {
11722         return;
11723     }
11724 
11725     fpst = fpstatus_ptr(FPST_FPCR_F16);
11726 
11727     if (pairwise) {
11728         int maxpass = is_q ? 8 : 4;
11729         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11730         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11731         TCGv_i32 tcg_res[8];
11732 
11733         for (pass = 0; pass < maxpass; pass++) {
11734             int passreg = pass < (maxpass / 2) ? rn : rm;
11735             int passelt = (pass << 1) & (maxpass - 1);
11736 
11737             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11738             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11739             tcg_res[pass] = tcg_temp_new_i32();
11740 
11741             switch (fpopcode) {
11742             case 0x10: /* FMAXNMP */
11743                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11744                                            fpst);
11745                 break;
11746             case 0x12: /* FADDP */
11747                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11748                 break;
11749             case 0x16: /* FMAXP */
11750                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11751                 break;
11752             case 0x18: /* FMINNMP */
11753                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11754                                            fpst);
11755                 break;
11756             case 0x1e: /* FMINP */
11757                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11758                 break;
11759             default:
11760                 g_assert_not_reached();
11761             }
11762         }
11763 
11764         for (pass = 0; pass < maxpass; pass++) {
11765             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11766         }
11767     } else {
11768         for (pass = 0; pass < elements; pass++) {
11769             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11770             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11771             TCGv_i32 tcg_res = tcg_temp_new_i32();
11772 
11773             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11774             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11775 
11776             switch (fpopcode) {
11777             case 0x7: /* FRECPS */
11778                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11779                 break;
11780             case 0xf: /* FRSQRTS */
11781                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11782                 break;
11783             default:
11784             case 0x0: /* FMAXNM */
11785             case 0x1: /* FMLA */
11786             case 0x2: /* FADD */
11787             case 0x3: /* FMULX */
11788             case 0x4: /* FCMEQ */
11789             case 0x6: /* FMAX */
11790             case 0x8: /* FMINNM */
11791             case 0x9: /* FMLS */
11792             case 0xa: /* FSUB */
11793             case 0xe: /* FMIN */
11794             case 0x13: /* FMUL */
11795             case 0x14: /* FCMGE */
11796             case 0x15: /* FACGE */
11797             case 0x17: /* FDIV */
11798             case 0x1a: /* FABD */
11799             case 0x1c: /* FCMGT */
11800             case 0x1d: /* FACGT */
11801                 g_assert_not_reached();
11802             }
11803 
11804             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11805         }
11806     }
11807 
11808     clear_vec_high(s, is_q, rd);
11809 }
11810 
11811 /* AdvSIMD three same extra
11812  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11813  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11814  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11815  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11816  */
11817 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11818 {
11819     int rd = extract32(insn, 0, 5);
11820     int rn = extract32(insn, 5, 5);
11821     int opcode = extract32(insn, 11, 4);
11822     int rm = extract32(insn, 16, 5);
11823     int size = extract32(insn, 22, 2);
11824     bool u = extract32(insn, 29, 1);
11825     bool is_q = extract32(insn, 30, 1);
11826     bool feature;
11827     int rot;
11828 
11829     switch (u * 16 + opcode) {
11830     case 0x10: /* SQRDMLAH (vector) */
11831     case 0x11: /* SQRDMLSH (vector) */
11832         if (size != 1 && size != 2) {
11833             unallocated_encoding(s);
11834             return;
11835         }
11836         feature = dc_isar_feature(aa64_rdm, s);
11837         break;
11838     case 0x02: /* SDOT (vector) */
11839     case 0x12: /* UDOT (vector) */
11840         if (size != MO_32) {
11841             unallocated_encoding(s);
11842             return;
11843         }
11844         feature = dc_isar_feature(aa64_dp, s);
11845         break;
11846     case 0x03: /* USDOT */
11847         if (size != MO_32) {
11848             unallocated_encoding(s);
11849             return;
11850         }
11851         feature = dc_isar_feature(aa64_i8mm, s);
11852         break;
11853     case 0x04: /* SMMLA */
11854     case 0x14: /* UMMLA */
11855     case 0x05: /* USMMLA */
11856         if (!is_q || size != MO_32) {
11857             unallocated_encoding(s);
11858             return;
11859         }
11860         feature = dc_isar_feature(aa64_i8mm, s);
11861         break;
11862     case 0x18: /* FCMLA, #0 */
11863     case 0x19: /* FCMLA, #90 */
11864     case 0x1a: /* FCMLA, #180 */
11865     case 0x1b: /* FCMLA, #270 */
11866     case 0x1c: /* FCADD, #90 */
11867     case 0x1e: /* FCADD, #270 */
11868         if (size == 0
11869             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11870             || (size == 3 && !is_q)) {
11871             unallocated_encoding(s);
11872             return;
11873         }
11874         feature = dc_isar_feature(aa64_fcma, s);
11875         break;
11876     case 0x1d: /* BFMMLA */
11877         if (size != MO_16 || !is_q) {
11878             unallocated_encoding(s);
11879             return;
11880         }
11881         feature = dc_isar_feature(aa64_bf16, s);
11882         break;
11883     case 0x1f:
11884         switch (size) {
11885         case 1: /* BFDOT */
11886         case 3: /* BFMLAL{B,T} */
11887             feature = dc_isar_feature(aa64_bf16, s);
11888             break;
11889         default:
11890             unallocated_encoding(s);
11891             return;
11892         }
11893         break;
11894     default:
11895         unallocated_encoding(s);
11896         return;
11897     }
11898     if (!feature) {
11899         unallocated_encoding(s);
11900         return;
11901     }
11902     if (!fp_access_check(s)) {
11903         return;
11904     }
11905 
11906     switch (opcode) {
11907     case 0x0: /* SQRDMLAH (vector) */
11908         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11909         return;
11910 
11911     case 0x1: /* SQRDMLSH (vector) */
11912         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11913         return;
11914 
11915     case 0x2: /* SDOT / UDOT */
11916         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11917                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11918         return;
11919 
11920     case 0x3: /* USDOT */
11921         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11922         return;
11923 
11924     case 0x04: /* SMMLA, UMMLA */
11925         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11926                          u ? gen_helper_gvec_ummla_b
11927                          : gen_helper_gvec_smmla_b);
11928         return;
11929     case 0x05: /* USMMLA */
11930         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11931         return;
11932 
11933     case 0x8: /* FCMLA, #0 */
11934     case 0x9: /* FCMLA, #90 */
11935     case 0xa: /* FCMLA, #180 */
11936     case 0xb: /* FCMLA, #270 */
11937         rot = extract32(opcode, 0, 2);
11938         switch (size) {
11939         case 1:
11940             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11941                               gen_helper_gvec_fcmlah);
11942             break;
11943         case 2:
11944             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11945                               gen_helper_gvec_fcmlas);
11946             break;
11947         case 3:
11948             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11949                               gen_helper_gvec_fcmlad);
11950             break;
11951         default:
11952             g_assert_not_reached();
11953         }
11954         return;
11955 
11956     case 0xc: /* FCADD, #90 */
11957     case 0xe: /* FCADD, #270 */
11958         rot = extract32(opcode, 1, 1);
11959         switch (size) {
11960         case 1:
11961             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11962                               gen_helper_gvec_fcaddh);
11963             break;
11964         case 2:
11965             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11966                               gen_helper_gvec_fcadds);
11967             break;
11968         case 3:
11969             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11970                               gen_helper_gvec_fcaddd);
11971             break;
11972         default:
11973             g_assert_not_reached();
11974         }
11975         return;
11976 
11977     case 0xd: /* BFMMLA */
11978         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11979         return;
11980     case 0xf:
11981         switch (size) {
11982         case 1: /* BFDOT */
11983             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11984             break;
11985         case 3: /* BFMLAL{B,T} */
11986             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11987                               gen_helper_gvec_bfmlal);
11988             break;
11989         default:
11990             g_assert_not_reached();
11991         }
11992         return;
11993 
11994     default:
11995         g_assert_not_reached();
11996     }
11997 }
11998 
11999 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12000                                   int size, int rn, int rd)
12001 {
12002     /* Handle 2-reg-misc ops which are widening (so each size element
12003      * in the source becomes a 2*size element in the destination.
12004      * The only instruction like this is FCVTL.
12005      */
12006     int pass;
12007 
12008     if (size == 3) {
12009         /* 32 -> 64 bit fp conversion */
12010         TCGv_i64 tcg_res[2];
12011         int srcelt = is_q ? 2 : 0;
12012 
12013         for (pass = 0; pass < 2; pass++) {
12014             TCGv_i32 tcg_op = tcg_temp_new_i32();
12015             tcg_res[pass] = tcg_temp_new_i64();
12016 
12017             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12018             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
12019         }
12020         for (pass = 0; pass < 2; pass++) {
12021             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12022         }
12023     } else {
12024         /* 16 -> 32 bit fp conversion */
12025         int srcelt = is_q ? 4 : 0;
12026         TCGv_i32 tcg_res[4];
12027         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12028         TCGv_i32 ahp = get_ahp_flag();
12029 
12030         for (pass = 0; pass < 4; pass++) {
12031             tcg_res[pass] = tcg_temp_new_i32();
12032 
12033             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12034             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12035                                            fpst, ahp);
12036         }
12037         for (pass = 0; pass < 4; pass++) {
12038             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12039         }
12040     }
12041 }
12042 
12043 static void handle_rev(DisasContext *s, int opcode, bool u,
12044                        bool is_q, int size, int rn, int rd)
12045 {
12046     int op = (opcode << 1) | u;
12047     int opsz = op + size;
12048     int grp_size = 3 - opsz;
12049     int dsize = is_q ? 128 : 64;
12050     int i;
12051 
12052     if (opsz >= 3) {
12053         unallocated_encoding(s);
12054         return;
12055     }
12056 
12057     if (!fp_access_check(s)) {
12058         return;
12059     }
12060 
12061     if (size == 0) {
12062         /* Special case bytes, use bswap op on each group of elements */
12063         int groups = dsize / (8 << grp_size);
12064 
12065         for (i = 0; i < groups; i++) {
12066             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12067 
12068             read_vec_element(s, tcg_tmp, rn, i, grp_size);
12069             switch (grp_size) {
12070             case MO_16:
12071                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12072                 break;
12073             case MO_32:
12074                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12075                 break;
12076             case MO_64:
12077                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12078                 break;
12079             default:
12080                 g_assert_not_reached();
12081             }
12082             write_vec_element(s, tcg_tmp, rd, i, grp_size);
12083         }
12084         clear_vec_high(s, is_q, rd);
12085     } else {
12086         int revmask = (1 << grp_size) - 1;
12087         int esize = 8 << size;
12088         int elements = dsize / esize;
12089         TCGv_i64 tcg_rn = tcg_temp_new_i64();
12090         TCGv_i64 tcg_rd[2];
12091 
12092         for (i = 0; i < 2; i++) {
12093             tcg_rd[i] = tcg_temp_new_i64();
12094             tcg_gen_movi_i64(tcg_rd[i], 0);
12095         }
12096 
12097         for (i = 0; i < elements; i++) {
12098             int e_rev = (i & 0xf) ^ revmask;
12099             int w = (e_rev * esize) / 64;
12100             int o = (e_rev * esize) % 64;
12101 
12102             read_vec_element(s, tcg_rn, rn, i, size);
12103             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
12104         }
12105 
12106         for (i = 0; i < 2; i++) {
12107             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
12108         }
12109         clear_vec_high(s, true, rd);
12110     }
12111 }
12112 
12113 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12114                                   bool is_q, int size, int rn, int rd)
12115 {
12116     /* Implement the pairwise operations from 2-misc:
12117      * SADDLP, UADDLP, SADALP, UADALP.
12118      * These all add pairs of elements in the input to produce a
12119      * double-width result element in the output (possibly accumulating).
12120      */
12121     bool accum = (opcode == 0x6);
12122     int maxpass = is_q ? 2 : 1;
12123     int pass;
12124     TCGv_i64 tcg_res[2];
12125 
12126     if (size == 2) {
12127         /* 32 + 32 -> 64 op */
12128         MemOp memop = size + (u ? 0 : MO_SIGN);
12129 
12130         for (pass = 0; pass < maxpass; pass++) {
12131             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12132             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12133 
12134             tcg_res[pass] = tcg_temp_new_i64();
12135 
12136             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12137             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12138             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12139             if (accum) {
12140                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12141                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12142             }
12143         }
12144     } else {
12145         for (pass = 0; pass < maxpass; pass++) {
12146             TCGv_i64 tcg_op = tcg_temp_new_i64();
12147             NeonGenOne64OpFn *genfn;
12148             static NeonGenOne64OpFn * const fns[2][2] = {
12149                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12150                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12151             };
12152 
12153             genfn = fns[size][u];
12154 
12155             tcg_res[pass] = tcg_temp_new_i64();
12156 
12157             read_vec_element(s, tcg_op, rn, pass, MO_64);
12158             genfn(tcg_res[pass], tcg_op);
12159 
12160             if (accum) {
12161                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12162                 if (size == 0) {
12163                     gen_helper_neon_addl_u16(tcg_res[pass],
12164                                              tcg_res[pass], tcg_op);
12165                 } else {
12166                     gen_helper_neon_addl_u32(tcg_res[pass],
12167                                              tcg_res[pass], tcg_op);
12168                 }
12169             }
12170         }
12171     }
12172     if (!is_q) {
12173         tcg_res[1] = tcg_constant_i64(0);
12174     }
12175     for (pass = 0; pass < 2; pass++) {
12176         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12177     }
12178 }
12179 
12180 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12181 {
12182     /* Implement SHLL and SHLL2 */
12183     int pass;
12184     int part = is_q ? 2 : 0;
12185     TCGv_i64 tcg_res[2];
12186 
12187     for (pass = 0; pass < 2; pass++) {
12188         static NeonGenWidenFn * const widenfns[3] = {
12189             gen_helper_neon_widen_u8,
12190             gen_helper_neon_widen_u16,
12191             tcg_gen_extu_i32_i64,
12192         };
12193         NeonGenWidenFn *widenfn = widenfns[size];
12194         TCGv_i32 tcg_op = tcg_temp_new_i32();
12195 
12196         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12197         tcg_res[pass] = tcg_temp_new_i64();
12198         widenfn(tcg_res[pass], tcg_op);
12199         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12200     }
12201 
12202     for (pass = 0; pass < 2; pass++) {
12203         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12204     }
12205 }
12206 
12207 /* AdvSIMD two reg misc
12208  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12209  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12210  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12211  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12212  */
12213 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12214 {
12215     int size = extract32(insn, 22, 2);
12216     int opcode = extract32(insn, 12, 5);
12217     bool u = extract32(insn, 29, 1);
12218     bool is_q = extract32(insn, 30, 1);
12219     int rn = extract32(insn, 5, 5);
12220     int rd = extract32(insn, 0, 5);
12221     bool need_fpstatus = false;
12222     int rmode = -1;
12223     TCGv_i32 tcg_rmode;
12224     TCGv_ptr tcg_fpstatus;
12225 
12226     switch (opcode) {
12227     case 0x0: /* REV64, REV32 */
12228     case 0x1: /* REV16 */
12229         handle_rev(s, opcode, u, is_q, size, rn, rd);
12230         return;
12231     case 0x5: /* CNT, NOT, RBIT */
12232         if (u && size == 0) {
12233             /* NOT */
12234             break;
12235         } else if (u && size == 1) {
12236             /* RBIT */
12237             break;
12238         } else if (!u && size == 0) {
12239             /* CNT */
12240             break;
12241         }
12242         unallocated_encoding(s);
12243         return;
12244     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12245     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12246         if (size == 3) {
12247             unallocated_encoding(s);
12248             return;
12249         }
12250         if (!fp_access_check(s)) {
12251             return;
12252         }
12253 
12254         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12255         return;
12256     case 0x4: /* CLS, CLZ */
12257         if (size == 3) {
12258             unallocated_encoding(s);
12259             return;
12260         }
12261         break;
12262     case 0x2: /* SADDLP, UADDLP */
12263     case 0x6: /* SADALP, UADALP */
12264         if (size == 3) {
12265             unallocated_encoding(s);
12266             return;
12267         }
12268         if (!fp_access_check(s)) {
12269             return;
12270         }
12271         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12272         return;
12273     case 0x13: /* SHLL, SHLL2 */
12274         if (u == 0 || size == 3) {
12275             unallocated_encoding(s);
12276             return;
12277         }
12278         if (!fp_access_check(s)) {
12279             return;
12280         }
12281         handle_shll(s, is_q, size, rn, rd);
12282         return;
12283     case 0xa: /* CMLT */
12284         if (u == 1) {
12285             unallocated_encoding(s);
12286             return;
12287         }
12288         /* fall through */
12289     case 0x8: /* CMGT, CMGE */
12290     case 0x9: /* CMEQ, CMLE */
12291     case 0xb: /* ABS, NEG */
12292         if (size == 3 && !is_q) {
12293             unallocated_encoding(s);
12294             return;
12295         }
12296         break;
12297     case 0x3: /* SUQADD, USQADD */
12298         if (size == 3 && !is_q) {
12299             unallocated_encoding(s);
12300             return;
12301         }
12302         if (!fp_access_check(s)) {
12303             return;
12304         }
12305         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12306         return;
12307     case 0x7: /* SQABS, SQNEG */
12308         if (size == 3 && !is_q) {
12309             unallocated_encoding(s);
12310             return;
12311         }
12312         break;
12313     case 0xc ... 0xf:
12314     case 0x16 ... 0x1f:
12315     {
12316         /* Floating point: U, size[1] and opcode indicate operation;
12317          * size[0] indicates single or double precision.
12318          */
12319         int is_double = extract32(size, 0, 1);
12320         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12321         size = is_double ? 3 : 2;
12322         switch (opcode) {
12323         case 0x2f: /* FABS */
12324         case 0x6f: /* FNEG */
12325             if (size == 3 && !is_q) {
12326                 unallocated_encoding(s);
12327                 return;
12328             }
12329             break;
12330         case 0x1d: /* SCVTF */
12331         case 0x5d: /* UCVTF */
12332         {
12333             bool is_signed = (opcode == 0x1d) ? true : false;
12334             int elements = is_double ? 2 : is_q ? 4 : 2;
12335             if (is_double && !is_q) {
12336                 unallocated_encoding(s);
12337                 return;
12338             }
12339             if (!fp_access_check(s)) {
12340                 return;
12341             }
12342             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12343             return;
12344         }
12345         case 0x2c: /* FCMGT (zero) */
12346         case 0x2d: /* FCMEQ (zero) */
12347         case 0x2e: /* FCMLT (zero) */
12348         case 0x6c: /* FCMGE (zero) */
12349         case 0x6d: /* FCMLE (zero) */
12350             if (size == 3 && !is_q) {
12351                 unallocated_encoding(s);
12352                 return;
12353             }
12354             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12355             return;
12356         case 0x7f: /* FSQRT */
12357             if (size == 3 && !is_q) {
12358                 unallocated_encoding(s);
12359                 return;
12360             }
12361             break;
12362         case 0x1a: /* FCVTNS */
12363         case 0x1b: /* FCVTMS */
12364         case 0x3a: /* FCVTPS */
12365         case 0x3b: /* FCVTZS */
12366         case 0x5a: /* FCVTNU */
12367         case 0x5b: /* FCVTMU */
12368         case 0x7a: /* FCVTPU */
12369         case 0x7b: /* FCVTZU */
12370             need_fpstatus = true;
12371             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12372             if (size == 3 && !is_q) {
12373                 unallocated_encoding(s);
12374                 return;
12375             }
12376             break;
12377         case 0x5c: /* FCVTAU */
12378         case 0x1c: /* FCVTAS */
12379             need_fpstatus = true;
12380             rmode = FPROUNDING_TIEAWAY;
12381             if (size == 3 && !is_q) {
12382                 unallocated_encoding(s);
12383                 return;
12384             }
12385             break;
12386         case 0x3c: /* URECPE */
12387             if (size == 3) {
12388                 unallocated_encoding(s);
12389                 return;
12390             }
12391             /* fall through */
12392         case 0x3d: /* FRECPE */
12393         case 0x7d: /* FRSQRTE */
12394             if (size == 3 && !is_q) {
12395                 unallocated_encoding(s);
12396                 return;
12397             }
12398             if (!fp_access_check(s)) {
12399                 return;
12400             }
12401             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12402             return;
12403         case 0x56: /* FCVTXN, FCVTXN2 */
12404             if (size == 2) {
12405                 unallocated_encoding(s);
12406                 return;
12407             }
12408             /* fall through */
12409         case 0x16: /* FCVTN, FCVTN2 */
12410             /* handle_2misc_narrow does a 2*size -> size operation, but these
12411              * instructions encode the source size rather than dest size.
12412              */
12413             if (!fp_access_check(s)) {
12414                 return;
12415             }
12416             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12417             return;
12418         case 0x36: /* BFCVTN, BFCVTN2 */
12419             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12420                 unallocated_encoding(s);
12421                 return;
12422             }
12423             if (!fp_access_check(s)) {
12424                 return;
12425             }
12426             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12427             return;
12428         case 0x17: /* FCVTL, FCVTL2 */
12429             if (!fp_access_check(s)) {
12430                 return;
12431             }
12432             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12433             return;
12434         case 0x18: /* FRINTN */
12435         case 0x19: /* FRINTM */
12436         case 0x38: /* FRINTP */
12437         case 0x39: /* FRINTZ */
12438             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12439             /* fall through */
12440         case 0x59: /* FRINTX */
12441         case 0x79: /* FRINTI */
12442             need_fpstatus = true;
12443             if (size == 3 && !is_q) {
12444                 unallocated_encoding(s);
12445                 return;
12446             }
12447             break;
12448         case 0x58: /* FRINTA */
12449             rmode = FPROUNDING_TIEAWAY;
12450             need_fpstatus = true;
12451             if (size == 3 && !is_q) {
12452                 unallocated_encoding(s);
12453                 return;
12454             }
12455             break;
12456         case 0x7c: /* URSQRTE */
12457             if (size == 3) {
12458                 unallocated_encoding(s);
12459                 return;
12460             }
12461             break;
12462         case 0x1e: /* FRINT32Z */
12463         case 0x1f: /* FRINT64Z */
12464             rmode = FPROUNDING_ZERO;
12465             /* fall through */
12466         case 0x5e: /* FRINT32X */
12467         case 0x5f: /* FRINT64X */
12468             need_fpstatus = true;
12469             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12470                 unallocated_encoding(s);
12471                 return;
12472             }
12473             break;
12474         default:
12475             unallocated_encoding(s);
12476             return;
12477         }
12478         break;
12479     }
12480     default:
12481         unallocated_encoding(s);
12482         return;
12483     }
12484 
12485     if (!fp_access_check(s)) {
12486         return;
12487     }
12488 
12489     if (need_fpstatus || rmode >= 0) {
12490         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12491     } else {
12492         tcg_fpstatus = NULL;
12493     }
12494     if (rmode >= 0) {
12495         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12496     } else {
12497         tcg_rmode = NULL;
12498     }
12499 
12500     switch (opcode) {
12501     case 0x5:
12502         if (u && size == 0) { /* NOT */
12503             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12504             return;
12505         }
12506         break;
12507     case 0x8: /* CMGT, CMGE */
12508         if (u) {
12509             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12510         } else {
12511             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12512         }
12513         return;
12514     case 0x9: /* CMEQ, CMLE */
12515         if (u) {
12516             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12517         } else {
12518             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12519         }
12520         return;
12521     case 0xa: /* CMLT */
12522         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12523         return;
12524     case 0xb:
12525         if (u) { /* ABS, NEG */
12526             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12527         } else {
12528             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12529         }
12530         return;
12531     }
12532 
12533     if (size == 3) {
12534         /* All 64-bit element operations can be shared with scalar 2misc */
12535         int pass;
12536 
12537         /* Coverity claims (size == 3 && !is_q) has been eliminated
12538          * from all paths leading to here.
12539          */
12540         tcg_debug_assert(is_q);
12541         for (pass = 0; pass < 2; pass++) {
12542             TCGv_i64 tcg_op = tcg_temp_new_i64();
12543             TCGv_i64 tcg_res = tcg_temp_new_i64();
12544 
12545             read_vec_element(s, tcg_op, rn, pass, MO_64);
12546 
12547             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12548                             tcg_rmode, tcg_fpstatus);
12549 
12550             write_vec_element(s, tcg_res, rd, pass, MO_64);
12551         }
12552     } else {
12553         int pass;
12554 
12555         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12556             TCGv_i32 tcg_op = tcg_temp_new_i32();
12557             TCGv_i32 tcg_res = tcg_temp_new_i32();
12558 
12559             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12560 
12561             if (size == 2) {
12562                 /* Special cases for 32 bit elements */
12563                 switch (opcode) {
12564                 case 0x4: /* CLS */
12565                     if (u) {
12566                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12567                     } else {
12568                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12569                     }
12570                     break;
12571                 case 0x7: /* SQABS, SQNEG */
12572                     if (u) {
12573                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12574                     } else {
12575                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12576                     }
12577                     break;
12578                 case 0x2f: /* FABS */
12579                     gen_vfp_abss(tcg_res, tcg_op);
12580                     break;
12581                 case 0x6f: /* FNEG */
12582                     gen_vfp_negs(tcg_res, tcg_op);
12583                     break;
12584                 case 0x7f: /* FSQRT */
12585                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12586                     break;
12587                 case 0x1a: /* FCVTNS */
12588                 case 0x1b: /* FCVTMS */
12589                 case 0x1c: /* FCVTAS */
12590                 case 0x3a: /* FCVTPS */
12591                 case 0x3b: /* FCVTZS */
12592                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12593                                          tcg_constant_i32(0), tcg_fpstatus);
12594                     break;
12595                 case 0x5a: /* FCVTNU */
12596                 case 0x5b: /* FCVTMU */
12597                 case 0x5c: /* FCVTAU */
12598                 case 0x7a: /* FCVTPU */
12599                 case 0x7b: /* FCVTZU */
12600                     gen_helper_vfp_touls(tcg_res, tcg_op,
12601                                          tcg_constant_i32(0), tcg_fpstatus);
12602                     break;
12603                 case 0x18: /* FRINTN */
12604                 case 0x19: /* FRINTM */
12605                 case 0x38: /* FRINTP */
12606                 case 0x39: /* FRINTZ */
12607                 case 0x58: /* FRINTA */
12608                 case 0x79: /* FRINTI */
12609                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12610                     break;
12611                 case 0x59: /* FRINTX */
12612                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12613                     break;
12614                 case 0x7c: /* URSQRTE */
12615                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12616                     break;
12617                 case 0x1e: /* FRINT32Z */
12618                 case 0x5e: /* FRINT32X */
12619                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12620                     break;
12621                 case 0x1f: /* FRINT64Z */
12622                 case 0x5f: /* FRINT64X */
12623                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12624                     break;
12625                 default:
12626                     g_assert_not_reached();
12627                 }
12628             } else {
12629                 /* Use helpers for 8 and 16 bit elements */
12630                 switch (opcode) {
12631                 case 0x5: /* CNT, RBIT */
12632                     /* For these two insns size is part of the opcode specifier
12633                      * (handled earlier); they always operate on byte elements.
12634                      */
12635                     if (u) {
12636                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12637                     } else {
12638                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12639                     }
12640                     break;
12641                 case 0x7: /* SQABS, SQNEG */
12642                 {
12643                     NeonGenOneOpEnvFn *genfn;
12644                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12645                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12646                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12647                     };
12648                     genfn = fns[size][u];
12649                     genfn(tcg_res, tcg_env, tcg_op);
12650                     break;
12651                 }
12652                 case 0x4: /* CLS, CLZ */
12653                     if (u) {
12654                         if (size == 0) {
12655                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12656                         } else {
12657                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12658                         }
12659                     } else {
12660                         if (size == 0) {
12661                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12662                         } else {
12663                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12664                         }
12665                     }
12666                     break;
12667                 default:
12668                     g_assert_not_reached();
12669                 }
12670             }
12671 
12672             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12673         }
12674     }
12675     clear_vec_high(s, is_q, rd);
12676 
12677     if (tcg_rmode) {
12678         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12679     }
12680 }
12681 
12682 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12683  *
12684  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12685  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12686  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12687  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12688  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12689  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12690  *
12691  * This actually covers two groups where scalar access is governed by
12692  * bit 28. A bunch of the instructions (float to integral) only exist
12693  * in the vector form and are un-allocated for the scalar decode. Also
12694  * in the scalar decode Q is always 1.
12695  */
12696 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12697 {
12698     int fpop, opcode, a, u;
12699     int rn, rd;
12700     bool is_q;
12701     bool is_scalar;
12702     bool only_in_vector = false;
12703 
12704     int pass;
12705     TCGv_i32 tcg_rmode = NULL;
12706     TCGv_ptr tcg_fpstatus = NULL;
12707     bool need_fpst = true;
12708     int rmode = -1;
12709 
12710     if (!dc_isar_feature(aa64_fp16, s)) {
12711         unallocated_encoding(s);
12712         return;
12713     }
12714 
12715     rd = extract32(insn, 0, 5);
12716     rn = extract32(insn, 5, 5);
12717 
12718     a = extract32(insn, 23, 1);
12719     u = extract32(insn, 29, 1);
12720     is_scalar = extract32(insn, 28, 1);
12721     is_q = extract32(insn, 30, 1);
12722 
12723     opcode = extract32(insn, 12, 5);
12724     fpop = deposit32(opcode, 5, 1, a);
12725     fpop = deposit32(fpop, 6, 1, u);
12726 
12727     switch (fpop) {
12728     case 0x1d: /* SCVTF */
12729     case 0x5d: /* UCVTF */
12730     {
12731         int elements;
12732 
12733         if (is_scalar) {
12734             elements = 1;
12735         } else {
12736             elements = (is_q ? 8 : 4);
12737         }
12738 
12739         if (!fp_access_check(s)) {
12740             return;
12741         }
12742         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12743         return;
12744     }
12745     break;
12746     case 0x2c: /* FCMGT (zero) */
12747     case 0x2d: /* FCMEQ (zero) */
12748     case 0x2e: /* FCMLT (zero) */
12749     case 0x6c: /* FCMGE (zero) */
12750     case 0x6d: /* FCMLE (zero) */
12751         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12752         return;
12753     case 0x3d: /* FRECPE */
12754     case 0x3f: /* FRECPX */
12755         break;
12756     case 0x18: /* FRINTN */
12757         only_in_vector = true;
12758         rmode = FPROUNDING_TIEEVEN;
12759         break;
12760     case 0x19: /* FRINTM */
12761         only_in_vector = true;
12762         rmode = FPROUNDING_NEGINF;
12763         break;
12764     case 0x38: /* FRINTP */
12765         only_in_vector = true;
12766         rmode = FPROUNDING_POSINF;
12767         break;
12768     case 0x39: /* FRINTZ */
12769         only_in_vector = true;
12770         rmode = FPROUNDING_ZERO;
12771         break;
12772     case 0x58: /* FRINTA */
12773         only_in_vector = true;
12774         rmode = FPROUNDING_TIEAWAY;
12775         break;
12776     case 0x59: /* FRINTX */
12777     case 0x79: /* FRINTI */
12778         only_in_vector = true;
12779         /* current rounding mode */
12780         break;
12781     case 0x1a: /* FCVTNS */
12782         rmode = FPROUNDING_TIEEVEN;
12783         break;
12784     case 0x1b: /* FCVTMS */
12785         rmode = FPROUNDING_NEGINF;
12786         break;
12787     case 0x1c: /* FCVTAS */
12788         rmode = FPROUNDING_TIEAWAY;
12789         break;
12790     case 0x3a: /* FCVTPS */
12791         rmode = FPROUNDING_POSINF;
12792         break;
12793     case 0x3b: /* FCVTZS */
12794         rmode = FPROUNDING_ZERO;
12795         break;
12796     case 0x5a: /* FCVTNU */
12797         rmode = FPROUNDING_TIEEVEN;
12798         break;
12799     case 0x5b: /* FCVTMU */
12800         rmode = FPROUNDING_NEGINF;
12801         break;
12802     case 0x5c: /* FCVTAU */
12803         rmode = FPROUNDING_TIEAWAY;
12804         break;
12805     case 0x7a: /* FCVTPU */
12806         rmode = FPROUNDING_POSINF;
12807         break;
12808     case 0x7b: /* FCVTZU */
12809         rmode = FPROUNDING_ZERO;
12810         break;
12811     case 0x2f: /* FABS */
12812     case 0x6f: /* FNEG */
12813         need_fpst = false;
12814         break;
12815     case 0x7d: /* FRSQRTE */
12816     case 0x7f: /* FSQRT (vector) */
12817         break;
12818     default:
12819         unallocated_encoding(s);
12820         return;
12821     }
12822 
12823 
12824     /* Check additional constraints for the scalar encoding */
12825     if (is_scalar) {
12826         if (!is_q) {
12827             unallocated_encoding(s);
12828             return;
12829         }
12830         /* FRINTxx is only in the vector form */
12831         if (only_in_vector) {
12832             unallocated_encoding(s);
12833             return;
12834         }
12835     }
12836 
12837     if (!fp_access_check(s)) {
12838         return;
12839     }
12840 
12841     if (rmode >= 0 || need_fpst) {
12842         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12843     }
12844 
12845     if (rmode >= 0) {
12846         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12847     }
12848 
12849     if (is_scalar) {
12850         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12851         TCGv_i32 tcg_res = tcg_temp_new_i32();
12852 
12853         switch (fpop) {
12854         case 0x1a: /* FCVTNS */
12855         case 0x1b: /* FCVTMS */
12856         case 0x1c: /* FCVTAS */
12857         case 0x3a: /* FCVTPS */
12858         case 0x3b: /* FCVTZS */
12859             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12860             break;
12861         case 0x3d: /* FRECPE */
12862             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12863             break;
12864         case 0x3f: /* FRECPX */
12865             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12866             break;
12867         case 0x5a: /* FCVTNU */
12868         case 0x5b: /* FCVTMU */
12869         case 0x5c: /* FCVTAU */
12870         case 0x7a: /* FCVTPU */
12871         case 0x7b: /* FCVTZU */
12872             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12873             break;
12874         case 0x6f: /* FNEG */
12875             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12876             break;
12877         case 0x7d: /* FRSQRTE */
12878             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12879             break;
12880         default:
12881             g_assert_not_reached();
12882         }
12883 
12884         /* limit any sign extension going on */
12885         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12886         write_fp_sreg(s, rd, tcg_res);
12887     } else {
12888         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12889             TCGv_i32 tcg_op = tcg_temp_new_i32();
12890             TCGv_i32 tcg_res = tcg_temp_new_i32();
12891 
12892             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12893 
12894             switch (fpop) {
12895             case 0x1a: /* FCVTNS */
12896             case 0x1b: /* FCVTMS */
12897             case 0x1c: /* FCVTAS */
12898             case 0x3a: /* FCVTPS */
12899             case 0x3b: /* FCVTZS */
12900                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12901                 break;
12902             case 0x3d: /* FRECPE */
12903                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12904                 break;
12905             case 0x5a: /* FCVTNU */
12906             case 0x5b: /* FCVTMU */
12907             case 0x5c: /* FCVTAU */
12908             case 0x7a: /* FCVTPU */
12909             case 0x7b: /* FCVTZU */
12910                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12911                 break;
12912             case 0x18: /* FRINTN */
12913             case 0x19: /* FRINTM */
12914             case 0x38: /* FRINTP */
12915             case 0x39: /* FRINTZ */
12916             case 0x58: /* FRINTA */
12917             case 0x79: /* FRINTI */
12918                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12919                 break;
12920             case 0x59: /* FRINTX */
12921                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12922                 break;
12923             case 0x2f: /* FABS */
12924                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12925                 break;
12926             case 0x6f: /* FNEG */
12927                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12928                 break;
12929             case 0x7d: /* FRSQRTE */
12930                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12931                 break;
12932             case 0x7f: /* FSQRT */
12933                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12934                 break;
12935             default:
12936                 g_assert_not_reached();
12937             }
12938 
12939             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12940         }
12941 
12942         clear_vec_high(s, is_q, rd);
12943     }
12944 
12945     if (tcg_rmode) {
12946         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12947     }
12948 }
12949 
12950 /* AdvSIMD scalar x indexed element
12951  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12952  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12953  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12954  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12955  * AdvSIMD vector x indexed element
12956  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12957  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12958  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12959  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12960  */
12961 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12962 {
12963     /* This encoding has two kinds of instruction:
12964      *  normal, where we perform elt x idxelt => elt for each
12965      *     element in the vector
12966      *  long, where we perform elt x idxelt and generate a result of
12967      *     double the width of the input element
12968      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12969      */
12970     bool is_scalar = extract32(insn, 28, 1);
12971     bool is_q = extract32(insn, 30, 1);
12972     bool u = extract32(insn, 29, 1);
12973     int size = extract32(insn, 22, 2);
12974     int l = extract32(insn, 21, 1);
12975     int m = extract32(insn, 20, 1);
12976     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12977     int rm = extract32(insn, 16, 4);
12978     int opcode = extract32(insn, 12, 4);
12979     int h = extract32(insn, 11, 1);
12980     int rn = extract32(insn, 5, 5);
12981     int rd = extract32(insn, 0, 5);
12982     bool is_long = false;
12983     int is_fp = 0;
12984     bool is_fp16 = false;
12985     int index;
12986     TCGv_ptr fpst;
12987 
12988     switch (16 * u + opcode) {
12989     case 0x08: /* MUL */
12990     case 0x10: /* MLA */
12991     case 0x14: /* MLS */
12992         if (is_scalar) {
12993             unallocated_encoding(s);
12994             return;
12995         }
12996         break;
12997     case 0x02: /* SMLAL, SMLAL2 */
12998     case 0x12: /* UMLAL, UMLAL2 */
12999     case 0x06: /* SMLSL, SMLSL2 */
13000     case 0x16: /* UMLSL, UMLSL2 */
13001     case 0x0a: /* SMULL, SMULL2 */
13002     case 0x1a: /* UMULL, UMULL2 */
13003         if (is_scalar) {
13004             unallocated_encoding(s);
13005             return;
13006         }
13007         is_long = true;
13008         break;
13009     case 0x03: /* SQDMLAL, SQDMLAL2 */
13010     case 0x07: /* SQDMLSL, SQDMLSL2 */
13011     case 0x0b: /* SQDMULL, SQDMULL2 */
13012         is_long = true;
13013         break;
13014     case 0x0c: /* SQDMULH */
13015     case 0x0d: /* SQRDMULH */
13016         break;
13017     case 0x1d: /* SQRDMLAH */
13018     case 0x1f: /* SQRDMLSH */
13019         if (!dc_isar_feature(aa64_rdm, s)) {
13020             unallocated_encoding(s);
13021             return;
13022         }
13023         break;
13024     case 0x0e: /* SDOT */
13025     case 0x1e: /* UDOT */
13026         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13027             unallocated_encoding(s);
13028             return;
13029         }
13030         break;
13031     case 0x0f:
13032         switch (size) {
13033         case 0: /* SUDOT */
13034         case 2: /* USDOT */
13035             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13036                 unallocated_encoding(s);
13037                 return;
13038             }
13039             size = MO_32;
13040             break;
13041         case 1: /* BFDOT */
13042             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13043                 unallocated_encoding(s);
13044                 return;
13045             }
13046             size = MO_32;
13047             break;
13048         case 3: /* BFMLAL{B,T} */
13049             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13050                 unallocated_encoding(s);
13051                 return;
13052             }
13053             /* can't set is_fp without other incorrect size checks */
13054             size = MO_16;
13055             break;
13056         default:
13057             unallocated_encoding(s);
13058             return;
13059         }
13060         break;
13061     case 0x11: /* FCMLA #0 */
13062     case 0x13: /* FCMLA #90 */
13063     case 0x15: /* FCMLA #180 */
13064     case 0x17: /* FCMLA #270 */
13065         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13066             unallocated_encoding(s);
13067             return;
13068         }
13069         is_fp = 2;
13070         break;
13071     case 0x00: /* FMLAL */
13072     case 0x04: /* FMLSL */
13073     case 0x18: /* FMLAL2 */
13074     case 0x1c: /* FMLSL2 */
13075         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13076             unallocated_encoding(s);
13077             return;
13078         }
13079         size = MO_16;
13080         /* is_fp, but we pass tcg_env not fp_status.  */
13081         break;
13082     default:
13083     case 0x01: /* FMLA */
13084     case 0x05: /* FMLS */
13085     case 0x09: /* FMUL */
13086     case 0x19: /* FMULX */
13087         unallocated_encoding(s);
13088         return;
13089     }
13090 
13091     switch (is_fp) {
13092     case 1: /* normal fp */
13093         unallocated_encoding(s); /* in decodetree */
13094         return;
13095 
13096     case 2: /* complex fp */
13097         /* Each indexable element is a complex pair.  */
13098         size += 1;
13099         switch (size) {
13100         case MO_32:
13101             if (h && !is_q) {
13102                 unallocated_encoding(s);
13103                 return;
13104             }
13105             is_fp16 = true;
13106             break;
13107         case MO_64:
13108             break;
13109         default:
13110             unallocated_encoding(s);
13111             return;
13112         }
13113         break;
13114 
13115     default: /* integer */
13116         switch (size) {
13117         case MO_8:
13118         case MO_64:
13119             unallocated_encoding(s);
13120             return;
13121         }
13122         break;
13123     }
13124     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13125         unallocated_encoding(s);
13126         return;
13127     }
13128 
13129     /* Given MemOp size, adjust register and indexing.  */
13130     switch (size) {
13131     case MO_16:
13132         index = h << 2 | l << 1 | m;
13133         break;
13134     case MO_32:
13135         index = h << 1 | l;
13136         rm |= m << 4;
13137         break;
13138     case MO_64:
13139         if (l || !is_q) {
13140             unallocated_encoding(s);
13141             return;
13142         }
13143         index = h;
13144         rm |= m << 4;
13145         break;
13146     default:
13147         g_assert_not_reached();
13148     }
13149 
13150     if (!fp_access_check(s)) {
13151         return;
13152     }
13153 
13154     if (is_fp) {
13155         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13156     } else {
13157         fpst = NULL;
13158     }
13159 
13160     switch (16 * u + opcode) {
13161     case 0x0e: /* SDOT */
13162     case 0x1e: /* UDOT */
13163         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13164                          u ? gen_helper_gvec_udot_idx_b
13165                          : gen_helper_gvec_sdot_idx_b);
13166         return;
13167     case 0x0f:
13168         switch (extract32(insn, 22, 2)) {
13169         case 0: /* SUDOT */
13170             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13171                              gen_helper_gvec_sudot_idx_b);
13172             return;
13173         case 1: /* BFDOT */
13174             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13175                              gen_helper_gvec_bfdot_idx);
13176             return;
13177         case 2: /* USDOT */
13178             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13179                              gen_helper_gvec_usdot_idx_b);
13180             return;
13181         case 3: /* BFMLAL{B,T} */
13182             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13183                               gen_helper_gvec_bfmlal_idx);
13184             return;
13185         }
13186         g_assert_not_reached();
13187     case 0x11: /* FCMLA #0 */
13188     case 0x13: /* FCMLA #90 */
13189     case 0x15: /* FCMLA #180 */
13190     case 0x17: /* FCMLA #270 */
13191         {
13192             int rot = extract32(insn, 13, 2);
13193             int data = (index << 2) | rot;
13194             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13195                                vec_full_reg_offset(s, rn),
13196                                vec_full_reg_offset(s, rm),
13197                                vec_full_reg_offset(s, rd), fpst,
13198                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13199                                size == MO_64
13200                                ? gen_helper_gvec_fcmlas_idx
13201                                : gen_helper_gvec_fcmlah_idx);
13202         }
13203         return;
13204 
13205     case 0x00: /* FMLAL */
13206     case 0x04: /* FMLSL */
13207     case 0x18: /* FMLAL2 */
13208     case 0x1c: /* FMLSL2 */
13209         {
13210             int is_s = extract32(opcode, 2, 1);
13211             int is_2 = u;
13212             int data = (index << 2) | (is_2 << 1) | is_s;
13213             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13214                                vec_full_reg_offset(s, rn),
13215                                vec_full_reg_offset(s, rm), tcg_env,
13216                                is_q ? 16 : 8, vec_full_reg_size(s),
13217                                data, gen_helper_gvec_fmlal_idx_a64);
13218         }
13219         return;
13220 
13221     case 0x08: /* MUL */
13222         if (!is_long && !is_scalar) {
13223             static gen_helper_gvec_3 * const fns[3] = {
13224                 gen_helper_gvec_mul_idx_h,
13225                 gen_helper_gvec_mul_idx_s,
13226                 gen_helper_gvec_mul_idx_d,
13227             };
13228             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13229                                vec_full_reg_offset(s, rn),
13230                                vec_full_reg_offset(s, rm),
13231                                is_q ? 16 : 8, vec_full_reg_size(s),
13232                                index, fns[size - 1]);
13233             return;
13234         }
13235         break;
13236 
13237     case 0x10: /* MLA */
13238         if (!is_long && !is_scalar) {
13239             static gen_helper_gvec_4 * const fns[3] = {
13240                 gen_helper_gvec_mla_idx_h,
13241                 gen_helper_gvec_mla_idx_s,
13242                 gen_helper_gvec_mla_idx_d,
13243             };
13244             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13245                                vec_full_reg_offset(s, rn),
13246                                vec_full_reg_offset(s, rm),
13247                                vec_full_reg_offset(s, rd),
13248                                is_q ? 16 : 8, vec_full_reg_size(s),
13249                                index, fns[size - 1]);
13250             return;
13251         }
13252         break;
13253 
13254     case 0x14: /* MLS */
13255         if (!is_long && !is_scalar) {
13256             static gen_helper_gvec_4 * const fns[3] = {
13257                 gen_helper_gvec_mls_idx_h,
13258                 gen_helper_gvec_mls_idx_s,
13259                 gen_helper_gvec_mls_idx_d,
13260             };
13261             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13262                                vec_full_reg_offset(s, rn),
13263                                vec_full_reg_offset(s, rm),
13264                                vec_full_reg_offset(s, rd),
13265                                is_q ? 16 : 8, vec_full_reg_size(s),
13266                                index, fns[size - 1]);
13267             return;
13268         }
13269         break;
13270     }
13271 
13272     if (size == 3) {
13273         g_assert_not_reached();
13274     } else if (!is_long) {
13275         /* 32 bit floating point, or 16 or 32 bit integer.
13276          * For the 16 bit scalar case we use the usual Neon helpers and
13277          * rely on the fact that 0 op 0 == 0 with no side effects.
13278          */
13279         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13280         int pass, maxpasses;
13281 
13282         if (is_scalar) {
13283             maxpasses = 1;
13284         } else {
13285             maxpasses = is_q ? 4 : 2;
13286         }
13287 
13288         read_vec_element_i32(s, tcg_idx, rm, index, size);
13289 
13290         if (size == 1 && !is_scalar) {
13291             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13292              * the index into both halves of the 32 bit tcg_idx and then use
13293              * the usual Neon helpers.
13294              */
13295             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13296         }
13297 
13298         for (pass = 0; pass < maxpasses; pass++) {
13299             TCGv_i32 tcg_op = tcg_temp_new_i32();
13300             TCGv_i32 tcg_res = tcg_temp_new_i32();
13301 
13302             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13303 
13304             switch (16 * u + opcode) {
13305             case 0x08: /* MUL */
13306             case 0x10: /* MLA */
13307             case 0x14: /* MLS */
13308             {
13309                 static NeonGenTwoOpFn * const fns[2][2] = {
13310                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13311                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13312                 };
13313                 NeonGenTwoOpFn *genfn;
13314                 bool is_sub = opcode == 0x4;
13315 
13316                 if (size == 1) {
13317                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13318                 } else {
13319                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13320                 }
13321                 if (opcode == 0x8) {
13322                     break;
13323                 }
13324                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13325                 genfn = fns[size - 1][is_sub];
13326                 genfn(tcg_res, tcg_op, tcg_res);
13327                 break;
13328             }
13329             case 0x0c: /* SQDMULH */
13330                 if (size == 1) {
13331                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13332                                                tcg_op, tcg_idx);
13333                 } else {
13334                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13335                                                tcg_op, tcg_idx);
13336                 }
13337                 break;
13338             case 0x0d: /* SQRDMULH */
13339                 if (size == 1) {
13340                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13341                                                 tcg_op, tcg_idx);
13342                 } else {
13343                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13344                                                 tcg_op, tcg_idx);
13345                 }
13346                 break;
13347             case 0x1d: /* SQRDMLAH */
13348                 read_vec_element_i32(s, tcg_res, rd, pass,
13349                                      is_scalar ? size : MO_32);
13350                 if (size == 1) {
13351                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13352                                                 tcg_op, tcg_idx, tcg_res);
13353                 } else {
13354                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13355                                                 tcg_op, tcg_idx, tcg_res);
13356                 }
13357                 break;
13358             case 0x1f: /* SQRDMLSH */
13359                 read_vec_element_i32(s, tcg_res, rd, pass,
13360                                      is_scalar ? size : MO_32);
13361                 if (size == 1) {
13362                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13363                                                 tcg_op, tcg_idx, tcg_res);
13364                 } else {
13365                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13366                                                 tcg_op, tcg_idx, tcg_res);
13367                 }
13368                 break;
13369             default:
13370             case 0x01: /* FMLA */
13371             case 0x05: /* FMLS */
13372             case 0x09: /* FMUL */
13373             case 0x19: /* FMULX */
13374                 g_assert_not_reached();
13375             }
13376 
13377             if (is_scalar) {
13378                 write_fp_sreg(s, rd, tcg_res);
13379             } else {
13380                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13381             }
13382         }
13383 
13384         clear_vec_high(s, is_q, rd);
13385     } else {
13386         /* long ops: 16x16->32 or 32x32->64 */
13387         TCGv_i64 tcg_res[2];
13388         int pass;
13389         bool satop = extract32(opcode, 0, 1);
13390         MemOp memop = MO_32;
13391 
13392         if (satop || !u) {
13393             memop |= MO_SIGN;
13394         }
13395 
13396         if (size == 2) {
13397             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13398 
13399             read_vec_element(s, tcg_idx, rm, index, memop);
13400 
13401             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13402                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13403                 TCGv_i64 tcg_passres;
13404                 int passelt;
13405 
13406                 if (is_scalar) {
13407                     passelt = 0;
13408                 } else {
13409                     passelt = pass + (is_q * 2);
13410                 }
13411 
13412                 read_vec_element(s, tcg_op, rn, passelt, memop);
13413 
13414                 tcg_res[pass] = tcg_temp_new_i64();
13415 
13416                 if (opcode == 0xa || opcode == 0xb) {
13417                     /* Non-accumulating ops */
13418                     tcg_passres = tcg_res[pass];
13419                 } else {
13420                     tcg_passres = tcg_temp_new_i64();
13421                 }
13422 
13423                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13424 
13425                 if (satop) {
13426                     /* saturating, doubling */
13427                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13428                                                       tcg_passres, tcg_passres);
13429                 }
13430 
13431                 if (opcode == 0xa || opcode == 0xb) {
13432                     continue;
13433                 }
13434 
13435                 /* Accumulating op: handle accumulate step */
13436                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13437 
13438                 switch (opcode) {
13439                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13440                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13441                     break;
13442                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13443                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13444                     break;
13445                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13446                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13447                     /* fall through */
13448                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13449                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13450                                                       tcg_res[pass],
13451                                                       tcg_passres);
13452                     break;
13453                 default:
13454                     g_assert_not_reached();
13455                 }
13456             }
13457 
13458             clear_vec_high(s, !is_scalar, rd);
13459         } else {
13460             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13461 
13462             assert(size == 1);
13463             read_vec_element_i32(s, tcg_idx, rm, index, size);
13464 
13465             if (!is_scalar) {
13466                 /* The simplest way to handle the 16x16 indexed ops is to
13467                  * duplicate the index into both halves of the 32 bit tcg_idx
13468                  * and then use the usual Neon helpers.
13469                  */
13470                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13471             }
13472 
13473             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13474                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13475                 TCGv_i64 tcg_passres;
13476 
13477                 if (is_scalar) {
13478                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13479                 } else {
13480                     read_vec_element_i32(s, tcg_op, rn,
13481                                          pass + (is_q * 2), MO_32);
13482                 }
13483 
13484                 tcg_res[pass] = tcg_temp_new_i64();
13485 
13486                 if (opcode == 0xa || opcode == 0xb) {
13487                     /* Non-accumulating ops */
13488                     tcg_passres = tcg_res[pass];
13489                 } else {
13490                     tcg_passres = tcg_temp_new_i64();
13491                 }
13492 
13493                 if (memop & MO_SIGN) {
13494                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13495                 } else {
13496                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13497                 }
13498                 if (satop) {
13499                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13500                                                       tcg_passres, tcg_passres);
13501                 }
13502 
13503                 if (opcode == 0xa || opcode == 0xb) {
13504                     continue;
13505                 }
13506 
13507                 /* Accumulating op: handle accumulate step */
13508                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13509 
13510                 switch (opcode) {
13511                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13512                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13513                                              tcg_passres);
13514                     break;
13515                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13516                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13517                                              tcg_passres);
13518                     break;
13519                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13520                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13521                     /* fall through */
13522                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13523                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13524                                                       tcg_res[pass],
13525                                                       tcg_passres);
13526                     break;
13527                 default:
13528                     g_assert_not_reached();
13529                 }
13530             }
13531 
13532             if (is_scalar) {
13533                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13534             }
13535         }
13536 
13537         if (is_scalar) {
13538             tcg_res[1] = tcg_constant_i64(0);
13539         }
13540 
13541         for (pass = 0; pass < 2; pass++) {
13542             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13543         }
13544     }
13545 }
13546 
13547 /* C3.6 Data processing - SIMD, inc Crypto
13548  *
13549  * As the decode gets a little complex we are using a table based
13550  * approach for this part of the decode.
13551  */
13552 static const AArch64DecodeTable data_proc_simd[] = {
13553     /* pattern  ,  mask     ,  fn                        */
13554     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13555     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13556     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13557     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13558     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13559     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13560     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13561     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13562     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13563     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13564     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13565     { 0x2e000000, 0xbf208400, disas_simd_ext },
13566     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13567     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13568     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13569     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13570     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13571     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13572     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13573     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13574     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13575     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13576     { 0x00000000, 0x00000000, NULL }
13577 };
13578 
13579 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13580 {
13581     /* Note that this is called with all non-FP cases from
13582      * table C3-6 so it must UNDEF for entries not specifically
13583      * allocated to instructions in that table.
13584      */
13585     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13586     if (fn) {
13587         fn(s, insn);
13588     } else {
13589         unallocated_encoding(s);
13590     }
13591 }
13592 
13593 /* C3.6 Data processing - SIMD and floating point */
13594 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13595 {
13596     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13597         disas_data_proc_fp(s, insn);
13598     } else {
13599         /* SIMD, including crypto */
13600         disas_data_proc_simd(s, insn);
13601     }
13602 }
13603 
13604 static bool trans_OK(DisasContext *s, arg_OK *a)
13605 {
13606     return true;
13607 }
13608 
13609 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13610 {
13611     s->is_nonstreaming = true;
13612     return true;
13613 }
13614 
13615 /**
13616  * is_guarded_page:
13617  * @env: The cpu environment
13618  * @s: The DisasContext
13619  *
13620  * Return true if the page is guarded.
13621  */
13622 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13623 {
13624     uint64_t addr = s->base.pc_first;
13625 #ifdef CONFIG_USER_ONLY
13626     return page_get_flags(addr) & PAGE_BTI;
13627 #else
13628     CPUTLBEntryFull *full;
13629     void *host;
13630     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13631     int flags;
13632 
13633     /*
13634      * We test this immediately after reading an insn, which means
13635      * that the TLB entry must be present and valid, and thus this
13636      * access will never raise an exception.
13637      */
13638     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13639                               false, &host, &full, 0);
13640     assert(!(flags & TLB_INVALID_MASK));
13641 
13642     return full->extra.arm.guarded;
13643 #endif
13644 }
13645 
13646 /**
13647  * btype_destination_ok:
13648  * @insn: The instruction at the branch destination
13649  * @bt: SCTLR_ELx.BT
13650  * @btype: PSTATE.BTYPE, and is non-zero
13651  *
13652  * On a guarded page, there are a limited number of insns
13653  * that may be present at the branch target:
13654  *   - branch target identifiers,
13655  *   - paciasp, pacibsp,
13656  *   - BRK insn
13657  *   - HLT insn
13658  * Anything else causes a Branch Target Exception.
13659  *
13660  * Return true if the branch is compatible, false to raise BTITRAP.
13661  */
13662 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13663 {
13664     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13665         /* HINT space */
13666         switch (extract32(insn, 5, 7)) {
13667         case 0b011001: /* PACIASP */
13668         case 0b011011: /* PACIBSP */
13669             /*
13670              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13671              * with btype == 3.  Otherwise all btype are ok.
13672              */
13673             return !bt || btype != 3;
13674         case 0b100000: /* BTI */
13675             /* Not compatible with any btype.  */
13676             return false;
13677         case 0b100010: /* BTI c */
13678             /* Not compatible with btype == 3 */
13679             return btype != 3;
13680         case 0b100100: /* BTI j */
13681             /* Not compatible with btype == 2 */
13682             return btype != 2;
13683         case 0b100110: /* BTI jc */
13684             /* Compatible with any btype.  */
13685             return true;
13686         }
13687     } else {
13688         switch (insn & 0xffe0001fu) {
13689         case 0xd4200000u: /* BRK */
13690         case 0xd4400000u: /* HLT */
13691             /* Give priority to the breakpoint exception.  */
13692             return true;
13693         }
13694     }
13695     return false;
13696 }
13697 
13698 /* C3.1 A64 instruction index by encoding */
13699 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13700 {
13701     switch (extract32(insn, 25, 4)) {
13702     case 0x5:
13703     case 0xd:      /* Data processing - register */
13704         disas_data_proc_reg(s, insn);
13705         break;
13706     case 0x7:
13707     case 0xf:      /* Data processing - SIMD and floating point */
13708         disas_data_proc_simd_fp(s, insn);
13709         break;
13710     default:
13711         unallocated_encoding(s);
13712         break;
13713     }
13714 }
13715 
13716 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13717                                           CPUState *cpu)
13718 {
13719     DisasContext *dc = container_of(dcbase, DisasContext, base);
13720     CPUARMState *env = cpu_env(cpu);
13721     ARMCPU *arm_cpu = env_archcpu(env);
13722     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13723     int bound, core_mmu_idx;
13724 
13725     dc->isar = &arm_cpu->isar;
13726     dc->condjmp = 0;
13727     dc->pc_save = dc->base.pc_first;
13728     dc->aarch64 = true;
13729     dc->thumb = false;
13730     dc->sctlr_b = 0;
13731     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13732     dc->condexec_mask = 0;
13733     dc->condexec_cond = 0;
13734     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13735     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13736     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13737     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13738     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13739     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13740 #if !defined(CONFIG_USER_ONLY)
13741     dc->user = (dc->current_el == 0);
13742 #endif
13743     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13744     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13745     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13746     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13747     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13748     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13749     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13750     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13751     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13752     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13753     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13754     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13755     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13756     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13757     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13758     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13759     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13760     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13761     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13762     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13763     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13764     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13765     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13766     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13767     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13768     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13769     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13770     dc->vec_len = 0;
13771     dc->vec_stride = 0;
13772     dc->cp_regs = arm_cpu->cp_regs;
13773     dc->features = env->features;
13774     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13775     dc->gm_blocksize = arm_cpu->gm_blocksize;
13776 
13777 #ifdef CONFIG_USER_ONLY
13778     /* In sve_probe_page, we assume TBI is enabled. */
13779     tcg_debug_assert(dc->tbid & 1);
13780 #endif
13781 
13782     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13783 
13784     /* Single step state. The code-generation logic here is:
13785      *  SS_ACTIVE == 0:
13786      *   generate code with no special handling for single-stepping (except
13787      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13788      *   this happens anyway because those changes are all system register or
13789      *   PSTATE writes).
13790      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13791      *   emit code for one insn
13792      *   emit code to clear PSTATE.SS
13793      *   emit code to generate software step exception for completed step
13794      *   end TB (as usual for having generated an exception)
13795      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13796      *   emit code to generate a software step exception
13797      *   end the TB
13798      */
13799     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13800     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13801     dc->is_ldex = false;
13802 
13803     /* Bound the number of insns to execute to those left on the page.  */
13804     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13805 
13806     /* If architectural single step active, limit to 1.  */
13807     if (dc->ss_active) {
13808         bound = 1;
13809     }
13810     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13811 }
13812 
13813 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13814 {
13815 }
13816 
13817 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13818 {
13819     DisasContext *dc = container_of(dcbase, DisasContext, base);
13820     target_ulong pc_arg = dc->base.pc_next;
13821 
13822     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13823         pc_arg &= ~TARGET_PAGE_MASK;
13824     }
13825     tcg_gen_insn_start(pc_arg, 0, 0);
13826     dc->insn_start_updated = false;
13827 }
13828 
13829 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13830 {
13831     DisasContext *s = container_of(dcbase, DisasContext, base);
13832     CPUARMState *env = cpu_env(cpu);
13833     uint64_t pc = s->base.pc_next;
13834     uint32_t insn;
13835 
13836     /* Singlestep exceptions have the highest priority. */
13837     if (s->ss_active && !s->pstate_ss) {
13838         /* Singlestep state is Active-pending.
13839          * If we're in this state at the start of a TB then either
13840          *  a) we just took an exception to an EL which is being debugged
13841          *     and this is the first insn in the exception handler
13842          *  b) debug exceptions were masked and we just unmasked them
13843          *     without changing EL (eg by clearing PSTATE.D)
13844          * In either case we're going to take a swstep exception in the
13845          * "did not step an insn" case, and so the syndrome ISV and EX
13846          * bits should be zero.
13847          */
13848         assert(s->base.num_insns == 1);
13849         gen_swstep_exception(s, 0, 0);
13850         s->base.is_jmp = DISAS_NORETURN;
13851         s->base.pc_next = pc + 4;
13852         return;
13853     }
13854 
13855     if (pc & 3) {
13856         /*
13857          * PC alignment fault.  This has priority over the instruction abort
13858          * that we would receive from a translation fault via arm_ldl_code.
13859          * This should only be possible after an indirect branch, at the
13860          * start of the TB.
13861          */
13862         assert(s->base.num_insns == 1);
13863         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13864         s->base.is_jmp = DISAS_NORETURN;
13865         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13866         return;
13867     }
13868 
13869     s->pc_curr = pc;
13870     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13871     s->insn = insn;
13872     s->base.pc_next = pc + 4;
13873 
13874     s->fp_access_checked = false;
13875     s->sve_access_checked = false;
13876 
13877     if (s->pstate_il) {
13878         /*
13879          * Illegal execution state. This has priority over BTI
13880          * exceptions, but comes after instruction abort exceptions.
13881          */
13882         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13883         return;
13884     }
13885 
13886     if (dc_isar_feature(aa64_bti, s)) {
13887         if (s->base.num_insns == 1) {
13888             /*
13889              * At the first insn of the TB, compute s->guarded_page.
13890              * We delayed computing this until successfully reading
13891              * the first insn of the TB, above.  This (mostly) ensures
13892              * that the softmmu tlb entry has been populated, and the
13893              * page table GP bit is available.
13894              *
13895              * Note that we need to compute this even if btype == 0,
13896              * because this value is used for BR instructions later
13897              * where ENV is not available.
13898              */
13899             s->guarded_page = is_guarded_page(env, s);
13900 
13901             /* First insn can have btype set to non-zero.  */
13902             tcg_debug_assert(s->btype >= 0);
13903 
13904             /*
13905              * Note that the Branch Target Exception has fairly high
13906              * priority -- below debugging exceptions but above most
13907              * everything else.  This allows us to handle this now
13908              * instead of waiting until the insn is otherwise decoded.
13909              */
13910             if (s->btype != 0
13911                 && s->guarded_page
13912                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13913                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13914                 return;
13915             }
13916         } else {
13917             /* Not the first insn: btype must be 0.  */
13918             tcg_debug_assert(s->btype == 0);
13919         }
13920     }
13921 
13922     s->is_nonstreaming = false;
13923     if (s->sme_trap_nonstreaming) {
13924         disas_sme_fa64(s, insn);
13925     }
13926 
13927     if (!disas_a64(s, insn) &&
13928         !disas_sme(s, insn) &&
13929         !disas_sve(s, insn)) {
13930         disas_a64_legacy(s, insn);
13931     }
13932 
13933     /*
13934      * After execution of most insns, btype is reset to 0.
13935      * Note that we set btype == -1 when the insn sets btype.
13936      */
13937     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13938         reset_btype(s);
13939     }
13940 }
13941 
13942 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13943 {
13944     DisasContext *dc = container_of(dcbase, DisasContext, base);
13945 
13946     if (unlikely(dc->ss_active)) {
13947         /* Note that this means single stepping WFI doesn't halt the CPU.
13948          * For conditional branch insns this is harmless unreachable code as
13949          * gen_goto_tb() has already handled emitting the debug exception
13950          * (and thus a tb-jump is not possible when singlestepping).
13951          */
13952         switch (dc->base.is_jmp) {
13953         default:
13954             gen_a64_update_pc(dc, 4);
13955             /* fall through */
13956         case DISAS_EXIT:
13957         case DISAS_JUMP:
13958             gen_step_complete_exception(dc);
13959             break;
13960         case DISAS_NORETURN:
13961             break;
13962         }
13963     } else {
13964         switch (dc->base.is_jmp) {
13965         case DISAS_NEXT:
13966         case DISAS_TOO_MANY:
13967             gen_goto_tb(dc, 1, 4);
13968             break;
13969         default:
13970         case DISAS_UPDATE_EXIT:
13971             gen_a64_update_pc(dc, 4);
13972             /* fall through */
13973         case DISAS_EXIT:
13974             tcg_gen_exit_tb(NULL, 0);
13975             break;
13976         case DISAS_UPDATE_NOCHAIN:
13977             gen_a64_update_pc(dc, 4);
13978             /* fall through */
13979         case DISAS_JUMP:
13980             tcg_gen_lookup_and_goto_ptr();
13981             break;
13982         case DISAS_NORETURN:
13983         case DISAS_SWI:
13984             break;
13985         case DISAS_WFE:
13986             gen_a64_update_pc(dc, 4);
13987             gen_helper_wfe(tcg_env);
13988             break;
13989         case DISAS_YIELD:
13990             gen_a64_update_pc(dc, 4);
13991             gen_helper_yield(tcg_env);
13992             break;
13993         case DISAS_WFI:
13994             /*
13995              * This is a special case because we don't want to just halt
13996              * the CPU if trying to debug across a WFI.
13997              */
13998             gen_a64_update_pc(dc, 4);
13999             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
14000             /*
14001              * The helper doesn't necessarily throw an exception, but we
14002              * must go back to the main loop to check for interrupts anyway.
14003              */
14004             tcg_gen_exit_tb(NULL, 0);
14005             break;
14006         }
14007     }
14008 }
14009 
14010 const TranslatorOps aarch64_translator_ops = {
14011     .init_disas_context = aarch64_tr_init_disas_context,
14012     .tb_start           = aarch64_tr_tb_start,
14013     .insn_start         = aarch64_tr_insn_start,
14014     .translate_insn     = aarch64_tr_translate_insn,
14015     .tb_stop            = aarch64_tr_tb_stop,
14016 };
14017