xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 414b180d)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand + fpstatus pointer + simd data value operation using
740  * an out-of-line helper.
741  */
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743                               int rm, int ra, bool is_fp16, int data,
744                               gen_helper_gvec_4_ptr *fn)
745 {
746     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748                        vec_full_reg_offset(s, rn),
749                        vec_full_reg_offset(s, rm),
750                        vec_full_reg_offset(s, ra), fpst,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755  * than the 32 bit equivalent.
756  */
757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762 
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766     if (sf) {
767         gen_set_NZ64(result);
768     } else {
769         tcg_gen_extrl_i64_i32(cpu_ZF, result);
770         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771     }
772     tcg_gen_movi_i32(cpu_CF, 0);
773     tcg_gen_movi_i32(cpu_VF, 0);
774 }
775 
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779     TCGv_i64 result, flag, tmp;
780     result = tcg_temp_new_i64();
781     flag = tcg_temp_new_i64();
782     tmp = tcg_temp_new_i64();
783 
784     tcg_gen_movi_i64(tmp, 0);
785     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 
787     tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 
789     gen_set_NZ64(result);
790 
791     tcg_gen_xor_i64(flag, result, t0);
792     tcg_gen_xor_i64(tmp, t0, t1);
793     tcg_gen_andc_i64(flag, flag, tmp);
794     tcg_gen_extrh_i64_i32(cpu_VF, flag);
795 
796     tcg_gen_mov_i64(dest, result);
797 }
798 
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     TCGv_i32 t0_32 = tcg_temp_new_i32();
802     TCGv_i32 t1_32 = tcg_temp_new_i32();
803     TCGv_i32 tmp = tcg_temp_new_i32();
804 
805     tcg_gen_movi_i32(tmp, 0);
806     tcg_gen_extrl_i64_i32(t0_32, t0);
807     tcg_gen_extrl_i64_i32(t1_32, t1);
808     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811     tcg_gen_xor_i32(tmp, t0_32, t1_32);
812     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813     tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815 
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818     if (sf) {
819         gen_add64_CC(dest, t0, t1);
820     } else {
821         gen_add32_CC(dest, t0, t1);
822     }
823 }
824 
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828     /* 64 bit arithmetic */
829     TCGv_i64 result, flag, tmp;
830 
831     result = tcg_temp_new_i64();
832     flag = tcg_temp_new_i64();
833     tcg_gen_sub_i64(result, t0, t1);
834 
835     gen_set_NZ64(result);
836 
837     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838     tcg_gen_extrl_i64_i32(cpu_CF, flag);
839 
840     tcg_gen_xor_i64(flag, result, t0);
841     tmp = tcg_temp_new_i64();
842     tcg_gen_xor_i64(tmp, t0, t1);
843     tcg_gen_and_i64(flag, flag, tmp);
844     tcg_gen_extrh_i64_i32(cpu_VF, flag);
845     tcg_gen_mov_i64(dest, result);
846 }
847 
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850     /* 32 bit arithmetic */
851     TCGv_i32 t0_32 = tcg_temp_new_i32();
852     TCGv_i32 t1_32 = tcg_temp_new_i32();
853     TCGv_i32 tmp;
854 
855     tcg_gen_extrl_i64_i32(t0_32, t0);
856     tcg_gen_extrl_i64_i32(t1_32, t1);
857     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861     tmp = tcg_temp_new_i32();
862     tcg_gen_xor_i32(tmp, t0_32, t1_32);
863     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864     tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866 
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869     if (sf) {
870         gen_sub64_CC(dest, t0, t1);
871     } else {
872         gen_sub32_CC(dest, t0, t1);
873     }
874 }
875 
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879     TCGv_i64 flag = tcg_temp_new_i64();
880     tcg_gen_extu_i32_i64(flag, cpu_CF);
881     tcg_gen_add_i64(dest, t0, t1);
882     tcg_gen_add_i64(dest, dest, flag);
883 
884     if (!sf) {
885         tcg_gen_ext32u_i64(dest, dest);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     if (sf) {
893         TCGv_i64 result = tcg_temp_new_i64();
894         TCGv_i64 cf_64 = tcg_temp_new_i64();
895         TCGv_i64 vf_64 = tcg_temp_new_i64();
896         TCGv_i64 tmp = tcg_temp_new_i64();
897         TCGv_i64 zero = tcg_constant_i64(0);
898 
899         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903         gen_set_NZ64(result);
904 
905         tcg_gen_xor_i64(vf_64, result, t0);
906         tcg_gen_xor_i64(tmp, t0, t1);
907         tcg_gen_andc_i64(vf_64, vf_64, tmp);
908         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909 
910         tcg_gen_mov_i64(dest, result);
911     } else {
912         TCGv_i32 t0_32 = tcg_temp_new_i32();
913         TCGv_i32 t1_32 = tcg_temp_new_i32();
914         TCGv_i32 tmp = tcg_temp_new_i32();
915         TCGv_i32 zero = tcg_constant_i32(0);
916 
917         tcg_gen_extrl_i64_i32(t0_32, t0);
918         tcg_gen_extrl_i64_i32(t1_32, t1);
919         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921 
922         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924         tcg_gen_xor_i32(tmp, t0_32, t1_32);
925         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926         tcg_gen_extu_i32_i64(dest, cpu_NF);
927     }
928 }
929 
930 /*
931  * Load/Store generators
932  */
933 
934 /*
935  * Store from GPR register to memory.
936  */
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
939                              bool iss_valid,
940                              unsigned int iss_srt,
941                              bool iss_sf, bool iss_ar)
942 {
943     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944 
945     if (iss_valid) {
946         uint32_t syn;
947 
948         syn = syn_data_abort_with_iss(0,
949                                       (memop & MO_SIZE),
950                                       false,
951                                       iss_srt,
952                                       iss_sf,
953                                       iss_ar,
954                                       0, 0, 0, 0, 0, false);
955         disas_set_insn_syndrome(s, syn);
956     }
957 }
958 
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960                       TCGv_i64 tcg_addr, MemOp memop,
961                       bool iss_valid,
962                       unsigned int iss_srt,
963                       bool iss_sf, bool iss_ar)
964 {
965     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966                      iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968 
969 /*
970  * Load from memory to GPR register
971  */
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973                              MemOp memop, bool extend, int memidx,
974                              bool iss_valid, unsigned int iss_srt,
975                              bool iss_sf, bool iss_ar)
976 {
977     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978 
979     if (extend && (memop & MO_SIGN)) {
980         g_assert((memop & MO_SIZE) <= MO_32);
981         tcg_gen_ext32u_i64(dest, dest);
982     }
983 
984     if (iss_valid) {
985         uint32_t syn;
986 
987         syn = syn_data_abort_with_iss(0,
988                                       (memop & MO_SIZE),
989                                       (memop & MO_SIGN) != 0,
990                                       iss_srt,
991                                       iss_sf,
992                                       iss_ar,
993                                       0, 0, 0, 0, 0, false);
994         disas_set_insn_syndrome(s, syn);
995     }
996 }
997 
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999                       MemOp memop, bool extend,
1000                       bool iss_valid, unsigned int iss_srt,
1001                       bool iss_sf, bool iss_ar)
1002 {
1003     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004                      iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006 
1007 /*
1008  * Store from FP register to memory
1009  */
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013     TCGv_i64 tmplo = tcg_temp_new_i64();
1014 
1015     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016 
1017     if ((mop & MO_SIZE) < MO_128) {
1018         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019     } else {
1020         TCGv_i64 tmphi = tcg_temp_new_i64();
1021         TCGv_i128 t16 = tcg_temp_new_i128();
1022 
1023         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025 
1026         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027     }
1028 }
1029 
1030 /*
1031  * Load from memory to FP register
1032  */
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035     /* This always zero-extends and writes to a full 128 bit wide vector */
1036     TCGv_i64 tmplo = tcg_temp_new_i64();
1037     TCGv_i64 tmphi = NULL;
1038 
1039     if ((mop & MO_SIZE) < MO_128) {
1040         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041     } else {
1042         TCGv_i128 t16 = tcg_temp_new_i128();
1043 
1044         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045 
1046         tmphi = tcg_temp_new_i64();
1047         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048     }
1049 
1050     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051 
1052     if (tmphi) {
1053         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054     }
1055     clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057 
1058 /*
1059  * Vector load/store helpers.
1060  *
1061  * The principal difference between this and a FP load is that we don't
1062  * zero extend as we are filling a partial chunk of the vector register.
1063  * These functions don't support 128 bit loads/stores, which would be
1064  * normal load/store operations.
1065  *
1066  * The _i32 versions are useful when operating on 32 bit quantities
1067  * (eg for floating point single or using Neon helper functions).
1068  */
1069 
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072                              int element, MemOp memop)
1073 {
1074     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075     switch ((unsigned)memop) {
1076     case MO_8:
1077         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078         break;
1079     case MO_16:
1080         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081         break;
1082     case MO_32:
1083         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084         break;
1085     case MO_8|MO_SIGN:
1086         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087         break;
1088     case MO_16|MO_SIGN:
1089         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090         break;
1091     case MO_32|MO_SIGN:
1092         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093         break;
1094     case MO_64:
1095     case MO_64|MO_SIGN:
1096         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104                                  int element, MemOp memop)
1105 {
1106     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107     switch (memop) {
1108     case MO_8:
1109         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110         break;
1111     case MO_16:
1112         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113         break;
1114     case MO_8|MO_SIGN:
1115         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116         break;
1117     case MO_16|MO_SIGN:
1118         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119         break;
1120     case MO_32:
1121     case MO_32|MO_SIGN:
1122         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127 }
1128 
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131                               int element, MemOp memop)
1132 {
1133     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134     switch (memop) {
1135     case MO_8:
1136         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137         break;
1138     case MO_16:
1139         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140         break;
1141     case MO_32:
1142         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143         break;
1144     case MO_64:
1145         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146         break;
1147     default:
1148         g_assert_not_reached();
1149     }
1150 }
1151 
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153                                   int destidx, int element, MemOp memop)
1154 {
1155     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156     switch (memop) {
1157     case MO_8:
1158         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_16:
1161         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162         break;
1163     case MO_32:
1164         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169 }
1170 
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173                       TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176 
1177     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180 
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183                       TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186 
1187     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190 
1191 /* Check that FP/Neon access is enabled. If it is, return
1192  * true. If not, emit code to generate an appropriate exception,
1193  * and return false; the caller should not emit any code for
1194  * the instruction. Note that this check must happen after all
1195  * unallocated-encoding checks (otherwise the syndrome information
1196  * for the resulting exception will be incorrect).
1197  */
1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200     if (s->fp_excp_el) {
1201         assert(!s->fp_access_checked);
1202         s->fp_access_checked = true;
1203 
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_fp_access_trap(1, 0xe, false, 0),
1206                               s->fp_excp_el);
1207         return false;
1208     }
1209     s->fp_access_checked = true;
1210     return true;
1211 }
1212 
1213 static bool fp_access_check(DisasContext *s)
1214 {
1215     if (!fp_access_check_only(s)) {
1216         return false;
1217     }
1218     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219         gen_exception_insn(s, 0, EXCP_UDEF,
1220                            syn_smetrap(SME_ET_Streaming, false));
1221         return false;
1222     }
1223     return true;
1224 }
1225 
1226 /*
1227  * Check that SVE access is enabled.  If it is, return true.
1228  * If not, emit code to generate an appropriate exception and return false.
1229  * This function corresponds to CheckSVEEnabled().
1230  */
1231 bool sve_access_check(DisasContext *s)
1232 {
1233     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234         assert(dc_isar_feature(aa64_sme, s));
1235         if (!sme_sm_enabled_check(s)) {
1236             goto fail_exit;
1237         }
1238     } else if (s->sve_excp_el) {
1239         gen_exception_insn_el(s, 0, EXCP_UDEF,
1240                               syn_sve_access_trap(), s->sve_excp_el);
1241         goto fail_exit;
1242     }
1243     s->sve_access_checked = true;
1244     return fp_access_check(s);
1245 
1246  fail_exit:
1247     /* Assert that we only raise one exception per instruction. */
1248     assert(!s->sve_access_checked);
1249     s->sve_access_checked = true;
1250     return false;
1251 }
1252 
1253 /*
1254  * Check that SME access is enabled, raise an exception if not.
1255  * Note that this function corresponds to CheckSMEAccess and is
1256  * only used directly for cpregs.
1257  */
1258 static bool sme_access_check(DisasContext *s)
1259 {
1260     if (s->sme_excp_el) {
1261         gen_exception_insn_el(s, 0, EXCP_UDEF,
1262                               syn_smetrap(SME_ET_AccessTrap, false),
1263                               s->sme_excp_el);
1264         return false;
1265     }
1266     return true;
1267 }
1268 
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272     /*
1273      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274      * to be zero when fp_excp_el has priority.  This is because we need
1275      * sme_excp_el by itself for cpregs access checks.
1276      */
1277     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278         s->fp_access_checked = true;
1279         return sme_access_check(s);
1280     }
1281     return fp_access_check_only(s);
1282 }
1283 
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287     if (!sme_enabled_check(s)) {
1288         return false;
1289     }
1290     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291         gen_exception_insn(s, 0, EXCP_UDEF,
1292                            syn_smetrap(SME_ET_NotStreaming, false));
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_InactiveZA, false));
1298         return false;
1299     }
1300     return true;
1301 }
1302 
1303 /*
1304  * Expanders for AdvSIMD translation functions.
1305  */
1306 
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308                             gen_helper_gvec_2 *fn)
1309 {
1310     if (!a->q && a->esz == MO_64) {
1311         return false;
1312     }
1313     if (fp_access_check(s)) {
1314         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315     }
1316     return true;
1317 }
1318 
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320                             gen_helper_gvec_3 *fn)
1321 {
1322     if (!a->q && a->esz == MO_64) {
1323         return false;
1324     }
1325     if (fp_access_check(s)) {
1326         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327     }
1328     return true;
1329 }
1330 
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333     if (!a->q && a->esz == MO_64) {
1334         return false;
1335     }
1336     if (fp_access_check(s)) {
1337         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338     }
1339     return true;
1340 }
1341 
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344     if (a->esz == MO_64) {
1345         return false;
1346     }
1347     if (fp_access_check(s)) {
1348         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349     }
1350     return true;
1351 }
1352 
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355     if (a->esz == MO_8) {
1356         return false;
1357     }
1358     return do_gvec_fn3_no64(s, a, fn);
1359 }
1360 
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363     if (!a->q && a->esz == MO_64) {
1364         return false;
1365     }
1366     if (fp_access_check(s)) {
1367         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368     }
1369     return true;
1370 }
1371 
1372 /*
1373  * This utility function is for doing register extension with an
1374  * optional shift. You will likely want to pass a temporary for the
1375  * destination register. See DecodeRegExtend() in the ARM ARM.
1376  */
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378                               int option, unsigned int shift)
1379 {
1380     int extsize = extract32(option, 0, 2);
1381     bool is_signed = extract32(option, 2, 1);
1382 
1383     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386 
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389     /* The AArch64 architecture mandates that (if enabled via PSTATE
1390      * or SCTLR bits) there is a check that SP is 16-aligned on every
1391      * SP-relative load or store (with an exception generated if it is not).
1392      * In line with general QEMU practice regarding misaligned accesses,
1393      * we omit these checks for the sake of guest program performance.
1394      * This function is provided as a hook so we can more easily add these
1395      * checks in future (possibly as a "favour catching guest program bugs
1396      * over speed" user selectable option).
1397      */
1398 }
1399 
1400 /*
1401  * This provides a simple table based table lookup decoder. It is
1402  * intended to be used when the relevant bits for decode are too
1403  * awkwardly placed and switch/if based logic would be confusing and
1404  * deeply nested. Since it's a linear search through the table, tables
1405  * should be kept small.
1406  *
1407  * It returns the first handler where insn & mask == pattern, or
1408  * NULL if there is no match.
1409  * The table is terminated by an empty mask (i.e. 0)
1410  */
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412                                                uint32_t insn)
1413 {
1414     const AArch64DecodeTable *tptr = table;
1415 
1416     while (tptr->mask) {
1417         if ((insn & tptr->mask) == tptr->pattern) {
1418             return tptr->disas_fn;
1419         }
1420         tptr++;
1421     }
1422     return NULL;
1423 }
1424 
1425 /*
1426  * The instruction disassembly implemented here matches
1427  * the instruction encoding classifications in chapter C4
1428  * of the ARM Architecture Reference Manual (DDI0487B_a);
1429  * classification names and decode diagrams here should generally
1430  * match up with those in the manual.
1431  */
1432 
1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435     reset_btype(s);
1436     gen_goto_tb(s, 0, a->imm);
1437     return true;
1438 }
1439 
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443     reset_btype(s);
1444     gen_goto_tb(s, 0, a->imm);
1445     return true;
1446 }
1447 
1448 
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451     DisasLabel match;
1452     TCGv_i64 tcg_cmp;
1453 
1454     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455     reset_btype(s);
1456 
1457     match = gen_disas_label(s);
1458     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459                         tcg_cmp, 0, match.label);
1460     gen_goto_tb(s, 0, 4);
1461     set_disas_label(s, match);
1462     gen_goto_tb(s, 1, a->imm);
1463     return true;
1464 }
1465 
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = tcg_temp_new_i64();
1472     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473 
1474     reset_btype(s);
1475 
1476     match = gen_disas_label(s);
1477     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478                         tcg_cmp, 0, match.label);
1479     gen_goto_tb(s, 0, 4);
1480     set_disas_label(s, match);
1481     gen_goto_tb(s, 1, a->imm);
1482     return true;
1483 }
1484 
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487     /* BC.cond is only present with FEAT_HBC */
1488     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489         return false;
1490     }
1491     reset_btype(s);
1492     if (a->cond < 0x0e) {
1493         /* genuinely conditional branches */
1494         DisasLabel match = gen_disas_label(s);
1495         arm_gen_test_cc(a->cond, match.label);
1496         gen_goto_tb(s, 0, 4);
1497         set_disas_label(s, match);
1498         gen_goto_tb(s, 1, a->imm);
1499     } else {
1500         /* 0xe and 0xf are both "always" conditions */
1501         gen_goto_tb(s, 0, a->imm);
1502     }
1503     return true;
1504 }
1505 
1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508     if (dc_isar_feature(aa64_bti, s)) {
1509         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1510         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1511     }
1512 }
1513 
1514 static void set_btype_for_blr(DisasContext *s)
1515 {
1516     if (dc_isar_feature(aa64_bti, s)) {
1517         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1518         set_btype(s, 2);
1519     }
1520 }
1521 
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1523 {
1524     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525     set_btype_for_br(s, a->rn);
1526     s->base.is_jmp = DISAS_JUMP;
1527     return true;
1528 }
1529 
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1531 {
1532     TCGv_i64 dst = cpu_reg(s, a->rn);
1533     TCGv_i64 lr = cpu_reg(s, 30);
1534     if (dst == lr) {
1535         TCGv_i64 tmp = tcg_temp_new_i64();
1536         tcg_gen_mov_i64(tmp, dst);
1537         dst = tmp;
1538     }
1539     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540     gen_a64_set_pc(s, dst);
1541     set_btype_for_blr(s);
1542     s->base.is_jmp = DISAS_JUMP;
1543     return true;
1544 }
1545 
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1547 {
1548     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549     s->base.is_jmp = DISAS_JUMP;
1550     return true;
1551 }
1552 
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554                                    TCGv_i64 modifier, bool use_key_a)
1555 {
1556     TCGv_i64 truedst;
1557     /*
1558      * Return the branch target for a BRAA/RETA/etc, which is either
1559      * just the destination dst, or that value with the pauth check
1560      * done and the code removed from the high bits.
1561      */
1562     if (!s->pauth_active) {
1563         return dst;
1564     }
1565 
1566     truedst = tcg_temp_new_i64();
1567     if (use_key_a) {
1568         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569     } else {
1570         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1571     }
1572     return truedst;
1573 }
1574 
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1576 {
1577     TCGv_i64 dst;
1578 
1579     if (!dc_isar_feature(aa64_pauth, s)) {
1580         return false;
1581     }
1582 
1583     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584     gen_a64_set_pc(s, dst);
1585     set_btype_for_br(s, a->rn);
1586     s->base.is_jmp = DISAS_JUMP;
1587     return true;
1588 }
1589 
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1591 {
1592     TCGv_i64 dst, lr;
1593 
1594     if (!dc_isar_feature(aa64_pauth, s)) {
1595         return false;
1596     }
1597 
1598     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599     lr = cpu_reg(s, 30);
1600     if (dst == lr) {
1601         TCGv_i64 tmp = tcg_temp_new_i64();
1602         tcg_gen_mov_i64(tmp, dst);
1603         dst = tmp;
1604     }
1605     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606     gen_a64_set_pc(s, dst);
1607     set_btype_for_blr(s);
1608     s->base.is_jmp = DISAS_JUMP;
1609     return true;
1610 }
1611 
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1613 {
1614     TCGv_i64 dst;
1615 
1616     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617     gen_a64_set_pc(s, dst);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (!dc_isar_feature(aa64_pauth, s)) {
1627         return false;
1628     }
1629     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_br(s, a->rn);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1637 {
1638     TCGv_i64 dst, lr;
1639 
1640     if (!dc_isar_feature(aa64_pauth, s)) {
1641         return false;
1642     }
1643     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644     lr = cpu_reg(s, 30);
1645     if (dst == lr) {
1646         TCGv_i64 tmp = tcg_temp_new_i64();
1647         tcg_gen_mov_i64(tmp, dst);
1648         dst = tmp;
1649     }
1650     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651     gen_a64_set_pc(s, dst);
1652     set_btype_for_blr(s);
1653     s->base.is_jmp = DISAS_JUMP;
1654     return true;
1655 }
1656 
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1658 {
1659     TCGv_i64 dst;
1660 
1661     if (s->current_el == 0) {
1662         return false;
1663     }
1664     if (s->trap_eret) {
1665         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666         return true;
1667     }
1668     dst = tcg_temp_new_i64();
1669     tcg_gen_ld_i64(dst, tcg_env,
1670                    offsetof(CPUARMState, elr_el[s->current_el]));
1671 
1672     translator_io_start(&s->base);
1673 
1674     gen_helper_exception_return(tcg_env, dst);
1675     /* Must exit loop to check un-masked IRQs */
1676     s->base.is_jmp = DISAS_EXIT;
1677     return true;
1678 }
1679 
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1681 {
1682     TCGv_i64 dst;
1683 
1684     if (!dc_isar_feature(aa64_pauth, s)) {
1685         return false;
1686     }
1687     if (s->current_el == 0) {
1688         return false;
1689     }
1690     /* The FGT trap takes precedence over an auth trap. */
1691     if (s->trap_eret) {
1692         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693         return true;
1694     }
1695     dst = tcg_temp_new_i64();
1696     tcg_gen_ld_i64(dst, tcg_env,
1697                    offsetof(CPUARMState, elr_el[s->current_el]));
1698 
1699     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1700 
1701     translator_io_start(&s->base);
1702 
1703     gen_helper_exception_return(tcg_env, dst);
1704     /* Must exit loop to check un-masked IRQs */
1705     s->base.is_jmp = DISAS_EXIT;
1706     return true;
1707 }
1708 
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1710 {
1711     return true;
1712 }
1713 
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1715 {
1716     /*
1717      * When running in MTTCG we don't generate jumps to the yield and
1718      * WFE helpers as it won't affect the scheduling of other vCPUs.
1719      * If we wanted to more completely model WFE/SEV so we don't busy
1720      * spin unnecessarily we would need to do something more involved.
1721      */
1722     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723         s->base.is_jmp = DISAS_YIELD;
1724     }
1725     return true;
1726 }
1727 
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1729 {
1730     s->base.is_jmp = DISAS_WFI;
1731     return true;
1732 }
1733 
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1735 {
1736     /*
1737      * When running in MTTCG we don't generate jumps to the yield and
1738      * WFE helpers as it won't affect the scheduling of other vCPUs.
1739      * If we wanted to more completely model WFE/SEV so we don't busy
1740      * spin unnecessarily we would need to do something more involved.
1741      */
1742     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743         s->base.is_jmp = DISAS_WFE;
1744     }
1745     return true;
1746 }
1747 
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1749 {
1750     if (!dc_isar_feature(aa64_wfxt, s)) {
1751         return false;
1752     }
1753 
1754     /*
1755      * Because we need to pass the register value to the helper,
1756      * it's easier to emit the code now, unlike trans_WFI which
1757      * defers it to aarch64_tr_tb_stop(). That means we need to
1758      * check ss_active so that single-stepping a WFIT doesn't halt.
1759      */
1760     if (s->ss_active) {
1761         /* Act like a NOP under architectural singlestep */
1762         return true;
1763     }
1764 
1765     gen_a64_update_pc(s, 4);
1766     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767     /* Go back to the main loop to check for interrupts */
1768     s->base.is_jmp = DISAS_EXIT;
1769     return true;
1770 }
1771 
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * We rely here on our WFE implementation being a NOP, so we
1780      * don't need to do anything different to handle the WFET timeout
1781      * from what trans_WFE does.
1782      */
1783     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784         s->base.is_jmp = DISAS_WFE;
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1830 {
1831     /* Without RAS, we must implement this as NOP. */
1832     if (dc_isar_feature(aa64_ras, s)) {
1833         /*
1834          * QEMU does not have a source of physical SErrors,
1835          * so we are only concerned with virtual SErrors.
1836          * The pseudocode in the ARM for this case is
1837          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838          *      AArch64.vESBOperation();
1839          * Most of the condition can be evaluated at translation time.
1840          * Test for EL2 present, and defer test for SEL2 to runtime.
1841          */
1842         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843             gen_helper_vesb(tcg_env);
1844         }
1845     }
1846     return true;
1847 }
1848 
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1850 {
1851     if (s->pauth_active) {
1852         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1853     }
1854     return true;
1855 }
1856 
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1858 {
1859     if (s->pauth_active) {
1860         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1861     }
1862     return true;
1863 }
1864 
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1866 {
1867     if (s->pauth_active) {
1868         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1869     }
1870     return true;
1871 }
1872 
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1877     }
1878     return true;
1879 }
1880 
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1885     }
1886     return true;
1887 }
1888 
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1893     }
1894     return true;
1895 }
1896 
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1901     }
1902     return true;
1903 }
1904 
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1909     }
1910     return true;
1911 }
1912 
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1914 {
1915     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916     return true;
1917 }
1918 
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1920 {
1921     /* We handle DSB and DMB the same way */
1922     TCGBar bar;
1923 
1924     switch (a->types) {
1925     case 1: /* MBReqTypes_Reads */
1926         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927         break;
1928     case 2: /* MBReqTypes_Writes */
1929         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930         break;
1931     default: /* MBReqTypes_All */
1932         bar = TCG_BAR_SC | TCG_MO_ALL;
1933         break;
1934     }
1935     tcg_gen_mb(bar);
1936     return true;
1937 }
1938 
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1940 {
1941     /*
1942      * We need to break the TB after this insn to execute
1943      * self-modifying code correctly and also to take
1944      * any pending interrupts immediately.
1945      */
1946     reset_btype(s);
1947     gen_goto_tb(s, 0, 4);
1948     return true;
1949 }
1950 
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1952 {
1953     if (!dc_isar_feature(aa64_sb, s)) {
1954         return false;
1955     }
1956     /*
1957      * TODO: There is no speculation barrier opcode for TCG;
1958      * MB and end the TB instead.
1959      */
1960     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961     gen_goto_tb(s, 0, 4);
1962     return true;
1963 }
1964 
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1966 {
1967     if (!dc_isar_feature(aa64_condm_4, s)) {
1968         return false;
1969     }
1970     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971     return true;
1972 }
1973 
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1975 {
1976     TCGv_i32 z;
1977 
1978     if (!dc_isar_feature(aa64_condm_5, s)) {
1979         return false;
1980     }
1981 
1982     z = tcg_temp_new_i32();
1983 
1984     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1985 
1986     /*
1987      * (!C & !Z) << 31
1988      * (!(C | Z)) << 31
1989      * ~((C | Z) << 31)
1990      * ~-(C | Z)
1991      * (C | Z) - 1
1992      */
1993     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1995 
1996     /* !(Z & C) */
1997     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1999 
2000     /* (!C & Z) << 31 -> -(Z & ~C) */
2001     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2003 
2004     /* C | Z */
2005     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2006 
2007     return true;
2008 }
2009 
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2011 {
2012     if (!dc_isar_feature(aa64_condm_5, s)) {
2013         return false;
2014     }
2015 
2016     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2017     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2018 
2019     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2021 
2022     tcg_gen_movi_i32(cpu_NF, 0);
2023     tcg_gen_movi_i32(cpu_VF, 0);
2024 
2025     return true;
2026 }
2027 
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2029 {
2030     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031         return false;
2032     }
2033     if (a->imm & 1) {
2034         set_pstate_bits(PSTATE_UAO);
2035     } else {
2036         clear_pstate_bits(PSTATE_UAO);
2037     }
2038     gen_rebuild_hflags(s);
2039     s->base.is_jmp = DISAS_TOO_MANY;
2040     return true;
2041 }
2042 
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2044 {
2045     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046         return false;
2047     }
2048     if (a->imm & 1) {
2049         set_pstate_bits(PSTATE_PAN);
2050     } else {
2051         clear_pstate_bits(PSTATE_PAN);
2052     }
2053     gen_rebuild_hflags(s);
2054     s->base.is_jmp = DISAS_TOO_MANY;
2055     return true;
2056 }
2057 
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2059 {
2060     if (s->current_el == 0) {
2061         return false;
2062     }
2063     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064     s->base.is_jmp = DISAS_TOO_MANY;
2065     return true;
2066 }
2067 
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2069 {
2070     if (!dc_isar_feature(aa64_ssbs, s)) {
2071         return false;
2072     }
2073     if (a->imm & 1) {
2074         set_pstate_bits(PSTATE_SSBS);
2075     } else {
2076         clear_pstate_bits(PSTATE_SSBS);
2077     }
2078     /* Don't need to rebuild hflags since SSBS is a nop */
2079     s->base.is_jmp = DISAS_TOO_MANY;
2080     return true;
2081 }
2082 
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2084 {
2085     if (!dc_isar_feature(aa64_dit, s)) {
2086         return false;
2087     }
2088     if (a->imm & 1) {
2089         set_pstate_bits(PSTATE_DIT);
2090     } else {
2091         clear_pstate_bits(PSTATE_DIT);
2092     }
2093     /* There's no need to rebuild hflags because DIT is a nop */
2094     s->base.is_jmp = DISAS_TOO_MANY;
2095     return true;
2096 }
2097 
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2099 {
2100     if (dc_isar_feature(aa64_mte, s)) {
2101         /* Full MTE is enabled -- set the TCO bit as directed. */
2102         if (a->imm & 1) {
2103             set_pstate_bits(PSTATE_TCO);
2104         } else {
2105             clear_pstate_bits(PSTATE_TCO);
2106         }
2107         gen_rebuild_hflags(s);
2108         /* Many factors, including TCO, go into MTE_ACTIVE. */
2109         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110         return true;
2111     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2113         return true;
2114     } else {
2115         /* Insn not present */
2116         return false;
2117     }
2118 }
2119 
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2121 {
2122     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123     s->base.is_jmp = DISAS_TOO_MANY;
2124     return true;
2125 }
2126 
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2128 {
2129     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130     /* Exit the cpu loop to re-evaluate pending IRQs. */
2131     s->base.is_jmp = DISAS_UPDATE_EXIT;
2132     return true;
2133 }
2134 
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2136 {
2137     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138         return false;
2139     }
2140 
2141     if (a->imm == 0) {
2142         clear_pstate_bits(PSTATE_ALLINT);
2143     } else if (s->current_el > 1) {
2144         set_pstate_bits(PSTATE_ALLINT);
2145     } else {
2146         gen_helper_msr_set_allint_el1(tcg_env);
2147     }
2148 
2149     /* Exit the cpu loop to re-evaluate pending IRQs. */
2150     s->base.is_jmp = DISAS_UPDATE_EXIT;
2151     return true;
2152 }
2153 
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2155 {
2156     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157         return false;
2158     }
2159     if (sme_access_check(s)) {
2160         int old = s->pstate_sm | (s->pstate_za << 1);
2161         int new = a->imm * 3;
2162 
2163         if ((old ^ new) & a->mask) {
2164             /* At least one bit changes. */
2165             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166                                 tcg_constant_i32(a->mask));
2167             s->base.is_jmp = DISAS_TOO_MANY;
2168         }
2169     }
2170     return true;
2171 }
2172 
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2174 {
2175     TCGv_i32 tmp = tcg_temp_new_i32();
2176     TCGv_i32 nzcv = tcg_temp_new_i32();
2177 
2178     /* build bit 31, N */
2179     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180     /* build bit 30, Z */
2181     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183     /* build bit 29, C */
2184     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185     /* build bit 28, V */
2186     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188     /* generate result */
2189     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2190 }
2191 
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2193 {
2194     TCGv_i32 nzcv = tcg_temp_new_i32();
2195 
2196     /* take NZCV from R[t] */
2197     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2198 
2199     /* bit 31, N */
2200     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201     /* bit 30, Z */
2202     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204     /* bit 29, C */
2205     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207     /* bit 28, V */
2208     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2210 }
2211 
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213                              uint8_t op0, uint8_t op1, uint8_t op2,
2214                              uint8_t crn, uint8_t crm, uint8_t rt)
2215 {
2216     /*
2217      * Generate code to emit an UNDEF with correct syndrome
2218      * information for a failed system register access.
2219      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220      * but if FEAT_IDST is implemented then read accesses to registers
2221      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222      * syndrome.
2223      */
2224     uint32_t syndrome;
2225 
2226     if (isread && dc_isar_feature(aa64_ids, s) &&
2227         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229     } else {
2230         syndrome = syn_uncategorized();
2231     }
2232     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2233 }
2234 
2235 /* MRS - move from system register
2236  * MSR (register) - move to system register
2237  * SYS
2238  * SYSL
2239  * These are all essentially the same insn in 'read' and 'write'
2240  * versions, with varying op0 fields.
2241  */
2242 static void handle_sys(DisasContext *s, bool isread,
2243                        unsigned int op0, unsigned int op1, unsigned int op2,
2244                        unsigned int crn, unsigned int crm, unsigned int rt)
2245 {
2246     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247                                       crn, crm, op0, op1, op2);
2248     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249     bool need_exit_tb = false;
2250     bool nv_trap_to_el2 = false;
2251     bool nv_redirect_reg = false;
2252     bool skip_fp_access_checks = false;
2253     bool nv2_mem_redirect = false;
2254     TCGv_ptr tcg_ri = NULL;
2255     TCGv_i64 tcg_rt;
2256     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2257 
2258     if (crn == 11 || crn == 15) {
2259         /*
2260          * Check for TIDCP trap, which must take precedence over
2261          * the UNDEF for "no such register" etc.
2262          */
2263         switch (s->current_el) {
2264         case 0:
2265             if (dc_isar_feature(aa64_tidcp1, s)) {
2266                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2267             }
2268             break;
2269         case 1:
2270             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271             break;
2272         }
2273     }
2274 
2275     if (!ri) {
2276         /* Unknown register; this might be a guest error or a QEMU
2277          * unimplemented feature.
2278          */
2279         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2282         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283         return;
2284     }
2285 
2286     if (s->nv2 && ri->nv2_redirect_offset) {
2287         /*
2288          * Some registers always redirect to memory; some only do so if
2289          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290          * pairs which share an offset; see the table in R_CSRPQ).
2291          */
2292         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293             nv2_mem_redirect = s->nv1;
2294         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295             nv2_mem_redirect = !s->nv1;
2296         } else {
2297             nv2_mem_redirect = true;
2298         }
2299     }
2300 
2301     /* Check access permissions */
2302     if (!cp_access_ok(s->current_el, ri, isread)) {
2303         /*
2304          * FEAT_NV/NV2 handling does not do the usual FP access checks
2305          * for registers only accessible at EL2 (though it *does* do them
2306          * for registers accessible at EL1).
2307          */
2308         skip_fp_access_checks = true;
2309         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2310             /*
2311              * This is one of the few EL2 registers which should redirect
2312              * to the equivalent EL1 register. We do that after running
2313              * the EL2 register's accessfn.
2314              */
2315             nv_redirect_reg = true;
2316             assert(!nv2_mem_redirect);
2317         } else if (nv2_mem_redirect) {
2318             /*
2319              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320              * UNDEF to EL1.
2321              */
2322         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2323             /*
2324              * This register / instruction exists and is an EL2 register, so
2325              * we must trap to EL2 if accessed in nested virtualization EL1
2326              * instead of UNDEFing. We'll do that after the usual access checks.
2327              * (This makes a difference only for a couple of registers like
2328              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330              * an accessfn which does nothing when called from EL1, because
2331              * the trap-to-EL3 controls which would apply to that register
2332              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2333              */
2334             nv_trap_to_el2 = true;
2335         } else {
2336             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337             return;
2338         }
2339     }
2340 
2341     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342         /* Emit code to perform further access permissions checks at
2343          * runtime; this may result in an exception.
2344          */
2345         gen_a64_update_pc(s, 0);
2346         tcg_ri = tcg_temp_new_ptr();
2347         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348                                        tcg_constant_i32(key),
2349                                        tcg_constant_i32(syndrome),
2350                                        tcg_constant_i32(isread));
2351     } else if (ri->type & ARM_CP_RAISES_EXC) {
2352         /*
2353          * The readfn or writefn might raise an exception;
2354          * synchronize the CPU state in case it does.
2355          */
2356         gen_a64_update_pc(s, 0);
2357     }
2358 
2359     if (!skip_fp_access_checks) {
2360         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361             return;
2362         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363             return;
2364         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365             return;
2366         }
2367     }
2368 
2369     if (nv_trap_to_el2) {
2370         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371         return;
2372     }
2373 
2374     if (nv_redirect_reg) {
2375         /*
2376          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377          * Conveniently in all cases the encoding of the EL1 register is
2378          * identical to the EL2 register except that opc1 is 0.
2379          * Get the reginfo for the EL1 register to use for the actual access.
2380          * We don't use the EL1 register's access function, and
2381          * fine-grained-traps on EL1 also do not apply here.
2382          */
2383         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384                                  crn, crm, op0, 0, op2);
2385         ri = get_arm_cp_reginfo(s->cp_regs, key);
2386         assert(ri);
2387         assert(cp_access_ok(s->current_el, ri, isread));
2388         /*
2389          * We might not have done an update_pc earlier, so check we don't
2390          * need it. We could support this in future if necessary.
2391          */
2392         assert(!(ri->type & ARM_CP_RAISES_EXC));
2393     }
2394 
2395     if (nv2_mem_redirect) {
2396         /*
2397          * This system register is being redirected into an EL2 memory access.
2398          * This means it is not an IO operation, doesn't change hflags,
2399          * and need not end the TB, because it has no side effects.
2400          *
2401          * The access is 64-bit single copy atomic, guaranteed aligned because
2402          * of the definition of VCNR_EL2. Its endianness depends on
2403          * SCTLR_EL2.EE, not on the data endianness of EL1.
2404          * It is done under either the EL2 translation regime or the EL2&0
2405          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406          * PSTATE.PAN is 0.
2407          */
2408         TCGv_i64 ptr = tcg_temp_new_i64();
2409         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411         int memidx = arm_to_core_mmu_idx(armmemidx);
2412         uint32_t syn;
2413 
2414         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2415 
2416         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417         tcg_gen_addi_i64(ptr, ptr,
2418                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419         tcg_rt = cpu_reg(s, rt);
2420 
2421         syn = syn_data_abort_vncr(0, !isread, 0);
2422         disas_set_insn_syndrome(s, syn);
2423         if (isread) {
2424             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425         } else {
2426             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2427         }
2428         return;
2429     }
2430 
2431     /* Handle special cases first */
2432     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433     case 0:
2434         break;
2435     case ARM_CP_NOP:
2436         return;
2437     case ARM_CP_NZCV:
2438         tcg_rt = cpu_reg(s, rt);
2439         if (isread) {
2440             gen_get_nzcv(tcg_rt);
2441         } else {
2442             gen_set_nzcv(tcg_rt);
2443         }
2444         return;
2445     case ARM_CP_CURRENTEL:
2446     {
2447         /*
2448          * Reads as current EL value from pstate, which is
2449          * guaranteed to be constant by the tb flags.
2450          * For nested virt we should report EL2.
2451          */
2452         int el = s->nv ? 2 : s->current_el;
2453         tcg_rt = cpu_reg(s, rt);
2454         tcg_gen_movi_i64(tcg_rt, el << 2);
2455         return;
2456     }
2457     case ARM_CP_DC_ZVA:
2458         /* Writes clear the aligned block of memory which rt points into. */
2459         if (s->mte_active[0]) {
2460             int desc = 0;
2461 
2462             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2465 
2466             tcg_rt = tcg_temp_new_i64();
2467             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2469         } else {
2470             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2471         }
2472         gen_helper_dc_zva(tcg_env, tcg_rt);
2473         return;
2474     case ARM_CP_DC_GVA:
2475         {
2476             TCGv_i64 clean_addr, tag;
2477 
2478             /*
2479              * DC_GVA, like DC_ZVA, requires that we supply the original
2480              * pointer for an invalid page.  Probe that address first.
2481              */
2482             tcg_rt = cpu_reg(s, rt);
2483             clean_addr = clean_data_tbi(s, tcg_rt);
2484             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2485 
2486             if (s->ata[0]) {
2487                 /* Extract the tag from the register to match STZGM.  */
2488                 tag = tcg_temp_new_i64();
2489                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2491             }
2492         }
2493         return;
2494     case ARM_CP_DC_GZVA:
2495         {
2496             TCGv_i64 clean_addr, tag;
2497 
2498             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499             tcg_rt = cpu_reg(s, rt);
2500             clean_addr = clean_data_tbi(s, tcg_rt);
2501             gen_helper_dc_zva(tcg_env, clean_addr);
2502 
2503             if (s->ata[0]) {
2504                 /* Extract the tag from the register to match STZGM.  */
2505                 tag = tcg_temp_new_i64();
2506                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2508             }
2509         }
2510         return;
2511     default:
2512         g_assert_not_reached();
2513     }
2514 
2515     if (ri->type & ARM_CP_IO) {
2516         /* I/O operations must end the TB here (whether read or write) */
2517         need_exit_tb = translator_io_start(&s->base);
2518     }
2519 
2520     tcg_rt = cpu_reg(s, rt);
2521 
2522     if (isread) {
2523         if (ri->type & ARM_CP_CONST) {
2524             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525         } else if (ri->readfn) {
2526             if (!tcg_ri) {
2527                 tcg_ri = gen_lookup_cp_reg(key);
2528             }
2529             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530         } else {
2531             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2532         }
2533     } else {
2534         if (ri->type & ARM_CP_CONST) {
2535             /* If not forbidden by access permissions, treat as WI */
2536             return;
2537         } else if (ri->writefn) {
2538             if (!tcg_ri) {
2539                 tcg_ri = gen_lookup_cp_reg(key);
2540             }
2541             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542         } else {
2543             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2544         }
2545     }
2546 
2547     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2548         /*
2549          * A write to any coprocessor register that ends a TB
2550          * must rebuild the hflags for the next TB.
2551          */
2552         gen_rebuild_hflags(s);
2553         /*
2554          * We default to ending the TB on a coprocessor register write,
2555          * but allow this to be suppressed by the register definition
2556          * (usually only necessary to work around guest bugs).
2557          */
2558         need_exit_tb = true;
2559     }
2560     if (need_exit_tb) {
2561         s->base.is_jmp = DISAS_UPDATE_EXIT;
2562     }
2563 }
2564 
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2566 {
2567     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568     return true;
2569 }
2570 
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2572 {
2573     /*
2574      * For SVC, HVC and SMC we advance the single-step state
2575      * machine before taking the exception. This is architecturally
2576      * mandated, to ensure that single-stepping a system call
2577      * instruction works properly.
2578      */
2579     uint32_t syndrome = syn_aa64_svc(a->imm);
2580     if (s->fgt_svc) {
2581         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582         return true;
2583     }
2584     gen_ss_advance(s);
2585     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586     return true;
2587 }
2588 
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2590 {
2591     int target_el = s->current_el == 3 ? 3 : 2;
2592 
2593     if (s->current_el == 0) {
2594         unallocated_encoding(s);
2595         return true;
2596     }
2597     /*
2598      * The pre HVC helper handles cases when HVC gets trapped
2599      * as an undefined insn by runtime configuration.
2600      */
2601     gen_a64_update_pc(s, 0);
2602     gen_helper_pre_hvc(tcg_env);
2603     /* Architecture requires ss advance before we do the actual work */
2604     gen_ss_advance(s);
2605     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606     return true;
2607 }
2608 
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2610 {
2611     if (s->current_el == 0) {
2612         unallocated_encoding(s);
2613         return true;
2614     }
2615     gen_a64_update_pc(s, 0);
2616     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617     /* Architecture requires ss advance before we do the actual work */
2618     gen_ss_advance(s);
2619     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620     return true;
2621 }
2622 
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2624 {
2625     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626     return true;
2627 }
2628 
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2630 {
2631     /*
2632      * HLT. This has two purposes.
2633      * Architecturally, it is an external halting debug instruction.
2634      * Since QEMU doesn't implement external debug, we treat this as
2635      * it is required for halting debug disabled: it will UNDEF.
2636      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2637      */
2638     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640     } else {
2641         unallocated_encoding(s);
2642     }
2643     return true;
2644 }
2645 
2646 /*
2647  * Load/Store exclusive instructions are implemented by remembering
2648  * the value/address loaded, and seeing if these are the same
2649  * when the store is performed. This is not actually the architecturally
2650  * mandated semantics, but it works for typical guest code sequences
2651  * and avoids having to monitor regular stores.
2652  *
2653  * The store exclusive uses the atomic cmpxchg primitives to avoid
2654  * races in multi-threaded linux-user and when MTTCG softmmu is
2655  * enabled.
2656  */
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658                                int size, bool is_pair)
2659 {
2660     int idx = get_mem_index(s);
2661     TCGv_i64 dirty_addr, clean_addr;
2662     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2663 
2664     s->is_ldex = true;
2665     dirty_addr = cpu_reg_sp(s, rn);
2666     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2667 
2668     g_assert(size <= 3);
2669     if (is_pair) {
2670         g_assert(size >= 2);
2671         if (size == 2) {
2672             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673             if (s->be_data == MO_LE) {
2674                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676             } else {
2677                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2679             }
2680         } else {
2681             TCGv_i128 t16 = tcg_temp_new_i128();
2682 
2683             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2684 
2685             if (s->be_data == MO_LE) {
2686                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687                                       cpu_exclusive_high, t16);
2688             } else {
2689                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690                                       cpu_exclusive_val, t16);
2691             }
2692             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2694         }
2695     } else {
2696         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2698     }
2699     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2700 }
2701 
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703                                 int rn, int size, int is_pair)
2704 {
2705     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707      *     [addr] = {Rt};
2708      *     if (is_pair) {
2709      *         [addr + datasize] = {Rt2};
2710      *     }
2711      *     {Rd} = 0;
2712      * } else {
2713      *     {Rd} = 1;
2714      * }
2715      * env->exclusive_addr = -1;
2716      */
2717     TCGLabel *fail_label = gen_new_label();
2718     TCGLabel *done_label = gen_new_label();
2719     TCGv_i64 tmp, clean_addr;
2720     MemOp memop;
2721 
2722     /*
2723      * FIXME: We are out of spec here.  We have recorded only the address
2724      * from load_exclusive, not the entire range, and we assume that the
2725      * size of the access on both sides match.  The architecture allows the
2726      * store to be smaller than the load, so long as the stored bytes are
2727      * within the range recorded by the load.
2728      */
2729 
2730     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2733 
2734     /*
2735      * The write, and any associated faults, only happen if the virtual
2736      * and physical addresses pass the exclusive monitor check.  These
2737      * faults are exceedingly unlikely, because normally the guest uses
2738      * the exact same address register for the load_exclusive, and we
2739      * would have recognized these faults there.
2740      *
2741      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742      * unaligned 4-byte write within the range of an aligned 8-byte load.
2743      * With LSE2, the store would need to cross a 16-byte boundary when the
2744      * load did not, which would mean the store is outside the range
2745      * recorded for the monitor, which would have failed a corrected monitor
2746      * check above.  For now, we assume no size change and retain the
2747      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2748      *
2749      * It is possible to trigger an MTE fault, by performing the load with
2750      * a virtual address with a valid tag and performing the store with the
2751      * same virtual address and a different invalid tag.
2752      */
2753     memop = size + is_pair;
2754     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755         memop |= MO_ALIGN;
2756     }
2757     memop = finalize_memop(s, memop);
2758     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2759 
2760     tmp = tcg_temp_new_i64();
2761     if (is_pair) {
2762         if (size == 2) {
2763             if (s->be_data == MO_LE) {
2764                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765             } else {
2766                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2767             }
2768             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769                                        cpu_exclusive_val, tmp,
2770                                        get_mem_index(s), memop);
2771             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772         } else {
2773             TCGv_i128 t16 = tcg_temp_new_i128();
2774             TCGv_i128 c16 = tcg_temp_new_i128();
2775             TCGv_i64 a, b;
2776 
2777             if (s->be_data == MO_LE) {
2778                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780                                         cpu_exclusive_high);
2781             } else {
2782                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784                                         cpu_exclusive_val);
2785             }
2786 
2787             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788                                         get_mem_index(s), memop);
2789 
2790             a = tcg_temp_new_i64();
2791             b = tcg_temp_new_i64();
2792             if (s->be_data == MO_LE) {
2793                 tcg_gen_extr_i128_i64(a, b, t16);
2794             } else {
2795                 tcg_gen_extr_i128_i64(b, a, t16);
2796             }
2797 
2798             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800             tcg_gen_or_i64(tmp, a, b);
2801 
2802             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2803         }
2804     } else {
2805         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806                                    cpu_reg(s, rt), get_mem_index(s), memop);
2807         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2808     }
2809     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810     tcg_gen_br(done_label);
2811 
2812     gen_set_label(fail_label);
2813     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814     gen_set_label(done_label);
2815     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2816 }
2817 
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819                                  int rn, int size)
2820 {
2821     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823     int memidx = get_mem_index(s);
2824     TCGv_i64 clean_addr;
2825     MemOp memop;
2826 
2827     if (rn == 31) {
2828         gen_check_sp_alignment(s);
2829     }
2830     memop = check_atomic_align(s, rn, size);
2831     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833                                memidx, memop);
2834 }
2835 
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837                                       int rn, int size)
2838 {
2839     TCGv_i64 s1 = cpu_reg(s, rs);
2840     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841     TCGv_i64 t1 = cpu_reg(s, rt);
2842     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843     TCGv_i64 clean_addr;
2844     int memidx = get_mem_index(s);
2845     MemOp memop;
2846 
2847     if (rn == 31) {
2848         gen_check_sp_alignment(s);
2849     }
2850 
2851     /* This is a single atomic access, despite the "pair". */
2852     memop = check_atomic_align(s, rn, size + 1);
2853     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2854 
2855     if (size == 2) {
2856         TCGv_i64 cmp = tcg_temp_new_i64();
2857         TCGv_i64 val = tcg_temp_new_i64();
2858 
2859         if (s->be_data == MO_LE) {
2860             tcg_gen_concat32_i64(val, t1, t2);
2861             tcg_gen_concat32_i64(cmp, s1, s2);
2862         } else {
2863             tcg_gen_concat32_i64(val, t2, t1);
2864             tcg_gen_concat32_i64(cmp, s2, s1);
2865         }
2866 
2867         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2868 
2869         if (s->be_data == MO_LE) {
2870             tcg_gen_extr32_i64(s1, s2, cmp);
2871         } else {
2872             tcg_gen_extr32_i64(s2, s1, cmp);
2873         }
2874     } else {
2875         TCGv_i128 cmp = tcg_temp_new_i128();
2876         TCGv_i128 val = tcg_temp_new_i128();
2877 
2878         if (s->be_data == MO_LE) {
2879             tcg_gen_concat_i64_i128(val, t1, t2);
2880             tcg_gen_concat_i64_i128(cmp, s1, s2);
2881         } else {
2882             tcg_gen_concat_i64_i128(val, t2, t1);
2883             tcg_gen_concat_i64_i128(cmp, s2, s1);
2884         }
2885 
2886         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2887 
2888         if (s->be_data == MO_LE) {
2889             tcg_gen_extr_i128_i64(s1, s2, cmp);
2890         } else {
2891             tcg_gen_extr_i128_i64(s2, s1, cmp);
2892         }
2893     }
2894 }
2895 
2896 /*
2897  * Compute the ISS.SF bit for syndrome information if an exception
2898  * is taken on a load or store. This indicates whether the instruction
2899  * is accessing a 32-bit or 64-bit register. This logic is derived
2900  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2901  */
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2903 {
2904 
2905     if (sign) {
2906         /*
2907          * Signed loads are 64 bit results if we are not going to
2908          * do a zero-extend from 32 to 64 after the load.
2909          * (For a store, sign and ext are always false.)
2910          */
2911         return !ext;
2912     } else {
2913         /* Unsigned loads/stores work at the specified size */
2914         return size == MO_64;
2915     }
2916 }
2917 
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2919 {
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     if (a->lasr) {
2924         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2925     }
2926     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927     return true;
2928 }
2929 
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2931 {
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936     if (a->lasr) {
2937         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2938     }
2939     return true;
2940 }
2941 
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2943 {
2944     TCGv_i64 clean_addr;
2945     MemOp memop;
2946     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2947 
2948     /*
2949      * StoreLORelease is the same as Store-Release for QEMU, but
2950      * needs the feature-test.
2951      */
2952     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953         return false;
2954     }
2955     /* Generate ISS for non-exclusive accesses including LASR.  */
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962                                 true, a->rn != 31, memop);
2963     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964               iss_sf, a->lasr);
2965     return true;
2966 }
2967 
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2969 {
2970     TCGv_i64 clean_addr;
2971     MemOp memop;
2972     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2973 
2974     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2975     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976         return false;
2977     }
2978     /* Generate ISS for non-exclusive accesses including LASR.  */
2979     if (a->rn == 31) {
2980         gen_check_sp_alignment(s);
2981     }
2982     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984                                 false, a->rn != 31, memop);
2985     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986               a->rt, iss_sf, a->lasr);
2987     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988     return true;
2989 }
2990 
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2992 {
2993     if (a->rn == 31) {
2994         gen_check_sp_alignment(s);
2995     }
2996     if (a->lasr) {
2997         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2998     }
2999     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000     return true;
3001 }
3002 
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3004 {
3005     if (a->rn == 31) {
3006         gen_check_sp_alignment(s);
3007     }
3008     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009     if (a->lasr) {
3010         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3011     }
3012     return true;
3013 }
3014 
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3016 {
3017     if (!dc_isar_feature(aa64_atomics, s)) {
3018         return false;
3019     }
3020     if (((a->rt | a->rs) & 1) != 0) {
3021         return false;
3022     }
3023 
3024     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025     return true;
3026 }
3027 
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3029 {
3030     if (!dc_isar_feature(aa64_atomics, s)) {
3031         return false;
3032     }
3033     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034     return true;
3035 }
3036 
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3038 {
3039     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041     TCGv_i64 clean_addr = tcg_temp_new_i64();
3042     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3043 
3044     gen_pc_plus_diff(s, clean_addr, a->imm);
3045     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046               false, true, a->rt, iss_sf, false);
3047     return true;
3048 }
3049 
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3051 {
3052     /* Load register (literal), vector version */
3053     TCGv_i64 clean_addr;
3054     MemOp memop;
3055 
3056     if (!fp_access_check(s)) {
3057         return true;
3058     }
3059     memop = finalize_memop_asimd(s, a->sz);
3060     clean_addr = tcg_temp_new_i64();
3061     gen_pc_plus_diff(s, clean_addr, a->imm);
3062     do_fp_ld(s, a->rt, clean_addr, memop);
3063     return true;
3064 }
3065 
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068                                  uint64_t offset, bool is_store, MemOp mop)
3069 {
3070     if (a->rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075     if (!a->p) {
3076         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3077     }
3078 
3079     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3081 }
3082 
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084                                   TCGv_i64 dirty_addr, uint64_t offset)
3085 {
3086     if (a->w) {
3087         if (a->p) {
3088             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3089         }
3090         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3091     }
3092 }
3093 
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103     /*
3104      * We built mop above for the single logical access -- rebuild it
3105      * now for the paired operation.
3106      *
3107      * With LSE2, non-sign-extending pairs are treated atomically if
3108      * aligned, and if unaligned one of the pair will be completely
3109      * within a 16-byte block and that element will be atomic.
3110      * Otherwise each element is separately atomic.
3111      * In all cases, issue one operation with the correct atomicity.
3112      */
3113     mop = a->sz + 1;
3114     if (s->align_mem) {
3115         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3116     }
3117     mop = finalize_memop_pair(s, mop);
3118     if (a->sz == 2) {
3119         TCGv_i64 tmp = tcg_temp_new_i64();
3120 
3121         if (s->be_data == MO_LE) {
3122             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123         } else {
3124             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3125         }
3126         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127     } else {
3128         TCGv_i128 tmp = tcg_temp_new_i128();
3129 
3130         if (s->be_data == MO_LE) {
3131             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132         } else {
3133             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3134         }
3135         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3136     }
3137     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138     return true;
3139 }
3140 
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3142 {
3143     uint64_t offset = a->imm << a->sz;
3144     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145     MemOp mop = finalize_memop(s, a->sz);
3146 
3147     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148     tcg_rt = cpu_reg(s, a->rt);
3149     tcg_rt2 = cpu_reg(s, a->rt2);
3150 
3151     /*
3152      * We built mop above for the single logical access -- rebuild it
3153      * now for the paired operation.
3154      *
3155      * With LSE2, non-sign-extending pairs are treated atomically if
3156      * aligned, and if unaligned one of the pair will be completely
3157      * within a 16-byte block and that element will be atomic.
3158      * Otherwise each element is separately atomic.
3159      * In all cases, issue one operation with the correct atomicity.
3160      *
3161      * This treats sign-extending loads like zero-extending loads,
3162      * since that reuses the most code below.
3163      */
3164     mop = a->sz + 1;
3165     if (s->align_mem) {
3166         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3167     }
3168     mop = finalize_memop_pair(s, mop);
3169     if (a->sz == 2) {
3170         int o2 = s->be_data == MO_LE ? 32 : 0;
3171         int o1 = o2 ^ 32;
3172 
3173         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174         if (a->sign) {
3175             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177         } else {
3178             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3180         }
3181     } else {
3182         TCGv_i128 tmp = tcg_temp_new_i128();
3183 
3184         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185         if (s->be_data == MO_LE) {
3186             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187         } else {
3188             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3189         }
3190     }
3191     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192     return true;
3193 }
3194 
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3196 {
3197     uint64_t offset = a->imm << a->sz;
3198     TCGv_i64 clean_addr, dirty_addr;
3199     MemOp mop;
3200 
3201     if (!fp_access_check(s)) {
3202         return true;
3203     }
3204 
3205     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206     mop = finalize_memop_asimd(s, a->sz);
3207     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208     do_fp_st(s, a->rt, clean_addr, mop);
3209     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210     do_fp_st(s, a->rt2, clean_addr, mop);
3211     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212     return true;
3213 }
3214 
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3216 {
3217     uint64_t offset = a->imm << a->sz;
3218     TCGv_i64 clean_addr, dirty_addr;
3219     MemOp mop;
3220 
3221     if (!fp_access_check(s)) {
3222         return true;
3223     }
3224 
3225     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226     mop = finalize_memop_asimd(s, a->sz);
3227     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228     do_fp_ld(s, a->rt, clean_addr, mop);
3229     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230     do_fp_ld(s, a->rt2, clean_addr, mop);
3231     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232     return true;
3233 }
3234 
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3236 {
3237     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239     MemOp mop;
3240     TCGv_i128 tmp;
3241 
3242     /* STGP only comes in one size. */
3243     tcg_debug_assert(a->sz == MO_64);
3244 
3245     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246         return false;
3247     }
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252 
3253     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254     if (!a->p) {
3255         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3256     }
3257 
3258     clean_addr = clean_data_tbi(s, dirty_addr);
3259     tcg_rt = cpu_reg(s, a->rt);
3260     tcg_rt2 = cpu_reg(s, a->rt2);
3261 
3262     /*
3263      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264      * and one tag operation.  We implement it as one single aligned 16-byte
3265      * memory operation for convenience.  Note that the alignment ensures
3266      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3267      */
3268     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3269 
3270     tmp = tcg_temp_new_i128();
3271     if (s->be_data == MO_LE) {
3272         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273     } else {
3274         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3275     }
3276     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3277 
3278     /* Perform the tag store, if tag access enabled. */
3279     if (s->ata[0]) {
3280         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282         } else {
3283             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3284         }
3285     }
3286 
3287     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288     return true;
3289 }
3290 
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293                                  uint64_t offset, bool is_store, MemOp mop)
3294 {
3295     int memidx;
3296 
3297     if (a->rn == 31) {
3298         gen_check_sp_alignment(s);
3299     }
3300 
3301     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302     if (!a->p) {
3303         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3304     }
3305     memidx = get_a64_user_mem_index(s, a->unpriv);
3306     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307                                         a->w || a->rn != 31,
3308                                         mop, a->unpriv, memidx);
3309 }
3310 
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312                                   TCGv_i64 dirty_addr, uint64_t offset)
3313 {
3314     if (a->w) {
3315         if (a->p) {
3316             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317         }
3318         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3319     }
3320 }
3321 
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     bool iss_sf, iss_valid = !a->w;
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     int memidx = get_a64_user_mem_index(s, a->unpriv);
3327     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3328 
3329     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3330 
3331     tcg_rt = cpu_reg(s, a->rt);
3332     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3333 
3334     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335                      iss_valid, a->rt, iss_sf, false);
3336     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337     return true;
3338 }
3339 
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3341 {
3342     bool iss_sf, iss_valid = !a->w;
3343     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344     int memidx = get_a64_user_mem_index(s, a->unpriv);
3345     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3346 
3347     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3348 
3349     tcg_rt = cpu_reg(s, a->rt);
3350     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3351 
3352     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355     return true;
3356 }
3357 
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3359 {
3360     TCGv_i64 clean_addr, dirty_addr;
3361     MemOp mop;
3362 
3363     if (!fp_access_check(s)) {
3364         return true;
3365     }
3366     mop = finalize_memop_asimd(s, a->sz);
3367     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368     do_fp_st(s, a->rt, clean_addr, mop);
3369     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370     return true;
3371 }
3372 
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3374 {
3375     TCGv_i64 clean_addr, dirty_addr;
3376     MemOp mop;
3377 
3378     if (!fp_access_check(s)) {
3379         return true;
3380     }
3381     mop = finalize_memop_asimd(s, a->sz);
3382     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383     do_fp_ld(s, a->rt, clean_addr, mop);
3384     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385     return true;
3386 }
3387 
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390                              bool is_store, MemOp memop)
3391 {
3392     TCGv_i64 tcg_rm;
3393 
3394     if (a->rn == 31) {
3395         gen_check_sp_alignment(s);
3396     }
3397     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398 
3399     tcg_rm = read_cpu_reg(s, a->rm, 1);
3400     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3401 
3402     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3404 }
3405 
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3407 {
3408     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410     MemOp memop;
3411 
3412     if (extract32(a->opt, 1, 1) == 0) {
3413         return false;
3414     }
3415 
3416     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418     tcg_rt = cpu_reg(s, a->rt);
3419     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420               a->ext, true, a->rt, iss_sf, false);
3421     return true;
3422 }
3423 
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428     MemOp memop;
3429 
3430     if (extract32(a->opt, 1, 1) == 0) {
3431         return false;
3432     }
3433 
3434     memop = finalize_memop(s, a->sz);
3435     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436     tcg_rt = cpu_reg(s, a->rt);
3437     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438     return true;
3439 }
3440 
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3442 {
3443     TCGv_i64 clean_addr, dirty_addr;
3444     MemOp memop;
3445 
3446     if (extract32(a->opt, 1, 1) == 0) {
3447         return false;
3448     }
3449 
3450     if (!fp_access_check(s)) {
3451         return true;
3452     }
3453 
3454     memop = finalize_memop_asimd(s, a->sz);
3455     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456     do_fp_ld(s, a->rt, clean_addr, memop);
3457     return true;
3458 }
3459 
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3461 {
3462     TCGv_i64 clean_addr, dirty_addr;
3463     MemOp memop;
3464 
3465     if (extract32(a->opt, 1, 1) == 0) {
3466         return false;
3467     }
3468 
3469     if (!fp_access_check(s)) {
3470         return true;
3471     }
3472 
3473     memop = finalize_memop_asimd(s, a->sz);
3474     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475     do_fp_st(s, a->rt, clean_addr, memop);
3476     return true;
3477 }
3478 
3479 
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481                          int sign, bool invert)
3482 {
3483     MemOp mop = a->sz | sign;
3484     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3485 
3486     if (a->rn == 31) {
3487         gen_check_sp_alignment(s);
3488     }
3489     mop = check_atomic_align(s, a->rn, mop);
3490     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491                                 a->rn != 31, mop);
3492     tcg_rs = read_cpu_reg(s, a->rs, true);
3493     tcg_rt = cpu_reg(s, a->rt);
3494     if (invert) {
3495         tcg_gen_not_i64(tcg_rs, tcg_rs);
3496     }
3497     /*
3498      * The tcg atomic primitives are all full barriers.  Therefore we
3499      * can ignore the Acquire and Release bits of this instruction.
3500      */
3501     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3502 
3503     if (mop & MO_SIGN) {
3504         switch (a->sz) {
3505         case MO_8:
3506             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_16:
3509             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510             break;
3511         case MO_32:
3512             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513             break;
3514         case MO_64:
3515             break;
3516         default:
3517             g_assert_not_reached();
3518         }
3519     }
3520     return true;
3521 }
3522 
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3532 
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3534 {
3535     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536     TCGv_i64 clean_addr;
3537     MemOp mop;
3538 
3539     if (!dc_isar_feature(aa64_atomics, s) ||
3540         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541         return false;
3542     }
3543     if (a->rn == 31) {
3544         gen_check_sp_alignment(s);
3545     }
3546     mop = check_atomic_align(s, a->rn, a->sz);
3547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548                                 a->rn != 31, mop);
3549     /*
3550      * LDAPR* are a special case because they are a simple load, not a
3551      * fetch-and-do-something op.
3552      * The architectural consistency requirements here are weaker than
3553      * full load-acquire (we only need "load-acquire processor consistent"),
3554      * but we choose to implement them as full LDAQ.
3555      */
3556     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557               true, a->rt, iss_sf, true);
3558     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559     return true;
3560 }
3561 
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3563 {
3564     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565     MemOp memop;
3566 
3567     /* Load with pointer authentication */
3568     if (!dc_isar_feature(aa64_pauth, s)) {
3569         return false;
3570     }
3571 
3572     if (a->rn == 31) {
3573         gen_check_sp_alignment(s);
3574     }
3575     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3576 
3577     if (s->pauth_active) {
3578         if (!a->m) {
3579             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580                                       tcg_constant_i64(0));
3581         } else {
3582             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583                                       tcg_constant_i64(0));
3584         }
3585     }
3586 
3587     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3588 
3589     memop = finalize_memop(s, MO_64);
3590 
3591     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3592     clean_addr = gen_mte_check1(s, dirty_addr, false,
3593                                 a->w || a->rn != 31, memop);
3594 
3595     tcg_rt = cpu_reg(s, a->rt);
3596     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597               /* extend */ false, /* iss_valid */ !a->w,
3598               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3599 
3600     if (a->w) {
3601         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3602     }
3603     return true;
3604 }
3605 
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3607 {
3608     TCGv_i64 clean_addr, dirty_addr;
3609     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3611 
3612     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613         return false;
3614     }
3615 
3616     if (a->rn == 31) {
3617         gen_check_sp_alignment(s);
3618     }
3619 
3620     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623     clean_addr = clean_data_tbi(s, dirty_addr);
3624 
3625     /*
3626      * Load-AcquirePC semantics; we implement as the slightly more
3627      * restrictive Load-Acquire.
3628      */
3629     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630               a->rt, iss_sf, true);
3631     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632     return true;
3633 }
3634 
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3636 {
3637     TCGv_i64 clean_addr, dirty_addr;
3638     MemOp mop = a->sz;
3639     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3640 
3641     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642         return false;
3643     }
3644 
3645     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654     clean_addr = clean_data_tbi(s, dirty_addr);
3655 
3656     /* Store-Release semantics */
3657     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659     return true;
3660 }
3661 
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3663 {
3664     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665     MemOp endian, align, mop;
3666 
3667     int total;    /* total bytes */
3668     int elements; /* elements per vector */
3669     int r;
3670     int size = a->sz;
3671 
3672     if (!a->p && a->rm != 0) {
3673         /* For non-postindexed accesses the Rm field must be 0 */
3674         return false;
3675     }
3676     if (size == 3 && !a->q && a->selem != 1) {
3677         return false;
3678     }
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     if (a->rn == 31) {
3684         gen_check_sp_alignment(s);
3685     }
3686 
3687     /* For our purposes, bytes are always little-endian.  */
3688     endian = s->be_data;
3689     if (size == 0) {
3690         endian = MO_LE;
3691     }
3692 
3693     total = a->rpt * a->selem * (a->q ? 16 : 8);
3694     tcg_rn = cpu_reg_sp(s, a->rn);
3695 
3696     /*
3697      * Issue the MTE check vs the logical repeat count, before we
3698      * promote consecutive little-endian elements below.
3699      */
3700     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701                                 finalize_memop_asimd(s, size));
3702 
3703     /*
3704      * Consecutive little-endian elements from a single register
3705      * can be promoted to a larger little-endian operation.
3706      */
3707     align = MO_ALIGN;
3708     if (a->selem == 1 && endian == MO_LE) {
3709         align = pow2_align(size);
3710         size = 3;
3711     }
3712     if (!s->align_mem) {
3713         align = 0;
3714     }
3715     mop = endian | size | align;
3716 
3717     elements = (a->q ? 16 : 8) >> size;
3718     tcg_ebytes = tcg_constant_i64(1 << size);
3719     for (r = 0; r < a->rpt; r++) {
3720         int e;
3721         for (e = 0; e < elements; e++) {
3722             int xs;
3723             for (xs = 0; xs < a->selem; xs++) {
3724                 int tt = (a->rt + r + xs) % 32;
3725                 do_vec_ld(s, tt, e, clean_addr, mop);
3726                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3727             }
3728         }
3729     }
3730 
3731     /*
3732      * For non-quad operations, setting a slice of the low 64 bits of
3733      * the register clears the high 64 bits (in the ARM ARM pseudocode
3734      * this is implicit in the fact that 'rval' is a 64 bit wide
3735      * variable).  For quad operations, we might still need to zero
3736      * the high bits of SVE.
3737      */
3738     for (r = 0; r < a->rpt * a->selem; r++) {
3739         int tt = (a->rt + r) % 32;
3740         clear_vec_high(s, a->q, tt);
3741     }
3742 
3743     if (a->p) {
3744         if (a->rm == 31) {
3745             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746         } else {
3747             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748         }
3749     }
3750     return true;
3751 }
3752 
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3754 {
3755     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756     MemOp endian, align, mop;
3757 
3758     int total;    /* total bytes */
3759     int elements; /* elements per vector */
3760     int r;
3761     int size = a->sz;
3762 
3763     if (!a->p && a->rm != 0) {
3764         /* For non-postindexed accesses the Rm field must be 0 */
3765         return false;
3766     }
3767     if (size == 3 && !a->q && a->selem != 1) {
3768         return false;
3769     }
3770     if (!fp_access_check(s)) {
3771         return true;
3772     }
3773 
3774     if (a->rn == 31) {
3775         gen_check_sp_alignment(s);
3776     }
3777 
3778     /* For our purposes, bytes are always little-endian.  */
3779     endian = s->be_data;
3780     if (size == 0) {
3781         endian = MO_LE;
3782     }
3783 
3784     total = a->rpt * a->selem * (a->q ? 16 : 8);
3785     tcg_rn = cpu_reg_sp(s, a->rn);
3786 
3787     /*
3788      * Issue the MTE check vs the logical repeat count, before we
3789      * promote consecutive little-endian elements below.
3790      */
3791     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792                                 finalize_memop_asimd(s, size));
3793 
3794     /*
3795      * Consecutive little-endian elements from a single register
3796      * can be promoted to a larger little-endian operation.
3797      */
3798     align = MO_ALIGN;
3799     if (a->selem == 1 && endian == MO_LE) {
3800         align = pow2_align(size);
3801         size = 3;
3802     }
3803     if (!s->align_mem) {
3804         align = 0;
3805     }
3806     mop = endian | size | align;
3807 
3808     elements = (a->q ? 16 : 8) >> size;
3809     tcg_ebytes = tcg_constant_i64(1 << size);
3810     for (r = 0; r < a->rpt; r++) {
3811         int e;
3812         for (e = 0; e < elements; e++) {
3813             int xs;
3814             for (xs = 0; xs < a->selem; xs++) {
3815                 int tt = (a->rt + r + xs) % 32;
3816                 do_vec_st(s, tt, e, clean_addr, mop);
3817                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3818             }
3819         }
3820     }
3821 
3822     if (a->p) {
3823         if (a->rm == 31) {
3824             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825         } else {
3826             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3827         }
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3833 {
3834     int xs, total, rt;
3835     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836     MemOp mop;
3837 
3838     if (!a->p && a->rm != 0) {
3839         return false;
3840     }
3841     if (!fp_access_check(s)) {
3842         return true;
3843     }
3844 
3845     if (a->rn == 31) {
3846         gen_check_sp_alignment(s);
3847     }
3848 
3849     total = a->selem << a->scale;
3850     tcg_rn = cpu_reg_sp(s, a->rn);
3851 
3852     mop = finalize_memop_asimd(s, a->scale);
3853     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854                                 total, mop);
3855 
3856     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858         do_vec_st(s, rt, a->index, clean_addr, mop);
3859         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3860     }
3861 
3862     if (a->p) {
3863         if (a->rm == 31) {
3864             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865         } else {
3866             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3867         }
3868     }
3869     return true;
3870 }
3871 
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3873 {
3874     int xs, total, rt;
3875     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876     MemOp mop;
3877 
3878     if (!a->p && a->rm != 0) {
3879         return false;
3880     }
3881     if (!fp_access_check(s)) {
3882         return true;
3883     }
3884 
3885     if (a->rn == 31) {
3886         gen_check_sp_alignment(s);
3887     }
3888 
3889     total = a->selem << a->scale;
3890     tcg_rn = cpu_reg_sp(s, a->rn);
3891 
3892     mop = finalize_memop_asimd(s, a->scale);
3893     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894                                 total, mop);
3895 
3896     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898         do_vec_ld(s, rt, a->index, clean_addr, mop);
3899         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3900     }
3901 
3902     if (a->p) {
3903         if (a->rm == 31) {
3904             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905         } else {
3906             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3907         }
3908     }
3909     return true;
3910 }
3911 
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3913 {
3914     int xs, total, rt;
3915     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916     MemOp mop;
3917 
3918     if (!a->p && a->rm != 0) {
3919         return false;
3920     }
3921     if (!fp_access_check(s)) {
3922         return true;
3923     }
3924 
3925     if (a->rn == 31) {
3926         gen_check_sp_alignment(s);
3927     }
3928 
3929     total = a->selem << a->scale;
3930     tcg_rn = cpu_reg_sp(s, a->rn);
3931 
3932     mop = finalize_memop_asimd(s, a->scale);
3933     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934                                 total, mop);
3935 
3936     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938         /* Load and replicate to all elements */
3939         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3940 
3941         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3945     }
3946 
3947     if (a->p) {
3948         if (a->rm == 31) {
3949             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950         } else {
3951             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3952         }
3953     }
3954     return true;
3955 }
3956 
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3958 {
3959     TCGv_i64 addr, clean_addr, tcg_rt;
3960     int size = 4 << s->dcz_blocksize;
3961 
3962     if (!dc_isar_feature(aa64_mte, s)) {
3963         return false;
3964     }
3965     if (s->current_el == 0) {
3966         return false;
3967     }
3968 
3969     if (a->rn == 31) {
3970         gen_check_sp_alignment(s);
3971     }
3972 
3973     addr = read_cpu_reg_sp(s, a->rn, true);
3974     tcg_gen_addi_i64(addr, addr, a->imm);
3975     tcg_rt = cpu_reg(s, a->rt);
3976 
3977     if (s->ata[0]) {
3978         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3979     }
3980     /*
3981      * The non-tags portion of STZGM is mostly like DC_ZVA,
3982      * except the alignment happens before the access.
3983      */
3984     clean_addr = clean_data_tbi(s, addr);
3985     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986     gen_helper_dc_zva(tcg_env, clean_addr);
3987     return true;
3988 }
3989 
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3991 {
3992     TCGv_i64 addr, clean_addr, tcg_rt;
3993 
3994     if (!dc_isar_feature(aa64_mte, s)) {
3995         return false;
3996     }
3997     if (s->current_el == 0) {
3998         return false;
3999     }
4000 
4001     if (a->rn == 31) {
4002         gen_check_sp_alignment(s);
4003     }
4004 
4005     addr = read_cpu_reg_sp(s, a->rn, true);
4006     tcg_gen_addi_i64(addr, addr, a->imm);
4007     tcg_rt = cpu_reg(s, a->rt);
4008 
4009     if (s->ata[0]) {
4010         gen_helper_stgm(tcg_env, addr, tcg_rt);
4011     } else {
4012         MMUAccessType acc = MMU_DATA_STORE;
4013         int size = 4 << s->gm_blocksize;
4014 
4015         clean_addr = clean_data_tbi(s, addr);
4016         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017         gen_probe_access(s, clean_addr, acc, size);
4018     }
4019     return true;
4020 }
4021 
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4023 {
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     if (!dc_isar_feature(aa64_mte, s)) {
4027         return false;
4028     }
4029     if (s->current_el == 0) {
4030         return false;
4031     }
4032 
4033     if (a->rn == 31) {
4034         gen_check_sp_alignment(s);
4035     }
4036 
4037     addr = read_cpu_reg_sp(s, a->rn, true);
4038     tcg_gen_addi_i64(addr, addr, a->imm);
4039     tcg_rt = cpu_reg(s, a->rt);
4040 
4041     if (s->ata[0]) {
4042         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043     } else {
4044         MMUAccessType acc = MMU_DATA_LOAD;
4045         int size = 4 << s->gm_blocksize;
4046 
4047         clean_addr = clean_data_tbi(s, addr);
4048         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049         gen_probe_access(s, clean_addr, acc, size);
4050         /* The result tags are zeros.  */
4051         tcg_gen_movi_i64(tcg_rt, 0);
4052     }
4053     return true;
4054 }
4055 
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4057 {
4058     TCGv_i64 addr, clean_addr, tcg_rt;
4059 
4060     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061         return false;
4062     }
4063 
4064     if (a->rn == 31) {
4065         gen_check_sp_alignment(s);
4066     }
4067 
4068     addr = read_cpu_reg_sp(s, a->rn, true);
4069     if (!a->p) {
4070         /* pre-index or signed offset */
4071         tcg_gen_addi_i64(addr, addr, a->imm);
4072     }
4073 
4074     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075     tcg_rt = cpu_reg(s, a->rt);
4076     if (s->ata[0]) {
4077         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078     } else {
4079         /*
4080          * Tag access disabled: we must check for aborts on the load
4081          * load from [rn+offset], and then insert a 0 tag into rt.
4082          */
4083         clean_addr = clean_data_tbi(s, addr);
4084         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4086     }
4087 
4088     if (a->w) {
4089         /* pre-index or post-index */
4090         if (a->p) {
4091             /* post-index */
4092             tcg_gen_addi_i64(addr, addr, a->imm);
4093         }
4094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4095     }
4096     return true;
4097 }
4098 
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4100 {
4101     TCGv_i64 addr, tcg_rt;
4102 
4103     if (a->rn == 31) {
4104         gen_check_sp_alignment(s);
4105     }
4106 
4107     addr = read_cpu_reg_sp(s, a->rn, true);
4108     if (!a->p) {
4109         /* pre-index or signed offset */
4110         tcg_gen_addi_i64(addr, addr, a->imm);
4111     }
4112     tcg_rt = cpu_reg_sp(s, a->rt);
4113     if (!s->ata[0]) {
4114         /*
4115          * For STG and ST2G, we need to check alignment and probe memory.
4116          * TODO: For STZG and STZ2G, we could rely on the stores below,
4117          * at least for system mode; user-only won't enforce alignment.
4118          */
4119         if (is_pair) {
4120             gen_helper_st2g_stub(tcg_env, addr);
4121         } else {
4122             gen_helper_stg_stub(tcg_env, addr);
4123         }
4124     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125         if (is_pair) {
4126             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127         } else {
4128             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4129         }
4130     } else {
4131         if (is_pair) {
4132             gen_helper_st2g(tcg_env, addr, tcg_rt);
4133         } else {
4134             gen_helper_stg(tcg_env, addr, tcg_rt);
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 zero64 = tcg_constant_i64(0);
4141         TCGv_i128 zero128 = tcg_temp_new_i128();
4142         int mem_index = get_mem_index(s);
4143         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4144 
4145         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4146 
4147         /* This is 1 or 2 atomic 16-byte operations. */
4148         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149         if (is_pair) {
4150             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4152         }
4153     }
4154 
4155     if (a->w) {
4156         /* pre-index or post-index */
4157         if (a->p) {
4158             /* post-index */
4159             tcg_gen_addi_i64(addr, addr, a->imm);
4160         }
4161         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4162     }
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4170 
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4172 
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174                    bool is_setg, SetFn fn)
4175 {
4176     int memidx;
4177     uint32_t syndrome, desc = 0;
4178 
4179     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182 
4183     /*
4184      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185      * us to pull this check before the CheckMOPSEnabled() test
4186      * (which we do in the helper function)
4187      */
4188     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189         a->rd == 31 || a->rn == 31) {
4190         return false;
4191     }
4192 
4193     memidx = get_a64_user_mem_index(s, a->unpriv);
4194 
4195     /*
4196      * We pass option_a == true, matching our implementation;
4197      * we pass wrong_option == false: helper function may set that bit.
4198      */
4199     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4201 
4202     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203         /* We may need to do MTE tag checking, so assemble the descriptor */
4204         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4208     }
4209     /* The helper function always needs the memidx even with MTE disabled */
4210     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4211 
4212     /*
4213      * The helper needs the register numbers, but since they're in
4214      * the syndrome anyway, we let it extract them from there rather
4215      * than passing in an extra three integer arguments.
4216      */
4217     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218     return true;
4219 }
4220 
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4227 
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4229 
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4231 {
4232     int rmemidx, wmemidx;
4233     uint32_t syndrome, rdesc = 0, wdesc = 0;
4234     bool wunpriv = extract32(a->options, 0, 1);
4235     bool runpriv = extract32(a->options, 1, 1);
4236 
4237     /*
4238      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239      * us to pull this check before the CheckMOPSEnabled() test
4240      * (which we do in the helper function)
4241      */
4242     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244         return false;
4245     }
4246 
4247     rmemidx = get_a64_user_mem_index(s, runpriv);
4248     wmemidx = get_a64_user_mem_index(s, wunpriv);
4249 
4250     /*
4251      * We pass option_a == true, matching our implementation;
4252      * we pass wrong_option == false: helper function may set that bit.
4253      */
4254     syndrome = syn_mop(false, false, a->options, is_epilogue,
4255                        false, true, a->rd, a->rs, a->rn);
4256 
4257     /* If we need to do MTE tag checking, assemble the descriptors */
4258     if (s->mte_active[runpriv]) {
4259         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4261     }
4262     if (s->mte_active[wunpriv]) {
4263         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4266     }
4267     /* The helper function needs these parts of the descriptor regardless */
4268     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4270 
4271     /*
4272      * The helper needs the register numbers, but since they're in
4273      * the syndrome anyway, we let it extract them from there rather
4274      * than passing in an extra three integer arguments.
4275      */
4276     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277        tcg_constant_i32(rdesc));
4278     return true;
4279 }
4280 
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4287 
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4289 
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4292 {
4293     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4296 
4297     fn(tcg_rd, tcg_rn, tcg_imm);
4298     if (!a->sf) {
4299         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4300     }
4301     return true;
4302 }
4303 
4304 /*
4305  * PC-rel. addressing
4306  */
4307 
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4309 {
4310     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311     return true;
4312 }
4313 
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4315 {
4316     int64_t offset = (int64_t)a->imm << 12;
4317 
4318     /* The page offset is ok for CF_PCREL. */
4319     offset -= s->pc_curr & 0xfff;
4320     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321     return true;
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate)
4326  */
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4331 
4332 /*
4333  * Add/subtract (immediate, with tags)
4334  */
4335 
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337                                       bool sub_op)
4338 {
4339     TCGv_i64 tcg_rn, tcg_rd;
4340     int imm;
4341 
4342     imm = a->uimm6 << LOG2_TAG_GRANULE;
4343     if (sub_op) {
4344         imm = -imm;
4345     }
4346 
4347     tcg_rn = cpu_reg_sp(s, a->rn);
4348     tcg_rd = cpu_reg_sp(s, a->rd);
4349 
4350     if (s->ata[0]) {
4351         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352                            tcg_constant_i32(imm),
4353                            tcg_constant_i32(a->uimm4));
4354     } else {
4355         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4357     }
4358     return true;
4359 }
4360 
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4363 
4364 /* The input should be a value in the bottom e bits (with higher
4365  * bits zero); returns that value replicated into every element
4366  * of size e in a 64 bit integer.
4367  */
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4369 {
4370     assert(e != 0);
4371     while (e < 64) {
4372         mask |= mask << e;
4373         e *= 2;
4374     }
4375     return mask;
4376 }
4377 
4378 /*
4379  * Logical (immediate)
4380  */
4381 
4382 /*
4383  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385  * value (ie should cause a guest UNDEF exception), and true if they are
4386  * valid, in which case the decoded bit pattern is written to result.
4387  */
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389                             unsigned int imms, unsigned int immr)
4390 {
4391     uint64_t mask;
4392     unsigned e, levels, s, r;
4393     int len;
4394 
4395     assert(immn < 2 && imms < 64 && immr < 64);
4396 
4397     /* The bit patterns we create here are 64 bit patterns which
4398      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399      * 64 bits each. Each element contains the same value: a run
4400      * of between 1 and e-1 non-zero bits, rotated within the
4401      * element by between 0 and e-1 bits.
4402      *
4403      * The element size and run length are encoded into immn (1 bit)
4404      * and imms (6 bits) as follows:
4405      * 64 bit elements: immn = 1, imms = <length of run - 1>
4406      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411      * Notice that immn = 0, imms = 11111x is the only combination
4412      * not covered by one of the above options; this is reserved.
4413      * Further, <length of run - 1> all-ones is a reserved pattern.
4414      *
4415      * In all cases the rotation is by immr % e (and immr is 6 bits).
4416      */
4417 
4418     /* First determine the element size */
4419     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420     if (len < 1) {
4421         /* This is the immn == 0, imms == 0x11111x case */
4422         return false;
4423     }
4424     e = 1 << len;
4425 
4426     levels = e - 1;
4427     s = imms & levels;
4428     r = immr & levels;
4429 
4430     if (s == levels) {
4431         /* <length of run - 1> mustn't be all-ones. */
4432         return false;
4433     }
4434 
4435     /* Create the value of one element: s+1 set bits rotated
4436      * by r within the element (which is e bits wide)...
4437      */
4438     mask = MAKE_64BIT_MASK(0, s + 1);
4439     if (r) {
4440         mask = (mask >> r) | (mask << (e - r));
4441         mask &= MAKE_64BIT_MASK(0, e);
4442     }
4443     /* ...then replicate the element over the whole 64 bit value */
4444     mask = bitfield_replicate(mask, e);
4445     *result = mask;
4446     return true;
4447 }
4448 
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4451 {
4452     TCGv_i64 tcg_rd, tcg_rn;
4453     uint64_t imm;
4454 
4455     /* Some immediate field values are reserved. */
4456     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457                                 extract32(a->dbm, 0, 6),
4458                                 extract32(a->dbm, 6, 6))) {
4459         return false;
4460     }
4461     if (!a->sf) {
4462         imm &= 0xffffffffull;
4463     }
4464 
4465     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466     tcg_rn = cpu_reg(s, a->rn);
4467 
4468     fn(tcg_rd, tcg_rn, imm);
4469     if (set_cc) {
4470         gen_logic_CC(a->sf, tcg_rd);
4471     }
4472     if (!a->sf) {
4473         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4474     }
4475     return true;
4476 }
4477 
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4482 
4483 /*
4484  * Move wide (immediate)
4485  */
4486 
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4488 {
4489     int pos = a->hw << 4;
4490     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491     return true;
4492 }
4493 
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4495 {
4496     int pos = a->hw << 4;
4497     uint64_t imm = a->imm;
4498 
4499     imm = ~(imm << pos);
4500     if (!a->sf) {
4501         imm = (uint32_t)imm;
4502     }
4503     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504     return true;
4505 }
4506 
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4508 {
4509     int pos = a->hw << 4;
4510     TCGv_i64 tcg_rd, tcg_im;
4511 
4512     tcg_rd = cpu_reg(s, a->rd);
4513     tcg_im = tcg_constant_i64(a->imm);
4514     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * Bitfield
4523  */
4524 
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4526 {
4527     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529     unsigned int bitsize = a->sf ? 64 : 32;
4530     unsigned int ri = a->immr;
4531     unsigned int si = a->imms;
4532     unsigned int pos, len;
4533 
4534     if (si >= ri) {
4535         /* Wd<s-r:0> = Wn<s:r> */
4536         len = (si - ri) + 1;
4537         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538         if (!a->sf) {
4539             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540         }
4541     } else {
4542         /* Wd<32+s-r,32-r> = Wn<s:0> */
4543         len = si + 1;
4544         pos = (bitsize - ri) & (bitsize - 1);
4545 
4546         if (len < ri) {
4547             /*
4548              * Sign extend the destination field from len to fill the
4549              * balance of the word.  Let the deposit below insert all
4550              * of those sign bits.
4551              */
4552             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553             len = ri;
4554         }
4555 
4556         /*
4557          * We start with zero, and we haven't modified any bits outside
4558          * bitsize, therefore no final zero-extension is unneeded for !sf.
4559          */
4560         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4561     }
4562     return true;
4563 }
4564 
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4566 {
4567     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569     unsigned int bitsize = a->sf ? 64 : 32;
4570     unsigned int ri = a->immr;
4571     unsigned int si = a->imms;
4572     unsigned int pos, len;
4573 
4574     tcg_rd = cpu_reg(s, a->rd);
4575     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 
4577     if (si >= ri) {
4578         /* Wd<s-r:0> = Wn<s:r> */
4579         len = (si - ri) + 1;
4580         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581     } else {
4582         /* Wd<32+s-r,32-r> = Wn<s:0> */
4583         len = si + 1;
4584         pos = (bitsize - ri) & (bitsize - 1);
4585         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4586     }
4587     return true;
4588 }
4589 
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4591 {
4592     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594     unsigned int bitsize = a->sf ? 64 : 32;
4595     unsigned int ri = a->immr;
4596     unsigned int si = a->imms;
4597     unsigned int pos, len;
4598 
4599     tcg_rd = cpu_reg(s, a->rd);
4600     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 
4602     if (si >= ri) {
4603         /* Wd<s-r:0> = Wn<s:r> */
4604         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605         len = (si - ri) + 1;
4606         pos = 0;
4607     } else {
4608         /* Wd<32+s-r,32-r> = Wn<s:0> */
4609         len = si + 1;
4610         pos = (bitsize - ri) & (bitsize - 1);
4611     }
4612 
4613     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614     if (!a->sf) {
4615         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4616     }
4617     return true;
4618 }
4619 
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4621 {
4622     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4623 
4624     tcg_rd = cpu_reg(s, a->rd);
4625 
4626     if (unlikely(a->imm == 0)) {
4627         /*
4628          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629          * so an extract from bit 0 is a special case.
4630          */
4631         if (a->sf) {
4632             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633         } else {
4634             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4635         }
4636     } else {
4637         tcg_rm = cpu_reg(s, a->rm);
4638         tcg_rn = cpu_reg(s, a->rn);
4639 
4640         if (a->sf) {
4641             /* Specialization to ROR happens in EXTRACT2.  */
4642             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643         } else {
4644             TCGv_i32 t0 = tcg_temp_new_i32();
4645 
4646             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647             if (a->rm == a->rn) {
4648                 tcg_gen_rotri_i32(t0, t0, a->imm);
4649             } else {
4650                 TCGv_i32 t1 = tcg_temp_new_i32();
4651                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4653             }
4654             tcg_gen_extu_i32_i64(tcg_rd, t0);
4655         }
4656     }
4657     return true;
4658 }
4659 
4660 /*
4661  * Cryptographic AES, SHA, SHA512
4662  */
4663 
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4668 
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4673 
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4677 
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4681 
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4689 
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4692 
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4695 
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4697 {
4698     if (!dc_isar_feature(aa64_sm3, s)) {
4699         return false;
4700     }
4701     if (fp_access_check(s)) {
4702         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705         TCGv_i32 tcg_res = tcg_temp_new_i32();
4706         unsigned vsz, dofs;
4707 
4708         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4711 
4712         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4716 
4717         /* Clear the whole register first, then store bits [127:96]. */
4718         vsz = vec_full_reg_size(s);
4719         dofs = vec_full_reg_offset(s, a->rd);
4720         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4722     }
4723     return true;
4724 }
4725 
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4727 {
4728     if (fp_access_check(s)) {
4729         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4730     }
4731     return true;
4732 }
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4737 
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4739 {
4740     if (!dc_isar_feature(aa64_sha3, s)) {
4741         return false;
4742     }
4743     if (fp_access_check(s)) {
4744         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745                      vec_full_reg_offset(s, a->rn),
4746                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4747                      vec_full_reg_size(s));
4748     }
4749     return true;
4750 }
4751 
4752 /*
4753  * Advanced SIMD copy
4754  */
4755 
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4757 {
4758     unsigned esz = ctz32(imm);
4759     if (esz <= MO_64) {
4760         *pesz = esz;
4761         *pidx = imm >> (esz + 1);
4762         return true;
4763     }
4764     return false;
4765 }
4766 
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4768 {
4769     MemOp esz;
4770     unsigned idx;
4771 
4772     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773         return false;
4774     }
4775     if (fp_access_check(s)) {
4776         /*
4777          * This instruction just extracts the specified element and
4778          * zero-extends it into the bottom of the destination register.
4779          */
4780         TCGv_i64 tmp = tcg_temp_new_i64();
4781         read_vec_element(s, tmp, a->rn, idx, esz);
4782         write_fp_dreg(s, a->rd, tmp);
4783     }
4784     return true;
4785 }
4786 
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4788 {
4789     MemOp esz;
4790     unsigned idx;
4791 
4792     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793         return false;
4794     }
4795     if (esz == MO_64 && !a->q) {
4796         return false;
4797     }
4798     if (fp_access_check(s)) {
4799         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800                              vec_reg_offset(s, a->rn, idx, esz),
4801                              a->q ? 16 : 8, vec_full_reg_size(s));
4802     }
4803     return true;
4804 }
4805 
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4807 {
4808     MemOp esz;
4809     unsigned idx;
4810 
4811     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812         return false;
4813     }
4814     if (esz == MO_64 && !a->q) {
4815         return false;
4816     }
4817     if (fp_access_check(s)) {
4818         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819                              a->q ? 16 : 8, vec_full_reg_size(s),
4820                              cpu_reg(s, a->rn));
4821     }
4822     return true;
4823 }
4824 
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4826 {
4827     MemOp esz;
4828     unsigned idx;
4829 
4830     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831         return false;
4832     }
4833     if (is_signed) {
4834         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835             return false;
4836         }
4837     } else {
4838         if (esz == MO_64 ? !a->q : a->q) {
4839             return false;
4840         }
4841     }
4842     if (fp_access_check(s)) {
4843         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845         if (is_signed && !a->q) {
4846             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847         }
4848     }
4849     return true;
4850 }
4851 
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4854 
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4856 {
4857     MemOp esz;
4858     unsigned idx;
4859 
4860     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861         return false;
4862     }
4863     if (fp_access_check(s)) {
4864         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865         clear_vec_high(s, true, a->rd);
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4871 {
4872     MemOp esz;
4873     unsigned didx, sidx;
4874 
4875     if (!decode_esz_idx(a->di, &esz, &didx)) {
4876         return false;
4877     }
4878     sidx = a->si >> esz;
4879     if (fp_access_check(s)) {
4880         TCGv_i64 tmp = tcg_temp_new_i64();
4881 
4882         read_vec_element(s, tmp, a->rn, sidx, esz);
4883         write_vec_element(s, tmp, a->rd, didx, esz);
4884 
4885         /* INS is considered a 128-bit write for SVE. */
4886         clear_vec_high(s, true, a->rd);
4887     }
4888     return true;
4889 }
4890 
4891 /*
4892  * Advanced SIMD three same
4893  */
4894 
4895 typedef struct FPScalar {
4896     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4900 
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4902 {
4903     switch (a->esz) {
4904     case MO_64:
4905         if (fp_access_check(s)) {
4906             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909             write_fp_dreg(s, a->rd, t0);
4910         }
4911         break;
4912     case MO_32:
4913         if (fp_access_check(s)) {
4914             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917             write_fp_sreg(s, a->rd, t0);
4918         }
4919         break;
4920     case MO_16:
4921         if (!dc_isar_feature(aa64_fp16, s)) {
4922             return false;
4923         }
4924         if (fp_access_check(s)) {
4925             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928             write_fp_sreg(s, a->rd, t0);
4929         }
4930         break;
4931     default:
4932         return false;
4933     }
4934     return true;
4935 }
4936 
4937 static const FPScalar f_scalar_fadd = {
4938     gen_helper_vfp_addh,
4939     gen_helper_vfp_adds,
4940     gen_helper_vfp_addd,
4941 };
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4943 
4944 static const FPScalar f_scalar_fsub = {
4945     gen_helper_vfp_subh,
4946     gen_helper_vfp_subs,
4947     gen_helper_vfp_subd,
4948 };
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4950 
4951 static const FPScalar f_scalar_fdiv = {
4952     gen_helper_vfp_divh,
4953     gen_helper_vfp_divs,
4954     gen_helper_vfp_divd,
4955 };
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4957 
4958 static const FPScalar f_scalar_fmul = {
4959     gen_helper_vfp_mulh,
4960     gen_helper_vfp_muls,
4961     gen_helper_vfp_muld,
4962 };
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4964 
4965 static const FPScalar f_scalar_fmax = {
4966     gen_helper_advsimd_maxh,
4967     gen_helper_vfp_maxs,
4968     gen_helper_vfp_maxd,
4969 };
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4971 
4972 static const FPScalar f_scalar_fmin = {
4973     gen_helper_advsimd_minh,
4974     gen_helper_vfp_mins,
4975     gen_helper_vfp_mind,
4976 };
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4978 
4979 static const FPScalar f_scalar_fmaxnm = {
4980     gen_helper_advsimd_maxnumh,
4981     gen_helper_vfp_maxnums,
4982     gen_helper_vfp_maxnumd,
4983 };
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4985 
4986 static const FPScalar f_scalar_fminnm = {
4987     gen_helper_advsimd_minnumh,
4988     gen_helper_vfp_minnums,
4989     gen_helper_vfp_minnumd,
4990 };
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4992 
4993 static const FPScalar f_scalar_fmulx = {
4994     gen_helper_advsimd_mulxh,
4995     gen_helper_vfp_mulxs,
4996     gen_helper_vfp_mulxd,
4997 };
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4999 
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5001 {
5002     gen_helper_vfp_mulh(d, n, m, s);
5003     gen_vfp_negh(d, d);
5004 }
5005 
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5007 {
5008     gen_helper_vfp_muls(d, n, m, s);
5009     gen_vfp_negs(d, d);
5010 }
5011 
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5013 {
5014     gen_helper_vfp_muld(d, n, m, s);
5015     gen_vfp_negd(d, d);
5016 }
5017 
5018 static const FPScalar f_scalar_fnmul = {
5019     gen_fnmul_h,
5020     gen_fnmul_s,
5021     gen_fnmul_d,
5022 };
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5024 
5025 static const FPScalar f_scalar_fcmeq = {
5026     gen_helper_advsimd_ceq_f16,
5027     gen_helper_neon_ceq_f32,
5028     gen_helper_neon_ceq_f64,
5029 };
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5031 
5032 static const FPScalar f_scalar_fcmge = {
5033     gen_helper_advsimd_cge_f16,
5034     gen_helper_neon_cge_f32,
5035     gen_helper_neon_cge_f64,
5036 };
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5038 
5039 static const FPScalar f_scalar_fcmgt = {
5040     gen_helper_advsimd_cgt_f16,
5041     gen_helper_neon_cgt_f32,
5042     gen_helper_neon_cgt_f64,
5043 };
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5045 
5046 static const FPScalar f_scalar_facge = {
5047     gen_helper_advsimd_acge_f16,
5048     gen_helper_neon_acge_f32,
5049     gen_helper_neon_acge_f64,
5050 };
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5052 
5053 static const FPScalar f_scalar_facgt = {
5054     gen_helper_advsimd_acgt_f16,
5055     gen_helper_neon_acgt_f32,
5056     gen_helper_neon_acgt_f64,
5057 };
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5059 
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5061 {
5062     gen_helper_vfp_subh(d, n, m, s);
5063     gen_vfp_absh(d, d);
5064 }
5065 
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5067 {
5068     gen_helper_vfp_subs(d, n, m, s);
5069     gen_vfp_abss(d, d);
5070 }
5071 
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5073 {
5074     gen_helper_vfp_subd(d, n, m, s);
5075     gen_vfp_absd(d, d);
5076 }
5077 
5078 static const FPScalar f_scalar_fabd = {
5079     gen_fabd_h,
5080     gen_fabd_s,
5081     gen_fabd_d,
5082 };
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5084 
5085 static const FPScalar f_scalar_frecps = {
5086     gen_helper_recpsf_f16,
5087     gen_helper_recpsf_f32,
5088     gen_helper_recpsf_f64,
5089 };
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5091 
5092 static const FPScalar f_scalar_frsqrts = {
5093     gen_helper_rsqrtsf_f16,
5094     gen_helper_rsqrtsf_f32,
5095     gen_helper_rsqrtsf_f64,
5096 };
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5098 
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100                 MemOp sgn_n, MemOp sgn_m,
5101                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5103 {
5104     TCGv_i64 t0, t1, t2, qc;
5105     MemOp esz = a->esz;
5106 
5107     if (!fp_access_check(s)) {
5108         return true;
5109     }
5110 
5111     t0 = tcg_temp_new_i64();
5112     t1 = tcg_temp_new_i64();
5113     t2 = tcg_temp_new_i64();
5114     qc = tcg_temp_new_i64();
5115     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5118 
5119     if (esz == MO_64) {
5120         gen_d(t0, qc, t1, t2);
5121     } else {
5122         gen_bhs(t0, qc, t1, t2, esz);
5123         tcg_gen_ext_i64(t0, t0, esz);
5124     }
5125 
5126     write_fp_dreg(s, a->rd, t0);
5127     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128     return true;
5129 }
5130 
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5137 
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5140 {
5141     if (fp_access_check(s)) {
5142         TCGv_i64 t0 = tcg_temp_new_i64();
5143         TCGv_i64 t1 = tcg_temp_new_i64();
5144 
5145         read_vec_element(s, t0, a->rn, 0, MO_64);
5146         read_vec_element(s, t1, a->rm, 0, MO_64);
5147         fn(t0, t0, t1);
5148         write_fp_dreg(s, a->rd, t0);
5149     }
5150     return true;
5151 }
5152 
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5159 
5160 typedef struct ENVScalar2 {
5161     NeonGenTwoOpEnvFn *gen_bhs[3];
5162     NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5164 
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5166 {
5167     if (!fp_access_check(s)) {
5168         return true;
5169     }
5170     if (a->esz == MO_64) {
5171         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173         f->gen_d(t0, tcg_env, t0, t1);
5174         write_fp_dreg(s, a->rd, t0);
5175     } else {
5176         TCGv_i32 t0 = tcg_temp_new_i32();
5177         TCGv_i32 t1 = tcg_temp_new_i32();
5178 
5179         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182         write_fp_sreg(s, a->rd, t0);
5183     }
5184     return true;
5185 }
5186 
5187 static const ENVScalar2 f_scalar_sqshl = {
5188     { gen_helper_neon_qshl_s8,
5189       gen_helper_neon_qshl_s16,
5190       gen_helper_neon_qshl_s32 },
5191     gen_helper_neon_qshl_s64,
5192 };
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5194 
5195 static const ENVScalar2 f_scalar_uqshl = {
5196     { gen_helper_neon_qshl_u8,
5197       gen_helper_neon_qshl_u16,
5198       gen_helper_neon_qshl_u32 },
5199     gen_helper_neon_qshl_u64,
5200 };
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5202 
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204     { gen_helper_neon_qrshl_s8,
5205       gen_helper_neon_qrshl_s16,
5206       gen_helper_neon_qrshl_s32 },
5207     gen_helper_neon_qrshl_s64,
5208 };
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5210 
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212     { gen_helper_neon_qrshl_u8,
5213       gen_helper_neon_qrshl_u16,
5214       gen_helper_neon_qrshl_u32 },
5215     gen_helper_neon_qrshl_u64,
5216 };
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5218 
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220                               const ENVScalar2 *f)
5221 {
5222     if (a->esz == MO_16 || a->esz == MO_32) {
5223         return do_env_scalar2(s, a, f);
5224     }
5225     return false;
5226 }
5227 
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5230 };
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5232 
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5235 };
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5237 
5238 typedef struct ENVScalar3 {
5239     NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5241 
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243                               const ENVScalar3 *f)
5244 {
5245     TCGv_i32 t0, t1, t2;
5246 
5247     if (a->esz != MO_16 && a->esz != MO_32) {
5248         return false;
5249     }
5250     if (!fp_access_check(s)) {
5251         return true;
5252     }
5253 
5254     t0 = tcg_temp_new_i32();
5255     t1 = tcg_temp_new_i32();
5256     t2 = tcg_temp_new_i32();
5257     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261     write_fp_sreg(s, a->rd, t0);
5262     return true;
5263 }
5264 
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5267 };
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5269 
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5272 };
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5274 
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5276 {
5277     if (fp_access_check(s)) {
5278         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281         write_fp_dreg(s, a->rd, t0);
5282     }
5283     return true;
5284 }
5285 
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5292 
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5294                           gen_helper_gvec_3_ptr * const fns[3])
5295 {
5296     MemOp esz = a->esz;
5297 
5298     switch (esz) {
5299     case MO_64:
5300         if (!a->q) {
5301             return false;
5302         }
5303         break;
5304     case MO_32:
5305         break;
5306     case MO_16:
5307         if (!dc_isar_feature(aa64_fp16, s)) {
5308             return false;
5309         }
5310         break;
5311     default:
5312         return false;
5313     }
5314     if (fp_access_check(s)) {
5315         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316                           esz == MO_16, data, fns[esz - 1]);
5317     }
5318     return true;
5319 }
5320 
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322     gen_helper_gvec_fadd_h,
5323     gen_helper_gvec_fadd_s,
5324     gen_helper_gvec_fadd_d,
5325 };
5326 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5327 
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329     gen_helper_gvec_fsub_h,
5330     gen_helper_gvec_fsub_s,
5331     gen_helper_gvec_fsub_d,
5332 };
5333 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5334 
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336     gen_helper_gvec_fdiv_h,
5337     gen_helper_gvec_fdiv_s,
5338     gen_helper_gvec_fdiv_d,
5339 };
5340 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5341 
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343     gen_helper_gvec_fmul_h,
5344     gen_helper_gvec_fmul_s,
5345     gen_helper_gvec_fmul_d,
5346 };
5347 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5348 
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350     gen_helper_gvec_fmax_h,
5351     gen_helper_gvec_fmax_s,
5352     gen_helper_gvec_fmax_d,
5353 };
5354 TRANS(FMAX_v, do_fp3_vector, a, 0, f_vector_fmax)
5355 
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357     gen_helper_gvec_fmin_h,
5358     gen_helper_gvec_fmin_s,
5359     gen_helper_gvec_fmin_d,
5360 };
5361 TRANS(FMIN_v, do_fp3_vector, a, 0, f_vector_fmin)
5362 
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364     gen_helper_gvec_fmaxnum_h,
5365     gen_helper_gvec_fmaxnum_s,
5366     gen_helper_gvec_fmaxnum_d,
5367 };
5368 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5369 
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371     gen_helper_gvec_fminnum_h,
5372     gen_helper_gvec_fminnum_s,
5373     gen_helper_gvec_fminnum_d,
5374 };
5375 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5376 
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378     gen_helper_gvec_fmulx_h,
5379     gen_helper_gvec_fmulx_s,
5380     gen_helper_gvec_fmulx_d,
5381 };
5382 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5383 
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385     gen_helper_gvec_vfma_h,
5386     gen_helper_gvec_vfma_s,
5387     gen_helper_gvec_vfma_d,
5388 };
5389 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5390 
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392     gen_helper_gvec_vfms_h,
5393     gen_helper_gvec_vfms_s,
5394     gen_helper_gvec_vfms_d,
5395 };
5396 TRANS(FMLS_v, do_fp3_vector, a, 0, f_vector_fmls)
5397 
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399     gen_helper_gvec_fceq_h,
5400     gen_helper_gvec_fceq_s,
5401     gen_helper_gvec_fceq_d,
5402 };
5403 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5404 
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406     gen_helper_gvec_fcge_h,
5407     gen_helper_gvec_fcge_s,
5408     gen_helper_gvec_fcge_d,
5409 };
5410 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5411 
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413     gen_helper_gvec_fcgt_h,
5414     gen_helper_gvec_fcgt_s,
5415     gen_helper_gvec_fcgt_d,
5416 };
5417 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5418 
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420     gen_helper_gvec_facge_h,
5421     gen_helper_gvec_facge_s,
5422     gen_helper_gvec_facge_d,
5423 };
5424 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5425 
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427     gen_helper_gvec_facgt_h,
5428     gen_helper_gvec_facgt_s,
5429     gen_helper_gvec_facgt_d,
5430 };
5431 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5432 
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434     gen_helper_gvec_fabd_h,
5435     gen_helper_gvec_fabd_s,
5436     gen_helper_gvec_fabd_d,
5437 };
5438 TRANS(FABD_v, do_fp3_vector, a, 0, f_vector_fabd)
5439 
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441     gen_helper_gvec_recps_h,
5442     gen_helper_gvec_recps_s,
5443     gen_helper_gvec_recps_d,
5444 };
5445 TRANS(FRECPS_v, do_fp3_vector, a, 0, f_vector_frecps)
5446 
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448     gen_helper_gvec_rsqrts_h,
5449     gen_helper_gvec_rsqrts_s,
5450     gen_helper_gvec_rsqrts_d,
5451 };
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, 0, f_vector_frsqrts)
5453 
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455     gen_helper_gvec_faddp_h,
5456     gen_helper_gvec_faddp_s,
5457     gen_helper_gvec_faddp_d,
5458 };
5459 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5460 
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462     gen_helper_gvec_fmaxp_h,
5463     gen_helper_gvec_fmaxp_s,
5464     gen_helper_gvec_fmaxp_d,
5465 };
5466 TRANS(FMAXP_v, do_fp3_vector, a, 0, f_vector_fmaxp)
5467 
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469     gen_helper_gvec_fminp_h,
5470     gen_helper_gvec_fminp_s,
5471     gen_helper_gvec_fminp_d,
5472 };
5473 TRANS(FMINP_v, do_fp3_vector, a, 0, f_vector_fminp)
5474 
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476     gen_helper_gvec_fmaxnump_h,
5477     gen_helper_gvec_fmaxnump_s,
5478     gen_helper_gvec_fmaxnump_d,
5479 };
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5481 
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483     gen_helper_gvec_fminnump_h,
5484     gen_helper_gvec_fminnump_s,
5485     gen_helper_gvec_fminnump_d,
5486 };
5487 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5488 
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5490 {
5491     if (fp_access_check(s)) {
5492         int data = (is_2 << 1) | is_s;
5493         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494                            vec_full_reg_offset(s, a->rn),
5495                            vec_full_reg_offset(s, a->rm), tcg_env,
5496                            a->q ? 16 : 8, vec_full_reg_size(s),
5497                            data, gen_helper_gvec_fmlal_a64);
5498     }
5499     return true;
5500 }
5501 
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5506 
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5512 
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5518 
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5520 {
5521     if (fp_access_check(s)) {
5522         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5523     }
5524     return true;
5525 }
5526 
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5530 
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5537 
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5546 
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5567 
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5569 {
5570     if (a->esz == MO_64 && !a->q) {
5571         return false;
5572     }
5573     if (fp_access_check(s)) {
5574         tcg_gen_gvec_cmp(cond, a->esz,
5575                          vec_full_reg_offset(s, a->rd),
5576                          vec_full_reg_offset(s, a->rn),
5577                          vec_full_reg_offset(s, a->rm),
5578                          a->q ? 16 : 8, vec_full_reg_size(s));
5579     }
5580     return true;
5581 }
5582 
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5589 
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5594 
5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5596                           gen_helper_gvec_4 *fn)
5597 {
5598     if (fp_access_check(s)) {
5599         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5600     }
5601     return true;
5602 }
5603 
5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot)
5608 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfmmla)
5609 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
5610 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
5611 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
5612 
5613 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
5614 {
5615     if (!dc_isar_feature(aa64_bf16, s)) {
5616         return false;
5617     }
5618     if (fp_access_check(s)) {
5619         /* Q bit selects BFMLALB vs BFMLALT. */
5620         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q,
5621                           gen_helper_gvec_bfmlal);
5622     }
5623     return true;
5624 }
5625 
5626 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
5627     gen_helper_gvec_fcaddh,
5628     gen_helper_gvec_fcadds,
5629     gen_helper_gvec_fcaddd,
5630 };
5631 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0, f_vector_fcadd)
5632 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1, f_vector_fcadd)
5633 
5634 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a)
5635 {
5636     gen_helper_gvec_4_ptr *fn;
5637 
5638     if (!dc_isar_feature(aa64_fcma, s)) {
5639         return false;
5640     }
5641     switch (a->esz) {
5642     case MO_64:
5643         if (!a->q) {
5644             return false;
5645         }
5646         fn = gen_helper_gvec_fcmlad;
5647         break;
5648     case MO_32:
5649         fn = gen_helper_gvec_fcmlas;
5650         break;
5651     case MO_16:
5652         if (!dc_isar_feature(aa64_fp16, s)) {
5653             return false;
5654         }
5655         fn = gen_helper_gvec_fcmlah;
5656         break;
5657     default:
5658         return false;
5659     }
5660     if (fp_access_check(s)) {
5661         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5662                           a->esz == MO_16, a->rot, fn);
5663     }
5664     return true;
5665 }
5666 
5667 /*
5668  * Advanced SIMD scalar/vector x indexed element
5669  */
5670 
5671 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5672 {
5673     switch (a->esz) {
5674     case MO_64:
5675         if (fp_access_check(s)) {
5676             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5677             TCGv_i64 t1 = tcg_temp_new_i64();
5678 
5679             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5680             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5681             write_fp_dreg(s, a->rd, t0);
5682         }
5683         break;
5684     case MO_32:
5685         if (fp_access_check(s)) {
5686             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5687             TCGv_i32 t1 = tcg_temp_new_i32();
5688 
5689             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5690             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5691             write_fp_sreg(s, a->rd, t0);
5692         }
5693         break;
5694     case MO_16:
5695         if (!dc_isar_feature(aa64_fp16, s)) {
5696             return false;
5697         }
5698         if (fp_access_check(s)) {
5699             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5700             TCGv_i32 t1 = tcg_temp_new_i32();
5701 
5702             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5703             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5704             write_fp_sreg(s, a->rd, t0);
5705         }
5706         break;
5707     default:
5708         g_assert_not_reached();
5709     }
5710     return true;
5711 }
5712 
5713 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5714 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5715 
5716 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5717 {
5718     switch (a->esz) {
5719     case MO_64:
5720         if (fp_access_check(s)) {
5721             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5722             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5723             TCGv_i64 t2 = tcg_temp_new_i64();
5724 
5725             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5726             if (neg) {
5727                 gen_vfp_negd(t1, t1);
5728             }
5729             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5730             write_fp_dreg(s, a->rd, t0);
5731         }
5732         break;
5733     case MO_32:
5734         if (fp_access_check(s)) {
5735             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5736             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5737             TCGv_i32 t2 = tcg_temp_new_i32();
5738 
5739             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5740             if (neg) {
5741                 gen_vfp_negs(t1, t1);
5742             }
5743             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5744             write_fp_sreg(s, a->rd, t0);
5745         }
5746         break;
5747     case MO_16:
5748         if (!dc_isar_feature(aa64_fp16, s)) {
5749             return false;
5750         }
5751         if (fp_access_check(s)) {
5752             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5753             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5754             TCGv_i32 t2 = tcg_temp_new_i32();
5755 
5756             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5757             if (neg) {
5758                 gen_vfp_negh(t1, t1);
5759             }
5760             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5761                                        fpstatus_ptr(FPST_FPCR_F16));
5762             write_fp_sreg(s, a->rd, t0);
5763         }
5764         break;
5765     default:
5766         g_assert_not_reached();
5767     }
5768     return true;
5769 }
5770 
5771 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5772 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5773 
5774 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
5775                                   const ENVScalar2 *f)
5776 {
5777     if (a->esz < MO_16 || a->esz > MO_32) {
5778         return false;
5779     }
5780     if (fp_access_check(s)) {
5781         TCGv_i32 t0 = tcg_temp_new_i32();
5782         TCGv_i32 t1 = tcg_temp_new_i32();
5783 
5784         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5785         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5786         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5787         write_fp_sreg(s, a->rd, t0);
5788     }
5789     return true;
5790 }
5791 
5792 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
5793 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
5794 
5795 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
5796                                   const ENVScalar3 *f)
5797 {
5798     if (a->esz < MO_16 || a->esz > MO_32) {
5799         return false;
5800     }
5801     if (fp_access_check(s)) {
5802         TCGv_i32 t0 = tcg_temp_new_i32();
5803         TCGv_i32 t1 = tcg_temp_new_i32();
5804         TCGv_i32 t2 = tcg_temp_new_i32();
5805 
5806         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5807         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5808         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5809         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5810         write_fp_sreg(s, a->rd, t0);
5811     }
5812     return true;
5813 }
5814 
5815 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
5816 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
5817 
5818 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5819                               gen_helper_gvec_3_ptr * const fns[3])
5820 {
5821     MemOp esz = a->esz;
5822 
5823     switch (esz) {
5824     case MO_64:
5825         if (!a->q) {
5826             return false;
5827         }
5828         break;
5829     case MO_32:
5830         break;
5831     case MO_16:
5832         if (!dc_isar_feature(aa64_fp16, s)) {
5833             return false;
5834         }
5835         break;
5836     default:
5837         g_assert_not_reached();
5838     }
5839     if (fp_access_check(s)) {
5840         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5841                           esz == MO_16, a->idx, fns[esz - 1]);
5842     }
5843     return true;
5844 }
5845 
5846 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5847     gen_helper_gvec_fmul_idx_h,
5848     gen_helper_gvec_fmul_idx_s,
5849     gen_helper_gvec_fmul_idx_d,
5850 };
5851 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5852 
5853 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5854     gen_helper_gvec_fmulx_idx_h,
5855     gen_helper_gvec_fmulx_idx_s,
5856     gen_helper_gvec_fmulx_idx_d,
5857 };
5858 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5859 
5860 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5861 {
5862     static gen_helper_gvec_4_ptr * const fns[3] = {
5863         gen_helper_gvec_fmla_idx_h,
5864         gen_helper_gvec_fmla_idx_s,
5865         gen_helper_gvec_fmla_idx_d,
5866     };
5867     MemOp esz = a->esz;
5868 
5869     switch (esz) {
5870     case MO_64:
5871         if (!a->q) {
5872             return false;
5873         }
5874         break;
5875     case MO_32:
5876         break;
5877     case MO_16:
5878         if (!dc_isar_feature(aa64_fp16, s)) {
5879             return false;
5880         }
5881         break;
5882     default:
5883         g_assert_not_reached();
5884     }
5885     if (fp_access_check(s)) {
5886         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5887                           esz == MO_16, (a->idx << 1) | neg,
5888                           fns[esz - 1]);
5889     }
5890     return true;
5891 }
5892 
5893 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5894 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5895 
5896 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5897 {
5898     if (fp_access_check(s)) {
5899         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5900         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5901                            vec_full_reg_offset(s, a->rn),
5902                            vec_full_reg_offset(s, a->rm), tcg_env,
5903                            a->q ? 16 : 8, vec_full_reg_size(s),
5904                            data, gen_helper_gvec_fmlal_idx_a64);
5905     }
5906     return true;
5907 }
5908 
5909 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5910 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5911 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5912 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5913 
5914 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5915                                gen_helper_gvec_3 * const fns[2])
5916 {
5917     assert(a->esz == MO_16 || a->esz == MO_32);
5918     if (fp_access_check(s)) {
5919         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
5920     }
5921     return true;
5922 }
5923 
5924 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
5925     gen_helper_gvec_mul_idx_h,
5926     gen_helper_gvec_mul_idx_s,
5927 };
5928 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
5929 
5930 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
5931 {
5932     static gen_helper_gvec_4 * const fns[2][2] = {
5933         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
5934         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
5935     };
5936 
5937     assert(a->esz == MO_16 || a->esz == MO_32);
5938     if (fp_access_check(s)) {
5939         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
5940                          a->idx, fns[a->esz - 1][sub]);
5941     }
5942     return true;
5943 }
5944 
5945 TRANS(MLA_vi, do_mla_vector_idx, a, false)
5946 TRANS(MLS_vi, do_mla_vector_idx, a, true)
5947 
5948 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
5949                                   gen_helper_gvec_4 * const fns[2])
5950 {
5951     assert(a->esz == MO_16 || a->esz == MO_32);
5952     if (fp_access_check(s)) {
5953         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
5954                            vec_full_reg_offset(s, a->rn),
5955                            vec_full_reg_offset(s, a->rm),
5956                            offsetof(CPUARMState, vfp.qc),
5957                            a->q ? 16 : 8, vec_full_reg_size(s),
5958                            a->idx, fns[a->esz - 1]);
5959     }
5960     return true;
5961 }
5962 
5963 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
5964     gen_helper_neon_sqdmulh_idx_h,
5965     gen_helper_neon_sqdmulh_idx_s,
5966 };
5967 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
5968 
5969 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
5970     gen_helper_neon_sqrdmulh_idx_h,
5971     gen_helper_neon_sqrdmulh_idx_s,
5972 };
5973 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
5974 
5975 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
5976     gen_helper_neon_sqrdmlah_idx_h,
5977     gen_helper_neon_sqrdmlah_idx_s,
5978 };
5979 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5980            f_vector_idx_sqrdmlah)
5981 
5982 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
5983     gen_helper_neon_sqrdmlsh_idx_h,
5984     gen_helper_neon_sqrdmlsh_idx_s,
5985 };
5986 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5987            f_vector_idx_sqrdmlsh)
5988 
5989 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
5990                               gen_helper_gvec_4 *fn)
5991 {
5992     if (fp_access_check(s)) {
5993         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
5994     }
5995     return true;
5996 }
5997 
5998 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
5999 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
6000 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6001            gen_helper_gvec_sudot_idx_b)
6002 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6003            gen_helper_gvec_usdot_idx_b)
6004 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a,
6005            gen_helper_gvec_bfdot_idx)
6006 
6007 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
6008 {
6009     if (!dc_isar_feature(aa64_bf16, s)) {
6010         return false;
6011     }
6012     if (fp_access_check(s)) {
6013         /* Q bit selects BFMLALB vs BFMLALT. */
6014         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0,
6015                           (a->idx << 1) | a->q,
6016                           gen_helper_gvec_bfmlal_idx);
6017     }
6018     return true;
6019 }
6020 
6021 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a)
6022 {
6023     gen_helper_gvec_4_ptr *fn;
6024 
6025     if (!dc_isar_feature(aa64_fcma, s)) {
6026         return false;
6027     }
6028     switch (a->esz) {
6029     case MO_16:
6030         if (!dc_isar_feature(aa64_fp16, s)) {
6031             return false;
6032         }
6033         fn = gen_helper_gvec_fcmlah_idx;
6034         break;
6035     case MO_32:
6036         fn = gen_helper_gvec_fcmlas_idx;
6037         break;
6038     default:
6039         g_assert_not_reached();
6040     }
6041     if (fp_access_check(s)) {
6042         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6043                           a->esz == MO_16, (a->idx << 2) | a->rot, fn);
6044     }
6045     return true;
6046 }
6047 
6048 /*
6049  * Advanced SIMD scalar pairwise
6050  */
6051 
6052 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
6053 {
6054     switch (a->esz) {
6055     case MO_64:
6056         if (fp_access_check(s)) {
6057             TCGv_i64 t0 = tcg_temp_new_i64();
6058             TCGv_i64 t1 = tcg_temp_new_i64();
6059 
6060             read_vec_element(s, t0, a->rn, 0, MO_64);
6061             read_vec_element(s, t1, a->rn, 1, MO_64);
6062             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6063             write_fp_dreg(s, a->rd, t0);
6064         }
6065         break;
6066     case MO_32:
6067         if (fp_access_check(s)) {
6068             TCGv_i32 t0 = tcg_temp_new_i32();
6069             TCGv_i32 t1 = tcg_temp_new_i32();
6070 
6071             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6072             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6073             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6074             write_fp_sreg(s, a->rd, t0);
6075         }
6076         break;
6077     case MO_16:
6078         if (!dc_isar_feature(aa64_fp16, s)) {
6079             return false;
6080         }
6081         if (fp_access_check(s)) {
6082             TCGv_i32 t0 = tcg_temp_new_i32();
6083             TCGv_i32 t1 = tcg_temp_new_i32();
6084 
6085             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6086             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6087             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6088             write_fp_sreg(s, a->rd, t0);
6089         }
6090         break;
6091     default:
6092         g_assert_not_reached();
6093     }
6094     return true;
6095 }
6096 
6097 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6098 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6099 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6100 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6101 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6102 
6103 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6104 {
6105     if (fp_access_check(s)) {
6106         TCGv_i64 t0 = tcg_temp_new_i64();
6107         TCGv_i64 t1 = tcg_temp_new_i64();
6108 
6109         read_vec_element(s, t0, a->rn, 0, MO_64);
6110         read_vec_element(s, t1, a->rn, 1, MO_64);
6111         tcg_gen_add_i64(t0, t0, t1);
6112         write_fp_dreg(s, a->rd, t0);
6113     }
6114     return true;
6115 }
6116 
6117 /*
6118  * Floating-point conditional select
6119  */
6120 
6121 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6122 {
6123     TCGv_i64 t_true, t_false;
6124     DisasCompare64 c;
6125 
6126     switch (a->esz) {
6127     case MO_32:
6128     case MO_64:
6129         break;
6130     case MO_16:
6131         if (!dc_isar_feature(aa64_fp16, s)) {
6132             return false;
6133         }
6134         break;
6135     default:
6136         return false;
6137     }
6138 
6139     if (!fp_access_check(s)) {
6140         return true;
6141     }
6142 
6143     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6144     t_true = tcg_temp_new_i64();
6145     t_false = tcg_temp_new_i64();
6146     read_vec_element(s, t_true, a->rn, 0, a->esz);
6147     read_vec_element(s, t_false, a->rm, 0, a->esz);
6148 
6149     a64_test_cc(&c, a->cond);
6150     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6151                         t_true, t_false);
6152 
6153     /*
6154      * Note that sregs & hregs write back zeros to the high bits,
6155      * and we've already done the zero-extension.
6156      */
6157     write_fp_dreg(s, a->rd, t_true);
6158     return true;
6159 }
6160 
6161 /*
6162  * Floating-point data-processing (3 source)
6163  */
6164 
6165 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6166 {
6167     TCGv_ptr fpst;
6168 
6169     /*
6170      * These are fused multiply-add.  Note that doing the negations here
6171      * as separate steps is correct: an input NaN should come out with
6172      * its sign bit flipped if it is a negated-input.
6173      */
6174     switch (a->esz) {
6175     case MO_64:
6176         if (fp_access_check(s)) {
6177             TCGv_i64 tn = read_fp_dreg(s, a->rn);
6178             TCGv_i64 tm = read_fp_dreg(s, a->rm);
6179             TCGv_i64 ta = read_fp_dreg(s, a->ra);
6180 
6181             if (neg_a) {
6182                 gen_vfp_negd(ta, ta);
6183             }
6184             if (neg_n) {
6185                 gen_vfp_negd(tn, tn);
6186             }
6187             fpst = fpstatus_ptr(FPST_FPCR);
6188             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6189             write_fp_dreg(s, a->rd, ta);
6190         }
6191         break;
6192 
6193     case MO_32:
6194         if (fp_access_check(s)) {
6195             TCGv_i32 tn = read_fp_sreg(s, a->rn);
6196             TCGv_i32 tm = read_fp_sreg(s, a->rm);
6197             TCGv_i32 ta = read_fp_sreg(s, a->ra);
6198 
6199             if (neg_a) {
6200                 gen_vfp_negs(ta, ta);
6201             }
6202             if (neg_n) {
6203                 gen_vfp_negs(tn, tn);
6204             }
6205             fpst = fpstatus_ptr(FPST_FPCR);
6206             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6207             write_fp_sreg(s, a->rd, ta);
6208         }
6209         break;
6210 
6211     case MO_16:
6212         if (!dc_isar_feature(aa64_fp16, s)) {
6213             return false;
6214         }
6215         if (fp_access_check(s)) {
6216             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6217             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6218             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6219 
6220             if (neg_a) {
6221                 gen_vfp_negh(ta, ta);
6222             }
6223             if (neg_n) {
6224                 gen_vfp_negh(tn, tn);
6225             }
6226             fpst = fpstatus_ptr(FPST_FPCR_F16);
6227             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6228             write_fp_sreg(s, a->rd, ta);
6229         }
6230         break;
6231 
6232     default:
6233         return false;
6234     }
6235     return true;
6236 }
6237 
6238 TRANS(FMADD, do_fmadd, a, false, false)
6239 TRANS(FNMADD, do_fmadd, a, true, true)
6240 TRANS(FMSUB, do_fmadd, a, false, true)
6241 TRANS(FNMSUB, do_fmadd, a, true, false)
6242 
6243 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6244  * Note that it is the caller's responsibility to ensure that the
6245  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6246  * mandated semantics for out of range shifts.
6247  */
6248 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6249                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6250 {
6251     switch (shift_type) {
6252     case A64_SHIFT_TYPE_LSL:
6253         tcg_gen_shl_i64(dst, src, shift_amount);
6254         break;
6255     case A64_SHIFT_TYPE_LSR:
6256         tcg_gen_shr_i64(dst, src, shift_amount);
6257         break;
6258     case A64_SHIFT_TYPE_ASR:
6259         if (!sf) {
6260             tcg_gen_ext32s_i64(dst, src);
6261         }
6262         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6263         break;
6264     case A64_SHIFT_TYPE_ROR:
6265         if (sf) {
6266             tcg_gen_rotr_i64(dst, src, shift_amount);
6267         } else {
6268             TCGv_i32 t0, t1;
6269             t0 = tcg_temp_new_i32();
6270             t1 = tcg_temp_new_i32();
6271             tcg_gen_extrl_i64_i32(t0, src);
6272             tcg_gen_extrl_i64_i32(t1, shift_amount);
6273             tcg_gen_rotr_i32(t0, t0, t1);
6274             tcg_gen_extu_i32_i64(dst, t0);
6275         }
6276         break;
6277     default:
6278         assert(FALSE); /* all shift types should be handled */
6279         break;
6280     }
6281 
6282     if (!sf) { /* zero extend final result */
6283         tcg_gen_ext32u_i64(dst, dst);
6284     }
6285 }
6286 
6287 /* Shift a TCGv src by immediate, put result in dst.
6288  * The shift amount must be in range (this should always be true as the
6289  * relevant instructions will UNDEF on bad shift immediates).
6290  */
6291 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6292                           enum a64_shift_type shift_type, unsigned int shift_i)
6293 {
6294     assert(shift_i < (sf ? 64 : 32));
6295 
6296     if (shift_i == 0) {
6297         tcg_gen_mov_i64(dst, src);
6298     } else {
6299         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6300     }
6301 }
6302 
6303 /* Logical (shifted register)
6304  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
6305  * +----+-----+-----------+-------+---+------+--------+------+------+
6306  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
6307  * +----+-----+-----------+-------+---+------+--------+------+------+
6308  */
6309 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6310 {
6311     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6312     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6313 
6314     sf = extract32(insn, 31, 1);
6315     opc = extract32(insn, 29, 2);
6316     shift_type = extract32(insn, 22, 2);
6317     invert = extract32(insn, 21, 1);
6318     rm = extract32(insn, 16, 5);
6319     shift_amount = extract32(insn, 10, 6);
6320     rn = extract32(insn, 5, 5);
6321     rd = extract32(insn, 0, 5);
6322 
6323     if (!sf && (shift_amount & (1 << 5))) {
6324         unallocated_encoding(s);
6325         return;
6326     }
6327 
6328     tcg_rd = cpu_reg(s, rd);
6329 
6330     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6331         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6332          * register-register MOV and MVN, so it is worth special casing.
6333          */
6334         tcg_rm = cpu_reg(s, rm);
6335         if (invert) {
6336             tcg_gen_not_i64(tcg_rd, tcg_rm);
6337             if (!sf) {
6338                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6339             }
6340         } else {
6341             if (sf) {
6342                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6343             } else {
6344                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6345             }
6346         }
6347         return;
6348     }
6349 
6350     tcg_rm = read_cpu_reg(s, rm, sf);
6351 
6352     if (shift_amount) {
6353         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6354     }
6355 
6356     tcg_rn = cpu_reg(s, rn);
6357 
6358     switch (opc | (invert << 2)) {
6359     case 0: /* AND */
6360     case 3: /* ANDS */
6361         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6362         break;
6363     case 1: /* ORR */
6364         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6365         break;
6366     case 2: /* EOR */
6367         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6368         break;
6369     case 4: /* BIC */
6370     case 7: /* BICS */
6371         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6372         break;
6373     case 5: /* ORN */
6374         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6375         break;
6376     case 6: /* EON */
6377         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6378         break;
6379     default:
6380         assert(FALSE);
6381         break;
6382     }
6383 
6384     if (!sf) {
6385         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6386     }
6387 
6388     if (opc == 3) {
6389         gen_logic_CC(sf, tcg_rd);
6390     }
6391 }
6392 
6393 /*
6394  * Add/subtract (extended register)
6395  *
6396  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
6397  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6398  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
6399  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6400  *
6401  *  sf: 0 -> 32bit, 1 -> 64bit
6402  *  op: 0 -> add  , 1 -> sub
6403  *   S: 1 -> set flags
6404  * opt: 00
6405  * option: extension type (see DecodeRegExtend)
6406  * imm3: optional shift to Rm
6407  *
6408  * Rd = Rn + LSL(extend(Rm), amount)
6409  */
6410 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6411 {
6412     int rd = extract32(insn, 0, 5);
6413     int rn = extract32(insn, 5, 5);
6414     int imm3 = extract32(insn, 10, 3);
6415     int option = extract32(insn, 13, 3);
6416     int rm = extract32(insn, 16, 5);
6417     int opt = extract32(insn, 22, 2);
6418     bool setflags = extract32(insn, 29, 1);
6419     bool sub_op = extract32(insn, 30, 1);
6420     bool sf = extract32(insn, 31, 1);
6421 
6422     TCGv_i64 tcg_rm, tcg_rn; /* temps */
6423     TCGv_i64 tcg_rd;
6424     TCGv_i64 tcg_result;
6425 
6426     if (imm3 > 4 || opt != 0) {
6427         unallocated_encoding(s);
6428         return;
6429     }
6430 
6431     /* non-flag setting ops may use SP */
6432     if (!setflags) {
6433         tcg_rd = cpu_reg_sp(s, rd);
6434     } else {
6435         tcg_rd = cpu_reg(s, rd);
6436     }
6437     tcg_rn = read_cpu_reg_sp(s, rn, sf);
6438 
6439     tcg_rm = read_cpu_reg(s, rm, sf);
6440     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6441 
6442     tcg_result = tcg_temp_new_i64();
6443 
6444     if (!setflags) {
6445         if (sub_op) {
6446             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6447         } else {
6448             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6449         }
6450     } else {
6451         if (sub_op) {
6452             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6453         } else {
6454             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6455         }
6456     }
6457 
6458     if (sf) {
6459         tcg_gen_mov_i64(tcg_rd, tcg_result);
6460     } else {
6461         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6462     }
6463 }
6464 
6465 /*
6466  * Add/subtract (shifted register)
6467  *
6468  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
6469  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6470  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
6471  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6472  *
6473  *    sf: 0 -> 32bit, 1 -> 64bit
6474  *    op: 0 -> add  , 1 -> sub
6475  *     S: 1 -> set flags
6476  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6477  *  imm6: Shift amount to apply to Rm before the add/sub
6478  */
6479 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6480 {
6481     int rd = extract32(insn, 0, 5);
6482     int rn = extract32(insn, 5, 5);
6483     int imm6 = extract32(insn, 10, 6);
6484     int rm = extract32(insn, 16, 5);
6485     int shift_type = extract32(insn, 22, 2);
6486     bool setflags = extract32(insn, 29, 1);
6487     bool sub_op = extract32(insn, 30, 1);
6488     bool sf = extract32(insn, 31, 1);
6489 
6490     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6491     TCGv_i64 tcg_rn, tcg_rm;
6492     TCGv_i64 tcg_result;
6493 
6494     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6495         unallocated_encoding(s);
6496         return;
6497     }
6498 
6499     tcg_rn = read_cpu_reg(s, rn, sf);
6500     tcg_rm = read_cpu_reg(s, rm, sf);
6501 
6502     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6503 
6504     tcg_result = tcg_temp_new_i64();
6505 
6506     if (!setflags) {
6507         if (sub_op) {
6508             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6509         } else {
6510             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6511         }
6512     } else {
6513         if (sub_op) {
6514             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6515         } else {
6516             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6517         }
6518     }
6519 
6520     if (sf) {
6521         tcg_gen_mov_i64(tcg_rd, tcg_result);
6522     } else {
6523         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6524     }
6525 }
6526 
6527 /* Data-processing (3 source)
6528  *
6529  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
6530  *  +--+------+-----------+------+------+----+------+------+------+
6531  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6532  *  +--+------+-----------+------+------+----+------+------+------+
6533  */
6534 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6535 {
6536     int rd = extract32(insn, 0, 5);
6537     int rn = extract32(insn, 5, 5);
6538     int ra = extract32(insn, 10, 5);
6539     int rm = extract32(insn, 16, 5);
6540     int op_id = (extract32(insn, 29, 3) << 4) |
6541         (extract32(insn, 21, 3) << 1) |
6542         extract32(insn, 15, 1);
6543     bool sf = extract32(insn, 31, 1);
6544     bool is_sub = extract32(op_id, 0, 1);
6545     bool is_high = extract32(op_id, 2, 1);
6546     bool is_signed = false;
6547     TCGv_i64 tcg_op1;
6548     TCGv_i64 tcg_op2;
6549     TCGv_i64 tcg_tmp;
6550 
6551     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6552     switch (op_id) {
6553     case 0x42: /* SMADDL */
6554     case 0x43: /* SMSUBL */
6555     case 0x44: /* SMULH */
6556         is_signed = true;
6557         break;
6558     case 0x0: /* MADD (32bit) */
6559     case 0x1: /* MSUB (32bit) */
6560     case 0x40: /* MADD (64bit) */
6561     case 0x41: /* MSUB (64bit) */
6562     case 0x4a: /* UMADDL */
6563     case 0x4b: /* UMSUBL */
6564     case 0x4c: /* UMULH */
6565         break;
6566     default:
6567         unallocated_encoding(s);
6568         return;
6569     }
6570 
6571     if (is_high) {
6572         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6573         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6574         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6575         TCGv_i64 tcg_rm = cpu_reg(s, rm);
6576 
6577         if (is_signed) {
6578             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6579         } else {
6580             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6581         }
6582         return;
6583     }
6584 
6585     tcg_op1 = tcg_temp_new_i64();
6586     tcg_op2 = tcg_temp_new_i64();
6587     tcg_tmp = tcg_temp_new_i64();
6588 
6589     if (op_id < 0x42) {
6590         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6591         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6592     } else {
6593         if (is_signed) {
6594             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6595             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6596         } else {
6597             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6598             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6599         }
6600     }
6601 
6602     if (ra == 31 && !is_sub) {
6603         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6604         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6605     } else {
6606         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6607         if (is_sub) {
6608             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6609         } else {
6610             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6611         }
6612     }
6613 
6614     if (!sf) {
6615         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6616     }
6617 }
6618 
6619 /* Add/subtract (with carry)
6620  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
6621  * +--+--+--+------------------------+------+-------------+------+-----+
6622  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
6623  * +--+--+--+------------------------+------+-------------+------+-----+
6624  */
6625 
6626 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6627 {
6628     unsigned int sf, op, setflags, rm, rn, rd;
6629     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6630 
6631     sf = extract32(insn, 31, 1);
6632     op = extract32(insn, 30, 1);
6633     setflags = extract32(insn, 29, 1);
6634     rm = extract32(insn, 16, 5);
6635     rn = extract32(insn, 5, 5);
6636     rd = extract32(insn, 0, 5);
6637 
6638     tcg_rd = cpu_reg(s, rd);
6639     tcg_rn = cpu_reg(s, rn);
6640 
6641     if (op) {
6642         tcg_y = tcg_temp_new_i64();
6643         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6644     } else {
6645         tcg_y = cpu_reg(s, rm);
6646     }
6647 
6648     if (setflags) {
6649         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6650     } else {
6651         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6652     }
6653 }
6654 
6655 /*
6656  * Rotate right into flags
6657  *  31 30 29                21       15          10      5  4      0
6658  * +--+--+--+-----------------+--------+-----------+------+--+------+
6659  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
6660  * +--+--+--+-----------------+--------+-----------+------+--+------+
6661  */
6662 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6663 {
6664     int mask = extract32(insn, 0, 4);
6665     int o2 = extract32(insn, 4, 1);
6666     int rn = extract32(insn, 5, 5);
6667     int imm6 = extract32(insn, 15, 6);
6668     int sf_op_s = extract32(insn, 29, 3);
6669     TCGv_i64 tcg_rn;
6670     TCGv_i32 nzcv;
6671 
6672     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6673         unallocated_encoding(s);
6674         return;
6675     }
6676 
6677     tcg_rn = read_cpu_reg(s, rn, 1);
6678     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6679 
6680     nzcv = tcg_temp_new_i32();
6681     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6682 
6683     if (mask & 8) { /* N */
6684         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6685     }
6686     if (mask & 4) { /* Z */
6687         tcg_gen_not_i32(cpu_ZF, nzcv);
6688         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6689     }
6690     if (mask & 2) { /* C */
6691         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6692     }
6693     if (mask & 1) { /* V */
6694         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6695     }
6696 }
6697 
6698 /*
6699  * Evaluate into flags
6700  *  31 30 29                21        15   14        10      5  4      0
6701  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6702  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6703  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6704  */
6705 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6706 {
6707     int o3_mask = extract32(insn, 0, 5);
6708     int rn = extract32(insn, 5, 5);
6709     int o2 = extract32(insn, 15, 6);
6710     int sz = extract32(insn, 14, 1);
6711     int sf_op_s = extract32(insn, 29, 3);
6712     TCGv_i32 tmp;
6713     int shift;
6714 
6715     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6716         !dc_isar_feature(aa64_condm_4, s)) {
6717         unallocated_encoding(s);
6718         return;
6719     }
6720     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6721 
6722     tmp = tcg_temp_new_i32();
6723     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6724     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6725     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6726     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6727     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6728 }
6729 
6730 /* Conditional compare (immediate / register)
6731  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6732  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6733  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6734  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6735  *        [1]                             y                [0]       [0]
6736  */
6737 static void disas_cc(DisasContext *s, uint32_t insn)
6738 {
6739     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6740     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6741     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6742     DisasCompare c;
6743 
6744     if (!extract32(insn, 29, 1)) {
6745         unallocated_encoding(s);
6746         return;
6747     }
6748     if (insn & (1 << 10 | 1 << 4)) {
6749         unallocated_encoding(s);
6750         return;
6751     }
6752     sf = extract32(insn, 31, 1);
6753     op = extract32(insn, 30, 1);
6754     is_imm = extract32(insn, 11, 1);
6755     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6756     cond = extract32(insn, 12, 4);
6757     rn = extract32(insn, 5, 5);
6758     nzcv = extract32(insn, 0, 4);
6759 
6760     /* Set T0 = !COND.  */
6761     tcg_t0 = tcg_temp_new_i32();
6762     arm_test_cc(&c, cond);
6763     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6764 
6765     /* Load the arguments for the new comparison.  */
6766     if (is_imm) {
6767         tcg_y = tcg_temp_new_i64();
6768         tcg_gen_movi_i64(tcg_y, y);
6769     } else {
6770         tcg_y = cpu_reg(s, y);
6771     }
6772     tcg_rn = cpu_reg(s, rn);
6773 
6774     /* Set the flags for the new comparison.  */
6775     tcg_tmp = tcg_temp_new_i64();
6776     if (op) {
6777         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6778     } else {
6779         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6780     }
6781 
6782     /* If COND was false, force the flags to #nzcv.  Compute two masks
6783      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6784      * For tcg hosts that support ANDC, we can make do with just T1.
6785      * In either case, allow the tcg optimizer to delete any unused mask.
6786      */
6787     tcg_t1 = tcg_temp_new_i32();
6788     tcg_t2 = tcg_temp_new_i32();
6789     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6790     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6791 
6792     if (nzcv & 8) { /* N */
6793         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6794     } else {
6795         if (TCG_TARGET_HAS_andc_i32) {
6796             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6797         } else {
6798             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6799         }
6800     }
6801     if (nzcv & 4) { /* Z */
6802         if (TCG_TARGET_HAS_andc_i32) {
6803             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6804         } else {
6805             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6806         }
6807     } else {
6808         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6809     }
6810     if (nzcv & 2) { /* C */
6811         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6812     } else {
6813         if (TCG_TARGET_HAS_andc_i32) {
6814             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6815         } else {
6816             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6817         }
6818     }
6819     if (nzcv & 1) { /* V */
6820         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6821     } else {
6822         if (TCG_TARGET_HAS_andc_i32) {
6823             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6824         } else {
6825             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6826         }
6827     }
6828 }
6829 
6830 /* Conditional select
6831  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6832  * +----+----+---+-----------------+------+------+-----+------+------+
6833  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6834  * +----+----+---+-----------------+------+------+-----+------+------+
6835  */
6836 static void disas_cond_select(DisasContext *s, uint32_t insn)
6837 {
6838     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6839     TCGv_i64 tcg_rd, zero;
6840     DisasCompare64 c;
6841 
6842     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6843         /* S == 1 or op2<1> == 1 */
6844         unallocated_encoding(s);
6845         return;
6846     }
6847     sf = extract32(insn, 31, 1);
6848     else_inv = extract32(insn, 30, 1);
6849     rm = extract32(insn, 16, 5);
6850     cond = extract32(insn, 12, 4);
6851     else_inc = extract32(insn, 10, 1);
6852     rn = extract32(insn, 5, 5);
6853     rd = extract32(insn, 0, 5);
6854 
6855     tcg_rd = cpu_reg(s, rd);
6856 
6857     a64_test_cc(&c, cond);
6858     zero = tcg_constant_i64(0);
6859 
6860     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6861         /* CSET & CSETM.  */
6862         if (else_inv) {
6863             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6864                                    tcg_rd, c.value, zero);
6865         } else {
6866             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6867                                 tcg_rd, c.value, zero);
6868         }
6869     } else {
6870         TCGv_i64 t_true = cpu_reg(s, rn);
6871         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6872         if (else_inv && else_inc) {
6873             tcg_gen_neg_i64(t_false, t_false);
6874         } else if (else_inv) {
6875             tcg_gen_not_i64(t_false, t_false);
6876         } else if (else_inc) {
6877             tcg_gen_addi_i64(t_false, t_false, 1);
6878         }
6879         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6880     }
6881 
6882     if (!sf) {
6883         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6884     }
6885 }
6886 
6887 static void handle_clz(DisasContext *s, unsigned int sf,
6888                        unsigned int rn, unsigned int rd)
6889 {
6890     TCGv_i64 tcg_rd, tcg_rn;
6891     tcg_rd = cpu_reg(s, rd);
6892     tcg_rn = cpu_reg(s, rn);
6893 
6894     if (sf) {
6895         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6896     } else {
6897         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6898         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6899         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6900         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6901     }
6902 }
6903 
6904 static void handle_cls(DisasContext *s, unsigned int sf,
6905                        unsigned int rn, unsigned int rd)
6906 {
6907     TCGv_i64 tcg_rd, tcg_rn;
6908     tcg_rd = cpu_reg(s, rd);
6909     tcg_rn = cpu_reg(s, rn);
6910 
6911     if (sf) {
6912         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6913     } else {
6914         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6915         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6916         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6917         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6918     }
6919 }
6920 
6921 static void handle_rbit(DisasContext *s, unsigned int sf,
6922                         unsigned int rn, unsigned int rd)
6923 {
6924     TCGv_i64 tcg_rd, tcg_rn;
6925     tcg_rd = cpu_reg(s, rd);
6926     tcg_rn = cpu_reg(s, rn);
6927 
6928     if (sf) {
6929         gen_helper_rbit64(tcg_rd, tcg_rn);
6930     } else {
6931         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6932         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6933         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6934         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6935     }
6936 }
6937 
6938 /* REV with sf==1, opcode==3 ("REV64") */
6939 static void handle_rev64(DisasContext *s, unsigned int sf,
6940                          unsigned int rn, unsigned int rd)
6941 {
6942     if (!sf) {
6943         unallocated_encoding(s);
6944         return;
6945     }
6946     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6947 }
6948 
6949 /* REV with sf==0, opcode==2
6950  * REV32 (sf==1, opcode==2)
6951  */
6952 static void handle_rev32(DisasContext *s, unsigned int sf,
6953                          unsigned int rn, unsigned int rd)
6954 {
6955     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6956     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6957 
6958     if (sf) {
6959         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6960         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6961     } else {
6962         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6963     }
6964 }
6965 
6966 /* REV16 (opcode==1) */
6967 static void handle_rev16(DisasContext *s, unsigned int sf,
6968                          unsigned int rn, unsigned int rd)
6969 {
6970     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6971     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6972     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6973     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6974 
6975     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6976     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6977     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6978     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6979     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6980 }
6981 
6982 /* Data-processing (1 source)
6983  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6984  * +----+---+---+-----------------+---------+--------+------+------+
6985  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6986  * +----+---+---+-----------------+---------+--------+------+------+
6987  */
6988 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6989 {
6990     unsigned int sf, opcode, opcode2, rn, rd;
6991     TCGv_i64 tcg_rd;
6992 
6993     if (extract32(insn, 29, 1)) {
6994         unallocated_encoding(s);
6995         return;
6996     }
6997 
6998     sf = extract32(insn, 31, 1);
6999     opcode = extract32(insn, 10, 6);
7000     opcode2 = extract32(insn, 16, 5);
7001     rn = extract32(insn, 5, 5);
7002     rd = extract32(insn, 0, 5);
7003 
7004 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
7005 
7006     switch (MAP(sf, opcode2, opcode)) {
7007     case MAP(0, 0x00, 0x00): /* RBIT */
7008     case MAP(1, 0x00, 0x00):
7009         handle_rbit(s, sf, rn, rd);
7010         break;
7011     case MAP(0, 0x00, 0x01): /* REV16 */
7012     case MAP(1, 0x00, 0x01):
7013         handle_rev16(s, sf, rn, rd);
7014         break;
7015     case MAP(0, 0x00, 0x02): /* REV/REV32 */
7016     case MAP(1, 0x00, 0x02):
7017         handle_rev32(s, sf, rn, rd);
7018         break;
7019     case MAP(1, 0x00, 0x03): /* REV64 */
7020         handle_rev64(s, sf, rn, rd);
7021         break;
7022     case MAP(0, 0x00, 0x04): /* CLZ */
7023     case MAP(1, 0x00, 0x04):
7024         handle_clz(s, sf, rn, rd);
7025         break;
7026     case MAP(0, 0x00, 0x05): /* CLS */
7027     case MAP(1, 0x00, 0x05):
7028         handle_cls(s, sf, rn, rd);
7029         break;
7030     case MAP(1, 0x01, 0x00): /* PACIA */
7031         if (s->pauth_active) {
7032             tcg_rd = cpu_reg(s, rd);
7033             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7034         } else if (!dc_isar_feature(aa64_pauth, s)) {
7035             goto do_unallocated;
7036         }
7037         break;
7038     case MAP(1, 0x01, 0x01): /* PACIB */
7039         if (s->pauth_active) {
7040             tcg_rd = cpu_reg(s, rd);
7041             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7042         } else if (!dc_isar_feature(aa64_pauth, s)) {
7043             goto do_unallocated;
7044         }
7045         break;
7046     case MAP(1, 0x01, 0x02): /* PACDA */
7047         if (s->pauth_active) {
7048             tcg_rd = cpu_reg(s, rd);
7049             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7050         } else if (!dc_isar_feature(aa64_pauth, s)) {
7051             goto do_unallocated;
7052         }
7053         break;
7054     case MAP(1, 0x01, 0x03): /* PACDB */
7055         if (s->pauth_active) {
7056             tcg_rd = cpu_reg(s, rd);
7057             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7058         } else if (!dc_isar_feature(aa64_pauth, s)) {
7059             goto do_unallocated;
7060         }
7061         break;
7062     case MAP(1, 0x01, 0x04): /* AUTIA */
7063         if (s->pauth_active) {
7064             tcg_rd = cpu_reg(s, rd);
7065             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7066         } else if (!dc_isar_feature(aa64_pauth, s)) {
7067             goto do_unallocated;
7068         }
7069         break;
7070     case MAP(1, 0x01, 0x05): /* AUTIB */
7071         if (s->pauth_active) {
7072             tcg_rd = cpu_reg(s, rd);
7073             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7074         } else if (!dc_isar_feature(aa64_pauth, s)) {
7075             goto do_unallocated;
7076         }
7077         break;
7078     case MAP(1, 0x01, 0x06): /* AUTDA */
7079         if (s->pauth_active) {
7080             tcg_rd = cpu_reg(s, rd);
7081             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7082         } else if (!dc_isar_feature(aa64_pauth, s)) {
7083             goto do_unallocated;
7084         }
7085         break;
7086     case MAP(1, 0x01, 0x07): /* AUTDB */
7087         if (s->pauth_active) {
7088             tcg_rd = cpu_reg(s, rd);
7089             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7090         } else if (!dc_isar_feature(aa64_pauth, s)) {
7091             goto do_unallocated;
7092         }
7093         break;
7094     case MAP(1, 0x01, 0x08): /* PACIZA */
7095         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7096             goto do_unallocated;
7097         } else if (s->pauth_active) {
7098             tcg_rd = cpu_reg(s, rd);
7099             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7100         }
7101         break;
7102     case MAP(1, 0x01, 0x09): /* PACIZB */
7103         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7104             goto do_unallocated;
7105         } else if (s->pauth_active) {
7106             tcg_rd = cpu_reg(s, rd);
7107             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7108         }
7109         break;
7110     case MAP(1, 0x01, 0x0a): /* PACDZA */
7111         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7112             goto do_unallocated;
7113         } else if (s->pauth_active) {
7114             tcg_rd = cpu_reg(s, rd);
7115             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7116         }
7117         break;
7118     case MAP(1, 0x01, 0x0b): /* PACDZB */
7119         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7120             goto do_unallocated;
7121         } else if (s->pauth_active) {
7122             tcg_rd = cpu_reg(s, rd);
7123             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7124         }
7125         break;
7126     case MAP(1, 0x01, 0x0c): /* AUTIZA */
7127         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7128             goto do_unallocated;
7129         } else if (s->pauth_active) {
7130             tcg_rd = cpu_reg(s, rd);
7131             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7132         }
7133         break;
7134     case MAP(1, 0x01, 0x0d): /* AUTIZB */
7135         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7136             goto do_unallocated;
7137         } else if (s->pauth_active) {
7138             tcg_rd = cpu_reg(s, rd);
7139             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7140         }
7141         break;
7142     case MAP(1, 0x01, 0x0e): /* AUTDZA */
7143         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7144             goto do_unallocated;
7145         } else if (s->pauth_active) {
7146             tcg_rd = cpu_reg(s, rd);
7147             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7148         }
7149         break;
7150     case MAP(1, 0x01, 0x0f): /* AUTDZB */
7151         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7152             goto do_unallocated;
7153         } else if (s->pauth_active) {
7154             tcg_rd = cpu_reg(s, rd);
7155             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7156         }
7157         break;
7158     case MAP(1, 0x01, 0x10): /* XPACI */
7159         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7160             goto do_unallocated;
7161         } else if (s->pauth_active) {
7162             tcg_rd = cpu_reg(s, rd);
7163             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7164         }
7165         break;
7166     case MAP(1, 0x01, 0x11): /* XPACD */
7167         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7168             goto do_unallocated;
7169         } else if (s->pauth_active) {
7170             tcg_rd = cpu_reg(s, rd);
7171             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7172         }
7173         break;
7174     default:
7175     do_unallocated:
7176         unallocated_encoding(s);
7177         break;
7178     }
7179 
7180 #undef MAP
7181 }
7182 
7183 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7184                        unsigned int rm, unsigned int rn, unsigned int rd)
7185 {
7186     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7187     tcg_rd = cpu_reg(s, rd);
7188 
7189     if (!sf && is_signed) {
7190         tcg_n = tcg_temp_new_i64();
7191         tcg_m = tcg_temp_new_i64();
7192         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7193         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7194     } else {
7195         tcg_n = read_cpu_reg(s, rn, sf);
7196         tcg_m = read_cpu_reg(s, rm, sf);
7197     }
7198 
7199     if (is_signed) {
7200         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7201     } else {
7202         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7203     }
7204 
7205     if (!sf) { /* zero extend final result */
7206         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7207     }
7208 }
7209 
7210 /* LSLV, LSRV, ASRV, RORV */
7211 static void handle_shift_reg(DisasContext *s,
7212                              enum a64_shift_type shift_type, unsigned int sf,
7213                              unsigned int rm, unsigned int rn, unsigned int rd)
7214 {
7215     TCGv_i64 tcg_shift = tcg_temp_new_i64();
7216     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7217     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7218 
7219     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7220     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7221 }
7222 
7223 /* CRC32[BHWX], CRC32C[BHWX] */
7224 static void handle_crc32(DisasContext *s,
7225                          unsigned int sf, unsigned int sz, bool crc32c,
7226                          unsigned int rm, unsigned int rn, unsigned int rd)
7227 {
7228     TCGv_i64 tcg_acc, tcg_val;
7229     TCGv_i32 tcg_bytes;
7230 
7231     if (!dc_isar_feature(aa64_crc32, s)
7232         || (sf == 1 && sz != 3)
7233         || (sf == 0 && sz == 3)) {
7234         unallocated_encoding(s);
7235         return;
7236     }
7237 
7238     if (sz == 3) {
7239         tcg_val = cpu_reg(s, rm);
7240     } else {
7241         uint64_t mask;
7242         switch (sz) {
7243         case 0:
7244             mask = 0xFF;
7245             break;
7246         case 1:
7247             mask = 0xFFFF;
7248             break;
7249         case 2:
7250             mask = 0xFFFFFFFF;
7251             break;
7252         default:
7253             g_assert_not_reached();
7254         }
7255         tcg_val = tcg_temp_new_i64();
7256         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7257     }
7258 
7259     tcg_acc = cpu_reg(s, rn);
7260     tcg_bytes = tcg_constant_i32(1 << sz);
7261 
7262     if (crc32c) {
7263         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7264     } else {
7265         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7266     }
7267 }
7268 
7269 /* Data-processing (2 source)
7270  *   31   30  29 28             21 20  16 15    10 9    5 4    0
7271  * +----+---+---+-----------------+------+--------+------+------+
7272  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
7273  * +----+---+---+-----------------+------+--------+------+------+
7274  */
7275 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7276 {
7277     unsigned int sf, rm, opcode, rn, rd, setflag;
7278     sf = extract32(insn, 31, 1);
7279     setflag = extract32(insn, 29, 1);
7280     rm = extract32(insn, 16, 5);
7281     opcode = extract32(insn, 10, 6);
7282     rn = extract32(insn, 5, 5);
7283     rd = extract32(insn, 0, 5);
7284 
7285     if (setflag && opcode != 0) {
7286         unallocated_encoding(s);
7287         return;
7288     }
7289 
7290     switch (opcode) {
7291     case 0: /* SUBP(S) */
7292         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7293             goto do_unallocated;
7294         } else {
7295             TCGv_i64 tcg_n, tcg_m, tcg_d;
7296 
7297             tcg_n = read_cpu_reg_sp(s, rn, true);
7298             tcg_m = read_cpu_reg_sp(s, rm, true);
7299             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7300             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7301             tcg_d = cpu_reg(s, rd);
7302 
7303             if (setflag) {
7304                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7305             } else {
7306                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7307             }
7308         }
7309         break;
7310     case 2: /* UDIV */
7311         handle_div(s, false, sf, rm, rn, rd);
7312         break;
7313     case 3: /* SDIV */
7314         handle_div(s, true, sf, rm, rn, rd);
7315         break;
7316     case 4: /* IRG */
7317         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7318             goto do_unallocated;
7319         }
7320         if (s->ata[0]) {
7321             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7322                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
7323         } else {
7324             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7325                                              cpu_reg_sp(s, rn));
7326         }
7327         break;
7328     case 5: /* GMI */
7329         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7330             goto do_unallocated;
7331         } else {
7332             TCGv_i64 t = tcg_temp_new_i64();
7333 
7334             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7335             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7336             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7337         }
7338         break;
7339     case 8: /* LSLV */
7340         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7341         break;
7342     case 9: /* LSRV */
7343         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7344         break;
7345     case 10: /* ASRV */
7346         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7347         break;
7348     case 11: /* RORV */
7349         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7350         break;
7351     case 12: /* PACGA */
7352         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7353             goto do_unallocated;
7354         }
7355         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7356                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
7357         break;
7358     case 16:
7359     case 17:
7360     case 18:
7361     case 19:
7362     case 20:
7363     case 21:
7364     case 22:
7365     case 23: /* CRC32 */
7366     {
7367         int sz = extract32(opcode, 0, 2);
7368         bool crc32c = extract32(opcode, 2, 1);
7369         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7370         break;
7371     }
7372     default:
7373     do_unallocated:
7374         unallocated_encoding(s);
7375         break;
7376     }
7377 }
7378 
7379 /*
7380  * Data processing - register
7381  *  31  30 29  28      25    21  20  16      10         0
7382  * +--+---+--+---+-------+-----+-------+-------+---------+
7383  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
7384  * +--+---+--+---+-------+-----+-------+-------+---------+
7385  */
7386 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7387 {
7388     int op0 = extract32(insn, 30, 1);
7389     int op1 = extract32(insn, 28, 1);
7390     int op2 = extract32(insn, 21, 4);
7391     int op3 = extract32(insn, 10, 6);
7392 
7393     if (!op1) {
7394         if (op2 & 8) {
7395             if (op2 & 1) {
7396                 /* Add/sub (extended register) */
7397                 disas_add_sub_ext_reg(s, insn);
7398             } else {
7399                 /* Add/sub (shifted register) */
7400                 disas_add_sub_reg(s, insn);
7401             }
7402         } else {
7403             /* Logical (shifted register) */
7404             disas_logic_reg(s, insn);
7405         }
7406         return;
7407     }
7408 
7409     switch (op2) {
7410     case 0x0:
7411         switch (op3) {
7412         case 0x00: /* Add/subtract (with carry) */
7413             disas_adc_sbc(s, insn);
7414             break;
7415 
7416         case 0x01: /* Rotate right into flags */
7417         case 0x21:
7418             disas_rotate_right_into_flags(s, insn);
7419             break;
7420 
7421         case 0x02: /* Evaluate into flags */
7422         case 0x12:
7423         case 0x22:
7424         case 0x32:
7425             disas_evaluate_into_flags(s, insn);
7426             break;
7427 
7428         default:
7429             goto do_unallocated;
7430         }
7431         break;
7432 
7433     case 0x2: /* Conditional compare */
7434         disas_cc(s, insn); /* both imm and reg forms */
7435         break;
7436 
7437     case 0x4: /* Conditional select */
7438         disas_cond_select(s, insn);
7439         break;
7440 
7441     case 0x6: /* Data-processing */
7442         if (op0) {    /* (1 source) */
7443             disas_data_proc_1src(s, insn);
7444         } else {      /* (2 source) */
7445             disas_data_proc_2src(s, insn);
7446         }
7447         break;
7448     case 0x8 ... 0xf: /* (3 source) */
7449         disas_data_proc_3src(s, insn);
7450         break;
7451 
7452     default:
7453     do_unallocated:
7454         unallocated_encoding(s);
7455         break;
7456     }
7457 }
7458 
7459 static void handle_fp_compare(DisasContext *s, int size,
7460                               unsigned int rn, unsigned int rm,
7461                               bool cmp_with_zero, bool signal_all_nans)
7462 {
7463     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7464     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7465 
7466     if (size == MO_64) {
7467         TCGv_i64 tcg_vn, tcg_vm;
7468 
7469         tcg_vn = read_fp_dreg(s, rn);
7470         if (cmp_with_zero) {
7471             tcg_vm = tcg_constant_i64(0);
7472         } else {
7473             tcg_vm = read_fp_dreg(s, rm);
7474         }
7475         if (signal_all_nans) {
7476             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7477         } else {
7478             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7479         }
7480     } else {
7481         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7482         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7483 
7484         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7485         if (cmp_with_zero) {
7486             tcg_gen_movi_i32(tcg_vm, 0);
7487         } else {
7488             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7489         }
7490 
7491         switch (size) {
7492         case MO_32:
7493             if (signal_all_nans) {
7494                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7495             } else {
7496                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7497             }
7498             break;
7499         case MO_16:
7500             if (signal_all_nans) {
7501                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7502             } else {
7503                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7504             }
7505             break;
7506         default:
7507             g_assert_not_reached();
7508         }
7509     }
7510 
7511     gen_set_nzcv(tcg_flags);
7512 }
7513 
7514 /* Floating point compare
7515  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
7516  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7517  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
7518  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7519  */
7520 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7521 {
7522     unsigned int mos, type, rm, op, rn, opc, op2r;
7523     int size;
7524 
7525     mos = extract32(insn, 29, 3);
7526     type = extract32(insn, 22, 2);
7527     rm = extract32(insn, 16, 5);
7528     op = extract32(insn, 14, 2);
7529     rn = extract32(insn, 5, 5);
7530     opc = extract32(insn, 3, 2);
7531     op2r = extract32(insn, 0, 3);
7532 
7533     if (mos || op || op2r) {
7534         unallocated_encoding(s);
7535         return;
7536     }
7537 
7538     switch (type) {
7539     case 0:
7540         size = MO_32;
7541         break;
7542     case 1:
7543         size = MO_64;
7544         break;
7545     case 3:
7546         size = MO_16;
7547         if (dc_isar_feature(aa64_fp16, s)) {
7548             break;
7549         }
7550         /* fallthru */
7551     default:
7552         unallocated_encoding(s);
7553         return;
7554     }
7555 
7556     if (!fp_access_check(s)) {
7557         return;
7558     }
7559 
7560     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7561 }
7562 
7563 /* Floating point conditional compare
7564  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
7565  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7566  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
7567  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7568  */
7569 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7570 {
7571     unsigned int mos, type, rm, cond, rn, op, nzcv;
7572     TCGLabel *label_continue = NULL;
7573     int size;
7574 
7575     mos = extract32(insn, 29, 3);
7576     type = extract32(insn, 22, 2);
7577     rm = extract32(insn, 16, 5);
7578     cond = extract32(insn, 12, 4);
7579     rn = extract32(insn, 5, 5);
7580     op = extract32(insn, 4, 1);
7581     nzcv = extract32(insn, 0, 4);
7582 
7583     if (mos) {
7584         unallocated_encoding(s);
7585         return;
7586     }
7587 
7588     switch (type) {
7589     case 0:
7590         size = MO_32;
7591         break;
7592     case 1:
7593         size = MO_64;
7594         break;
7595     case 3:
7596         size = MO_16;
7597         if (dc_isar_feature(aa64_fp16, s)) {
7598             break;
7599         }
7600         /* fallthru */
7601     default:
7602         unallocated_encoding(s);
7603         return;
7604     }
7605 
7606     if (!fp_access_check(s)) {
7607         return;
7608     }
7609 
7610     if (cond < 0x0e) { /* not always */
7611         TCGLabel *label_match = gen_new_label();
7612         label_continue = gen_new_label();
7613         arm_gen_test_cc(cond, label_match);
7614         /* nomatch: */
7615         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7616         tcg_gen_br(label_continue);
7617         gen_set_label(label_match);
7618     }
7619 
7620     handle_fp_compare(s, size, rn, rm, false, op);
7621 
7622     if (cond < 0x0e) {
7623         gen_set_label(label_continue);
7624     }
7625 }
7626 
7627 /* Floating-point data-processing (1 source) - half precision */
7628 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7629 {
7630     TCGv_ptr fpst = NULL;
7631     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7632     TCGv_i32 tcg_res = tcg_temp_new_i32();
7633 
7634     switch (opcode) {
7635     case 0x0: /* FMOV */
7636         tcg_gen_mov_i32(tcg_res, tcg_op);
7637         break;
7638     case 0x1: /* FABS */
7639         gen_vfp_absh(tcg_res, tcg_op);
7640         break;
7641     case 0x2: /* FNEG */
7642         gen_vfp_negh(tcg_res, tcg_op);
7643         break;
7644     case 0x3: /* FSQRT */
7645         fpst = fpstatus_ptr(FPST_FPCR_F16);
7646         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7647         break;
7648     case 0x8: /* FRINTN */
7649     case 0x9: /* FRINTP */
7650     case 0xa: /* FRINTM */
7651     case 0xb: /* FRINTZ */
7652     case 0xc: /* FRINTA */
7653     {
7654         TCGv_i32 tcg_rmode;
7655 
7656         fpst = fpstatus_ptr(FPST_FPCR_F16);
7657         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7658         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7659         gen_restore_rmode(tcg_rmode, fpst);
7660         break;
7661     }
7662     case 0xe: /* FRINTX */
7663         fpst = fpstatus_ptr(FPST_FPCR_F16);
7664         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7665         break;
7666     case 0xf: /* FRINTI */
7667         fpst = fpstatus_ptr(FPST_FPCR_F16);
7668         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7669         break;
7670     default:
7671         g_assert_not_reached();
7672     }
7673 
7674     write_fp_sreg(s, rd, tcg_res);
7675 }
7676 
7677 /* Floating-point data-processing (1 source) - single precision */
7678 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7679 {
7680     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7681     TCGv_i32 tcg_op, tcg_res;
7682     TCGv_ptr fpst;
7683     int rmode = -1;
7684 
7685     tcg_op = read_fp_sreg(s, rn);
7686     tcg_res = tcg_temp_new_i32();
7687 
7688     switch (opcode) {
7689     case 0x0: /* FMOV */
7690         tcg_gen_mov_i32(tcg_res, tcg_op);
7691         goto done;
7692     case 0x1: /* FABS */
7693         gen_vfp_abss(tcg_res, tcg_op);
7694         goto done;
7695     case 0x2: /* FNEG */
7696         gen_vfp_negs(tcg_res, tcg_op);
7697         goto done;
7698     case 0x3: /* FSQRT */
7699         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7700         goto done;
7701     case 0x6: /* BFCVT */
7702         gen_fpst = gen_helper_bfcvt;
7703         break;
7704     case 0x8: /* FRINTN */
7705     case 0x9: /* FRINTP */
7706     case 0xa: /* FRINTM */
7707     case 0xb: /* FRINTZ */
7708     case 0xc: /* FRINTA */
7709         rmode = opcode & 7;
7710         gen_fpst = gen_helper_rints;
7711         break;
7712     case 0xe: /* FRINTX */
7713         gen_fpst = gen_helper_rints_exact;
7714         break;
7715     case 0xf: /* FRINTI */
7716         gen_fpst = gen_helper_rints;
7717         break;
7718     case 0x10: /* FRINT32Z */
7719         rmode = FPROUNDING_ZERO;
7720         gen_fpst = gen_helper_frint32_s;
7721         break;
7722     case 0x11: /* FRINT32X */
7723         gen_fpst = gen_helper_frint32_s;
7724         break;
7725     case 0x12: /* FRINT64Z */
7726         rmode = FPROUNDING_ZERO;
7727         gen_fpst = gen_helper_frint64_s;
7728         break;
7729     case 0x13: /* FRINT64X */
7730         gen_fpst = gen_helper_frint64_s;
7731         break;
7732     default:
7733         g_assert_not_reached();
7734     }
7735 
7736     fpst = fpstatus_ptr(FPST_FPCR);
7737     if (rmode >= 0) {
7738         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7739         gen_fpst(tcg_res, tcg_op, fpst);
7740         gen_restore_rmode(tcg_rmode, fpst);
7741     } else {
7742         gen_fpst(tcg_res, tcg_op, fpst);
7743     }
7744 
7745  done:
7746     write_fp_sreg(s, rd, tcg_res);
7747 }
7748 
7749 /* Floating-point data-processing (1 source) - double precision */
7750 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7751 {
7752     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7753     TCGv_i64 tcg_op, tcg_res;
7754     TCGv_ptr fpst;
7755     int rmode = -1;
7756 
7757     switch (opcode) {
7758     case 0x0: /* FMOV */
7759         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7760         return;
7761     }
7762 
7763     tcg_op = read_fp_dreg(s, rn);
7764     tcg_res = tcg_temp_new_i64();
7765 
7766     switch (opcode) {
7767     case 0x1: /* FABS */
7768         gen_vfp_absd(tcg_res, tcg_op);
7769         goto done;
7770     case 0x2: /* FNEG */
7771         gen_vfp_negd(tcg_res, tcg_op);
7772         goto done;
7773     case 0x3: /* FSQRT */
7774         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7775         goto done;
7776     case 0x8: /* FRINTN */
7777     case 0x9: /* FRINTP */
7778     case 0xa: /* FRINTM */
7779     case 0xb: /* FRINTZ */
7780     case 0xc: /* FRINTA */
7781         rmode = opcode & 7;
7782         gen_fpst = gen_helper_rintd;
7783         break;
7784     case 0xe: /* FRINTX */
7785         gen_fpst = gen_helper_rintd_exact;
7786         break;
7787     case 0xf: /* FRINTI */
7788         gen_fpst = gen_helper_rintd;
7789         break;
7790     case 0x10: /* FRINT32Z */
7791         rmode = FPROUNDING_ZERO;
7792         gen_fpst = gen_helper_frint32_d;
7793         break;
7794     case 0x11: /* FRINT32X */
7795         gen_fpst = gen_helper_frint32_d;
7796         break;
7797     case 0x12: /* FRINT64Z */
7798         rmode = FPROUNDING_ZERO;
7799         gen_fpst = gen_helper_frint64_d;
7800         break;
7801     case 0x13: /* FRINT64X */
7802         gen_fpst = gen_helper_frint64_d;
7803         break;
7804     default:
7805         g_assert_not_reached();
7806     }
7807 
7808     fpst = fpstatus_ptr(FPST_FPCR);
7809     if (rmode >= 0) {
7810         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7811         gen_fpst(tcg_res, tcg_op, fpst);
7812         gen_restore_rmode(tcg_rmode, fpst);
7813     } else {
7814         gen_fpst(tcg_res, tcg_op, fpst);
7815     }
7816 
7817  done:
7818     write_fp_dreg(s, rd, tcg_res);
7819 }
7820 
7821 static void handle_fp_fcvt(DisasContext *s, int opcode,
7822                            int rd, int rn, int dtype, int ntype)
7823 {
7824     switch (ntype) {
7825     case 0x0:
7826     {
7827         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7828         if (dtype == 1) {
7829             /* Single to double */
7830             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7831             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7832             write_fp_dreg(s, rd, tcg_rd);
7833         } else {
7834             /* Single to half */
7835             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7836             TCGv_i32 ahp = get_ahp_flag();
7837             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7838 
7839             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7840             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7841             write_fp_sreg(s, rd, tcg_rd);
7842         }
7843         break;
7844     }
7845     case 0x1:
7846     {
7847         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7848         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7849         if (dtype == 0) {
7850             /* Double to single */
7851             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7852         } else {
7853             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7854             TCGv_i32 ahp = get_ahp_flag();
7855             /* Double to half */
7856             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7857             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7858         }
7859         write_fp_sreg(s, rd, tcg_rd);
7860         break;
7861     }
7862     case 0x3:
7863     {
7864         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7865         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7866         TCGv_i32 tcg_ahp = get_ahp_flag();
7867         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7868         if (dtype == 0) {
7869             /* Half to single */
7870             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7871             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7872             write_fp_sreg(s, rd, tcg_rd);
7873         } else {
7874             /* Half to double */
7875             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7876             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7877             write_fp_dreg(s, rd, tcg_rd);
7878         }
7879         break;
7880     }
7881     default:
7882         g_assert_not_reached();
7883     }
7884 }
7885 
7886 /* Floating point data-processing (1 source)
7887  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7888  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7889  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7890  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7891  */
7892 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7893 {
7894     int mos = extract32(insn, 29, 3);
7895     int type = extract32(insn, 22, 2);
7896     int opcode = extract32(insn, 15, 6);
7897     int rn = extract32(insn, 5, 5);
7898     int rd = extract32(insn, 0, 5);
7899 
7900     if (mos) {
7901         goto do_unallocated;
7902     }
7903 
7904     switch (opcode) {
7905     case 0x4: case 0x5: case 0x7:
7906     {
7907         /* FCVT between half, single and double precision */
7908         int dtype = extract32(opcode, 0, 2);
7909         if (type == 2 || dtype == type) {
7910             goto do_unallocated;
7911         }
7912         if (!fp_access_check(s)) {
7913             return;
7914         }
7915 
7916         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7917         break;
7918     }
7919 
7920     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7921         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7922             goto do_unallocated;
7923         }
7924         /* fall through */
7925     case 0x0 ... 0x3:
7926     case 0x8 ... 0xc:
7927     case 0xe ... 0xf:
7928         /* 32-to-32 and 64-to-64 ops */
7929         switch (type) {
7930         case 0:
7931             if (!fp_access_check(s)) {
7932                 return;
7933             }
7934             handle_fp_1src_single(s, opcode, rd, rn);
7935             break;
7936         case 1:
7937             if (!fp_access_check(s)) {
7938                 return;
7939             }
7940             handle_fp_1src_double(s, opcode, rd, rn);
7941             break;
7942         case 3:
7943             if (!dc_isar_feature(aa64_fp16, s)) {
7944                 goto do_unallocated;
7945             }
7946 
7947             if (!fp_access_check(s)) {
7948                 return;
7949             }
7950             handle_fp_1src_half(s, opcode, rd, rn);
7951             break;
7952         default:
7953             goto do_unallocated;
7954         }
7955         break;
7956 
7957     case 0x6:
7958         switch (type) {
7959         case 1: /* BFCVT */
7960             if (!dc_isar_feature(aa64_bf16, s)) {
7961                 goto do_unallocated;
7962             }
7963             if (!fp_access_check(s)) {
7964                 return;
7965             }
7966             handle_fp_1src_single(s, opcode, rd, rn);
7967             break;
7968         default:
7969             goto do_unallocated;
7970         }
7971         break;
7972 
7973     default:
7974     do_unallocated:
7975         unallocated_encoding(s);
7976         break;
7977     }
7978 }
7979 
7980 /* Floating point immediate
7981  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7982  * +---+---+---+-----------+------+---+------------+-------+------+------+
7983  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7984  * +---+---+---+-----------+------+---+------------+-------+------+------+
7985  */
7986 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7987 {
7988     int rd = extract32(insn, 0, 5);
7989     int imm5 = extract32(insn, 5, 5);
7990     int imm8 = extract32(insn, 13, 8);
7991     int type = extract32(insn, 22, 2);
7992     int mos = extract32(insn, 29, 3);
7993     uint64_t imm;
7994     MemOp sz;
7995 
7996     if (mos || imm5) {
7997         unallocated_encoding(s);
7998         return;
7999     }
8000 
8001     switch (type) {
8002     case 0:
8003         sz = MO_32;
8004         break;
8005     case 1:
8006         sz = MO_64;
8007         break;
8008     case 3:
8009         sz = MO_16;
8010         if (dc_isar_feature(aa64_fp16, s)) {
8011             break;
8012         }
8013         /* fallthru */
8014     default:
8015         unallocated_encoding(s);
8016         return;
8017     }
8018 
8019     if (!fp_access_check(s)) {
8020         return;
8021     }
8022 
8023     imm = vfp_expand_imm(sz, imm8);
8024     write_fp_dreg(s, rd, tcg_constant_i64(imm));
8025 }
8026 
8027 /* Handle floating point <=> fixed point conversions. Note that we can
8028  * also deal with fp <=> integer conversions as a special case (scale == 64)
8029  * OPTME: consider handling that special case specially or at least skipping
8030  * the call to scalbn in the helpers for zero shifts.
8031  */
8032 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
8033                            bool itof, int rmode, int scale, int sf, int type)
8034 {
8035     bool is_signed = !(opcode & 1);
8036     TCGv_ptr tcg_fpstatus;
8037     TCGv_i32 tcg_shift, tcg_single;
8038     TCGv_i64 tcg_double;
8039 
8040     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
8041 
8042     tcg_shift = tcg_constant_i32(64 - scale);
8043 
8044     if (itof) {
8045         TCGv_i64 tcg_int = cpu_reg(s, rn);
8046         if (!sf) {
8047             TCGv_i64 tcg_extend = tcg_temp_new_i64();
8048 
8049             if (is_signed) {
8050                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
8051             } else {
8052                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
8053             }
8054 
8055             tcg_int = tcg_extend;
8056         }
8057 
8058         switch (type) {
8059         case 1: /* float64 */
8060             tcg_double = tcg_temp_new_i64();
8061             if (is_signed) {
8062                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
8063                                      tcg_shift, tcg_fpstatus);
8064             } else {
8065                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
8066                                      tcg_shift, tcg_fpstatus);
8067             }
8068             write_fp_dreg(s, rd, tcg_double);
8069             break;
8070 
8071         case 0: /* float32 */
8072             tcg_single = tcg_temp_new_i32();
8073             if (is_signed) {
8074                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
8075                                      tcg_shift, tcg_fpstatus);
8076             } else {
8077                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
8078                                      tcg_shift, tcg_fpstatus);
8079             }
8080             write_fp_sreg(s, rd, tcg_single);
8081             break;
8082 
8083         case 3: /* float16 */
8084             tcg_single = tcg_temp_new_i32();
8085             if (is_signed) {
8086                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
8087                                      tcg_shift, tcg_fpstatus);
8088             } else {
8089                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
8090                                      tcg_shift, tcg_fpstatus);
8091             }
8092             write_fp_sreg(s, rd, tcg_single);
8093             break;
8094 
8095         default:
8096             g_assert_not_reached();
8097         }
8098     } else {
8099         TCGv_i64 tcg_int = cpu_reg(s, rd);
8100         TCGv_i32 tcg_rmode;
8101 
8102         if (extract32(opcode, 2, 1)) {
8103             /* There are too many rounding modes to all fit into rmode,
8104              * so FCVTA[US] is a special case.
8105              */
8106             rmode = FPROUNDING_TIEAWAY;
8107         }
8108 
8109         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8110 
8111         switch (type) {
8112         case 1: /* float64 */
8113             tcg_double = read_fp_dreg(s, rn);
8114             if (is_signed) {
8115                 if (!sf) {
8116                     gen_helper_vfp_tosld(tcg_int, tcg_double,
8117                                          tcg_shift, tcg_fpstatus);
8118                 } else {
8119                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
8120                                          tcg_shift, tcg_fpstatus);
8121                 }
8122             } else {
8123                 if (!sf) {
8124                     gen_helper_vfp_tould(tcg_int, tcg_double,
8125                                          tcg_shift, tcg_fpstatus);
8126                 } else {
8127                     gen_helper_vfp_touqd(tcg_int, tcg_double,
8128                                          tcg_shift, tcg_fpstatus);
8129                 }
8130             }
8131             if (!sf) {
8132                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8133             }
8134             break;
8135 
8136         case 0: /* float32 */
8137             tcg_single = read_fp_sreg(s, rn);
8138             if (sf) {
8139                 if (is_signed) {
8140                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
8141                                          tcg_shift, tcg_fpstatus);
8142                 } else {
8143                     gen_helper_vfp_touqs(tcg_int, tcg_single,
8144                                          tcg_shift, tcg_fpstatus);
8145                 }
8146             } else {
8147                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8148                 if (is_signed) {
8149                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
8150                                          tcg_shift, tcg_fpstatus);
8151                 } else {
8152                     gen_helper_vfp_touls(tcg_dest, tcg_single,
8153                                          tcg_shift, tcg_fpstatus);
8154                 }
8155                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8156             }
8157             break;
8158 
8159         case 3: /* float16 */
8160             tcg_single = read_fp_sreg(s, rn);
8161             if (sf) {
8162                 if (is_signed) {
8163                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
8164                                          tcg_shift, tcg_fpstatus);
8165                 } else {
8166                     gen_helper_vfp_touqh(tcg_int, tcg_single,
8167                                          tcg_shift, tcg_fpstatus);
8168                 }
8169             } else {
8170                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8171                 if (is_signed) {
8172                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
8173                                          tcg_shift, tcg_fpstatus);
8174                 } else {
8175                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
8176                                          tcg_shift, tcg_fpstatus);
8177                 }
8178                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8179             }
8180             break;
8181 
8182         default:
8183             g_assert_not_reached();
8184         }
8185 
8186         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8187     }
8188 }
8189 
8190 /* Floating point <-> fixed point conversions
8191  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
8192  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8193  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
8194  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8195  */
8196 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8197 {
8198     int rd = extract32(insn, 0, 5);
8199     int rn = extract32(insn, 5, 5);
8200     int scale = extract32(insn, 10, 6);
8201     int opcode = extract32(insn, 16, 3);
8202     int rmode = extract32(insn, 19, 2);
8203     int type = extract32(insn, 22, 2);
8204     bool sbit = extract32(insn, 29, 1);
8205     bool sf = extract32(insn, 31, 1);
8206     bool itof;
8207 
8208     if (sbit || (!sf && scale < 32)) {
8209         unallocated_encoding(s);
8210         return;
8211     }
8212 
8213     switch (type) {
8214     case 0: /* float32 */
8215     case 1: /* float64 */
8216         break;
8217     case 3: /* float16 */
8218         if (dc_isar_feature(aa64_fp16, s)) {
8219             break;
8220         }
8221         /* fallthru */
8222     default:
8223         unallocated_encoding(s);
8224         return;
8225     }
8226 
8227     switch ((rmode << 3) | opcode) {
8228     case 0x2: /* SCVTF */
8229     case 0x3: /* UCVTF */
8230         itof = true;
8231         break;
8232     case 0x18: /* FCVTZS */
8233     case 0x19: /* FCVTZU */
8234         itof = false;
8235         break;
8236     default:
8237         unallocated_encoding(s);
8238         return;
8239     }
8240 
8241     if (!fp_access_check(s)) {
8242         return;
8243     }
8244 
8245     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8246 }
8247 
8248 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8249 {
8250     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8251      * without conversion.
8252      */
8253 
8254     if (itof) {
8255         TCGv_i64 tcg_rn = cpu_reg(s, rn);
8256         TCGv_i64 tmp;
8257 
8258         switch (type) {
8259         case 0:
8260             /* 32 bit */
8261             tmp = tcg_temp_new_i64();
8262             tcg_gen_ext32u_i64(tmp, tcg_rn);
8263             write_fp_dreg(s, rd, tmp);
8264             break;
8265         case 1:
8266             /* 64 bit */
8267             write_fp_dreg(s, rd, tcg_rn);
8268             break;
8269         case 2:
8270             /* 64 bit to top half. */
8271             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8272             clear_vec_high(s, true, rd);
8273             break;
8274         case 3:
8275             /* 16 bit */
8276             tmp = tcg_temp_new_i64();
8277             tcg_gen_ext16u_i64(tmp, tcg_rn);
8278             write_fp_dreg(s, rd, tmp);
8279             break;
8280         default:
8281             g_assert_not_reached();
8282         }
8283     } else {
8284         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8285 
8286         switch (type) {
8287         case 0:
8288             /* 32 bit */
8289             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8290             break;
8291         case 1:
8292             /* 64 bit */
8293             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8294             break;
8295         case 2:
8296             /* 64 bits from top half */
8297             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8298             break;
8299         case 3:
8300             /* 16 bit */
8301             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8302             break;
8303         default:
8304             g_assert_not_reached();
8305         }
8306     }
8307 }
8308 
8309 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8310 {
8311     TCGv_i64 t = read_fp_dreg(s, rn);
8312     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8313 
8314     gen_helper_fjcvtzs(t, t, fpstatus);
8315 
8316     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8317     tcg_gen_extrh_i64_i32(cpu_ZF, t);
8318     tcg_gen_movi_i32(cpu_CF, 0);
8319     tcg_gen_movi_i32(cpu_NF, 0);
8320     tcg_gen_movi_i32(cpu_VF, 0);
8321 }
8322 
8323 /* Floating point <-> integer conversions
8324  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
8325  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8326  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8327  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8328  */
8329 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8330 {
8331     int rd = extract32(insn, 0, 5);
8332     int rn = extract32(insn, 5, 5);
8333     int opcode = extract32(insn, 16, 3);
8334     int rmode = extract32(insn, 19, 2);
8335     int type = extract32(insn, 22, 2);
8336     bool sbit = extract32(insn, 29, 1);
8337     bool sf = extract32(insn, 31, 1);
8338     bool itof = false;
8339 
8340     if (sbit) {
8341         goto do_unallocated;
8342     }
8343 
8344     switch (opcode) {
8345     case 2: /* SCVTF */
8346     case 3: /* UCVTF */
8347         itof = true;
8348         /* fallthru */
8349     case 4: /* FCVTAS */
8350     case 5: /* FCVTAU */
8351         if (rmode != 0) {
8352             goto do_unallocated;
8353         }
8354         /* fallthru */
8355     case 0: /* FCVT[NPMZ]S */
8356     case 1: /* FCVT[NPMZ]U */
8357         switch (type) {
8358         case 0: /* float32 */
8359         case 1: /* float64 */
8360             break;
8361         case 3: /* float16 */
8362             if (!dc_isar_feature(aa64_fp16, s)) {
8363                 goto do_unallocated;
8364             }
8365             break;
8366         default:
8367             goto do_unallocated;
8368         }
8369         if (!fp_access_check(s)) {
8370             return;
8371         }
8372         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8373         break;
8374 
8375     default:
8376         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8377         case 0b01100110: /* FMOV half <-> 32-bit int */
8378         case 0b01100111:
8379         case 0b11100110: /* FMOV half <-> 64-bit int */
8380         case 0b11100111:
8381             if (!dc_isar_feature(aa64_fp16, s)) {
8382                 goto do_unallocated;
8383             }
8384             /* fallthru */
8385         case 0b00000110: /* FMOV 32-bit */
8386         case 0b00000111:
8387         case 0b10100110: /* FMOV 64-bit */
8388         case 0b10100111:
8389         case 0b11001110: /* FMOV top half of 128-bit */
8390         case 0b11001111:
8391             if (!fp_access_check(s)) {
8392                 return;
8393             }
8394             itof = opcode & 1;
8395             handle_fmov(s, rd, rn, type, itof);
8396             break;
8397 
8398         case 0b00111110: /* FJCVTZS */
8399             if (!dc_isar_feature(aa64_jscvt, s)) {
8400                 goto do_unallocated;
8401             } else if (fp_access_check(s)) {
8402                 handle_fjcvtzs(s, rd, rn);
8403             }
8404             break;
8405 
8406         default:
8407         do_unallocated:
8408             unallocated_encoding(s);
8409             return;
8410         }
8411         break;
8412     }
8413 }
8414 
8415 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8416  *   31  30  29 28     25 24                          0
8417  * +---+---+---+---------+-----------------------------+
8418  * |   | 0 |   | 1 1 1 1 |                             |
8419  * +---+---+---+---------+-----------------------------+
8420  */
8421 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8422 {
8423     if (extract32(insn, 24, 1)) {
8424         unallocated_encoding(s); /* in decodetree */
8425     } else if (extract32(insn, 21, 1) == 0) {
8426         /* Floating point to fixed point conversions */
8427         disas_fp_fixed_conv(s, insn);
8428     } else {
8429         switch (extract32(insn, 10, 2)) {
8430         case 1:
8431             /* Floating point conditional compare */
8432             disas_fp_ccomp(s, insn);
8433             break;
8434         case 2:
8435             /* Floating point data-processing (2 source) */
8436             unallocated_encoding(s); /* in decodetree */
8437             break;
8438         case 3:
8439             /* Floating point conditional select */
8440             unallocated_encoding(s); /* in decodetree */
8441             break;
8442         case 0:
8443             switch (ctz32(extract32(insn, 12, 4))) {
8444             case 0: /* [15:12] == xxx1 */
8445                 /* Floating point immediate */
8446                 disas_fp_imm(s, insn);
8447                 break;
8448             case 1: /* [15:12] == xx10 */
8449                 /* Floating point compare */
8450                 disas_fp_compare(s, insn);
8451                 break;
8452             case 2: /* [15:12] == x100 */
8453                 /* Floating point data-processing (1 source) */
8454                 disas_fp_1src(s, insn);
8455                 break;
8456             case 3: /* [15:12] == 1000 */
8457                 unallocated_encoding(s);
8458                 break;
8459             default: /* [15:12] == 0000 */
8460                 /* Floating point <-> integer conversions */
8461                 disas_fp_int_conv(s, insn);
8462                 break;
8463             }
8464             break;
8465         }
8466     }
8467 }
8468 
8469 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8470                      int pos)
8471 {
8472     /* Extract 64 bits from the middle of two concatenated 64 bit
8473      * vector register slices left:right. The extracted bits start
8474      * at 'pos' bits into the right (least significant) side.
8475      * We return the result in tcg_right, and guarantee not to
8476      * trash tcg_left.
8477      */
8478     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8479     assert(pos > 0 && pos < 64);
8480 
8481     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8482     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8483     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8484 }
8485 
8486 /* EXT
8487  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8488  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8489  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8490  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8491  */
8492 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8493 {
8494     int is_q = extract32(insn, 30, 1);
8495     int op2 = extract32(insn, 22, 2);
8496     int imm4 = extract32(insn, 11, 4);
8497     int rm = extract32(insn, 16, 5);
8498     int rn = extract32(insn, 5, 5);
8499     int rd = extract32(insn, 0, 5);
8500     int pos = imm4 << 3;
8501     TCGv_i64 tcg_resl, tcg_resh;
8502 
8503     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8504         unallocated_encoding(s);
8505         return;
8506     }
8507 
8508     if (!fp_access_check(s)) {
8509         return;
8510     }
8511 
8512     tcg_resh = tcg_temp_new_i64();
8513     tcg_resl = tcg_temp_new_i64();
8514 
8515     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8516      * either extracting 128 bits from a 128:128 concatenation, or
8517      * extracting 64 bits from a 64:64 concatenation.
8518      */
8519     if (!is_q) {
8520         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8521         if (pos != 0) {
8522             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8523             do_ext64(s, tcg_resh, tcg_resl, pos);
8524         }
8525     } else {
8526         TCGv_i64 tcg_hh;
8527         typedef struct {
8528             int reg;
8529             int elt;
8530         } EltPosns;
8531         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8532         EltPosns *elt = eltposns;
8533 
8534         if (pos >= 64) {
8535             elt++;
8536             pos -= 64;
8537         }
8538 
8539         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8540         elt++;
8541         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8542         elt++;
8543         if (pos != 0) {
8544             do_ext64(s, tcg_resh, tcg_resl, pos);
8545             tcg_hh = tcg_temp_new_i64();
8546             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8547             do_ext64(s, tcg_hh, tcg_resh, pos);
8548         }
8549     }
8550 
8551     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8552     if (is_q) {
8553         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8554     }
8555     clear_vec_high(s, is_q, rd);
8556 }
8557 
8558 /* TBL/TBX
8559  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8560  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8561  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8562  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8563  */
8564 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8565 {
8566     int op2 = extract32(insn, 22, 2);
8567     int is_q = extract32(insn, 30, 1);
8568     int rm = extract32(insn, 16, 5);
8569     int rn = extract32(insn, 5, 5);
8570     int rd = extract32(insn, 0, 5);
8571     int is_tbx = extract32(insn, 12, 1);
8572     int len = (extract32(insn, 13, 2) + 1) * 16;
8573 
8574     if (op2 != 0) {
8575         unallocated_encoding(s);
8576         return;
8577     }
8578 
8579     if (!fp_access_check(s)) {
8580         return;
8581     }
8582 
8583     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8584                        vec_full_reg_offset(s, rm), tcg_env,
8585                        is_q ? 16 : 8, vec_full_reg_size(s),
8586                        (len << 6) | (is_tbx << 5) | rn,
8587                        gen_helper_simd_tblx);
8588 }
8589 
8590 /* ZIP/UZP/TRN
8591  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8592  * +---+---+-------------+------+---+------+---+------------------+------+
8593  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8594  * +---+---+-------------+------+---+------+---+------------------+------+
8595  */
8596 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8597 {
8598     int rd = extract32(insn, 0, 5);
8599     int rn = extract32(insn, 5, 5);
8600     int rm = extract32(insn, 16, 5);
8601     int size = extract32(insn, 22, 2);
8602     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8603      * bit 2 indicates 1 vs 2 variant of the insn.
8604      */
8605     int opcode = extract32(insn, 12, 2);
8606     bool part = extract32(insn, 14, 1);
8607     bool is_q = extract32(insn, 30, 1);
8608     int esize = 8 << size;
8609     int i;
8610     int datasize = is_q ? 128 : 64;
8611     int elements = datasize / esize;
8612     TCGv_i64 tcg_res[2], tcg_ele;
8613 
8614     if (opcode == 0 || (size == 3 && !is_q)) {
8615         unallocated_encoding(s);
8616         return;
8617     }
8618 
8619     if (!fp_access_check(s)) {
8620         return;
8621     }
8622 
8623     tcg_res[0] = tcg_temp_new_i64();
8624     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8625     tcg_ele = tcg_temp_new_i64();
8626 
8627     for (i = 0; i < elements; i++) {
8628         int o, w;
8629 
8630         switch (opcode) {
8631         case 1: /* UZP1/2 */
8632         {
8633             int midpoint = elements / 2;
8634             if (i < midpoint) {
8635                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8636             } else {
8637                 read_vec_element(s, tcg_ele, rm,
8638                                  2 * (i - midpoint) + part, size);
8639             }
8640             break;
8641         }
8642         case 2: /* TRN1/2 */
8643             if (i & 1) {
8644                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8645             } else {
8646                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8647             }
8648             break;
8649         case 3: /* ZIP1/2 */
8650         {
8651             int base = part * elements / 2;
8652             if (i & 1) {
8653                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8654             } else {
8655                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8656             }
8657             break;
8658         }
8659         default:
8660             g_assert_not_reached();
8661         }
8662 
8663         w = (i * esize) / 64;
8664         o = (i * esize) % 64;
8665         if (o == 0) {
8666             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8667         } else {
8668             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8669             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8670         }
8671     }
8672 
8673     for (i = 0; i <= is_q; ++i) {
8674         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8675     }
8676     clear_vec_high(s, is_q, rd);
8677 }
8678 
8679 /*
8680  * do_reduction_op helper
8681  *
8682  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8683  * important for correct NaN propagation that we do these
8684  * operations in exactly the order specified by the pseudocode.
8685  *
8686  * This is a recursive function, TCG temps should be freed by the
8687  * calling function once it is done with the values.
8688  */
8689 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8690                                 int esize, int size, int vmap, TCGv_ptr fpst)
8691 {
8692     if (esize == size) {
8693         int element;
8694         MemOp msize = esize == 16 ? MO_16 : MO_32;
8695         TCGv_i32 tcg_elem;
8696 
8697         /* We should have one register left here */
8698         assert(ctpop8(vmap) == 1);
8699         element = ctz32(vmap);
8700         assert(element < 8);
8701 
8702         tcg_elem = tcg_temp_new_i32();
8703         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8704         return tcg_elem;
8705     } else {
8706         int bits = size / 2;
8707         int shift = ctpop8(vmap) / 2;
8708         int vmap_lo = (vmap >> shift) & vmap;
8709         int vmap_hi = (vmap & ~vmap_lo);
8710         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8711 
8712         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8713         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8714         tcg_res = tcg_temp_new_i32();
8715 
8716         switch (fpopcode) {
8717         case 0x0c: /* fmaxnmv half-precision */
8718             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8719             break;
8720         case 0x0f: /* fmaxv half-precision */
8721             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8722             break;
8723         case 0x1c: /* fminnmv half-precision */
8724             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8725             break;
8726         case 0x1f: /* fminv half-precision */
8727             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8728             break;
8729         case 0x2c: /* fmaxnmv */
8730             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8731             break;
8732         case 0x2f: /* fmaxv */
8733             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8734             break;
8735         case 0x3c: /* fminnmv */
8736             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8737             break;
8738         case 0x3f: /* fminv */
8739             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8740             break;
8741         default:
8742             g_assert_not_reached();
8743         }
8744         return tcg_res;
8745     }
8746 }
8747 
8748 /* AdvSIMD across lanes
8749  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8750  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8751  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8752  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8753  */
8754 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8755 {
8756     int rd = extract32(insn, 0, 5);
8757     int rn = extract32(insn, 5, 5);
8758     int size = extract32(insn, 22, 2);
8759     int opcode = extract32(insn, 12, 5);
8760     bool is_q = extract32(insn, 30, 1);
8761     bool is_u = extract32(insn, 29, 1);
8762     bool is_fp = false;
8763     bool is_min = false;
8764     int esize;
8765     int elements;
8766     int i;
8767     TCGv_i64 tcg_res, tcg_elt;
8768 
8769     switch (opcode) {
8770     case 0x1b: /* ADDV */
8771         if (is_u) {
8772             unallocated_encoding(s);
8773             return;
8774         }
8775         /* fall through */
8776     case 0x3: /* SADDLV, UADDLV */
8777     case 0xa: /* SMAXV, UMAXV */
8778     case 0x1a: /* SMINV, UMINV */
8779         if (size == 3 || (size == 2 && !is_q)) {
8780             unallocated_encoding(s);
8781             return;
8782         }
8783         break;
8784     case 0xc: /* FMAXNMV, FMINNMV */
8785     case 0xf: /* FMAXV, FMINV */
8786         /* Bit 1 of size field encodes min vs max and the actual size
8787          * depends on the encoding of the U bit. If not set (and FP16
8788          * enabled) then we do half-precision float instead of single
8789          * precision.
8790          */
8791         is_min = extract32(size, 1, 1);
8792         is_fp = true;
8793         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8794             size = 1;
8795         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8796             unallocated_encoding(s);
8797             return;
8798         } else {
8799             size = 2;
8800         }
8801         break;
8802     default:
8803         unallocated_encoding(s);
8804         return;
8805     }
8806 
8807     if (!fp_access_check(s)) {
8808         return;
8809     }
8810 
8811     esize = 8 << size;
8812     elements = (is_q ? 128 : 64) / esize;
8813 
8814     tcg_res = tcg_temp_new_i64();
8815     tcg_elt = tcg_temp_new_i64();
8816 
8817     /* These instructions operate across all lanes of a vector
8818      * to produce a single result. We can guarantee that a 64
8819      * bit intermediate is sufficient:
8820      *  + for [US]ADDLV the maximum element size is 32 bits, and
8821      *    the result type is 64 bits
8822      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8823      *    same as the element size, which is 32 bits at most
8824      * For the integer operations we can choose to work at 64
8825      * or 32 bits and truncate at the end; for simplicity
8826      * we use 64 bits always. The floating point
8827      * ops do require 32 bit intermediates, though.
8828      */
8829     if (!is_fp) {
8830         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8831 
8832         for (i = 1; i < elements; i++) {
8833             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8834 
8835             switch (opcode) {
8836             case 0x03: /* SADDLV / UADDLV */
8837             case 0x1b: /* ADDV */
8838                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8839                 break;
8840             case 0x0a: /* SMAXV / UMAXV */
8841                 if (is_u) {
8842                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8843                 } else {
8844                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8845                 }
8846                 break;
8847             case 0x1a: /* SMINV / UMINV */
8848                 if (is_u) {
8849                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8850                 } else {
8851                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8852                 }
8853                 break;
8854             default:
8855                 g_assert_not_reached();
8856             }
8857 
8858         }
8859     } else {
8860         /* Floating point vector reduction ops which work across 32
8861          * bit (single) or 16 bit (half-precision) intermediates.
8862          * Note that correct NaN propagation requires that we do these
8863          * operations in exactly the order specified by the pseudocode.
8864          */
8865         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8866         int fpopcode = opcode | is_min << 4 | is_u << 5;
8867         int vmap = (1 << elements) - 1;
8868         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8869                                              (is_q ? 128 : 64), vmap, fpst);
8870         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8871     }
8872 
8873     /* Now truncate the result to the width required for the final output */
8874     if (opcode == 0x03) {
8875         /* SADDLV, UADDLV: result is 2*esize */
8876         size++;
8877     }
8878 
8879     switch (size) {
8880     case 0:
8881         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8882         break;
8883     case 1:
8884         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8885         break;
8886     case 2:
8887         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8888         break;
8889     case 3:
8890         break;
8891     default:
8892         g_assert_not_reached();
8893     }
8894 
8895     write_fp_dreg(s, rd, tcg_res);
8896 }
8897 
8898 /* AdvSIMD modified immediate
8899  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8900  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8901  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8902  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8903  *
8904  * There are a number of operations that can be carried out here:
8905  *   MOVI - move (shifted) imm into register
8906  *   MVNI - move inverted (shifted) imm into register
8907  *   ORR  - bitwise OR of (shifted) imm with register
8908  *   BIC  - bitwise clear of (shifted) imm with register
8909  * With ARMv8.2 we also have:
8910  *   FMOV half-precision
8911  */
8912 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8913 {
8914     int rd = extract32(insn, 0, 5);
8915     int cmode = extract32(insn, 12, 4);
8916     int o2 = extract32(insn, 11, 1);
8917     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8918     bool is_neg = extract32(insn, 29, 1);
8919     bool is_q = extract32(insn, 30, 1);
8920     uint64_t imm = 0;
8921 
8922     if (o2) {
8923         if (cmode != 0xf || is_neg) {
8924             unallocated_encoding(s);
8925             return;
8926         }
8927         /* FMOV (vector, immediate) - half-precision */
8928         if (!dc_isar_feature(aa64_fp16, s)) {
8929             unallocated_encoding(s);
8930             return;
8931         }
8932         imm = vfp_expand_imm(MO_16, abcdefgh);
8933         /* now duplicate across the lanes */
8934         imm = dup_const(MO_16, imm);
8935     } else {
8936         if (cmode == 0xf && is_neg && !is_q) {
8937             unallocated_encoding(s);
8938             return;
8939         }
8940         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8941     }
8942 
8943     if (!fp_access_check(s)) {
8944         return;
8945     }
8946 
8947     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8948         /* MOVI or MVNI, with MVNI negation handled above.  */
8949         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8950                              vec_full_reg_size(s), imm);
8951     } else {
8952         /* ORR or BIC, with BIC negation to AND handled above.  */
8953         if (is_neg) {
8954             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8955         } else {
8956             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8957         }
8958     }
8959 }
8960 
8961 /*
8962  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8963  *
8964  * This code is handles the common shifting code and is used by both
8965  * the vector and scalar code.
8966  */
8967 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8968                                     TCGv_i64 tcg_rnd, bool accumulate,
8969                                     bool is_u, int size, int shift)
8970 {
8971     bool extended_result = false;
8972     bool round = tcg_rnd != NULL;
8973     int ext_lshift = 0;
8974     TCGv_i64 tcg_src_hi;
8975 
8976     if (round && size == 3) {
8977         extended_result = true;
8978         ext_lshift = 64 - shift;
8979         tcg_src_hi = tcg_temp_new_i64();
8980     } else if (shift == 64) {
8981         if (!accumulate && is_u) {
8982             /* result is zero */
8983             tcg_gen_movi_i64(tcg_res, 0);
8984             return;
8985         }
8986     }
8987 
8988     /* Deal with the rounding step */
8989     if (round) {
8990         if (extended_result) {
8991             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8992             if (!is_u) {
8993                 /* take care of sign extending tcg_res */
8994                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8995                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8996                                  tcg_src, tcg_src_hi,
8997                                  tcg_rnd, tcg_zero);
8998             } else {
8999                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
9000                                  tcg_src, tcg_zero,
9001                                  tcg_rnd, tcg_zero);
9002             }
9003         } else {
9004             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
9005         }
9006     }
9007 
9008     /* Now do the shift right */
9009     if (round && extended_result) {
9010         /* extended case, >64 bit precision required */
9011         if (ext_lshift == 0) {
9012             /* special case, only high bits matter */
9013             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
9014         } else {
9015             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
9016             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
9017             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
9018         }
9019     } else {
9020         if (is_u) {
9021             if (shift == 64) {
9022                 /* essentially shifting in 64 zeros */
9023                 tcg_gen_movi_i64(tcg_src, 0);
9024             } else {
9025                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
9026             }
9027         } else {
9028             if (shift == 64) {
9029                 /* effectively extending the sign-bit */
9030                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
9031             } else {
9032                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
9033             }
9034         }
9035     }
9036 
9037     if (accumulate) {
9038         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
9039     } else {
9040         tcg_gen_mov_i64(tcg_res, tcg_src);
9041     }
9042 }
9043 
9044 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
9045 static void handle_scalar_simd_shri(DisasContext *s,
9046                                     bool is_u, int immh, int immb,
9047                                     int opcode, int rn, int rd)
9048 {
9049     const int size = 3;
9050     int immhb = immh << 3 | immb;
9051     int shift = 2 * (8 << size) - immhb;
9052     bool accumulate = false;
9053     bool round = false;
9054     bool insert = false;
9055     TCGv_i64 tcg_rn;
9056     TCGv_i64 tcg_rd;
9057     TCGv_i64 tcg_round;
9058 
9059     if (!extract32(immh, 3, 1)) {
9060         unallocated_encoding(s);
9061         return;
9062     }
9063 
9064     if (!fp_access_check(s)) {
9065         return;
9066     }
9067 
9068     switch (opcode) {
9069     case 0x02: /* SSRA / USRA (accumulate) */
9070         accumulate = true;
9071         break;
9072     case 0x04: /* SRSHR / URSHR (rounding) */
9073         round = true;
9074         break;
9075     case 0x06: /* SRSRA / URSRA (accum + rounding) */
9076         accumulate = round = true;
9077         break;
9078     case 0x08: /* SRI */
9079         insert = true;
9080         break;
9081     }
9082 
9083     if (round) {
9084         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9085     } else {
9086         tcg_round = NULL;
9087     }
9088 
9089     tcg_rn = read_fp_dreg(s, rn);
9090     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9091 
9092     if (insert) {
9093         /* shift count same as element size is valid but does nothing;
9094          * special case to avoid potential shift by 64.
9095          */
9096         int esize = 8 << size;
9097         if (shift != esize) {
9098             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
9099             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
9100         }
9101     } else {
9102         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9103                                 accumulate, is_u, size, shift);
9104     }
9105 
9106     write_fp_dreg(s, rd, tcg_rd);
9107 }
9108 
9109 /* SHL/SLI - Scalar shift left */
9110 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9111                                     int immh, int immb, int opcode,
9112                                     int rn, int rd)
9113 {
9114     int size = 32 - clz32(immh) - 1;
9115     int immhb = immh << 3 | immb;
9116     int shift = immhb - (8 << size);
9117     TCGv_i64 tcg_rn;
9118     TCGv_i64 tcg_rd;
9119 
9120     if (!extract32(immh, 3, 1)) {
9121         unallocated_encoding(s);
9122         return;
9123     }
9124 
9125     if (!fp_access_check(s)) {
9126         return;
9127     }
9128 
9129     tcg_rn = read_fp_dreg(s, rn);
9130     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9131 
9132     if (insert) {
9133         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9134     } else {
9135         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9136     }
9137 
9138     write_fp_dreg(s, rd, tcg_rd);
9139 }
9140 
9141 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9142  * (signed/unsigned) narrowing */
9143 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9144                                    bool is_u_shift, bool is_u_narrow,
9145                                    int immh, int immb, int opcode,
9146                                    int rn, int rd)
9147 {
9148     int immhb = immh << 3 | immb;
9149     int size = 32 - clz32(immh) - 1;
9150     int esize = 8 << size;
9151     int shift = (2 * esize) - immhb;
9152     int elements = is_scalar ? 1 : (64 / esize);
9153     bool round = extract32(opcode, 0, 1);
9154     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9155     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9156     TCGv_i32 tcg_rd_narrowed;
9157     TCGv_i64 tcg_final;
9158 
9159     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9160         { gen_helper_neon_narrow_sat_s8,
9161           gen_helper_neon_unarrow_sat8 },
9162         { gen_helper_neon_narrow_sat_s16,
9163           gen_helper_neon_unarrow_sat16 },
9164         { gen_helper_neon_narrow_sat_s32,
9165           gen_helper_neon_unarrow_sat32 },
9166         { NULL, NULL },
9167     };
9168     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9169         gen_helper_neon_narrow_sat_u8,
9170         gen_helper_neon_narrow_sat_u16,
9171         gen_helper_neon_narrow_sat_u32,
9172         NULL
9173     };
9174     NeonGenNarrowEnvFn *narrowfn;
9175 
9176     int i;
9177 
9178     assert(size < 4);
9179 
9180     if (extract32(immh, 3, 1)) {
9181         unallocated_encoding(s);
9182         return;
9183     }
9184 
9185     if (!fp_access_check(s)) {
9186         return;
9187     }
9188 
9189     if (is_u_shift) {
9190         narrowfn = unsigned_narrow_fns[size];
9191     } else {
9192         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9193     }
9194 
9195     tcg_rn = tcg_temp_new_i64();
9196     tcg_rd = tcg_temp_new_i64();
9197     tcg_rd_narrowed = tcg_temp_new_i32();
9198     tcg_final = tcg_temp_new_i64();
9199 
9200     if (round) {
9201         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9202     } else {
9203         tcg_round = NULL;
9204     }
9205 
9206     for (i = 0; i < elements; i++) {
9207         read_vec_element(s, tcg_rn, rn, i, ldop);
9208         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9209                                 false, is_u_shift, size+1, shift);
9210         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9211         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9212         if (i == 0) {
9213             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9214         } else {
9215             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9216         }
9217     }
9218 
9219     if (!is_q) {
9220         write_vec_element(s, tcg_final, rd, 0, MO_64);
9221     } else {
9222         write_vec_element(s, tcg_final, rd, 1, MO_64);
9223     }
9224     clear_vec_high(s, is_q, rd);
9225 }
9226 
9227 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9228 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9229                              bool src_unsigned, bool dst_unsigned,
9230                              int immh, int immb, int rn, int rd)
9231 {
9232     int immhb = immh << 3 | immb;
9233     int size = 32 - clz32(immh) - 1;
9234     int shift = immhb - (8 << size);
9235     int pass;
9236 
9237     assert(immh != 0);
9238     assert(!(scalar && is_q));
9239 
9240     if (!scalar) {
9241         if (!is_q && extract32(immh, 3, 1)) {
9242             unallocated_encoding(s);
9243             return;
9244         }
9245 
9246         /* Since we use the variable-shift helpers we must
9247          * replicate the shift count into each element of
9248          * the tcg_shift value.
9249          */
9250         switch (size) {
9251         case 0:
9252             shift |= shift << 8;
9253             /* fall through */
9254         case 1:
9255             shift |= shift << 16;
9256             break;
9257         case 2:
9258         case 3:
9259             break;
9260         default:
9261             g_assert_not_reached();
9262         }
9263     }
9264 
9265     if (!fp_access_check(s)) {
9266         return;
9267     }
9268 
9269     if (size == 3) {
9270         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9271         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9272             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9273             { NULL, gen_helper_neon_qshl_u64 },
9274         };
9275         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9276         int maxpass = is_q ? 2 : 1;
9277 
9278         for (pass = 0; pass < maxpass; pass++) {
9279             TCGv_i64 tcg_op = tcg_temp_new_i64();
9280 
9281             read_vec_element(s, tcg_op, rn, pass, MO_64);
9282             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9283             write_vec_element(s, tcg_op, rd, pass, MO_64);
9284         }
9285         clear_vec_high(s, is_q, rd);
9286     } else {
9287         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9288         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9289             {
9290                 { gen_helper_neon_qshl_s8,
9291                   gen_helper_neon_qshl_s16,
9292                   gen_helper_neon_qshl_s32 },
9293                 { gen_helper_neon_qshlu_s8,
9294                   gen_helper_neon_qshlu_s16,
9295                   gen_helper_neon_qshlu_s32 }
9296             }, {
9297                 { NULL, NULL, NULL },
9298                 { gen_helper_neon_qshl_u8,
9299                   gen_helper_neon_qshl_u16,
9300                   gen_helper_neon_qshl_u32 }
9301             }
9302         };
9303         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9304         MemOp memop = scalar ? size : MO_32;
9305         int maxpass = scalar ? 1 : is_q ? 4 : 2;
9306 
9307         for (pass = 0; pass < maxpass; pass++) {
9308             TCGv_i32 tcg_op = tcg_temp_new_i32();
9309 
9310             read_vec_element_i32(s, tcg_op, rn, pass, memop);
9311             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9312             if (scalar) {
9313                 switch (size) {
9314                 case 0:
9315                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
9316                     break;
9317                 case 1:
9318                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9319                     break;
9320                 case 2:
9321                     break;
9322                 default:
9323                     g_assert_not_reached();
9324                 }
9325                 write_fp_sreg(s, rd, tcg_op);
9326             } else {
9327                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9328             }
9329         }
9330 
9331         if (!scalar) {
9332             clear_vec_high(s, is_q, rd);
9333         }
9334     }
9335 }
9336 
9337 /* Common vector code for handling integer to FP conversion */
9338 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9339                                    int elements, int is_signed,
9340                                    int fracbits, int size)
9341 {
9342     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9343     TCGv_i32 tcg_shift = NULL;
9344 
9345     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9346     int pass;
9347 
9348     if (fracbits || size == MO_64) {
9349         tcg_shift = tcg_constant_i32(fracbits);
9350     }
9351 
9352     if (size == MO_64) {
9353         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9354         TCGv_i64 tcg_double = tcg_temp_new_i64();
9355 
9356         for (pass = 0; pass < elements; pass++) {
9357             read_vec_element(s, tcg_int64, rn, pass, mop);
9358 
9359             if (is_signed) {
9360                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9361                                      tcg_shift, tcg_fpst);
9362             } else {
9363                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9364                                      tcg_shift, tcg_fpst);
9365             }
9366             if (elements == 1) {
9367                 write_fp_dreg(s, rd, tcg_double);
9368             } else {
9369                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9370             }
9371         }
9372     } else {
9373         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9374         TCGv_i32 tcg_float = tcg_temp_new_i32();
9375 
9376         for (pass = 0; pass < elements; pass++) {
9377             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9378 
9379             switch (size) {
9380             case MO_32:
9381                 if (fracbits) {
9382                     if (is_signed) {
9383                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9384                                              tcg_shift, tcg_fpst);
9385                     } else {
9386                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9387                                              tcg_shift, tcg_fpst);
9388                     }
9389                 } else {
9390                     if (is_signed) {
9391                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9392                     } else {
9393                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9394                     }
9395                 }
9396                 break;
9397             case MO_16:
9398                 if (fracbits) {
9399                     if (is_signed) {
9400                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9401                                              tcg_shift, tcg_fpst);
9402                     } else {
9403                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9404                                              tcg_shift, tcg_fpst);
9405                     }
9406                 } else {
9407                     if (is_signed) {
9408                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9409                     } else {
9410                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9411                     }
9412                 }
9413                 break;
9414             default:
9415                 g_assert_not_reached();
9416             }
9417 
9418             if (elements == 1) {
9419                 write_fp_sreg(s, rd, tcg_float);
9420             } else {
9421                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9422             }
9423         }
9424     }
9425 
9426     clear_vec_high(s, elements << size == 16, rd);
9427 }
9428 
9429 /* UCVTF/SCVTF - Integer to FP conversion */
9430 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9431                                          bool is_q, bool is_u,
9432                                          int immh, int immb, int opcode,
9433                                          int rn, int rd)
9434 {
9435     int size, elements, fracbits;
9436     int immhb = immh << 3 | immb;
9437 
9438     if (immh & 8) {
9439         size = MO_64;
9440         if (!is_scalar && !is_q) {
9441             unallocated_encoding(s);
9442             return;
9443         }
9444     } else if (immh & 4) {
9445         size = MO_32;
9446     } else if (immh & 2) {
9447         size = MO_16;
9448         if (!dc_isar_feature(aa64_fp16, s)) {
9449             unallocated_encoding(s);
9450             return;
9451         }
9452     } else {
9453         /* immh == 0 would be a failure of the decode logic */
9454         g_assert(immh == 1);
9455         unallocated_encoding(s);
9456         return;
9457     }
9458 
9459     if (is_scalar) {
9460         elements = 1;
9461     } else {
9462         elements = (8 << is_q) >> size;
9463     }
9464     fracbits = (16 << size) - immhb;
9465 
9466     if (!fp_access_check(s)) {
9467         return;
9468     }
9469 
9470     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9471 }
9472 
9473 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9474 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9475                                          bool is_q, bool is_u,
9476                                          int immh, int immb, int rn, int rd)
9477 {
9478     int immhb = immh << 3 | immb;
9479     int pass, size, fracbits;
9480     TCGv_ptr tcg_fpstatus;
9481     TCGv_i32 tcg_rmode, tcg_shift;
9482 
9483     if (immh & 0x8) {
9484         size = MO_64;
9485         if (!is_scalar && !is_q) {
9486             unallocated_encoding(s);
9487             return;
9488         }
9489     } else if (immh & 0x4) {
9490         size = MO_32;
9491     } else if (immh & 0x2) {
9492         size = MO_16;
9493         if (!dc_isar_feature(aa64_fp16, s)) {
9494             unallocated_encoding(s);
9495             return;
9496         }
9497     } else {
9498         /* Should have split out AdvSIMD modified immediate earlier.  */
9499         assert(immh == 1);
9500         unallocated_encoding(s);
9501         return;
9502     }
9503 
9504     if (!fp_access_check(s)) {
9505         return;
9506     }
9507 
9508     assert(!(is_scalar && is_q));
9509 
9510     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9511     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9512     fracbits = (16 << size) - immhb;
9513     tcg_shift = tcg_constant_i32(fracbits);
9514 
9515     if (size == MO_64) {
9516         int maxpass = is_scalar ? 1 : 2;
9517 
9518         for (pass = 0; pass < maxpass; pass++) {
9519             TCGv_i64 tcg_op = tcg_temp_new_i64();
9520 
9521             read_vec_element(s, tcg_op, rn, pass, MO_64);
9522             if (is_u) {
9523                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9524             } else {
9525                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9526             }
9527             write_vec_element(s, tcg_op, rd, pass, MO_64);
9528         }
9529         clear_vec_high(s, is_q, rd);
9530     } else {
9531         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9532         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9533 
9534         switch (size) {
9535         case MO_16:
9536             if (is_u) {
9537                 fn = gen_helper_vfp_touhh;
9538             } else {
9539                 fn = gen_helper_vfp_toshh;
9540             }
9541             break;
9542         case MO_32:
9543             if (is_u) {
9544                 fn = gen_helper_vfp_touls;
9545             } else {
9546                 fn = gen_helper_vfp_tosls;
9547             }
9548             break;
9549         default:
9550             g_assert_not_reached();
9551         }
9552 
9553         for (pass = 0; pass < maxpass; pass++) {
9554             TCGv_i32 tcg_op = tcg_temp_new_i32();
9555 
9556             read_vec_element_i32(s, tcg_op, rn, pass, size);
9557             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9558             if (is_scalar) {
9559                 if (size == MO_16 && !is_u) {
9560                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9561                 }
9562                 write_fp_sreg(s, rd, tcg_op);
9563             } else {
9564                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9565             }
9566         }
9567         if (!is_scalar) {
9568             clear_vec_high(s, is_q, rd);
9569         }
9570     }
9571 
9572     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9573 }
9574 
9575 /* AdvSIMD scalar shift by immediate
9576  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9577  * +-----+---+-------------+------+------+--------+---+------+------+
9578  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9579  * +-----+---+-------------+------+------+--------+---+------+------+
9580  *
9581  * This is the scalar version so it works on a fixed sized registers
9582  */
9583 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9584 {
9585     int rd = extract32(insn, 0, 5);
9586     int rn = extract32(insn, 5, 5);
9587     int opcode = extract32(insn, 11, 5);
9588     int immb = extract32(insn, 16, 3);
9589     int immh = extract32(insn, 19, 4);
9590     bool is_u = extract32(insn, 29, 1);
9591 
9592     if (immh == 0) {
9593         unallocated_encoding(s);
9594         return;
9595     }
9596 
9597     switch (opcode) {
9598     case 0x08: /* SRI */
9599         if (!is_u) {
9600             unallocated_encoding(s);
9601             return;
9602         }
9603         /* fall through */
9604     case 0x00: /* SSHR / USHR */
9605     case 0x02: /* SSRA / USRA */
9606     case 0x04: /* SRSHR / URSHR */
9607     case 0x06: /* SRSRA / URSRA */
9608         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9609         break;
9610     case 0x0a: /* SHL / SLI */
9611         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9612         break;
9613     case 0x1c: /* SCVTF, UCVTF */
9614         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9615                                      opcode, rn, rd);
9616         break;
9617     case 0x10: /* SQSHRUN, SQSHRUN2 */
9618     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9619         if (!is_u) {
9620             unallocated_encoding(s);
9621             return;
9622         }
9623         handle_vec_simd_sqshrn(s, true, false, false, true,
9624                                immh, immb, opcode, rn, rd);
9625         break;
9626     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9627     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9628         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9629                                immh, immb, opcode, rn, rd);
9630         break;
9631     case 0xc: /* SQSHLU */
9632         if (!is_u) {
9633             unallocated_encoding(s);
9634             return;
9635         }
9636         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9637         break;
9638     case 0xe: /* SQSHL, UQSHL */
9639         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9640         break;
9641     case 0x1f: /* FCVTZS, FCVTZU */
9642         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9643         break;
9644     default:
9645         unallocated_encoding(s);
9646         break;
9647     }
9648 }
9649 
9650 /* AdvSIMD scalar three different
9651  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9652  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9653  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9654  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9655  */
9656 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9657 {
9658     bool is_u = extract32(insn, 29, 1);
9659     int size = extract32(insn, 22, 2);
9660     int opcode = extract32(insn, 12, 4);
9661     int rm = extract32(insn, 16, 5);
9662     int rn = extract32(insn, 5, 5);
9663     int rd = extract32(insn, 0, 5);
9664 
9665     if (is_u) {
9666         unallocated_encoding(s);
9667         return;
9668     }
9669 
9670     switch (opcode) {
9671     case 0x9: /* SQDMLAL, SQDMLAL2 */
9672     case 0xb: /* SQDMLSL, SQDMLSL2 */
9673     case 0xd: /* SQDMULL, SQDMULL2 */
9674         if (size == 0 || size == 3) {
9675             unallocated_encoding(s);
9676             return;
9677         }
9678         break;
9679     default:
9680         unallocated_encoding(s);
9681         return;
9682     }
9683 
9684     if (!fp_access_check(s)) {
9685         return;
9686     }
9687 
9688     if (size == 2) {
9689         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9690         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9691         TCGv_i64 tcg_res = tcg_temp_new_i64();
9692 
9693         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9694         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9695 
9696         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9697         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9698 
9699         switch (opcode) {
9700         case 0xd: /* SQDMULL, SQDMULL2 */
9701             break;
9702         case 0xb: /* SQDMLSL, SQDMLSL2 */
9703             tcg_gen_neg_i64(tcg_res, tcg_res);
9704             /* fall through */
9705         case 0x9: /* SQDMLAL, SQDMLAL2 */
9706             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9707             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9708                                               tcg_res, tcg_op1);
9709             break;
9710         default:
9711             g_assert_not_reached();
9712         }
9713 
9714         write_fp_dreg(s, rd, tcg_res);
9715     } else {
9716         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9717         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9718         TCGv_i64 tcg_res = tcg_temp_new_i64();
9719 
9720         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9721         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9722 
9723         switch (opcode) {
9724         case 0xd: /* SQDMULL, SQDMULL2 */
9725             break;
9726         case 0xb: /* SQDMLSL, SQDMLSL2 */
9727             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9728             /* fall through */
9729         case 0x9: /* SQDMLAL, SQDMLAL2 */
9730         {
9731             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9732             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9733             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9734                                               tcg_res, tcg_op3);
9735             break;
9736         }
9737         default:
9738             g_assert_not_reached();
9739         }
9740 
9741         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9742         write_fp_dreg(s, rd, tcg_res);
9743     }
9744 }
9745 
9746 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9747                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9748                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9749 {
9750     /* Handle 64->64 opcodes which are shared between the scalar and
9751      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9752      * is valid in either group and also the double-precision fp ops.
9753      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9754      * requires them.
9755      */
9756     TCGCond cond;
9757 
9758     switch (opcode) {
9759     case 0x4: /* CLS, CLZ */
9760         if (u) {
9761             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9762         } else {
9763             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9764         }
9765         break;
9766     case 0x5: /* NOT */
9767         /* This opcode is shared with CNT and RBIT but we have earlier
9768          * enforced that size == 3 if and only if this is the NOT insn.
9769          */
9770         tcg_gen_not_i64(tcg_rd, tcg_rn);
9771         break;
9772     case 0x7: /* SQABS, SQNEG */
9773         if (u) {
9774             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9775         } else {
9776             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9777         }
9778         break;
9779     case 0xa: /* CMLT */
9780         cond = TCG_COND_LT;
9781     do_cmop:
9782         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9783         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9784         break;
9785     case 0x8: /* CMGT, CMGE */
9786         cond = u ? TCG_COND_GE : TCG_COND_GT;
9787         goto do_cmop;
9788     case 0x9: /* CMEQ, CMLE */
9789         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9790         goto do_cmop;
9791     case 0xb: /* ABS, NEG */
9792         if (u) {
9793             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9794         } else {
9795             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9796         }
9797         break;
9798     case 0x2f: /* FABS */
9799         gen_vfp_absd(tcg_rd, tcg_rn);
9800         break;
9801     case 0x6f: /* FNEG */
9802         gen_vfp_negd(tcg_rd, tcg_rn);
9803         break;
9804     case 0x7f: /* FSQRT */
9805         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9806         break;
9807     case 0x1a: /* FCVTNS */
9808     case 0x1b: /* FCVTMS */
9809     case 0x1c: /* FCVTAS */
9810     case 0x3a: /* FCVTPS */
9811     case 0x3b: /* FCVTZS */
9812         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9813         break;
9814     case 0x5a: /* FCVTNU */
9815     case 0x5b: /* FCVTMU */
9816     case 0x5c: /* FCVTAU */
9817     case 0x7a: /* FCVTPU */
9818     case 0x7b: /* FCVTZU */
9819         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9820         break;
9821     case 0x18: /* FRINTN */
9822     case 0x19: /* FRINTM */
9823     case 0x38: /* FRINTP */
9824     case 0x39: /* FRINTZ */
9825     case 0x58: /* FRINTA */
9826     case 0x79: /* FRINTI */
9827         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9828         break;
9829     case 0x59: /* FRINTX */
9830         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9831         break;
9832     case 0x1e: /* FRINT32Z */
9833     case 0x5e: /* FRINT32X */
9834         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9835         break;
9836     case 0x1f: /* FRINT64Z */
9837     case 0x5f: /* FRINT64X */
9838         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9839         break;
9840     default:
9841         g_assert_not_reached();
9842     }
9843 }
9844 
9845 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9846                                    bool is_scalar, bool is_u, bool is_q,
9847                                    int size, int rn, int rd)
9848 {
9849     bool is_double = (size == MO_64);
9850     TCGv_ptr fpst;
9851 
9852     if (!fp_access_check(s)) {
9853         return;
9854     }
9855 
9856     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9857 
9858     if (is_double) {
9859         TCGv_i64 tcg_op = tcg_temp_new_i64();
9860         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9861         TCGv_i64 tcg_res = tcg_temp_new_i64();
9862         NeonGenTwoDoubleOpFn *genfn;
9863         bool swap = false;
9864         int pass;
9865 
9866         switch (opcode) {
9867         case 0x2e: /* FCMLT (zero) */
9868             swap = true;
9869             /* fallthrough */
9870         case 0x2c: /* FCMGT (zero) */
9871             genfn = gen_helper_neon_cgt_f64;
9872             break;
9873         case 0x2d: /* FCMEQ (zero) */
9874             genfn = gen_helper_neon_ceq_f64;
9875             break;
9876         case 0x6d: /* FCMLE (zero) */
9877             swap = true;
9878             /* fall through */
9879         case 0x6c: /* FCMGE (zero) */
9880             genfn = gen_helper_neon_cge_f64;
9881             break;
9882         default:
9883             g_assert_not_reached();
9884         }
9885 
9886         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9887             read_vec_element(s, tcg_op, rn, pass, MO_64);
9888             if (swap) {
9889                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9890             } else {
9891                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9892             }
9893             write_vec_element(s, tcg_res, rd, pass, MO_64);
9894         }
9895 
9896         clear_vec_high(s, !is_scalar, rd);
9897     } else {
9898         TCGv_i32 tcg_op = tcg_temp_new_i32();
9899         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9900         TCGv_i32 tcg_res = tcg_temp_new_i32();
9901         NeonGenTwoSingleOpFn *genfn;
9902         bool swap = false;
9903         int pass, maxpasses;
9904 
9905         if (size == MO_16) {
9906             switch (opcode) {
9907             case 0x2e: /* FCMLT (zero) */
9908                 swap = true;
9909                 /* fall through */
9910             case 0x2c: /* FCMGT (zero) */
9911                 genfn = gen_helper_advsimd_cgt_f16;
9912                 break;
9913             case 0x2d: /* FCMEQ (zero) */
9914                 genfn = gen_helper_advsimd_ceq_f16;
9915                 break;
9916             case 0x6d: /* FCMLE (zero) */
9917                 swap = true;
9918                 /* fall through */
9919             case 0x6c: /* FCMGE (zero) */
9920                 genfn = gen_helper_advsimd_cge_f16;
9921                 break;
9922             default:
9923                 g_assert_not_reached();
9924             }
9925         } else {
9926             switch (opcode) {
9927             case 0x2e: /* FCMLT (zero) */
9928                 swap = true;
9929                 /* fall through */
9930             case 0x2c: /* FCMGT (zero) */
9931                 genfn = gen_helper_neon_cgt_f32;
9932                 break;
9933             case 0x2d: /* FCMEQ (zero) */
9934                 genfn = gen_helper_neon_ceq_f32;
9935                 break;
9936             case 0x6d: /* FCMLE (zero) */
9937                 swap = true;
9938                 /* fall through */
9939             case 0x6c: /* FCMGE (zero) */
9940                 genfn = gen_helper_neon_cge_f32;
9941                 break;
9942             default:
9943                 g_assert_not_reached();
9944             }
9945         }
9946 
9947         if (is_scalar) {
9948             maxpasses = 1;
9949         } else {
9950             int vector_size = 8 << is_q;
9951             maxpasses = vector_size >> size;
9952         }
9953 
9954         for (pass = 0; pass < maxpasses; pass++) {
9955             read_vec_element_i32(s, tcg_op, rn, pass, size);
9956             if (swap) {
9957                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9958             } else {
9959                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9960             }
9961             if (is_scalar) {
9962                 write_fp_sreg(s, rd, tcg_res);
9963             } else {
9964                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9965             }
9966         }
9967 
9968         if (!is_scalar) {
9969             clear_vec_high(s, is_q, rd);
9970         }
9971     }
9972 }
9973 
9974 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9975                                     bool is_scalar, bool is_u, bool is_q,
9976                                     int size, int rn, int rd)
9977 {
9978     bool is_double = (size == 3);
9979     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9980 
9981     if (is_double) {
9982         TCGv_i64 tcg_op = tcg_temp_new_i64();
9983         TCGv_i64 tcg_res = tcg_temp_new_i64();
9984         int pass;
9985 
9986         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9987             read_vec_element(s, tcg_op, rn, pass, MO_64);
9988             switch (opcode) {
9989             case 0x3d: /* FRECPE */
9990                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9991                 break;
9992             case 0x3f: /* FRECPX */
9993                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9994                 break;
9995             case 0x7d: /* FRSQRTE */
9996                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9997                 break;
9998             default:
9999                 g_assert_not_reached();
10000             }
10001             write_vec_element(s, tcg_res, rd, pass, MO_64);
10002         }
10003         clear_vec_high(s, !is_scalar, rd);
10004     } else {
10005         TCGv_i32 tcg_op = tcg_temp_new_i32();
10006         TCGv_i32 tcg_res = tcg_temp_new_i32();
10007         int pass, maxpasses;
10008 
10009         if (is_scalar) {
10010             maxpasses = 1;
10011         } else {
10012             maxpasses = is_q ? 4 : 2;
10013         }
10014 
10015         for (pass = 0; pass < maxpasses; pass++) {
10016             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10017 
10018             switch (opcode) {
10019             case 0x3c: /* URECPE */
10020                 gen_helper_recpe_u32(tcg_res, tcg_op);
10021                 break;
10022             case 0x3d: /* FRECPE */
10023                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10024                 break;
10025             case 0x3f: /* FRECPX */
10026                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10027                 break;
10028             case 0x7d: /* FRSQRTE */
10029                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10030                 break;
10031             default:
10032                 g_assert_not_reached();
10033             }
10034 
10035             if (is_scalar) {
10036                 write_fp_sreg(s, rd, tcg_res);
10037             } else {
10038                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10039             }
10040         }
10041         if (!is_scalar) {
10042             clear_vec_high(s, is_q, rd);
10043         }
10044     }
10045 }
10046 
10047 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10048                                 int opcode, bool u, bool is_q,
10049                                 int size, int rn, int rd)
10050 {
10051     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10052      * in the source becomes a size element in the destination).
10053      */
10054     int pass;
10055     TCGv_i32 tcg_res[2];
10056     int destelt = is_q ? 2 : 0;
10057     int passes = scalar ? 1 : 2;
10058 
10059     if (scalar) {
10060         tcg_res[1] = tcg_constant_i32(0);
10061     }
10062 
10063     for (pass = 0; pass < passes; pass++) {
10064         TCGv_i64 tcg_op = tcg_temp_new_i64();
10065         NeonGenNarrowFn *genfn = NULL;
10066         NeonGenNarrowEnvFn *genenvfn = NULL;
10067 
10068         if (scalar) {
10069             read_vec_element(s, tcg_op, rn, pass, size + 1);
10070         } else {
10071             read_vec_element(s, tcg_op, rn, pass, MO_64);
10072         }
10073         tcg_res[pass] = tcg_temp_new_i32();
10074 
10075         switch (opcode) {
10076         case 0x12: /* XTN, SQXTUN */
10077         {
10078             static NeonGenNarrowFn * const xtnfns[3] = {
10079                 gen_helper_neon_narrow_u8,
10080                 gen_helper_neon_narrow_u16,
10081                 tcg_gen_extrl_i64_i32,
10082             };
10083             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10084                 gen_helper_neon_unarrow_sat8,
10085                 gen_helper_neon_unarrow_sat16,
10086                 gen_helper_neon_unarrow_sat32,
10087             };
10088             if (u) {
10089                 genenvfn = sqxtunfns[size];
10090             } else {
10091                 genfn = xtnfns[size];
10092             }
10093             break;
10094         }
10095         case 0x14: /* SQXTN, UQXTN */
10096         {
10097             static NeonGenNarrowEnvFn * const fns[3][2] = {
10098                 { gen_helper_neon_narrow_sat_s8,
10099                   gen_helper_neon_narrow_sat_u8 },
10100                 { gen_helper_neon_narrow_sat_s16,
10101                   gen_helper_neon_narrow_sat_u16 },
10102                 { gen_helper_neon_narrow_sat_s32,
10103                   gen_helper_neon_narrow_sat_u32 },
10104             };
10105             genenvfn = fns[size][u];
10106             break;
10107         }
10108         case 0x16: /* FCVTN, FCVTN2 */
10109             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10110             if (size == 2) {
10111                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10112             } else {
10113                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10114                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10115                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10116                 TCGv_i32 ahp = get_ahp_flag();
10117 
10118                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10119                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10120                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10121                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10122             }
10123             break;
10124         case 0x36: /* BFCVTN, BFCVTN2 */
10125             {
10126                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10127                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10128             }
10129             break;
10130         case 0x56:  /* FCVTXN, FCVTXN2 */
10131             /* 64 bit to 32 bit float conversion
10132              * with von Neumann rounding (round to odd)
10133              */
10134             assert(size == 2);
10135             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10136             break;
10137         default:
10138             g_assert_not_reached();
10139         }
10140 
10141         if (genfn) {
10142             genfn(tcg_res[pass], tcg_op);
10143         } else if (genenvfn) {
10144             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10145         }
10146     }
10147 
10148     for (pass = 0; pass < 2; pass++) {
10149         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10150     }
10151     clear_vec_high(s, is_q, rd);
10152 }
10153 
10154 /* AdvSIMD scalar two reg misc
10155  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10156  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10157  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10158  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10159  */
10160 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10161 {
10162     int rd = extract32(insn, 0, 5);
10163     int rn = extract32(insn, 5, 5);
10164     int opcode = extract32(insn, 12, 5);
10165     int size = extract32(insn, 22, 2);
10166     bool u = extract32(insn, 29, 1);
10167     bool is_fcvt = false;
10168     int rmode;
10169     TCGv_i32 tcg_rmode;
10170     TCGv_ptr tcg_fpstatus;
10171 
10172     switch (opcode) {
10173     case 0x7: /* SQABS / SQNEG */
10174         break;
10175     case 0xa: /* CMLT */
10176         if (u) {
10177             unallocated_encoding(s);
10178             return;
10179         }
10180         /* fall through */
10181     case 0x8: /* CMGT, CMGE */
10182     case 0x9: /* CMEQ, CMLE */
10183     case 0xb: /* ABS, NEG */
10184         if (size != 3) {
10185             unallocated_encoding(s);
10186             return;
10187         }
10188         break;
10189     case 0x12: /* SQXTUN */
10190         if (!u) {
10191             unallocated_encoding(s);
10192             return;
10193         }
10194         /* fall through */
10195     case 0x14: /* SQXTN, UQXTN */
10196         if (size == 3) {
10197             unallocated_encoding(s);
10198             return;
10199         }
10200         if (!fp_access_check(s)) {
10201             return;
10202         }
10203         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10204         return;
10205     case 0xc ... 0xf:
10206     case 0x16 ... 0x1d:
10207     case 0x1f:
10208         /* Floating point: U, size[1] and opcode indicate operation;
10209          * size[0] indicates single or double precision.
10210          */
10211         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10212         size = extract32(size, 0, 1) ? 3 : 2;
10213         switch (opcode) {
10214         case 0x2c: /* FCMGT (zero) */
10215         case 0x2d: /* FCMEQ (zero) */
10216         case 0x2e: /* FCMLT (zero) */
10217         case 0x6c: /* FCMGE (zero) */
10218         case 0x6d: /* FCMLE (zero) */
10219             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10220             return;
10221         case 0x1d: /* SCVTF */
10222         case 0x5d: /* UCVTF */
10223         {
10224             bool is_signed = (opcode == 0x1d);
10225             if (!fp_access_check(s)) {
10226                 return;
10227             }
10228             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10229             return;
10230         }
10231         case 0x3d: /* FRECPE */
10232         case 0x3f: /* FRECPX */
10233         case 0x7d: /* FRSQRTE */
10234             if (!fp_access_check(s)) {
10235                 return;
10236             }
10237             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10238             return;
10239         case 0x1a: /* FCVTNS */
10240         case 0x1b: /* FCVTMS */
10241         case 0x3a: /* FCVTPS */
10242         case 0x3b: /* FCVTZS */
10243         case 0x5a: /* FCVTNU */
10244         case 0x5b: /* FCVTMU */
10245         case 0x7a: /* FCVTPU */
10246         case 0x7b: /* FCVTZU */
10247             is_fcvt = true;
10248             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10249             break;
10250         case 0x1c: /* FCVTAS */
10251         case 0x5c: /* FCVTAU */
10252             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10253             is_fcvt = true;
10254             rmode = FPROUNDING_TIEAWAY;
10255             break;
10256         case 0x56: /* FCVTXN, FCVTXN2 */
10257             if (size == 2) {
10258                 unallocated_encoding(s);
10259                 return;
10260             }
10261             if (!fp_access_check(s)) {
10262                 return;
10263             }
10264             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10265             return;
10266         default:
10267             unallocated_encoding(s);
10268             return;
10269         }
10270         break;
10271     default:
10272     case 0x3: /* USQADD / SUQADD */
10273         unallocated_encoding(s);
10274         return;
10275     }
10276 
10277     if (!fp_access_check(s)) {
10278         return;
10279     }
10280 
10281     if (is_fcvt) {
10282         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10283         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10284     } else {
10285         tcg_fpstatus = NULL;
10286         tcg_rmode = NULL;
10287     }
10288 
10289     if (size == 3) {
10290         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10291         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10292 
10293         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10294         write_fp_dreg(s, rd, tcg_rd);
10295     } else {
10296         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10297         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10298 
10299         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10300 
10301         switch (opcode) {
10302         case 0x7: /* SQABS, SQNEG */
10303         {
10304             NeonGenOneOpEnvFn *genfn;
10305             static NeonGenOneOpEnvFn * const fns[3][2] = {
10306                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10307                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10308                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10309             };
10310             genfn = fns[size][u];
10311             genfn(tcg_rd, tcg_env, tcg_rn);
10312             break;
10313         }
10314         case 0x1a: /* FCVTNS */
10315         case 0x1b: /* FCVTMS */
10316         case 0x1c: /* FCVTAS */
10317         case 0x3a: /* FCVTPS */
10318         case 0x3b: /* FCVTZS */
10319             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10320                                  tcg_fpstatus);
10321             break;
10322         case 0x5a: /* FCVTNU */
10323         case 0x5b: /* FCVTMU */
10324         case 0x5c: /* FCVTAU */
10325         case 0x7a: /* FCVTPU */
10326         case 0x7b: /* FCVTZU */
10327             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10328                                  tcg_fpstatus);
10329             break;
10330         default:
10331             g_assert_not_reached();
10332         }
10333 
10334         write_fp_sreg(s, rd, tcg_rd);
10335     }
10336 
10337     if (is_fcvt) {
10338         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10339     }
10340 }
10341 
10342 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10343 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10344                                  int immh, int immb, int opcode, int rn, int rd)
10345 {
10346     int size = 32 - clz32(immh) - 1;
10347     int immhb = immh << 3 | immb;
10348     int shift = 2 * (8 << size) - immhb;
10349     GVecGen2iFn *gvec_fn;
10350 
10351     if (extract32(immh, 3, 1) && !is_q) {
10352         unallocated_encoding(s);
10353         return;
10354     }
10355     tcg_debug_assert(size <= 3);
10356 
10357     if (!fp_access_check(s)) {
10358         return;
10359     }
10360 
10361     switch (opcode) {
10362     case 0x02: /* SSRA / USRA (accumulate) */
10363         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10364         break;
10365 
10366     case 0x08: /* SRI */
10367         gvec_fn = gen_gvec_sri;
10368         break;
10369 
10370     case 0x00: /* SSHR / USHR */
10371         if (is_u) {
10372             if (shift == 8 << size) {
10373                 /* Shift count the same size as element size produces zero.  */
10374                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10375                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10376                 return;
10377             }
10378             gvec_fn = tcg_gen_gvec_shri;
10379         } else {
10380             /* Shift count the same size as element size produces all sign.  */
10381             if (shift == 8 << size) {
10382                 shift -= 1;
10383             }
10384             gvec_fn = tcg_gen_gvec_sari;
10385         }
10386         break;
10387 
10388     case 0x04: /* SRSHR / URSHR (rounding) */
10389         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10390         break;
10391 
10392     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10393         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10394         break;
10395 
10396     default:
10397         g_assert_not_reached();
10398     }
10399 
10400     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10401 }
10402 
10403 /* SHL/SLI - Vector shift left */
10404 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10405                                  int immh, int immb, int opcode, int rn, int rd)
10406 {
10407     int size = 32 - clz32(immh) - 1;
10408     int immhb = immh << 3 | immb;
10409     int shift = immhb - (8 << size);
10410 
10411     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10412     assert(size >= 0 && size <= 3);
10413 
10414     if (extract32(immh, 3, 1) && !is_q) {
10415         unallocated_encoding(s);
10416         return;
10417     }
10418 
10419     if (!fp_access_check(s)) {
10420         return;
10421     }
10422 
10423     if (insert) {
10424         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10425     } else {
10426         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10427     }
10428 }
10429 
10430 /* USHLL/SHLL - Vector shift left with widening */
10431 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10432                                  int immh, int immb, int opcode, int rn, int rd)
10433 {
10434     int size = 32 - clz32(immh) - 1;
10435     int immhb = immh << 3 | immb;
10436     int shift = immhb - (8 << size);
10437     int dsize = 64;
10438     int esize = 8 << size;
10439     int elements = dsize/esize;
10440     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10441     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10442     int i;
10443 
10444     if (size >= 3) {
10445         unallocated_encoding(s);
10446         return;
10447     }
10448 
10449     if (!fp_access_check(s)) {
10450         return;
10451     }
10452 
10453     /* For the LL variants the store is larger than the load,
10454      * so if rd == rn we would overwrite parts of our input.
10455      * So load everything right now and use shifts in the main loop.
10456      */
10457     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10458 
10459     for (i = 0; i < elements; i++) {
10460         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10461         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10462         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10463         write_vec_element(s, tcg_rd, rd, i, size + 1);
10464     }
10465 }
10466 
10467 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10468 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10469                                  int immh, int immb, int opcode, int rn, int rd)
10470 {
10471     int immhb = immh << 3 | immb;
10472     int size = 32 - clz32(immh) - 1;
10473     int dsize = 64;
10474     int esize = 8 << size;
10475     int elements = dsize/esize;
10476     int shift = (2 * esize) - immhb;
10477     bool round = extract32(opcode, 0, 1);
10478     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10479     TCGv_i64 tcg_round;
10480     int i;
10481 
10482     if (extract32(immh, 3, 1)) {
10483         unallocated_encoding(s);
10484         return;
10485     }
10486 
10487     if (!fp_access_check(s)) {
10488         return;
10489     }
10490 
10491     tcg_rn = tcg_temp_new_i64();
10492     tcg_rd = tcg_temp_new_i64();
10493     tcg_final = tcg_temp_new_i64();
10494     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10495 
10496     if (round) {
10497         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10498     } else {
10499         tcg_round = NULL;
10500     }
10501 
10502     for (i = 0; i < elements; i++) {
10503         read_vec_element(s, tcg_rn, rn, i, size+1);
10504         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10505                                 false, true, size+1, shift);
10506 
10507         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10508     }
10509 
10510     if (!is_q) {
10511         write_vec_element(s, tcg_final, rd, 0, MO_64);
10512     } else {
10513         write_vec_element(s, tcg_final, rd, 1, MO_64);
10514     }
10515 
10516     clear_vec_high(s, is_q, rd);
10517 }
10518 
10519 
10520 /* AdvSIMD shift by immediate
10521  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10522  * +---+---+---+-------------+------+------+--------+---+------+------+
10523  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10524  * +---+---+---+-------------+------+------+--------+---+------+------+
10525  */
10526 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10527 {
10528     int rd = extract32(insn, 0, 5);
10529     int rn = extract32(insn, 5, 5);
10530     int opcode = extract32(insn, 11, 5);
10531     int immb = extract32(insn, 16, 3);
10532     int immh = extract32(insn, 19, 4);
10533     bool is_u = extract32(insn, 29, 1);
10534     bool is_q = extract32(insn, 30, 1);
10535 
10536     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10537     assert(immh != 0);
10538 
10539     switch (opcode) {
10540     case 0x08: /* SRI */
10541         if (!is_u) {
10542             unallocated_encoding(s);
10543             return;
10544         }
10545         /* fall through */
10546     case 0x00: /* SSHR / USHR */
10547     case 0x02: /* SSRA / USRA (accumulate) */
10548     case 0x04: /* SRSHR / URSHR (rounding) */
10549     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10550         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10551         break;
10552     case 0x0a: /* SHL / SLI */
10553         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10554         break;
10555     case 0x10: /* SHRN */
10556     case 0x11: /* RSHRN / SQRSHRUN */
10557         if (is_u) {
10558             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10559                                    opcode, rn, rd);
10560         } else {
10561             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10562         }
10563         break;
10564     case 0x12: /* SQSHRN / UQSHRN */
10565     case 0x13: /* SQRSHRN / UQRSHRN */
10566         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10567                                opcode, rn, rd);
10568         break;
10569     case 0x14: /* SSHLL / USHLL */
10570         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10571         break;
10572     case 0x1c: /* SCVTF / UCVTF */
10573         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10574                                      opcode, rn, rd);
10575         break;
10576     case 0xc: /* SQSHLU */
10577         if (!is_u) {
10578             unallocated_encoding(s);
10579             return;
10580         }
10581         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10582         break;
10583     case 0xe: /* SQSHL, UQSHL */
10584         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10585         break;
10586     case 0x1f: /* FCVTZS/ FCVTZU */
10587         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10588         return;
10589     default:
10590         unallocated_encoding(s);
10591         return;
10592     }
10593 }
10594 
10595 /* Generate code to do a "long" addition or subtraction, ie one done in
10596  * TCGv_i64 on vector lanes twice the width specified by size.
10597  */
10598 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10599                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10600 {
10601     static NeonGenTwo64OpFn * const fns[3][2] = {
10602         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10603         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10604         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10605     };
10606     NeonGenTwo64OpFn *genfn;
10607     assert(size < 3);
10608 
10609     genfn = fns[size][is_sub];
10610     genfn(tcg_res, tcg_op1, tcg_op2);
10611 }
10612 
10613 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10614                                 int opcode, int rd, int rn, int rm)
10615 {
10616     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10617     TCGv_i64 tcg_res[2];
10618     int pass, accop;
10619 
10620     tcg_res[0] = tcg_temp_new_i64();
10621     tcg_res[1] = tcg_temp_new_i64();
10622 
10623     /* Does this op do an adding accumulate, a subtracting accumulate,
10624      * or no accumulate at all?
10625      */
10626     switch (opcode) {
10627     case 5:
10628     case 8:
10629     case 9:
10630         accop = 1;
10631         break;
10632     case 10:
10633     case 11:
10634         accop = -1;
10635         break;
10636     default:
10637         accop = 0;
10638         break;
10639     }
10640 
10641     if (accop != 0) {
10642         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10643         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10644     }
10645 
10646     /* size == 2 means two 32x32->64 operations; this is worth special
10647      * casing because we can generally handle it inline.
10648      */
10649     if (size == 2) {
10650         for (pass = 0; pass < 2; pass++) {
10651             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10652             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10653             TCGv_i64 tcg_passres;
10654             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10655 
10656             int elt = pass + is_q * 2;
10657 
10658             read_vec_element(s, tcg_op1, rn, elt, memop);
10659             read_vec_element(s, tcg_op2, rm, elt, memop);
10660 
10661             if (accop == 0) {
10662                 tcg_passres = tcg_res[pass];
10663             } else {
10664                 tcg_passres = tcg_temp_new_i64();
10665             }
10666 
10667             switch (opcode) {
10668             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10669                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10670                 break;
10671             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10672                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10673                 break;
10674             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10675             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10676             {
10677                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10678                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10679 
10680                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10681                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10682                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10683                                     tcg_passres,
10684                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10685                 break;
10686             }
10687             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10688             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10689             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10690                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10691                 break;
10692             case 9: /* SQDMLAL, SQDMLAL2 */
10693             case 11: /* SQDMLSL, SQDMLSL2 */
10694             case 13: /* SQDMULL, SQDMULL2 */
10695                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10696                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10697                                                   tcg_passres, tcg_passres);
10698                 break;
10699             default:
10700                 g_assert_not_reached();
10701             }
10702 
10703             if (opcode == 9 || opcode == 11) {
10704                 /* saturating accumulate ops */
10705                 if (accop < 0) {
10706                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10707                 }
10708                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10709                                                   tcg_res[pass], tcg_passres);
10710             } else if (accop > 0) {
10711                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10712             } else if (accop < 0) {
10713                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10714             }
10715         }
10716     } else {
10717         /* size 0 or 1, generally helper functions */
10718         for (pass = 0; pass < 2; pass++) {
10719             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10720             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10721             TCGv_i64 tcg_passres;
10722             int elt = pass + is_q * 2;
10723 
10724             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10725             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10726 
10727             if (accop == 0) {
10728                 tcg_passres = tcg_res[pass];
10729             } else {
10730                 tcg_passres = tcg_temp_new_i64();
10731             }
10732 
10733             switch (opcode) {
10734             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10735             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10736             {
10737                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10738                 static NeonGenWidenFn * const widenfns[2][2] = {
10739                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10740                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10741                 };
10742                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10743 
10744                 widenfn(tcg_op2_64, tcg_op2);
10745                 widenfn(tcg_passres, tcg_op1);
10746                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10747                               tcg_passres, tcg_op2_64);
10748                 break;
10749             }
10750             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10751             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10752                 if (size == 0) {
10753                     if (is_u) {
10754                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10755                     } else {
10756                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10757                     }
10758                 } else {
10759                     if (is_u) {
10760                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10761                     } else {
10762                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10763                     }
10764                 }
10765                 break;
10766             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10767             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10768             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10769                 if (size == 0) {
10770                     if (is_u) {
10771                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10772                     } else {
10773                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10774                     }
10775                 } else {
10776                     if (is_u) {
10777                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10778                     } else {
10779                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10780                     }
10781                 }
10782                 break;
10783             case 9: /* SQDMLAL, SQDMLAL2 */
10784             case 11: /* SQDMLSL, SQDMLSL2 */
10785             case 13: /* SQDMULL, SQDMULL2 */
10786                 assert(size == 1);
10787                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10788                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10789                                                   tcg_passres, tcg_passres);
10790                 break;
10791             default:
10792                 g_assert_not_reached();
10793             }
10794 
10795             if (accop != 0) {
10796                 if (opcode == 9 || opcode == 11) {
10797                     /* saturating accumulate ops */
10798                     if (accop < 0) {
10799                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10800                     }
10801                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10802                                                       tcg_res[pass],
10803                                                       tcg_passres);
10804                 } else {
10805                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10806                                   tcg_res[pass], tcg_passres);
10807                 }
10808             }
10809         }
10810     }
10811 
10812     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10813     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10814 }
10815 
10816 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10817                             int opcode, int rd, int rn, int rm)
10818 {
10819     TCGv_i64 tcg_res[2];
10820     int part = is_q ? 2 : 0;
10821     int pass;
10822 
10823     for (pass = 0; pass < 2; pass++) {
10824         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10825         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10826         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10827         static NeonGenWidenFn * const widenfns[3][2] = {
10828             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10829             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10830             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10831         };
10832         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10833 
10834         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10835         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10836         widenfn(tcg_op2_wide, tcg_op2);
10837         tcg_res[pass] = tcg_temp_new_i64();
10838         gen_neon_addl(size, (opcode == 3),
10839                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10840     }
10841 
10842     for (pass = 0; pass < 2; pass++) {
10843         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10844     }
10845 }
10846 
10847 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10848 {
10849     tcg_gen_addi_i64(in, in, 1U << 31);
10850     tcg_gen_extrh_i64_i32(res, in);
10851 }
10852 
10853 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10854                                  int opcode, int rd, int rn, int rm)
10855 {
10856     TCGv_i32 tcg_res[2];
10857     int part = is_q ? 2 : 0;
10858     int pass;
10859 
10860     for (pass = 0; pass < 2; pass++) {
10861         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10862         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10863         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10864         static NeonGenNarrowFn * const narrowfns[3][2] = {
10865             { gen_helper_neon_narrow_high_u8,
10866               gen_helper_neon_narrow_round_high_u8 },
10867             { gen_helper_neon_narrow_high_u16,
10868               gen_helper_neon_narrow_round_high_u16 },
10869             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10870         };
10871         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10872 
10873         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10874         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10875 
10876         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10877 
10878         tcg_res[pass] = tcg_temp_new_i32();
10879         gennarrow(tcg_res[pass], tcg_wideres);
10880     }
10881 
10882     for (pass = 0; pass < 2; pass++) {
10883         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10884     }
10885     clear_vec_high(s, is_q, rd);
10886 }
10887 
10888 /* AdvSIMD three different
10889  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10890  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10891  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10892  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10893  */
10894 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10895 {
10896     /* Instructions in this group fall into three basic classes
10897      * (in each case with the operation working on each element in
10898      * the input vectors):
10899      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10900      *     128 bit input)
10901      * (2) wide 64 x 128 -> 128
10902      * (3) narrowing 128 x 128 -> 64
10903      * Here we do initial decode, catch unallocated cases and
10904      * dispatch to separate functions for each class.
10905      */
10906     int is_q = extract32(insn, 30, 1);
10907     int is_u = extract32(insn, 29, 1);
10908     int size = extract32(insn, 22, 2);
10909     int opcode = extract32(insn, 12, 4);
10910     int rm = extract32(insn, 16, 5);
10911     int rn = extract32(insn, 5, 5);
10912     int rd = extract32(insn, 0, 5);
10913 
10914     switch (opcode) {
10915     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10916     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10917         /* 64 x 128 -> 128 */
10918         if (size == 3) {
10919             unallocated_encoding(s);
10920             return;
10921         }
10922         if (!fp_access_check(s)) {
10923             return;
10924         }
10925         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10926         break;
10927     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10928     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10929         /* 128 x 128 -> 64 */
10930         if (size == 3) {
10931             unallocated_encoding(s);
10932             return;
10933         }
10934         if (!fp_access_check(s)) {
10935             return;
10936         }
10937         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10938         break;
10939     case 14: /* PMULL, PMULL2 */
10940         if (is_u) {
10941             unallocated_encoding(s);
10942             return;
10943         }
10944         switch (size) {
10945         case 0: /* PMULL.P8 */
10946             if (!fp_access_check(s)) {
10947                 return;
10948             }
10949             /* The Q field specifies lo/hi half input for this insn.  */
10950             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10951                              gen_helper_neon_pmull_h);
10952             break;
10953 
10954         case 3: /* PMULL.P64 */
10955             if (!dc_isar_feature(aa64_pmull, s)) {
10956                 unallocated_encoding(s);
10957                 return;
10958             }
10959             if (!fp_access_check(s)) {
10960                 return;
10961             }
10962             /* The Q field specifies lo/hi half input for this insn.  */
10963             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10964                              gen_helper_gvec_pmull_q);
10965             break;
10966 
10967         default:
10968             unallocated_encoding(s);
10969             break;
10970         }
10971         return;
10972     case 9: /* SQDMLAL, SQDMLAL2 */
10973     case 11: /* SQDMLSL, SQDMLSL2 */
10974     case 13: /* SQDMULL, SQDMULL2 */
10975         if (is_u || size == 0) {
10976             unallocated_encoding(s);
10977             return;
10978         }
10979         /* fall through */
10980     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10981     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10982     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10983     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10984     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10985     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10986     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10987         /* 64 x 64 -> 128 */
10988         if (size == 3) {
10989             unallocated_encoding(s);
10990             return;
10991         }
10992         if (!fp_access_check(s)) {
10993             return;
10994         }
10995 
10996         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10997         break;
10998     default:
10999         /* opcode 15 not allocated */
11000         unallocated_encoding(s);
11001         break;
11002     }
11003 }
11004 
11005 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11006                                   int size, int rn, int rd)
11007 {
11008     /* Handle 2-reg-misc ops which are widening (so each size element
11009      * in the source becomes a 2*size element in the destination.
11010      * The only instruction like this is FCVTL.
11011      */
11012     int pass;
11013 
11014     if (size == 3) {
11015         /* 32 -> 64 bit fp conversion */
11016         TCGv_i64 tcg_res[2];
11017         int srcelt = is_q ? 2 : 0;
11018 
11019         for (pass = 0; pass < 2; pass++) {
11020             TCGv_i32 tcg_op = tcg_temp_new_i32();
11021             tcg_res[pass] = tcg_temp_new_i64();
11022 
11023             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11024             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11025         }
11026         for (pass = 0; pass < 2; pass++) {
11027             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11028         }
11029     } else {
11030         /* 16 -> 32 bit fp conversion */
11031         int srcelt = is_q ? 4 : 0;
11032         TCGv_i32 tcg_res[4];
11033         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11034         TCGv_i32 ahp = get_ahp_flag();
11035 
11036         for (pass = 0; pass < 4; pass++) {
11037             tcg_res[pass] = tcg_temp_new_i32();
11038 
11039             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11040             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11041                                            fpst, ahp);
11042         }
11043         for (pass = 0; pass < 4; pass++) {
11044             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11045         }
11046     }
11047 }
11048 
11049 static void handle_rev(DisasContext *s, int opcode, bool u,
11050                        bool is_q, int size, int rn, int rd)
11051 {
11052     int op = (opcode << 1) | u;
11053     int opsz = op + size;
11054     int grp_size = 3 - opsz;
11055     int dsize = is_q ? 128 : 64;
11056     int i;
11057 
11058     if (opsz >= 3) {
11059         unallocated_encoding(s);
11060         return;
11061     }
11062 
11063     if (!fp_access_check(s)) {
11064         return;
11065     }
11066 
11067     if (size == 0) {
11068         /* Special case bytes, use bswap op on each group of elements */
11069         int groups = dsize / (8 << grp_size);
11070 
11071         for (i = 0; i < groups; i++) {
11072             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11073 
11074             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11075             switch (grp_size) {
11076             case MO_16:
11077                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11078                 break;
11079             case MO_32:
11080                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11081                 break;
11082             case MO_64:
11083                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11084                 break;
11085             default:
11086                 g_assert_not_reached();
11087             }
11088             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11089         }
11090         clear_vec_high(s, is_q, rd);
11091     } else {
11092         int revmask = (1 << grp_size) - 1;
11093         int esize = 8 << size;
11094         int elements = dsize / esize;
11095         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11096         TCGv_i64 tcg_rd[2];
11097 
11098         for (i = 0; i < 2; i++) {
11099             tcg_rd[i] = tcg_temp_new_i64();
11100             tcg_gen_movi_i64(tcg_rd[i], 0);
11101         }
11102 
11103         for (i = 0; i < elements; i++) {
11104             int e_rev = (i & 0xf) ^ revmask;
11105             int w = (e_rev * esize) / 64;
11106             int o = (e_rev * esize) % 64;
11107 
11108             read_vec_element(s, tcg_rn, rn, i, size);
11109             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11110         }
11111 
11112         for (i = 0; i < 2; i++) {
11113             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11114         }
11115         clear_vec_high(s, true, rd);
11116     }
11117 }
11118 
11119 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11120                                   bool is_q, int size, int rn, int rd)
11121 {
11122     /* Implement the pairwise operations from 2-misc:
11123      * SADDLP, UADDLP, SADALP, UADALP.
11124      * These all add pairs of elements in the input to produce a
11125      * double-width result element in the output (possibly accumulating).
11126      */
11127     bool accum = (opcode == 0x6);
11128     int maxpass = is_q ? 2 : 1;
11129     int pass;
11130     TCGv_i64 tcg_res[2];
11131 
11132     if (size == 2) {
11133         /* 32 + 32 -> 64 op */
11134         MemOp memop = size + (u ? 0 : MO_SIGN);
11135 
11136         for (pass = 0; pass < maxpass; pass++) {
11137             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11138             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11139 
11140             tcg_res[pass] = tcg_temp_new_i64();
11141 
11142             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11143             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11144             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11145             if (accum) {
11146                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11147                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11148             }
11149         }
11150     } else {
11151         for (pass = 0; pass < maxpass; pass++) {
11152             TCGv_i64 tcg_op = tcg_temp_new_i64();
11153             NeonGenOne64OpFn *genfn;
11154             static NeonGenOne64OpFn * const fns[2][2] = {
11155                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11156                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11157             };
11158 
11159             genfn = fns[size][u];
11160 
11161             tcg_res[pass] = tcg_temp_new_i64();
11162 
11163             read_vec_element(s, tcg_op, rn, pass, MO_64);
11164             genfn(tcg_res[pass], tcg_op);
11165 
11166             if (accum) {
11167                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11168                 if (size == 0) {
11169                     gen_helper_neon_addl_u16(tcg_res[pass],
11170                                              tcg_res[pass], tcg_op);
11171                 } else {
11172                     gen_helper_neon_addl_u32(tcg_res[pass],
11173                                              tcg_res[pass], tcg_op);
11174                 }
11175             }
11176         }
11177     }
11178     if (!is_q) {
11179         tcg_res[1] = tcg_constant_i64(0);
11180     }
11181     for (pass = 0; pass < 2; pass++) {
11182         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11183     }
11184 }
11185 
11186 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11187 {
11188     /* Implement SHLL and SHLL2 */
11189     int pass;
11190     int part = is_q ? 2 : 0;
11191     TCGv_i64 tcg_res[2];
11192 
11193     for (pass = 0; pass < 2; pass++) {
11194         static NeonGenWidenFn * const widenfns[3] = {
11195             gen_helper_neon_widen_u8,
11196             gen_helper_neon_widen_u16,
11197             tcg_gen_extu_i32_i64,
11198         };
11199         NeonGenWidenFn *widenfn = widenfns[size];
11200         TCGv_i32 tcg_op = tcg_temp_new_i32();
11201 
11202         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11203         tcg_res[pass] = tcg_temp_new_i64();
11204         widenfn(tcg_res[pass], tcg_op);
11205         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11206     }
11207 
11208     for (pass = 0; pass < 2; pass++) {
11209         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11210     }
11211 }
11212 
11213 /* AdvSIMD two reg misc
11214  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11215  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11216  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11217  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11218  */
11219 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11220 {
11221     int size = extract32(insn, 22, 2);
11222     int opcode = extract32(insn, 12, 5);
11223     bool u = extract32(insn, 29, 1);
11224     bool is_q = extract32(insn, 30, 1);
11225     int rn = extract32(insn, 5, 5);
11226     int rd = extract32(insn, 0, 5);
11227     bool need_fpstatus = false;
11228     int rmode = -1;
11229     TCGv_i32 tcg_rmode;
11230     TCGv_ptr tcg_fpstatus;
11231 
11232     switch (opcode) {
11233     case 0x0: /* REV64, REV32 */
11234     case 0x1: /* REV16 */
11235         handle_rev(s, opcode, u, is_q, size, rn, rd);
11236         return;
11237     case 0x5: /* CNT, NOT, RBIT */
11238         if (u && size == 0) {
11239             /* NOT */
11240             break;
11241         } else if (u && size == 1) {
11242             /* RBIT */
11243             break;
11244         } else if (!u && size == 0) {
11245             /* CNT */
11246             break;
11247         }
11248         unallocated_encoding(s);
11249         return;
11250     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11251     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11252         if (size == 3) {
11253             unallocated_encoding(s);
11254             return;
11255         }
11256         if (!fp_access_check(s)) {
11257             return;
11258         }
11259 
11260         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11261         return;
11262     case 0x4: /* CLS, CLZ */
11263         if (size == 3) {
11264             unallocated_encoding(s);
11265             return;
11266         }
11267         break;
11268     case 0x2: /* SADDLP, UADDLP */
11269     case 0x6: /* SADALP, UADALP */
11270         if (size == 3) {
11271             unallocated_encoding(s);
11272             return;
11273         }
11274         if (!fp_access_check(s)) {
11275             return;
11276         }
11277         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11278         return;
11279     case 0x13: /* SHLL, SHLL2 */
11280         if (u == 0 || size == 3) {
11281             unallocated_encoding(s);
11282             return;
11283         }
11284         if (!fp_access_check(s)) {
11285             return;
11286         }
11287         handle_shll(s, is_q, size, rn, rd);
11288         return;
11289     case 0xa: /* CMLT */
11290         if (u == 1) {
11291             unallocated_encoding(s);
11292             return;
11293         }
11294         /* fall through */
11295     case 0x8: /* CMGT, CMGE */
11296     case 0x9: /* CMEQ, CMLE */
11297     case 0xb: /* ABS, NEG */
11298         if (size == 3 && !is_q) {
11299             unallocated_encoding(s);
11300             return;
11301         }
11302         break;
11303     case 0x7: /* SQABS, SQNEG */
11304         if (size == 3 && !is_q) {
11305             unallocated_encoding(s);
11306             return;
11307         }
11308         break;
11309     case 0xc ... 0xf:
11310     case 0x16 ... 0x1f:
11311     {
11312         /* Floating point: U, size[1] and opcode indicate operation;
11313          * size[0] indicates single or double precision.
11314          */
11315         int is_double = extract32(size, 0, 1);
11316         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11317         size = is_double ? 3 : 2;
11318         switch (opcode) {
11319         case 0x2f: /* FABS */
11320         case 0x6f: /* FNEG */
11321             if (size == 3 && !is_q) {
11322                 unallocated_encoding(s);
11323                 return;
11324             }
11325             break;
11326         case 0x1d: /* SCVTF */
11327         case 0x5d: /* UCVTF */
11328         {
11329             bool is_signed = (opcode == 0x1d) ? true : false;
11330             int elements = is_double ? 2 : is_q ? 4 : 2;
11331             if (is_double && !is_q) {
11332                 unallocated_encoding(s);
11333                 return;
11334             }
11335             if (!fp_access_check(s)) {
11336                 return;
11337             }
11338             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11339             return;
11340         }
11341         case 0x2c: /* FCMGT (zero) */
11342         case 0x2d: /* FCMEQ (zero) */
11343         case 0x2e: /* FCMLT (zero) */
11344         case 0x6c: /* FCMGE (zero) */
11345         case 0x6d: /* FCMLE (zero) */
11346             if (size == 3 && !is_q) {
11347                 unallocated_encoding(s);
11348                 return;
11349             }
11350             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11351             return;
11352         case 0x7f: /* FSQRT */
11353             if (size == 3 && !is_q) {
11354                 unallocated_encoding(s);
11355                 return;
11356             }
11357             break;
11358         case 0x1a: /* FCVTNS */
11359         case 0x1b: /* FCVTMS */
11360         case 0x3a: /* FCVTPS */
11361         case 0x3b: /* FCVTZS */
11362         case 0x5a: /* FCVTNU */
11363         case 0x5b: /* FCVTMU */
11364         case 0x7a: /* FCVTPU */
11365         case 0x7b: /* FCVTZU */
11366             need_fpstatus = true;
11367             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11368             if (size == 3 && !is_q) {
11369                 unallocated_encoding(s);
11370                 return;
11371             }
11372             break;
11373         case 0x5c: /* FCVTAU */
11374         case 0x1c: /* FCVTAS */
11375             need_fpstatus = true;
11376             rmode = FPROUNDING_TIEAWAY;
11377             if (size == 3 && !is_q) {
11378                 unallocated_encoding(s);
11379                 return;
11380             }
11381             break;
11382         case 0x3c: /* URECPE */
11383             if (size == 3) {
11384                 unallocated_encoding(s);
11385                 return;
11386             }
11387             /* fall through */
11388         case 0x3d: /* FRECPE */
11389         case 0x7d: /* FRSQRTE */
11390             if (size == 3 && !is_q) {
11391                 unallocated_encoding(s);
11392                 return;
11393             }
11394             if (!fp_access_check(s)) {
11395                 return;
11396             }
11397             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11398             return;
11399         case 0x56: /* FCVTXN, FCVTXN2 */
11400             if (size == 2) {
11401                 unallocated_encoding(s);
11402                 return;
11403             }
11404             /* fall through */
11405         case 0x16: /* FCVTN, FCVTN2 */
11406             /* handle_2misc_narrow does a 2*size -> size operation, but these
11407              * instructions encode the source size rather than dest size.
11408              */
11409             if (!fp_access_check(s)) {
11410                 return;
11411             }
11412             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11413             return;
11414         case 0x36: /* BFCVTN, BFCVTN2 */
11415             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11416                 unallocated_encoding(s);
11417                 return;
11418             }
11419             if (!fp_access_check(s)) {
11420                 return;
11421             }
11422             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11423             return;
11424         case 0x17: /* FCVTL, FCVTL2 */
11425             if (!fp_access_check(s)) {
11426                 return;
11427             }
11428             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11429             return;
11430         case 0x18: /* FRINTN */
11431         case 0x19: /* FRINTM */
11432         case 0x38: /* FRINTP */
11433         case 0x39: /* FRINTZ */
11434             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11435             /* fall through */
11436         case 0x59: /* FRINTX */
11437         case 0x79: /* FRINTI */
11438             need_fpstatus = true;
11439             if (size == 3 && !is_q) {
11440                 unallocated_encoding(s);
11441                 return;
11442             }
11443             break;
11444         case 0x58: /* FRINTA */
11445             rmode = FPROUNDING_TIEAWAY;
11446             need_fpstatus = true;
11447             if (size == 3 && !is_q) {
11448                 unallocated_encoding(s);
11449                 return;
11450             }
11451             break;
11452         case 0x7c: /* URSQRTE */
11453             if (size == 3) {
11454                 unallocated_encoding(s);
11455                 return;
11456             }
11457             break;
11458         case 0x1e: /* FRINT32Z */
11459         case 0x1f: /* FRINT64Z */
11460             rmode = FPROUNDING_ZERO;
11461             /* fall through */
11462         case 0x5e: /* FRINT32X */
11463         case 0x5f: /* FRINT64X */
11464             need_fpstatus = true;
11465             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11466                 unallocated_encoding(s);
11467                 return;
11468             }
11469             break;
11470         default:
11471             unallocated_encoding(s);
11472             return;
11473         }
11474         break;
11475     }
11476     default:
11477     case 0x3: /* SUQADD, USQADD */
11478         unallocated_encoding(s);
11479         return;
11480     }
11481 
11482     if (!fp_access_check(s)) {
11483         return;
11484     }
11485 
11486     if (need_fpstatus || rmode >= 0) {
11487         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11488     } else {
11489         tcg_fpstatus = NULL;
11490     }
11491     if (rmode >= 0) {
11492         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11493     } else {
11494         tcg_rmode = NULL;
11495     }
11496 
11497     switch (opcode) {
11498     case 0x5:
11499         if (u && size == 0) { /* NOT */
11500             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11501             return;
11502         }
11503         break;
11504     case 0x8: /* CMGT, CMGE */
11505         if (u) {
11506             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11507         } else {
11508             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11509         }
11510         return;
11511     case 0x9: /* CMEQ, CMLE */
11512         if (u) {
11513             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11514         } else {
11515             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11516         }
11517         return;
11518     case 0xa: /* CMLT */
11519         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11520         return;
11521     case 0xb:
11522         if (u) { /* ABS, NEG */
11523             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11524         } else {
11525             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11526         }
11527         return;
11528     }
11529 
11530     if (size == 3) {
11531         /* All 64-bit element operations can be shared with scalar 2misc */
11532         int pass;
11533 
11534         /* Coverity claims (size == 3 && !is_q) has been eliminated
11535          * from all paths leading to here.
11536          */
11537         tcg_debug_assert(is_q);
11538         for (pass = 0; pass < 2; pass++) {
11539             TCGv_i64 tcg_op = tcg_temp_new_i64();
11540             TCGv_i64 tcg_res = tcg_temp_new_i64();
11541 
11542             read_vec_element(s, tcg_op, rn, pass, MO_64);
11543 
11544             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11545                             tcg_rmode, tcg_fpstatus);
11546 
11547             write_vec_element(s, tcg_res, rd, pass, MO_64);
11548         }
11549     } else {
11550         int pass;
11551 
11552         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11553             TCGv_i32 tcg_op = tcg_temp_new_i32();
11554             TCGv_i32 tcg_res = tcg_temp_new_i32();
11555 
11556             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11557 
11558             if (size == 2) {
11559                 /* Special cases for 32 bit elements */
11560                 switch (opcode) {
11561                 case 0x4: /* CLS */
11562                     if (u) {
11563                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11564                     } else {
11565                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11566                     }
11567                     break;
11568                 case 0x7: /* SQABS, SQNEG */
11569                     if (u) {
11570                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11571                     } else {
11572                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11573                     }
11574                     break;
11575                 case 0x2f: /* FABS */
11576                     gen_vfp_abss(tcg_res, tcg_op);
11577                     break;
11578                 case 0x6f: /* FNEG */
11579                     gen_vfp_negs(tcg_res, tcg_op);
11580                     break;
11581                 case 0x7f: /* FSQRT */
11582                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11583                     break;
11584                 case 0x1a: /* FCVTNS */
11585                 case 0x1b: /* FCVTMS */
11586                 case 0x1c: /* FCVTAS */
11587                 case 0x3a: /* FCVTPS */
11588                 case 0x3b: /* FCVTZS */
11589                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11590                                          tcg_constant_i32(0), tcg_fpstatus);
11591                     break;
11592                 case 0x5a: /* FCVTNU */
11593                 case 0x5b: /* FCVTMU */
11594                 case 0x5c: /* FCVTAU */
11595                 case 0x7a: /* FCVTPU */
11596                 case 0x7b: /* FCVTZU */
11597                     gen_helper_vfp_touls(tcg_res, tcg_op,
11598                                          tcg_constant_i32(0), tcg_fpstatus);
11599                     break;
11600                 case 0x18: /* FRINTN */
11601                 case 0x19: /* FRINTM */
11602                 case 0x38: /* FRINTP */
11603                 case 0x39: /* FRINTZ */
11604                 case 0x58: /* FRINTA */
11605                 case 0x79: /* FRINTI */
11606                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11607                     break;
11608                 case 0x59: /* FRINTX */
11609                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11610                     break;
11611                 case 0x7c: /* URSQRTE */
11612                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11613                     break;
11614                 case 0x1e: /* FRINT32Z */
11615                 case 0x5e: /* FRINT32X */
11616                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11617                     break;
11618                 case 0x1f: /* FRINT64Z */
11619                 case 0x5f: /* FRINT64X */
11620                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11621                     break;
11622                 default:
11623                     g_assert_not_reached();
11624                 }
11625             } else {
11626                 /* Use helpers for 8 and 16 bit elements */
11627                 switch (opcode) {
11628                 case 0x5: /* CNT, RBIT */
11629                     /* For these two insns size is part of the opcode specifier
11630                      * (handled earlier); they always operate on byte elements.
11631                      */
11632                     if (u) {
11633                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11634                     } else {
11635                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11636                     }
11637                     break;
11638                 case 0x7: /* SQABS, SQNEG */
11639                 {
11640                     NeonGenOneOpEnvFn *genfn;
11641                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11642                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11643                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11644                     };
11645                     genfn = fns[size][u];
11646                     genfn(tcg_res, tcg_env, tcg_op);
11647                     break;
11648                 }
11649                 case 0x4: /* CLS, CLZ */
11650                     if (u) {
11651                         if (size == 0) {
11652                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11653                         } else {
11654                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11655                         }
11656                     } else {
11657                         if (size == 0) {
11658                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11659                         } else {
11660                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11661                         }
11662                     }
11663                     break;
11664                 default:
11665                     g_assert_not_reached();
11666                 }
11667             }
11668 
11669             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11670         }
11671     }
11672     clear_vec_high(s, is_q, rd);
11673 
11674     if (tcg_rmode) {
11675         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11676     }
11677 }
11678 
11679 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11680  *
11681  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11682  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11683  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11684  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11685  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11686  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11687  *
11688  * This actually covers two groups where scalar access is governed by
11689  * bit 28. A bunch of the instructions (float to integral) only exist
11690  * in the vector form and are un-allocated for the scalar decode. Also
11691  * in the scalar decode Q is always 1.
11692  */
11693 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11694 {
11695     int fpop, opcode, a, u;
11696     int rn, rd;
11697     bool is_q;
11698     bool is_scalar;
11699     bool only_in_vector = false;
11700 
11701     int pass;
11702     TCGv_i32 tcg_rmode = NULL;
11703     TCGv_ptr tcg_fpstatus = NULL;
11704     bool need_fpst = true;
11705     int rmode = -1;
11706 
11707     if (!dc_isar_feature(aa64_fp16, s)) {
11708         unallocated_encoding(s);
11709         return;
11710     }
11711 
11712     rd = extract32(insn, 0, 5);
11713     rn = extract32(insn, 5, 5);
11714 
11715     a = extract32(insn, 23, 1);
11716     u = extract32(insn, 29, 1);
11717     is_scalar = extract32(insn, 28, 1);
11718     is_q = extract32(insn, 30, 1);
11719 
11720     opcode = extract32(insn, 12, 5);
11721     fpop = deposit32(opcode, 5, 1, a);
11722     fpop = deposit32(fpop, 6, 1, u);
11723 
11724     switch (fpop) {
11725     case 0x1d: /* SCVTF */
11726     case 0x5d: /* UCVTF */
11727     {
11728         int elements;
11729 
11730         if (is_scalar) {
11731             elements = 1;
11732         } else {
11733             elements = (is_q ? 8 : 4);
11734         }
11735 
11736         if (!fp_access_check(s)) {
11737             return;
11738         }
11739         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11740         return;
11741     }
11742     break;
11743     case 0x2c: /* FCMGT (zero) */
11744     case 0x2d: /* FCMEQ (zero) */
11745     case 0x2e: /* FCMLT (zero) */
11746     case 0x6c: /* FCMGE (zero) */
11747     case 0x6d: /* FCMLE (zero) */
11748         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11749         return;
11750     case 0x3d: /* FRECPE */
11751     case 0x3f: /* FRECPX */
11752         break;
11753     case 0x18: /* FRINTN */
11754         only_in_vector = true;
11755         rmode = FPROUNDING_TIEEVEN;
11756         break;
11757     case 0x19: /* FRINTM */
11758         only_in_vector = true;
11759         rmode = FPROUNDING_NEGINF;
11760         break;
11761     case 0x38: /* FRINTP */
11762         only_in_vector = true;
11763         rmode = FPROUNDING_POSINF;
11764         break;
11765     case 0x39: /* FRINTZ */
11766         only_in_vector = true;
11767         rmode = FPROUNDING_ZERO;
11768         break;
11769     case 0x58: /* FRINTA */
11770         only_in_vector = true;
11771         rmode = FPROUNDING_TIEAWAY;
11772         break;
11773     case 0x59: /* FRINTX */
11774     case 0x79: /* FRINTI */
11775         only_in_vector = true;
11776         /* current rounding mode */
11777         break;
11778     case 0x1a: /* FCVTNS */
11779         rmode = FPROUNDING_TIEEVEN;
11780         break;
11781     case 0x1b: /* FCVTMS */
11782         rmode = FPROUNDING_NEGINF;
11783         break;
11784     case 0x1c: /* FCVTAS */
11785         rmode = FPROUNDING_TIEAWAY;
11786         break;
11787     case 0x3a: /* FCVTPS */
11788         rmode = FPROUNDING_POSINF;
11789         break;
11790     case 0x3b: /* FCVTZS */
11791         rmode = FPROUNDING_ZERO;
11792         break;
11793     case 0x5a: /* FCVTNU */
11794         rmode = FPROUNDING_TIEEVEN;
11795         break;
11796     case 0x5b: /* FCVTMU */
11797         rmode = FPROUNDING_NEGINF;
11798         break;
11799     case 0x5c: /* FCVTAU */
11800         rmode = FPROUNDING_TIEAWAY;
11801         break;
11802     case 0x7a: /* FCVTPU */
11803         rmode = FPROUNDING_POSINF;
11804         break;
11805     case 0x7b: /* FCVTZU */
11806         rmode = FPROUNDING_ZERO;
11807         break;
11808     case 0x2f: /* FABS */
11809     case 0x6f: /* FNEG */
11810         need_fpst = false;
11811         break;
11812     case 0x7d: /* FRSQRTE */
11813     case 0x7f: /* FSQRT (vector) */
11814         break;
11815     default:
11816         unallocated_encoding(s);
11817         return;
11818     }
11819 
11820 
11821     /* Check additional constraints for the scalar encoding */
11822     if (is_scalar) {
11823         if (!is_q) {
11824             unallocated_encoding(s);
11825             return;
11826         }
11827         /* FRINTxx is only in the vector form */
11828         if (only_in_vector) {
11829             unallocated_encoding(s);
11830             return;
11831         }
11832     }
11833 
11834     if (!fp_access_check(s)) {
11835         return;
11836     }
11837 
11838     if (rmode >= 0 || need_fpst) {
11839         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11840     }
11841 
11842     if (rmode >= 0) {
11843         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11844     }
11845 
11846     if (is_scalar) {
11847         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11848         TCGv_i32 tcg_res = tcg_temp_new_i32();
11849 
11850         switch (fpop) {
11851         case 0x1a: /* FCVTNS */
11852         case 0x1b: /* FCVTMS */
11853         case 0x1c: /* FCVTAS */
11854         case 0x3a: /* FCVTPS */
11855         case 0x3b: /* FCVTZS */
11856             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11857             break;
11858         case 0x3d: /* FRECPE */
11859             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11860             break;
11861         case 0x3f: /* FRECPX */
11862             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11863             break;
11864         case 0x5a: /* FCVTNU */
11865         case 0x5b: /* FCVTMU */
11866         case 0x5c: /* FCVTAU */
11867         case 0x7a: /* FCVTPU */
11868         case 0x7b: /* FCVTZU */
11869             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11870             break;
11871         case 0x6f: /* FNEG */
11872             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11873             break;
11874         case 0x7d: /* FRSQRTE */
11875             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11876             break;
11877         default:
11878             g_assert_not_reached();
11879         }
11880 
11881         /* limit any sign extension going on */
11882         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11883         write_fp_sreg(s, rd, tcg_res);
11884     } else {
11885         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11886             TCGv_i32 tcg_op = tcg_temp_new_i32();
11887             TCGv_i32 tcg_res = tcg_temp_new_i32();
11888 
11889             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11890 
11891             switch (fpop) {
11892             case 0x1a: /* FCVTNS */
11893             case 0x1b: /* FCVTMS */
11894             case 0x1c: /* FCVTAS */
11895             case 0x3a: /* FCVTPS */
11896             case 0x3b: /* FCVTZS */
11897                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11898                 break;
11899             case 0x3d: /* FRECPE */
11900                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11901                 break;
11902             case 0x5a: /* FCVTNU */
11903             case 0x5b: /* FCVTMU */
11904             case 0x5c: /* FCVTAU */
11905             case 0x7a: /* FCVTPU */
11906             case 0x7b: /* FCVTZU */
11907                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11908                 break;
11909             case 0x18: /* FRINTN */
11910             case 0x19: /* FRINTM */
11911             case 0x38: /* FRINTP */
11912             case 0x39: /* FRINTZ */
11913             case 0x58: /* FRINTA */
11914             case 0x79: /* FRINTI */
11915                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11916                 break;
11917             case 0x59: /* FRINTX */
11918                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11919                 break;
11920             case 0x2f: /* FABS */
11921                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11922                 break;
11923             case 0x6f: /* FNEG */
11924                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11925                 break;
11926             case 0x7d: /* FRSQRTE */
11927                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11928                 break;
11929             case 0x7f: /* FSQRT */
11930                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11931                 break;
11932             default:
11933                 g_assert_not_reached();
11934             }
11935 
11936             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11937         }
11938 
11939         clear_vec_high(s, is_q, rd);
11940     }
11941 
11942     if (tcg_rmode) {
11943         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11944     }
11945 }
11946 
11947 /* AdvSIMD scalar x indexed element
11948  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
11949  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11950  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
11951  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11952  * AdvSIMD vector x indexed element
11953  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
11954  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
11955  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
11956  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
11957  */
11958 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
11959 {
11960     /* This encoding has two kinds of instruction:
11961      *  normal, where we perform elt x idxelt => elt for each
11962      *     element in the vector
11963      *  long, where we perform elt x idxelt and generate a result of
11964      *     double the width of the input element
11965      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
11966      */
11967     bool is_scalar = extract32(insn, 28, 1);
11968     bool is_q = extract32(insn, 30, 1);
11969     bool u = extract32(insn, 29, 1);
11970     int size = extract32(insn, 22, 2);
11971     int l = extract32(insn, 21, 1);
11972     int m = extract32(insn, 20, 1);
11973     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
11974     int rm = extract32(insn, 16, 4);
11975     int opcode = extract32(insn, 12, 4);
11976     int h = extract32(insn, 11, 1);
11977     int rn = extract32(insn, 5, 5);
11978     int rd = extract32(insn, 0, 5);
11979     int index;
11980 
11981     switch (16 * u + opcode) {
11982     case 0x02: /* SMLAL, SMLAL2 */
11983     case 0x12: /* UMLAL, UMLAL2 */
11984     case 0x06: /* SMLSL, SMLSL2 */
11985     case 0x16: /* UMLSL, UMLSL2 */
11986     case 0x0a: /* SMULL, SMULL2 */
11987     case 0x1a: /* UMULL, UMULL2 */
11988         if (is_scalar) {
11989             unallocated_encoding(s);
11990             return;
11991         }
11992         break;
11993     case 0x03: /* SQDMLAL, SQDMLAL2 */
11994     case 0x07: /* SQDMLSL, SQDMLSL2 */
11995     case 0x0b: /* SQDMULL, SQDMULL2 */
11996         break;
11997     default:
11998     case 0x00: /* FMLAL */
11999     case 0x01: /* FMLA */
12000     case 0x04: /* FMLSL */
12001     case 0x05: /* FMLS */
12002     case 0x08: /* MUL */
12003     case 0x09: /* FMUL */
12004     case 0x0c: /* SQDMULH */
12005     case 0x0d: /* SQRDMULH */
12006     case 0x0e: /* SDOT */
12007     case 0x0f: /* SUDOT / BFDOT / USDOT / BFMLAL */
12008     case 0x10: /* MLA */
12009     case 0x11: /* FCMLA #0 */
12010     case 0x13: /* FCMLA #90 */
12011     case 0x14: /* MLS */
12012     case 0x15: /* FCMLA #180 */
12013     case 0x17: /* FCMLA #270 */
12014     case 0x18: /* FMLAL2 */
12015     case 0x19: /* FMULX */
12016     case 0x1c: /* FMLSL2 */
12017     case 0x1d: /* SQRDMLAH */
12018     case 0x1e: /* UDOT */
12019     case 0x1f: /* SQRDMLSH */
12020         unallocated_encoding(s);
12021         return;
12022     }
12023 
12024     /* Given MemOp size, adjust register and indexing.  */
12025     switch (size) {
12026     case MO_8:
12027     case MO_64:
12028         unallocated_encoding(s);
12029         return;
12030     case MO_16:
12031         index = h << 2 | l << 1 | m;
12032         break;
12033     case MO_32:
12034         index = h << 1 | l;
12035         rm |= m << 4;
12036         break;
12037     default:
12038         g_assert_not_reached();
12039     }
12040 
12041     if (!fp_access_check(s)) {
12042         return;
12043     }
12044 
12045     if (size == 3) {
12046         g_assert_not_reached();
12047     } else {
12048         /* long ops: 16x16->32 or 32x32->64 */
12049         TCGv_i64 tcg_res[2];
12050         int pass;
12051         bool satop = extract32(opcode, 0, 1);
12052         MemOp memop = MO_32;
12053 
12054         if (satop || !u) {
12055             memop |= MO_SIGN;
12056         }
12057 
12058         if (size == 2) {
12059             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12060 
12061             read_vec_element(s, tcg_idx, rm, index, memop);
12062 
12063             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12064                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12065                 TCGv_i64 tcg_passres;
12066                 int passelt;
12067 
12068                 if (is_scalar) {
12069                     passelt = 0;
12070                 } else {
12071                     passelt = pass + (is_q * 2);
12072                 }
12073 
12074                 read_vec_element(s, tcg_op, rn, passelt, memop);
12075 
12076                 tcg_res[pass] = tcg_temp_new_i64();
12077 
12078                 if (opcode == 0xa || opcode == 0xb) {
12079                     /* Non-accumulating ops */
12080                     tcg_passres = tcg_res[pass];
12081                 } else {
12082                     tcg_passres = tcg_temp_new_i64();
12083                 }
12084 
12085                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12086 
12087                 if (satop) {
12088                     /* saturating, doubling */
12089                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12090                                                       tcg_passres, tcg_passres);
12091                 }
12092 
12093                 if (opcode == 0xa || opcode == 0xb) {
12094                     continue;
12095                 }
12096 
12097                 /* Accumulating op: handle accumulate step */
12098                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12099 
12100                 switch (opcode) {
12101                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12102                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12103                     break;
12104                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12105                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12106                     break;
12107                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12108                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12109                     /* fall through */
12110                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12111                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12112                                                       tcg_res[pass],
12113                                                       tcg_passres);
12114                     break;
12115                 default:
12116                     g_assert_not_reached();
12117                 }
12118             }
12119 
12120             clear_vec_high(s, !is_scalar, rd);
12121         } else {
12122             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12123 
12124             assert(size == 1);
12125             read_vec_element_i32(s, tcg_idx, rm, index, size);
12126 
12127             if (!is_scalar) {
12128                 /* The simplest way to handle the 16x16 indexed ops is to
12129                  * duplicate the index into both halves of the 32 bit tcg_idx
12130                  * and then use the usual Neon helpers.
12131                  */
12132                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12133             }
12134 
12135             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12136                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12137                 TCGv_i64 tcg_passres;
12138 
12139                 if (is_scalar) {
12140                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12141                 } else {
12142                     read_vec_element_i32(s, tcg_op, rn,
12143                                          pass + (is_q * 2), MO_32);
12144                 }
12145 
12146                 tcg_res[pass] = tcg_temp_new_i64();
12147 
12148                 if (opcode == 0xa || opcode == 0xb) {
12149                     /* Non-accumulating ops */
12150                     tcg_passres = tcg_res[pass];
12151                 } else {
12152                     tcg_passres = tcg_temp_new_i64();
12153                 }
12154 
12155                 if (memop & MO_SIGN) {
12156                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12157                 } else {
12158                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12159                 }
12160                 if (satop) {
12161                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12162                                                       tcg_passres, tcg_passres);
12163                 }
12164 
12165                 if (opcode == 0xa || opcode == 0xb) {
12166                     continue;
12167                 }
12168 
12169                 /* Accumulating op: handle accumulate step */
12170                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12171 
12172                 switch (opcode) {
12173                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12174                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12175                                              tcg_passres);
12176                     break;
12177                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12178                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12179                                              tcg_passres);
12180                     break;
12181                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12182                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12183                     /* fall through */
12184                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12185                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12186                                                       tcg_res[pass],
12187                                                       tcg_passres);
12188                     break;
12189                 default:
12190                     g_assert_not_reached();
12191                 }
12192             }
12193 
12194             if (is_scalar) {
12195                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12196             }
12197         }
12198 
12199         if (is_scalar) {
12200             tcg_res[1] = tcg_constant_i64(0);
12201         }
12202 
12203         for (pass = 0; pass < 2; pass++) {
12204             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12205         }
12206     }
12207 }
12208 
12209 /* C3.6 Data processing - SIMD, inc Crypto
12210  *
12211  * As the decode gets a little complex we are using a table based
12212  * approach for this part of the decode.
12213  */
12214 static const AArch64DecodeTable data_proc_simd[] = {
12215     /* pattern  ,  mask     ,  fn                        */
12216     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12217     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12218     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12219     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12220     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12221     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12222     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12223     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12224     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12225     { 0x2e000000, 0xbf208400, disas_simd_ext },
12226     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12227     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12228     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12229     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12230     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12231     { 0x00000000, 0x00000000, NULL }
12232 };
12233 
12234 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12235 {
12236     /* Note that this is called with all non-FP cases from
12237      * table C3-6 so it must UNDEF for entries not specifically
12238      * allocated to instructions in that table.
12239      */
12240     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12241     if (fn) {
12242         fn(s, insn);
12243     } else {
12244         unallocated_encoding(s);
12245     }
12246 }
12247 
12248 /* C3.6 Data processing - SIMD and floating point */
12249 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12250 {
12251     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12252         disas_data_proc_fp(s, insn);
12253     } else {
12254         /* SIMD, including crypto */
12255         disas_data_proc_simd(s, insn);
12256     }
12257 }
12258 
12259 static bool trans_OK(DisasContext *s, arg_OK *a)
12260 {
12261     return true;
12262 }
12263 
12264 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12265 {
12266     s->is_nonstreaming = true;
12267     return true;
12268 }
12269 
12270 /**
12271  * is_guarded_page:
12272  * @env: The cpu environment
12273  * @s: The DisasContext
12274  *
12275  * Return true if the page is guarded.
12276  */
12277 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12278 {
12279     uint64_t addr = s->base.pc_first;
12280 #ifdef CONFIG_USER_ONLY
12281     return page_get_flags(addr) & PAGE_BTI;
12282 #else
12283     CPUTLBEntryFull *full;
12284     void *host;
12285     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12286     int flags;
12287 
12288     /*
12289      * We test this immediately after reading an insn, which means
12290      * that the TLB entry must be present and valid, and thus this
12291      * access will never raise an exception.
12292      */
12293     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12294                               false, &host, &full, 0);
12295     assert(!(flags & TLB_INVALID_MASK));
12296 
12297     return full->extra.arm.guarded;
12298 #endif
12299 }
12300 
12301 /**
12302  * btype_destination_ok:
12303  * @insn: The instruction at the branch destination
12304  * @bt: SCTLR_ELx.BT
12305  * @btype: PSTATE.BTYPE, and is non-zero
12306  *
12307  * On a guarded page, there are a limited number of insns
12308  * that may be present at the branch target:
12309  *   - branch target identifiers,
12310  *   - paciasp, pacibsp,
12311  *   - BRK insn
12312  *   - HLT insn
12313  * Anything else causes a Branch Target Exception.
12314  *
12315  * Return true if the branch is compatible, false to raise BTITRAP.
12316  */
12317 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12318 {
12319     if ((insn & 0xfffff01fu) == 0xd503201fu) {
12320         /* HINT space */
12321         switch (extract32(insn, 5, 7)) {
12322         case 0b011001: /* PACIASP */
12323         case 0b011011: /* PACIBSP */
12324             /*
12325              * If SCTLR_ELx.BT, then PACI*SP are not compatible
12326              * with btype == 3.  Otherwise all btype are ok.
12327              */
12328             return !bt || btype != 3;
12329         case 0b100000: /* BTI */
12330             /* Not compatible with any btype.  */
12331             return false;
12332         case 0b100010: /* BTI c */
12333             /* Not compatible with btype == 3 */
12334             return btype != 3;
12335         case 0b100100: /* BTI j */
12336             /* Not compatible with btype == 2 */
12337             return btype != 2;
12338         case 0b100110: /* BTI jc */
12339             /* Compatible with any btype.  */
12340             return true;
12341         }
12342     } else {
12343         switch (insn & 0xffe0001fu) {
12344         case 0xd4200000u: /* BRK */
12345         case 0xd4400000u: /* HLT */
12346             /* Give priority to the breakpoint exception.  */
12347             return true;
12348         }
12349     }
12350     return false;
12351 }
12352 
12353 /* C3.1 A64 instruction index by encoding */
12354 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12355 {
12356     switch (extract32(insn, 25, 4)) {
12357     case 0x5:
12358     case 0xd:      /* Data processing - register */
12359         disas_data_proc_reg(s, insn);
12360         break;
12361     case 0x7:
12362     case 0xf:      /* Data processing - SIMD and floating point */
12363         disas_data_proc_simd_fp(s, insn);
12364         break;
12365     default:
12366         unallocated_encoding(s);
12367         break;
12368     }
12369 }
12370 
12371 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12372                                           CPUState *cpu)
12373 {
12374     DisasContext *dc = container_of(dcbase, DisasContext, base);
12375     CPUARMState *env = cpu_env(cpu);
12376     ARMCPU *arm_cpu = env_archcpu(env);
12377     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12378     int bound, core_mmu_idx;
12379 
12380     dc->isar = &arm_cpu->isar;
12381     dc->condjmp = 0;
12382     dc->pc_save = dc->base.pc_first;
12383     dc->aarch64 = true;
12384     dc->thumb = false;
12385     dc->sctlr_b = 0;
12386     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12387     dc->condexec_mask = 0;
12388     dc->condexec_cond = 0;
12389     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12390     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12391     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12392     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12393     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12394     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12395 #if !defined(CONFIG_USER_ONLY)
12396     dc->user = (dc->current_el == 0);
12397 #endif
12398     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12399     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12400     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12401     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12402     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12403     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12404     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12405     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12406     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12407     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12408     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12409     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12410     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12411     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12412     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12413     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12414     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12415     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12416     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12417     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12418     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12419     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12420     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12421     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12422     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12423     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12424     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12425     dc->vec_len = 0;
12426     dc->vec_stride = 0;
12427     dc->cp_regs = arm_cpu->cp_regs;
12428     dc->features = env->features;
12429     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12430     dc->gm_blocksize = arm_cpu->gm_blocksize;
12431 
12432 #ifdef CONFIG_USER_ONLY
12433     /* In sve_probe_page, we assume TBI is enabled. */
12434     tcg_debug_assert(dc->tbid & 1);
12435 #endif
12436 
12437     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12438 
12439     /* Single step state. The code-generation logic here is:
12440      *  SS_ACTIVE == 0:
12441      *   generate code with no special handling for single-stepping (except
12442      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12443      *   this happens anyway because those changes are all system register or
12444      *   PSTATE writes).
12445      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12446      *   emit code for one insn
12447      *   emit code to clear PSTATE.SS
12448      *   emit code to generate software step exception for completed step
12449      *   end TB (as usual for having generated an exception)
12450      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12451      *   emit code to generate a software step exception
12452      *   end the TB
12453      */
12454     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12455     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12456     dc->is_ldex = false;
12457 
12458     /* Bound the number of insns to execute to those left on the page.  */
12459     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12460 
12461     /* If architectural single step active, limit to 1.  */
12462     if (dc->ss_active) {
12463         bound = 1;
12464     }
12465     dc->base.max_insns = MIN(dc->base.max_insns, bound);
12466 }
12467 
12468 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12469 {
12470 }
12471 
12472 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12473 {
12474     DisasContext *dc = container_of(dcbase, DisasContext, base);
12475     target_ulong pc_arg = dc->base.pc_next;
12476 
12477     if (tb_cflags(dcbase->tb) & CF_PCREL) {
12478         pc_arg &= ~TARGET_PAGE_MASK;
12479     }
12480     tcg_gen_insn_start(pc_arg, 0, 0);
12481     dc->insn_start_updated = false;
12482 }
12483 
12484 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12485 {
12486     DisasContext *s = container_of(dcbase, DisasContext, base);
12487     CPUARMState *env = cpu_env(cpu);
12488     uint64_t pc = s->base.pc_next;
12489     uint32_t insn;
12490 
12491     /* Singlestep exceptions have the highest priority. */
12492     if (s->ss_active && !s->pstate_ss) {
12493         /* Singlestep state is Active-pending.
12494          * If we're in this state at the start of a TB then either
12495          *  a) we just took an exception to an EL which is being debugged
12496          *     and this is the first insn in the exception handler
12497          *  b) debug exceptions were masked and we just unmasked them
12498          *     without changing EL (eg by clearing PSTATE.D)
12499          * In either case we're going to take a swstep exception in the
12500          * "did not step an insn" case, and so the syndrome ISV and EX
12501          * bits should be zero.
12502          */
12503         assert(s->base.num_insns == 1);
12504         gen_swstep_exception(s, 0, 0);
12505         s->base.is_jmp = DISAS_NORETURN;
12506         s->base.pc_next = pc + 4;
12507         return;
12508     }
12509 
12510     if (pc & 3) {
12511         /*
12512          * PC alignment fault.  This has priority over the instruction abort
12513          * that we would receive from a translation fault via arm_ldl_code.
12514          * This should only be possible after an indirect branch, at the
12515          * start of the TB.
12516          */
12517         assert(s->base.num_insns == 1);
12518         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12519         s->base.is_jmp = DISAS_NORETURN;
12520         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12521         return;
12522     }
12523 
12524     s->pc_curr = pc;
12525     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12526     s->insn = insn;
12527     s->base.pc_next = pc + 4;
12528 
12529     s->fp_access_checked = false;
12530     s->sve_access_checked = false;
12531 
12532     if (s->pstate_il) {
12533         /*
12534          * Illegal execution state. This has priority over BTI
12535          * exceptions, but comes after instruction abort exceptions.
12536          */
12537         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12538         return;
12539     }
12540 
12541     if (dc_isar_feature(aa64_bti, s)) {
12542         if (s->base.num_insns == 1) {
12543             /*
12544              * At the first insn of the TB, compute s->guarded_page.
12545              * We delayed computing this until successfully reading
12546              * the first insn of the TB, above.  This (mostly) ensures
12547              * that the softmmu tlb entry has been populated, and the
12548              * page table GP bit is available.
12549              *
12550              * Note that we need to compute this even if btype == 0,
12551              * because this value is used for BR instructions later
12552              * where ENV is not available.
12553              */
12554             s->guarded_page = is_guarded_page(env, s);
12555 
12556             /* First insn can have btype set to non-zero.  */
12557             tcg_debug_assert(s->btype >= 0);
12558 
12559             /*
12560              * Note that the Branch Target Exception has fairly high
12561              * priority -- below debugging exceptions but above most
12562              * everything else.  This allows us to handle this now
12563              * instead of waiting until the insn is otherwise decoded.
12564              */
12565             if (s->btype != 0
12566                 && s->guarded_page
12567                 && !btype_destination_ok(insn, s->bt, s->btype)) {
12568                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12569                 return;
12570             }
12571         } else {
12572             /* Not the first insn: btype must be 0.  */
12573             tcg_debug_assert(s->btype == 0);
12574         }
12575     }
12576 
12577     s->is_nonstreaming = false;
12578     if (s->sme_trap_nonstreaming) {
12579         disas_sme_fa64(s, insn);
12580     }
12581 
12582     if (!disas_a64(s, insn) &&
12583         !disas_sme(s, insn) &&
12584         !disas_sve(s, insn)) {
12585         disas_a64_legacy(s, insn);
12586     }
12587 
12588     /*
12589      * After execution of most insns, btype is reset to 0.
12590      * Note that we set btype == -1 when the insn sets btype.
12591      */
12592     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12593         reset_btype(s);
12594     }
12595 }
12596 
12597 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12598 {
12599     DisasContext *dc = container_of(dcbase, DisasContext, base);
12600 
12601     if (unlikely(dc->ss_active)) {
12602         /* Note that this means single stepping WFI doesn't halt the CPU.
12603          * For conditional branch insns this is harmless unreachable code as
12604          * gen_goto_tb() has already handled emitting the debug exception
12605          * (and thus a tb-jump is not possible when singlestepping).
12606          */
12607         switch (dc->base.is_jmp) {
12608         default:
12609             gen_a64_update_pc(dc, 4);
12610             /* fall through */
12611         case DISAS_EXIT:
12612         case DISAS_JUMP:
12613             gen_step_complete_exception(dc);
12614             break;
12615         case DISAS_NORETURN:
12616             break;
12617         }
12618     } else {
12619         switch (dc->base.is_jmp) {
12620         case DISAS_NEXT:
12621         case DISAS_TOO_MANY:
12622             gen_goto_tb(dc, 1, 4);
12623             break;
12624         default:
12625         case DISAS_UPDATE_EXIT:
12626             gen_a64_update_pc(dc, 4);
12627             /* fall through */
12628         case DISAS_EXIT:
12629             tcg_gen_exit_tb(NULL, 0);
12630             break;
12631         case DISAS_UPDATE_NOCHAIN:
12632             gen_a64_update_pc(dc, 4);
12633             /* fall through */
12634         case DISAS_JUMP:
12635             tcg_gen_lookup_and_goto_ptr();
12636             break;
12637         case DISAS_NORETURN:
12638         case DISAS_SWI:
12639             break;
12640         case DISAS_WFE:
12641             gen_a64_update_pc(dc, 4);
12642             gen_helper_wfe(tcg_env);
12643             break;
12644         case DISAS_YIELD:
12645             gen_a64_update_pc(dc, 4);
12646             gen_helper_yield(tcg_env);
12647             break;
12648         case DISAS_WFI:
12649             /*
12650              * This is a special case because we don't want to just halt
12651              * the CPU if trying to debug across a WFI.
12652              */
12653             gen_a64_update_pc(dc, 4);
12654             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12655             /*
12656              * The helper doesn't necessarily throw an exception, but we
12657              * must go back to the main loop to check for interrupts anyway.
12658              */
12659             tcg_gen_exit_tb(NULL, 0);
12660             break;
12661         }
12662     }
12663 }
12664 
12665 const TranslatorOps aarch64_translator_ops = {
12666     .init_disas_context = aarch64_tr_init_disas_context,
12667     .tb_start           = aarch64_tr_tb_start,
12668     .insn_start         = aarch64_tr_insn_start,
12669     .translate_insn     = aarch64_tr_translate_insn,
12670     .tb_stop            = aarch64_tr_tb_stop,
12671 };
12672