xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 3b97520c)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "disas/disas.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Include the generated decoders.
51  */
52 
53 #include "decode-sme-fa64.c.inc"
54 #include "decode-a64.c.inc"
55 
56 /* Table based decoder typedefs - used when the relevant bits for decode
57  * are too awkwardly scattered across the instruction (eg SIMD).
58  */
59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
60 
61 typedef struct AArch64DecodeTable {
62     uint32_t pattern;
63     uint32_t mask;
64     AArch64DecodeFn *disas_fn;
65 } AArch64DecodeTable;
66 
67 /* initialize TCG globals.  */
68 void a64_translate_init(void)
69 {
70     int i;
71 
72     cpu_pc = tcg_global_mem_new_i64(cpu_env,
73                                     offsetof(CPUARMState, pc),
74                                     "pc");
75     for (i = 0; i < 32; i++) {
76         cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
77                                           offsetof(CPUARMState, xregs[i]),
78                                           regnames[i]);
79     }
80 
81     cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
82         offsetof(CPUARMState, exclusive_high), "exclusive_high");
83 }
84 
85 /*
86  * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
87  */
88 static int get_a64_user_mem_index(DisasContext *s)
89 {
90     /*
91      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
92      * which is the usual mmu_idx for this cpu state.
93      */
94     ARMMMUIdx useridx = s->mmu_idx;
95 
96     if (s->unpriv) {
97         /*
98          * We have pre-computed the condition for AccType_UNPRIV.
99          * Therefore we should never get here with a mmu_idx for
100          * which we do not know the corresponding user mmu_idx.
101          */
102         switch (useridx) {
103         case ARMMMUIdx_E10_1:
104         case ARMMMUIdx_E10_1_PAN:
105             useridx = ARMMMUIdx_E10_0;
106             break;
107         case ARMMMUIdx_E20_2:
108         case ARMMMUIdx_E20_2_PAN:
109             useridx = ARMMMUIdx_E20_0;
110             break;
111         default:
112             g_assert_not_reached();
113         }
114     }
115     return arm_to_core_mmu_idx(useridx);
116 }
117 
118 static void set_btype_raw(int val)
119 {
120     tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
121                    offsetof(CPUARMState, btype));
122 }
123 
124 static void set_btype(DisasContext *s, int val)
125 {
126     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
127     tcg_debug_assert(val >= 1 && val <= 3);
128     set_btype_raw(val);
129     s->btype = -1;
130 }
131 
132 static void reset_btype(DisasContext *s)
133 {
134     if (s->btype != 0) {
135         set_btype_raw(0);
136         s->btype = 0;
137     }
138 }
139 
140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
141 {
142     assert(s->pc_save != -1);
143     if (tb_cflags(s->base.tb) & CF_PCREL) {
144         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
145     } else {
146         tcg_gen_movi_i64(dest, s->pc_curr + diff);
147     }
148 }
149 
150 void gen_a64_update_pc(DisasContext *s, target_long diff)
151 {
152     gen_pc_plus_diff(s, cpu_pc, diff);
153     s->pc_save = s->pc_curr + diff;
154 }
155 
156 /*
157  * Handle Top Byte Ignore (TBI) bits.
158  *
159  * If address tagging is enabled via the TCR TBI bits:
160  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
161  *    then the address is zero-extended, clearing bits [63:56]
162  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163  *    and TBI1 controls addressses with bit 55 == 1.
164  *    If the appropriate TBI bit is set for the address then
165  *    the address is sign-extended from bit 55 into bits [63:56]
166  *
167  * Here We have concatenated TBI{1,0} into tbi.
168  */
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170                                 TCGv_i64 src, int tbi)
171 {
172     if (tbi == 0) {
173         /* Load unmodified address */
174         tcg_gen_mov_i64(dst, src);
175     } else if (!regime_has_2_ranges(s->mmu_idx)) {
176         /* Force tag byte to all zero */
177         tcg_gen_extract_i64(dst, src, 0, 56);
178     } else {
179         /* Sign-extend from bit 55.  */
180         tcg_gen_sextract_i64(dst, src, 0, 56);
181 
182         switch (tbi) {
183         case 1:
184             /* tbi0 but !tbi1: only use the extension if positive */
185             tcg_gen_and_i64(dst, dst, src);
186             break;
187         case 2:
188             /* !tbi0 but tbi1: only use the extension if negative */
189             tcg_gen_or_i64(dst, dst, src);
190             break;
191         case 3:
192             /* tbi0 and tbi1: always use the extension */
193             break;
194         default:
195             g_assert_not_reached();
196         }
197     }
198 }
199 
200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
201 {
202     /*
203      * If address tagging is enabled for instructions via the TCR TBI bits,
204      * then loading an address into the PC will clear out any tag.
205      */
206     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
207     s->pc_save = -1;
208 }
209 
210 /*
211  * Handle MTE and/or TBI.
212  *
213  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
214  * for the tag to be present in the FAR_ELx register.  But for user-only
215  * mode we do not have a TLB with which to implement this, so we must
216  * remove the top byte now.
217  *
218  * Always return a fresh temporary that we can increment independently
219  * of the write-back address.
220  */
221 
222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
223 {
224     TCGv_i64 clean = tcg_temp_new_i64();
225 #ifdef CONFIG_USER_ONLY
226     gen_top_byte_ignore(s, clean, addr, s->tbid);
227 #else
228     tcg_gen_mov_i64(clean, addr);
229 #endif
230     return clean;
231 }
232 
233 /* Insert a zero tag into src, with the result at dst. */
234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
235 {
236     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
237 }
238 
239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
240                              MMUAccessType acc, int log2_size)
241 {
242     gen_helper_probe_access(cpu_env, ptr,
243                             tcg_constant_i32(acc),
244                             tcg_constant_i32(get_mem_index(s)),
245                             tcg_constant_i32(1 << log2_size));
246 }
247 
248 /*
249  * For MTE, check a single logical or atomic access.  This probes a single
250  * address, the exact one specified.  The size and alignment of the access
251  * is not relevant to MTE, per se, but watchpoints do require the size,
252  * and we want to recognize those before making any other changes to state.
253  */
254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
255                                       bool is_write, bool tag_checked,
256                                       MemOp memop, bool is_unpriv,
257                                       int core_idx)
258 {
259     if (tag_checked && s->mte_active[is_unpriv]) {
260         TCGv_i64 ret;
261         int desc = 0;
262 
263         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
264         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
265         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
266         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
267         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
268 
269         ret = tcg_temp_new_i64();
270         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
271 
272         return ret;
273     }
274     return clean_data_tbi(s, addr);
275 }
276 
277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
278                         bool tag_checked, MemOp memop)
279 {
280     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
281                                  false, get_mem_index(s));
282 }
283 
284 /*
285  * For MTE, check multiple logical sequential accesses.
286  */
287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
288                         bool tag_checked, int total_size, MemOp single_mop)
289 {
290     if (tag_checked && s->mte_active[0]) {
291         TCGv_i64 ret;
292         int desc = 0;
293 
294         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
295         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
296         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
297         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 typedef struct DisasCompare64 {
309     TCGCond cond;
310     TCGv_i64 value;
311 } DisasCompare64;
312 
313 static void a64_test_cc(DisasCompare64 *c64, int cc)
314 {
315     DisasCompare c32;
316 
317     arm_test_cc(&c32, cc);
318 
319     /*
320      * Sign-extend the 32-bit value so that the GE/LT comparisons work
321      * properly.  The NE/EQ comparisons are also fine with this choice.
322       */
323     c64->cond = c32.cond;
324     c64->value = tcg_temp_new_i64();
325     tcg_gen_ext_i32_i64(c64->value, c32.value);
326 }
327 
328 static void gen_rebuild_hflags(DisasContext *s)
329 {
330     gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
331 }
332 
333 static void gen_exception_internal(int excp)
334 {
335     assert(excp_is_internal(excp));
336     gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
337 }
338 
339 static void gen_exception_internal_insn(DisasContext *s, int excp)
340 {
341     gen_a64_update_pc(s, 0);
342     gen_exception_internal(excp);
343     s->base.is_jmp = DISAS_NORETURN;
344 }
345 
346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
347 {
348     gen_a64_update_pc(s, 0);
349     gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
350     s->base.is_jmp = DISAS_NORETURN;
351 }
352 
353 static void gen_step_complete_exception(DisasContext *s)
354 {
355     /* We just completed step of an insn. Move from Active-not-pending
356      * to Active-pending, and then also take the swstep exception.
357      * This corresponds to making the (IMPDEF) choice to prioritize
358      * swstep exceptions over asynchronous exceptions taken to an exception
359      * level where debug is disabled. This choice has the advantage that
360      * we do not need to maintain internal state corresponding to the
361      * ISV/EX syndrome bits between completion of the step and generation
362      * of the exception, and our syndrome information is always correct.
363      */
364     gen_ss_advance(s);
365     gen_swstep_exception(s, 1, s->is_ldex);
366     s->base.is_jmp = DISAS_NORETURN;
367 }
368 
369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
370 {
371     if (s->ss_active) {
372         return false;
373     }
374     return translator_use_goto_tb(&s->base, dest);
375 }
376 
377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
378 {
379     if (use_goto_tb(s, s->pc_curr + diff)) {
380         /*
381          * For pcrel, the pc must always be up-to-date on entry to
382          * the linked TB, so that it can use simple additions for all
383          * further adjustments.  For !pcrel, the linked TB is compiled
384          * to know its full virtual address, so we can delay the
385          * update to pc to the unlinked path.  A long chain of links
386          * can thus avoid many updates to the PC.
387          */
388         if (tb_cflags(s->base.tb) & CF_PCREL) {
389             gen_a64_update_pc(s, diff);
390             tcg_gen_goto_tb(n);
391         } else {
392             tcg_gen_goto_tb(n);
393             gen_a64_update_pc(s, diff);
394         }
395         tcg_gen_exit_tb(s->base.tb, n);
396         s->base.is_jmp = DISAS_NORETURN;
397     } else {
398         gen_a64_update_pc(s, diff);
399         if (s->ss_active) {
400             gen_step_complete_exception(s);
401         } else {
402             tcg_gen_lookup_and_goto_ptr();
403             s->base.is_jmp = DISAS_NORETURN;
404         }
405     }
406 }
407 
408 /*
409  * Register access functions
410  *
411  * These functions are used for directly accessing a register in where
412  * changes to the final register value are likely to be made. If you
413  * need to use a register for temporary calculation (e.g. index type
414  * operations) use the read_* form.
415  *
416  * B1.2.1 Register mappings
417  *
418  * In instruction register encoding 31 can refer to ZR (zero register) or
419  * the SP (stack pointer) depending on context. In QEMU's case we map SP
420  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
421  * This is the point of the _sp forms.
422  */
423 TCGv_i64 cpu_reg(DisasContext *s, int reg)
424 {
425     if (reg == 31) {
426         TCGv_i64 t = tcg_temp_new_i64();
427         tcg_gen_movi_i64(t, 0);
428         return t;
429     } else {
430         return cpu_X[reg];
431     }
432 }
433 
434 /* register access for when 31 == SP */
435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
436 {
437     return cpu_X[reg];
438 }
439 
440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
441  * representing the register contents. This TCGv is an auto-freed
442  * temporary so it need not be explicitly freed, and may be modified.
443  */
444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
445 {
446     TCGv_i64 v = tcg_temp_new_i64();
447     if (reg != 31) {
448         if (sf) {
449             tcg_gen_mov_i64(v, cpu_X[reg]);
450         } else {
451             tcg_gen_ext32u_i64(v, cpu_X[reg]);
452         }
453     } else {
454         tcg_gen_movi_i64(v, 0);
455     }
456     return v;
457 }
458 
459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
460 {
461     TCGv_i64 v = tcg_temp_new_i64();
462     if (sf) {
463         tcg_gen_mov_i64(v, cpu_X[reg]);
464     } else {
465         tcg_gen_ext32u_i64(v, cpu_X[reg]);
466     }
467     return v;
468 }
469 
470 /* Return the offset into CPUARMState of a slice (from
471  * the least significant end) of FP register Qn (ie
472  * Dn, Sn, Hn or Bn).
473  * (Note that this is not the same mapping as for A32; see cpu.h)
474  */
475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
476 {
477     return vec_reg_offset(s, regno, 0, size);
478 }
479 
480 /* Offset of the high half of the 128 bit vector Qn */
481 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
482 {
483     return vec_reg_offset(s, regno, 1, MO_64);
484 }
485 
486 /* Convenience accessors for reading and writing single and double
487  * FP registers. Writing clears the upper parts of the associated
488  * 128 bit vector register, as required by the architecture.
489  * Note that unlike the GP register accessors, the values returned
490  * by the read functions must be manually freed.
491  */
492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
493 {
494     TCGv_i64 v = tcg_temp_new_i64();
495 
496     tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
497     return v;
498 }
499 
500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
501 {
502     TCGv_i32 v = tcg_temp_new_i32();
503 
504     tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
505     return v;
506 }
507 
508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
509 {
510     TCGv_i32 v = tcg_temp_new_i32();
511 
512     tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
513     return v;
514 }
515 
516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
517  * If SVE is not enabled, then there are only 128 bits in the vector.
518  */
519 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
520 {
521     unsigned ofs = fp_reg_offset(s, rd, MO_64);
522     unsigned vsz = vec_full_reg_size(s);
523 
524     /* Nop move, with side effect of clearing the tail. */
525     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
526 }
527 
528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
529 {
530     unsigned ofs = fp_reg_offset(s, reg, MO_64);
531 
532     tcg_gen_st_i64(v, cpu_env, ofs);
533     clear_vec_high(s, false, reg);
534 }
535 
536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
537 {
538     TCGv_i64 tmp = tcg_temp_new_i64();
539 
540     tcg_gen_extu_i32_i64(tmp, v);
541     write_fp_dreg(s, reg, tmp);
542 }
543 
544 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
546                          GVecGen2Fn *gvec_fn, int vece)
547 {
548     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
549             is_q ? 16 : 8, vec_full_reg_size(s));
550 }
551 
552 /* Expand a 2-operand + immediate AdvSIMD vector operation using
553  * an expander function.
554  */
555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
556                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
557 {
558     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
559             imm, is_q ? 16 : 8, vec_full_reg_size(s));
560 }
561 
562 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
564                          GVecGen3Fn *gvec_fn, int vece)
565 {
566     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
567             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
568 }
569 
570 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
572                          int rx, GVecGen4Fn *gvec_fn, int vece)
573 {
574     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
575             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
576             is_q ? 16 : 8, vec_full_reg_size(s));
577 }
578 
579 /* Expand a 2-operand operation using an out-of-line helper.  */
580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
581                              int rn, int data, gen_helper_gvec_2 *fn)
582 {
583     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
584                        vec_full_reg_offset(s, rn),
585                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
586 }
587 
588 /* Expand a 3-operand operation using an out-of-line helper.  */
589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
590                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
591 {
592     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
593                        vec_full_reg_offset(s, rn),
594                        vec_full_reg_offset(s, rm),
595                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
596 }
597 
598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
599  * an out-of-line helper.
600  */
601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
602                               int rm, bool is_fp16, int data,
603                               gen_helper_gvec_3_ptr *fn)
604 {
605     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
606     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
607                        vec_full_reg_offset(s, rn),
608                        vec_full_reg_offset(s, rm), fpst,
609                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
610 }
611 
612 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
614                             int rm, gen_helper_gvec_3_ptr *fn)
615 {
616     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
617 
618     tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
619     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
620                        vec_full_reg_offset(s, rn),
621                        vec_full_reg_offset(s, rm), qc_ptr,
622                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
623 }
624 
625 /* Expand a 4-operand operation using an out-of-line helper.  */
626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
627                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
628 {
629     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
630                        vec_full_reg_offset(s, rn),
631                        vec_full_reg_offset(s, rm),
632                        vec_full_reg_offset(s, ra),
633                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
634 }
635 
636 /*
637  * Expand a 4-operand + fpstatus pointer + simd data value operation using
638  * an out-of-line helper.
639  */
640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
641                               int rm, int ra, bool is_fp16, int data,
642                               gen_helper_gvec_4_ptr *fn)
643 {
644     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
645     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
646                        vec_full_reg_offset(s, rn),
647                        vec_full_reg_offset(s, rm),
648                        vec_full_reg_offset(s, ra), fpst,
649                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
650 }
651 
652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
653  * than the 32 bit equivalent.
654  */
655 static inline void gen_set_NZ64(TCGv_i64 result)
656 {
657     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
658     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
659 }
660 
661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
662 static inline void gen_logic_CC(int sf, TCGv_i64 result)
663 {
664     if (sf) {
665         gen_set_NZ64(result);
666     } else {
667         tcg_gen_extrl_i64_i32(cpu_ZF, result);
668         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
669     }
670     tcg_gen_movi_i32(cpu_CF, 0);
671     tcg_gen_movi_i32(cpu_VF, 0);
672 }
673 
674 /* dest = T0 + T1; compute C, N, V and Z flags */
675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
676 {
677     TCGv_i64 result, flag, tmp;
678     result = tcg_temp_new_i64();
679     flag = tcg_temp_new_i64();
680     tmp = tcg_temp_new_i64();
681 
682     tcg_gen_movi_i64(tmp, 0);
683     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
684 
685     tcg_gen_extrl_i64_i32(cpu_CF, flag);
686 
687     gen_set_NZ64(result);
688 
689     tcg_gen_xor_i64(flag, result, t0);
690     tcg_gen_xor_i64(tmp, t0, t1);
691     tcg_gen_andc_i64(flag, flag, tmp);
692     tcg_gen_extrh_i64_i32(cpu_VF, flag);
693 
694     tcg_gen_mov_i64(dest, result);
695 }
696 
697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
698 {
699     TCGv_i32 t0_32 = tcg_temp_new_i32();
700     TCGv_i32 t1_32 = tcg_temp_new_i32();
701     TCGv_i32 tmp = tcg_temp_new_i32();
702 
703     tcg_gen_movi_i32(tmp, 0);
704     tcg_gen_extrl_i64_i32(t0_32, t0);
705     tcg_gen_extrl_i64_i32(t1_32, t1);
706     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
707     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
708     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
709     tcg_gen_xor_i32(tmp, t0_32, t1_32);
710     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
711     tcg_gen_extu_i32_i64(dest, cpu_NF);
712 }
713 
714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
715 {
716     if (sf) {
717         gen_add64_CC(dest, t0, t1);
718     } else {
719         gen_add32_CC(dest, t0, t1);
720     }
721 }
722 
723 /* dest = T0 - T1; compute C, N, V and Z flags */
724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
725 {
726     /* 64 bit arithmetic */
727     TCGv_i64 result, flag, tmp;
728 
729     result = tcg_temp_new_i64();
730     flag = tcg_temp_new_i64();
731     tcg_gen_sub_i64(result, t0, t1);
732 
733     gen_set_NZ64(result);
734 
735     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
736     tcg_gen_extrl_i64_i32(cpu_CF, flag);
737 
738     tcg_gen_xor_i64(flag, result, t0);
739     tmp = tcg_temp_new_i64();
740     tcg_gen_xor_i64(tmp, t0, t1);
741     tcg_gen_and_i64(flag, flag, tmp);
742     tcg_gen_extrh_i64_i32(cpu_VF, flag);
743     tcg_gen_mov_i64(dest, result);
744 }
745 
746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
747 {
748     /* 32 bit arithmetic */
749     TCGv_i32 t0_32 = tcg_temp_new_i32();
750     TCGv_i32 t1_32 = tcg_temp_new_i32();
751     TCGv_i32 tmp;
752 
753     tcg_gen_extrl_i64_i32(t0_32, t0);
754     tcg_gen_extrl_i64_i32(t1_32, t1);
755     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
756     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
757     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
758     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
759     tmp = tcg_temp_new_i32();
760     tcg_gen_xor_i32(tmp, t0_32, t1_32);
761     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
762     tcg_gen_extu_i32_i64(dest, cpu_NF);
763 }
764 
765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
766 {
767     if (sf) {
768         gen_sub64_CC(dest, t0, t1);
769     } else {
770         gen_sub32_CC(dest, t0, t1);
771     }
772 }
773 
774 /* dest = T0 + T1 + CF; do not compute flags. */
775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
776 {
777     TCGv_i64 flag = tcg_temp_new_i64();
778     tcg_gen_extu_i32_i64(flag, cpu_CF);
779     tcg_gen_add_i64(dest, t0, t1);
780     tcg_gen_add_i64(dest, dest, flag);
781 
782     if (!sf) {
783         tcg_gen_ext32u_i64(dest, dest);
784     }
785 }
786 
787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
789 {
790     if (sf) {
791         TCGv_i64 result = tcg_temp_new_i64();
792         TCGv_i64 cf_64 = tcg_temp_new_i64();
793         TCGv_i64 vf_64 = tcg_temp_new_i64();
794         TCGv_i64 tmp = tcg_temp_new_i64();
795         TCGv_i64 zero = tcg_constant_i64(0);
796 
797         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
798         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
799         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
800         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
801         gen_set_NZ64(result);
802 
803         tcg_gen_xor_i64(vf_64, result, t0);
804         tcg_gen_xor_i64(tmp, t0, t1);
805         tcg_gen_andc_i64(vf_64, vf_64, tmp);
806         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
807 
808         tcg_gen_mov_i64(dest, result);
809     } else {
810         TCGv_i32 t0_32 = tcg_temp_new_i32();
811         TCGv_i32 t1_32 = tcg_temp_new_i32();
812         TCGv_i32 tmp = tcg_temp_new_i32();
813         TCGv_i32 zero = tcg_constant_i32(0);
814 
815         tcg_gen_extrl_i64_i32(t0_32, t0);
816         tcg_gen_extrl_i64_i32(t1_32, t1);
817         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
818         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
819 
820         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
821         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
822         tcg_gen_xor_i32(tmp, t0_32, t1_32);
823         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
824         tcg_gen_extu_i32_i64(dest, cpu_NF);
825     }
826 }
827 
828 /*
829  * Load/Store generators
830  */
831 
832 /*
833  * Store from GPR register to memory.
834  */
835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
836                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
837                              bool iss_valid,
838                              unsigned int iss_srt,
839                              bool iss_sf, bool iss_ar)
840 {
841     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
842 
843     if (iss_valid) {
844         uint32_t syn;
845 
846         syn = syn_data_abort_with_iss(0,
847                                       (memop & MO_SIZE),
848                                       false,
849                                       iss_srt,
850                                       iss_sf,
851                                       iss_ar,
852                                       0, 0, 0, 0, 0, false);
853         disas_set_insn_syndrome(s, syn);
854     }
855 }
856 
857 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
858                       TCGv_i64 tcg_addr, MemOp memop,
859                       bool iss_valid,
860                       unsigned int iss_srt,
861                       bool iss_sf, bool iss_ar)
862 {
863     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
864                      iss_valid, iss_srt, iss_sf, iss_ar);
865 }
866 
867 /*
868  * Load from memory to GPR register
869  */
870 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
871                              MemOp memop, bool extend, int memidx,
872                              bool iss_valid, unsigned int iss_srt,
873                              bool iss_sf, bool iss_ar)
874 {
875     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
876 
877     if (extend && (memop & MO_SIGN)) {
878         g_assert((memop & MO_SIZE) <= MO_32);
879         tcg_gen_ext32u_i64(dest, dest);
880     }
881 
882     if (iss_valid) {
883         uint32_t syn;
884 
885         syn = syn_data_abort_with_iss(0,
886                                       (memop & MO_SIZE),
887                                       (memop & MO_SIGN) != 0,
888                                       iss_srt,
889                                       iss_sf,
890                                       iss_ar,
891                                       0, 0, 0, 0, 0, false);
892         disas_set_insn_syndrome(s, syn);
893     }
894 }
895 
896 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
897                       MemOp memop, bool extend,
898                       bool iss_valid, unsigned int iss_srt,
899                       bool iss_sf, bool iss_ar)
900 {
901     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
902                      iss_valid, iss_srt, iss_sf, iss_ar);
903 }
904 
905 /*
906  * Store from FP register to memory
907  */
908 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
909 {
910     /* This writes the bottom N bits of a 128 bit wide vector to memory */
911     TCGv_i64 tmplo = tcg_temp_new_i64();
912 
913     tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
914 
915     if ((mop & MO_SIZE) < MO_128) {
916         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
917     } else {
918         TCGv_i64 tmphi = tcg_temp_new_i64();
919         TCGv_i128 t16 = tcg_temp_new_i128();
920 
921         tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
922         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
923 
924         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
925     }
926 }
927 
928 /*
929  * Load from memory to FP register
930  */
931 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
932 {
933     /* This always zero-extends and writes to a full 128 bit wide vector */
934     TCGv_i64 tmplo = tcg_temp_new_i64();
935     TCGv_i64 tmphi = NULL;
936 
937     if ((mop & MO_SIZE) < MO_128) {
938         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
939     } else {
940         TCGv_i128 t16 = tcg_temp_new_i128();
941 
942         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
943 
944         tmphi = tcg_temp_new_i64();
945         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
946     }
947 
948     tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
949 
950     if (tmphi) {
951         tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
952     }
953     clear_vec_high(s, tmphi != NULL, destidx);
954 }
955 
956 /*
957  * Vector load/store helpers.
958  *
959  * The principal difference between this and a FP load is that we don't
960  * zero extend as we are filling a partial chunk of the vector register.
961  * These functions don't support 128 bit loads/stores, which would be
962  * normal load/store operations.
963  *
964  * The _i32 versions are useful when operating on 32 bit quantities
965  * (eg for floating point single or using Neon helper functions).
966  */
967 
968 /* Get value of an element within a vector register */
969 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
970                              int element, MemOp memop)
971 {
972     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
973     switch ((unsigned)memop) {
974     case MO_8:
975         tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
976         break;
977     case MO_16:
978         tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
979         break;
980     case MO_32:
981         tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
982         break;
983     case MO_8|MO_SIGN:
984         tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
985         break;
986     case MO_16|MO_SIGN:
987         tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
988         break;
989     case MO_32|MO_SIGN:
990         tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
991         break;
992     case MO_64:
993     case MO_64|MO_SIGN:
994         tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
995         break;
996     default:
997         g_assert_not_reached();
998     }
999 }
1000 
1001 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1002                                  int element, MemOp memop)
1003 {
1004     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1005     switch (memop) {
1006     case MO_8:
1007         tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1008         break;
1009     case MO_16:
1010         tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1011         break;
1012     case MO_8|MO_SIGN:
1013         tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1014         break;
1015     case MO_16|MO_SIGN:
1016         tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1017         break;
1018     case MO_32:
1019     case MO_32|MO_SIGN:
1020         tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1021         break;
1022     default:
1023         g_assert_not_reached();
1024     }
1025 }
1026 
1027 /* Set value of an element within a vector register */
1028 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1029                               int element, MemOp memop)
1030 {
1031     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1032     switch (memop) {
1033     case MO_8:
1034         tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1035         break;
1036     case MO_16:
1037         tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1038         break;
1039     case MO_32:
1040         tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1041         break;
1042     case MO_64:
1043         tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1044         break;
1045     default:
1046         g_assert_not_reached();
1047     }
1048 }
1049 
1050 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1051                                   int destidx, int element, MemOp memop)
1052 {
1053     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1054     switch (memop) {
1055     case MO_8:
1056         tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1057         break;
1058     case MO_16:
1059         tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1060         break;
1061     case MO_32:
1062         tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1063         break;
1064     default:
1065         g_assert_not_reached();
1066     }
1067 }
1068 
1069 /* Store from vector register to memory */
1070 static void do_vec_st(DisasContext *s, int srcidx, int element,
1071                       TCGv_i64 tcg_addr, MemOp mop)
1072 {
1073     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1074 
1075     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1076     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1077 }
1078 
1079 /* Load from memory to vector register */
1080 static void do_vec_ld(DisasContext *s, int destidx, int element,
1081                       TCGv_i64 tcg_addr, MemOp mop)
1082 {
1083     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1084 
1085     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1086     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1087 }
1088 
1089 /* Check that FP/Neon access is enabled. If it is, return
1090  * true. If not, emit code to generate an appropriate exception,
1091  * and return false; the caller should not emit any code for
1092  * the instruction. Note that this check must happen after all
1093  * unallocated-encoding checks (otherwise the syndrome information
1094  * for the resulting exception will be incorrect).
1095  */
1096 static bool fp_access_check_only(DisasContext *s)
1097 {
1098     if (s->fp_excp_el) {
1099         assert(!s->fp_access_checked);
1100         s->fp_access_checked = true;
1101 
1102         gen_exception_insn_el(s, 0, EXCP_UDEF,
1103                               syn_fp_access_trap(1, 0xe, false, 0),
1104                               s->fp_excp_el);
1105         return false;
1106     }
1107     s->fp_access_checked = true;
1108     return true;
1109 }
1110 
1111 static bool fp_access_check(DisasContext *s)
1112 {
1113     if (!fp_access_check_only(s)) {
1114         return false;
1115     }
1116     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1117         gen_exception_insn(s, 0, EXCP_UDEF,
1118                            syn_smetrap(SME_ET_Streaming, false));
1119         return false;
1120     }
1121     return true;
1122 }
1123 
1124 /*
1125  * Check that SVE access is enabled.  If it is, return true.
1126  * If not, emit code to generate an appropriate exception and return false.
1127  * This function corresponds to CheckSVEEnabled().
1128  */
1129 bool sve_access_check(DisasContext *s)
1130 {
1131     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1132         assert(dc_isar_feature(aa64_sme, s));
1133         if (!sme_sm_enabled_check(s)) {
1134             goto fail_exit;
1135         }
1136     } else if (s->sve_excp_el) {
1137         gen_exception_insn_el(s, 0, EXCP_UDEF,
1138                               syn_sve_access_trap(), s->sve_excp_el);
1139         goto fail_exit;
1140     }
1141     s->sve_access_checked = true;
1142     return fp_access_check(s);
1143 
1144  fail_exit:
1145     /* Assert that we only raise one exception per instruction. */
1146     assert(!s->sve_access_checked);
1147     s->sve_access_checked = true;
1148     return false;
1149 }
1150 
1151 /*
1152  * Check that SME access is enabled, raise an exception if not.
1153  * Note that this function corresponds to CheckSMEAccess and is
1154  * only used directly for cpregs.
1155  */
1156 static bool sme_access_check(DisasContext *s)
1157 {
1158     if (s->sme_excp_el) {
1159         gen_exception_insn_el(s, 0, EXCP_UDEF,
1160                               syn_smetrap(SME_ET_AccessTrap, false),
1161                               s->sme_excp_el);
1162         return false;
1163     }
1164     return true;
1165 }
1166 
1167 /* This function corresponds to CheckSMEEnabled. */
1168 bool sme_enabled_check(DisasContext *s)
1169 {
1170     /*
1171      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1172      * to be zero when fp_excp_el has priority.  This is because we need
1173      * sme_excp_el by itself for cpregs access checks.
1174      */
1175     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1176         s->fp_access_checked = true;
1177         return sme_access_check(s);
1178     }
1179     return fp_access_check_only(s);
1180 }
1181 
1182 /* Common subroutine for CheckSMEAnd*Enabled. */
1183 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1184 {
1185     if (!sme_enabled_check(s)) {
1186         return false;
1187     }
1188     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1189         gen_exception_insn(s, 0, EXCP_UDEF,
1190                            syn_smetrap(SME_ET_NotStreaming, false));
1191         return false;
1192     }
1193     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1194         gen_exception_insn(s, 0, EXCP_UDEF,
1195                            syn_smetrap(SME_ET_InactiveZA, false));
1196         return false;
1197     }
1198     return true;
1199 }
1200 
1201 /*
1202  * This utility function is for doing register extension with an
1203  * optional shift. You will likely want to pass a temporary for the
1204  * destination register. See DecodeRegExtend() in the ARM ARM.
1205  */
1206 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1207                               int option, unsigned int shift)
1208 {
1209     int extsize = extract32(option, 0, 2);
1210     bool is_signed = extract32(option, 2, 1);
1211 
1212     if (is_signed) {
1213         switch (extsize) {
1214         case 0:
1215             tcg_gen_ext8s_i64(tcg_out, tcg_in);
1216             break;
1217         case 1:
1218             tcg_gen_ext16s_i64(tcg_out, tcg_in);
1219             break;
1220         case 2:
1221             tcg_gen_ext32s_i64(tcg_out, tcg_in);
1222             break;
1223         case 3:
1224             tcg_gen_mov_i64(tcg_out, tcg_in);
1225             break;
1226         }
1227     } else {
1228         switch (extsize) {
1229         case 0:
1230             tcg_gen_ext8u_i64(tcg_out, tcg_in);
1231             break;
1232         case 1:
1233             tcg_gen_ext16u_i64(tcg_out, tcg_in);
1234             break;
1235         case 2:
1236             tcg_gen_ext32u_i64(tcg_out, tcg_in);
1237             break;
1238         case 3:
1239             tcg_gen_mov_i64(tcg_out, tcg_in);
1240             break;
1241         }
1242     }
1243 
1244     if (shift) {
1245         tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1246     }
1247 }
1248 
1249 static inline void gen_check_sp_alignment(DisasContext *s)
1250 {
1251     /* The AArch64 architecture mandates that (if enabled via PSTATE
1252      * or SCTLR bits) there is a check that SP is 16-aligned on every
1253      * SP-relative load or store (with an exception generated if it is not).
1254      * In line with general QEMU practice regarding misaligned accesses,
1255      * we omit these checks for the sake of guest program performance.
1256      * This function is provided as a hook so we can more easily add these
1257      * checks in future (possibly as a "favour catching guest program bugs
1258      * over speed" user selectable option).
1259      */
1260 }
1261 
1262 /*
1263  * This provides a simple table based table lookup decoder. It is
1264  * intended to be used when the relevant bits for decode are too
1265  * awkwardly placed and switch/if based logic would be confusing and
1266  * deeply nested. Since it's a linear search through the table, tables
1267  * should be kept small.
1268  *
1269  * It returns the first handler where insn & mask == pattern, or
1270  * NULL if there is no match.
1271  * The table is terminated by an empty mask (i.e. 0)
1272  */
1273 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1274                                                uint32_t insn)
1275 {
1276     const AArch64DecodeTable *tptr = table;
1277 
1278     while (tptr->mask) {
1279         if ((insn & tptr->mask) == tptr->pattern) {
1280             return tptr->disas_fn;
1281         }
1282         tptr++;
1283     }
1284     return NULL;
1285 }
1286 
1287 /*
1288  * The instruction disassembly implemented here matches
1289  * the instruction encoding classifications in chapter C4
1290  * of the ARM Architecture Reference Manual (DDI0487B_a);
1291  * classification names and decode diagrams here should generally
1292  * match up with those in the manual.
1293  */
1294 
1295 static bool trans_B(DisasContext *s, arg_i *a)
1296 {
1297     reset_btype(s);
1298     gen_goto_tb(s, 0, a->imm);
1299     return true;
1300 }
1301 
1302 static bool trans_BL(DisasContext *s, arg_i *a)
1303 {
1304     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1305     reset_btype(s);
1306     gen_goto_tb(s, 0, a->imm);
1307     return true;
1308 }
1309 
1310 
1311 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1312 {
1313     DisasLabel match;
1314     TCGv_i64 tcg_cmp;
1315 
1316     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1317     reset_btype(s);
1318 
1319     match = gen_disas_label(s);
1320     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1321                         tcg_cmp, 0, match.label);
1322     gen_goto_tb(s, 0, 4);
1323     set_disas_label(s, match);
1324     gen_goto_tb(s, 1, a->imm);
1325     return true;
1326 }
1327 
1328 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1329 {
1330     DisasLabel match;
1331     TCGv_i64 tcg_cmp;
1332 
1333     tcg_cmp = tcg_temp_new_i64();
1334     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1335 
1336     reset_btype(s);
1337 
1338     match = gen_disas_label(s);
1339     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1340                         tcg_cmp, 0, match.label);
1341     gen_goto_tb(s, 0, 4);
1342     set_disas_label(s, match);
1343     gen_goto_tb(s, 1, a->imm);
1344     return true;
1345 }
1346 
1347 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1348 {
1349     reset_btype(s);
1350     if (a->cond < 0x0e) {
1351         /* genuinely conditional branches */
1352         DisasLabel match = gen_disas_label(s);
1353         arm_gen_test_cc(a->cond, match.label);
1354         gen_goto_tb(s, 0, 4);
1355         set_disas_label(s, match);
1356         gen_goto_tb(s, 1, a->imm);
1357     } else {
1358         /* 0xe and 0xf are both "always" conditions */
1359         gen_goto_tb(s, 0, a->imm);
1360     }
1361     return true;
1362 }
1363 
1364 static void set_btype_for_br(DisasContext *s, int rn)
1365 {
1366     if (dc_isar_feature(aa64_bti, s)) {
1367         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1368         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1369     }
1370 }
1371 
1372 static void set_btype_for_blr(DisasContext *s)
1373 {
1374     if (dc_isar_feature(aa64_bti, s)) {
1375         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1376         set_btype(s, 2);
1377     }
1378 }
1379 
1380 static bool trans_BR(DisasContext *s, arg_r *a)
1381 {
1382     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1383     set_btype_for_br(s, a->rn);
1384     s->base.is_jmp = DISAS_JUMP;
1385     return true;
1386 }
1387 
1388 static bool trans_BLR(DisasContext *s, arg_r *a)
1389 {
1390     TCGv_i64 dst = cpu_reg(s, a->rn);
1391     TCGv_i64 lr = cpu_reg(s, 30);
1392     if (dst == lr) {
1393         TCGv_i64 tmp = tcg_temp_new_i64();
1394         tcg_gen_mov_i64(tmp, dst);
1395         dst = tmp;
1396     }
1397     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1398     gen_a64_set_pc(s, dst);
1399     set_btype_for_blr(s);
1400     s->base.is_jmp = DISAS_JUMP;
1401     return true;
1402 }
1403 
1404 static bool trans_RET(DisasContext *s, arg_r *a)
1405 {
1406     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1407     s->base.is_jmp = DISAS_JUMP;
1408     return true;
1409 }
1410 
1411 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1412                                    TCGv_i64 modifier, bool use_key_a)
1413 {
1414     TCGv_i64 truedst;
1415     /*
1416      * Return the branch target for a BRAA/RETA/etc, which is either
1417      * just the destination dst, or that value with the pauth check
1418      * done and the code removed from the high bits.
1419      */
1420     if (!s->pauth_active) {
1421         return dst;
1422     }
1423 
1424     truedst = tcg_temp_new_i64();
1425     if (use_key_a) {
1426         gen_helper_autia(truedst, cpu_env, dst, modifier);
1427     } else {
1428         gen_helper_autib(truedst, cpu_env, dst, modifier);
1429     }
1430     return truedst;
1431 }
1432 
1433 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1434 {
1435     TCGv_i64 dst;
1436 
1437     if (!dc_isar_feature(aa64_pauth, s)) {
1438         return false;
1439     }
1440 
1441     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1442     gen_a64_set_pc(s, dst);
1443     set_btype_for_br(s, a->rn);
1444     s->base.is_jmp = DISAS_JUMP;
1445     return true;
1446 }
1447 
1448 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1449 {
1450     TCGv_i64 dst, lr;
1451 
1452     if (!dc_isar_feature(aa64_pauth, s)) {
1453         return false;
1454     }
1455 
1456     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1457     lr = cpu_reg(s, 30);
1458     if (dst == lr) {
1459         TCGv_i64 tmp = tcg_temp_new_i64();
1460         tcg_gen_mov_i64(tmp, dst);
1461         dst = tmp;
1462     }
1463     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1464     gen_a64_set_pc(s, dst);
1465     set_btype_for_blr(s);
1466     s->base.is_jmp = DISAS_JUMP;
1467     return true;
1468 }
1469 
1470 static bool trans_RETA(DisasContext *s, arg_reta *a)
1471 {
1472     TCGv_i64 dst;
1473 
1474     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1475     gen_a64_set_pc(s, dst);
1476     s->base.is_jmp = DISAS_JUMP;
1477     return true;
1478 }
1479 
1480 static bool trans_BRA(DisasContext *s, arg_bra *a)
1481 {
1482     TCGv_i64 dst;
1483 
1484     if (!dc_isar_feature(aa64_pauth, s)) {
1485         return false;
1486     }
1487     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1488     gen_a64_set_pc(s, dst);
1489     set_btype_for_br(s, a->rn);
1490     s->base.is_jmp = DISAS_JUMP;
1491     return true;
1492 }
1493 
1494 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1495 {
1496     TCGv_i64 dst, lr;
1497 
1498     if (!dc_isar_feature(aa64_pauth, s)) {
1499         return false;
1500     }
1501     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1502     lr = cpu_reg(s, 30);
1503     if (dst == lr) {
1504         TCGv_i64 tmp = tcg_temp_new_i64();
1505         tcg_gen_mov_i64(tmp, dst);
1506         dst = tmp;
1507     }
1508     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1509     gen_a64_set_pc(s, dst);
1510     set_btype_for_blr(s);
1511     s->base.is_jmp = DISAS_JUMP;
1512     return true;
1513 }
1514 
1515 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1516 {
1517     TCGv_i64 dst;
1518 
1519     if (s->current_el == 0) {
1520         return false;
1521     }
1522     if (s->fgt_eret) {
1523         gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2);
1524         return true;
1525     }
1526     dst = tcg_temp_new_i64();
1527     tcg_gen_ld_i64(dst, cpu_env,
1528                    offsetof(CPUARMState, elr_el[s->current_el]));
1529 
1530     translator_io_start(&s->base);
1531 
1532     gen_helper_exception_return(cpu_env, dst);
1533     /* Must exit loop to check un-masked IRQs */
1534     s->base.is_jmp = DISAS_EXIT;
1535     return true;
1536 }
1537 
1538 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1539 {
1540     TCGv_i64 dst;
1541 
1542     if (!dc_isar_feature(aa64_pauth, s)) {
1543         return false;
1544     }
1545     if (s->current_el == 0) {
1546         return false;
1547     }
1548     /* The FGT trap takes precedence over an auth trap. */
1549     if (s->fgt_eret) {
1550         gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2);
1551         return true;
1552     }
1553     dst = tcg_temp_new_i64();
1554     tcg_gen_ld_i64(dst, cpu_env,
1555                    offsetof(CPUARMState, elr_el[s->current_el]));
1556 
1557     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1558 
1559     translator_io_start(&s->base);
1560 
1561     gen_helper_exception_return(cpu_env, dst);
1562     /* Must exit loop to check un-masked IRQs */
1563     s->base.is_jmp = DISAS_EXIT;
1564     return true;
1565 }
1566 
1567 /* HINT instruction group, including various allocated HINTs */
1568 static void handle_hint(DisasContext *s, uint32_t insn,
1569                         unsigned int op1, unsigned int op2, unsigned int crm)
1570 {
1571     unsigned int selector = crm << 3 | op2;
1572 
1573     if (op1 != 3) {
1574         unallocated_encoding(s);
1575         return;
1576     }
1577 
1578     switch (selector) {
1579     case 0b00000: /* NOP */
1580         break;
1581     case 0b00011: /* WFI */
1582         s->base.is_jmp = DISAS_WFI;
1583         break;
1584     case 0b00001: /* YIELD */
1585         /* When running in MTTCG we don't generate jumps to the yield and
1586          * WFE helpers as it won't affect the scheduling of other vCPUs.
1587          * If we wanted to more completely model WFE/SEV so we don't busy
1588          * spin unnecessarily we would need to do something more involved.
1589          */
1590         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1591             s->base.is_jmp = DISAS_YIELD;
1592         }
1593         break;
1594     case 0b00010: /* WFE */
1595         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1596             s->base.is_jmp = DISAS_WFE;
1597         }
1598         break;
1599     case 0b00100: /* SEV */
1600     case 0b00101: /* SEVL */
1601     case 0b00110: /* DGH */
1602         /* we treat all as NOP at least for now */
1603         break;
1604     case 0b00111: /* XPACLRI */
1605         if (s->pauth_active) {
1606             gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1607         }
1608         break;
1609     case 0b01000: /* PACIA1716 */
1610         if (s->pauth_active) {
1611             gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1612         }
1613         break;
1614     case 0b01010: /* PACIB1716 */
1615         if (s->pauth_active) {
1616             gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1617         }
1618         break;
1619     case 0b01100: /* AUTIA1716 */
1620         if (s->pauth_active) {
1621             gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1622         }
1623         break;
1624     case 0b01110: /* AUTIB1716 */
1625         if (s->pauth_active) {
1626             gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1627         }
1628         break;
1629     case 0b10000: /* ESB */
1630         /* Without RAS, we must implement this as NOP. */
1631         if (dc_isar_feature(aa64_ras, s)) {
1632             /*
1633              * QEMU does not have a source of physical SErrors,
1634              * so we are only concerned with virtual SErrors.
1635              * The pseudocode in the ARM for this case is
1636              *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1637              *      AArch64.vESBOperation();
1638              * Most of the condition can be evaluated at translation time.
1639              * Test for EL2 present, and defer test for SEL2 to runtime.
1640              */
1641             if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1642                 gen_helper_vesb(cpu_env);
1643             }
1644         }
1645         break;
1646     case 0b11000: /* PACIAZ */
1647         if (s->pauth_active) {
1648             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1649                              tcg_constant_i64(0));
1650         }
1651         break;
1652     case 0b11001: /* PACIASP */
1653         if (s->pauth_active) {
1654             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1655         }
1656         break;
1657     case 0b11010: /* PACIBZ */
1658         if (s->pauth_active) {
1659             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1660                              tcg_constant_i64(0));
1661         }
1662         break;
1663     case 0b11011: /* PACIBSP */
1664         if (s->pauth_active) {
1665             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1666         }
1667         break;
1668     case 0b11100: /* AUTIAZ */
1669         if (s->pauth_active) {
1670             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1671                              tcg_constant_i64(0));
1672         }
1673         break;
1674     case 0b11101: /* AUTIASP */
1675         if (s->pauth_active) {
1676             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1677         }
1678         break;
1679     case 0b11110: /* AUTIBZ */
1680         if (s->pauth_active) {
1681             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1682                              tcg_constant_i64(0));
1683         }
1684         break;
1685     case 0b11111: /* AUTIBSP */
1686         if (s->pauth_active) {
1687             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1688         }
1689         break;
1690     default:
1691         /* default specified as NOP equivalent */
1692         break;
1693     }
1694 }
1695 
1696 static void gen_clrex(DisasContext *s, uint32_t insn)
1697 {
1698     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1699 }
1700 
1701 /* CLREX, DSB, DMB, ISB */
1702 static void handle_sync(DisasContext *s, uint32_t insn,
1703                         unsigned int op1, unsigned int op2, unsigned int crm)
1704 {
1705     TCGBar bar;
1706 
1707     if (op1 != 3) {
1708         unallocated_encoding(s);
1709         return;
1710     }
1711 
1712     switch (op2) {
1713     case 2: /* CLREX */
1714         gen_clrex(s, insn);
1715         return;
1716     case 4: /* DSB */
1717     case 5: /* DMB */
1718         switch (crm & 3) {
1719         case 1: /* MBReqTypes_Reads */
1720             bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1721             break;
1722         case 2: /* MBReqTypes_Writes */
1723             bar = TCG_BAR_SC | TCG_MO_ST_ST;
1724             break;
1725         default: /* MBReqTypes_All */
1726             bar = TCG_BAR_SC | TCG_MO_ALL;
1727             break;
1728         }
1729         tcg_gen_mb(bar);
1730         return;
1731     case 6: /* ISB */
1732         /* We need to break the TB after this insn to execute
1733          * a self-modified code correctly and also to take
1734          * any pending interrupts immediately.
1735          */
1736         reset_btype(s);
1737         gen_goto_tb(s, 0, 4);
1738         return;
1739 
1740     case 7: /* SB */
1741         if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1742             goto do_unallocated;
1743         }
1744         /*
1745          * TODO: There is no speculation barrier opcode for TCG;
1746          * MB and end the TB instead.
1747          */
1748         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1749         gen_goto_tb(s, 0, 4);
1750         return;
1751 
1752     default:
1753     do_unallocated:
1754         unallocated_encoding(s);
1755         return;
1756     }
1757 }
1758 
1759 static void gen_xaflag(void)
1760 {
1761     TCGv_i32 z = tcg_temp_new_i32();
1762 
1763     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1764 
1765     /*
1766      * (!C & !Z) << 31
1767      * (!(C | Z)) << 31
1768      * ~((C | Z) << 31)
1769      * ~-(C | Z)
1770      * (C | Z) - 1
1771      */
1772     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1773     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1774 
1775     /* !(Z & C) */
1776     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1777     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1778 
1779     /* (!C & Z) << 31 -> -(Z & ~C) */
1780     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1781     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1782 
1783     /* C | Z */
1784     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1785 }
1786 
1787 static void gen_axflag(void)
1788 {
1789     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1790     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1791 
1792     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1793     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1794 
1795     tcg_gen_movi_i32(cpu_NF, 0);
1796     tcg_gen_movi_i32(cpu_VF, 0);
1797 }
1798 
1799 /* MSR (immediate) - move immediate to processor state field */
1800 static void handle_msr_i(DisasContext *s, uint32_t insn,
1801                          unsigned int op1, unsigned int op2, unsigned int crm)
1802 {
1803     int op = op1 << 3 | op2;
1804 
1805     /* End the TB by default, chaining is ok.  */
1806     s->base.is_jmp = DISAS_TOO_MANY;
1807 
1808     switch (op) {
1809     case 0x00: /* CFINV */
1810         if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1811             goto do_unallocated;
1812         }
1813         tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1814         s->base.is_jmp = DISAS_NEXT;
1815         break;
1816 
1817     case 0x01: /* XAFlag */
1818         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1819             goto do_unallocated;
1820         }
1821         gen_xaflag();
1822         s->base.is_jmp = DISAS_NEXT;
1823         break;
1824 
1825     case 0x02: /* AXFlag */
1826         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1827             goto do_unallocated;
1828         }
1829         gen_axflag();
1830         s->base.is_jmp = DISAS_NEXT;
1831         break;
1832 
1833     case 0x03: /* UAO */
1834         if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1835             goto do_unallocated;
1836         }
1837         if (crm & 1) {
1838             set_pstate_bits(PSTATE_UAO);
1839         } else {
1840             clear_pstate_bits(PSTATE_UAO);
1841         }
1842         gen_rebuild_hflags(s);
1843         break;
1844 
1845     case 0x04: /* PAN */
1846         if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1847             goto do_unallocated;
1848         }
1849         if (crm & 1) {
1850             set_pstate_bits(PSTATE_PAN);
1851         } else {
1852             clear_pstate_bits(PSTATE_PAN);
1853         }
1854         gen_rebuild_hflags(s);
1855         break;
1856 
1857     case 0x05: /* SPSel */
1858         if (s->current_el == 0) {
1859             goto do_unallocated;
1860         }
1861         gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1862         break;
1863 
1864     case 0x19: /* SSBS */
1865         if (!dc_isar_feature(aa64_ssbs, s)) {
1866             goto do_unallocated;
1867         }
1868         if (crm & 1) {
1869             set_pstate_bits(PSTATE_SSBS);
1870         } else {
1871             clear_pstate_bits(PSTATE_SSBS);
1872         }
1873         /* Don't need to rebuild hflags since SSBS is a nop */
1874         break;
1875 
1876     case 0x1a: /* DIT */
1877         if (!dc_isar_feature(aa64_dit, s)) {
1878             goto do_unallocated;
1879         }
1880         if (crm & 1) {
1881             set_pstate_bits(PSTATE_DIT);
1882         } else {
1883             clear_pstate_bits(PSTATE_DIT);
1884         }
1885         /* There's no need to rebuild hflags because DIT is a nop */
1886         break;
1887 
1888     case 0x1e: /* DAIFSet */
1889         gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1890         break;
1891 
1892     case 0x1f: /* DAIFClear */
1893         gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1894         /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs.  */
1895         s->base.is_jmp = DISAS_UPDATE_EXIT;
1896         break;
1897 
1898     case 0x1c: /* TCO */
1899         if (dc_isar_feature(aa64_mte, s)) {
1900             /* Full MTE is enabled -- set the TCO bit as directed. */
1901             if (crm & 1) {
1902                 set_pstate_bits(PSTATE_TCO);
1903             } else {
1904                 clear_pstate_bits(PSTATE_TCO);
1905             }
1906             gen_rebuild_hflags(s);
1907             /* Many factors, including TCO, go into MTE_ACTIVE. */
1908             s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1909         } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1910             /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
1911             s->base.is_jmp = DISAS_NEXT;
1912         } else {
1913             goto do_unallocated;
1914         }
1915         break;
1916 
1917     case 0x1b: /* SVCR* */
1918         if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1919             goto do_unallocated;
1920         }
1921         if (sme_access_check(s)) {
1922             int old = s->pstate_sm | (s->pstate_za << 1);
1923             int new = (crm & 1) * 3;
1924             int msk = (crm >> 1) & 3;
1925 
1926             if ((old ^ new) & msk) {
1927                 /* At least one bit changes. */
1928                 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
1929                                     tcg_constant_i32(msk));
1930             } else {
1931                 s->base.is_jmp = DISAS_NEXT;
1932             }
1933         }
1934         break;
1935 
1936     default:
1937     do_unallocated:
1938         unallocated_encoding(s);
1939         return;
1940     }
1941 }
1942 
1943 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1944 {
1945     TCGv_i32 tmp = tcg_temp_new_i32();
1946     TCGv_i32 nzcv = tcg_temp_new_i32();
1947 
1948     /* build bit 31, N */
1949     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1950     /* build bit 30, Z */
1951     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1952     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1953     /* build bit 29, C */
1954     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1955     /* build bit 28, V */
1956     tcg_gen_shri_i32(tmp, cpu_VF, 31);
1957     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1958     /* generate result */
1959     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1960 }
1961 
1962 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1963 {
1964     TCGv_i32 nzcv = tcg_temp_new_i32();
1965 
1966     /* take NZCV from R[t] */
1967     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1968 
1969     /* bit 31, N */
1970     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1971     /* bit 30, Z */
1972     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1973     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1974     /* bit 29, C */
1975     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1976     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1977     /* bit 28, V */
1978     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1979     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1980 }
1981 
1982 static void gen_sysreg_undef(DisasContext *s, bool isread,
1983                              uint8_t op0, uint8_t op1, uint8_t op2,
1984                              uint8_t crn, uint8_t crm, uint8_t rt)
1985 {
1986     /*
1987      * Generate code to emit an UNDEF with correct syndrome
1988      * information for a failed system register access.
1989      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
1990      * but if FEAT_IDST is implemented then read accesses to registers
1991      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
1992      * syndrome.
1993      */
1994     uint32_t syndrome;
1995 
1996     if (isread && dc_isar_feature(aa64_ids, s) &&
1997         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
1998         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1999     } else {
2000         syndrome = syn_uncategorized();
2001     }
2002     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2003 }
2004 
2005 /* MRS - move from system register
2006  * MSR (register) - move to system register
2007  * SYS
2008  * SYSL
2009  * These are all essentially the same insn in 'read' and 'write'
2010  * versions, with varying op0 fields.
2011  */
2012 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
2013                        unsigned int op0, unsigned int op1, unsigned int op2,
2014                        unsigned int crn, unsigned int crm, unsigned int rt)
2015 {
2016     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2017                                       crn, crm, op0, op1, op2);
2018     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2019     bool need_exit_tb = false;
2020     TCGv_ptr tcg_ri = NULL;
2021     TCGv_i64 tcg_rt;
2022 
2023     if (!ri) {
2024         /* Unknown register; this might be a guest error or a QEMU
2025          * unimplemented feature.
2026          */
2027         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2028                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2029                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2030         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2031         return;
2032     }
2033 
2034     /* Check access permissions */
2035     if (!cp_access_ok(s->current_el, ri, isread)) {
2036         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2037         return;
2038     }
2039 
2040     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2041         /* Emit code to perform further access permissions checks at
2042          * runtime; this may result in an exception.
2043          */
2044         uint32_t syndrome;
2045 
2046         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2047         gen_a64_update_pc(s, 0);
2048         tcg_ri = tcg_temp_new_ptr();
2049         gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
2050                                        tcg_constant_i32(key),
2051                                        tcg_constant_i32(syndrome),
2052                                        tcg_constant_i32(isread));
2053     } else if (ri->type & ARM_CP_RAISES_EXC) {
2054         /*
2055          * The readfn or writefn might raise an exception;
2056          * synchronize the CPU state in case it does.
2057          */
2058         gen_a64_update_pc(s, 0);
2059     }
2060 
2061     /* Handle special cases first */
2062     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2063     case 0:
2064         break;
2065     case ARM_CP_NOP:
2066         return;
2067     case ARM_CP_NZCV:
2068         tcg_rt = cpu_reg(s, rt);
2069         if (isread) {
2070             gen_get_nzcv(tcg_rt);
2071         } else {
2072             gen_set_nzcv(tcg_rt);
2073         }
2074         return;
2075     case ARM_CP_CURRENTEL:
2076         /* Reads as current EL value from pstate, which is
2077          * guaranteed to be constant by the tb flags.
2078          */
2079         tcg_rt = cpu_reg(s, rt);
2080         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2081         return;
2082     case ARM_CP_DC_ZVA:
2083         /* Writes clear the aligned block of memory which rt points into. */
2084         if (s->mte_active[0]) {
2085             int desc = 0;
2086 
2087             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2088             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2089             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2090 
2091             tcg_rt = tcg_temp_new_i64();
2092             gen_helper_mte_check_zva(tcg_rt, cpu_env,
2093                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2094         } else {
2095             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2096         }
2097         gen_helper_dc_zva(cpu_env, tcg_rt);
2098         return;
2099     case ARM_CP_DC_GVA:
2100         {
2101             TCGv_i64 clean_addr, tag;
2102 
2103             /*
2104              * DC_GVA, like DC_ZVA, requires that we supply the original
2105              * pointer for an invalid page.  Probe that address first.
2106              */
2107             tcg_rt = cpu_reg(s, rt);
2108             clean_addr = clean_data_tbi(s, tcg_rt);
2109             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2110 
2111             if (s->ata) {
2112                 /* Extract the tag from the register to match STZGM.  */
2113                 tag = tcg_temp_new_i64();
2114                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2115                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2116             }
2117         }
2118         return;
2119     case ARM_CP_DC_GZVA:
2120         {
2121             TCGv_i64 clean_addr, tag;
2122 
2123             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2124             tcg_rt = cpu_reg(s, rt);
2125             clean_addr = clean_data_tbi(s, tcg_rt);
2126             gen_helper_dc_zva(cpu_env, clean_addr);
2127 
2128             if (s->ata) {
2129                 /* Extract the tag from the register to match STZGM.  */
2130                 tag = tcg_temp_new_i64();
2131                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2132                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2133             }
2134         }
2135         return;
2136     default:
2137         g_assert_not_reached();
2138     }
2139     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2140         return;
2141     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2142         return;
2143     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2144         return;
2145     }
2146 
2147     if (ri->type & ARM_CP_IO) {
2148         /* I/O operations must end the TB here (whether read or write) */
2149         need_exit_tb = translator_io_start(&s->base);
2150     }
2151 
2152     tcg_rt = cpu_reg(s, rt);
2153 
2154     if (isread) {
2155         if (ri->type & ARM_CP_CONST) {
2156             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2157         } else if (ri->readfn) {
2158             if (!tcg_ri) {
2159                 tcg_ri = gen_lookup_cp_reg(key);
2160             }
2161             gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2162         } else {
2163             tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2164         }
2165     } else {
2166         if (ri->type & ARM_CP_CONST) {
2167             /* If not forbidden by access permissions, treat as WI */
2168             return;
2169         } else if (ri->writefn) {
2170             if (!tcg_ri) {
2171                 tcg_ri = gen_lookup_cp_reg(key);
2172             }
2173             gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2174         } else {
2175             tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2176         }
2177     }
2178 
2179     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2180         /*
2181          * A write to any coprocessor regiser that ends a TB
2182          * must rebuild the hflags for the next TB.
2183          */
2184         gen_rebuild_hflags(s);
2185         /*
2186          * We default to ending the TB on a coprocessor register write,
2187          * but allow this to be suppressed by the register definition
2188          * (usually only necessary to work around guest bugs).
2189          */
2190         need_exit_tb = true;
2191     }
2192     if (need_exit_tb) {
2193         s->base.is_jmp = DISAS_UPDATE_EXIT;
2194     }
2195 }
2196 
2197 /* System
2198  *  31                 22 21  20 19 18 16 15   12 11    8 7   5 4    0
2199  * +---------------------+---+-----+-----+-------+-------+-----+------+
2200  * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 |  CRn  |  CRm  | op2 |  Rt  |
2201  * +---------------------+---+-----+-----+-------+-------+-----+------+
2202  */
2203 static void disas_system(DisasContext *s, uint32_t insn)
2204 {
2205     unsigned int l, op0, op1, crn, crm, op2, rt;
2206     l = extract32(insn, 21, 1);
2207     op0 = extract32(insn, 19, 2);
2208     op1 = extract32(insn, 16, 3);
2209     crn = extract32(insn, 12, 4);
2210     crm = extract32(insn, 8, 4);
2211     op2 = extract32(insn, 5, 3);
2212     rt = extract32(insn, 0, 5);
2213 
2214     if (op0 == 0) {
2215         if (l || rt != 31) {
2216             unallocated_encoding(s);
2217             return;
2218         }
2219         switch (crn) {
2220         case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2221             handle_hint(s, insn, op1, op2, crm);
2222             break;
2223         case 3: /* CLREX, DSB, DMB, ISB */
2224             handle_sync(s, insn, op1, op2, crm);
2225             break;
2226         case 4: /* MSR (immediate) */
2227             handle_msr_i(s, insn, op1, op2, crm);
2228             break;
2229         default:
2230             unallocated_encoding(s);
2231             break;
2232         }
2233         return;
2234     }
2235     handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2236 }
2237 
2238 /* Exception generation
2239  *
2240  *  31             24 23 21 20                     5 4   2 1  0
2241  * +-----------------+-----+------------------------+-----+----+
2242  * | 1 1 0 1 0 1 0 0 | opc |          imm16         | op2 | LL |
2243  * +-----------------------+------------------------+----------+
2244  */
2245 static void disas_exc(DisasContext *s, uint32_t insn)
2246 {
2247     int opc = extract32(insn, 21, 3);
2248     int op2_ll = extract32(insn, 0, 5);
2249     int imm16 = extract32(insn, 5, 16);
2250     uint32_t syndrome;
2251 
2252     switch (opc) {
2253     case 0:
2254         /* For SVC, HVC and SMC we advance the single-step state
2255          * machine before taking the exception. This is architecturally
2256          * mandated, to ensure that single-stepping a system call
2257          * instruction works properly.
2258          */
2259         switch (op2_ll) {
2260         case 1:                                                     /* SVC */
2261             syndrome = syn_aa64_svc(imm16);
2262             if (s->fgt_svc) {
2263                 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2264                 break;
2265             }
2266             gen_ss_advance(s);
2267             gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2268             break;
2269         case 2:                                                     /* HVC */
2270             if (s->current_el == 0) {
2271                 unallocated_encoding(s);
2272                 break;
2273             }
2274             /* The pre HVC helper handles cases when HVC gets trapped
2275              * as an undefined insn by runtime configuration.
2276              */
2277             gen_a64_update_pc(s, 0);
2278             gen_helper_pre_hvc(cpu_env);
2279             gen_ss_advance(s);
2280             gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2281             break;
2282         case 3:                                                     /* SMC */
2283             if (s->current_el == 0) {
2284                 unallocated_encoding(s);
2285                 break;
2286             }
2287             gen_a64_update_pc(s, 0);
2288             gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2289             gen_ss_advance(s);
2290             gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2291             break;
2292         default:
2293             unallocated_encoding(s);
2294             break;
2295         }
2296         break;
2297     case 1:
2298         if (op2_ll != 0) {
2299             unallocated_encoding(s);
2300             break;
2301         }
2302         /* BRK */
2303         gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2304         break;
2305     case 2:
2306         if (op2_ll != 0) {
2307             unallocated_encoding(s);
2308             break;
2309         }
2310         /* HLT. This has two purposes.
2311          * Architecturally, it is an external halting debug instruction.
2312          * Since QEMU doesn't implement external debug, we treat this as
2313          * it is required for halting debug disabled: it will UNDEF.
2314          * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2315          */
2316         if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2317             gen_exception_internal_insn(s, EXCP_SEMIHOST);
2318         } else {
2319             unallocated_encoding(s);
2320         }
2321         break;
2322     case 5:
2323         if (op2_ll < 1 || op2_ll > 3) {
2324             unallocated_encoding(s);
2325             break;
2326         }
2327         /* DCPS1, DCPS2, DCPS3 */
2328         unallocated_encoding(s);
2329         break;
2330     default:
2331         unallocated_encoding(s);
2332         break;
2333     }
2334 }
2335 
2336 /* Branches, exception generating and system instructions */
2337 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2338 {
2339     switch (extract32(insn, 25, 7)) {
2340     case 0x6a: /* Exception generation / System */
2341         if (insn & (1 << 24)) {
2342             if (extract32(insn, 22, 2) == 0) {
2343                 disas_system(s, insn);
2344             } else {
2345                 unallocated_encoding(s);
2346             }
2347         } else {
2348             disas_exc(s, insn);
2349         }
2350         break;
2351     default:
2352         unallocated_encoding(s);
2353         break;
2354     }
2355 }
2356 
2357 /*
2358  * Load/Store exclusive instructions are implemented by remembering
2359  * the value/address loaded, and seeing if these are the same
2360  * when the store is performed. This is not actually the architecturally
2361  * mandated semantics, but it works for typical guest code sequences
2362  * and avoids having to monitor regular stores.
2363  *
2364  * The store exclusive uses the atomic cmpxchg primitives to avoid
2365  * races in multi-threaded linux-user and when MTTCG softmmu is
2366  * enabled.
2367  */
2368 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2369                                int size, bool is_pair)
2370 {
2371     int idx = get_mem_index(s);
2372     TCGv_i64 dirty_addr, clean_addr;
2373     MemOp memop;
2374 
2375     /*
2376      * For pairs:
2377      * if size == 2, the operation is single-copy atomic for the doubleword.
2378      * if size == 3, the operation is single-copy atomic for *each* doubleword,
2379      * not the entire quadword, however it must be quadword aligned.
2380      */
2381     memop = size + is_pair;
2382     if (memop == MO_128) {
2383         memop = finalize_memop_atom(s, MO_128 | MO_ALIGN,
2384                                     MO_ATOM_IFALIGN_PAIR);
2385     } else {
2386         memop = finalize_memop(s, memop | MO_ALIGN);
2387     }
2388 
2389     s->is_ldex = true;
2390     dirty_addr = cpu_reg_sp(s, rn);
2391     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2392 
2393     g_assert(size <= 3);
2394     if (is_pair) {
2395         g_assert(size >= 2);
2396         if (size == 2) {
2397             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2398             if (s->be_data == MO_LE) {
2399                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2400                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2401             } else {
2402                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2403                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2404             }
2405         } else {
2406             TCGv_i128 t16 = tcg_temp_new_i128();
2407 
2408             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2409 
2410             if (s->be_data == MO_LE) {
2411                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2412                                       cpu_exclusive_high, t16);
2413             } else {
2414                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2415                                       cpu_exclusive_val, t16);
2416             }
2417             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2418             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2419         }
2420     } else {
2421         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2422         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2423     }
2424     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2425 }
2426 
2427 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2428                                 int rn, int size, int is_pair)
2429 {
2430     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2431      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2432      *     [addr] = {Rt};
2433      *     if (is_pair) {
2434      *         [addr + datasize] = {Rt2};
2435      *     }
2436      *     {Rd} = 0;
2437      * } else {
2438      *     {Rd} = 1;
2439      * }
2440      * env->exclusive_addr = -1;
2441      */
2442     TCGLabel *fail_label = gen_new_label();
2443     TCGLabel *done_label = gen_new_label();
2444     TCGv_i64 tmp, dirty_addr, clean_addr;
2445     MemOp memop;
2446 
2447     memop = (size + is_pair) | MO_ALIGN;
2448     memop = finalize_memop(s, memop);
2449 
2450     dirty_addr = cpu_reg_sp(s, rn);
2451     clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, memop);
2452 
2453     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2454 
2455     tmp = tcg_temp_new_i64();
2456     if (is_pair) {
2457         if (size == 2) {
2458             if (s->be_data == MO_LE) {
2459                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2460             } else {
2461                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2462             }
2463             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2464                                        cpu_exclusive_val, tmp,
2465                                        get_mem_index(s), memop);
2466             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2467         } else {
2468             TCGv_i128 t16 = tcg_temp_new_i128();
2469             TCGv_i128 c16 = tcg_temp_new_i128();
2470             TCGv_i64 a, b;
2471 
2472             if (s->be_data == MO_LE) {
2473                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2474                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2475                                         cpu_exclusive_high);
2476             } else {
2477                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2478                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2479                                         cpu_exclusive_val);
2480             }
2481 
2482             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2483                                         get_mem_index(s), memop);
2484 
2485             a = tcg_temp_new_i64();
2486             b = tcg_temp_new_i64();
2487             if (s->be_data == MO_LE) {
2488                 tcg_gen_extr_i128_i64(a, b, t16);
2489             } else {
2490                 tcg_gen_extr_i128_i64(b, a, t16);
2491             }
2492 
2493             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2494             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2495             tcg_gen_or_i64(tmp, a, b);
2496 
2497             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2498         }
2499     } else {
2500         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2501                                    cpu_reg(s, rt), get_mem_index(s), memop);
2502         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2503     }
2504     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2505     tcg_gen_br(done_label);
2506 
2507     gen_set_label(fail_label);
2508     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2509     gen_set_label(done_label);
2510     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2511 }
2512 
2513 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2514                                  int rn, int size)
2515 {
2516     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2517     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2518     int memidx = get_mem_index(s);
2519     TCGv_i64 clean_addr;
2520     MemOp memop;
2521 
2522     if (rn == 31) {
2523         gen_check_sp_alignment(s);
2524     }
2525     memop = finalize_memop(s, size | MO_ALIGN);
2526     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2527     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2528                                memidx, memop);
2529 }
2530 
2531 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2532                                       int rn, int size)
2533 {
2534     TCGv_i64 s1 = cpu_reg(s, rs);
2535     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2536     TCGv_i64 t1 = cpu_reg(s, rt);
2537     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2538     TCGv_i64 clean_addr;
2539     int memidx = get_mem_index(s);
2540     MemOp memop;
2541 
2542     if (rn == 31) {
2543         gen_check_sp_alignment(s);
2544     }
2545 
2546     /* This is a single atomic access, despite the "pair". */
2547     memop = finalize_memop(s, (size + 1) | MO_ALIGN);
2548     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2549 
2550     if (size == 2) {
2551         TCGv_i64 cmp = tcg_temp_new_i64();
2552         TCGv_i64 val = tcg_temp_new_i64();
2553 
2554         if (s->be_data == MO_LE) {
2555             tcg_gen_concat32_i64(val, t1, t2);
2556             tcg_gen_concat32_i64(cmp, s1, s2);
2557         } else {
2558             tcg_gen_concat32_i64(val, t2, t1);
2559             tcg_gen_concat32_i64(cmp, s2, s1);
2560         }
2561 
2562         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2563 
2564         if (s->be_data == MO_LE) {
2565             tcg_gen_extr32_i64(s1, s2, cmp);
2566         } else {
2567             tcg_gen_extr32_i64(s2, s1, cmp);
2568         }
2569     } else {
2570         TCGv_i128 cmp = tcg_temp_new_i128();
2571         TCGv_i128 val = tcg_temp_new_i128();
2572 
2573         if (s->be_data == MO_LE) {
2574             tcg_gen_concat_i64_i128(val, t1, t2);
2575             tcg_gen_concat_i64_i128(cmp, s1, s2);
2576         } else {
2577             tcg_gen_concat_i64_i128(val, t2, t1);
2578             tcg_gen_concat_i64_i128(cmp, s2, s1);
2579         }
2580 
2581         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2582 
2583         if (s->be_data == MO_LE) {
2584             tcg_gen_extr_i128_i64(s1, s2, cmp);
2585         } else {
2586             tcg_gen_extr_i128_i64(s2, s1, cmp);
2587         }
2588     }
2589 }
2590 
2591 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2592  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2593  */
2594 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2595 {
2596     int opc0 = extract32(opc, 0, 1);
2597     int regsize;
2598 
2599     if (is_signed) {
2600         regsize = opc0 ? 32 : 64;
2601     } else {
2602         regsize = size == 3 ? 64 : 32;
2603     }
2604     return regsize == 64;
2605 }
2606 
2607 /* Load/store exclusive
2608  *
2609  *  31 30 29         24  23  22   21  20  16  15  14   10 9    5 4    0
2610  * +-----+-------------+----+---+----+------+----+-------+------+------+
2611  * | sz  | 0 0 1 0 0 0 | o2 | L | o1 |  Rs  | o0 |  Rt2  |  Rn  | Rt   |
2612  * +-----+-------------+----+---+----+------+----+-------+------+------+
2613  *
2614  *  sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2615  *   L: 0 -> store, 1 -> load
2616  *  o2: 0 -> exclusive, 1 -> not
2617  *  o1: 0 -> single register, 1 -> register pair
2618  *  o0: 1 -> load-acquire/store-release, 0 -> not
2619  */
2620 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2621 {
2622     int rt = extract32(insn, 0, 5);
2623     int rn = extract32(insn, 5, 5);
2624     int rt2 = extract32(insn, 10, 5);
2625     int rs = extract32(insn, 16, 5);
2626     int is_lasr = extract32(insn, 15, 1);
2627     int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2628     int size = extract32(insn, 30, 2);
2629     TCGv_i64 clean_addr;
2630     MemOp memop;
2631 
2632     switch (o2_L_o1_o0) {
2633     case 0x0: /* STXR */
2634     case 0x1: /* STLXR */
2635         if (rn == 31) {
2636             gen_check_sp_alignment(s);
2637         }
2638         if (is_lasr) {
2639             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2640         }
2641         gen_store_exclusive(s, rs, rt, rt2, rn, size, false);
2642         return;
2643 
2644     case 0x4: /* LDXR */
2645     case 0x5: /* LDAXR */
2646         if (rn == 31) {
2647             gen_check_sp_alignment(s);
2648         }
2649         gen_load_exclusive(s, rt, rt2, rn, size, false);
2650         if (is_lasr) {
2651             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2652         }
2653         return;
2654 
2655     case 0x8: /* STLLR */
2656         if (!dc_isar_feature(aa64_lor, s)) {
2657             break;
2658         }
2659         /* StoreLORelease is the same as Store-Release for QEMU.  */
2660         /* fall through */
2661     case 0x9: /* STLR */
2662         /* Generate ISS for non-exclusive accesses including LASR.  */
2663         if (rn == 31) {
2664             gen_check_sp_alignment(s);
2665         }
2666         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2667         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2668         memop = finalize_memop(s, size | MO_ALIGN);
2669         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2670                                     true, rn != 31, memop);
2671         do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt,
2672                   disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2673         return;
2674 
2675     case 0xc: /* LDLAR */
2676         if (!dc_isar_feature(aa64_lor, s)) {
2677             break;
2678         }
2679         /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2680         /* fall through */
2681     case 0xd: /* LDAR */
2682         /* Generate ISS for non-exclusive accesses including LASR.  */
2683         if (rn == 31) {
2684             gen_check_sp_alignment(s);
2685         }
2686         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2687         memop = finalize_memop(s, size | MO_ALIGN);
2688         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2689                                     false, rn != 31, memop);
2690         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true,
2691                   rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2692         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2693         return;
2694 
2695     case 0x2: case 0x3: /* CASP / STXP */
2696         if (size & 2) { /* STXP / STLXP */
2697             if (rn == 31) {
2698                 gen_check_sp_alignment(s);
2699             }
2700             if (is_lasr) {
2701                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2702             }
2703             gen_store_exclusive(s, rs, rt, rt2, rn, size, true);
2704             return;
2705         }
2706         if (rt2 == 31
2707             && ((rt | rs) & 1) == 0
2708             && dc_isar_feature(aa64_atomics, s)) {
2709             /* CASP / CASPL */
2710             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2711             return;
2712         }
2713         break;
2714 
2715     case 0x6: case 0x7: /* CASPA / LDXP */
2716         if (size & 2) { /* LDXP / LDAXP */
2717             if (rn == 31) {
2718                 gen_check_sp_alignment(s);
2719             }
2720             gen_load_exclusive(s, rt, rt2, rn, size, true);
2721             if (is_lasr) {
2722                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2723             }
2724             return;
2725         }
2726         if (rt2 == 31
2727             && ((rt | rs) & 1) == 0
2728             && dc_isar_feature(aa64_atomics, s)) {
2729             /* CASPA / CASPAL */
2730             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2731             return;
2732         }
2733         break;
2734 
2735     case 0xa: /* CAS */
2736     case 0xb: /* CASL */
2737     case 0xe: /* CASA */
2738     case 0xf: /* CASAL */
2739         if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2740             gen_compare_and_swap(s, rs, rt, rn, size);
2741             return;
2742         }
2743         break;
2744     }
2745     unallocated_encoding(s);
2746 }
2747 
2748 /*
2749  * Load register (literal)
2750  *
2751  *  31 30 29   27  26 25 24 23                5 4     0
2752  * +-----+-------+---+-----+-------------------+-------+
2753  * | opc | 0 1 1 | V | 0 0 |     imm19         |  Rt   |
2754  * +-----+-------+---+-----+-------------------+-------+
2755  *
2756  * V: 1 -> vector (simd/fp)
2757  * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2758  *                   10-> 32 bit signed, 11 -> prefetch
2759  * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2760  */
2761 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2762 {
2763     int rt = extract32(insn, 0, 5);
2764     int64_t imm = sextract32(insn, 5, 19) << 2;
2765     bool is_vector = extract32(insn, 26, 1);
2766     int opc = extract32(insn, 30, 2);
2767     bool is_signed = false;
2768     int size = 2;
2769     TCGv_i64 tcg_rt, clean_addr;
2770     MemOp memop;
2771 
2772     if (is_vector) {
2773         if (opc == 3) {
2774             unallocated_encoding(s);
2775             return;
2776         }
2777         size = 2 + opc;
2778         if (!fp_access_check(s)) {
2779             return;
2780         }
2781         memop = finalize_memop_asimd(s, size);
2782     } else {
2783         if (opc == 3) {
2784             /* PRFM (literal) : prefetch */
2785             return;
2786         }
2787         size = 2 + extract32(opc, 0, 1);
2788         is_signed = extract32(opc, 1, 1);
2789         memop = finalize_memop(s, size + is_signed * MO_SIGN);
2790     }
2791 
2792     tcg_rt = cpu_reg(s, rt);
2793 
2794     clean_addr = tcg_temp_new_i64();
2795     gen_pc_plus_diff(s, clean_addr, imm);
2796 
2797     if (is_vector) {
2798         do_fp_ld(s, rt, clean_addr, memop);
2799     } else {
2800         /* Only unsigned 32bit loads target 32bit registers.  */
2801         bool iss_sf = opc != 0;
2802         do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false);
2803     }
2804 }
2805 
2806 /*
2807  * LDNP (Load Pair - non-temporal hint)
2808  * LDP (Load Pair - non vector)
2809  * LDPSW (Load Pair Signed Word - non vector)
2810  * STNP (Store Pair - non-temporal hint)
2811  * STP (Store Pair - non vector)
2812  * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2813  * LDP (Load Pair of SIMD&FP)
2814  * STNP (Store Pair of SIMD&FP - non-temporal hint)
2815  * STP (Store Pair of SIMD&FP)
2816  *
2817  *  31 30 29   27  26  25 24   23  22 21   15 14   10 9    5 4    0
2818  * +-----+-------+---+---+-------+---+-----------------------------+
2819  * | opc | 1 0 1 | V | 0 | index | L |  imm7 |  Rt2  |  Rn  | Rt   |
2820  * +-----+-------+---+---+-------+---+-------+-------+------+------+
2821  *
2822  * opc: LDP/STP/LDNP/STNP        00 -> 32 bit, 10 -> 64 bit
2823  *      LDPSW/STGP               01
2824  *      LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2825  *   V: 0 -> GPR, 1 -> Vector
2826  * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2827  *      10 -> signed offset, 11 -> pre-index
2828  *   L: 0 -> Store 1 -> Load
2829  *
2830  * Rt, Rt2 = GPR or SIMD registers to be stored
2831  * Rn = general purpose register containing address
2832  * imm7 = signed offset (multiple of 4 or 8 depending on size)
2833  */
2834 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2835 {
2836     int rt = extract32(insn, 0, 5);
2837     int rn = extract32(insn, 5, 5);
2838     int rt2 = extract32(insn, 10, 5);
2839     uint64_t offset = sextract64(insn, 15, 7);
2840     int index = extract32(insn, 23, 2);
2841     bool is_vector = extract32(insn, 26, 1);
2842     bool is_load = extract32(insn, 22, 1);
2843     int opc = extract32(insn, 30, 2);
2844     bool is_signed = false;
2845     bool postindex = false;
2846     bool wback = false;
2847     bool set_tag = false;
2848     TCGv_i64 clean_addr, dirty_addr;
2849     MemOp mop;
2850     int size;
2851 
2852     if (opc == 3) {
2853         unallocated_encoding(s);
2854         return;
2855     }
2856 
2857     if (is_vector) {
2858         size = 2 + opc;
2859     } else if (opc == 1 && !is_load) {
2860         /* STGP */
2861         if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2862             unallocated_encoding(s);
2863             return;
2864         }
2865         size = 3;
2866         set_tag = true;
2867     } else {
2868         size = 2 + extract32(opc, 1, 1);
2869         is_signed = extract32(opc, 0, 1);
2870         if (!is_load && is_signed) {
2871             unallocated_encoding(s);
2872             return;
2873         }
2874     }
2875 
2876     switch (index) {
2877     case 1: /* post-index */
2878         postindex = true;
2879         wback = true;
2880         break;
2881     case 0:
2882         /* signed offset with "non-temporal" hint. Since we don't emulate
2883          * caches we don't care about hints to the cache system about
2884          * data access patterns, and handle this identically to plain
2885          * signed offset.
2886          */
2887         if (is_signed) {
2888             /* There is no non-temporal-hint version of LDPSW */
2889             unallocated_encoding(s);
2890             return;
2891         }
2892         postindex = false;
2893         break;
2894     case 2: /* signed offset, rn not updated */
2895         postindex = false;
2896         break;
2897     case 3: /* pre-index */
2898         postindex = false;
2899         wback = true;
2900         break;
2901     }
2902 
2903     if (is_vector && !fp_access_check(s)) {
2904         return;
2905     }
2906 
2907     offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2908 
2909     if (rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912 
2913     dirty_addr = read_cpu_reg_sp(s, rn, 1);
2914     if (!postindex) {
2915         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2916     }
2917 
2918     if (set_tag) {
2919         if (!s->ata) {
2920             /*
2921              * TODO: We could rely on the stores below, at least for
2922              * system mode, if we arrange to add MO_ALIGN_16.
2923              */
2924             gen_helper_stg_stub(cpu_env, dirty_addr);
2925         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2926             gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2927         } else {
2928             gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2929         }
2930     }
2931 
2932     if (is_vector) {
2933         mop = finalize_memop_asimd(s, size);
2934     } else {
2935         mop = finalize_memop(s, size);
2936     }
2937     clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2938                                 (wback || rn != 31) && !set_tag,
2939                                 2 << size, mop);
2940 
2941     if (is_vector) {
2942         /* LSE2 does not merge FP pairs; leave these as separate operations. */
2943         if (is_load) {
2944             do_fp_ld(s, rt, clean_addr, mop);
2945         } else {
2946             do_fp_st(s, rt, clean_addr, mop);
2947         }
2948         tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2949         if (is_load) {
2950             do_fp_ld(s, rt2, clean_addr, mop);
2951         } else {
2952             do_fp_st(s, rt2, clean_addr, mop);
2953         }
2954     } else {
2955         TCGv_i64 tcg_rt = cpu_reg(s, rt);
2956         TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2957 
2958         /*
2959          * We built mop above for the single logical access -- rebuild it
2960          * now for the paired operation.
2961          *
2962          * With LSE2, non-sign-extending pairs are treated atomically if
2963          * aligned, and if unaligned one of the pair will be completely
2964          * within a 16-byte block and that element will be atomic.
2965          * Otherwise each element is separately atomic.
2966          * In all cases, issue one operation with the correct atomicity.
2967          *
2968          * This treats sign-extending loads like zero-extending loads,
2969          * since that reuses the most code below.
2970          */
2971         mop = size + 1;
2972         if (s->align_mem) {
2973             mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2974         }
2975         mop = finalize_memop_pair(s, mop);
2976 
2977         if (is_load) {
2978             if (size == 2) {
2979                 int o2 = s->be_data == MO_LE ? 32 : 0;
2980                 int o1 = o2 ^ 32;
2981 
2982                 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
2983                 if (is_signed) {
2984                     tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
2985                     tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
2986                 } else {
2987                     tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
2988                     tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
2989                 }
2990             } else {
2991                 TCGv_i128 tmp = tcg_temp_new_i128();
2992 
2993                 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
2994                 if (s->be_data == MO_LE) {
2995                     tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
2996                 } else {
2997                     tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
2998                 }
2999             }
3000         } else {
3001             if (size == 2) {
3002                 TCGv_i64 tmp = tcg_temp_new_i64();
3003 
3004                 if (s->be_data == MO_LE) {
3005                     tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3006                 } else {
3007                     tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3008                 }
3009                 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3010             } else {
3011                 TCGv_i128 tmp = tcg_temp_new_i128();
3012 
3013                 if (s->be_data == MO_LE) {
3014                     tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3015                 } else {
3016                     tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3017                 }
3018                 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3019             }
3020         }
3021     }
3022 
3023     if (wback) {
3024         if (postindex) {
3025             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3026         }
3027         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3028     }
3029 }
3030 
3031 /*
3032  * Load/store (immediate post-indexed)
3033  * Load/store (immediate pre-indexed)
3034  * Load/store (unscaled immediate)
3035  *
3036  * 31 30 29   27  26 25 24 23 22 21  20    12 11 10 9    5 4    0
3037  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3038  * |size| 1 1 1 | V | 0 0 | opc | 0 |  imm9  | idx |  Rn  |  Rt  |
3039  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3040  *
3041  * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3042          10 -> unprivileged
3043  * V = 0 -> non-vector
3044  * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3045  * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3046  */
3047 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3048                                 int opc,
3049                                 int size,
3050                                 int rt,
3051                                 bool is_vector)
3052 {
3053     int rn = extract32(insn, 5, 5);
3054     int imm9 = sextract32(insn, 12, 9);
3055     int idx = extract32(insn, 10, 2);
3056     bool is_signed = false;
3057     bool is_store = false;
3058     bool is_extended = false;
3059     bool is_unpriv = (idx == 2);
3060     bool iss_valid;
3061     bool post_index;
3062     bool writeback;
3063     int memidx;
3064     MemOp memop;
3065     TCGv_i64 clean_addr, dirty_addr;
3066 
3067     if (is_vector) {
3068         size |= (opc & 2) << 1;
3069         if (size > 4 || is_unpriv) {
3070             unallocated_encoding(s);
3071             return;
3072         }
3073         is_store = ((opc & 1) == 0);
3074         if (!fp_access_check(s)) {
3075             return;
3076         }
3077         memop = finalize_memop_asimd(s, size);
3078     } else {
3079         if (size == 3 && opc == 2) {
3080             /* PRFM - prefetch */
3081             if (idx != 0) {
3082                 unallocated_encoding(s);
3083                 return;
3084             }
3085             return;
3086         }
3087         if (opc == 3 && size > 1) {
3088             unallocated_encoding(s);
3089             return;
3090         }
3091         is_store = (opc == 0);
3092         is_signed = !is_store && extract32(opc, 1, 1);
3093         is_extended = (size < 3) && extract32(opc, 0, 1);
3094         memop = finalize_memop(s, size + is_signed * MO_SIGN);
3095     }
3096 
3097     switch (idx) {
3098     case 0:
3099     case 2:
3100         post_index = false;
3101         writeback = false;
3102         break;
3103     case 1:
3104         post_index = true;
3105         writeback = true;
3106         break;
3107     case 3:
3108         post_index = false;
3109         writeback = true;
3110         break;
3111     default:
3112         g_assert_not_reached();
3113     }
3114 
3115     iss_valid = !is_vector && !writeback;
3116 
3117     if (rn == 31) {
3118         gen_check_sp_alignment(s);
3119     }
3120 
3121     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3122     if (!post_index) {
3123         tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3124     }
3125 
3126     memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3127 
3128     clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3129                                        writeback || rn != 31,
3130                                        size, is_unpriv, memidx);
3131 
3132     if (is_vector) {
3133         if (is_store) {
3134             do_fp_st(s, rt, clean_addr, memop);
3135         } else {
3136             do_fp_ld(s, rt, clean_addr, memop);
3137         }
3138     } else {
3139         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3140         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3141 
3142         if (is_store) {
3143             do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx,
3144                              iss_valid, rt, iss_sf, false);
3145         } else {
3146             do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop,
3147                              is_extended, memidx,
3148                              iss_valid, rt, iss_sf, false);
3149         }
3150     }
3151 
3152     if (writeback) {
3153         TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3154         if (post_index) {
3155             tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3156         }
3157         tcg_gen_mov_i64(tcg_rn, dirty_addr);
3158     }
3159 }
3160 
3161 /*
3162  * Load/store (register offset)
3163  *
3164  * 31 30 29   27  26 25 24 23 22 21  20  16 15 13 12 11 10 9  5 4  0
3165  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3166  * |size| 1 1 1 | V | 0 0 | opc | 1 |  Rm  | opt | S| 1 0 | Rn | Rt |
3167  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3168  *
3169  * For non-vector:
3170  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3171  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3172  * For vector:
3173  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3174  *   opc<0>: 0 -> store, 1 -> load
3175  * V: 1 -> vector/simd
3176  * opt: extend encoding (see DecodeRegExtend)
3177  * S: if S=1 then scale (essentially index by sizeof(size))
3178  * Rt: register to transfer into/out of
3179  * Rn: address register or SP for base
3180  * Rm: offset register or ZR for offset
3181  */
3182 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3183                                    int opc,
3184                                    int size,
3185                                    int rt,
3186                                    bool is_vector)
3187 {
3188     int rn = extract32(insn, 5, 5);
3189     int shift = extract32(insn, 12, 1);
3190     int rm = extract32(insn, 16, 5);
3191     int opt = extract32(insn, 13, 3);
3192     bool is_signed = false;
3193     bool is_store = false;
3194     bool is_extended = false;
3195     TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3196     MemOp memop;
3197 
3198     if (extract32(opt, 1, 1) == 0) {
3199         unallocated_encoding(s);
3200         return;
3201     }
3202 
3203     if (is_vector) {
3204         size |= (opc & 2) << 1;
3205         if (size > 4) {
3206             unallocated_encoding(s);
3207             return;
3208         }
3209         is_store = !extract32(opc, 0, 1);
3210         if (!fp_access_check(s)) {
3211             return;
3212         }
3213     } else {
3214         if (size == 3 && opc == 2) {
3215             /* PRFM - prefetch */
3216             return;
3217         }
3218         if (opc == 3 && size > 1) {
3219             unallocated_encoding(s);
3220             return;
3221         }
3222         is_store = (opc == 0);
3223         is_signed = !is_store && extract32(opc, 1, 1);
3224         is_extended = (size < 3) && extract32(opc, 0, 1);
3225     }
3226 
3227     if (rn == 31) {
3228         gen_check_sp_alignment(s);
3229     }
3230     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3231 
3232     tcg_rm = read_cpu_reg(s, rm, 1);
3233     ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3234 
3235     tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3236 
3237     memop = finalize_memop(s, size + is_signed * MO_SIGN);
3238     clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop);
3239 
3240     if (is_vector) {
3241         if (is_store) {
3242             do_fp_st(s, rt, clean_addr, memop);
3243         } else {
3244             do_fp_ld(s, rt, clean_addr, memop);
3245         }
3246     } else {
3247         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3248         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3249 
3250         if (is_store) {
3251             do_gpr_st(s, tcg_rt, clean_addr, memop,
3252                       true, rt, iss_sf, false);
3253         } else {
3254             do_gpr_ld(s, tcg_rt, clean_addr, memop,
3255                       is_extended, true, rt, iss_sf, false);
3256         }
3257     }
3258 }
3259 
3260 /*
3261  * Load/store (unsigned immediate)
3262  *
3263  * 31 30 29   27  26 25 24 23 22 21        10 9     5
3264  * +----+-------+---+-----+-----+------------+-------+------+
3265  * |size| 1 1 1 | V | 0 1 | opc |   imm12    |  Rn   |  Rt  |
3266  * +----+-------+---+-----+-----+------------+-------+------+
3267  *
3268  * For non-vector:
3269  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3270  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3271  * For vector:
3272  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3273  *   opc<0>: 0 -> store, 1 -> load
3274  * Rn: base address register (inc SP)
3275  * Rt: target register
3276  */
3277 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3278                                         int opc,
3279                                         int size,
3280                                         int rt,
3281                                         bool is_vector)
3282 {
3283     int rn = extract32(insn, 5, 5);
3284     unsigned int imm12 = extract32(insn, 10, 12);
3285     unsigned int offset;
3286     TCGv_i64 clean_addr, dirty_addr;
3287     bool is_store;
3288     bool is_signed = false;
3289     bool is_extended = false;
3290     MemOp memop;
3291 
3292     if (is_vector) {
3293         size |= (opc & 2) << 1;
3294         if (size > 4) {
3295             unallocated_encoding(s);
3296             return;
3297         }
3298         is_store = !extract32(opc, 0, 1);
3299         if (!fp_access_check(s)) {
3300             return;
3301         }
3302     } else {
3303         if (size == 3 && opc == 2) {
3304             /* PRFM - prefetch */
3305             return;
3306         }
3307         if (opc == 3 && size > 1) {
3308             unallocated_encoding(s);
3309             return;
3310         }
3311         is_store = (opc == 0);
3312         is_signed = !is_store && extract32(opc, 1, 1);
3313         is_extended = (size < 3) && extract32(opc, 0, 1);
3314     }
3315 
3316     if (rn == 31) {
3317         gen_check_sp_alignment(s);
3318     }
3319     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3320     offset = imm12 << size;
3321     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3322 
3323     memop = finalize_memop(s, size + is_signed * MO_SIGN);
3324     clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop);
3325 
3326     if (is_vector) {
3327         if (is_store) {
3328             do_fp_st(s, rt, clean_addr, memop);
3329         } else {
3330             do_fp_ld(s, rt, clean_addr, memop);
3331         }
3332     } else {
3333         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3334         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3335         if (is_store) {
3336             do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false);
3337         } else {
3338             do_gpr_ld(s, tcg_rt, clean_addr, memop,
3339                       is_extended, true, rt, iss_sf, false);
3340         }
3341     }
3342 }
3343 
3344 /* Atomic memory operations
3345  *
3346  *  31  30      27  26    24    22  21   16   15    12    10    5     0
3347  * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3348  * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn |  Rt |
3349  * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3350  *
3351  * Rt: the result register
3352  * Rn: base address or SP
3353  * Rs: the source register for the operation
3354  * V: vector flag (always 0 as of v8.3)
3355  * A: acquire flag
3356  * R: release flag
3357  */
3358 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3359                               int size, int rt, bool is_vector)
3360 {
3361     int rs = extract32(insn, 16, 5);
3362     int rn = extract32(insn, 5, 5);
3363     int o3_opc = extract32(insn, 12, 4);
3364     bool r = extract32(insn, 22, 1);
3365     bool a = extract32(insn, 23, 1);
3366     TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3367     AtomicThreeOpFn *fn = NULL;
3368     MemOp mop = finalize_memop(s, size | MO_ALIGN);
3369 
3370     if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3371         unallocated_encoding(s);
3372         return;
3373     }
3374     switch (o3_opc) {
3375     case 000: /* LDADD */
3376         fn = tcg_gen_atomic_fetch_add_i64;
3377         break;
3378     case 001: /* LDCLR */
3379         fn = tcg_gen_atomic_fetch_and_i64;
3380         break;
3381     case 002: /* LDEOR */
3382         fn = tcg_gen_atomic_fetch_xor_i64;
3383         break;
3384     case 003: /* LDSET */
3385         fn = tcg_gen_atomic_fetch_or_i64;
3386         break;
3387     case 004: /* LDSMAX */
3388         fn = tcg_gen_atomic_fetch_smax_i64;
3389         mop |= MO_SIGN;
3390         break;
3391     case 005: /* LDSMIN */
3392         fn = tcg_gen_atomic_fetch_smin_i64;
3393         mop |= MO_SIGN;
3394         break;
3395     case 006: /* LDUMAX */
3396         fn = tcg_gen_atomic_fetch_umax_i64;
3397         break;
3398     case 007: /* LDUMIN */
3399         fn = tcg_gen_atomic_fetch_umin_i64;
3400         break;
3401     case 010: /* SWP */
3402         fn = tcg_gen_atomic_xchg_i64;
3403         break;
3404     case 014: /* LDAPR, LDAPRH, LDAPRB */
3405         if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3406             rs != 31 || a != 1 || r != 0) {
3407             unallocated_encoding(s);
3408             return;
3409         }
3410         break;
3411     default:
3412         unallocated_encoding(s);
3413         return;
3414     }
3415 
3416     if (rn == 31) {
3417         gen_check_sp_alignment(s);
3418     }
3419     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop);
3420 
3421     if (o3_opc == 014) {
3422         /*
3423          * LDAPR* are a special case because they are a simple load, not a
3424          * fetch-and-do-something op.
3425          * The architectural consistency requirements here are weaker than
3426          * full load-acquire (we only need "load-acquire processor consistent"),
3427          * but we choose to implement them as full LDAQ.
3428          */
3429         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false,
3430                   true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3431         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3432         return;
3433     }
3434 
3435     tcg_rs = read_cpu_reg(s, rs, true);
3436     tcg_rt = cpu_reg(s, rt);
3437 
3438     if (o3_opc == 1) { /* LDCLR */
3439         tcg_gen_not_i64(tcg_rs, tcg_rs);
3440     }
3441 
3442     /* The tcg atomic primitives are all full barriers.  Therefore we
3443      * can ignore the Acquire and Release bits of this instruction.
3444      */
3445     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3446 
3447     if ((mop & MO_SIGN) && size != MO_64) {
3448         tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3449     }
3450 }
3451 
3452 /*
3453  * PAC memory operations
3454  *
3455  *  31  30      27  26    24    22  21       12  11  10    5     0
3456  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3457  * | size | 1 1 1 | V | 0 0 | M S | 1 |  imm9  | W | 1 | Rn |  Rt |
3458  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3459  *
3460  * Rt: the result register
3461  * Rn: base address or SP
3462  * V: vector flag (always 0 as of v8.3)
3463  * M: clear for key DA, set for key DB
3464  * W: pre-indexing flag
3465  * S: sign for imm9.
3466  */
3467 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3468                            int size, int rt, bool is_vector)
3469 {
3470     int rn = extract32(insn, 5, 5);
3471     bool is_wback = extract32(insn, 11, 1);
3472     bool use_key_a = !extract32(insn, 23, 1);
3473     int offset;
3474     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3475     MemOp memop;
3476 
3477     if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3478         unallocated_encoding(s);
3479         return;
3480     }
3481 
3482     if (rn == 31) {
3483         gen_check_sp_alignment(s);
3484     }
3485     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3486 
3487     if (s->pauth_active) {
3488         if (use_key_a) {
3489             gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3490                              tcg_constant_i64(0));
3491         } else {
3492             gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3493                              tcg_constant_i64(0));
3494         }
3495     }
3496 
3497     /* Form the 10-bit signed, scaled offset.  */
3498     offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3499     offset = sextract32(offset << size, 0, 10 + size);
3500     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3501 
3502     memop = finalize_memop(s, size);
3503 
3504     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3505     clean_addr = gen_mte_check1(s, dirty_addr, false,
3506                                 is_wback || rn != 31, memop);
3507 
3508     tcg_rt = cpu_reg(s, rt);
3509     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3510               /* extend */ false, /* iss_valid */ !is_wback,
3511               /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3512 
3513     if (is_wback) {
3514         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3515     }
3516 }
3517 
3518 /*
3519  * LDAPR/STLR (unscaled immediate)
3520  *
3521  *  31  30            24    22  21       12    10    5     0
3522  * +------+-------------+-----+---+--------+-----+----+-----+
3523  * | size | 0 1 1 0 0 1 | opc | 0 |  imm9  | 0 0 | Rn |  Rt |
3524  * +------+-------------+-----+---+--------+-----+----+-----+
3525  *
3526  * Rt: source or destination register
3527  * Rn: base register
3528  * imm9: unscaled immediate offset
3529  * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3530  * size: size of load/store
3531  */
3532 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3533 {
3534     int rt = extract32(insn, 0, 5);
3535     int rn = extract32(insn, 5, 5);
3536     int offset = sextract32(insn, 12, 9);
3537     int opc = extract32(insn, 22, 2);
3538     int size = extract32(insn, 30, 2);
3539     TCGv_i64 clean_addr, dirty_addr;
3540     bool is_store = false;
3541     bool extend = false;
3542     bool iss_sf;
3543     MemOp mop;
3544 
3545     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3546         unallocated_encoding(s);
3547         return;
3548     }
3549 
3550     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3551     mop = finalize_memop(s, size | MO_ALIGN);
3552 
3553     switch (opc) {
3554     case 0: /* STLURB */
3555         is_store = true;
3556         break;
3557     case 1: /* LDAPUR* */
3558         break;
3559     case 2: /* LDAPURS* 64-bit variant */
3560         if (size == 3) {
3561             unallocated_encoding(s);
3562             return;
3563         }
3564         mop |= MO_SIGN;
3565         break;
3566     case 3: /* LDAPURS* 32-bit variant */
3567         if (size > 1) {
3568             unallocated_encoding(s);
3569             return;
3570         }
3571         mop |= MO_SIGN;
3572         extend = true; /* zero-extend 32->64 after signed load */
3573         break;
3574     default:
3575         g_assert_not_reached();
3576     }
3577 
3578     iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3579 
3580     if (rn == 31) {
3581         gen_check_sp_alignment(s);
3582     }
3583 
3584     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3585     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3586     clean_addr = clean_data_tbi(s, dirty_addr);
3587 
3588     if (is_store) {
3589         /* Store-Release semantics */
3590         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3591         do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3592     } else {
3593         /*
3594          * Load-AcquirePC semantics; we implement as the slightly more
3595          * restrictive Load-Acquire.
3596          */
3597         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3598                   extend, true, rt, iss_sf, true);
3599         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3600     }
3601 }
3602 
3603 /* Load/store register (all forms) */
3604 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3605 {
3606     int rt = extract32(insn, 0, 5);
3607     int opc = extract32(insn, 22, 2);
3608     bool is_vector = extract32(insn, 26, 1);
3609     int size = extract32(insn, 30, 2);
3610 
3611     switch (extract32(insn, 24, 2)) {
3612     case 0:
3613         if (extract32(insn, 21, 1) == 0) {
3614             /* Load/store register (unscaled immediate)
3615              * Load/store immediate pre/post-indexed
3616              * Load/store register unprivileged
3617              */
3618             disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3619             return;
3620         }
3621         switch (extract32(insn, 10, 2)) {
3622         case 0:
3623             disas_ldst_atomic(s, insn, size, rt, is_vector);
3624             return;
3625         case 2:
3626             disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3627             return;
3628         default:
3629             disas_ldst_pac(s, insn, size, rt, is_vector);
3630             return;
3631         }
3632         break;
3633     case 1:
3634         disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3635         return;
3636     }
3637     unallocated_encoding(s);
3638 }
3639 
3640 /* AdvSIMD load/store multiple structures
3641  *
3642  *  31  30  29           23 22  21         16 15    12 11  10 9    5 4    0
3643  * +---+---+---------------+---+-------------+--------+------+------+------+
3644  * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size |  Rn  |  Rt  |
3645  * +---+---+---------------+---+-------------+--------+------+------+------+
3646  *
3647  * AdvSIMD load/store multiple structures (post-indexed)
3648  *
3649  *  31  30  29           23 22  21  20     16 15    12 11  10 9    5 4    0
3650  * +---+---+---------------+---+---+---------+--------+------+------+------+
3651  * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 |   Rm    | opcode | size |  Rn  |  Rt  |
3652  * +---+---+---------------+---+---+---------+--------+------+------+------+
3653  *
3654  * Rt: first (or only) SIMD&FP register to be transferred
3655  * Rn: base address or SP
3656  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3657  */
3658 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3659 {
3660     int rt = extract32(insn, 0, 5);
3661     int rn = extract32(insn, 5, 5);
3662     int rm = extract32(insn, 16, 5);
3663     int size = extract32(insn, 10, 2);
3664     int opcode = extract32(insn, 12, 4);
3665     bool is_store = !extract32(insn, 22, 1);
3666     bool is_postidx = extract32(insn, 23, 1);
3667     bool is_q = extract32(insn, 30, 1);
3668     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3669     MemOp endian, align, mop;
3670 
3671     int total;    /* total bytes */
3672     int elements; /* elements per vector */
3673     int rpt;    /* num iterations */
3674     int selem;  /* structure elements */
3675     int r;
3676 
3677     if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3678         unallocated_encoding(s);
3679         return;
3680     }
3681 
3682     if (!is_postidx && rm != 0) {
3683         unallocated_encoding(s);
3684         return;
3685     }
3686 
3687     /* From the shared decode logic */
3688     switch (opcode) {
3689     case 0x0:
3690         rpt = 1;
3691         selem = 4;
3692         break;
3693     case 0x2:
3694         rpt = 4;
3695         selem = 1;
3696         break;
3697     case 0x4:
3698         rpt = 1;
3699         selem = 3;
3700         break;
3701     case 0x6:
3702         rpt = 3;
3703         selem = 1;
3704         break;
3705     case 0x7:
3706         rpt = 1;
3707         selem = 1;
3708         break;
3709     case 0x8:
3710         rpt = 1;
3711         selem = 2;
3712         break;
3713     case 0xa:
3714         rpt = 2;
3715         selem = 1;
3716         break;
3717     default:
3718         unallocated_encoding(s);
3719         return;
3720     }
3721 
3722     if (size == 3 && !is_q && selem != 1) {
3723         /* reserved */
3724         unallocated_encoding(s);
3725         return;
3726     }
3727 
3728     if (!fp_access_check(s)) {
3729         return;
3730     }
3731 
3732     if (rn == 31) {
3733         gen_check_sp_alignment(s);
3734     }
3735 
3736     /* For our purposes, bytes are always little-endian.  */
3737     endian = s->be_data;
3738     if (size == 0) {
3739         endian = MO_LE;
3740     }
3741 
3742     total = rpt * selem * (is_q ? 16 : 8);
3743     tcg_rn = cpu_reg_sp(s, rn);
3744 
3745     /*
3746      * Issue the MTE check vs the logical repeat count, before we
3747      * promote consecutive little-endian elements below.
3748      */
3749     clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3750                                 total, finalize_memop(s, size));
3751 
3752     /*
3753      * Consecutive little-endian elements from a single register
3754      * can be promoted to a larger little-endian operation.
3755      */
3756     align = MO_ALIGN;
3757     if (selem == 1 && endian == MO_LE) {
3758         align = pow2_align(size);
3759         size = 3;
3760     }
3761     if (!s->align_mem) {
3762         align = 0;
3763     }
3764     mop = endian | size | align;
3765 
3766     elements = (is_q ? 16 : 8) >> size;
3767     tcg_ebytes = tcg_constant_i64(1 << size);
3768     for (r = 0; r < rpt; r++) {
3769         int e;
3770         for (e = 0; e < elements; e++) {
3771             int xs;
3772             for (xs = 0; xs < selem; xs++) {
3773                 int tt = (rt + r + xs) % 32;
3774                 if (is_store) {
3775                     do_vec_st(s, tt, e, clean_addr, mop);
3776                 } else {
3777                     do_vec_ld(s, tt, e, clean_addr, mop);
3778                 }
3779                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3780             }
3781         }
3782     }
3783 
3784     if (!is_store) {
3785         /* For non-quad operations, setting a slice of the low
3786          * 64 bits of the register clears the high 64 bits (in
3787          * the ARM ARM pseudocode this is implicit in the fact
3788          * that 'rval' is a 64 bit wide variable).
3789          * For quad operations, we might still need to zero the
3790          * high bits of SVE.
3791          */
3792         for (r = 0; r < rpt * selem; r++) {
3793             int tt = (rt + r) % 32;
3794             clear_vec_high(s, is_q, tt);
3795         }
3796     }
3797 
3798     if (is_postidx) {
3799         if (rm == 31) {
3800             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3801         } else {
3802             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3803         }
3804     }
3805 }
3806 
3807 /* AdvSIMD load/store single structure
3808  *
3809  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3810  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3811  * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size |  Rn  |  Rt  |
3812  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3813  *
3814  * AdvSIMD load/store single structure (post-indexed)
3815  *
3816  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3817  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3818  * | 0 | Q | 0 0 1 1 0 1 1 | L R |     Rm    | opc | S | size |  Rn  |  Rt  |
3819  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3820  *
3821  * Rt: first (or only) SIMD&FP register to be transferred
3822  * Rn: base address or SP
3823  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3824  * index = encoded in Q:S:size dependent on size
3825  *
3826  * lane_size = encoded in R, opc
3827  * transfer width = encoded in opc, S, size
3828  */
3829 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3830 {
3831     int rt = extract32(insn, 0, 5);
3832     int rn = extract32(insn, 5, 5);
3833     int rm = extract32(insn, 16, 5);
3834     int size = extract32(insn, 10, 2);
3835     int S = extract32(insn, 12, 1);
3836     int opc = extract32(insn, 13, 3);
3837     int R = extract32(insn, 21, 1);
3838     int is_load = extract32(insn, 22, 1);
3839     int is_postidx = extract32(insn, 23, 1);
3840     int is_q = extract32(insn, 30, 1);
3841 
3842     int scale = extract32(opc, 1, 2);
3843     int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3844     bool replicate = false;
3845     int index = is_q << 3 | S << 2 | size;
3846     int xs, total;
3847     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3848     MemOp mop;
3849 
3850     if (extract32(insn, 31, 1)) {
3851         unallocated_encoding(s);
3852         return;
3853     }
3854     if (!is_postidx && rm != 0) {
3855         unallocated_encoding(s);
3856         return;
3857     }
3858 
3859     switch (scale) {
3860     case 3:
3861         if (!is_load || S) {
3862             unallocated_encoding(s);
3863             return;
3864         }
3865         scale = size;
3866         replicate = true;
3867         break;
3868     case 0:
3869         break;
3870     case 1:
3871         if (extract32(size, 0, 1)) {
3872             unallocated_encoding(s);
3873             return;
3874         }
3875         index >>= 1;
3876         break;
3877     case 2:
3878         if (extract32(size, 1, 1)) {
3879             unallocated_encoding(s);
3880             return;
3881         }
3882         if (!extract32(size, 0, 1)) {
3883             index >>= 2;
3884         } else {
3885             if (S) {
3886                 unallocated_encoding(s);
3887                 return;
3888             }
3889             index >>= 3;
3890             scale = 3;
3891         }
3892         break;
3893     default:
3894         g_assert_not_reached();
3895     }
3896 
3897     if (!fp_access_check(s)) {
3898         return;
3899     }
3900 
3901     if (rn == 31) {
3902         gen_check_sp_alignment(s);
3903     }
3904 
3905     total = selem << scale;
3906     tcg_rn = cpu_reg_sp(s, rn);
3907 
3908     mop = finalize_memop(s, scale);
3909 
3910     clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3911                                 total, mop);
3912 
3913     tcg_ebytes = tcg_constant_i64(1 << scale);
3914     for (xs = 0; xs < selem; xs++) {
3915         if (replicate) {
3916             /* Load and replicate to all elements */
3917             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3918 
3919             tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3920             tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3921                                  (is_q + 1) * 8, vec_full_reg_size(s),
3922                                  tcg_tmp);
3923         } else {
3924             /* Load/store one element per register */
3925             if (is_load) {
3926                 do_vec_ld(s, rt, index, clean_addr, mop);
3927             } else {
3928                 do_vec_st(s, rt, index, clean_addr, mop);
3929             }
3930         }
3931         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3932         rt = (rt + 1) % 32;
3933     }
3934 
3935     if (is_postidx) {
3936         if (rm == 31) {
3937             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3938         } else {
3939             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3940         }
3941     }
3942 }
3943 
3944 /*
3945  * Load/Store memory tags
3946  *
3947  *  31 30 29         24     22  21     12    10      5      0
3948  * +-----+-------------+-----+---+------+-----+------+------+
3949  * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 |  Rn  |  Rt  |
3950  * +-----+-------------+-----+---+------+-----+------+------+
3951  */
3952 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3953 {
3954     int rt = extract32(insn, 0, 5);
3955     int rn = extract32(insn, 5, 5);
3956     uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3957     int op2 = extract32(insn, 10, 2);
3958     int op1 = extract32(insn, 22, 2);
3959     bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3960     int index = 0;
3961     TCGv_i64 addr, clean_addr, tcg_rt;
3962 
3963     /* We checked insn bits [29:24,21] in the caller.  */
3964     if (extract32(insn, 30, 2) != 3) {
3965         goto do_unallocated;
3966     }
3967 
3968     /*
3969      * @index is a tri-state variable which has 3 states:
3970      * < 0 : post-index, writeback
3971      * = 0 : signed offset
3972      * > 0 : pre-index, writeback
3973      */
3974     switch (op1) {
3975     case 0:
3976         if (op2 != 0) {
3977             /* STG */
3978             index = op2 - 2;
3979         } else {
3980             /* STZGM */
3981             if (s->current_el == 0 || offset != 0) {
3982                 goto do_unallocated;
3983             }
3984             is_mult = is_zero = true;
3985         }
3986         break;
3987     case 1:
3988         if (op2 != 0) {
3989             /* STZG */
3990             is_zero = true;
3991             index = op2 - 2;
3992         } else {
3993             /* LDG */
3994             is_load = true;
3995         }
3996         break;
3997     case 2:
3998         if (op2 != 0) {
3999             /* ST2G */
4000             is_pair = true;
4001             index = op2 - 2;
4002         } else {
4003             /* STGM */
4004             if (s->current_el == 0 || offset != 0) {
4005                 goto do_unallocated;
4006             }
4007             is_mult = true;
4008         }
4009         break;
4010     case 3:
4011         if (op2 != 0) {
4012             /* STZ2G */
4013             is_pair = is_zero = true;
4014             index = op2 - 2;
4015         } else {
4016             /* LDGM */
4017             if (s->current_el == 0 || offset != 0) {
4018                 goto do_unallocated;
4019             }
4020             is_mult = is_load = true;
4021         }
4022         break;
4023 
4024     default:
4025     do_unallocated:
4026         unallocated_encoding(s);
4027         return;
4028     }
4029 
4030     if (is_mult
4031         ? !dc_isar_feature(aa64_mte, s)
4032         : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4033         goto do_unallocated;
4034     }
4035 
4036     if (rn == 31) {
4037         gen_check_sp_alignment(s);
4038     }
4039 
4040     addr = read_cpu_reg_sp(s, rn, true);
4041     if (index >= 0) {
4042         /* pre-index or signed offset */
4043         tcg_gen_addi_i64(addr, addr, offset);
4044     }
4045 
4046     if (is_mult) {
4047         tcg_rt = cpu_reg(s, rt);
4048 
4049         if (is_zero) {
4050             int size = 4 << s->dcz_blocksize;
4051 
4052             if (s->ata) {
4053                 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4054             }
4055             /*
4056              * The non-tags portion of STZGM is mostly like DC_ZVA,
4057              * except the alignment happens before the access.
4058              */
4059             clean_addr = clean_data_tbi(s, addr);
4060             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4061             gen_helper_dc_zva(cpu_env, clean_addr);
4062         } else if (s->ata) {
4063             if (is_load) {
4064                 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4065             } else {
4066                 gen_helper_stgm(cpu_env, addr, tcg_rt);
4067             }
4068         } else {
4069             MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4070             int size = 4 << GMID_EL1_BS;
4071 
4072             clean_addr = clean_data_tbi(s, addr);
4073             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4074             gen_probe_access(s, clean_addr, acc, size);
4075 
4076             if (is_load) {
4077                 /* The result tags are zeros.  */
4078                 tcg_gen_movi_i64(tcg_rt, 0);
4079             }
4080         }
4081         return;
4082     }
4083 
4084     if (is_load) {
4085         tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4086         tcg_rt = cpu_reg(s, rt);
4087         if (s->ata) {
4088             gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4089         } else {
4090             clean_addr = clean_data_tbi(s, addr);
4091             gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4092             gen_address_with_allocation_tag0(tcg_rt, addr);
4093         }
4094     } else {
4095         tcg_rt = cpu_reg_sp(s, rt);
4096         if (!s->ata) {
4097             /*
4098              * For STG and ST2G, we need to check alignment and probe memory.
4099              * TODO: For STZG and STZ2G, we could rely on the stores below,
4100              * at least for system mode; user-only won't enforce alignment.
4101              */
4102             if (is_pair) {
4103                 gen_helper_st2g_stub(cpu_env, addr);
4104             } else {
4105                 gen_helper_stg_stub(cpu_env, addr);
4106             }
4107         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4108             if (is_pair) {
4109                 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4110             } else {
4111                 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4112             }
4113         } else {
4114             if (is_pair) {
4115                 gen_helper_st2g(cpu_env, addr, tcg_rt);
4116             } else {
4117                 gen_helper_stg(cpu_env, addr, tcg_rt);
4118             }
4119         }
4120     }
4121 
4122     if (is_zero) {
4123         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4124         TCGv_i64 zero64 = tcg_constant_i64(0);
4125         TCGv_i128 zero128 = tcg_temp_new_i128();
4126         int mem_index = get_mem_index(s);
4127         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4128 
4129         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4130 
4131         /* This is 1 or 2 atomic 16-byte operations. */
4132         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4133         if (is_pair) {
4134             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4135             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4136         }
4137     }
4138 
4139     if (index != 0) {
4140         /* pre-index or post-index */
4141         if (index < 0) {
4142             /* post-index */
4143             tcg_gen_addi_i64(addr, addr, offset);
4144         }
4145         tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4146     }
4147 }
4148 
4149 /* Loads and stores */
4150 static void disas_ldst(DisasContext *s, uint32_t insn)
4151 {
4152     switch (extract32(insn, 24, 6)) {
4153     case 0x08: /* Load/store exclusive */
4154         disas_ldst_excl(s, insn);
4155         break;
4156     case 0x18: case 0x1c: /* Load register (literal) */
4157         disas_ld_lit(s, insn);
4158         break;
4159     case 0x28: case 0x29:
4160     case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4161         disas_ldst_pair(s, insn);
4162         break;
4163     case 0x38: case 0x39:
4164     case 0x3c: case 0x3d: /* Load/store register (all forms) */
4165         disas_ldst_reg(s, insn);
4166         break;
4167     case 0x0c: /* AdvSIMD load/store multiple structures */
4168         disas_ldst_multiple_struct(s, insn);
4169         break;
4170     case 0x0d: /* AdvSIMD load/store single structure */
4171         disas_ldst_single_struct(s, insn);
4172         break;
4173     case 0x19:
4174         if (extract32(insn, 21, 1) != 0) {
4175             disas_ldst_tag(s, insn);
4176         } else if (extract32(insn, 10, 2) == 0) {
4177             disas_ldst_ldapr_stlr(s, insn);
4178         } else {
4179             unallocated_encoding(s);
4180         }
4181         break;
4182     default:
4183         unallocated_encoding(s);
4184         break;
4185     }
4186 }
4187 
4188 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4189 
4190 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4191                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4192 {
4193     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4194     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4195     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4196 
4197     fn(tcg_rd, tcg_rn, tcg_imm);
4198     if (!a->sf) {
4199         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4200     }
4201     return true;
4202 }
4203 
4204 /*
4205  * PC-rel. addressing
4206  */
4207 
4208 static bool trans_ADR(DisasContext *s, arg_ri *a)
4209 {
4210     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4211     return true;
4212 }
4213 
4214 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4215 {
4216     int64_t offset = (int64_t)a->imm << 12;
4217 
4218     /* The page offset is ok for CF_PCREL. */
4219     offset -= s->pc_curr & 0xfff;
4220     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4221     return true;
4222 }
4223 
4224 /*
4225  * Add/subtract (immediate)
4226  */
4227 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4228 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4229 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4230 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4231 
4232 /*
4233  * Add/subtract (immediate, with tags)
4234  */
4235 
4236 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4237                                       bool sub_op)
4238 {
4239     TCGv_i64 tcg_rn, tcg_rd;
4240     int imm;
4241 
4242     imm = a->uimm6 << LOG2_TAG_GRANULE;
4243     if (sub_op) {
4244         imm = -imm;
4245     }
4246 
4247     tcg_rn = cpu_reg_sp(s, a->rn);
4248     tcg_rd = cpu_reg_sp(s, a->rd);
4249 
4250     if (s->ata) {
4251         gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4252                            tcg_constant_i32(imm),
4253                            tcg_constant_i32(a->uimm4));
4254     } else {
4255         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4256         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4257     }
4258     return true;
4259 }
4260 
4261 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4262 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4263 
4264 /* The input should be a value in the bottom e bits (with higher
4265  * bits zero); returns that value replicated into every element
4266  * of size e in a 64 bit integer.
4267  */
4268 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4269 {
4270     assert(e != 0);
4271     while (e < 64) {
4272         mask |= mask << e;
4273         e *= 2;
4274     }
4275     return mask;
4276 }
4277 
4278 /*
4279  * Logical (immediate)
4280  */
4281 
4282 /*
4283  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4284  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4285  * value (ie should cause a guest UNDEF exception), and true if they are
4286  * valid, in which case the decoded bit pattern is written to result.
4287  */
4288 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4289                             unsigned int imms, unsigned int immr)
4290 {
4291     uint64_t mask;
4292     unsigned e, levels, s, r;
4293     int len;
4294 
4295     assert(immn < 2 && imms < 64 && immr < 64);
4296 
4297     /* The bit patterns we create here are 64 bit patterns which
4298      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4299      * 64 bits each. Each element contains the same value: a run
4300      * of between 1 and e-1 non-zero bits, rotated within the
4301      * element by between 0 and e-1 bits.
4302      *
4303      * The element size and run length are encoded into immn (1 bit)
4304      * and imms (6 bits) as follows:
4305      * 64 bit elements: immn = 1, imms = <length of run - 1>
4306      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4307      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4308      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4309      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4310      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4311      * Notice that immn = 0, imms = 11111x is the only combination
4312      * not covered by one of the above options; this is reserved.
4313      * Further, <length of run - 1> all-ones is a reserved pattern.
4314      *
4315      * In all cases the rotation is by immr % e (and immr is 6 bits).
4316      */
4317 
4318     /* First determine the element size */
4319     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4320     if (len < 1) {
4321         /* This is the immn == 0, imms == 0x11111x case */
4322         return false;
4323     }
4324     e = 1 << len;
4325 
4326     levels = e - 1;
4327     s = imms & levels;
4328     r = immr & levels;
4329 
4330     if (s == levels) {
4331         /* <length of run - 1> mustn't be all-ones. */
4332         return false;
4333     }
4334 
4335     /* Create the value of one element: s+1 set bits rotated
4336      * by r within the element (which is e bits wide)...
4337      */
4338     mask = MAKE_64BIT_MASK(0, s + 1);
4339     if (r) {
4340         mask = (mask >> r) | (mask << (e - r));
4341         mask &= MAKE_64BIT_MASK(0, e);
4342     }
4343     /* ...then replicate the element over the whole 64 bit value */
4344     mask = bitfield_replicate(mask, e);
4345     *result = mask;
4346     return true;
4347 }
4348 
4349 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4350                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4351 {
4352     TCGv_i64 tcg_rd, tcg_rn;
4353     uint64_t imm;
4354 
4355     /* Some immediate field values are reserved. */
4356     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4357                                 extract32(a->dbm, 0, 6),
4358                                 extract32(a->dbm, 6, 6))) {
4359         return false;
4360     }
4361     if (!a->sf) {
4362         imm &= 0xffffffffull;
4363     }
4364 
4365     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4366     tcg_rn = cpu_reg(s, a->rn);
4367 
4368     fn(tcg_rd, tcg_rn, imm);
4369     if (set_cc) {
4370         gen_logic_CC(a->sf, tcg_rd);
4371     }
4372     if (!a->sf) {
4373         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4374     }
4375     return true;
4376 }
4377 
4378 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4379 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4380 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4381 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4382 
4383 /*
4384  * Move wide (immediate)
4385  */
4386 
4387 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4388 {
4389     int pos = a->hw << 4;
4390     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4391     return true;
4392 }
4393 
4394 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4395 {
4396     int pos = a->hw << 4;
4397     uint64_t imm = a->imm;
4398 
4399     imm = ~(imm << pos);
4400     if (!a->sf) {
4401         imm = (uint32_t)imm;
4402     }
4403     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4404     return true;
4405 }
4406 
4407 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4408 {
4409     int pos = a->hw << 4;
4410     TCGv_i64 tcg_rd, tcg_im;
4411 
4412     tcg_rd = cpu_reg(s, a->rd);
4413     tcg_im = tcg_constant_i64(a->imm);
4414     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4415     if (!a->sf) {
4416         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4417     }
4418     return true;
4419 }
4420 
4421 /*
4422  * Bitfield
4423  */
4424 
4425 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4426 {
4427     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4428     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4429     unsigned int bitsize = a->sf ? 64 : 32;
4430     unsigned int ri = a->immr;
4431     unsigned int si = a->imms;
4432     unsigned int pos, len;
4433 
4434     if (si >= ri) {
4435         /* Wd<s-r:0> = Wn<s:r> */
4436         len = (si - ri) + 1;
4437         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4438         if (!a->sf) {
4439             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4440         }
4441     } else {
4442         /* Wd<32+s-r,32-r> = Wn<s:0> */
4443         len = si + 1;
4444         pos = (bitsize - ri) & (bitsize - 1);
4445 
4446         if (len < ri) {
4447             /*
4448              * Sign extend the destination field from len to fill the
4449              * balance of the word.  Let the deposit below insert all
4450              * of those sign bits.
4451              */
4452             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4453             len = ri;
4454         }
4455 
4456         /*
4457          * We start with zero, and we haven't modified any bits outside
4458          * bitsize, therefore no final zero-extension is unneeded for !sf.
4459          */
4460         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4461     }
4462     return true;
4463 }
4464 
4465 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4466 {
4467     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4468     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4469     unsigned int bitsize = a->sf ? 64 : 32;
4470     unsigned int ri = a->immr;
4471     unsigned int si = a->imms;
4472     unsigned int pos, len;
4473 
4474     tcg_rd = cpu_reg(s, a->rd);
4475     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4476 
4477     if (si >= ri) {
4478         /* Wd<s-r:0> = Wn<s:r> */
4479         len = (si - ri) + 1;
4480         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4481     } else {
4482         /* Wd<32+s-r,32-r> = Wn<s:0> */
4483         len = si + 1;
4484         pos = (bitsize - ri) & (bitsize - 1);
4485         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4486     }
4487     return true;
4488 }
4489 
4490 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4491 {
4492     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4493     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4494     unsigned int bitsize = a->sf ? 64 : 32;
4495     unsigned int ri = a->immr;
4496     unsigned int si = a->imms;
4497     unsigned int pos, len;
4498 
4499     tcg_rd = cpu_reg(s, a->rd);
4500     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4501 
4502     if (si >= ri) {
4503         /* Wd<s-r:0> = Wn<s:r> */
4504         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4505         len = (si - ri) + 1;
4506         pos = 0;
4507     } else {
4508         /* Wd<32+s-r,32-r> = Wn<s:0> */
4509         len = si + 1;
4510         pos = (bitsize - ri) & (bitsize - 1);
4511     }
4512 
4513     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4514     if (!a->sf) {
4515         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4516     }
4517     return true;
4518 }
4519 
4520 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4521 {
4522     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4523 
4524     tcg_rd = cpu_reg(s, a->rd);
4525 
4526     if (unlikely(a->imm == 0)) {
4527         /*
4528          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4529          * so an extract from bit 0 is a special case.
4530          */
4531         if (a->sf) {
4532             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4533         } else {
4534             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4535         }
4536     } else {
4537         tcg_rm = cpu_reg(s, a->rm);
4538         tcg_rn = cpu_reg(s, a->rn);
4539 
4540         if (a->sf) {
4541             /* Specialization to ROR happens in EXTRACT2.  */
4542             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4543         } else {
4544             TCGv_i32 t0 = tcg_temp_new_i32();
4545 
4546             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4547             if (a->rm == a->rn) {
4548                 tcg_gen_rotri_i32(t0, t0, a->imm);
4549             } else {
4550                 TCGv_i32 t1 = tcg_temp_new_i32();
4551                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4552                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4553             }
4554             tcg_gen_extu_i32_i64(tcg_rd, t0);
4555         }
4556     }
4557     return true;
4558 }
4559 
4560 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4561  * Note that it is the caller's responsibility to ensure that the
4562  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4563  * mandated semantics for out of range shifts.
4564  */
4565 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4566                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4567 {
4568     switch (shift_type) {
4569     case A64_SHIFT_TYPE_LSL:
4570         tcg_gen_shl_i64(dst, src, shift_amount);
4571         break;
4572     case A64_SHIFT_TYPE_LSR:
4573         tcg_gen_shr_i64(dst, src, shift_amount);
4574         break;
4575     case A64_SHIFT_TYPE_ASR:
4576         if (!sf) {
4577             tcg_gen_ext32s_i64(dst, src);
4578         }
4579         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4580         break;
4581     case A64_SHIFT_TYPE_ROR:
4582         if (sf) {
4583             tcg_gen_rotr_i64(dst, src, shift_amount);
4584         } else {
4585             TCGv_i32 t0, t1;
4586             t0 = tcg_temp_new_i32();
4587             t1 = tcg_temp_new_i32();
4588             tcg_gen_extrl_i64_i32(t0, src);
4589             tcg_gen_extrl_i64_i32(t1, shift_amount);
4590             tcg_gen_rotr_i32(t0, t0, t1);
4591             tcg_gen_extu_i32_i64(dst, t0);
4592         }
4593         break;
4594     default:
4595         assert(FALSE); /* all shift types should be handled */
4596         break;
4597     }
4598 
4599     if (!sf) { /* zero extend final result */
4600         tcg_gen_ext32u_i64(dst, dst);
4601     }
4602 }
4603 
4604 /* Shift a TCGv src by immediate, put result in dst.
4605  * The shift amount must be in range (this should always be true as the
4606  * relevant instructions will UNDEF on bad shift immediates).
4607  */
4608 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4609                           enum a64_shift_type shift_type, unsigned int shift_i)
4610 {
4611     assert(shift_i < (sf ? 64 : 32));
4612 
4613     if (shift_i == 0) {
4614         tcg_gen_mov_i64(dst, src);
4615     } else {
4616         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4617     }
4618 }
4619 
4620 /* Logical (shifted register)
4621  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4622  * +----+-----+-----------+-------+---+------+--------+------+------+
4623  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4624  * +----+-----+-----------+-------+---+------+--------+------+------+
4625  */
4626 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4627 {
4628     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4629     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4630 
4631     sf = extract32(insn, 31, 1);
4632     opc = extract32(insn, 29, 2);
4633     shift_type = extract32(insn, 22, 2);
4634     invert = extract32(insn, 21, 1);
4635     rm = extract32(insn, 16, 5);
4636     shift_amount = extract32(insn, 10, 6);
4637     rn = extract32(insn, 5, 5);
4638     rd = extract32(insn, 0, 5);
4639 
4640     if (!sf && (shift_amount & (1 << 5))) {
4641         unallocated_encoding(s);
4642         return;
4643     }
4644 
4645     tcg_rd = cpu_reg(s, rd);
4646 
4647     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4648         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4649          * register-register MOV and MVN, so it is worth special casing.
4650          */
4651         tcg_rm = cpu_reg(s, rm);
4652         if (invert) {
4653             tcg_gen_not_i64(tcg_rd, tcg_rm);
4654             if (!sf) {
4655                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4656             }
4657         } else {
4658             if (sf) {
4659                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4660             } else {
4661                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4662             }
4663         }
4664         return;
4665     }
4666 
4667     tcg_rm = read_cpu_reg(s, rm, sf);
4668 
4669     if (shift_amount) {
4670         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4671     }
4672 
4673     tcg_rn = cpu_reg(s, rn);
4674 
4675     switch (opc | (invert << 2)) {
4676     case 0: /* AND */
4677     case 3: /* ANDS */
4678         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4679         break;
4680     case 1: /* ORR */
4681         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4682         break;
4683     case 2: /* EOR */
4684         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4685         break;
4686     case 4: /* BIC */
4687     case 7: /* BICS */
4688         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4689         break;
4690     case 5: /* ORN */
4691         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4692         break;
4693     case 6: /* EON */
4694         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4695         break;
4696     default:
4697         assert(FALSE);
4698         break;
4699     }
4700 
4701     if (!sf) {
4702         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4703     }
4704 
4705     if (opc == 3) {
4706         gen_logic_CC(sf, tcg_rd);
4707     }
4708 }
4709 
4710 /*
4711  * Add/subtract (extended register)
4712  *
4713  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4714  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4715  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4716  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4717  *
4718  *  sf: 0 -> 32bit, 1 -> 64bit
4719  *  op: 0 -> add  , 1 -> sub
4720  *   S: 1 -> set flags
4721  * opt: 00
4722  * option: extension type (see DecodeRegExtend)
4723  * imm3: optional shift to Rm
4724  *
4725  * Rd = Rn + LSL(extend(Rm), amount)
4726  */
4727 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4728 {
4729     int rd = extract32(insn, 0, 5);
4730     int rn = extract32(insn, 5, 5);
4731     int imm3 = extract32(insn, 10, 3);
4732     int option = extract32(insn, 13, 3);
4733     int rm = extract32(insn, 16, 5);
4734     int opt = extract32(insn, 22, 2);
4735     bool setflags = extract32(insn, 29, 1);
4736     bool sub_op = extract32(insn, 30, 1);
4737     bool sf = extract32(insn, 31, 1);
4738 
4739     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4740     TCGv_i64 tcg_rd;
4741     TCGv_i64 tcg_result;
4742 
4743     if (imm3 > 4 || opt != 0) {
4744         unallocated_encoding(s);
4745         return;
4746     }
4747 
4748     /* non-flag setting ops may use SP */
4749     if (!setflags) {
4750         tcg_rd = cpu_reg_sp(s, rd);
4751     } else {
4752         tcg_rd = cpu_reg(s, rd);
4753     }
4754     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4755 
4756     tcg_rm = read_cpu_reg(s, rm, sf);
4757     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4758 
4759     tcg_result = tcg_temp_new_i64();
4760 
4761     if (!setflags) {
4762         if (sub_op) {
4763             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4764         } else {
4765             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4766         }
4767     } else {
4768         if (sub_op) {
4769             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4770         } else {
4771             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4772         }
4773     }
4774 
4775     if (sf) {
4776         tcg_gen_mov_i64(tcg_rd, tcg_result);
4777     } else {
4778         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4779     }
4780 }
4781 
4782 /*
4783  * Add/subtract (shifted register)
4784  *
4785  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4786  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4787  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4788  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4789  *
4790  *    sf: 0 -> 32bit, 1 -> 64bit
4791  *    op: 0 -> add  , 1 -> sub
4792  *     S: 1 -> set flags
4793  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4794  *  imm6: Shift amount to apply to Rm before the add/sub
4795  */
4796 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4797 {
4798     int rd = extract32(insn, 0, 5);
4799     int rn = extract32(insn, 5, 5);
4800     int imm6 = extract32(insn, 10, 6);
4801     int rm = extract32(insn, 16, 5);
4802     int shift_type = extract32(insn, 22, 2);
4803     bool setflags = extract32(insn, 29, 1);
4804     bool sub_op = extract32(insn, 30, 1);
4805     bool sf = extract32(insn, 31, 1);
4806 
4807     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4808     TCGv_i64 tcg_rn, tcg_rm;
4809     TCGv_i64 tcg_result;
4810 
4811     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4812         unallocated_encoding(s);
4813         return;
4814     }
4815 
4816     tcg_rn = read_cpu_reg(s, rn, sf);
4817     tcg_rm = read_cpu_reg(s, rm, sf);
4818 
4819     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4820 
4821     tcg_result = tcg_temp_new_i64();
4822 
4823     if (!setflags) {
4824         if (sub_op) {
4825             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4826         } else {
4827             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4828         }
4829     } else {
4830         if (sub_op) {
4831             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4832         } else {
4833             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4834         }
4835     }
4836 
4837     if (sf) {
4838         tcg_gen_mov_i64(tcg_rd, tcg_result);
4839     } else {
4840         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4841     }
4842 }
4843 
4844 /* Data-processing (3 source)
4845  *
4846  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4847  *  +--+------+-----------+------+------+----+------+------+------+
4848  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4849  *  +--+------+-----------+------+------+----+------+------+------+
4850  */
4851 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4852 {
4853     int rd = extract32(insn, 0, 5);
4854     int rn = extract32(insn, 5, 5);
4855     int ra = extract32(insn, 10, 5);
4856     int rm = extract32(insn, 16, 5);
4857     int op_id = (extract32(insn, 29, 3) << 4) |
4858         (extract32(insn, 21, 3) << 1) |
4859         extract32(insn, 15, 1);
4860     bool sf = extract32(insn, 31, 1);
4861     bool is_sub = extract32(op_id, 0, 1);
4862     bool is_high = extract32(op_id, 2, 1);
4863     bool is_signed = false;
4864     TCGv_i64 tcg_op1;
4865     TCGv_i64 tcg_op2;
4866     TCGv_i64 tcg_tmp;
4867 
4868     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4869     switch (op_id) {
4870     case 0x42: /* SMADDL */
4871     case 0x43: /* SMSUBL */
4872     case 0x44: /* SMULH */
4873         is_signed = true;
4874         break;
4875     case 0x0: /* MADD (32bit) */
4876     case 0x1: /* MSUB (32bit) */
4877     case 0x40: /* MADD (64bit) */
4878     case 0x41: /* MSUB (64bit) */
4879     case 0x4a: /* UMADDL */
4880     case 0x4b: /* UMSUBL */
4881     case 0x4c: /* UMULH */
4882         break;
4883     default:
4884         unallocated_encoding(s);
4885         return;
4886     }
4887 
4888     if (is_high) {
4889         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4890         TCGv_i64 tcg_rd = cpu_reg(s, rd);
4891         TCGv_i64 tcg_rn = cpu_reg(s, rn);
4892         TCGv_i64 tcg_rm = cpu_reg(s, rm);
4893 
4894         if (is_signed) {
4895             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4896         } else {
4897             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4898         }
4899         return;
4900     }
4901 
4902     tcg_op1 = tcg_temp_new_i64();
4903     tcg_op2 = tcg_temp_new_i64();
4904     tcg_tmp = tcg_temp_new_i64();
4905 
4906     if (op_id < 0x42) {
4907         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4908         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4909     } else {
4910         if (is_signed) {
4911             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4912             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4913         } else {
4914             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4915             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4916         }
4917     }
4918 
4919     if (ra == 31 && !is_sub) {
4920         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4921         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4922     } else {
4923         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4924         if (is_sub) {
4925             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4926         } else {
4927             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4928         }
4929     }
4930 
4931     if (!sf) {
4932         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4933     }
4934 }
4935 
4936 /* Add/subtract (with carry)
4937  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
4938  * +--+--+--+------------------------+------+-------------+------+-----+
4939  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
4940  * +--+--+--+------------------------+------+-------------+------+-----+
4941  */
4942 
4943 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4944 {
4945     unsigned int sf, op, setflags, rm, rn, rd;
4946     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4947 
4948     sf = extract32(insn, 31, 1);
4949     op = extract32(insn, 30, 1);
4950     setflags = extract32(insn, 29, 1);
4951     rm = extract32(insn, 16, 5);
4952     rn = extract32(insn, 5, 5);
4953     rd = extract32(insn, 0, 5);
4954 
4955     tcg_rd = cpu_reg(s, rd);
4956     tcg_rn = cpu_reg(s, rn);
4957 
4958     if (op) {
4959         tcg_y = tcg_temp_new_i64();
4960         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4961     } else {
4962         tcg_y = cpu_reg(s, rm);
4963     }
4964 
4965     if (setflags) {
4966         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4967     } else {
4968         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4969     }
4970 }
4971 
4972 /*
4973  * Rotate right into flags
4974  *  31 30 29                21       15          10      5  4      0
4975  * +--+--+--+-----------------+--------+-----------+------+--+------+
4976  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
4977  * +--+--+--+-----------------+--------+-----------+------+--+------+
4978  */
4979 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4980 {
4981     int mask = extract32(insn, 0, 4);
4982     int o2 = extract32(insn, 4, 1);
4983     int rn = extract32(insn, 5, 5);
4984     int imm6 = extract32(insn, 15, 6);
4985     int sf_op_s = extract32(insn, 29, 3);
4986     TCGv_i64 tcg_rn;
4987     TCGv_i32 nzcv;
4988 
4989     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4990         unallocated_encoding(s);
4991         return;
4992     }
4993 
4994     tcg_rn = read_cpu_reg(s, rn, 1);
4995     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4996 
4997     nzcv = tcg_temp_new_i32();
4998     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4999 
5000     if (mask & 8) { /* N */
5001         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5002     }
5003     if (mask & 4) { /* Z */
5004         tcg_gen_not_i32(cpu_ZF, nzcv);
5005         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5006     }
5007     if (mask & 2) { /* C */
5008         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5009     }
5010     if (mask & 1) { /* V */
5011         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5012     }
5013 }
5014 
5015 /*
5016  * Evaluate into flags
5017  *  31 30 29                21        15   14        10      5  4      0
5018  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5019  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5020  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5021  */
5022 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5023 {
5024     int o3_mask = extract32(insn, 0, 5);
5025     int rn = extract32(insn, 5, 5);
5026     int o2 = extract32(insn, 15, 6);
5027     int sz = extract32(insn, 14, 1);
5028     int sf_op_s = extract32(insn, 29, 3);
5029     TCGv_i32 tmp;
5030     int shift;
5031 
5032     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5033         !dc_isar_feature(aa64_condm_4, s)) {
5034         unallocated_encoding(s);
5035         return;
5036     }
5037     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5038 
5039     tmp = tcg_temp_new_i32();
5040     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5041     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5042     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5043     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5044     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5045 }
5046 
5047 /* Conditional compare (immediate / register)
5048  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5049  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5050  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5051  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5052  *        [1]                             y                [0]       [0]
5053  */
5054 static void disas_cc(DisasContext *s, uint32_t insn)
5055 {
5056     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5057     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5058     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5059     DisasCompare c;
5060 
5061     if (!extract32(insn, 29, 1)) {
5062         unallocated_encoding(s);
5063         return;
5064     }
5065     if (insn & (1 << 10 | 1 << 4)) {
5066         unallocated_encoding(s);
5067         return;
5068     }
5069     sf = extract32(insn, 31, 1);
5070     op = extract32(insn, 30, 1);
5071     is_imm = extract32(insn, 11, 1);
5072     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5073     cond = extract32(insn, 12, 4);
5074     rn = extract32(insn, 5, 5);
5075     nzcv = extract32(insn, 0, 4);
5076 
5077     /* Set T0 = !COND.  */
5078     tcg_t0 = tcg_temp_new_i32();
5079     arm_test_cc(&c, cond);
5080     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5081 
5082     /* Load the arguments for the new comparison.  */
5083     if (is_imm) {
5084         tcg_y = tcg_temp_new_i64();
5085         tcg_gen_movi_i64(tcg_y, y);
5086     } else {
5087         tcg_y = cpu_reg(s, y);
5088     }
5089     tcg_rn = cpu_reg(s, rn);
5090 
5091     /* Set the flags for the new comparison.  */
5092     tcg_tmp = tcg_temp_new_i64();
5093     if (op) {
5094         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5095     } else {
5096         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5097     }
5098 
5099     /* If COND was false, force the flags to #nzcv.  Compute two masks
5100      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5101      * For tcg hosts that support ANDC, we can make do with just T1.
5102      * In either case, allow the tcg optimizer to delete any unused mask.
5103      */
5104     tcg_t1 = tcg_temp_new_i32();
5105     tcg_t2 = tcg_temp_new_i32();
5106     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5107     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5108 
5109     if (nzcv & 8) { /* N */
5110         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5111     } else {
5112         if (TCG_TARGET_HAS_andc_i32) {
5113             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5114         } else {
5115             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5116         }
5117     }
5118     if (nzcv & 4) { /* Z */
5119         if (TCG_TARGET_HAS_andc_i32) {
5120             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5121         } else {
5122             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5123         }
5124     } else {
5125         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5126     }
5127     if (nzcv & 2) { /* C */
5128         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5129     } else {
5130         if (TCG_TARGET_HAS_andc_i32) {
5131             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5132         } else {
5133             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5134         }
5135     }
5136     if (nzcv & 1) { /* V */
5137         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5138     } else {
5139         if (TCG_TARGET_HAS_andc_i32) {
5140             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5141         } else {
5142             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5143         }
5144     }
5145 }
5146 
5147 /* Conditional select
5148  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5149  * +----+----+---+-----------------+------+------+-----+------+------+
5150  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5151  * +----+----+---+-----------------+------+------+-----+------+------+
5152  */
5153 static void disas_cond_select(DisasContext *s, uint32_t insn)
5154 {
5155     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5156     TCGv_i64 tcg_rd, zero;
5157     DisasCompare64 c;
5158 
5159     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5160         /* S == 1 or op2<1> == 1 */
5161         unallocated_encoding(s);
5162         return;
5163     }
5164     sf = extract32(insn, 31, 1);
5165     else_inv = extract32(insn, 30, 1);
5166     rm = extract32(insn, 16, 5);
5167     cond = extract32(insn, 12, 4);
5168     else_inc = extract32(insn, 10, 1);
5169     rn = extract32(insn, 5, 5);
5170     rd = extract32(insn, 0, 5);
5171 
5172     tcg_rd = cpu_reg(s, rd);
5173 
5174     a64_test_cc(&c, cond);
5175     zero = tcg_constant_i64(0);
5176 
5177     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5178         /* CSET & CSETM.  */
5179         tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5180         if (else_inv) {
5181             tcg_gen_neg_i64(tcg_rd, tcg_rd);
5182         }
5183     } else {
5184         TCGv_i64 t_true = cpu_reg(s, rn);
5185         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5186         if (else_inv && else_inc) {
5187             tcg_gen_neg_i64(t_false, t_false);
5188         } else if (else_inv) {
5189             tcg_gen_not_i64(t_false, t_false);
5190         } else if (else_inc) {
5191             tcg_gen_addi_i64(t_false, t_false, 1);
5192         }
5193         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5194     }
5195 
5196     if (!sf) {
5197         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5198     }
5199 }
5200 
5201 static void handle_clz(DisasContext *s, unsigned int sf,
5202                        unsigned int rn, unsigned int rd)
5203 {
5204     TCGv_i64 tcg_rd, tcg_rn;
5205     tcg_rd = cpu_reg(s, rd);
5206     tcg_rn = cpu_reg(s, rn);
5207 
5208     if (sf) {
5209         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5210     } else {
5211         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5212         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5213         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5214         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5215     }
5216 }
5217 
5218 static void handle_cls(DisasContext *s, unsigned int sf,
5219                        unsigned int rn, unsigned int rd)
5220 {
5221     TCGv_i64 tcg_rd, tcg_rn;
5222     tcg_rd = cpu_reg(s, rd);
5223     tcg_rn = cpu_reg(s, rn);
5224 
5225     if (sf) {
5226         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5227     } else {
5228         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5229         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5230         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5231         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5232     }
5233 }
5234 
5235 static void handle_rbit(DisasContext *s, unsigned int sf,
5236                         unsigned int rn, unsigned int rd)
5237 {
5238     TCGv_i64 tcg_rd, tcg_rn;
5239     tcg_rd = cpu_reg(s, rd);
5240     tcg_rn = cpu_reg(s, rn);
5241 
5242     if (sf) {
5243         gen_helper_rbit64(tcg_rd, tcg_rn);
5244     } else {
5245         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5246         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5247         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5248         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5249     }
5250 }
5251 
5252 /* REV with sf==1, opcode==3 ("REV64") */
5253 static void handle_rev64(DisasContext *s, unsigned int sf,
5254                          unsigned int rn, unsigned int rd)
5255 {
5256     if (!sf) {
5257         unallocated_encoding(s);
5258         return;
5259     }
5260     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5261 }
5262 
5263 /* REV with sf==0, opcode==2
5264  * REV32 (sf==1, opcode==2)
5265  */
5266 static void handle_rev32(DisasContext *s, unsigned int sf,
5267                          unsigned int rn, unsigned int rd)
5268 {
5269     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5270     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5271 
5272     if (sf) {
5273         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5274         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5275     } else {
5276         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5277     }
5278 }
5279 
5280 /* REV16 (opcode==1) */
5281 static void handle_rev16(DisasContext *s, unsigned int sf,
5282                          unsigned int rn, unsigned int rd)
5283 {
5284     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5285     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5286     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5287     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5288 
5289     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5290     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5291     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5292     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5293     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5294 }
5295 
5296 /* Data-processing (1 source)
5297  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5298  * +----+---+---+-----------------+---------+--------+------+------+
5299  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5300  * +----+---+---+-----------------+---------+--------+------+------+
5301  */
5302 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5303 {
5304     unsigned int sf, opcode, opcode2, rn, rd;
5305     TCGv_i64 tcg_rd;
5306 
5307     if (extract32(insn, 29, 1)) {
5308         unallocated_encoding(s);
5309         return;
5310     }
5311 
5312     sf = extract32(insn, 31, 1);
5313     opcode = extract32(insn, 10, 6);
5314     opcode2 = extract32(insn, 16, 5);
5315     rn = extract32(insn, 5, 5);
5316     rd = extract32(insn, 0, 5);
5317 
5318 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5319 
5320     switch (MAP(sf, opcode2, opcode)) {
5321     case MAP(0, 0x00, 0x00): /* RBIT */
5322     case MAP(1, 0x00, 0x00):
5323         handle_rbit(s, sf, rn, rd);
5324         break;
5325     case MAP(0, 0x00, 0x01): /* REV16 */
5326     case MAP(1, 0x00, 0x01):
5327         handle_rev16(s, sf, rn, rd);
5328         break;
5329     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5330     case MAP(1, 0x00, 0x02):
5331         handle_rev32(s, sf, rn, rd);
5332         break;
5333     case MAP(1, 0x00, 0x03): /* REV64 */
5334         handle_rev64(s, sf, rn, rd);
5335         break;
5336     case MAP(0, 0x00, 0x04): /* CLZ */
5337     case MAP(1, 0x00, 0x04):
5338         handle_clz(s, sf, rn, rd);
5339         break;
5340     case MAP(0, 0x00, 0x05): /* CLS */
5341     case MAP(1, 0x00, 0x05):
5342         handle_cls(s, sf, rn, rd);
5343         break;
5344     case MAP(1, 0x01, 0x00): /* PACIA */
5345         if (s->pauth_active) {
5346             tcg_rd = cpu_reg(s, rd);
5347             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5348         } else if (!dc_isar_feature(aa64_pauth, s)) {
5349             goto do_unallocated;
5350         }
5351         break;
5352     case MAP(1, 0x01, 0x01): /* PACIB */
5353         if (s->pauth_active) {
5354             tcg_rd = cpu_reg(s, rd);
5355             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5356         } else if (!dc_isar_feature(aa64_pauth, s)) {
5357             goto do_unallocated;
5358         }
5359         break;
5360     case MAP(1, 0x01, 0x02): /* PACDA */
5361         if (s->pauth_active) {
5362             tcg_rd = cpu_reg(s, rd);
5363             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5364         } else if (!dc_isar_feature(aa64_pauth, s)) {
5365             goto do_unallocated;
5366         }
5367         break;
5368     case MAP(1, 0x01, 0x03): /* PACDB */
5369         if (s->pauth_active) {
5370             tcg_rd = cpu_reg(s, rd);
5371             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5372         } else if (!dc_isar_feature(aa64_pauth, s)) {
5373             goto do_unallocated;
5374         }
5375         break;
5376     case MAP(1, 0x01, 0x04): /* AUTIA */
5377         if (s->pauth_active) {
5378             tcg_rd = cpu_reg(s, rd);
5379             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5380         } else if (!dc_isar_feature(aa64_pauth, s)) {
5381             goto do_unallocated;
5382         }
5383         break;
5384     case MAP(1, 0x01, 0x05): /* AUTIB */
5385         if (s->pauth_active) {
5386             tcg_rd = cpu_reg(s, rd);
5387             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5388         } else if (!dc_isar_feature(aa64_pauth, s)) {
5389             goto do_unallocated;
5390         }
5391         break;
5392     case MAP(1, 0x01, 0x06): /* AUTDA */
5393         if (s->pauth_active) {
5394             tcg_rd = cpu_reg(s, rd);
5395             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5396         } else if (!dc_isar_feature(aa64_pauth, s)) {
5397             goto do_unallocated;
5398         }
5399         break;
5400     case MAP(1, 0x01, 0x07): /* AUTDB */
5401         if (s->pauth_active) {
5402             tcg_rd = cpu_reg(s, rd);
5403             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5404         } else if (!dc_isar_feature(aa64_pauth, s)) {
5405             goto do_unallocated;
5406         }
5407         break;
5408     case MAP(1, 0x01, 0x08): /* PACIZA */
5409         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5410             goto do_unallocated;
5411         } else if (s->pauth_active) {
5412             tcg_rd = cpu_reg(s, rd);
5413             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5414         }
5415         break;
5416     case MAP(1, 0x01, 0x09): /* PACIZB */
5417         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5418             goto do_unallocated;
5419         } else if (s->pauth_active) {
5420             tcg_rd = cpu_reg(s, rd);
5421             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5422         }
5423         break;
5424     case MAP(1, 0x01, 0x0a): /* PACDZA */
5425         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5426             goto do_unallocated;
5427         } else if (s->pauth_active) {
5428             tcg_rd = cpu_reg(s, rd);
5429             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5430         }
5431         break;
5432     case MAP(1, 0x01, 0x0b): /* PACDZB */
5433         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5434             goto do_unallocated;
5435         } else if (s->pauth_active) {
5436             tcg_rd = cpu_reg(s, rd);
5437             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5438         }
5439         break;
5440     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5441         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5442             goto do_unallocated;
5443         } else if (s->pauth_active) {
5444             tcg_rd = cpu_reg(s, rd);
5445             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5446         }
5447         break;
5448     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5449         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5450             goto do_unallocated;
5451         } else if (s->pauth_active) {
5452             tcg_rd = cpu_reg(s, rd);
5453             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5454         }
5455         break;
5456     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5457         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5458             goto do_unallocated;
5459         } else if (s->pauth_active) {
5460             tcg_rd = cpu_reg(s, rd);
5461             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5462         }
5463         break;
5464     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5465         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5466             goto do_unallocated;
5467         } else if (s->pauth_active) {
5468             tcg_rd = cpu_reg(s, rd);
5469             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5470         }
5471         break;
5472     case MAP(1, 0x01, 0x10): /* XPACI */
5473         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5474             goto do_unallocated;
5475         } else if (s->pauth_active) {
5476             tcg_rd = cpu_reg(s, rd);
5477             gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5478         }
5479         break;
5480     case MAP(1, 0x01, 0x11): /* XPACD */
5481         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5482             goto do_unallocated;
5483         } else if (s->pauth_active) {
5484             tcg_rd = cpu_reg(s, rd);
5485             gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5486         }
5487         break;
5488     default:
5489     do_unallocated:
5490         unallocated_encoding(s);
5491         break;
5492     }
5493 
5494 #undef MAP
5495 }
5496 
5497 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5498                        unsigned int rm, unsigned int rn, unsigned int rd)
5499 {
5500     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5501     tcg_rd = cpu_reg(s, rd);
5502 
5503     if (!sf && is_signed) {
5504         tcg_n = tcg_temp_new_i64();
5505         tcg_m = tcg_temp_new_i64();
5506         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5507         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5508     } else {
5509         tcg_n = read_cpu_reg(s, rn, sf);
5510         tcg_m = read_cpu_reg(s, rm, sf);
5511     }
5512 
5513     if (is_signed) {
5514         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5515     } else {
5516         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5517     }
5518 
5519     if (!sf) { /* zero extend final result */
5520         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5521     }
5522 }
5523 
5524 /* LSLV, LSRV, ASRV, RORV */
5525 static void handle_shift_reg(DisasContext *s,
5526                              enum a64_shift_type shift_type, unsigned int sf,
5527                              unsigned int rm, unsigned int rn, unsigned int rd)
5528 {
5529     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5530     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5531     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5532 
5533     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5534     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5535 }
5536 
5537 /* CRC32[BHWX], CRC32C[BHWX] */
5538 static void handle_crc32(DisasContext *s,
5539                          unsigned int sf, unsigned int sz, bool crc32c,
5540                          unsigned int rm, unsigned int rn, unsigned int rd)
5541 {
5542     TCGv_i64 tcg_acc, tcg_val;
5543     TCGv_i32 tcg_bytes;
5544 
5545     if (!dc_isar_feature(aa64_crc32, s)
5546         || (sf == 1 && sz != 3)
5547         || (sf == 0 && sz == 3)) {
5548         unallocated_encoding(s);
5549         return;
5550     }
5551 
5552     if (sz == 3) {
5553         tcg_val = cpu_reg(s, rm);
5554     } else {
5555         uint64_t mask;
5556         switch (sz) {
5557         case 0:
5558             mask = 0xFF;
5559             break;
5560         case 1:
5561             mask = 0xFFFF;
5562             break;
5563         case 2:
5564             mask = 0xFFFFFFFF;
5565             break;
5566         default:
5567             g_assert_not_reached();
5568         }
5569         tcg_val = tcg_temp_new_i64();
5570         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5571     }
5572 
5573     tcg_acc = cpu_reg(s, rn);
5574     tcg_bytes = tcg_constant_i32(1 << sz);
5575 
5576     if (crc32c) {
5577         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5578     } else {
5579         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5580     }
5581 }
5582 
5583 /* Data-processing (2 source)
5584  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5585  * +----+---+---+-----------------+------+--------+------+------+
5586  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5587  * +----+---+---+-----------------+------+--------+------+------+
5588  */
5589 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5590 {
5591     unsigned int sf, rm, opcode, rn, rd, setflag;
5592     sf = extract32(insn, 31, 1);
5593     setflag = extract32(insn, 29, 1);
5594     rm = extract32(insn, 16, 5);
5595     opcode = extract32(insn, 10, 6);
5596     rn = extract32(insn, 5, 5);
5597     rd = extract32(insn, 0, 5);
5598 
5599     if (setflag && opcode != 0) {
5600         unallocated_encoding(s);
5601         return;
5602     }
5603 
5604     switch (opcode) {
5605     case 0: /* SUBP(S) */
5606         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5607             goto do_unallocated;
5608         } else {
5609             TCGv_i64 tcg_n, tcg_m, tcg_d;
5610 
5611             tcg_n = read_cpu_reg_sp(s, rn, true);
5612             tcg_m = read_cpu_reg_sp(s, rm, true);
5613             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5614             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5615             tcg_d = cpu_reg(s, rd);
5616 
5617             if (setflag) {
5618                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5619             } else {
5620                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5621             }
5622         }
5623         break;
5624     case 2: /* UDIV */
5625         handle_div(s, false, sf, rm, rn, rd);
5626         break;
5627     case 3: /* SDIV */
5628         handle_div(s, true, sf, rm, rn, rd);
5629         break;
5630     case 4: /* IRG */
5631         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5632             goto do_unallocated;
5633         }
5634         if (s->ata) {
5635             gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5636                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5637         } else {
5638             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5639                                              cpu_reg_sp(s, rn));
5640         }
5641         break;
5642     case 5: /* GMI */
5643         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5644             goto do_unallocated;
5645         } else {
5646             TCGv_i64 t = tcg_temp_new_i64();
5647 
5648             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5649             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5650             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5651         }
5652         break;
5653     case 8: /* LSLV */
5654         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5655         break;
5656     case 9: /* LSRV */
5657         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5658         break;
5659     case 10: /* ASRV */
5660         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5661         break;
5662     case 11: /* RORV */
5663         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5664         break;
5665     case 12: /* PACGA */
5666         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5667             goto do_unallocated;
5668         }
5669         gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5670                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5671         break;
5672     case 16:
5673     case 17:
5674     case 18:
5675     case 19:
5676     case 20:
5677     case 21:
5678     case 22:
5679     case 23: /* CRC32 */
5680     {
5681         int sz = extract32(opcode, 0, 2);
5682         bool crc32c = extract32(opcode, 2, 1);
5683         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5684         break;
5685     }
5686     default:
5687     do_unallocated:
5688         unallocated_encoding(s);
5689         break;
5690     }
5691 }
5692 
5693 /*
5694  * Data processing - register
5695  *  31  30 29  28      25    21  20  16      10         0
5696  * +--+---+--+---+-------+-----+-------+-------+---------+
5697  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5698  * +--+---+--+---+-------+-----+-------+-------+---------+
5699  */
5700 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5701 {
5702     int op0 = extract32(insn, 30, 1);
5703     int op1 = extract32(insn, 28, 1);
5704     int op2 = extract32(insn, 21, 4);
5705     int op3 = extract32(insn, 10, 6);
5706 
5707     if (!op1) {
5708         if (op2 & 8) {
5709             if (op2 & 1) {
5710                 /* Add/sub (extended register) */
5711                 disas_add_sub_ext_reg(s, insn);
5712             } else {
5713                 /* Add/sub (shifted register) */
5714                 disas_add_sub_reg(s, insn);
5715             }
5716         } else {
5717             /* Logical (shifted register) */
5718             disas_logic_reg(s, insn);
5719         }
5720         return;
5721     }
5722 
5723     switch (op2) {
5724     case 0x0:
5725         switch (op3) {
5726         case 0x00: /* Add/subtract (with carry) */
5727             disas_adc_sbc(s, insn);
5728             break;
5729 
5730         case 0x01: /* Rotate right into flags */
5731         case 0x21:
5732             disas_rotate_right_into_flags(s, insn);
5733             break;
5734 
5735         case 0x02: /* Evaluate into flags */
5736         case 0x12:
5737         case 0x22:
5738         case 0x32:
5739             disas_evaluate_into_flags(s, insn);
5740             break;
5741 
5742         default:
5743             goto do_unallocated;
5744         }
5745         break;
5746 
5747     case 0x2: /* Conditional compare */
5748         disas_cc(s, insn); /* both imm and reg forms */
5749         break;
5750 
5751     case 0x4: /* Conditional select */
5752         disas_cond_select(s, insn);
5753         break;
5754 
5755     case 0x6: /* Data-processing */
5756         if (op0) {    /* (1 source) */
5757             disas_data_proc_1src(s, insn);
5758         } else {      /* (2 source) */
5759             disas_data_proc_2src(s, insn);
5760         }
5761         break;
5762     case 0x8 ... 0xf: /* (3 source) */
5763         disas_data_proc_3src(s, insn);
5764         break;
5765 
5766     default:
5767     do_unallocated:
5768         unallocated_encoding(s);
5769         break;
5770     }
5771 }
5772 
5773 static void handle_fp_compare(DisasContext *s, int size,
5774                               unsigned int rn, unsigned int rm,
5775                               bool cmp_with_zero, bool signal_all_nans)
5776 {
5777     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5778     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5779 
5780     if (size == MO_64) {
5781         TCGv_i64 tcg_vn, tcg_vm;
5782 
5783         tcg_vn = read_fp_dreg(s, rn);
5784         if (cmp_with_zero) {
5785             tcg_vm = tcg_constant_i64(0);
5786         } else {
5787             tcg_vm = read_fp_dreg(s, rm);
5788         }
5789         if (signal_all_nans) {
5790             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5791         } else {
5792             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5793         }
5794     } else {
5795         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5796         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5797 
5798         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5799         if (cmp_with_zero) {
5800             tcg_gen_movi_i32(tcg_vm, 0);
5801         } else {
5802             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5803         }
5804 
5805         switch (size) {
5806         case MO_32:
5807             if (signal_all_nans) {
5808                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5809             } else {
5810                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5811             }
5812             break;
5813         case MO_16:
5814             if (signal_all_nans) {
5815                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5816             } else {
5817                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5818             }
5819             break;
5820         default:
5821             g_assert_not_reached();
5822         }
5823     }
5824 
5825     gen_set_nzcv(tcg_flags);
5826 }
5827 
5828 /* Floating point compare
5829  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5830  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5831  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5832  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5833  */
5834 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5835 {
5836     unsigned int mos, type, rm, op, rn, opc, op2r;
5837     int size;
5838 
5839     mos = extract32(insn, 29, 3);
5840     type = extract32(insn, 22, 2);
5841     rm = extract32(insn, 16, 5);
5842     op = extract32(insn, 14, 2);
5843     rn = extract32(insn, 5, 5);
5844     opc = extract32(insn, 3, 2);
5845     op2r = extract32(insn, 0, 3);
5846 
5847     if (mos || op || op2r) {
5848         unallocated_encoding(s);
5849         return;
5850     }
5851 
5852     switch (type) {
5853     case 0:
5854         size = MO_32;
5855         break;
5856     case 1:
5857         size = MO_64;
5858         break;
5859     case 3:
5860         size = MO_16;
5861         if (dc_isar_feature(aa64_fp16, s)) {
5862             break;
5863         }
5864         /* fallthru */
5865     default:
5866         unallocated_encoding(s);
5867         return;
5868     }
5869 
5870     if (!fp_access_check(s)) {
5871         return;
5872     }
5873 
5874     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5875 }
5876 
5877 /* Floating point conditional compare
5878  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5879  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5880  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5881  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5882  */
5883 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5884 {
5885     unsigned int mos, type, rm, cond, rn, op, nzcv;
5886     TCGLabel *label_continue = NULL;
5887     int size;
5888 
5889     mos = extract32(insn, 29, 3);
5890     type = extract32(insn, 22, 2);
5891     rm = extract32(insn, 16, 5);
5892     cond = extract32(insn, 12, 4);
5893     rn = extract32(insn, 5, 5);
5894     op = extract32(insn, 4, 1);
5895     nzcv = extract32(insn, 0, 4);
5896 
5897     if (mos) {
5898         unallocated_encoding(s);
5899         return;
5900     }
5901 
5902     switch (type) {
5903     case 0:
5904         size = MO_32;
5905         break;
5906     case 1:
5907         size = MO_64;
5908         break;
5909     case 3:
5910         size = MO_16;
5911         if (dc_isar_feature(aa64_fp16, s)) {
5912             break;
5913         }
5914         /* fallthru */
5915     default:
5916         unallocated_encoding(s);
5917         return;
5918     }
5919 
5920     if (!fp_access_check(s)) {
5921         return;
5922     }
5923 
5924     if (cond < 0x0e) { /* not always */
5925         TCGLabel *label_match = gen_new_label();
5926         label_continue = gen_new_label();
5927         arm_gen_test_cc(cond, label_match);
5928         /* nomatch: */
5929         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5930         tcg_gen_br(label_continue);
5931         gen_set_label(label_match);
5932     }
5933 
5934     handle_fp_compare(s, size, rn, rm, false, op);
5935 
5936     if (cond < 0x0e) {
5937         gen_set_label(label_continue);
5938     }
5939 }
5940 
5941 /* Floating point conditional select
5942  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
5943  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5944  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
5945  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5946  */
5947 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5948 {
5949     unsigned int mos, type, rm, cond, rn, rd;
5950     TCGv_i64 t_true, t_false;
5951     DisasCompare64 c;
5952     MemOp sz;
5953 
5954     mos = extract32(insn, 29, 3);
5955     type = extract32(insn, 22, 2);
5956     rm = extract32(insn, 16, 5);
5957     cond = extract32(insn, 12, 4);
5958     rn = extract32(insn, 5, 5);
5959     rd = extract32(insn, 0, 5);
5960 
5961     if (mos) {
5962         unallocated_encoding(s);
5963         return;
5964     }
5965 
5966     switch (type) {
5967     case 0:
5968         sz = MO_32;
5969         break;
5970     case 1:
5971         sz = MO_64;
5972         break;
5973     case 3:
5974         sz = MO_16;
5975         if (dc_isar_feature(aa64_fp16, s)) {
5976             break;
5977         }
5978         /* fallthru */
5979     default:
5980         unallocated_encoding(s);
5981         return;
5982     }
5983 
5984     if (!fp_access_check(s)) {
5985         return;
5986     }
5987 
5988     /* Zero extend sreg & hreg inputs to 64 bits now.  */
5989     t_true = tcg_temp_new_i64();
5990     t_false = tcg_temp_new_i64();
5991     read_vec_element(s, t_true, rn, 0, sz);
5992     read_vec_element(s, t_false, rm, 0, sz);
5993 
5994     a64_test_cc(&c, cond);
5995     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5996                         t_true, t_false);
5997 
5998     /* Note that sregs & hregs write back zeros to the high bits,
5999        and we've already done the zero-extension.  */
6000     write_fp_dreg(s, rd, t_true);
6001 }
6002 
6003 /* Floating-point data-processing (1 source) - half precision */
6004 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6005 {
6006     TCGv_ptr fpst = NULL;
6007     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6008     TCGv_i32 tcg_res = tcg_temp_new_i32();
6009 
6010     switch (opcode) {
6011     case 0x0: /* FMOV */
6012         tcg_gen_mov_i32(tcg_res, tcg_op);
6013         break;
6014     case 0x1: /* FABS */
6015         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6016         break;
6017     case 0x2: /* FNEG */
6018         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6019         break;
6020     case 0x3: /* FSQRT */
6021         fpst = fpstatus_ptr(FPST_FPCR_F16);
6022         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6023         break;
6024     case 0x8: /* FRINTN */
6025     case 0x9: /* FRINTP */
6026     case 0xa: /* FRINTM */
6027     case 0xb: /* FRINTZ */
6028     case 0xc: /* FRINTA */
6029     {
6030         TCGv_i32 tcg_rmode;
6031 
6032         fpst = fpstatus_ptr(FPST_FPCR_F16);
6033         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6034         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6035         gen_restore_rmode(tcg_rmode, fpst);
6036         break;
6037     }
6038     case 0xe: /* FRINTX */
6039         fpst = fpstatus_ptr(FPST_FPCR_F16);
6040         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6041         break;
6042     case 0xf: /* FRINTI */
6043         fpst = fpstatus_ptr(FPST_FPCR_F16);
6044         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6045         break;
6046     default:
6047         g_assert_not_reached();
6048     }
6049 
6050     write_fp_sreg(s, rd, tcg_res);
6051 }
6052 
6053 /* Floating-point data-processing (1 source) - single precision */
6054 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6055 {
6056     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6057     TCGv_i32 tcg_op, tcg_res;
6058     TCGv_ptr fpst;
6059     int rmode = -1;
6060 
6061     tcg_op = read_fp_sreg(s, rn);
6062     tcg_res = tcg_temp_new_i32();
6063 
6064     switch (opcode) {
6065     case 0x0: /* FMOV */
6066         tcg_gen_mov_i32(tcg_res, tcg_op);
6067         goto done;
6068     case 0x1: /* FABS */
6069         gen_helper_vfp_abss(tcg_res, tcg_op);
6070         goto done;
6071     case 0x2: /* FNEG */
6072         gen_helper_vfp_negs(tcg_res, tcg_op);
6073         goto done;
6074     case 0x3: /* FSQRT */
6075         gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6076         goto done;
6077     case 0x6: /* BFCVT */
6078         gen_fpst = gen_helper_bfcvt;
6079         break;
6080     case 0x8: /* FRINTN */
6081     case 0x9: /* FRINTP */
6082     case 0xa: /* FRINTM */
6083     case 0xb: /* FRINTZ */
6084     case 0xc: /* FRINTA */
6085         rmode = opcode & 7;
6086         gen_fpst = gen_helper_rints;
6087         break;
6088     case 0xe: /* FRINTX */
6089         gen_fpst = gen_helper_rints_exact;
6090         break;
6091     case 0xf: /* FRINTI */
6092         gen_fpst = gen_helper_rints;
6093         break;
6094     case 0x10: /* FRINT32Z */
6095         rmode = FPROUNDING_ZERO;
6096         gen_fpst = gen_helper_frint32_s;
6097         break;
6098     case 0x11: /* FRINT32X */
6099         gen_fpst = gen_helper_frint32_s;
6100         break;
6101     case 0x12: /* FRINT64Z */
6102         rmode = FPROUNDING_ZERO;
6103         gen_fpst = gen_helper_frint64_s;
6104         break;
6105     case 0x13: /* FRINT64X */
6106         gen_fpst = gen_helper_frint64_s;
6107         break;
6108     default:
6109         g_assert_not_reached();
6110     }
6111 
6112     fpst = fpstatus_ptr(FPST_FPCR);
6113     if (rmode >= 0) {
6114         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6115         gen_fpst(tcg_res, tcg_op, fpst);
6116         gen_restore_rmode(tcg_rmode, fpst);
6117     } else {
6118         gen_fpst(tcg_res, tcg_op, fpst);
6119     }
6120 
6121  done:
6122     write_fp_sreg(s, rd, tcg_res);
6123 }
6124 
6125 /* Floating-point data-processing (1 source) - double precision */
6126 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6127 {
6128     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6129     TCGv_i64 tcg_op, tcg_res;
6130     TCGv_ptr fpst;
6131     int rmode = -1;
6132 
6133     switch (opcode) {
6134     case 0x0: /* FMOV */
6135         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6136         return;
6137     }
6138 
6139     tcg_op = read_fp_dreg(s, rn);
6140     tcg_res = tcg_temp_new_i64();
6141 
6142     switch (opcode) {
6143     case 0x1: /* FABS */
6144         gen_helper_vfp_absd(tcg_res, tcg_op);
6145         goto done;
6146     case 0x2: /* FNEG */
6147         gen_helper_vfp_negd(tcg_res, tcg_op);
6148         goto done;
6149     case 0x3: /* FSQRT */
6150         gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6151         goto done;
6152     case 0x8: /* FRINTN */
6153     case 0x9: /* FRINTP */
6154     case 0xa: /* FRINTM */
6155     case 0xb: /* FRINTZ */
6156     case 0xc: /* FRINTA */
6157         rmode = opcode & 7;
6158         gen_fpst = gen_helper_rintd;
6159         break;
6160     case 0xe: /* FRINTX */
6161         gen_fpst = gen_helper_rintd_exact;
6162         break;
6163     case 0xf: /* FRINTI */
6164         gen_fpst = gen_helper_rintd;
6165         break;
6166     case 0x10: /* FRINT32Z */
6167         rmode = FPROUNDING_ZERO;
6168         gen_fpst = gen_helper_frint32_d;
6169         break;
6170     case 0x11: /* FRINT32X */
6171         gen_fpst = gen_helper_frint32_d;
6172         break;
6173     case 0x12: /* FRINT64Z */
6174         rmode = FPROUNDING_ZERO;
6175         gen_fpst = gen_helper_frint64_d;
6176         break;
6177     case 0x13: /* FRINT64X */
6178         gen_fpst = gen_helper_frint64_d;
6179         break;
6180     default:
6181         g_assert_not_reached();
6182     }
6183 
6184     fpst = fpstatus_ptr(FPST_FPCR);
6185     if (rmode >= 0) {
6186         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6187         gen_fpst(tcg_res, tcg_op, fpst);
6188         gen_restore_rmode(tcg_rmode, fpst);
6189     } else {
6190         gen_fpst(tcg_res, tcg_op, fpst);
6191     }
6192 
6193  done:
6194     write_fp_dreg(s, rd, tcg_res);
6195 }
6196 
6197 static void handle_fp_fcvt(DisasContext *s, int opcode,
6198                            int rd, int rn, int dtype, int ntype)
6199 {
6200     switch (ntype) {
6201     case 0x0:
6202     {
6203         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6204         if (dtype == 1) {
6205             /* Single to double */
6206             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6207             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6208             write_fp_dreg(s, rd, tcg_rd);
6209         } else {
6210             /* Single to half */
6211             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6212             TCGv_i32 ahp = get_ahp_flag();
6213             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6214 
6215             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6216             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6217             write_fp_sreg(s, rd, tcg_rd);
6218         }
6219         break;
6220     }
6221     case 0x1:
6222     {
6223         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6224         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6225         if (dtype == 0) {
6226             /* Double to single */
6227             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6228         } else {
6229             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6230             TCGv_i32 ahp = get_ahp_flag();
6231             /* Double to half */
6232             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6233             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6234         }
6235         write_fp_sreg(s, rd, tcg_rd);
6236         break;
6237     }
6238     case 0x3:
6239     {
6240         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6241         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6242         TCGv_i32 tcg_ahp = get_ahp_flag();
6243         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6244         if (dtype == 0) {
6245             /* Half to single */
6246             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6247             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6248             write_fp_sreg(s, rd, tcg_rd);
6249         } else {
6250             /* Half to double */
6251             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6252             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6253             write_fp_dreg(s, rd, tcg_rd);
6254         }
6255         break;
6256     }
6257     default:
6258         g_assert_not_reached();
6259     }
6260 }
6261 
6262 /* Floating point data-processing (1 source)
6263  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6264  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6265  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6266  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6267  */
6268 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6269 {
6270     int mos = extract32(insn, 29, 3);
6271     int type = extract32(insn, 22, 2);
6272     int opcode = extract32(insn, 15, 6);
6273     int rn = extract32(insn, 5, 5);
6274     int rd = extract32(insn, 0, 5);
6275 
6276     if (mos) {
6277         goto do_unallocated;
6278     }
6279 
6280     switch (opcode) {
6281     case 0x4: case 0x5: case 0x7:
6282     {
6283         /* FCVT between half, single and double precision */
6284         int dtype = extract32(opcode, 0, 2);
6285         if (type == 2 || dtype == type) {
6286             goto do_unallocated;
6287         }
6288         if (!fp_access_check(s)) {
6289             return;
6290         }
6291 
6292         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6293         break;
6294     }
6295 
6296     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6297         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6298             goto do_unallocated;
6299         }
6300         /* fall through */
6301     case 0x0 ... 0x3:
6302     case 0x8 ... 0xc:
6303     case 0xe ... 0xf:
6304         /* 32-to-32 and 64-to-64 ops */
6305         switch (type) {
6306         case 0:
6307             if (!fp_access_check(s)) {
6308                 return;
6309             }
6310             handle_fp_1src_single(s, opcode, rd, rn);
6311             break;
6312         case 1:
6313             if (!fp_access_check(s)) {
6314                 return;
6315             }
6316             handle_fp_1src_double(s, opcode, rd, rn);
6317             break;
6318         case 3:
6319             if (!dc_isar_feature(aa64_fp16, s)) {
6320                 goto do_unallocated;
6321             }
6322 
6323             if (!fp_access_check(s)) {
6324                 return;
6325             }
6326             handle_fp_1src_half(s, opcode, rd, rn);
6327             break;
6328         default:
6329             goto do_unallocated;
6330         }
6331         break;
6332 
6333     case 0x6:
6334         switch (type) {
6335         case 1: /* BFCVT */
6336             if (!dc_isar_feature(aa64_bf16, s)) {
6337                 goto do_unallocated;
6338             }
6339             if (!fp_access_check(s)) {
6340                 return;
6341             }
6342             handle_fp_1src_single(s, opcode, rd, rn);
6343             break;
6344         default:
6345             goto do_unallocated;
6346         }
6347         break;
6348 
6349     default:
6350     do_unallocated:
6351         unallocated_encoding(s);
6352         break;
6353     }
6354 }
6355 
6356 /* Floating-point data-processing (2 source) - single precision */
6357 static void handle_fp_2src_single(DisasContext *s, int opcode,
6358                                   int rd, int rn, int rm)
6359 {
6360     TCGv_i32 tcg_op1;
6361     TCGv_i32 tcg_op2;
6362     TCGv_i32 tcg_res;
6363     TCGv_ptr fpst;
6364 
6365     tcg_res = tcg_temp_new_i32();
6366     fpst = fpstatus_ptr(FPST_FPCR);
6367     tcg_op1 = read_fp_sreg(s, rn);
6368     tcg_op2 = read_fp_sreg(s, rm);
6369 
6370     switch (opcode) {
6371     case 0x0: /* FMUL */
6372         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6373         break;
6374     case 0x1: /* FDIV */
6375         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6376         break;
6377     case 0x2: /* FADD */
6378         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6379         break;
6380     case 0x3: /* FSUB */
6381         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6382         break;
6383     case 0x4: /* FMAX */
6384         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6385         break;
6386     case 0x5: /* FMIN */
6387         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6388         break;
6389     case 0x6: /* FMAXNM */
6390         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6391         break;
6392     case 0x7: /* FMINNM */
6393         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6394         break;
6395     case 0x8: /* FNMUL */
6396         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6397         gen_helper_vfp_negs(tcg_res, tcg_res);
6398         break;
6399     }
6400 
6401     write_fp_sreg(s, rd, tcg_res);
6402 }
6403 
6404 /* Floating-point data-processing (2 source) - double precision */
6405 static void handle_fp_2src_double(DisasContext *s, int opcode,
6406                                   int rd, int rn, int rm)
6407 {
6408     TCGv_i64 tcg_op1;
6409     TCGv_i64 tcg_op2;
6410     TCGv_i64 tcg_res;
6411     TCGv_ptr fpst;
6412 
6413     tcg_res = tcg_temp_new_i64();
6414     fpst = fpstatus_ptr(FPST_FPCR);
6415     tcg_op1 = read_fp_dreg(s, rn);
6416     tcg_op2 = read_fp_dreg(s, rm);
6417 
6418     switch (opcode) {
6419     case 0x0: /* FMUL */
6420         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6421         break;
6422     case 0x1: /* FDIV */
6423         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6424         break;
6425     case 0x2: /* FADD */
6426         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6427         break;
6428     case 0x3: /* FSUB */
6429         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6430         break;
6431     case 0x4: /* FMAX */
6432         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6433         break;
6434     case 0x5: /* FMIN */
6435         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6436         break;
6437     case 0x6: /* FMAXNM */
6438         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6439         break;
6440     case 0x7: /* FMINNM */
6441         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6442         break;
6443     case 0x8: /* FNMUL */
6444         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6445         gen_helper_vfp_negd(tcg_res, tcg_res);
6446         break;
6447     }
6448 
6449     write_fp_dreg(s, rd, tcg_res);
6450 }
6451 
6452 /* Floating-point data-processing (2 source) - half precision */
6453 static void handle_fp_2src_half(DisasContext *s, int opcode,
6454                                 int rd, int rn, int rm)
6455 {
6456     TCGv_i32 tcg_op1;
6457     TCGv_i32 tcg_op2;
6458     TCGv_i32 tcg_res;
6459     TCGv_ptr fpst;
6460 
6461     tcg_res = tcg_temp_new_i32();
6462     fpst = fpstatus_ptr(FPST_FPCR_F16);
6463     tcg_op1 = read_fp_hreg(s, rn);
6464     tcg_op2 = read_fp_hreg(s, rm);
6465 
6466     switch (opcode) {
6467     case 0x0: /* FMUL */
6468         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6469         break;
6470     case 0x1: /* FDIV */
6471         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6472         break;
6473     case 0x2: /* FADD */
6474         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6475         break;
6476     case 0x3: /* FSUB */
6477         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6478         break;
6479     case 0x4: /* FMAX */
6480         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6481         break;
6482     case 0x5: /* FMIN */
6483         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6484         break;
6485     case 0x6: /* FMAXNM */
6486         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6487         break;
6488     case 0x7: /* FMINNM */
6489         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6490         break;
6491     case 0x8: /* FNMUL */
6492         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6493         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6494         break;
6495     default:
6496         g_assert_not_reached();
6497     }
6498 
6499     write_fp_sreg(s, rd, tcg_res);
6500 }
6501 
6502 /* Floating point data-processing (2 source)
6503  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6504  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6505  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6506  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6507  */
6508 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6509 {
6510     int mos = extract32(insn, 29, 3);
6511     int type = extract32(insn, 22, 2);
6512     int rd = extract32(insn, 0, 5);
6513     int rn = extract32(insn, 5, 5);
6514     int rm = extract32(insn, 16, 5);
6515     int opcode = extract32(insn, 12, 4);
6516 
6517     if (opcode > 8 || mos) {
6518         unallocated_encoding(s);
6519         return;
6520     }
6521 
6522     switch (type) {
6523     case 0:
6524         if (!fp_access_check(s)) {
6525             return;
6526         }
6527         handle_fp_2src_single(s, opcode, rd, rn, rm);
6528         break;
6529     case 1:
6530         if (!fp_access_check(s)) {
6531             return;
6532         }
6533         handle_fp_2src_double(s, opcode, rd, rn, rm);
6534         break;
6535     case 3:
6536         if (!dc_isar_feature(aa64_fp16, s)) {
6537             unallocated_encoding(s);
6538             return;
6539         }
6540         if (!fp_access_check(s)) {
6541             return;
6542         }
6543         handle_fp_2src_half(s, opcode, rd, rn, rm);
6544         break;
6545     default:
6546         unallocated_encoding(s);
6547     }
6548 }
6549 
6550 /* Floating-point data-processing (3 source) - single precision */
6551 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6552                                   int rd, int rn, int rm, int ra)
6553 {
6554     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6555     TCGv_i32 tcg_res = tcg_temp_new_i32();
6556     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6557 
6558     tcg_op1 = read_fp_sreg(s, rn);
6559     tcg_op2 = read_fp_sreg(s, rm);
6560     tcg_op3 = read_fp_sreg(s, ra);
6561 
6562     /* These are fused multiply-add, and must be done as one
6563      * floating point operation with no rounding between the
6564      * multiplication and addition steps.
6565      * NB that doing the negations here as separate steps is
6566      * correct : an input NaN should come out with its sign bit
6567      * flipped if it is a negated-input.
6568      */
6569     if (o1 == true) {
6570         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6571     }
6572 
6573     if (o0 != o1) {
6574         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6575     }
6576 
6577     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6578 
6579     write_fp_sreg(s, rd, tcg_res);
6580 }
6581 
6582 /* Floating-point data-processing (3 source) - double precision */
6583 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6584                                   int rd, int rn, int rm, int ra)
6585 {
6586     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6587     TCGv_i64 tcg_res = tcg_temp_new_i64();
6588     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6589 
6590     tcg_op1 = read_fp_dreg(s, rn);
6591     tcg_op2 = read_fp_dreg(s, rm);
6592     tcg_op3 = read_fp_dreg(s, ra);
6593 
6594     /* These are fused multiply-add, and must be done as one
6595      * floating point operation with no rounding between the
6596      * multiplication and addition steps.
6597      * NB that doing the negations here as separate steps is
6598      * correct : an input NaN should come out with its sign bit
6599      * flipped if it is a negated-input.
6600      */
6601     if (o1 == true) {
6602         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6603     }
6604 
6605     if (o0 != o1) {
6606         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6607     }
6608 
6609     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6610 
6611     write_fp_dreg(s, rd, tcg_res);
6612 }
6613 
6614 /* Floating-point data-processing (3 source) - half precision */
6615 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6616                                 int rd, int rn, int rm, int ra)
6617 {
6618     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6619     TCGv_i32 tcg_res = tcg_temp_new_i32();
6620     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6621 
6622     tcg_op1 = read_fp_hreg(s, rn);
6623     tcg_op2 = read_fp_hreg(s, rm);
6624     tcg_op3 = read_fp_hreg(s, ra);
6625 
6626     /* These are fused multiply-add, and must be done as one
6627      * floating point operation with no rounding between the
6628      * multiplication and addition steps.
6629      * NB that doing the negations here as separate steps is
6630      * correct : an input NaN should come out with its sign bit
6631      * flipped if it is a negated-input.
6632      */
6633     if (o1 == true) {
6634         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6635     }
6636 
6637     if (o0 != o1) {
6638         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6639     }
6640 
6641     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6642 
6643     write_fp_sreg(s, rd, tcg_res);
6644 }
6645 
6646 /* Floating point data-processing (3 source)
6647  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6648  * +---+---+---+-----------+------+----+------+----+------+------+------+
6649  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6650  * +---+---+---+-----------+------+----+------+----+------+------+------+
6651  */
6652 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6653 {
6654     int mos = extract32(insn, 29, 3);
6655     int type = extract32(insn, 22, 2);
6656     int rd = extract32(insn, 0, 5);
6657     int rn = extract32(insn, 5, 5);
6658     int ra = extract32(insn, 10, 5);
6659     int rm = extract32(insn, 16, 5);
6660     bool o0 = extract32(insn, 15, 1);
6661     bool o1 = extract32(insn, 21, 1);
6662 
6663     if (mos) {
6664         unallocated_encoding(s);
6665         return;
6666     }
6667 
6668     switch (type) {
6669     case 0:
6670         if (!fp_access_check(s)) {
6671             return;
6672         }
6673         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6674         break;
6675     case 1:
6676         if (!fp_access_check(s)) {
6677             return;
6678         }
6679         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6680         break;
6681     case 3:
6682         if (!dc_isar_feature(aa64_fp16, s)) {
6683             unallocated_encoding(s);
6684             return;
6685         }
6686         if (!fp_access_check(s)) {
6687             return;
6688         }
6689         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6690         break;
6691     default:
6692         unallocated_encoding(s);
6693     }
6694 }
6695 
6696 /* Floating point immediate
6697  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6698  * +---+---+---+-----------+------+---+------------+-------+------+------+
6699  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6700  * +---+---+---+-----------+------+---+------------+-------+------+------+
6701  */
6702 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6703 {
6704     int rd = extract32(insn, 0, 5);
6705     int imm5 = extract32(insn, 5, 5);
6706     int imm8 = extract32(insn, 13, 8);
6707     int type = extract32(insn, 22, 2);
6708     int mos = extract32(insn, 29, 3);
6709     uint64_t imm;
6710     MemOp sz;
6711 
6712     if (mos || imm5) {
6713         unallocated_encoding(s);
6714         return;
6715     }
6716 
6717     switch (type) {
6718     case 0:
6719         sz = MO_32;
6720         break;
6721     case 1:
6722         sz = MO_64;
6723         break;
6724     case 3:
6725         sz = MO_16;
6726         if (dc_isar_feature(aa64_fp16, s)) {
6727             break;
6728         }
6729         /* fallthru */
6730     default:
6731         unallocated_encoding(s);
6732         return;
6733     }
6734 
6735     if (!fp_access_check(s)) {
6736         return;
6737     }
6738 
6739     imm = vfp_expand_imm(sz, imm8);
6740     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6741 }
6742 
6743 /* Handle floating point <=> fixed point conversions. Note that we can
6744  * also deal with fp <=> integer conversions as a special case (scale == 64)
6745  * OPTME: consider handling that special case specially or at least skipping
6746  * the call to scalbn in the helpers for zero shifts.
6747  */
6748 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6749                            bool itof, int rmode, int scale, int sf, int type)
6750 {
6751     bool is_signed = !(opcode & 1);
6752     TCGv_ptr tcg_fpstatus;
6753     TCGv_i32 tcg_shift, tcg_single;
6754     TCGv_i64 tcg_double;
6755 
6756     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6757 
6758     tcg_shift = tcg_constant_i32(64 - scale);
6759 
6760     if (itof) {
6761         TCGv_i64 tcg_int = cpu_reg(s, rn);
6762         if (!sf) {
6763             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6764 
6765             if (is_signed) {
6766                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6767             } else {
6768                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6769             }
6770 
6771             tcg_int = tcg_extend;
6772         }
6773 
6774         switch (type) {
6775         case 1: /* float64 */
6776             tcg_double = tcg_temp_new_i64();
6777             if (is_signed) {
6778                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6779                                      tcg_shift, tcg_fpstatus);
6780             } else {
6781                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6782                                      tcg_shift, tcg_fpstatus);
6783             }
6784             write_fp_dreg(s, rd, tcg_double);
6785             break;
6786 
6787         case 0: /* float32 */
6788             tcg_single = tcg_temp_new_i32();
6789             if (is_signed) {
6790                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6791                                      tcg_shift, tcg_fpstatus);
6792             } else {
6793                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6794                                      tcg_shift, tcg_fpstatus);
6795             }
6796             write_fp_sreg(s, rd, tcg_single);
6797             break;
6798 
6799         case 3: /* float16 */
6800             tcg_single = tcg_temp_new_i32();
6801             if (is_signed) {
6802                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6803                                      tcg_shift, tcg_fpstatus);
6804             } else {
6805                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6806                                      tcg_shift, tcg_fpstatus);
6807             }
6808             write_fp_sreg(s, rd, tcg_single);
6809             break;
6810 
6811         default:
6812             g_assert_not_reached();
6813         }
6814     } else {
6815         TCGv_i64 tcg_int = cpu_reg(s, rd);
6816         TCGv_i32 tcg_rmode;
6817 
6818         if (extract32(opcode, 2, 1)) {
6819             /* There are too many rounding modes to all fit into rmode,
6820              * so FCVTA[US] is a special case.
6821              */
6822             rmode = FPROUNDING_TIEAWAY;
6823         }
6824 
6825         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6826 
6827         switch (type) {
6828         case 1: /* float64 */
6829             tcg_double = read_fp_dreg(s, rn);
6830             if (is_signed) {
6831                 if (!sf) {
6832                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6833                                          tcg_shift, tcg_fpstatus);
6834                 } else {
6835                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6836                                          tcg_shift, tcg_fpstatus);
6837                 }
6838             } else {
6839                 if (!sf) {
6840                     gen_helper_vfp_tould(tcg_int, tcg_double,
6841                                          tcg_shift, tcg_fpstatus);
6842                 } else {
6843                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6844                                          tcg_shift, tcg_fpstatus);
6845                 }
6846             }
6847             if (!sf) {
6848                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6849             }
6850             break;
6851 
6852         case 0: /* float32 */
6853             tcg_single = read_fp_sreg(s, rn);
6854             if (sf) {
6855                 if (is_signed) {
6856                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6857                                          tcg_shift, tcg_fpstatus);
6858                 } else {
6859                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6860                                          tcg_shift, tcg_fpstatus);
6861                 }
6862             } else {
6863                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6864                 if (is_signed) {
6865                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
6866                                          tcg_shift, tcg_fpstatus);
6867                 } else {
6868                     gen_helper_vfp_touls(tcg_dest, tcg_single,
6869                                          tcg_shift, tcg_fpstatus);
6870                 }
6871                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6872             }
6873             break;
6874 
6875         case 3: /* float16 */
6876             tcg_single = read_fp_sreg(s, rn);
6877             if (sf) {
6878                 if (is_signed) {
6879                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
6880                                          tcg_shift, tcg_fpstatus);
6881                 } else {
6882                     gen_helper_vfp_touqh(tcg_int, tcg_single,
6883                                          tcg_shift, tcg_fpstatus);
6884                 }
6885             } else {
6886                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6887                 if (is_signed) {
6888                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
6889                                          tcg_shift, tcg_fpstatus);
6890                 } else {
6891                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
6892                                          tcg_shift, tcg_fpstatus);
6893                 }
6894                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6895             }
6896             break;
6897 
6898         default:
6899             g_assert_not_reached();
6900         }
6901 
6902         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6903     }
6904 }
6905 
6906 /* Floating point <-> fixed point conversions
6907  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
6908  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6909  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
6910  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6911  */
6912 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6913 {
6914     int rd = extract32(insn, 0, 5);
6915     int rn = extract32(insn, 5, 5);
6916     int scale = extract32(insn, 10, 6);
6917     int opcode = extract32(insn, 16, 3);
6918     int rmode = extract32(insn, 19, 2);
6919     int type = extract32(insn, 22, 2);
6920     bool sbit = extract32(insn, 29, 1);
6921     bool sf = extract32(insn, 31, 1);
6922     bool itof;
6923 
6924     if (sbit || (!sf && scale < 32)) {
6925         unallocated_encoding(s);
6926         return;
6927     }
6928 
6929     switch (type) {
6930     case 0: /* float32 */
6931     case 1: /* float64 */
6932         break;
6933     case 3: /* float16 */
6934         if (dc_isar_feature(aa64_fp16, s)) {
6935             break;
6936         }
6937         /* fallthru */
6938     default:
6939         unallocated_encoding(s);
6940         return;
6941     }
6942 
6943     switch ((rmode << 3) | opcode) {
6944     case 0x2: /* SCVTF */
6945     case 0x3: /* UCVTF */
6946         itof = true;
6947         break;
6948     case 0x18: /* FCVTZS */
6949     case 0x19: /* FCVTZU */
6950         itof = false;
6951         break;
6952     default:
6953         unallocated_encoding(s);
6954         return;
6955     }
6956 
6957     if (!fp_access_check(s)) {
6958         return;
6959     }
6960 
6961     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6962 }
6963 
6964 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6965 {
6966     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6967      * without conversion.
6968      */
6969 
6970     if (itof) {
6971         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6972         TCGv_i64 tmp;
6973 
6974         switch (type) {
6975         case 0:
6976             /* 32 bit */
6977             tmp = tcg_temp_new_i64();
6978             tcg_gen_ext32u_i64(tmp, tcg_rn);
6979             write_fp_dreg(s, rd, tmp);
6980             break;
6981         case 1:
6982             /* 64 bit */
6983             write_fp_dreg(s, rd, tcg_rn);
6984             break;
6985         case 2:
6986             /* 64 bit to top half. */
6987             tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6988             clear_vec_high(s, true, rd);
6989             break;
6990         case 3:
6991             /* 16 bit */
6992             tmp = tcg_temp_new_i64();
6993             tcg_gen_ext16u_i64(tmp, tcg_rn);
6994             write_fp_dreg(s, rd, tmp);
6995             break;
6996         default:
6997             g_assert_not_reached();
6998         }
6999     } else {
7000         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7001 
7002         switch (type) {
7003         case 0:
7004             /* 32 bit */
7005             tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7006             break;
7007         case 1:
7008             /* 64 bit */
7009             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7010             break;
7011         case 2:
7012             /* 64 bits from top half */
7013             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7014             break;
7015         case 3:
7016             /* 16 bit */
7017             tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7018             break;
7019         default:
7020             g_assert_not_reached();
7021         }
7022     }
7023 }
7024 
7025 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7026 {
7027     TCGv_i64 t = read_fp_dreg(s, rn);
7028     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7029 
7030     gen_helper_fjcvtzs(t, t, fpstatus);
7031 
7032     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7033     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7034     tcg_gen_movi_i32(cpu_CF, 0);
7035     tcg_gen_movi_i32(cpu_NF, 0);
7036     tcg_gen_movi_i32(cpu_VF, 0);
7037 }
7038 
7039 /* Floating point <-> integer conversions
7040  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7041  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7042  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7043  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7044  */
7045 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7046 {
7047     int rd = extract32(insn, 0, 5);
7048     int rn = extract32(insn, 5, 5);
7049     int opcode = extract32(insn, 16, 3);
7050     int rmode = extract32(insn, 19, 2);
7051     int type = extract32(insn, 22, 2);
7052     bool sbit = extract32(insn, 29, 1);
7053     bool sf = extract32(insn, 31, 1);
7054     bool itof = false;
7055 
7056     if (sbit) {
7057         goto do_unallocated;
7058     }
7059 
7060     switch (opcode) {
7061     case 2: /* SCVTF */
7062     case 3: /* UCVTF */
7063         itof = true;
7064         /* fallthru */
7065     case 4: /* FCVTAS */
7066     case 5: /* FCVTAU */
7067         if (rmode != 0) {
7068             goto do_unallocated;
7069         }
7070         /* fallthru */
7071     case 0: /* FCVT[NPMZ]S */
7072     case 1: /* FCVT[NPMZ]U */
7073         switch (type) {
7074         case 0: /* float32 */
7075         case 1: /* float64 */
7076             break;
7077         case 3: /* float16 */
7078             if (!dc_isar_feature(aa64_fp16, s)) {
7079                 goto do_unallocated;
7080             }
7081             break;
7082         default:
7083             goto do_unallocated;
7084         }
7085         if (!fp_access_check(s)) {
7086             return;
7087         }
7088         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7089         break;
7090 
7091     default:
7092         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7093         case 0b01100110: /* FMOV half <-> 32-bit int */
7094         case 0b01100111:
7095         case 0b11100110: /* FMOV half <-> 64-bit int */
7096         case 0b11100111:
7097             if (!dc_isar_feature(aa64_fp16, s)) {
7098                 goto do_unallocated;
7099             }
7100             /* fallthru */
7101         case 0b00000110: /* FMOV 32-bit */
7102         case 0b00000111:
7103         case 0b10100110: /* FMOV 64-bit */
7104         case 0b10100111:
7105         case 0b11001110: /* FMOV top half of 128-bit */
7106         case 0b11001111:
7107             if (!fp_access_check(s)) {
7108                 return;
7109             }
7110             itof = opcode & 1;
7111             handle_fmov(s, rd, rn, type, itof);
7112             break;
7113 
7114         case 0b00111110: /* FJCVTZS */
7115             if (!dc_isar_feature(aa64_jscvt, s)) {
7116                 goto do_unallocated;
7117             } else if (fp_access_check(s)) {
7118                 handle_fjcvtzs(s, rd, rn);
7119             }
7120             break;
7121 
7122         default:
7123         do_unallocated:
7124             unallocated_encoding(s);
7125             return;
7126         }
7127         break;
7128     }
7129 }
7130 
7131 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7132  *   31  30  29 28     25 24                          0
7133  * +---+---+---+---------+-----------------------------+
7134  * |   | 0 |   | 1 1 1 1 |                             |
7135  * +---+---+---+---------+-----------------------------+
7136  */
7137 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7138 {
7139     if (extract32(insn, 24, 1)) {
7140         /* Floating point data-processing (3 source) */
7141         disas_fp_3src(s, insn);
7142     } else if (extract32(insn, 21, 1) == 0) {
7143         /* Floating point to fixed point conversions */
7144         disas_fp_fixed_conv(s, insn);
7145     } else {
7146         switch (extract32(insn, 10, 2)) {
7147         case 1:
7148             /* Floating point conditional compare */
7149             disas_fp_ccomp(s, insn);
7150             break;
7151         case 2:
7152             /* Floating point data-processing (2 source) */
7153             disas_fp_2src(s, insn);
7154             break;
7155         case 3:
7156             /* Floating point conditional select */
7157             disas_fp_csel(s, insn);
7158             break;
7159         case 0:
7160             switch (ctz32(extract32(insn, 12, 4))) {
7161             case 0: /* [15:12] == xxx1 */
7162                 /* Floating point immediate */
7163                 disas_fp_imm(s, insn);
7164                 break;
7165             case 1: /* [15:12] == xx10 */
7166                 /* Floating point compare */
7167                 disas_fp_compare(s, insn);
7168                 break;
7169             case 2: /* [15:12] == x100 */
7170                 /* Floating point data-processing (1 source) */
7171                 disas_fp_1src(s, insn);
7172                 break;
7173             case 3: /* [15:12] == 1000 */
7174                 unallocated_encoding(s);
7175                 break;
7176             default: /* [15:12] == 0000 */
7177                 /* Floating point <-> integer conversions */
7178                 disas_fp_int_conv(s, insn);
7179                 break;
7180             }
7181             break;
7182         }
7183     }
7184 }
7185 
7186 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7187                      int pos)
7188 {
7189     /* Extract 64 bits from the middle of two concatenated 64 bit
7190      * vector register slices left:right. The extracted bits start
7191      * at 'pos' bits into the right (least significant) side.
7192      * We return the result in tcg_right, and guarantee not to
7193      * trash tcg_left.
7194      */
7195     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7196     assert(pos > 0 && pos < 64);
7197 
7198     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7199     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7200     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7201 }
7202 
7203 /* EXT
7204  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7205  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7206  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7207  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7208  */
7209 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7210 {
7211     int is_q = extract32(insn, 30, 1);
7212     int op2 = extract32(insn, 22, 2);
7213     int imm4 = extract32(insn, 11, 4);
7214     int rm = extract32(insn, 16, 5);
7215     int rn = extract32(insn, 5, 5);
7216     int rd = extract32(insn, 0, 5);
7217     int pos = imm4 << 3;
7218     TCGv_i64 tcg_resl, tcg_resh;
7219 
7220     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7221         unallocated_encoding(s);
7222         return;
7223     }
7224 
7225     if (!fp_access_check(s)) {
7226         return;
7227     }
7228 
7229     tcg_resh = tcg_temp_new_i64();
7230     tcg_resl = tcg_temp_new_i64();
7231 
7232     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7233      * either extracting 128 bits from a 128:128 concatenation, or
7234      * extracting 64 bits from a 64:64 concatenation.
7235      */
7236     if (!is_q) {
7237         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7238         if (pos != 0) {
7239             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7240             do_ext64(s, tcg_resh, tcg_resl, pos);
7241         }
7242     } else {
7243         TCGv_i64 tcg_hh;
7244         typedef struct {
7245             int reg;
7246             int elt;
7247         } EltPosns;
7248         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7249         EltPosns *elt = eltposns;
7250 
7251         if (pos >= 64) {
7252             elt++;
7253             pos -= 64;
7254         }
7255 
7256         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7257         elt++;
7258         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7259         elt++;
7260         if (pos != 0) {
7261             do_ext64(s, tcg_resh, tcg_resl, pos);
7262             tcg_hh = tcg_temp_new_i64();
7263             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7264             do_ext64(s, tcg_hh, tcg_resh, pos);
7265         }
7266     }
7267 
7268     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7269     if (is_q) {
7270         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7271     }
7272     clear_vec_high(s, is_q, rd);
7273 }
7274 
7275 /* TBL/TBX
7276  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7277  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7278  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7279  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7280  */
7281 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7282 {
7283     int op2 = extract32(insn, 22, 2);
7284     int is_q = extract32(insn, 30, 1);
7285     int rm = extract32(insn, 16, 5);
7286     int rn = extract32(insn, 5, 5);
7287     int rd = extract32(insn, 0, 5);
7288     int is_tbx = extract32(insn, 12, 1);
7289     int len = (extract32(insn, 13, 2) + 1) * 16;
7290 
7291     if (op2 != 0) {
7292         unallocated_encoding(s);
7293         return;
7294     }
7295 
7296     if (!fp_access_check(s)) {
7297         return;
7298     }
7299 
7300     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7301                        vec_full_reg_offset(s, rm), cpu_env,
7302                        is_q ? 16 : 8, vec_full_reg_size(s),
7303                        (len << 6) | (is_tbx << 5) | rn,
7304                        gen_helper_simd_tblx);
7305 }
7306 
7307 /* ZIP/UZP/TRN
7308  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7309  * +---+---+-------------+------+---+------+---+------------------+------+
7310  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7311  * +---+---+-------------+------+---+------+---+------------------+------+
7312  */
7313 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7314 {
7315     int rd = extract32(insn, 0, 5);
7316     int rn = extract32(insn, 5, 5);
7317     int rm = extract32(insn, 16, 5);
7318     int size = extract32(insn, 22, 2);
7319     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7320      * bit 2 indicates 1 vs 2 variant of the insn.
7321      */
7322     int opcode = extract32(insn, 12, 2);
7323     bool part = extract32(insn, 14, 1);
7324     bool is_q = extract32(insn, 30, 1);
7325     int esize = 8 << size;
7326     int i;
7327     int datasize = is_q ? 128 : 64;
7328     int elements = datasize / esize;
7329     TCGv_i64 tcg_res[2], tcg_ele;
7330 
7331     if (opcode == 0 || (size == 3 && !is_q)) {
7332         unallocated_encoding(s);
7333         return;
7334     }
7335 
7336     if (!fp_access_check(s)) {
7337         return;
7338     }
7339 
7340     tcg_res[0] = tcg_temp_new_i64();
7341     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7342     tcg_ele = tcg_temp_new_i64();
7343 
7344     for (i = 0; i < elements; i++) {
7345         int o, w;
7346 
7347         switch (opcode) {
7348         case 1: /* UZP1/2 */
7349         {
7350             int midpoint = elements / 2;
7351             if (i < midpoint) {
7352                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7353             } else {
7354                 read_vec_element(s, tcg_ele, rm,
7355                                  2 * (i - midpoint) + part, size);
7356             }
7357             break;
7358         }
7359         case 2: /* TRN1/2 */
7360             if (i & 1) {
7361                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7362             } else {
7363                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7364             }
7365             break;
7366         case 3: /* ZIP1/2 */
7367         {
7368             int base = part * elements / 2;
7369             if (i & 1) {
7370                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7371             } else {
7372                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7373             }
7374             break;
7375         }
7376         default:
7377             g_assert_not_reached();
7378         }
7379 
7380         w = (i * esize) / 64;
7381         o = (i * esize) % 64;
7382         if (o == 0) {
7383             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7384         } else {
7385             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7386             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7387         }
7388     }
7389 
7390     for (i = 0; i <= is_q; ++i) {
7391         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7392     }
7393     clear_vec_high(s, is_q, rd);
7394 }
7395 
7396 /*
7397  * do_reduction_op helper
7398  *
7399  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7400  * important for correct NaN propagation that we do these
7401  * operations in exactly the order specified by the pseudocode.
7402  *
7403  * This is a recursive function, TCG temps should be freed by the
7404  * calling function once it is done with the values.
7405  */
7406 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7407                                 int esize, int size, int vmap, TCGv_ptr fpst)
7408 {
7409     if (esize == size) {
7410         int element;
7411         MemOp msize = esize == 16 ? MO_16 : MO_32;
7412         TCGv_i32 tcg_elem;
7413 
7414         /* We should have one register left here */
7415         assert(ctpop8(vmap) == 1);
7416         element = ctz32(vmap);
7417         assert(element < 8);
7418 
7419         tcg_elem = tcg_temp_new_i32();
7420         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7421         return tcg_elem;
7422     } else {
7423         int bits = size / 2;
7424         int shift = ctpop8(vmap) / 2;
7425         int vmap_lo = (vmap >> shift) & vmap;
7426         int vmap_hi = (vmap & ~vmap_lo);
7427         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7428 
7429         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7430         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7431         tcg_res = tcg_temp_new_i32();
7432 
7433         switch (fpopcode) {
7434         case 0x0c: /* fmaxnmv half-precision */
7435             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7436             break;
7437         case 0x0f: /* fmaxv half-precision */
7438             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7439             break;
7440         case 0x1c: /* fminnmv half-precision */
7441             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7442             break;
7443         case 0x1f: /* fminv half-precision */
7444             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7445             break;
7446         case 0x2c: /* fmaxnmv */
7447             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7448             break;
7449         case 0x2f: /* fmaxv */
7450             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7451             break;
7452         case 0x3c: /* fminnmv */
7453             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7454             break;
7455         case 0x3f: /* fminv */
7456             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7457             break;
7458         default:
7459             g_assert_not_reached();
7460         }
7461         return tcg_res;
7462     }
7463 }
7464 
7465 /* AdvSIMD across lanes
7466  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7467  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7468  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7469  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7470  */
7471 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7472 {
7473     int rd = extract32(insn, 0, 5);
7474     int rn = extract32(insn, 5, 5);
7475     int size = extract32(insn, 22, 2);
7476     int opcode = extract32(insn, 12, 5);
7477     bool is_q = extract32(insn, 30, 1);
7478     bool is_u = extract32(insn, 29, 1);
7479     bool is_fp = false;
7480     bool is_min = false;
7481     int esize;
7482     int elements;
7483     int i;
7484     TCGv_i64 tcg_res, tcg_elt;
7485 
7486     switch (opcode) {
7487     case 0x1b: /* ADDV */
7488         if (is_u) {
7489             unallocated_encoding(s);
7490             return;
7491         }
7492         /* fall through */
7493     case 0x3: /* SADDLV, UADDLV */
7494     case 0xa: /* SMAXV, UMAXV */
7495     case 0x1a: /* SMINV, UMINV */
7496         if (size == 3 || (size == 2 && !is_q)) {
7497             unallocated_encoding(s);
7498             return;
7499         }
7500         break;
7501     case 0xc: /* FMAXNMV, FMINNMV */
7502     case 0xf: /* FMAXV, FMINV */
7503         /* Bit 1 of size field encodes min vs max and the actual size
7504          * depends on the encoding of the U bit. If not set (and FP16
7505          * enabled) then we do half-precision float instead of single
7506          * precision.
7507          */
7508         is_min = extract32(size, 1, 1);
7509         is_fp = true;
7510         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7511             size = 1;
7512         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7513             unallocated_encoding(s);
7514             return;
7515         } else {
7516             size = 2;
7517         }
7518         break;
7519     default:
7520         unallocated_encoding(s);
7521         return;
7522     }
7523 
7524     if (!fp_access_check(s)) {
7525         return;
7526     }
7527 
7528     esize = 8 << size;
7529     elements = (is_q ? 128 : 64) / esize;
7530 
7531     tcg_res = tcg_temp_new_i64();
7532     tcg_elt = tcg_temp_new_i64();
7533 
7534     /* These instructions operate across all lanes of a vector
7535      * to produce a single result. We can guarantee that a 64
7536      * bit intermediate is sufficient:
7537      *  + for [US]ADDLV the maximum element size is 32 bits, and
7538      *    the result type is 64 bits
7539      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7540      *    same as the element size, which is 32 bits at most
7541      * For the integer operations we can choose to work at 64
7542      * or 32 bits and truncate at the end; for simplicity
7543      * we use 64 bits always. The floating point
7544      * ops do require 32 bit intermediates, though.
7545      */
7546     if (!is_fp) {
7547         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7548 
7549         for (i = 1; i < elements; i++) {
7550             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7551 
7552             switch (opcode) {
7553             case 0x03: /* SADDLV / UADDLV */
7554             case 0x1b: /* ADDV */
7555                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7556                 break;
7557             case 0x0a: /* SMAXV / UMAXV */
7558                 if (is_u) {
7559                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7560                 } else {
7561                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7562                 }
7563                 break;
7564             case 0x1a: /* SMINV / UMINV */
7565                 if (is_u) {
7566                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7567                 } else {
7568                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7569                 }
7570                 break;
7571             default:
7572                 g_assert_not_reached();
7573             }
7574 
7575         }
7576     } else {
7577         /* Floating point vector reduction ops which work across 32
7578          * bit (single) or 16 bit (half-precision) intermediates.
7579          * Note that correct NaN propagation requires that we do these
7580          * operations in exactly the order specified by the pseudocode.
7581          */
7582         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7583         int fpopcode = opcode | is_min << 4 | is_u << 5;
7584         int vmap = (1 << elements) - 1;
7585         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7586                                              (is_q ? 128 : 64), vmap, fpst);
7587         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7588     }
7589 
7590     /* Now truncate the result to the width required for the final output */
7591     if (opcode == 0x03) {
7592         /* SADDLV, UADDLV: result is 2*esize */
7593         size++;
7594     }
7595 
7596     switch (size) {
7597     case 0:
7598         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7599         break;
7600     case 1:
7601         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7602         break;
7603     case 2:
7604         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7605         break;
7606     case 3:
7607         break;
7608     default:
7609         g_assert_not_reached();
7610     }
7611 
7612     write_fp_dreg(s, rd, tcg_res);
7613 }
7614 
7615 /* DUP (Element, Vector)
7616  *
7617  *  31  30   29              21 20    16 15        10  9    5 4    0
7618  * +---+---+-------------------+--------+-------------+------+------+
7619  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7620  * +---+---+-------------------+--------+-------------+------+------+
7621  *
7622  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7623  */
7624 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7625                              int imm5)
7626 {
7627     int size = ctz32(imm5);
7628     int index;
7629 
7630     if (size > 3 || (size == 3 && !is_q)) {
7631         unallocated_encoding(s);
7632         return;
7633     }
7634 
7635     if (!fp_access_check(s)) {
7636         return;
7637     }
7638 
7639     index = imm5 >> (size + 1);
7640     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7641                          vec_reg_offset(s, rn, index, size),
7642                          is_q ? 16 : 8, vec_full_reg_size(s));
7643 }
7644 
7645 /* DUP (element, scalar)
7646  *  31                   21 20    16 15        10  9    5 4    0
7647  * +-----------------------+--------+-------------+------+------+
7648  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7649  * +-----------------------+--------+-------------+------+------+
7650  */
7651 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7652                               int imm5)
7653 {
7654     int size = ctz32(imm5);
7655     int index;
7656     TCGv_i64 tmp;
7657 
7658     if (size > 3) {
7659         unallocated_encoding(s);
7660         return;
7661     }
7662 
7663     if (!fp_access_check(s)) {
7664         return;
7665     }
7666 
7667     index = imm5 >> (size + 1);
7668 
7669     /* This instruction just extracts the specified element and
7670      * zero-extends it into the bottom of the destination register.
7671      */
7672     tmp = tcg_temp_new_i64();
7673     read_vec_element(s, tmp, rn, index, size);
7674     write_fp_dreg(s, rd, tmp);
7675 }
7676 
7677 /* DUP (General)
7678  *
7679  *  31  30   29              21 20    16 15        10  9    5 4    0
7680  * +---+---+-------------------+--------+-------------+------+------+
7681  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7682  * +---+---+-------------------+--------+-------------+------+------+
7683  *
7684  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7685  */
7686 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7687                              int imm5)
7688 {
7689     int size = ctz32(imm5);
7690     uint32_t dofs, oprsz, maxsz;
7691 
7692     if (size > 3 || ((size == 3) && !is_q)) {
7693         unallocated_encoding(s);
7694         return;
7695     }
7696 
7697     if (!fp_access_check(s)) {
7698         return;
7699     }
7700 
7701     dofs = vec_full_reg_offset(s, rd);
7702     oprsz = is_q ? 16 : 8;
7703     maxsz = vec_full_reg_size(s);
7704 
7705     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7706 }
7707 
7708 /* INS (Element)
7709  *
7710  *  31                   21 20    16 15  14    11  10 9    5 4    0
7711  * +-----------------------+--------+------------+---+------+------+
7712  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7713  * +-----------------------+--------+------------+---+------+------+
7714  *
7715  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7716  * index: encoded in imm5<4:size+1>
7717  */
7718 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7719                              int imm4, int imm5)
7720 {
7721     int size = ctz32(imm5);
7722     int src_index, dst_index;
7723     TCGv_i64 tmp;
7724 
7725     if (size > 3) {
7726         unallocated_encoding(s);
7727         return;
7728     }
7729 
7730     if (!fp_access_check(s)) {
7731         return;
7732     }
7733 
7734     dst_index = extract32(imm5, 1+size, 5);
7735     src_index = extract32(imm4, size, 4);
7736 
7737     tmp = tcg_temp_new_i64();
7738 
7739     read_vec_element(s, tmp, rn, src_index, size);
7740     write_vec_element(s, tmp, rd, dst_index, size);
7741 
7742     /* INS is considered a 128-bit write for SVE. */
7743     clear_vec_high(s, true, rd);
7744 }
7745 
7746 
7747 /* INS (General)
7748  *
7749  *  31                   21 20    16 15        10  9    5 4    0
7750  * +-----------------------+--------+-------------+------+------+
7751  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7752  * +-----------------------+--------+-------------+------+------+
7753  *
7754  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7755  * index: encoded in imm5<4:size+1>
7756  */
7757 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7758 {
7759     int size = ctz32(imm5);
7760     int idx;
7761 
7762     if (size > 3) {
7763         unallocated_encoding(s);
7764         return;
7765     }
7766 
7767     if (!fp_access_check(s)) {
7768         return;
7769     }
7770 
7771     idx = extract32(imm5, 1 + size, 4 - size);
7772     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7773 
7774     /* INS is considered a 128-bit write for SVE. */
7775     clear_vec_high(s, true, rd);
7776 }
7777 
7778 /*
7779  * UMOV (General)
7780  * SMOV (General)
7781  *
7782  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7783  * +---+---+-------------------+--------+-------------+------+------+
7784  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7785  * +---+---+-------------------+--------+-------------+------+------+
7786  *
7787  * U: unsigned when set
7788  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7789  */
7790 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7791                                   int rn, int rd, int imm5)
7792 {
7793     int size = ctz32(imm5);
7794     int element;
7795     TCGv_i64 tcg_rd;
7796 
7797     /* Check for UnallocatedEncodings */
7798     if (is_signed) {
7799         if (size > 2 || (size == 2 && !is_q)) {
7800             unallocated_encoding(s);
7801             return;
7802         }
7803     } else {
7804         if (size > 3
7805             || (size < 3 && is_q)
7806             || (size == 3 && !is_q)) {
7807             unallocated_encoding(s);
7808             return;
7809         }
7810     }
7811 
7812     if (!fp_access_check(s)) {
7813         return;
7814     }
7815 
7816     element = extract32(imm5, 1+size, 4);
7817 
7818     tcg_rd = cpu_reg(s, rd);
7819     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7820     if (is_signed && !is_q) {
7821         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7822     }
7823 }
7824 
7825 /* AdvSIMD copy
7826  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7827  * +---+---+----+-----------------+------+---+------+---+------+------+
7828  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7829  * +---+---+----+-----------------+------+---+------+---+------+------+
7830  */
7831 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7832 {
7833     int rd = extract32(insn, 0, 5);
7834     int rn = extract32(insn, 5, 5);
7835     int imm4 = extract32(insn, 11, 4);
7836     int op = extract32(insn, 29, 1);
7837     int is_q = extract32(insn, 30, 1);
7838     int imm5 = extract32(insn, 16, 5);
7839 
7840     if (op) {
7841         if (is_q) {
7842             /* INS (element) */
7843             handle_simd_inse(s, rd, rn, imm4, imm5);
7844         } else {
7845             unallocated_encoding(s);
7846         }
7847     } else {
7848         switch (imm4) {
7849         case 0:
7850             /* DUP (element - vector) */
7851             handle_simd_dupe(s, is_q, rd, rn, imm5);
7852             break;
7853         case 1:
7854             /* DUP (general) */
7855             handle_simd_dupg(s, is_q, rd, rn, imm5);
7856             break;
7857         case 3:
7858             if (is_q) {
7859                 /* INS (general) */
7860                 handle_simd_insg(s, rd, rn, imm5);
7861             } else {
7862                 unallocated_encoding(s);
7863             }
7864             break;
7865         case 5:
7866         case 7:
7867             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7868             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7869             break;
7870         default:
7871             unallocated_encoding(s);
7872             break;
7873         }
7874     }
7875 }
7876 
7877 /* AdvSIMD modified immediate
7878  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7879  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7880  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7881  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7882  *
7883  * There are a number of operations that can be carried out here:
7884  *   MOVI - move (shifted) imm into register
7885  *   MVNI - move inverted (shifted) imm into register
7886  *   ORR  - bitwise OR of (shifted) imm with register
7887  *   BIC  - bitwise clear of (shifted) imm with register
7888  * With ARMv8.2 we also have:
7889  *   FMOV half-precision
7890  */
7891 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7892 {
7893     int rd = extract32(insn, 0, 5);
7894     int cmode = extract32(insn, 12, 4);
7895     int o2 = extract32(insn, 11, 1);
7896     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7897     bool is_neg = extract32(insn, 29, 1);
7898     bool is_q = extract32(insn, 30, 1);
7899     uint64_t imm = 0;
7900 
7901     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7902         /* Check for FMOV (vector, immediate) - half-precision */
7903         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7904             unallocated_encoding(s);
7905             return;
7906         }
7907     }
7908 
7909     if (!fp_access_check(s)) {
7910         return;
7911     }
7912 
7913     if (cmode == 15 && o2 && !is_neg) {
7914         /* FMOV (vector, immediate) - half-precision */
7915         imm = vfp_expand_imm(MO_16, abcdefgh);
7916         /* now duplicate across the lanes */
7917         imm = dup_const(MO_16, imm);
7918     } else {
7919         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7920     }
7921 
7922     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7923         /* MOVI or MVNI, with MVNI negation handled above.  */
7924         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7925                              vec_full_reg_size(s), imm);
7926     } else {
7927         /* ORR or BIC, with BIC negation to AND handled above.  */
7928         if (is_neg) {
7929             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7930         } else {
7931             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7932         }
7933     }
7934 }
7935 
7936 /* AdvSIMD scalar copy
7937  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
7938  * +-----+----+-----------------+------+---+------+---+------+------+
7939  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7940  * +-----+----+-----------------+------+---+------+---+------+------+
7941  */
7942 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7943 {
7944     int rd = extract32(insn, 0, 5);
7945     int rn = extract32(insn, 5, 5);
7946     int imm4 = extract32(insn, 11, 4);
7947     int imm5 = extract32(insn, 16, 5);
7948     int op = extract32(insn, 29, 1);
7949 
7950     if (op != 0 || imm4 != 0) {
7951         unallocated_encoding(s);
7952         return;
7953     }
7954 
7955     /* DUP (element, scalar) */
7956     handle_simd_dupes(s, rd, rn, imm5);
7957 }
7958 
7959 /* AdvSIMD scalar pairwise
7960  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7961  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7962  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7963  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7964  */
7965 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7966 {
7967     int u = extract32(insn, 29, 1);
7968     int size = extract32(insn, 22, 2);
7969     int opcode = extract32(insn, 12, 5);
7970     int rn = extract32(insn, 5, 5);
7971     int rd = extract32(insn, 0, 5);
7972     TCGv_ptr fpst;
7973 
7974     /* For some ops (the FP ones), size[1] is part of the encoding.
7975      * For ADDP strictly it is not but size[1] is always 1 for valid
7976      * encodings.
7977      */
7978     opcode |= (extract32(size, 1, 1) << 5);
7979 
7980     switch (opcode) {
7981     case 0x3b: /* ADDP */
7982         if (u || size != 3) {
7983             unallocated_encoding(s);
7984             return;
7985         }
7986         if (!fp_access_check(s)) {
7987             return;
7988         }
7989 
7990         fpst = NULL;
7991         break;
7992     case 0xc: /* FMAXNMP */
7993     case 0xd: /* FADDP */
7994     case 0xf: /* FMAXP */
7995     case 0x2c: /* FMINNMP */
7996     case 0x2f: /* FMINP */
7997         /* FP op, size[0] is 32 or 64 bit*/
7998         if (!u) {
7999             if (!dc_isar_feature(aa64_fp16, s)) {
8000                 unallocated_encoding(s);
8001                 return;
8002             } else {
8003                 size = MO_16;
8004             }
8005         } else {
8006             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8007         }
8008 
8009         if (!fp_access_check(s)) {
8010             return;
8011         }
8012 
8013         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8014         break;
8015     default:
8016         unallocated_encoding(s);
8017         return;
8018     }
8019 
8020     if (size == MO_64) {
8021         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8022         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8023         TCGv_i64 tcg_res = tcg_temp_new_i64();
8024 
8025         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8026         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8027 
8028         switch (opcode) {
8029         case 0x3b: /* ADDP */
8030             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8031             break;
8032         case 0xc: /* FMAXNMP */
8033             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8034             break;
8035         case 0xd: /* FADDP */
8036             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8037             break;
8038         case 0xf: /* FMAXP */
8039             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8040             break;
8041         case 0x2c: /* FMINNMP */
8042             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8043             break;
8044         case 0x2f: /* FMINP */
8045             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8046             break;
8047         default:
8048             g_assert_not_reached();
8049         }
8050 
8051         write_fp_dreg(s, rd, tcg_res);
8052     } else {
8053         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8054         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8055         TCGv_i32 tcg_res = tcg_temp_new_i32();
8056 
8057         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8058         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8059 
8060         if (size == MO_16) {
8061             switch (opcode) {
8062             case 0xc: /* FMAXNMP */
8063                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8064                 break;
8065             case 0xd: /* FADDP */
8066                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8067                 break;
8068             case 0xf: /* FMAXP */
8069                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8070                 break;
8071             case 0x2c: /* FMINNMP */
8072                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8073                 break;
8074             case 0x2f: /* FMINP */
8075                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8076                 break;
8077             default:
8078                 g_assert_not_reached();
8079             }
8080         } else {
8081             switch (opcode) {
8082             case 0xc: /* FMAXNMP */
8083                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8084                 break;
8085             case 0xd: /* FADDP */
8086                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8087                 break;
8088             case 0xf: /* FMAXP */
8089                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8090                 break;
8091             case 0x2c: /* FMINNMP */
8092                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8093                 break;
8094             case 0x2f: /* FMINP */
8095                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8096                 break;
8097             default:
8098                 g_assert_not_reached();
8099             }
8100         }
8101 
8102         write_fp_sreg(s, rd, tcg_res);
8103     }
8104 }
8105 
8106 /*
8107  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8108  *
8109  * This code is handles the common shifting code and is used by both
8110  * the vector and scalar code.
8111  */
8112 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8113                                     TCGv_i64 tcg_rnd, bool accumulate,
8114                                     bool is_u, int size, int shift)
8115 {
8116     bool extended_result = false;
8117     bool round = tcg_rnd != NULL;
8118     int ext_lshift = 0;
8119     TCGv_i64 tcg_src_hi;
8120 
8121     if (round && size == 3) {
8122         extended_result = true;
8123         ext_lshift = 64 - shift;
8124         tcg_src_hi = tcg_temp_new_i64();
8125     } else if (shift == 64) {
8126         if (!accumulate && is_u) {
8127             /* result is zero */
8128             tcg_gen_movi_i64(tcg_res, 0);
8129             return;
8130         }
8131     }
8132 
8133     /* Deal with the rounding step */
8134     if (round) {
8135         if (extended_result) {
8136             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8137             if (!is_u) {
8138                 /* take care of sign extending tcg_res */
8139                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8140                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8141                                  tcg_src, tcg_src_hi,
8142                                  tcg_rnd, tcg_zero);
8143             } else {
8144                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8145                                  tcg_src, tcg_zero,
8146                                  tcg_rnd, tcg_zero);
8147             }
8148         } else {
8149             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8150         }
8151     }
8152 
8153     /* Now do the shift right */
8154     if (round && extended_result) {
8155         /* extended case, >64 bit precision required */
8156         if (ext_lshift == 0) {
8157             /* special case, only high bits matter */
8158             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8159         } else {
8160             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8161             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8162             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8163         }
8164     } else {
8165         if (is_u) {
8166             if (shift == 64) {
8167                 /* essentially shifting in 64 zeros */
8168                 tcg_gen_movi_i64(tcg_src, 0);
8169             } else {
8170                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8171             }
8172         } else {
8173             if (shift == 64) {
8174                 /* effectively extending the sign-bit */
8175                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8176             } else {
8177                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8178             }
8179         }
8180     }
8181 
8182     if (accumulate) {
8183         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8184     } else {
8185         tcg_gen_mov_i64(tcg_res, tcg_src);
8186     }
8187 }
8188 
8189 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8190 static void handle_scalar_simd_shri(DisasContext *s,
8191                                     bool is_u, int immh, int immb,
8192                                     int opcode, int rn, int rd)
8193 {
8194     const int size = 3;
8195     int immhb = immh << 3 | immb;
8196     int shift = 2 * (8 << size) - immhb;
8197     bool accumulate = false;
8198     bool round = false;
8199     bool insert = false;
8200     TCGv_i64 tcg_rn;
8201     TCGv_i64 tcg_rd;
8202     TCGv_i64 tcg_round;
8203 
8204     if (!extract32(immh, 3, 1)) {
8205         unallocated_encoding(s);
8206         return;
8207     }
8208 
8209     if (!fp_access_check(s)) {
8210         return;
8211     }
8212 
8213     switch (opcode) {
8214     case 0x02: /* SSRA / USRA (accumulate) */
8215         accumulate = true;
8216         break;
8217     case 0x04: /* SRSHR / URSHR (rounding) */
8218         round = true;
8219         break;
8220     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8221         accumulate = round = true;
8222         break;
8223     case 0x08: /* SRI */
8224         insert = true;
8225         break;
8226     }
8227 
8228     if (round) {
8229         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8230     } else {
8231         tcg_round = NULL;
8232     }
8233 
8234     tcg_rn = read_fp_dreg(s, rn);
8235     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8236 
8237     if (insert) {
8238         /* shift count same as element size is valid but does nothing;
8239          * special case to avoid potential shift by 64.
8240          */
8241         int esize = 8 << size;
8242         if (shift != esize) {
8243             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8244             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8245         }
8246     } else {
8247         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8248                                 accumulate, is_u, size, shift);
8249     }
8250 
8251     write_fp_dreg(s, rd, tcg_rd);
8252 }
8253 
8254 /* SHL/SLI - Scalar shift left */
8255 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8256                                     int immh, int immb, int opcode,
8257                                     int rn, int rd)
8258 {
8259     int size = 32 - clz32(immh) - 1;
8260     int immhb = immh << 3 | immb;
8261     int shift = immhb - (8 << size);
8262     TCGv_i64 tcg_rn;
8263     TCGv_i64 tcg_rd;
8264 
8265     if (!extract32(immh, 3, 1)) {
8266         unallocated_encoding(s);
8267         return;
8268     }
8269 
8270     if (!fp_access_check(s)) {
8271         return;
8272     }
8273 
8274     tcg_rn = read_fp_dreg(s, rn);
8275     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8276 
8277     if (insert) {
8278         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8279     } else {
8280         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8281     }
8282 
8283     write_fp_dreg(s, rd, tcg_rd);
8284 }
8285 
8286 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8287  * (signed/unsigned) narrowing */
8288 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8289                                    bool is_u_shift, bool is_u_narrow,
8290                                    int immh, int immb, int opcode,
8291                                    int rn, int rd)
8292 {
8293     int immhb = immh << 3 | immb;
8294     int size = 32 - clz32(immh) - 1;
8295     int esize = 8 << size;
8296     int shift = (2 * esize) - immhb;
8297     int elements = is_scalar ? 1 : (64 / esize);
8298     bool round = extract32(opcode, 0, 1);
8299     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8300     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8301     TCGv_i32 tcg_rd_narrowed;
8302     TCGv_i64 tcg_final;
8303 
8304     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8305         { gen_helper_neon_narrow_sat_s8,
8306           gen_helper_neon_unarrow_sat8 },
8307         { gen_helper_neon_narrow_sat_s16,
8308           gen_helper_neon_unarrow_sat16 },
8309         { gen_helper_neon_narrow_sat_s32,
8310           gen_helper_neon_unarrow_sat32 },
8311         { NULL, NULL },
8312     };
8313     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8314         gen_helper_neon_narrow_sat_u8,
8315         gen_helper_neon_narrow_sat_u16,
8316         gen_helper_neon_narrow_sat_u32,
8317         NULL
8318     };
8319     NeonGenNarrowEnvFn *narrowfn;
8320 
8321     int i;
8322 
8323     assert(size < 4);
8324 
8325     if (extract32(immh, 3, 1)) {
8326         unallocated_encoding(s);
8327         return;
8328     }
8329 
8330     if (!fp_access_check(s)) {
8331         return;
8332     }
8333 
8334     if (is_u_shift) {
8335         narrowfn = unsigned_narrow_fns[size];
8336     } else {
8337         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8338     }
8339 
8340     tcg_rn = tcg_temp_new_i64();
8341     tcg_rd = tcg_temp_new_i64();
8342     tcg_rd_narrowed = tcg_temp_new_i32();
8343     tcg_final = tcg_temp_new_i64();
8344 
8345     if (round) {
8346         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8347     } else {
8348         tcg_round = NULL;
8349     }
8350 
8351     for (i = 0; i < elements; i++) {
8352         read_vec_element(s, tcg_rn, rn, i, ldop);
8353         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8354                                 false, is_u_shift, size+1, shift);
8355         narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8356         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8357         if (i == 0) {
8358             tcg_gen_mov_i64(tcg_final, tcg_rd);
8359         } else {
8360             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8361         }
8362     }
8363 
8364     if (!is_q) {
8365         write_vec_element(s, tcg_final, rd, 0, MO_64);
8366     } else {
8367         write_vec_element(s, tcg_final, rd, 1, MO_64);
8368     }
8369     clear_vec_high(s, is_q, rd);
8370 }
8371 
8372 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8373 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8374                              bool src_unsigned, bool dst_unsigned,
8375                              int immh, int immb, int rn, int rd)
8376 {
8377     int immhb = immh << 3 | immb;
8378     int size = 32 - clz32(immh) - 1;
8379     int shift = immhb - (8 << size);
8380     int pass;
8381 
8382     assert(immh != 0);
8383     assert(!(scalar && is_q));
8384 
8385     if (!scalar) {
8386         if (!is_q && extract32(immh, 3, 1)) {
8387             unallocated_encoding(s);
8388             return;
8389         }
8390 
8391         /* Since we use the variable-shift helpers we must
8392          * replicate the shift count into each element of
8393          * the tcg_shift value.
8394          */
8395         switch (size) {
8396         case 0:
8397             shift |= shift << 8;
8398             /* fall through */
8399         case 1:
8400             shift |= shift << 16;
8401             break;
8402         case 2:
8403         case 3:
8404             break;
8405         default:
8406             g_assert_not_reached();
8407         }
8408     }
8409 
8410     if (!fp_access_check(s)) {
8411         return;
8412     }
8413 
8414     if (size == 3) {
8415         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8416         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8417             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8418             { NULL, gen_helper_neon_qshl_u64 },
8419         };
8420         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8421         int maxpass = is_q ? 2 : 1;
8422 
8423         for (pass = 0; pass < maxpass; pass++) {
8424             TCGv_i64 tcg_op = tcg_temp_new_i64();
8425 
8426             read_vec_element(s, tcg_op, rn, pass, MO_64);
8427             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8428             write_vec_element(s, tcg_op, rd, pass, MO_64);
8429         }
8430         clear_vec_high(s, is_q, rd);
8431     } else {
8432         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8433         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8434             {
8435                 { gen_helper_neon_qshl_s8,
8436                   gen_helper_neon_qshl_s16,
8437                   gen_helper_neon_qshl_s32 },
8438                 { gen_helper_neon_qshlu_s8,
8439                   gen_helper_neon_qshlu_s16,
8440                   gen_helper_neon_qshlu_s32 }
8441             }, {
8442                 { NULL, NULL, NULL },
8443                 { gen_helper_neon_qshl_u8,
8444                   gen_helper_neon_qshl_u16,
8445                   gen_helper_neon_qshl_u32 }
8446             }
8447         };
8448         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8449         MemOp memop = scalar ? size : MO_32;
8450         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8451 
8452         for (pass = 0; pass < maxpass; pass++) {
8453             TCGv_i32 tcg_op = tcg_temp_new_i32();
8454 
8455             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8456             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8457             if (scalar) {
8458                 switch (size) {
8459                 case 0:
8460                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8461                     break;
8462                 case 1:
8463                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8464                     break;
8465                 case 2:
8466                     break;
8467                 default:
8468                     g_assert_not_reached();
8469                 }
8470                 write_fp_sreg(s, rd, tcg_op);
8471             } else {
8472                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8473             }
8474         }
8475 
8476         if (!scalar) {
8477             clear_vec_high(s, is_q, rd);
8478         }
8479     }
8480 }
8481 
8482 /* Common vector code for handling integer to FP conversion */
8483 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8484                                    int elements, int is_signed,
8485                                    int fracbits, int size)
8486 {
8487     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8488     TCGv_i32 tcg_shift = NULL;
8489 
8490     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8491     int pass;
8492 
8493     if (fracbits || size == MO_64) {
8494         tcg_shift = tcg_constant_i32(fracbits);
8495     }
8496 
8497     if (size == MO_64) {
8498         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8499         TCGv_i64 tcg_double = tcg_temp_new_i64();
8500 
8501         for (pass = 0; pass < elements; pass++) {
8502             read_vec_element(s, tcg_int64, rn, pass, mop);
8503 
8504             if (is_signed) {
8505                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8506                                      tcg_shift, tcg_fpst);
8507             } else {
8508                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8509                                      tcg_shift, tcg_fpst);
8510             }
8511             if (elements == 1) {
8512                 write_fp_dreg(s, rd, tcg_double);
8513             } else {
8514                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8515             }
8516         }
8517     } else {
8518         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8519         TCGv_i32 tcg_float = tcg_temp_new_i32();
8520 
8521         for (pass = 0; pass < elements; pass++) {
8522             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8523 
8524             switch (size) {
8525             case MO_32:
8526                 if (fracbits) {
8527                     if (is_signed) {
8528                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8529                                              tcg_shift, tcg_fpst);
8530                     } else {
8531                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8532                                              tcg_shift, tcg_fpst);
8533                     }
8534                 } else {
8535                     if (is_signed) {
8536                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8537                     } else {
8538                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8539                     }
8540                 }
8541                 break;
8542             case MO_16:
8543                 if (fracbits) {
8544                     if (is_signed) {
8545                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8546                                              tcg_shift, tcg_fpst);
8547                     } else {
8548                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8549                                              tcg_shift, tcg_fpst);
8550                     }
8551                 } else {
8552                     if (is_signed) {
8553                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8554                     } else {
8555                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8556                     }
8557                 }
8558                 break;
8559             default:
8560                 g_assert_not_reached();
8561             }
8562 
8563             if (elements == 1) {
8564                 write_fp_sreg(s, rd, tcg_float);
8565             } else {
8566                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8567             }
8568         }
8569     }
8570 
8571     clear_vec_high(s, elements << size == 16, rd);
8572 }
8573 
8574 /* UCVTF/SCVTF - Integer to FP conversion */
8575 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8576                                          bool is_q, bool is_u,
8577                                          int immh, int immb, int opcode,
8578                                          int rn, int rd)
8579 {
8580     int size, elements, fracbits;
8581     int immhb = immh << 3 | immb;
8582 
8583     if (immh & 8) {
8584         size = MO_64;
8585         if (!is_scalar && !is_q) {
8586             unallocated_encoding(s);
8587             return;
8588         }
8589     } else if (immh & 4) {
8590         size = MO_32;
8591     } else if (immh & 2) {
8592         size = MO_16;
8593         if (!dc_isar_feature(aa64_fp16, s)) {
8594             unallocated_encoding(s);
8595             return;
8596         }
8597     } else {
8598         /* immh == 0 would be a failure of the decode logic */
8599         g_assert(immh == 1);
8600         unallocated_encoding(s);
8601         return;
8602     }
8603 
8604     if (is_scalar) {
8605         elements = 1;
8606     } else {
8607         elements = (8 << is_q) >> size;
8608     }
8609     fracbits = (16 << size) - immhb;
8610 
8611     if (!fp_access_check(s)) {
8612         return;
8613     }
8614 
8615     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8616 }
8617 
8618 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8619 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8620                                          bool is_q, bool is_u,
8621                                          int immh, int immb, int rn, int rd)
8622 {
8623     int immhb = immh << 3 | immb;
8624     int pass, size, fracbits;
8625     TCGv_ptr tcg_fpstatus;
8626     TCGv_i32 tcg_rmode, tcg_shift;
8627 
8628     if (immh & 0x8) {
8629         size = MO_64;
8630         if (!is_scalar && !is_q) {
8631             unallocated_encoding(s);
8632             return;
8633         }
8634     } else if (immh & 0x4) {
8635         size = MO_32;
8636     } else if (immh & 0x2) {
8637         size = MO_16;
8638         if (!dc_isar_feature(aa64_fp16, s)) {
8639             unallocated_encoding(s);
8640             return;
8641         }
8642     } else {
8643         /* Should have split out AdvSIMD modified immediate earlier.  */
8644         assert(immh == 1);
8645         unallocated_encoding(s);
8646         return;
8647     }
8648 
8649     if (!fp_access_check(s)) {
8650         return;
8651     }
8652 
8653     assert(!(is_scalar && is_q));
8654 
8655     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8656     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8657     fracbits = (16 << size) - immhb;
8658     tcg_shift = tcg_constant_i32(fracbits);
8659 
8660     if (size == MO_64) {
8661         int maxpass = is_scalar ? 1 : 2;
8662 
8663         for (pass = 0; pass < maxpass; pass++) {
8664             TCGv_i64 tcg_op = tcg_temp_new_i64();
8665 
8666             read_vec_element(s, tcg_op, rn, pass, MO_64);
8667             if (is_u) {
8668                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8669             } else {
8670                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8671             }
8672             write_vec_element(s, tcg_op, rd, pass, MO_64);
8673         }
8674         clear_vec_high(s, is_q, rd);
8675     } else {
8676         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8677         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8678 
8679         switch (size) {
8680         case MO_16:
8681             if (is_u) {
8682                 fn = gen_helper_vfp_touhh;
8683             } else {
8684                 fn = gen_helper_vfp_toshh;
8685             }
8686             break;
8687         case MO_32:
8688             if (is_u) {
8689                 fn = gen_helper_vfp_touls;
8690             } else {
8691                 fn = gen_helper_vfp_tosls;
8692             }
8693             break;
8694         default:
8695             g_assert_not_reached();
8696         }
8697 
8698         for (pass = 0; pass < maxpass; pass++) {
8699             TCGv_i32 tcg_op = tcg_temp_new_i32();
8700 
8701             read_vec_element_i32(s, tcg_op, rn, pass, size);
8702             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8703             if (is_scalar) {
8704                 write_fp_sreg(s, rd, tcg_op);
8705             } else {
8706                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8707             }
8708         }
8709         if (!is_scalar) {
8710             clear_vec_high(s, is_q, rd);
8711         }
8712     }
8713 
8714     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8715 }
8716 
8717 /* AdvSIMD scalar shift by immediate
8718  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8719  * +-----+---+-------------+------+------+--------+---+------+------+
8720  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8721  * +-----+---+-------------+------+------+--------+---+------+------+
8722  *
8723  * This is the scalar version so it works on a fixed sized registers
8724  */
8725 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8726 {
8727     int rd = extract32(insn, 0, 5);
8728     int rn = extract32(insn, 5, 5);
8729     int opcode = extract32(insn, 11, 5);
8730     int immb = extract32(insn, 16, 3);
8731     int immh = extract32(insn, 19, 4);
8732     bool is_u = extract32(insn, 29, 1);
8733 
8734     if (immh == 0) {
8735         unallocated_encoding(s);
8736         return;
8737     }
8738 
8739     switch (opcode) {
8740     case 0x08: /* SRI */
8741         if (!is_u) {
8742             unallocated_encoding(s);
8743             return;
8744         }
8745         /* fall through */
8746     case 0x00: /* SSHR / USHR */
8747     case 0x02: /* SSRA / USRA */
8748     case 0x04: /* SRSHR / URSHR */
8749     case 0x06: /* SRSRA / URSRA */
8750         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8751         break;
8752     case 0x0a: /* SHL / SLI */
8753         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8754         break;
8755     case 0x1c: /* SCVTF, UCVTF */
8756         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8757                                      opcode, rn, rd);
8758         break;
8759     case 0x10: /* SQSHRUN, SQSHRUN2 */
8760     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8761         if (!is_u) {
8762             unallocated_encoding(s);
8763             return;
8764         }
8765         handle_vec_simd_sqshrn(s, true, false, false, true,
8766                                immh, immb, opcode, rn, rd);
8767         break;
8768     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8769     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8770         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8771                                immh, immb, opcode, rn, rd);
8772         break;
8773     case 0xc: /* SQSHLU */
8774         if (!is_u) {
8775             unallocated_encoding(s);
8776             return;
8777         }
8778         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8779         break;
8780     case 0xe: /* SQSHL, UQSHL */
8781         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8782         break;
8783     case 0x1f: /* FCVTZS, FCVTZU */
8784         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8785         break;
8786     default:
8787         unallocated_encoding(s);
8788         break;
8789     }
8790 }
8791 
8792 /* AdvSIMD scalar three different
8793  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8794  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8795  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8796  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8797  */
8798 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8799 {
8800     bool is_u = extract32(insn, 29, 1);
8801     int size = extract32(insn, 22, 2);
8802     int opcode = extract32(insn, 12, 4);
8803     int rm = extract32(insn, 16, 5);
8804     int rn = extract32(insn, 5, 5);
8805     int rd = extract32(insn, 0, 5);
8806 
8807     if (is_u) {
8808         unallocated_encoding(s);
8809         return;
8810     }
8811 
8812     switch (opcode) {
8813     case 0x9: /* SQDMLAL, SQDMLAL2 */
8814     case 0xb: /* SQDMLSL, SQDMLSL2 */
8815     case 0xd: /* SQDMULL, SQDMULL2 */
8816         if (size == 0 || size == 3) {
8817             unallocated_encoding(s);
8818             return;
8819         }
8820         break;
8821     default:
8822         unallocated_encoding(s);
8823         return;
8824     }
8825 
8826     if (!fp_access_check(s)) {
8827         return;
8828     }
8829 
8830     if (size == 2) {
8831         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8832         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8833         TCGv_i64 tcg_res = tcg_temp_new_i64();
8834 
8835         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8836         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8837 
8838         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8839         gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8840 
8841         switch (opcode) {
8842         case 0xd: /* SQDMULL, SQDMULL2 */
8843             break;
8844         case 0xb: /* SQDMLSL, SQDMLSL2 */
8845             tcg_gen_neg_i64(tcg_res, tcg_res);
8846             /* fall through */
8847         case 0x9: /* SQDMLAL, SQDMLAL2 */
8848             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8849             gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8850                                               tcg_res, tcg_op1);
8851             break;
8852         default:
8853             g_assert_not_reached();
8854         }
8855 
8856         write_fp_dreg(s, rd, tcg_res);
8857     } else {
8858         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8859         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8860         TCGv_i64 tcg_res = tcg_temp_new_i64();
8861 
8862         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8863         gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8864 
8865         switch (opcode) {
8866         case 0xd: /* SQDMULL, SQDMULL2 */
8867             break;
8868         case 0xb: /* SQDMLSL, SQDMLSL2 */
8869             gen_helper_neon_negl_u32(tcg_res, tcg_res);
8870             /* fall through */
8871         case 0x9: /* SQDMLAL, SQDMLAL2 */
8872         {
8873             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8874             read_vec_element(s, tcg_op3, rd, 0, MO_32);
8875             gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8876                                               tcg_res, tcg_op3);
8877             break;
8878         }
8879         default:
8880             g_assert_not_reached();
8881         }
8882 
8883         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8884         write_fp_dreg(s, rd, tcg_res);
8885     }
8886 }
8887 
8888 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8889                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8890 {
8891     /* Handle 64x64->64 opcodes which are shared between the scalar
8892      * and vector 3-same groups. We cover every opcode where size == 3
8893      * is valid in either the three-reg-same (integer, not pairwise)
8894      * or scalar-three-reg-same groups.
8895      */
8896     TCGCond cond;
8897 
8898     switch (opcode) {
8899     case 0x1: /* SQADD */
8900         if (u) {
8901             gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8902         } else {
8903             gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8904         }
8905         break;
8906     case 0x5: /* SQSUB */
8907         if (u) {
8908             gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8909         } else {
8910             gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8911         }
8912         break;
8913     case 0x6: /* CMGT, CMHI */
8914         /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8915          * We implement this using setcond (test) and then negating.
8916          */
8917         cond = u ? TCG_COND_GTU : TCG_COND_GT;
8918     do_cmop:
8919         tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8920         tcg_gen_neg_i64(tcg_rd, tcg_rd);
8921         break;
8922     case 0x7: /* CMGE, CMHS */
8923         cond = u ? TCG_COND_GEU : TCG_COND_GE;
8924         goto do_cmop;
8925     case 0x11: /* CMTST, CMEQ */
8926         if (u) {
8927             cond = TCG_COND_EQ;
8928             goto do_cmop;
8929         }
8930         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8931         break;
8932     case 0x8: /* SSHL, USHL */
8933         if (u) {
8934             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8935         } else {
8936             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8937         }
8938         break;
8939     case 0x9: /* SQSHL, UQSHL */
8940         if (u) {
8941             gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8942         } else {
8943             gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8944         }
8945         break;
8946     case 0xa: /* SRSHL, URSHL */
8947         if (u) {
8948             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8949         } else {
8950             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8951         }
8952         break;
8953     case 0xb: /* SQRSHL, UQRSHL */
8954         if (u) {
8955             gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8956         } else {
8957             gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8958         }
8959         break;
8960     case 0x10: /* ADD, SUB */
8961         if (u) {
8962             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8963         } else {
8964             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8965         }
8966         break;
8967     default:
8968         g_assert_not_reached();
8969     }
8970 }
8971 
8972 /* Handle the 3-same-operands float operations; shared by the scalar
8973  * and vector encodings. The caller must filter out any encodings
8974  * not allocated for the encoding it is dealing with.
8975  */
8976 static void handle_3same_float(DisasContext *s, int size, int elements,
8977                                int fpopcode, int rd, int rn, int rm)
8978 {
8979     int pass;
8980     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8981 
8982     for (pass = 0; pass < elements; pass++) {
8983         if (size) {
8984             /* Double */
8985             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8986             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8987             TCGv_i64 tcg_res = tcg_temp_new_i64();
8988 
8989             read_vec_element(s, tcg_op1, rn, pass, MO_64);
8990             read_vec_element(s, tcg_op2, rm, pass, MO_64);
8991 
8992             switch (fpopcode) {
8993             case 0x39: /* FMLS */
8994                 /* As usual for ARM, separate negation for fused multiply-add */
8995                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8996                 /* fall through */
8997             case 0x19: /* FMLA */
8998                 read_vec_element(s, tcg_res, rd, pass, MO_64);
8999                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9000                                        tcg_res, fpst);
9001                 break;
9002             case 0x18: /* FMAXNM */
9003                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9004                 break;
9005             case 0x1a: /* FADD */
9006                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9007                 break;
9008             case 0x1b: /* FMULX */
9009                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9010                 break;
9011             case 0x1c: /* FCMEQ */
9012                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9013                 break;
9014             case 0x1e: /* FMAX */
9015                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9016                 break;
9017             case 0x1f: /* FRECPS */
9018                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9019                 break;
9020             case 0x38: /* FMINNM */
9021                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9022                 break;
9023             case 0x3a: /* FSUB */
9024                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9025                 break;
9026             case 0x3e: /* FMIN */
9027                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9028                 break;
9029             case 0x3f: /* FRSQRTS */
9030                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9031                 break;
9032             case 0x5b: /* FMUL */
9033                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9034                 break;
9035             case 0x5c: /* FCMGE */
9036                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9037                 break;
9038             case 0x5d: /* FACGE */
9039                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9040                 break;
9041             case 0x5f: /* FDIV */
9042                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9043                 break;
9044             case 0x7a: /* FABD */
9045                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9046                 gen_helper_vfp_absd(tcg_res, tcg_res);
9047                 break;
9048             case 0x7c: /* FCMGT */
9049                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9050                 break;
9051             case 0x7d: /* FACGT */
9052                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9053                 break;
9054             default:
9055                 g_assert_not_reached();
9056             }
9057 
9058             write_vec_element(s, tcg_res, rd, pass, MO_64);
9059         } else {
9060             /* Single */
9061             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9062             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9063             TCGv_i32 tcg_res = tcg_temp_new_i32();
9064 
9065             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9066             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9067 
9068             switch (fpopcode) {
9069             case 0x39: /* FMLS */
9070                 /* As usual for ARM, separate negation for fused multiply-add */
9071                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9072                 /* fall through */
9073             case 0x19: /* FMLA */
9074                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9075                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9076                                        tcg_res, fpst);
9077                 break;
9078             case 0x1a: /* FADD */
9079                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9080                 break;
9081             case 0x1b: /* FMULX */
9082                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9083                 break;
9084             case 0x1c: /* FCMEQ */
9085                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9086                 break;
9087             case 0x1e: /* FMAX */
9088                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9089                 break;
9090             case 0x1f: /* FRECPS */
9091                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9092                 break;
9093             case 0x18: /* FMAXNM */
9094                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9095                 break;
9096             case 0x38: /* FMINNM */
9097                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9098                 break;
9099             case 0x3a: /* FSUB */
9100                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9101                 break;
9102             case 0x3e: /* FMIN */
9103                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9104                 break;
9105             case 0x3f: /* FRSQRTS */
9106                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9107                 break;
9108             case 0x5b: /* FMUL */
9109                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9110                 break;
9111             case 0x5c: /* FCMGE */
9112                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9113                 break;
9114             case 0x5d: /* FACGE */
9115                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9116                 break;
9117             case 0x5f: /* FDIV */
9118                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9119                 break;
9120             case 0x7a: /* FABD */
9121                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9122                 gen_helper_vfp_abss(tcg_res, tcg_res);
9123                 break;
9124             case 0x7c: /* FCMGT */
9125                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9126                 break;
9127             case 0x7d: /* FACGT */
9128                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9129                 break;
9130             default:
9131                 g_assert_not_reached();
9132             }
9133 
9134             if (elements == 1) {
9135                 /* scalar single so clear high part */
9136                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9137 
9138                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9139                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9140             } else {
9141                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9142             }
9143         }
9144     }
9145 
9146     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9147 }
9148 
9149 /* AdvSIMD scalar three same
9150  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9151  * +-----+---+-----------+------+---+------+--------+---+------+------+
9152  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9153  * +-----+---+-----------+------+---+------+--------+---+------+------+
9154  */
9155 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9156 {
9157     int rd = extract32(insn, 0, 5);
9158     int rn = extract32(insn, 5, 5);
9159     int opcode = extract32(insn, 11, 5);
9160     int rm = extract32(insn, 16, 5);
9161     int size = extract32(insn, 22, 2);
9162     bool u = extract32(insn, 29, 1);
9163     TCGv_i64 tcg_rd;
9164 
9165     if (opcode >= 0x18) {
9166         /* Floating point: U, size[1] and opcode indicate operation */
9167         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9168         switch (fpopcode) {
9169         case 0x1b: /* FMULX */
9170         case 0x1f: /* FRECPS */
9171         case 0x3f: /* FRSQRTS */
9172         case 0x5d: /* FACGE */
9173         case 0x7d: /* FACGT */
9174         case 0x1c: /* FCMEQ */
9175         case 0x5c: /* FCMGE */
9176         case 0x7c: /* FCMGT */
9177         case 0x7a: /* FABD */
9178             break;
9179         default:
9180             unallocated_encoding(s);
9181             return;
9182         }
9183 
9184         if (!fp_access_check(s)) {
9185             return;
9186         }
9187 
9188         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9189         return;
9190     }
9191 
9192     switch (opcode) {
9193     case 0x1: /* SQADD, UQADD */
9194     case 0x5: /* SQSUB, UQSUB */
9195     case 0x9: /* SQSHL, UQSHL */
9196     case 0xb: /* SQRSHL, UQRSHL */
9197         break;
9198     case 0x8: /* SSHL, USHL */
9199     case 0xa: /* SRSHL, URSHL */
9200     case 0x6: /* CMGT, CMHI */
9201     case 0x7: /* CMGE, CMHS */
9202     case 0x11: /* CMTST, CMEQ */
9203     case 0x10: /* ADD, SUB (vector) */
9204         if (size != 3) {
9205             unallocated_encoding(s);
9206             return;
9207         }
9208         break;
9209     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9210         if (size != 1 && size != 2) {
9211             unallocated_encoding(s);
9212             return;
9213         }
9214         break;
9215     default:
9216         unallocated_encoding(s);
9217         return;
9218     }
9219 
9220     if (!fp_access_check(s)) {
9221         return;
9222     }
9223 
9224     tcg_rd = tcg_temp_new_i64();
9225 
9226     if (size == 3) {
9227         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9228         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9229 
9230         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9231     } else {
9232         /* Do a single operation on the lowest element in the vector.
9233          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9234          * no side effects for all these operations.
9235          * OPTME: special-purpose helpers would avoid doing some
9236          * unnecessary work in the helper for the 8 and 16 bit cases.
9237          */
9238         NeonGenTwoOpEnvFn *genenvfn;
9239         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9240         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9241         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9242 
9243         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9244         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9245 
9246         switch (opcode) {
9247         case 0x1: /* SQADD, UQADD */
9248         {
9249             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9250                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9251                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9252                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9253             };
9254             genenvfn = fns[size][u];
9255             break;
9256         }
9257         case 0x5: /* SQSUB, UQSUB */
9258         {
9259             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9260                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9261                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9262                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9263             };
9264             genenvfn = fns[size][u];
9265             break;
9266         }
9267         case 0x9: /* SQSHL, UQSHL */
9268         {
9269             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9270                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9271                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9272                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9273             };
9274             genenvfn = fns[size][u];
9275             break;
9276         }
9277         case 0xb: /* SQRSHL, UQRSHL */
9278         {
9279             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9280                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9281                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9282                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9283             };
9284             genenvfn = fns[size][u];
9285             break;
9286         }
9287         case 0x16: /* SQDMULH, SQRDMULH */
9288         {
9289             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9290                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9291                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9292             };
9293             assert(size == 1 || size == 2);
9294             genenvfn = fns[size - 1][u];
9295             break;
9296         }
9297         default:
9298             g_assert_not_reached();
9299         }
9300 
9301         genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9302         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9303     }
9304 
9305     write_fp_dreg(s, rd, tcg_rd);
9306 }
9307 
9308 /* AdvSIMD scalar three same FP16
9309  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9310  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9311  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9312  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9313  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9314  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9315  */
9316 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9317                                                   uint32_t insn)
9318 {
9319     int rd = extract32(insn, 0, 5);
9320     int rn = extract32(insn, 5, 5);
9321     int opcode = extract32(insn, 11, 3);
9322     int rm = extract32(insn, 16, 5);
9323     bool u = extract32(insn, 29, 1);
9324     bool a = extract32(insn, 23, 1);
9325     int fpopcode = opcode | (a << 3) |  (u << 4);
9326     TCGv_ptr fpst;
9327     TCGv_i32 tcg_op1;
9328     TCGv_i32 tcg_op2;
9329     TCGv_i32 tcg_res;
9330 
9331     switch (fpopcode) {
9332     case 0x03: /* FMULX */
9333     case 0x04: /* FCMEQ (reg) */
9334     case 0x07: /* FRECPS */
9335     case 0x0f: /* FRSQRTS */
9336     case 0x14: /* FCMGE (reg) */
9337     case 0x15: /* FACGE */
9338     case 0x1a: /* FABD */
9339     case 0x1c: /* FCMGT (reg) */
9340     case 0x1d: /* FACGT */
9341         break;
9342     default:
9343         unallocated_encoding(s);
9344         return;
9345     }
9346 
9347     if (!dc_isar_feature(aa64_fp16, s)) {
9348         unallocated_encoding(s);
9349     }
9350 
9351     if (!fp_access_check(s)) {
9352         return;
9353     }
9354 
9355     fpst = fpstatus_ptr(FPST_FPCR_F16);
9356 
9357     tcg_op1 = read_fp_hreg(s, rn);
9358     tcg_op2 = read_fp_hreg(s, rm);
9359     tcg_res = tcg_temp_new_i32();
9360 
9361     switch (fpopcode) {
9362     case 0x03: /* FMULX */
9363         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9364         break;
9365     case 0x04: /* FCMEQ (reg) */
9366         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9367         break;
9368     case 0x07: /* FRECPS */
9369         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9370         break;
9371     case 0x0f: /* FRSQRTS */
9372         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9373         break;
9374     case 0x14: /* FCMGE (reg) */
9375         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9376         break;
9377     case 0x15: /* FACGE */
9378         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9379         break;
9380     case 0x1a: /* FABD */
9381         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9382         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9383         break;
9384     case 0x1c: /* FCMGT (reg) */
9385         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9386         break;
9387     case 0x1d: /* FACGT */
9388         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9389         break;
9390     default:
9391         g_assert_not_reached();
9392     }
9393 
9394     write_fp_sreg(s, rd, tcg_res);
9395 }
9396 
9397 /* AdvSIMD scalar three same extra
9398  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9399  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9400  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9401  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9402  */
9403 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9404                                                    uint32_t insn)
9405 {
9406     int rd = extract32(insn, 0, 5);
9407     int rn = extract32(insn, 5, 5);
9408     int opcode = extract32(insn, 11, 4);
9409     int rm = extract32(insn, 16, 5);
9410     int size = extract32(insn, 22, 2);
9411     bool u = extract32(insn, 29, 1);
9412     TCGv_i32 ele1, ele2, ele3;
9413     TCGv_i64 res;
9414     bool feature;
9415 
9416     switch (u * 16 + opcode) {
9417     case 0x10: /* SQRDMLAH (vector) */
9418     case 0x11: /* SQRDMLSH (vector) */
9419         if (size != 1 && size != 2) {
9420             unallocated_encoding(s);
9421             return;
9422         }
9423         feature = dc_isar_feature(aa64_rdm, s);
9424         break;
9425     default:
9426         unallocated_encoding(s);
9427         return;
9428     }
9429     if (!feature) {
9430         unallocated_encoding(s);
9431         return;
9432     }
9433     if (!fp_access_check(s)) {
9434         return;
9435     }
9436 
9437     /* Do a single operation on the lowest element in the vector.
9438      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9439      * with no side effects for all these operations.
9440      * OPTME: special-purpose helpers would avoid doing some
9441      * unnecessary work in the helper for the 16 bit cases.
9442      */
9443     ele1 = tcg_temp_new_i32();
9444     ele2 = tcg_temp_new_i32();
9445     ele3 = tcg_temp_new_i32();
9446 
9447     read_vec_element_i32(s, ele1, rn, 0, size);
9448     read_vec_element_i32(s, ele2, rm, 0, size);
9449     read_vec_element_i32(s, ele3, rd, 0, size);
9450 
9451     switch (opcode) {
9452     case 0x0: /* SQRDMLAH */
9453         if (size == 1) {
9454             gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9455         } else {
9456             gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9457         }
9458         break;
9459     case 0x1: /* SQRDMLSH */
9460         if (size == 1) {
9461             gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9462         } else {
9463             gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9464         }
9465         break;
9466     default:
9467         g_assert_not_reached();
9468     }
9469 
9470     res = tcg_temp_new_i64();
9471     tcg_gen_extu_i32_i64(res, ele3);
9472     write_fp_dreg(s, rd, res);
9473 }
9474 
9475 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9476                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9477                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9478 {
9479     /* Handle 64->64 opcodes which are shared between the scalar and
9480      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9481      * is valid in either group and also the double-precision fp ops.
9482      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9483      * requires them.
9484      */
9485     TCGCond cond;
9486 
9487     switch (opcode) {
9488     case 0x4: /* CLS, CLZ */
9489         if (u) {
9490             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9491         } else {
9492             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9493         }
9494         break;
9495     case 0x5: /* NOT */
9496         /* This opcode is shared with CNT and RBIT but we have earlier
9497          * enforced that size == 3 if and only if this is the NOT insn.
9498          */
9499         tcg_gen_not_i64(tcg_rd, tcg_rn);
9500         break;
9501     case 0x7: /* SQABS, SQNEG */
9502         if (u) {
9503             gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9504         } else {
9505             gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9506         }
9507         break;
9508     case 0xa: /* CMLT */
9509         /* 64 bit integer comparison against zero, result is
9510          * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9511          * subtracting 1.
9512          */
9513         cond = TCG_COND_LT;
9514     do_cmop:
9515         tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9516         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9517         break;
9518     case 0x8: /* CMGT, CMGE */
9519         cond = u ? TCG_COND_GE : TCG_COND_GT;
9520         goto do_cmop;
9521     case 0x9: /* CMEQ, CMLE */
9522         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9523         goto do_cmop;
9524     case 0xb: /* ABS, NEG */
9525         if (u) {
9526             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9527         } else {
9528             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9529         }
9530         break;
9531     case 0x2f: /* FABS */
9532         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9533         break;
9534     case 0x6f: /* FNEG */
9535         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9536         break;
9537     case 0x7f: /* FSQRT */
9538         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9539         break;
9540     case 0x1a: /* FCVTNS */
9541     case 0x1b: /* FCVTMS */
9542     case 0x1c: /* FCVTAS */
9543     case 0x3a: /* FCVTPS */
9544     case 0x3b: /* FCVTZS */
9545         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9546         break;
9547     case 0x5a: /* FCVTNU */
9548     case 0x5b: /* FCVTMU */
9549     case 0x5c: /* FCVTAU */
9550     case 0x7a: /* FCVTPU */
9551     case 0x7b: /* FCVTZU */
9552         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9553         break;
9554     case 0x18: /* FRINTN */
9555     case 0x19: /* FRINTM */
9556     case 0x38: /* FRINTP */
9557     case 0x39: /* FRINTZ */
9558     case 0x58: /* FRINTA */
9559     case 0x79: /* FRINTI */
9560         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9561         break;
9562     case 0x59: /* FRINTX */
9563         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9564         break;
9565     case 0x1e: /* FRINT32Z */
9566     case 0x5e: /* FRINT32X */
9567         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9568         break;
9569     case 0x1f: /* FRINT64Z */
9570     case 0x5f: /* FRINT64X */
9571         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9572         break;
9573     default:
9574         g_assert_not_reached();
9575     }
9576 }
9577 
9578 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9579                                    bool is_scalar, bool is_u, bool is_q,
9580                                    int size, int rn, int rd)
9581 {
9582     bool is_double = (size == MO_64);
9583     TCGv_ptr fpst;
9584 
9585     if (!fp_access_check(s)) {
9586         return;
9587     }
9588 
9589     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9590 
9591     if (is_double) {
9592         TCGv_i64 tcg_op = tcg_temp_new_i64();
9593         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9594         TCGv_i64 tcg_res = tcg_temp_new_i64();
9595         NeonGenTwoDoubleOpFn *genfn;
9596         bool swap = false;
9597         int pass;
9598 
9599         switch (opcode) {
9600         case 0x2e: /* FCMLT (zero) */
9601             swap = true;
9602             /* fallthrough */
9603         case 0x2c: /* FCMGT (zero) */
9604             genfn = gen_helper_neon_cgt_f64;
9605             break;
9606         case 0x2d: /* FCMEQ (zero) */
9607             genfn = gen_helper_neon_ceq_f64;
9608             break;
9609         case 0x6d: /* FCMLE (zero) */
9610             swap = true;
9611             /* fall through */
9612         case 0x6c: /* FCMGE (zero) */
9613             genfn = gen_helper_neon_cge_f64;
9614             break;
9615         default:
9616             g_assert_not_reached();
9617         }
9618 
9619         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9620             read_vec_element(s, tcg_op, rn, pass, MO_64);
9621             if (swap) {
9622                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9623             } else {
9624                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9625             }
9626             write_vec_element(s, tcg_res, rd, pass, MO_64);
9627         }
9628 
9629         clear_vec_high(s, !is_scalar, rd);
9630     } else {
9631         TCGv_i32 tcg_op = tcg_temp_new_i32();
9632         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9633         TCGv_i32 tcg_res = tcg_temp_new_i32();
9634         NeonGenTwoSingleOpFn *genfn;
9635         bool swap = false;
9636         int pass, maxpasses;
9637 
9638         if (size == MO_16) {
9639             switch (opcode) {
9640             case 0x2e: /* FCMLT (zero) */
9641                 swap = true;
9642                 /* fall through */
9643             case 0x2c: /* FCMGT (zero) */
9644                 genfn = gen_helper_advsimd_cgt_f16;
9645                 break;
9646             case 0x2d: /* FCMEQ (zero) */
9647                 genfn = gen_helper_advsimd_ceq_f16;
9648                 break;
9649             case 0x6d: /* FCMLE (zero) */
9650                 swap = true;
9651                 /* fall through */
9652             case 0x6c: /* FCMGE (zero) */
9653                 genfn = gen_helper_advsimd_cge_f16;
9654                 break;
9655             default:
9656                 g_assert_not_reached();
9657             }
9658         } else {
9659             switch (opcode) {
9660             case 0x2e: /* FCMLT (zero) */
9661                 swap = true;
9662                 /* fall through */
9663             case 0x2c: /* FCMGT (zero) */
9664                 genfn = gen_helper_neon_cgt_f32;
9665                 break;
9666             case 0x2d: /* FCMEQ (zero) */
9667                 genfn = gen_helper_neon_ceq_f32;
9668                 break;
9669             case 0x6d: /* FCMLE (zero) */
9670                 swap = true;
9671                 /* fall through */
9672             case 0x6c: /* FCMGE (zero) */
9673                 genfn = gen_helper_neon_cge_f32;
9674                 break;
9675             default:
9676                 g_assert_not_reached();
9677             }
9678         }
9679 
9680         if (is_scalar) {
9681             maxpasses = 1;
9682         } else {
9683             int vector_size = 8 << is_q;
9684             maxpasses = vector_size >> size;
9685         }
9686 
9687         for (pass = 0; pass < maxpasses; pass++) {
9688             read_vec_element_i32(s, tcg_op, rn, pass, size);
9689             if (swap) {
9690                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9691             } else {
9692                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9693             }
9694             if (is_scalar) {
9695                 write_fp_sreg(s, rd, tcg_res);
9696             } else {
9697                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9698             }
9699         }
9700 
9701         if (!is_scalar) {
9702             clear_vec_high(s, is_q, rd);
9703         }
9704     }
9705 }
9706 
9707 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9708                                     bool is_scalar, bool is_u, bool is_q,
9709                                     int size, int rn, int rd)
9710 {
9711     bool is_double = (size == 3);
9712     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9713 
9714     if (is_double) {
9715         TCGv_i64 tcg_op = tcg_temp_new_i64();
9716         TCGv_i64 tcg_res = tcg_temp_new_i64();
9717         int pass;
9718 
9719         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9720             read_vec_element(s, tcg_op, rn, pass, MO_64);
9721             switch (opcode) {
9722             case 0x3d: /* FRECPE */
9723                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9724                 break;
9725             case 0x3f: /* FRECPX */
9726                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9727                 break;
9728             case 0x7d: /* FRSQRTE */
9729                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9730                 break;
9731             default:
9732                 g_assert_not_reached();
9733             }
9734             write_vec_element(s, tcg_res, rd, pass, MO_64);
9735         }
9736         clear_vec_high(s, !is_scalar, rd);
9737     } else {
9738         TCGv_i32 tcg_op = tcg_temp_new_i32();
9739         TCGv_i32 tcg_res = tcg_temp_new_i32();
9740         int pass, maxpasses;
9741 
9742         if (is_scalar) {
9743             maxpasses = 1;
9744         } else {
9745             maxpasses = is_q ? 4 : 2;
9746         }
9747 
9748         for (pass = 0; pass < maxpasses; pass++) {
9749             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9750 
9751             switch (opcode) {
9752             case 0x3c: /* URECPE */
9753                 gen_helper_recpe_u32(tcg_res, tcg_op);
9754                 break;
9755             case 0x3d: /* FRECPE */
9756                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9757                 break;
9758             case 0x3f: /* FRECPX */
9759                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9760                 break;
9761             case 0x7d: /* FRSQRTE */
9762                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9763                 break;
9764             default:
9765                 g_assert_not_reached();
9766             }
9767 
9768             if (is_scalar) {
9769                 write_fp_sreg(s, rd, tcg_res);
9770             } else {
9771                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9772             }
9773         }
9774         if (!is_scalar) {
9775             clear_vec_high(s, is_q, rd);
9776         }
9777     }
9778 }
9779 
9780 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9781                                 int opcode, bool u, bool is_q,
9782                                 int size, int rn, int rd)
9783 {
9784     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9785      * in the source becomes a size element in the destination).
9786      */
9787     int pass;
9788     TCGv_i32 tcg_res[2];
9789     int destelt = is_q ? 2 : 0;
9790     int passes = scalar ? 1 : 2;
9791 
9792     if (scalar) {
9793         tcg_res[1] = tcg_constant_i32(0);
9794     }
9795 
9796     for (pass = 0; pass < passes; pass++) {
9797         TCGv_i64 tcg_op = tcg_temp_new_i64();
9798         NeonGenNarrowFn *genfn = NULL;
9799         NeonGenNarrowEnvFn *genenvfn = NULL;
9800 
9801         if (scalar) {
9802             read_vec_element(s, tcg_op, rn, pass, size + 1);
9803         } else {
9804             read_vec_element(s, tcg_op, rn, pass, MO_64);
9805         }
9806         tcg_res[pass] = tcg_temp_new_i32();
9807 
9808         switch (opcode) {
9809         case 0x12: /* XTN, SQXTUN */
9810         {
9811             static NeonGenNarrowFn * const xtnfns[3] = {
9812                 gen_helper_neon_narrow_u8,
9813                 gen_helper_neon_narrow_u16,
9814                 tcg_gen_extrl_i64_i32,
9815             };
9816             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9817                 gen_helper_neon_unarrow_sat8,
9818                 gen_helper_neon_unarrow_sat16,
9819                 gen_helper_neon_unarrow_sat32,
9820             };
9821             if (u) {
9822                 genenvfn = sqxtunfns[size];
9823             } else {
9824                 genfn = xtnfns[size];
9825             }
9826             break;
9827         }
9828         case 0x14: /* SQXTN, UQXTN */
9829         {
9830             static NeonGenNarrowEnvFn * const fns[3][2] = {
9831                 { gen_helper_neon_narrow_sat_s8,
9832                   gen_helper_neon_narrow_sat_u8 },
9833                 { gen_helper_neon_narrow_sat_s16,
9834                   gen_helper_neon_narrow_sat_u16 },
9835                 { gen_helper_neon_narrow_sat_s32,
9836                   gen_helper_neon_narrow_sat_u32 },
9837             };
9838             genenvfn = fns[size][u];
9839             break;
9840         }
9841         case 0x16: /* FCVTN, FCVTN2 */
9842             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9843             if (size == 2) {
9844                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9845             } else {
9846                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9847                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9848                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9849                 TCGv_i32 ahp = get_ahp_flag();
9850 
9851                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9852                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9853                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9854                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9855             }
9856             break;
9857         case 0x36: /* BFCVTN, BFCVTN2 */
9858             {
9859                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9860                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9861             }
9862             break;
9863         case 0x56:  /* FCVTXN, FCVTXN2 */
9864             /* 64 bit to 32 bit float conversion
9865              * with von Neumann rounding (round to odd)
9866              */
9867             assert(size == 2);
9868             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9869             break;
9870         default:
9871             g_assert_not_reached();
9872         }
9873 
9874         if (genfn) {
9875             genfn(tcg_res[pass], tcg_op);
9876         } else if (genenvfn) {
9877             genenvfn(tcg_res[pass], cpu_env, tcg_op);
9878         }
9879     }
9880 
9881     for (pass = 0; pass < 2; pass++) {
9882         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9883     }
9884     clear_vec_high(s, is_q, rd);
9885 }
9886 
9887 /* Remaining saturating accumulating ops */
9888 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9889                                 bool is_q, int size, int rn, int rd)
9890 {
9891     bool is_double = (size == 3);
9892 
9893     if (is_double) {
9894         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9895         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9896         int pass;
9897 
9898         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9899             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9900             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9901 
9902             if (is_u) { /* USQADD */
9903                 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9904             } else { /* SUQADD */
9905                 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9906             }
9907             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9908         }
9909         clear_vec_high(s, !is_scalar, rd);
9910     } else {
9911         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9912         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9913         int pass, maxpasses;
9914 
9915         if (is_scalar) {
9916             maxpasses = 1;
9917         } else {
9918             maxpasses = is_q ? 4 : 2;
9919         }
9920 
9921         for (pass = 0; pass < maxpasses; pass++) {
9922             if (is_scalar) {
9923                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9924                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9925             } else {
9926                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9927                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9928             }
9929 
9930             if (is_u) { /* USQADD */
9931                 switch (size) {
9932                 case 0:
9933                     gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9934                     break;
9935                 case 1:
9936                     gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9937                     break;
9938                 case 2:
9939                     gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9940                     break;
9941                 default:
9942                     g_assert_not_reached();
9943                 }
9944             } else { /* SUQADD */
9945                 switch (size) {
9946                 case 0:
9947                     gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9948                     break;
9949                 case 1:
9950                     gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9951                     break;
9952                 case 2:
9953                     gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9954                     break;
9955                 default:
9956                     g_assert_not_reached();
9957                 }
9958             }
9959 
9960             if (is_scalar) {
9961                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9962             }
9963             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9964         }
9965         clear_vec_high(s, is_q, rd);
9966     }
9967 }
9968 
9969 /* AdvSIMD scalar two reg misc
9970  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9971  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9972  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
9973  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9974  */
9975 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9976 {
9977     int rd = extract32(insn, 0, 5);
9978     int rn = extract32(insn, 5, 5);
9979     int opcode = extract32(insn, 12, 5);
9980     int size = extract32(insn, 22, 2);
9981     bool u = extract32(insn, 29, 1);
9982     bool is_fcvt = false;
9983     int rmode;
9984     TCGv_i32 tcg_rmode;
9985     TCGv_ptr tcg_fpstatus;
9986 
9987     switch (opcode) {
9988     case 0x3: /* USQADD / SUQADD*/
9989         if (!fp_access_check(s)) {
9990             return;
9991         }
9992         handle_2misc_satacc(s, true, u, false, size, rn, rd);
9993         return;
9994     case 0x7: /* SQABS / SQNEG */
9995         break;
9996     case 0xa: /* CMLT */
9997         if (u) {
9998             unallocated_encoding(s);
9999             return;
10000         }
10001         /* fall through */
10002     case 0x8: /* CMGT, CMGE */
10003     case 0x9: /* CMEQ, CMLE */
10004     case 0xb: /* ABS, NEG */
10005         if (size != 3) {
10006             unallocated_encoding(s);
10007             return;
10008         }
10009         break;
10010     case 0x12: /* SQXTUN */
10011         if (!u) {
10012             unallocated_encoding(s);
10013             return;
10014         }
10015         /* fall through */
10016     case 0x14: /* SQXTN, UQXTN */
10017         if (size == 3) {
10018             unallocated_encoding(s);
10019             return;
10020         }
10021         if (!fp_access_check(s)) {
10022             return;
10023         }
10024         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10025         return;
10026     case 0xc ... 0xf:
10027     case 0x16 ... 0x1d:
10028     case 0x1f:
10029         /* Floating point: U, size[1] and opcode indicate operation;
10030          * size[0] indicates single or double precision.
10031          */
10032         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10033         size = extract32(size, 0, 1) ? 3 : 2;
10034         switch (opcode) {
10035         case 0x2c: /* FCMGT (zero) */
10036         case 0x2d: /* FCMEQ (zero) */
10037         case 0x2e: /* FCMLT (zero) */
10038         case 0x6c: /* FCMGE (zero) */
10039         case 0x6d: /* FCMLE (zero) */
10040             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10041             return;
10042         case 0x1d: /* SCVTF */
10043         case 0x5d: /* UCVTF */
10044         {
10045             bool is_signed = (opcode == 0x1d);
10046             if (!fp_access_check(s)) {
10047                 return;
10048             }
10049             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10050             return;
10051         }
10052         case 0x3d: /* FRECPE */
10053         case 0x3f: /* FRECPX */
10054         case 0x7d: /* FRSQRTE */
10055             if (!fp_access_check(s)) {
10056                 return;
10057             }
10058             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10059             return;
10060         case 0x1a: /* FCVTNS */
10061         case 0x1b: /* FCVTMS */
10062         case 0x3a: /* FCVTPS */
10063         case 0x3b: /* FCVTZS */
10064         case 0x5a: /* FCVTNU */
10065         case 0x5b: /* FCVTMU */
10066         case 0x7a: /* FCVTPU */
10067         case 0x7b: /* FCVTZU */
10068             is_fcvt = true;
10069             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10070             break;
10071         case 0x1c: /* FCVTAS */
10072         case 0x5c: /* FCVTAU */
10073             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10074             is_fcvt = true;
10075             rmode = FPROUNDING_TIEAWAY;
10076             break;
10077         case 0x56: /* FCVTXN, FCVTXN2 */
10078             if (size == 2) {
10079                 unallocated_encoding(s);
10080                 return;
10081             }
10082             if (!fp_access_check(s)) {
10083                 return;
10084             }
10085             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10086             return;
10087         default:
10088             unallocated_encoding(s);
10089             return;
10090         }
10091         break;
10092     default:
10093         unallocated_encoding(s);
10094         return;
10095     }
10096 
10097     if (!fp_access_check(s)) {
10098         return;
10099     }
10100 
10101     if (is_fcvt) {
10102         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10103         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10104     } else {
10105         tcg_fpstatus = NULL;
10106         tcg_rmode = NULL;
10107     }
10108 
10109     if (size == 3) {
10110         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10111         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10112 
10113         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10114         write_fp_dreg(s, rd, tcg_rd);
10115     } else {
10116         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10117         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10118 
10119         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10120 
10121         switch (opcode) {
10122         case 0x7: /* SQABS, SQNEG */
10123         {
10124             NeonGenOneOpEnvFn *genfn;
10125             static NeonGenOneOpEnvFn * const fns[3][2] = {
10126                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10127                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10128                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10129             };
10130             genfn = fns[size][u];
10131             genfn(tcg_rd, cpu_env, tcg_rn);
10132             break;
10133         }
10134         case 0x1a: /* FCVTNS */
10135         case 0x1b: /* FCVTMS */
10136         case 0x1c: /* FCVTAS */
10137         case 0x3a: /* FCVTPS */
10138         case 0x3b: /* FCVTZS */
10139             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10140                                  tcg_fpstatus);
10141             break;
10142         case 0x5a: /* FCVTNU */
10143         case 0x5b: /* FCVTMU */
10144         case 0x5c: /* FCVTAU */
10145         case 0x7a: /* FCVTPU */
10146         case 0x7b: /* FCVTZU */
10147             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10148                                  tcg_fpstatus);
10149             break;
10150         default:
10151             g_assert_not_reached();
10152         }
10153 
10154         write_fp_sreg(s, rd, tcg_rd);
10155     }
10156 
10157     if (is_fcvt) {
10158         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10159     }
10160 }
10161 
10162 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10163 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10164                                  int immh, int immb, int opcode, int rn, int rd)
10165 {
10166     int size = 32 - clz32(immh) - 1;
10167     int immhb = immh << 3 | immb;
10168     int shift = 2 * (8 << size) - immhb;
10169     GVecGen2iFn *gvec_fn;
10170 
10171     if (extract32(immh, 3, 1) && !is_q) {
10172         unallocated_encoding(s);
10173         return;
10174     }
10175     tcg_debug_assert(size <= 3);
10176 
10177     if (!fp_access_check(s)) {
10178         return;
10179     }
10180 
10181     switch (opcode) {
10182     case 0x02: /* SSRA / USRA (accumulate) */
10183         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10184         break;
10185 
10186     case 0x08: /* SRI */
10187         gvec_fn = gen_gvec_sri;
10188         break;
10189 
10190     case 0x00: /* SSHR / USHR */
10191         if (is_u) {
10192             if (shift == 8 << size) {
10193                 /* Shift count the same size as element size produces zero.  */
10194                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10195                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10196                 return;
10197             }
10198             gvec_fn = tcg_gen_gvec_shri;
10199         } else {
10200             /* Shift count the same size as element size produces all sign.  */
10201             if (shift == 8 << size) {
10202                 shift -= 1;
10203             }
10204             gvec_fn = tcg_gen_gvec_sari;
10205         }
10206         break;
10207 
10208     case 0x04: /* SRSHR / URSHR (rounding) */
10209         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10210         break;
10211 
10212     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10213         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10214         break;
10215 
10216     default:
10217         g_assert_not_reached();
10218     }
10219 
10220     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10221 }
10222 
10223 /* SHL/SLI - Vector shift left */
10224 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10225                                  int immh, int immb, int opcode, int rn, int rd)
10226 {
10227     int size = 32 - clz32(immh) - 1;
10228     int immhb = immh << 3 | immb;
10229     int shift = immhb - (8 << size);
10230 
10231     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10232     assert(size >= 0 && size <= 3);
10233 
10234     if (extract32(immh, 3, 1) && !is_q) {
10235         unallocated_encoding(s);
10236         return;
10237     }
10238 
10239     if (!fp_access_check(s)) {
10240         return;
10241     }
10242 
10243     if (insert) {
10244         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10245     } else {
10246         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10247     }
10248 }
10249 
10250 /* USHLL/SHLL - Vector shift left with widening */
10251 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10252                                  int immh, int immb, int opcode, int rn, int rd)
10253 {
10254     int size = 32 - clz32(immh) - 1;
10255     int immhb = immh << 3 | immb;
10256     int shift = immhb - (8 << size);
10257     int dsize = 64;
10258     int esize = 8 << size;
10259     int elements = dsize/esize;
10260     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10261     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10262     int i;
10263 
10264     if (size >= 3) {
10265         unallocated_encoding(s);
10266         return;
10267     }
10268 
10269     if (!fp_access_check(s)) {
10270         return;
10271     }
10272 
10273     /* For the LL variants the store is larger than the load,
10274      * so if rd == rn we would overwrite parts of our input.
10275      * So load everything right now and use shifts in the main loop.
10276      */
10277     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10278 
10279     for (i = 0; i < elements; i++) {
10280         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10281         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10282         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10283         write_vec_element(s, tcg_rd, rd, i, size + 1);
10284     }
10285 }
10286 
10287 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10288 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10289                                  int immh, int immb, int opcode, int rn, int rd)
10290 {
10291     int immhb = immh << 3 | immb;
10292     int size = 32 - clz32(immh) - 1;
10293     int dsize = 64;
10294     int esize = 8 << size;
10295     int elements = dsize/esize;
10296     int shift = (2 * esize) - immhb;
10297     bool round = extract32(opcode, 0, 1);
10298     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10299     TCGv_i64 tcg_round;
10300     int i;
10301 
10302     if (extract32(immh, 3, 1)) {
10303         unallocated_encoding(s);
10304         return;
10305     }
10306 
10307     if (!fp_access_check(s)) {
10308         return;
10309     }
10310 
10311     tcg_rn = tcg_temp_new_i64();
10312     tcg_rd = tcg_temp_new_i64();
10313     tcg_final = tcg_temp_new_i64();
10314     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10315 
10316     if (round) {
10317         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10318     } else {
10319         tcg_round = NULL;
10320     }
10321 
10322     for (i = 0; i < elements; i++) {
10323         read_vec_element(s, tcg_rn, rn, i, size+1);
10324         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10325                                 false, true, size+1, shift);
10326 
10327         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10328     }
10329 
10330     if (!is_q) {
10331         write_vec_element(s, tcg_final, rd, 0, MO_64);
10332     } else {
10333         write_vec_element(s, tcg_final, rd, 1, MO_64);
10334     }
10335 
10336     clear_vec_high(s, is_q, rd);
10337 }
10338 
10339 
10340 /* AdvSIMD shift by immediate
10341  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10342  * +---+---+---+-------------+------+------+--------+---+------+------+
10343  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10344  * +---+---+---+-------------+------+------+--------+---+------+------+
10345  */
10346 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10347 {
10348     int rd = extract32(insn, 0, 5);
10349     int rn = extract32(insn, 5, 5);
10350     int opcode = extract32(insn, 11, 5);
10351     int immb = extract32(insn, 16, 3);
10352     int immh = extract32(insn, 19, 4);
10353     bool is_u = extract32(insn, 29, 1);
10354     bool is_q = extract32(insn, 30, 1);
10355 
10356     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10357     assert(immh != 0);
10358 
10359     switch (opcode) {
10360     case 0x08: /* SRI */
10361         if (!is_u) {
10362             unallocated_encoding(s);
10363             return;
10364         }
10365         /* fall through */
10366     case 0x00: /* SSHR / USHR */
10367     case 0x02: /* SSRA / USRA (accumulate) */
10368     case 0x04: /* SRSHR / URSHR (rounding) */
10369     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10370         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10371         break;
10372     case 0x0a: /* SHL / SLI */
10373         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10374         break;
10375     case 0x10: /* SHRN */
10376     case 0x11: /* RSHRN / SQRSHRUN */
10377         if (is_u) {
10378             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10379                                    opcode, rn, rd);
10380         } else {
10381             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10382         }
10383         break;
10384     case 0x12: /* SQSHRN / UQSHRN */
10385     case 0x13: /* SQRSHRN / UQRSHRN */
10386         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10387                                opcode, rn, rd);
10388         break;
10389     case 0x14: /* SSHLL / USHLL */
10390         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10391         break;
10392     case 0x1c: /* SCVTF / UCVTF */
10393         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10394                                      opcode, rn, rd);
10395         break;
10396     case 0xc: /* SQSHLU */
10397         if (!is_u) {
10398             unallocated_encoding(s);
10399             return;
10400         }
10401         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10402         break;
10403     case 0xe: /* SQSHL, UQSHL */
10404         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10405         break;
10406     case 0x1f: /* FCVTZS/ FCVTZU */
10407         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10408         return;
10409     default:
10410         unallocated_encoding(s);
10411         return;
10412     }
10413 }
10414 
10415 /* Generate code to do a "long" addition or subtraction, ie one done in
10416  * TCGv_i64 on vector lanes twice the width specified by size.
10417  */
10418 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10419                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10420 {
10421     static NeonGenTwo64OpFn * const fns[3][2] = {
10422         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10423         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10424         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10425     };
10426     NeonGenTwo64OpFn *genfn;
10427     assert(size < 3);
10428 
10429     genfn = fns[size][is_sub];
10430     genfn(tcg_res, tcg_op1, tcg_op2);
10431 }
10432 
10433 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10434                                 int opcode, int rd, int rn, int rm)
10435 {
10436     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10437     TCGv_i64 tcg_res[2];
10438     int pass, accop;
10439 
10440     tcg_res[0] = tcg_temp_new_i64();
10441     tcg_res[1] = tcg_temp_new_i64();
10442 
10443     /* Does this op do an adding accumulate, a subtracting accumulate,
10444      * or no accumulate at all?
10445      */
10446     switch (opcode) {
10447     case 5:
10448     case 8:
10449     case 9:
10450         accop = 1;
10451         break;
10452     case 10:
10453     case 11:
10454         accop = -1;
10455         break;
10456     default:
10457         accop = 0;
10458         break;
10459     }
10460 
10461     if (accop != 0) {
10462         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10463         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10464     }
10465 
10466     /* size == 2 means two 32x32->64 operations; this is worth special
10467      * casing because we can generally handle it inline.
10468      */
10469     if (size == 2) {
10470         for (pass = 0; pass < 2; pass++) {
10471             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10472             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10473             TCGv_i64 tcg_passres;
10474             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10475 
10476             int elt = pass + is_q * 2;
10477 
10478             read_vec_element(s, tcg_op1, rn, elt, memop);
10479             read_vec_element(s, tcg_op2, rm, elt, memop);
10480 
10481             if (accop == 0) {
10482                 tcg_passres = tcg_res[pass];
10483             } else {
10484                 tcg_passres = tcg_temp_new_i64();
10485             }
10486 
10487             switch (opcode) {
10488             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10489                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10490                 break;
10491             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10492                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10493                 break;
10494             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10495             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10496             {
10497                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10498                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10499 
10500                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10501                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10502                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10503                                     tcg_passres,
10504                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10505                 break;
10506             }
10507             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10508             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10509             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10510                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10511                 break;
10512             case 9: /* SQDMLAL, SQDMLAL2 */
10513             case 11: /* SQDMLSL, SQDMLSL2 */
10514             case 13: /* SQDMULL, SQDMULL2 */
10515                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10516                 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10517                                                   tcg_passres, tcg_passres);
10518                 break;
10519             default:
10520                 g_assert_not_reached();
10521             }
10522 
10523             if (opcode == 9 || opcode == 11) {
10524                 /* saturating accumulate ops */
10525                 if (accop < 0) {
10526                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10527                 }
10528                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10529                                                   tcg_res[pass], tcg_passres);
10530             } else if (accop > 0) {
10531                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10532             } else if (accop < 0) {
10533                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10534             }
10535         }
10536     } else {
10537         /* size 0 or 1, generally helper functions */
10538         for (pass = 0; pass < 2; pass++) {
10539             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10540             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10541             TCGv_i64 tcg_passres;
10542             int elt = pass + is_q * 2;
10543 
10544             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10545             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10546 
10547             if (accop == 0) {
10548                 tcg_passres = tcg_res[pass];
10549             } else {
10550                 tcg_passres = tcg_temp_new_i64();
10551             }
10552 
10553             switch (opcode) {
10554             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10555             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10556             {
10557                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10558                 static NeonGenWidenFn * const widenfns[2][2] = {
10559                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10560                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10561                 };
10562                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10563 
10564                 widenfn(tcg_op2_64, tcg_op2);
10565                 widenfn(tcg_passres, tcg_op1);
10566                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10567                               tcg_passres, tcg_op2_64);
10568                 break;
10569             }
10570             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10571             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10572                 if (size == 0) {
10573                     if (is_u) {
10574                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10575                     } else {
10576                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10577                     }
10578                 } else {
10579                     if (is_u) {
10580                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10581                     } else {
10582                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10583                     }
10584                 }
10585                 break;
10586             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10587             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10588             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10589                 if (size == 0) {
10590                     if (is_u) {
10591                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10592                     } else {
10593                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10594                     }
10595                 } else {
10596                     if (is_u) {
10597                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10598                     } else {
10599                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10600                     }
10601                 }
10602                 break;
10603             case 9: /* SQDMLAL, SQDMLAL2 */
10604             case 11: /* SQDMLSL, SQDMLSL2 */
10605             case 13: /* SQDMULL, SQDMULL2 */
10606                 assert(size == 1);
10607                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10608                 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10609                                                   tcg_passres, tcg_passres);
10610                 break;
10611             default:
10612                 g_assert_not_reached();
10613             }
10614 
10615             if (accop != 0) {
10616                 if (opcode == 9 || opcode == 11) {
10617                     /* saturating accumulate ops */
10618                     if (accop < 0) {
10619                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10620                     }
10621                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10622                                                       tcg_res[pass],
10623                                                       tcg_passres);
10624                 } else {
10625                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10626                                   tcg_res[pass], tcg_passres);
10627                 }
10628             }
10629         }
10630     }
10631 
10632     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10633     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10634 }
10635 
10636 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10637                             int opcode, int rd, int rn, int rm)
10638 {
10639     TCGv_i64 tcg_res[2];
10640     int part = is_q ? 2 : 0;
10641     int pass;
10642 
10643     for (pass = 0; pass < 2; pass++) {
10644         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10645         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10646         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10647         static NeonGenWidenFn * const widenfns[3][2] = {
10648             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10649             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10650             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10651         };
10652         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10653 
10654         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10655         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10656         widenfn(tcg_op2_wide, tcg_op2);
10657         tcg_res[pass] = tcg_temp_new_i64();
10658         gen_neon_addl(size, (opcode == 3),
10659                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10660     }
10661 
10662     for (pass = 0; pass < 2; pass++) {
10663         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10664     }
10665 }
10666 
10667 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10668 {
10669     tcg_gen_addi_i64(in, in, 1U << 31);
10670     tcg_gen_extrh_i64_i32(res, in);
10671 }
10672 
10673 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10674                                  int opcode, int rd, int rn, int rm)
10675 {
10676     TCGv_i32 tcg_res[2];
10677     int part = is_q ? 2 : 0;
10678     int pass;
10679 
10680     for (pass = 0; pass < 2; pass++) {
10681         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10682         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10683         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10684         static NeonGenNarrowFn * const narrowfns[3][2] = {
10685             { gen_helper_neon_narrow_high_u8,
10686               gen_helper_neon_narrow_round_high_u8 },
10687             { gen_helper_neon_narrow_high_u16,
10688               gen_helper_neon_narrow_round_high_u16 },
10689             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10690         };
10691         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10692 
10693         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10694         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10695 
10696         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10697 
10698         tcg_res[pass] = tcg_temp_new_i32();
10699         gennarrow(tcg_res[pass], tcg_wideres);
10700     }
10701 
10702     for (pass = 0; pass < 2; pass++) {
10703         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10704     }
10705     clear_vec_high(s, is_q, rd);
10706 }
10707 
10708 /* AdvSIMD three different
10709  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10710  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10711  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10712  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10713  */
10714 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10715 {
10716     /* Instructions in this group fall into three basic classes
10717      * (in each case with the operation working on each element in
10718      * the input vectors):
10719      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10720      *     128 bit input)
10721      * (2) wide 64 x 128 -> 128
10722      * (3) narrowing 128 x 128 -> 64
10723      * Here we do initial decode, catch unallocated cases and
10724      * dispatch to separate functions for each class.
10725      */
10726     int is_q = extract32(insn, 30, 1);
10727     int is_u = extract32(insn, 29, 1);
10728     int size = extract32(insn, 22, 2);
10729     int opcode = extract32(insn, 12, 4);
10730     int rm = extract32(insn, 16, 5);
10731     int rn = extract32(insn, 5, 5);
10732     int rd = extract32(insn, 0, 5);
10733 
10734     switch (opcode) {
10735     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10736     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10737         /* 64 x 128 -> 128 */
10738         if (size == 3) {
10739             unallocated_encoding(s);
10740             return;
10741         }
10742         if (!fp_access_check(s)) {
10743             return;
10744         }
10745         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10746         break;
10747     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10748     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10749         /* 128 x 128 -> 64 */
10750         if (size == 3) {
10751             unallocated_encoding(s);
10752             return;
10753         }
10754         if (!fp_access_check(s)) {
10755             return;
10756         }
10757         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10758         break;
10759     case 14: /* PMULL, PMULL2 */
10760         if (is_u) {
10761             unallocated_encoding(s);
10762             return;
10763         }
10764         switch (size) {
10765         case 0: /* PMULL.P8 */
10766             if (!fp_access_check(s)) {
10767                 return;
10768             }
10769             /* The Q field specifies lo/hi half input for this insn.  */
10770             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10771                              gen_helper_neon_pmull_h);
10772             break;
10773 
10774         case 3: /* PMULL.P64 */
10775             if (!dc_isar_feature(aa64_pmull, s)) {
10776                 unallocated_encoding(s);
10777                 return;
10778             }
10779             if (!fp_access_check(s)) {
10780                 return;
10781             }
10782             /* The Q field specifies lo/hi half input for this insn.  */
10783             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10784                              gen_helper_gvec_pmull_q);
10785             break;
10786 
10787         default:
10788             unallocated_encoding(s);
10789             break;
10790         }
10791         return;
10792     case 9: /* SQDMLAL, SQDMLAL2 */
10793     case 11: /* SQDMLSL, SQDMLSL2 */
10794     case 13: /* SQDMULL, SQDMULL2 */
10795         if (is_u || size == 0) {
10796             unallocated_encoding(s);
10797             return;
10798         }
10799         /* fall through */
10800     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10801     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10802     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10803     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10804     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10805     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10806     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10807         /* 64 x 64 -> 128 */
10808         if (size == 3) {
10809             unallocated_encoding(s);
10810             return;
10811         }
10812         if (!fp_access_check(s)) {
10813             return;
10814         }
10815 
10816         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10817         break;
10818     default:
10819         /* opcode 15 not allocated */
10820         unallocated_encoding(s);
10821         break;
10822     }
10823 }
10824 
10825 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10826 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10827 {
10828     int rd = extract32(insn, 0, 5);
10829     int rn = extract32(insn, 5, 5);
10830     int rm = extract32(insn, 16, 5);
10831     int size = extract32(insn, 22, 2);
10832     bool is_u = extract32(insn, 29, 1);
10833     bool is_q = extract32(insn, 30, 1);
10834 
10835     if (!fp_access_check(s)) {
10836         return;
10837     }
10838 
10839     switch (size + 4 * is_u) {
10840     case 0: /* AND */
10841         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10842         return;
10843     case 1: /* BIC */
10844         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10845         return;
10846     case 2: /* ORR */
10847         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10848         return;
10849     case 3: /* ORN */
10850         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10851         return;
10852     case 4: /* EOR */
10853         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10854         return;
10855 
10856     case 5: /* BSL bitwise select */
10857         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10858         return;
10859     case 6: /* BIT, bitwise insert if true */
10860         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10861         return;
10862     case 7: /* BIF, bitwise insert if false */
10863         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10864         return;
10865 
10866     default:
10867         g_assert_not_reached();
10868     }
10869 }
10870 
10871 /* Pairwise op subgroup of C3.6.16.
10872  *
10873  * This is called directly or via the handle_3same_float for float pairwise
10874  * operations where the opcode and size are calculated differently.
10875  */
10876 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10877                                    int size, int rn, int rm, int rd)
10878 {
10879     TCGv_ptr fpst;
10880     int pass;
10881 
10882     /* Floating point operations need fpst */
10883     if (opcode >= 0x58) {
10884         fpst = fpstatus_ptr(FPST_FPCR);
10885     } else {
10886         fpst = NULL;
10887     }
10888 
10889     if (!fp_access_check(s)) {
10890         return;
10891     }
10892 
10893     /* These operations work on the concatenated rm:rn, with each pair of
10894      * adjacent elements being operated on to produce an element in the result.
10895      */
10896     if (size == 3) {
10897         TCGv_i64 tcg_res[2];
10898 
10899         for (pass = 0; pass < 2; pass++) {
10900             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10901             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10902             int passreg = (pass == 0) ? rn : rm;
10903 
10904             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10905             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10906             tcg_res[pass] = tcg_temp_new_i64();
10907 
10908             switch (opcode) {
10909             case 0x17: /* ADDP */
10910                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10911                 break;
10912             case 0x58: /* FMAXNMP */
10913                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10914                 break;
10915             case 0x5a: /* FADDP */
10916                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10917                 break;
10918             case 0x5e: /* FMAXP */
10919                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10920                 break;
10921             case 0x78: /* FMINNMP */
10922                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10923                 break;
10924             case 0x7e: /* FMINP */
10925                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10926                 break;
10927             default:
10928                 g_assert_not_reached();
10929             }
10930         }
10931 
10932         for (pass = 0; pass < 2; pass++) {
10933             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10934         }
10935     } else {
10936         int maxpass = is_q ? 4 : 2;
10937         TCGv_i32 tcg_res[4];
10938 
10939         for (pass = 0; pass < maxpass; pass++) {
10940             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10941             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10942             NeonGenTwoOpFn *genfn = NULL;
10943             int passreg = pass < (maxpass / 2) ? rn : rm;
10944             int passelt = (is_q && (pass & 1)) ? 2 : 0;
10945 
10946             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10947             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10948             tcg_res[pass] = tcg_temp_new_i32();
10949 
10950             switch (opcode) {
10951             case 0x17: /* ADDP */
10952             {
10953                 static NeonGenTwoOpFn * const fns[3] = {
10954                     gen_helper_neon_padd_u8,
10955                     gen_helper_neon_padd_u16,
10956                     tcg_gen_add_i32,
10957                 };
10958                 genfn = fns[size];
10959                 break;
10960             }
10961             case 0x14: /* SMAXP, UMAXP */
10962             {
10963                 static NeonGenTwoOpFn * const fns[3][2] = {
10964                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10965                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10966                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10967                 };
10968                 genfn = fns[size][u];
10969                 break;
10970             }
10971             case 0x15: /* SMINP, UMINP */
10972             {
10973                 static NeonGenTwoOpFn * const fns[3][2] = {
10974                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10975                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10976                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10977                 };
10978                 genfn = fns[size][u];
10979                 break;
10980             }
10981             /* The FP operations are all on single floats (32 bit) */
10982             case 0x58: /* FMAXNMP */
10983                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10984                 break;
10985             case 0x5a: /* FADDP */
10986                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10987                 break;
10988             case 0x5e: /* FMAXP */
10989                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10990                 break;
10991             case 0x78: /* FMINNMP */
10992                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10993                 break;
10994             case 0x7e: /* FMINP */
10995                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10996                 break;
10997             default:
10998                 g_assert_not_reached();
10999             }
11000 
11001             /* FP ops called directly, otherwise call now */
11002             if (genfn) {
11003                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11004             }
11005         }
11006 
11007         for (pass = 0; pass < maxpass; pass++) {
11008             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11009         }
11010         clear_vec_high(s, is_q, rd);
11011     }
11012 }
11013 
11014 /* Floating point op subgroup of C3.6.16. */
11015 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11016 {
11017     /* For floating point ops, the U, size[1] and opcode bits
11018      * together indicate the operation. size[0] indicates single
11019      * or double.
11020      */
11021     int fpopcode = extract32(insn, 11, 5)
11022         | (extract32(insn, 23, 1) << 5)
11023         | (extract32(insn, 29, 1) << 6);
11024     int is_q = extract32(insn, 30, 1);
11025     int size = extract32(insn, 22, 1);
11026     int rm = extract32(insn, 16, 5);
11027     int rn = extract32(insn, 5, 5);
11028     int rd = extract32(insn, 0, 5);
11029 
11030     int datasize = is_q ? 128 : 64;
11031     int esize = 32 << size;
11032     int elements = datasize / esize;
11033 
11034     if (size == 1 && !is_q) {
11035         unallocated_encoding(s);
11036         return;
11037     }
11038 
11039     switch (fpopcode) {
11040     case 0x58: /* FMAXNMP */
11041     case 0x5a: /* FADDP */
11042     case 0x5e: /* FMAXP */
11043     case 0x78: /* FMINNMP */
11044     case 0x7e: /* FMINP */
11045         if (size && !is_q) {
11046             unallocated_encoding(s);
11047             return;
11048         }
11049         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11050                                rn, rm, rd);
11051         return;
11052     case 0x1b: /* FMULX */
11053     case 0x1f: /* FRECPS */
11054     case 0x3f: /* FRSQRTS */
11055     case 0x5d: /* FACGE */
11056     case 0x7d: /* FACGT */
11057     case 0x19: /* FMLA */
11058     case 0x39: /* FMLS */
11059     case 0x18: /* FMAXNM */
11060     case 0x1a: /* FADD */
11061     case 0x1c: /* FCMEQ */
11062     case 0x1e: /* FMAX */
11063     case 0x38: /* FMINNM */
11064     case 0x3a: /* FSUB */
11065     case 0x3e: /* FMIN */
11066     case 0x5b: /* FMUL */
11067     case 0x5c: /* FCMGE */
11068     case 0x5f: /* FDIV */
11069     case 0x7a: /* FABD */
11070     case 0x7c: /* FCMGT */
11071         if (!fp_access_check(s)) {
11072             return;
11073         }
11074         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11075         return;
11076 
11077     case 0x1d: /* FMLAL  */
11078     case 0x3d: /* FMLSL  */
11079     case 0x59: /* FMLAL2 */
11080     case 0x79: /* FMLSL2 */
11081         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11082             unallocated_encoding(s);
11083             return;
11084         }
11085         if (fp_access_check(s)) {
11086             int is_s = extract32(insn, 23, 1);
11087             int is_2 = extract32(insn, 29, 1);
11088             int data = (is_2 << 1) | is_s;
11089             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11090                                vec_full_reg_offset(s, rn),
11091                                vec_full_reg_offset(s, rm), cpu_env,
11092                                is_q ? 16 : 8, vec_full_reg_size(s),
11093                                data, gen_helper_gvec_fmlal_a64);
11094         }
11095         return;
11096 
11097     default:
11098         unallocated_encoding(s);
11099         return;
11100     }
11101 }
11102 
11103 /* Integer op subgroup of C3.6.16. */
11104 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11105 {
11106     int is_q = extract32(insn, 30, 1);
11107     int u = extract32(insn, 29, 1);
11108     int size = extract32(insn, 22, 2);
11109     int opcode = extract32(insn, 11, 5);
11110     int rm = extract32(insn, 16, 5);
11111     int rn = extract32(insn, 5, 5);
11112     int rd = extract32(insn, 0, 5);
11113     int pass;
11114     TCGCond cond;
11115 
11116     switch (opcode) {
11117     case 0x13: /* MUL, PMUL */
11118         if (u && size != 0) {
11119             unallocated_encoding(s);
11120             return;
11121         }
11122         /* fall through */
11123     case 0x0: /* SHADD, UHADD */
11124     case 0x2: /* SRHADD, URHADD */
11125     case 0x4: /* SHSUB, UHSUB */
11126     case 0xc: /* SMAX, UMAX */
11127     case 0xd: /* SMIN, UMIN */
11128     case 0xe: /* SABD, UABD */
11129     case 0xf: /* SABA, UABA */
11130     case 0x12: /* MLA, MLS */
11131         if (size == 3) {
11132             unallocated_encoding(s);
11133             return;
11134         }
11135         break;
11136     case 0x16: /* SQDMULH, SQRDMULH */
11137         if (size == 0 || size == 3) {
11138             unallocated_encoding(s);
11139             return;
11140         }
11141         break;
11142     default:
11143         if (size == 3 && !is_q) {
11144             unallocated_encoding(s);
11145             return;
11146         }
11147         break;
11148     }
11149 
11150     if (!fp_access_check(s)) {
11151         return;
11152     }
11153 
11154     switch (opcode) {
11155     case 0x01: /* SQADD, UQADD */
11156         if (u) {
11157             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11158         } else {
11159             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11160         }
11161         return;
11162     case 0x05: /* SQSUB, UQSUB */
11163         if (u) {
11164             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11165         } else {
11166             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11167         }
11168         return;
11169     case 0x08: /* SSHL, USHL */
11170         if (u) {
11171             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11172         } else {
11173             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11174         }
11175         return;
11176     case 0x0c: /* SMAX, UMAX */
11177         if (u) {
11178             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11179         } else {
11180             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11181         }
11182         return;
11183     case 0x0d: /* SMIN, UMIN */
11184         if (u) {
11185             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11186         } else {
11187             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11188         }
11189         return;
11190     case 0xe: /* SABD, UABD */
11191         if (u) {
11192             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11193         } else {
11194             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11195         }
11196         return;
11197     case 0xf: /* SABA, UABA */
11198         if (u) {
11199             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11200         } else {
11201             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11202         }
11203         return;
11204     case 0x10: /* ADD, SUB */
11205         if (u) {
11206             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11207         } else {
11208             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11209         }
11210         return;
11211     case 0x13: /* MUL, PMUL */
11212         if (!u) { /* MUL */
11213             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11214         } else {  /* PMUL */
11215             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11216         }
11217         return;
11218     case 0x12: /* MLA, MLS */
11219         if (u) {
11220             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11221         } else {
11222             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11223         }
11224         return;
11225     case 0x16: /* SQDMULH, SQRDMULH */
11226         {
11227             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11228                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11229                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11230             };
11231             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11232         }
11233         return;
11234     case 0x11:
11235         if (!u) { /* CMTST */
11236             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11237             return;
11238         }
11239         /* else CMEQ */
11240         cond = TCG_COND_EQ;
11241         goto do_gvec_cmp;
11242     case 0x06: /* CMGT, CMHI */
11243         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11244         goto do_gvec_cmp;
11245     case 0x07: /* CMGE, CMHS */
11246         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11247     do_gvec_cmp:
11248         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11249                          vec_full_reg_offset(s, rn),
11250                          vec_full_reg_offset(s, rm),
11251                          is_q ? 16 : 8, vec_full_reg_size(s));
11252         return;
11253     }
11254 
11255     if (size == 3) {
11256         assert(is_q);
11257         for (pass = 0; pass < 2; pass++) {
11258             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11259             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11260             TCGv_i64 tcg_res = tcg_temp_new_i64();
11261 
11262             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11263             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11264 
11265             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11266 
11267             write_vec_element(s, tcg_res, rd, pass, MO_64);
11268         }
11269     } else {
11270         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11271             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11272             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11273             TCGv_i32 tcg_res = tcg_temp_new_i32();
11274             NeonGenTwoOpFn *genfn = NULL;
11275             NeonGenTwoOpEnvFn *genenvfn = NULL;
11276 
11277             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11278             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11279 
11280             switch (opcode) {
11281             case 0x0: /* SHADD, UHADD */
11282             {
11283                 static NeonGenTwoOpFn * const fns[3][2] = {
11284                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11285                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11286                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11287                 };
11288                 genfn = fns[size][u];
11289                 break;
11290             }
11291             case 0x2: /* SRHADD, URHADD */
11292             {
11293                 static NeonGenTwoOpFn * const fns[3][2] = {
11294                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11295                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11296                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11297                 };
11298                 genfn = fns[size][u];
11299                 break;
11300             }
11301             case 0x4: /* SHSUB, UHSUB */
11302             {
11303                 static NeonGenTwoOpFn * const fns[3][2] = {
11304                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11305                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11306                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11307                 };
11308                 genfn = fns[size][u];
11309                 break;
11310             }
11311             case 0x9: /* SQSHL, UQSHL */
11312             {
11313                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11314                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11315                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11316                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11317                 };
11318                 genenvfn = fns[size][u];
11319                 break;
11320             }
11321             case 0xa: /* SRSHL, URSHL */
11322             {
11323                 static NeonGenTwoOpFn * const fns[3][2] = {
11324                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11325                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11326                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11327                 };
11328                 genfn = fns[size][u];
11329                 break;
11330             }
11331             case 0xb: /* SQRSHL, UQRSHL */
11332             {
11333                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11334                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11335                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11336                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11337                 };
11338                 genenvfn = fns[size][u];
11339                 break;
11340             }
11341             default:
11342                 g_assert_not_reached();
11343             }
11344 
11345             if (genenvfn) {
11346                 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11347             } else {
11348                 genfn(tcg_res, tcg_op1, tcg_op2);
11349             }
11350 
11351             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11352         }
11353     }
11354     clear_vec_high(s, is_q, rd);
11355 }
11356 
11357 /* AdvSIMD three same
11358  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11359  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11360  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11361  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11362  */
11363 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11364 {
11365     int opcode = extract32(insn, 11, 5);
11366 
11367     switch (opcode) {
11368     case 0x3: /* logic ops */
11369         disas_simd_3same_logic(s, insn);
11370         break;
11371     case 0x17: /* ADDP */
11372     case 0x14: /* SMAXP, UMAXP */
11373     case 0x15: /* SMINP, UMINP */
11374     {
11375         /* Pairwise operations */
11376         int is_q = extract32(insn, 30, 1);
11377         int u = extract32(insn, 29, 1);
11378         int size = extract32(insn, 22, 2);
11379         int rm = extract32(insn, 16, 5);
11380         int rn = extract32(insn, 5, 5);
11381         int rd = extract32(insn, 0, 5);
11382         if (opcode == 0x17) {
11383             if (u || (size == 3 && !is_q)) {
11384                 unallocated_encoding(s);
11385                 return;
11386             }
11387         } else {
11388             if (size == 3) {
11389                 unallocated_encoding(s);
11390                 return;
11391             }
11392         }
11393         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11394         break;
11395     }
11396     case 0x18 ... 0x31:
11397         /* floating point ops, sz[1] and U are part of opcode */
11398         disas_simd_3same_float(s, insn);
11399         break;
11400     default:
11401         disas_simd_3same_int(s, insn);
11402         break;
11403     }
11404 }
11405 
11406 /*
11407  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11408  *
11409  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11410  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11411  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11412  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11413  *
11414  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11415  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11416  *
11417  */
11418 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11419 {
11420     int opcode = extract32(insn, 11, 3);
11421     int u = extract32(insn, 29, 1);
11422     int a = extract32(insn, 23, 1);
11423     int is_q = extract32(insn, 30, 1);
11424     int rm = extract32(insn, 16, 5);
11425     int rn = extract32(insn, 5, 5);
11426     int rd = extract32(insn, 0, 5);
11427     /*
11428      * For these floating point ops, the U, a and opcode bits
11429      * together indicate the operation.
11430      */
11431     int fpopcode = opcode | (a << 3) | (u << 4);
11432     int datasize = is_q ? 128 : 64;
11433     int elements = datasize / 16;
11434     bool pairwise;
11435     TCGv_ptr fpst;
11436     int pass;
11437 
11438     switch (fpopcode) {
11439     case 0x0: /* FMAXNM */
11440     case 0x1: /* FMLA */
11441     case 0x2: /* FADD */
11442     case 0x3: /* FMULX */
11443     case 0x4: /* FCMEQ */
11444     case 0x6: /* FMAX */
11445     case 0x7: /* FRECPS */
11446     case 0x8: /* FMINNM */
11447     case 0x9: /* FMLS */
11448     case 0xa: /* FSUB */
11449     case 0xe: /* FMIN */
11450     case 0xf: /* FRSQRTS */
11451     case 0x13: /* FMUL */
11452     case 0x14: /* FCMGE */
11453     case 0x15: /* FACGE */
11454     case 0x17: /* FDIV */
11455     case 0x1a: /* FABD */
11456     case 0x1c: /* FCMGT */
11457     case 0x1d: /* FACGT */
11458         pairwise = false;
11459         break;
11460     case 0x10: /* FMAXNMP */
11461     case 0x12: /* FADDP */
11462     case 0x16: /* FMAXP */
11463     case 0x18: /* FMINNMP */
11464     case 0x1e: /* FMINP */
11465         pairwise = true;
11466         break;
11467     default:
11468         unallocated_encoding(s);
11469         return;
11470     }
11471 
11472     if (!dc_isar_feature(aa64_fp16, s)) {
11473         unallocated_encoding(s);
11474         return;
11475     }
11476 
11477     if (!fp_access_check(s)) {
11478         return;
11479     }
11480 
11481     fpst = fpstatus_ptr(FPST_FPCR_F16);
11482 
11483     if (pairwise) {
11484         int maxpass = is_q ? 8 : 4;
11485         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11486         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11487         TCGv_i32 tcg_res[8];
11488 
11489         for (pass = 0; pass < maxpass; pass++) {
11490             int passreg = pass < (maxpass / 2) ? rn : rm;
11491             int passelt = (pass << 1) & (maxpass - 1);
11492 
11493             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11494             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11495             tcg_res[pass] = tcg_temp_new_i32();
11496 
11497             switch (fpopcode) {
11498             case 0x10: /* FMAXNMP */
11499                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11500                                            fpst);
11501                 break;
11502             case 0x12: /* FADDP */
11503                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11504                 break;
11505             case 0x16: /* FMAXP */
11506                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11507                 break;
11508             case 0x18: /* FMINNMP */
11509                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11510                                            fpst);
11511                 break;
11512             case 0x1e: /* FMINP */
11513                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11514                 break;
11515             default:
11516                 g_assert_not_reached();
11517             }
11518         }
11519 
11520         for (pass = 0; pass < maxpass; pass++) {
11521             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11522         }
11523     } else {
11524         for (pass = 0; pass < elements; pass++) {
11525             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11526             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11527             TCGv_i32 tcg_res = tcg_temp_new_i32();
11528 
11529             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11530             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11531 
11532             switch (fpopcode) {
11533             case 0x0: /* FMAXNM */
11534                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11535                 break;
11536             case 0x1: /* FMLA */
11537                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11538                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11539                                            fpst);
11540                 break;
11541             case 0x2: /* FADD */
11542                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11543                 break;
11544             case 0x3: /* FMULX */
11545                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11546                 break;
11547             case 0x4: /* FCMEQ */
11548                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11549                 break;
11550             case 0x6: /* FMAX */
11551                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11552                 break;
11553             case 0x7: /* FRECPS */
11554                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11555                 break;
11556             case 0x8: /* FMINNM */
11557                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11558                 break;
11559             case 0x9: /* FMLS */
11560                 /* As usual for ARM, separate negation for fused multiply-add */
11561                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11562                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11563                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11564                                            fpst);
11565                 break;
11566             case 0xa: /* FSUB */
11567                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11568                 break;
11569             case 0xe: /* FMIN */
11570                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11571                 break;
11572             case 0xf: /* FRSQRTS */
11573                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11574                 break;
11575             case 0x13: /* FMUL */
11576                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11577                 break;
11578             case 0x14: /* FCMGE */
11579                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11580                 break;
11581             case 0x15: /* FACGE */
11582                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11583                 break;
11584             case 0x17: /* FDIV */
11585                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11586                 break;
11587             case 0x1a: /* FABD */
11588                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11589                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11590                 break;
11591             case 0x1c: /* FCMGT */
11592                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11593                 break;
11594             case 0x1d: /* FACGT */
11595                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11596                 break;
11597             default:
11598                 g_assert_not_reached();
11599             }
11600 
11601             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11602         }
11603     }
11604 
11605     clear_vec_high(s, is_q, rd);
11606 }
11607 
11608 /* AdvSIMD three same extra
11609  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11610  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11611  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11612  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11613  */
11614 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11615 {
11616     int rd = extract32(insn, 0, 5);
11617     int rn = extract32(insn, 5, 5);
11618     int opcode = extract32(insn, 11, 4);
11619     int rm = extract32(insn, 16, 5);
11620     int size = extract32(insn, 22, 2);
11621     bool u = extract32(insn, 29, 1);
11622     bool is_q = extract32(insn, 30, 1);
11623     bool feature;
11624     int rot;
11625 
11626     switch (u * 16 + opcode) {
11627     case 0x10: /* SQRDMLAH (vector) */
11628     case 0x11: /* SQRDMLSH (vector) */
11629         if (size != 1 && size != 2) {
11630             unallocated_encoding(s);
11631             return;
11632         }
11633         feature = dc_isar_feature(aa64_rdm, s);
11634         break;
11635     case 0x02: /* SDOT (vector) */
11636     case 0x12: /* UDOT (vector) */
11637         if (size != MO_32) {
11638             unallocated_encoding(s);
11639             return;
11640         }
11641         feature = dc_isar_feature(aa64_dp, s);
11642         break;
11643     case 0x03: /* USDOT */
11644         if (size != MO_32) {
11645             unallocated_encoding(s);
11646             return;
11647         }
11648         feature = dc_isar_feature(aa64_i8mm, s);
11649         break;
11650     case 0x04: /* SMMLA */
11651     case 0x14: /* UMMLA */
11652     case 0x05: /* USMMLA */
11653         if (!is_q || size != MO_32) {
11654             unallocated_encoding(s);
11655             return;
11656         }
11657         feature = dc_isar_feature(aa64_i8mm, s);
11658         break;
11659     case 0x18: /* FCMLA, #0 */
11660     case 0x19: /* FCMLA, #90 */
11661     case 0x1a: /* FCMLA, #180 */
11662     case 0x1b: /* FCMLA, #270 */
11663     case 0x1c: /* FCADD, #90 */
11664     case 0x1e: /* FCADD, #270 */
11665         if (size == 0
11666             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11667             || (size == 3 && !is_q)) {
11668             unallocated_encoding(s);
11669             return;
11670         }
11671         feature = dc_isar_feature(aa64_fcma, s);
11672         break;
11673     case 0x1d: /* BFMMLA */
11674         if (size != MO_16 || !is_q) {
11675             unallocated_encoding(s);
11676             return;
11677         }
11678         feature = dc_isar_feature(aa64_bf16, s);
11679         break;
11680     case 0x1f:
11681         switch (size) {
11682         case 1: /* BFDOT */
11683         case 3: /* BFMLAL{B,T} */
11684             feature = dc_isar_feature(aa64_bf16, s);
11685             break;
11686         default:
11687             unallocated_encoding(s);
11688             return;
11689         }
11690         break;
11691     default:
11692         unallocated_encoding(s);
11693         return;
11694     }
11695     if (!feature) {
11696         unallocated_encoding(s);
11697         return;
11698     }
11699     if (!fp_access_check(s)) {
11700         return;
11701     }
11702 
11703     switch (opcode) {
11704     case 0x0: /* SQRDMLAH (vector) */
11705         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11706         return;
11707 
11708     case 0x1: /* SQRDMLSH (vector) */
11709         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11710         return;
11711 
11712     case 0x2: /* SDOT / UDOT */
11713         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11714                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11715         return;
11716 
11717     case 0x3: /* USDOT */
11718         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11719         return;
11720 
11721     case 0x04: /* SMMLA, UMMLA */
11722         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11723                          u ? gen_helper_gvec_ummla_b
11724                          : gen_helper_gvec_smmla_b);
11725         return;
11726     case 0x05: /* USMMLA */
11727         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11728         return;
11729 
11730     case 0x8: /* FCMLA, #0 */
11731     case 0x9: /* FCMLA, #90 */
11732     case 0xa: /* FCMLA, #180 */
11733     case 0xb: /* FCMLA, #270 */
11734         rot = extract32(opcode, 0, 2);
11735         switch (size) {
11736         case 1:
11737             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11738                               gen_helper_gvec_fcmlah);
11739             break;
11740         case 2:
11741             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11742                               gen_helper_gvec_fcmlas);
11743             break;
11744         case 3:
11745             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11746                               gen_helper_gvec_fcmlad);
11747             break;
11748         default:
11749             g_assert_not_reached();
11750         }
11751         return;
11752 
11753     case 0xc: /* FCADD, #90 */
11754     case 0xe: /* FCADD, #270 */
11755         rot = extract32(opcode, 1, 1);
11756         switch (size) {
11757         case 1:
11758             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11759                               gen_helper_gvec_fcaddh);
11760             break;
11761         case 2:
11762             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11763                               gen_helper_gvec_fcadds);
11764             break;
11765         case 3:
11766             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11767                               gen_helper_gvec_fcaddd);
11768             break;
11769         default:
11770             g_assert_not_reached();
11771         }
11772         return;
11773 
11774     case 0xd: /* BFMMLA */
11775         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11776         return;
11777     case 0xf:
11778         switch (size) {
11779         case 1: /* BFDOT */
11780             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11781             break;
11782         case 3: /* BFMLAL{B,T} */
11783             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11784                               gen_helper_gvec_bfmlal);
11785             break;
11786         default:
11787             g_assert_not_reached();
11788         }
11789         return;
11790 
11791     default:
11792         g_assert_not_reached();
11793     }
11794 }
11795 
11796 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11797                                   int size, int rn, int rd)
11798 {
11799     /* Handle 2-reg-misc ops which are widening (so each size element
11800      * in the source becomes a 2*size element in the destination.
11801      * The only instruction like this is FCVTL.
11802      */
11803     int pass;
11804 
11805     if (size == 3) {
11806         /* 32 -> 64 bit fp conversion */
11807         TCGv_i64 tcg_res[2];
11808         int srcelt = is_q ? 2 : 0;
11809 
11810         for (pass = 0; pass < 2; pass++) {
11811             TCGv_i32 tcg_op = tcg_temp_new_i32();
11812             tcg_res[pass] = tcg_temp_new_i64();
11813 
11814             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11815             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11816         }
11817         for (pass = 0; pass < 2; pass++) {
11818             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11819         }
11820     } else {
11821         /* 16 -> 32 bit fp conversion */
11822         int srcelt = is_q ? 4 : 0;
11823         TCGv_i32 tcg_res[4];
11824         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11825         TCGv_i32 ahp = get_ahp_flag();
11826 
11827         for (pass = 0; pass < 4; pass++) {
11828             tcg_res[pass] = tcg_temp_new_i32();
11829 
11830             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11831             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11832                                            fpst, ahp);
11833         }
11834         for (pass = 0; pass < 4; pass++) {
11835             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11836         }
11837     }
11838 }
11839 
11840 static void handle_rev(DisasContext *s, int opcode, bool u,
11841                        bool is_q, int size, int rn, int rd)
11842 {
11843     int op = (opcode << 1) | u;
11844     int opsz = op + size;
11845     int grp_size = 3 - opsz;
11846     int dsize = is_q ? 128 : 64;
11847     int i;
11848 
11849     if (opsz >= 3) {
11850         unallocated_encoding(s);
11851         return;
11852     }
11853 
11854     if (!fp_access_check(s)) {
11855         return;
11856     }
11857 
11858     if (size == 0) {
11859         /* Special case bytes, use bswap op on each group of elements */
11860         int groups = dsize / (8 << grp_size);
11861 
11862         for (i = 0; i < groups; i++) {
11863             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11864 
11865             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11866             switch (grp_size) {
11867             case MO_16:
11868                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11869                 break;
11870             case MO_32:
11871                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11872                 break;
11873             case MO_64:
11874                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11875                 break;
11876             default:
11877                 g_assert_not_reached();
11878             }
11879             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11880         }
11881         clear_vec_high(s, is_q, rd);
11882     } else {
11883         int revmask = (1 << grp_size) - 1;
11884         int esize = 8 << size;
11885         int elements = dsize / esize;
11886         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11887         TCGv_i64 tcg_rd[2];
11888 
11889         for (i = 0; i < 2; i++) {
11890             tcg_rd[i] = tcg_temp_new_i64();
11891             tcg_gen_movi_i64(tcg_rd[i], 0);
11892         }
11893 
11894         for (i = 0; i < elements; i++) {
11895             int e_rev = (i & 0xf) ^ revmask;
11896             int w = (e_rev * esize) / 64;
11897             int o = (e_rev * esize) % 64;
11898 
11899             read_vec_element(s, tcg_rn, rn, i, size);
11900             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11901         }
11902 
11903         for (i = 0; i < 2; i++) {
11904             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11905         }
11906         clear_vec_high(s, true, rd);
11907     }
11908 }
11909 
11910 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11911                                   bool is_q, int size, int rn, int rd)
11912 {
11913     /* Implement the pairwise operations from 2-misc:
11914      * SADDLP, UADDLP, SADALP, UADALP.
11915      * These all add pairs of elements in the input to produce a
11916      * double-width result element in the output (possibly accumulating).
11917      */
11918     bool accum = (opcode == 0x6);
11919     int maxpass = is_q ? 2 : 1;
11920     int pass;
11921     TCGv_i64 tcg_res[2];
11922 
11923     if (size == 2) {
11924         /* 32 + 32 -> 64 op */
11925         MemOp memop = size + (u ? 0 : MO_SIGN);
11926 
11927         for (pass = 0; pass < maxpass; pass++) {
11928             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11929             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11930 
11931             tcg_res[pass] = tcg_temp_new_i64();
11932 
11933             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11934             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11935             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11936             if (accum) {
11937                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11938                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11939             }
11940         }
11941     } else {
11942         for (pass = 0; pass < maxpass; pass++) {
11943             TCGv_i64 tcg_op = tcg_temp_new_i64();
11944             NeonGenOne64OpFn *genfn;
11945             static NeonGenOne64OpFn * const fns[2][2] = {
11946                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11947                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11948             };
11949 
11950             genfn = fns[size][u];
11951 
11952             tcg_res[pass] = tcg_temp_new_i64();
11953 
11954             read_vec_element(s, tcg_op, rn, pass, MO_64);
11955             genfn(tcg_res[pass], tcg_op);
11956 
11957             if (accum) {
11958                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11959                 if (size == 0) {
11960                     gen_helper_neon_addl_u16(tcg_res[pass],
11961                                              tcg_res[pass], tcg_op);
11962                 } else {
11963                     gen_helper_neon_addl_u32(tcg_res[pass],
11964                                              tcg_res[pass], tcg_op);
11965                 }
11966             }
11967         }
11968     }
11969     if (!is_q) {
11970         tcg_res[1] = tcg_constant_i64(0);
11971     }
11972     for (pass = 0; pass < 2; pass++) {
11973         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11974     }
11975 }
11976 
11977 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11978 {
11979     /* Implement SHLL and SHLL2 */
11980     int pass;
11981     int part = is_q ? 2 : 0;
11982     TCGv_i64 tcg_res[2];
11983 
11984     for (pass = 0; pass < 2; pass++) {
11985         static NeonGenWidenFn * const widenfns[3] = {
11986             gen_helper_neon_widen_u8,
11987             gen_helper_neon_widen_u16,
11988             tcg_gen_extu_i32_i64,
11989         };
11990         NeonGenWidenFn *widenfn = widenfns[size];
11991         TCGv_i32 tcg_op = tcg_temp_new_i32();
11992 
11993         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11994         tcg_res[pass] = tcg_temp_new_i64();
11995         widenfn(tcg_res[pass], tcg_op);
11996         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11997     }
11998 
11999     for (pass = 0; pass < 2; pass++) {
12000         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12001     }
12002 }
12003 
12004 /* AdvSIMD two reg misc
12005  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12006  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12007  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12008  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12009  */
12010 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12011 {
12012     int size = extract32(insn, 22, 2);
12013     int opcode = extract32(insn, 12, 5);
12014     bool u = extract32(insn, 29, 1);
12015     bool is_q = extract32(insn, 30, 1);
12016     int rn = extract32(insn, 5, 5);
12017     int rd = extract32(insn, 0, 5);
12018     bool need_fpstatus = false;
12019     int rmode = -1;
12020     TCGv_i32 tcg_rmode;
12021     TCGv_ptr tcg_fpstatus;
12022 
12023     switch (opcode) {
12024     case 0x0: /* REV64, REV32 */
12025     case 0x1: /* REV16 */
12026         handle_rev(s, opcode, u, is_q, size, rn, rd);
12027         return;
12028     case 0x5: /* CNT, NOT, RBIT */
12029         if (u && size == 0) {
12030             /* NOT */
12031             break;
12032         } else if (u && size == 1) {
12033             /* RBIT */
12034             break;
12035         } else if (!u && size == 0) {
12036             /* CNT */
12037             break;
12038         }
12039         unallocated_encoding(s);
12040         return;
12041     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12042     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12043         if (size == 3) {
12044             unallocated_encoding(s);
12045             return;
12046         }
12047         if (!fp_access_check(s)) {
12048             return;
12049         }
12050 
12051         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12052         return;
12053     case 0x4: /* CLS, CLZ */
12054         if (size == 3) {
12055             unallocated_encoding(s);
12056             return;
12057         }
12058         break;
12059     case 0x2: /* SADDLP, UADDLP */
12060     case 0x6: /* SADALP, UADALP */
12061         if (size == 3) {
12062             unallocated_encoding(s);
12063             return;
12064         }
12065         if (!fp_access_check(s)) {
12066             return;
12067         }
12068         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12069         return;
12070     case 0x13: /* SHLL, SHLL2 */
12071         if (u == 0 || size == 3) {
12072             unallocated_encoding(s);
12073             return;
12074         }
12075         if (!fp_access_check(s)) {
12076             return;
12077         }
12078         handle_shll(s, is_q, size, rn, rd);
12079         return;
12080     case 0xa: /* CMLT */
12081         if (u == 1) {
12082             unallocated_encoding(s);
12083             return;
12084         }
12085         /* fall through */
12086     case 0x8: /* CMGT, CMGE */
12087     case 0x9: /* CMEQ, CMLE */
12088     case 0xb: /* ABS, NEG */
12089         if (size == 3 && !is_q) {
12090             unallocated_encoding(s);
12091             return;
12092         }
12093         break;
12094     case 0x3: /* SUQADD, USQADD */
12095         if (size == 3 && !is_q) {
12096             unallocated_encoding(s);
12097             return;
12098         }
12099         if (!fp_access_check(s)) {
12100             return;
12101         }
12102         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12103         return;
12104     case 0x7: /* SQABS, SQNEG */
12105         if (size == 3 && !is_q) {
12106             unallocated_encoding(s);
12107             return;
12108         }
12109         break;
12110     case 0xc ... 0xf:
12111     case 0x16 ... 0x1f:
12112     {
12113         /* Floating point: U, size[1] and opcode indicate operation;
12114          * size[0] indicates single or double precision.
12115          */
12116         int is_double = extract32(size, 0, 1);
12117         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12118         size = is_double ? 3 : 2;
12119         switch (opcode) {
12120         case 0x2f: /* FABS */
12121         case 0x6f: /* FNEG */
12122             if (size == 3 && !is_q) {
12123                 unallocated_encoding(s);
12124                 return;
12125             }
12126             break;
12127         case 0x1d: /* SCVTF */
12128         case 0x5d: /* UCVTF */
12129         {
12130             bool is_signed = (opcode == 0x1d) ? true : false;
12131             int elements = is_double ? 2 : is_q ? 4 : 2;
12132             if (is_double && !is_q) {
12133                 unallocated_encoding(s);
12134                 return;
12135             }
12136             if (!fp_access_check(s)) {
12137                 return;
12138             }
12139             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12140             return;
12141         }
12142         case 0x2c: /* FCMGT (zero) */
12143         case 0x2d: /* FCMEQ (zero) */
12144         case 0x2e: /* FCMLT (zero) */
12145         case 0x6c: /* FCMGE (zero) */
12146         case 0x6d: /* FCMLE (zero) */
12147             if (size == 3 && !is_q) {
12148                 unallocated_encoding(s);
12149                 return;
12150             }
12151             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12152             return;
12153         case 0x7f: /* FSQRT */
12154             if (size == 3 && !is_q) {
12155                 unallocated_encoding(s);
12156                 return;
12157             }
12158             break;
12159         case 0x1a: /* FCVTNS */
12160         case 0x1b: /* FCVTMS */
12161         case 0x3a: /* FCVTPS */
12162         case 0x3b: /* FCVTZS */
12163         case 0x5a: /* FCVTNU */
12164         case 0x5b: /* FCVTMU */
12165         case 0x7a: /* FCVTPU */
12166         case 0x7b: /* FCVTZU */
12167             need_fpstatus = true;
12168             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12169             if (size == 3 && !is_q) {
12170                 unallocated_encoding(s);
12171                 return;
12172             }
12173             break;
12174         case 0x5c: /* FCVTAU */
12175         case 0x1c: /* FCVTAS */
12176             need_fpstatus = true;
12177             rmode = FPROUNDING_TIEAWAY;
12178             if (size == 3 && !is_q) {
12179                 unallocated_encoding(s);
12180                 return;
12181             }
12182             break;
12183         case 0x3c: /* URECPE */
12184             if (size == 3) {
12185                 unallocated_encoding(s);
12186                 return;
12187             }
12188             /* fall through */
12189         case 0x3d: /* FRECPE */
12190         case 0x7d: /* FRSQRTE */
12191             if (size == 3 && !is_q) {
12192                 unallocated_encoding(s);
12193                 return;
12194             }
12195             if (!fp_access_check(s)) {
12196                 return;
12197             }
12198             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12199             return;
12200         case 0x56: /* FCVTXN, FCVTXN2 */
12201             if (size == 2) {
12202                 unallocated_encoding(s);
12203                 return;
12204             }
12205             /* fall through */
12206         case 0x16: /* FCVTN, FCVTN2 */
12207             /* handle_2misc_narrow does a 2*size -> size operation, but these
12208              * instructions encode the source size rather than dest size.
12209              */
12210             if (!fp_access_check(s)) {
12211                 return;
12212             }
12213             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12214             return;
12215         case 0x36: /* BFCVTN, BFCVTN2 */
12216             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12217                 unallocated_encoding(s);
12218                 return;
12219             }
12220             if (!fp_access_check(s)) {
12221                 return;
12222             }
12223             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12224             return;
12225         case 0x17: /* FCVTL, FCVTL2 */
12226             if (!fp_access_check(s)) {
12227                 return;
12228             }
12229             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12230             return;
12231         case 0x18: /* FRINTN */
12232         case 0x19: /* FRINTM */
12233         case 0x38: /* FRINTP */
12234         case 0x39: /* FRINTZ */
12235             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12236             /* fall through */
12237         case 0x59: /* FRINTX */
12238         case 0x79: /* FRINTI */
12239             need_fpstatus = true;
12240             if (size == 3 && !is_q) {
12241                 unallocated_encoding(s);
12242                 return;
12243             }
12244             break;
12245         case 0x58: /* FRINTA */
12246             rmode = FPROUNDING_TIEAWAY;
12247             need_fpstatus = true;
12248             if (size == 3 && !is_q) {
12249                 unallocated_encoding(s);
12250                 return;
12251             }
12252             break;
12253         case 0x7c: /* URSQRTE */
12254             if (size == 3) {
12255                 unallocated_encoding(s);
12256                 return;
12257             }
12258             break;
12259         case 0x1e: /* FRINT32Z */
12260         case 0x1f: /* FRINT64Z */
12261             rmode = FPROUNDING_ZERO;
12262             /* fall through */
12263         case 0x5e: /* FRINT32X */
12264         case 0x5f: /* FRINT64X */
12265             need_fpstatus = true;
12266             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12267                 unallocated_encoding(s);
12268                 return;
12269             }
12270             break;
12271         default:
12272             unallocated_encoding(s);
12273             return;
12274         }
12275         break;
12276     }
12277     default:
12278         unallocated_encoding(s);
12279         return;
12280     }
12281 
12282     if (!fp_access_check(s)) {
12283         return;
12284     }
12285 
12286     if (need_fpstatus || rmode >= 0) {
12287         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12288     } else {
12289         tcg_fpstatus = NULL;
12290     }
12291     if (rmode >= 0) {
12292         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12293     } else {
12294         tcg_rmode = NULL;
12295     }
12296 
12297     switch (opcode) {
12298     case 0x5:
12299         if (u && size == 0) { /* NOT */
12300             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12301             return;
12302         }
12303         break;
12304     case 0x8: /* CMGT, CMGE */
12305         if (u) {
12306             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12307         } else {
12308             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12309         }
12310         return;
12311     case 0x9: /* CMEQ, CMLE */
12312         if (u) {
12313             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12314         } else {
12315             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12316         }
12317         return;
12318     case 0xa: /* CMLT */
12319         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12320         return;
12321     case 0xb:
12322         if (u) { /* ABS, NEG */
12323             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12324         } else {
12325             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12326         }
12327         return;
12328     }
12329 
12330     if (size == 3) {
12331         /* All 64-bit element operations can be shared with scalar 2misc */
12332         int pass;
12333 
12334         /* Coverity claims (size == 3 && !is_q) has been eliminated
12335          * from all paths leading to here.
12336          */
12337         tcg_debug_assert(is_q);
12338         for (pass = 0; pass < 2; pass++) {
12339             TCGv_i64 tcg_op = tcg_temp_new_i64();
12340             TCGv_i64 tcg_res = tcg_temp_new_i64();
12341 
12342             read_vec_element(s, tcg_op, rn, pass, MO_64);
12343 
12344             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12345                             tcg_rmode, tcg_fpstatus);
12346 
12347             write_vec_element(s, tcg_res, rd, pass, MO_64);
12348         }
12349     } else {
12350         int pass;
12351 
12352         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12353             TCGv_i32 tcg_op = tcg_temp_new_i32();
12354             TCGv_i32 tcg_res = tcg_temp_new_i32();
12355 
12356             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12357 
12358             if (size == 2) {
12359                 /* Special cases for 32 bit elements */
12360                 switch (opcode) {
12361                 case 0x4: /* CLS */
12362                     if (u) {
12363                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12364                     } else {
12365                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12366                     }
12367                     break;
12368                 case 0x7: /* SQABS, SQNEG */
12369                     if (u) {
12370                         gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12371                     } else {
12372                         gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12373                     }
12374                     break;
12375                 case 0x2f: /* FABS */
12376                     gen_helper_vfp_abss(tcg_res, tcg_op);
12377                     break;
12378                 case 0x6f: /* FNEG */
12379                     gen_helper_vfp_negs(tcg_res, tcg_op);
12380                     break;
12381                 case 0x7f: /* FSQRT */
12382                     gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12383                     break;
12384                 case 0x1a: /* FCVTNS */
12385                 case 0x1b: /* FCVTMS */
12386                 case 0x1c: /* FCVTAS */
12387                 case 0x3a: /* FCVTPS */
12388                 case 0x3b: /* FCVTZS */
12389                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12390                                          tcg_constant_i32(0), tcg_fpstatus);
12391                     break;
12392                 case 0x5a: /* FCVTNU */
12393                 case 0x5b: /* FCVTMU */
12394                 case 0x5c: /* FCVTAU */
12395                 case 0x7a: /* FCVTPU */
12396                 case 0x7b: /* FCVTZU */
12397                     gen_helper_vfp_touls(tcg_res, tcg_op,
12398                                          tcg_constant_i32(0), tcg_fpstatus);
12399                     break;
12400                 case 0x18: /* FRINTN */
12401                 case 0x19: /* FRINTM */
12402                 case 0x38: /* FRINTP */
12403                 case 0x39: /* FRINTZ */
12404                 case 0x58: /* FRINTA */
12405                 case 0x79: /* FRINTI */
12406                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12407                     break;
12408                 case 0x59: /* FRINTX */
12409                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12410                     break;
12411                 case 0x7c: /* URSQRTE */
12412                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12413                     break;
12414                 case 0x1e: /* FRINT32Z */
12415                 case 0x5e: /* FRINT32X */
12416                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12417                     break;
12418                 case 0x1f: /* FRINT64Z */
12419                 case 0x5f: /* FRINT64X */
12420                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12421                     break;
12422                 default:
12423                     g_assert_not_reached();
12424                 }
12425             } else {
12426                 /* Use helpers for 8 and 16 bit elements */
12427                 switch (opcode) {
12428                 case 0x5: /* CNT, RBIT */
12429                     /* For these two insns size is part of the opcode specifier
12430                      * (handled earlier); they always operate on byte elements.
12431                      */
12432                     if (u) {
12433                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12434                     } else {
12435                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12436                     }
12437                     break;
12438                 case 0x7: /* SQABS, SQNEG */
12439                 {
12440                     NeonGenOneOpEnvFn *genfn;
12441                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12442                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12443                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12444                     };
12445                     genfn = fns[size][u];
12446                     genfn(tcg_res, cpu_env, tcg_op);
12447                     break;
12448                 }
12449                 case 0x4: /* CLS, CLZ */
12450                     if (u) {
12451                         if (size == 0) {
12452                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12453                         } else {
12454                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12455                         }
12456                     } else {
12457                         if (size == 0) {
12458                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12459                         } else {
12460                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12461                         }
12462                     }
12463                     break;
12464                 default:
12465                     g_assert_not_reached();
12466                 }
12467             }
12468 
12469             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12470         }
12471     }
12472     clear_vec_high(s, is_q, rd);
12473 
12474     if (tcg_rmode) {
12475         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12476     }
12477 }
12478 
12479 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12480  *
12481  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12482  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12483  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12484  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12485  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12486  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12487  *
12488  * This actually covers two groups where scalar access is governed by
12489  * bit 28. A bunch of the instructions (float to integral) only exist
12490  * in the vector form and are un-allocated for the scalar decode. Also
12491  * in the scalar decode Q is always 1.
12492  */
12493 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12494 {
12495     int fpop, opcode, a, u;
12496     int rn, rd;
12497     bool is_q;
12498     bool is_scalar;
12499     bool only_in_vector = false;
12500 
12501     int pass;
12502     TCGv_i32 tcg_rmode = NULL;
12503     TCGv_ptr tcg_fpstatus = NULL;
12504     bool need_fpst = true;
12505     int rmode = -1;
12506 
12507     if (!dc_isar_feature(aa64_fp16, s)) {
12508         unallocated_encoding(s);
12509         return;
12510     }
12511 
12512     rd = extract32(insn, 0, 5);
12513     rn = extract32(insn, 5, 5);
12514 
12515     a = extract32(insn, 23, 1);
12516     u = extract32(insn, 29, 1);
12517     is_scalar = extract32(insn, 28, 1);
12518     is_q = extract32(insn, 30, 1);
12519 
12520     opcode = extract32(insn, 12, 5);
12521     fpop = deposit32(opcode, 5, 1, a);
12522     fpop = deposit32(fpop, 6, 1, u);
12523 
12524     switch (fpop) {
12525     case 0x1d: /* SCVTF */
12526     case 0x5d: /* UCVTF */
12527     {
12528         int elements;
12529 
12530         if (is_scalar) {
12531             elements = 1;
12532         } else {
12533             elements = (is_q ? 8 : 4);
12534         }
12535 
12536         if (!fp_access_check(s)) {
12537             return;
12538         }
12539         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12540         return;
12541     }
12542     break;
12543     case 0x2c: /* FCMGT (zero) */
12544     case 0x2d: /* FCMEQ (zero) */
12545     case 0x2e: /* FCMLT (zero) */
12546     case 0x6c: /* FCMGE (zero) */
12547     case 0x6d: /* FCMLE (zero) */
12548         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12549         return;
12550     case 0x3d: /* FRECPE */
12551     case 0x3f: /* FRECPX */
12552         break;
12553     case 0x18: /* FRINTN */
12554         only_in_vector = true;
12555         rmode = FPROUNDING_TIEEVEN;
12556         break;
12557     case 0x19: /* FRINTM */
12558         only_in_vector = true;
12559         rmode = FPROUNDING_NEGINF;
12560         break;
12561     case 0x38: /* FRINTP */
12562         only_in_vector = true;
12563         rmode = FPROUNDING_POSINF;
12564         break;
12565     case 0x39: /* FRINTZ */
12566         only_in_vector = true;
12567         rmode = FPROUNDING_ZERO;
12568         break;
12569     case 0x58: /* FRINTA */
12570         only_in_vector = true;
12571         rmode = FPROUNDING_TIEAWAY;
12572         break;
12573     case 0x59: /* FRINTX */
12574     case 0x79: /* FRINTI */
12575         only_in_vector = true;
12576         /* current rounding mode */
12577         break;
12578     case 0x1a: /* FCVTNS */
12579         rmode = FPROUNDING_TIEEVEN;
12580         break;
12581     case 0x1b: /* FCVTMS */
12582         rmode = FPROUNDING_NEGINF;
12583         break;
12584     case 0x1c: /* FCVTAS */
12585         rmode = FPROUNDING_TIEAWAY;
12586         break;
12587     case 0x3a: /* FCVTPS */
12588         rmode = FPROUNDING_POSINF;
12589         break;
12590     case 0x3b: /* FCVTZS */
12591         rmode = FPROUNDING_ZERO;
12592         break;
12593     case 0x5a: /* FCVTNU */
12594         rmode = FPROUNDING_TIEEVEN;
12595         break;
12596     case 0x5b: /* FCVTMU */
12597         rmode = FPROUNDING_NEGINF;
12598         break;
12599     case 0x5c: /* FCVTAU */
12600         rmode = FPROUNDING_TIEAWAY;
12601         break;
12602     case 0x7a: /* FCVTPU */
12603         rmode = FPROUNDING_POSINF;
12604         break;
12605     case 0x7b: /* FCVTZU */
12606         rmode = FPROUNDING_ZERO;
12607         break;
12608     case 0x2f: /* FABS */
12609     case 0x6f: /* FNEG */
12610         need_fpst = false;
12611         break;
12612     case 0x7d: /* FRSQRTE */
12613     case 0x7f: /* FSQRT (vector) */
12614         break;
12615     default:
12616         unallocated_encoding(s);
12617         return;
12618     }
12619 
12620 
12621     /* Check additional constraints for the scalar encoding */
12622     if (is_scalar) {
12623         if (!is_q) {
12624             unallocated_encoding(s);
12625             return;
12626         }
12627         /* FRINTxx is only in the vector form */
12628         if (only_in_vector) {
12629             unallocated_encoding(s);
12630             return;
12631         }
12632     }
12633 
12634     if (!fp_access_check(s)) {
12635         return;
12636     }
12637 
12638     if (rmode >= 0 || need_fpst) {
12639         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12640     }
12641 
12642     if (rmode >= 0) {
12643         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12644     }
12645 
12646     if (is_scalar) {
12647         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12648         TCGv_i32 tcg_res = tcg_temp_new_i32();
12649 
12650         switch (fpop) {
12651         case 0x1a: /* FCVTNS */
12652         case 0x1b: /* FCVTMS */
12653         case 0x1c: /* FCVTAS */
12654         case 0x3a: /* FCVTPS */
12655         case 0x3b: /* FCVTZS */
12656             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12657             break;
12658         case 0x3d: /* FRECPE */
12659             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12660             break;
12661         case 0x3f: /* FRECPX */
12662             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12663             break;
12664         case 0x5a: /* FCVTNU */
12665         case 0x5b: /* FCVTMU */
12666         case 0x5c: /* FCVTAU */
12667         case 0x7a: /* FCVTPU */
12668         case 0x7b: /* FCVTZU */
12669             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12670             break;
12671         case 0x6f: /* FNEG */
12672             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12673             break;
12674         case 0x7d: /* FRSQRTE */
12675             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12676             break;
12677         default:
12678             g_assert_not_reached();
12679         }
12680 
12681         /* limit any sign extension going on */
12682         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12683         write_fp_sreg(s, rd, tcg_res);
12684     } else {
12685         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12686             TCGv_i32 tcg_op = tcg_temp_new_i32();
12687             TCGv_i32 tcg_res = tcg_temp_new_i32();
12688 
12689             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12690 
12691             switch (fpop) {
12692             case 0x1a: /* FCVTNS */
12693             case 0x1b: /* FCVTMS */
12694             case 0x1c: /* FCVTAS */
12695             case 0x3a: /* FCVTPS */
12696             case 0x3b: /* FCVTZS */
12697                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12698                 break;
12699             case 0x3d: /* FRECPE */
12700                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12701                 break;
12702             case 0x5a: /* FCVTNU */
12703             case 0x5b: /* FCVTMU */
12704             case 0x5c: /* FCVTAU */
12705             case 0x7a: /* FCVTPU */
12706             case 0x7b: /* FCVTZU */
12707                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12708                 break;
12709             case 0x18: /* FRINTN */
12710             case 0x19: /* FRINTM */
12711             case 0x38: /* FRINTP */
12712             case 0x39: /* FRINTZ */
12713             case 0x58: /* FRINTA */
12714             case 0x79: /* FRINTI */
12715                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12716                 break;
12717             case 0x59: /* FRINTX */
12718                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12719                 break;
12720             case 0x2f: /* FABS */
12721                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12722                 break;
12723             case 0x6f: /* FNEG */
12724                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12725                 break;
12726             case 0x7d: /* FRSQRTE */
12727                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12728                 break;
12729             case 0x7f: /* FSQRT */
12730                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12731                 break;
12732             default:
12733                 g_assert_not_reached();
12734             }
12735 
12736             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12737         }
12738 
12739         clear_vec_high(s, is_q, rd);
12740     }
12741 
12742     if (tcg_rmode) {
12743         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12744     }
12745 }
12746 
12747 /* AdvSIMD scalar x indexed element
12748  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12749  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12750  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12751  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12752  * AdvSIMD vector x indexed element
12753  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12754  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12755  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12756  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12757  */
12758 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12759 {
12760     /* This encoding has two kinds of instruction:
12761      *  normal, where we perform elt x idxelt => elt for each
12762      *     element in the vector
12763      *  long, where we perform elt x idxelt and generate a result of
12764      *     double the width of the input element
12765      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12766      */
12767     bool is_scalar = extract32(insn, 28, 1);
12768     bool is_q = extract32(insn, 30, 1);
12769     bool u = extract32(insn, 29, 1);
12770     int size = extract32(insn, 22, 2);
12771     int l = extract32(insn, 21, 1);
12772     int m = extract32(insn, 20, 1);
12773     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12774     int rm = extract32(insn, 16, 4);
12775     int opcode = extract32(insn, 12, 4);
12776     int h = extract32(insn, 11, 1);
12777     int rn = extract32(insn, 5, 5);
12778     int rd = extract32(insn, 0, 5);
12779     bool is_long = false;
12780     int is_fp = 0;
12781     bool is_fp16 = false;
12782     int index;
12783     TCGv_ptr fpst;
12784 
12785     switch (16 * u + opcode) {
12786     case 0x08: /* MUL */
12787     case 0x10: /* MLA */
12788     case 0x14: /* MLS */
12789         if (is_scalar) {
12790             unallocated_encoding(s);
12791             return;
12792         }
12793         break;
12794     case 0x02: /* SMLAL, SMLAL2 */
12795     case 0x12: /* UMLAL, UMLAL2 */
12796     case 0x06: /* SMLSL, SMLSL2 */
12797     case 0x16: /* UMLSL, UMLSL2 */
12798     case 0x0a: /* SMULL, SMULL2 */
12799     case 0x1a: /* UMULL, UMULL2 */
12800         if (is_scalar) {
12801             unallocated_encoding(s);
12802             return;
12803         }
12804         is_long = true;
12805         break;
12806     case 0x03: /* SQDMLAL, SQDMLAL2 */
12807     case 0x07: /* SQDMLSL, SQDMLSL2 */
12808     case 0x0b: /* SQDMULL, SQDMULL2 */
12809         is_long = true;
12810         break;
12811     case 0x0c: /* SQDMULH */
12812     case 0x0d: /* SQRDMULH */
12813         break;
12814     case 0x01: /* FMLA */
12815     case 0x05: /* FMLS */
12816     case 0x09: /* FMUL */
12817     case 0x19: /* FMULX */
12818         is_fp = 1;
12819         break;
12820     case 0x1d: /* SQRDMLAH */
12821     case 0x1f: /* SQRDMLSH */
12822         if (!dc_isar_feature(aa64_rdm, s)) {
12823             unallocated_encoding(s);
12824             return;
12825         }
12826         break;
12827     case 0x0e: /* SDOT */
12828     case 0x1e: /* UDOT */
12829         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12830             unallocated_encoding(s);
12831             return;
12832         }
12833         break;
12834     case 0x0f:
12835         switch (size) {
12836         case 0: /* SUDOT */
12837         case 2: /* USDOT */
12838             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12839                 unallocated_encoding(s);
12840                 return;
12841             }
12842             size = MO_32;
12843             break;
12844         case 1: /* BFDOT */
12845             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12846                 unallocated_encoding(s);
12847                 return;
12848             }
12849             size = MO_32;
12850             break;
12851         case 3: /* BFMLAL{B,T} */
12852             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12853                 unallocated_encoding(s);
12854                 return;
12855             }
12856             /* can't set is_fp without other incorrect size checks */
12857             size = MO_16;
12858             break;
12859         default:
12860             unallocated_encoding(s);
12861             return;
12862         }
12863         break;
12864     case 0x11: /* FCMLA #0 */
12865     case 0x13: /* FCMLA #90 */
12866     case 0x15: /* FCMLA #180 */
12867     case 0x17: /* FCMLA #270 */
12868         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12869             unallocated_encoding(s);
12870             return;
12871         }
12872         is_fp = 2;
12873         break;
12874     case 0x00: /* FMLAL */
12875     case 0x04: /* FMLSL */
12876     case 0x18: /* FMLAL2 */
12877     case 0x1c: /* FMLSL2 */
12878         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12879             unallocated_encoding(s);
12880             return;
12881         }
12882         size = MO_16;
12883         /* is_fp, but we pass cpu_env not fp_status.  */
12884         break;
12885     default:
12886         unallocated_encoding(s);
12887         return;
12888     }
12889 
12890     switch (is_fp) {
12891     case 1: /* normal fp */
12892         /* convert insn encoded size to MemOp size */
12893         switch (size) {
12894         case 0: /* half-precision */
12895             size = MO_16;
12896             is_fp16 = true;
12897             break;
12898         case MO_32: /* single precision */
12899         case MO_64: /* double precision */
12900             break;
12901         default:
12902             unallocated_encoding(s);
12903             return;
12904         }
12905         break;
12906 
12907     case 2: /* complex fp */
12908         /* Each indexable element is a complex pair.  */
12909         size += 1;
12910         switch (size) {
12911         case MO_32:
12912             if (h && !is_q) {
12913                 unallocated_encoding(s);
12914                 return;
12915             }
12916             is_fp16 = true;
12917             break;
12918         case MO_64:
12919             break;
12920         default:
12921             unallocated_encoding(s);
12922             return;
12923         }
12924         break;
12925 
12926     default: /* integer */
12927         switch (size) {
12928         case MO_8:
12929         case MO_64:
12930             unallocated_encoding(s);
12931             return;
12932         }
12933         break;
12934     }
12935     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12936         unallocated_encoding(s);
12937         return;
12938     }
12939 
12940     /* Given MemOp size, adjust register and indexing.  */
12941     switch (size) {
12942     case MO_16:
12943         index = h << 2 | l << 1 | m;
12944         break;
12945     case MO_32:
12946         index = h << 1 | l;
12947         rm |= m << 4;
12948         break;
12949     case MO_64:
12950         if (l || !is_q) {
12951             unallocated_encoding(s);
12952             return;
12953         }
12954         index = h;
12955         rm |= m << 4;
12956         break;
12957     default:
12958         g_assert_not_reached();
12959     }
12960 
12961     if (!fp_access_check(s)) {
12962         return;
12963     }
12964 
12965     if (is_fp) {
12966         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12967     } else {
12968         fpst = NULL;
12969     }
12970 
12971     switch (16 * u + opcode) {
12972     case 0x0e: /* SDOT */
12973     case 0x1e: /* UDOT */
12974         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12975                          u ? gen_helper_gvec_udot_idx_b
12976                          : gen_helper_gvec_sdot_idx_b);
12977         return;
12978     case 0x0f:
12979         switch (extract32(insn, 22, 2)) {
12980         case 0: /* SUDOT */
12981             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12982                              gen_helper_gvec_sudot_idx_b);
12983             return;
12984         case 1: /* BFDOT */
12985             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12986                              gen_helper_gvec_bfdot_idx);
12987             return;
12988         case 2: /* USDOT */
12989             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12990                              gen_helper_gvec_usdot_idx_b);
12991             return;
12992         case 3: /* BFMLAL{B,T} */
12993             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12994                               gen_helper_gvec_bfmlal_idx);
12995             return;
12996         }
12997         g_assert_not_reached();
12998     case 0x11: /* FCMLA #0 */
12999     case 0x13: /* FCMLA #90 */
13000     case 0x15: /* FCMLA #180 */
13001     case 0x17: /* FCMLA #270 */
13002         {
13003             int rot = extract32(insn, 13, 2);
13004             int data = (index << 2) | rot;
13005             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13006                                vec_full_reg_offset(s, rn),
13007                                vec_full_reg_offset(s, rm),
13008                                vec_full_reg_offset(s, rd), fpst,
13009                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13010                                size == MO_64
13011                                ? gen_helper_gvec_fcmlas_idx
13012                                : gen_helper_gvec_fcmlah_idx);
13013         }
13014         return;
13015 
13016     case 0x00: /* FMLAL */
13017     case 0x04: /* FMLSL */
13018     case 0x18: /* FMLAL2 */
13019     case 0x1c: /* FMLSL2 */
13020         {
13021             int is_s = extract32(opcode, 2, 1);
13022             int is_2 = u;
13023             int data = (index << 2) | (is_2 << 1) | is_s;
13024             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13025                                vec_full_reg_offset(s, rn),
13026                                vec_full_reg_offset(s, rm), cpu_env,
13027                                is_q ? 16 : 8, vec_full_reg_size(s),
13028                                data, gen_helper_gvec_fmlal_idx_a64);
13029         }
13030         return;
13031 
13032     case 0x08: /* MUL */
13033         if (!is_long && !is_scalar) {
13034             static gen_helper_gvec_3 * const fns[3] = {
13035                 gen_helper_gvec_mul_idx_h,
13036                 gen_helper_gvec_mul_idx_s,
13037                 gen_helper_gvec_mul_idx_d,
13038             };
13039             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13040                                vec_full_reg_offset(s, rn),
13041                                vec_full_reg_offset(s, rm),
13042                                is_q ? 16 : 8, vec_full_reg_size(s),
13043                                index, fns[size - 1]);
13044             return;
13045         }
13046         break;
13047 
13048     case 0x10: /* MLA */
13049         if (!is_long && !is_scalar) {
13050             static gen_helper_gvec_4 * const fns[3] = {
13051                 gen_helper_gvec_mla_idx_h,
13052                 gen_helper_gvec_mla_idx_s,
13053                 gen_helper_gvec_mla_idx_d,
13054             };
13055             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13056                                vec_full_reg_offset(s, rn),
13057                                vec_full_reg_offset(s, rm),
13058                                vec_full_reg_offset(s, rd),
13059                                is_q ? 16 : 8, vec_full_reg_size(s),
13060                                index, fns[size - 1]);
13061             return;
13062         }
13063         break;
13064 
13065     case 0x14: /* MLS */
13066         if (!is_long && !is_scalar) {
13067             static gen_helper_gvec_4 * const fns[3] = {
13068                 gen_helper_gvec_mls_idx_h,
13069                 gen_helper_gvec_mls_idx_s,
13070                 gen_helper_gvec_mls_idx_d,
13071             };
13072             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13073                                vec_full_reg_offset(s, rn),
13074                                vec_full_reg_offset(s, rm),
13075                                vec_full_reg_offset(s, rd),
13076                                is_q ? 16 : 8, vec_full_reg_size(s),
13077                                index, fns[size - 1]);
13078             return;
13079         }
13080         break;
13081     }
13082 
13083     if (size == 3) {
13084         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13085         int pass;
13086 
13087         assert(is_fp && is_q && !is_long);
13088 
13089         read_vec_element(s, tcg_idx, rm, index, MO_64);
13090 
13091         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13092             TCGv_i64 tcg_op = tcg_temp_new_i64();
13093             TCGv_i64 tcg_res = tcg_temp_new_i64();
13094 
13095             read_vec_element(s, tcg_op, rn, pass, MO_64);
13096 
13097             switch (16 * u + opcode) {
13098             case 0x05: /* FMLS */
13099                 /* As usual for ARM, separate negation for fused multiply-add */
13100                 gen_helper_vfp_negd(tcg_op, tcg_op);
13101                 /* fall through */
13102             case 0x01: /* FMLA */
13103                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13104                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13105                 break;
13106             case 0x09: /* FMUL */
13107                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13108                 break;
13109             case 0x19: /* FMULX */
13110                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13111                 break;
13112             default:
13113                 g_assert_not_reached();
13114             }
13115 
13116             write_vec_element(s, tcg_res, rd, pass, MO_64);
13117         }
13118 
13119         clear_vec_high(s, !is_scalar, rd);
13120     } else if (!is_long) {
13121         /* 32 bit floating point, or 16 or 32 bit integer.
13122          * For the 16 bit scalar case we use the usual Neon helpers and
13123          * rely on the fact that 0 op 0 == 0 with no side effects.
13124          */
13125         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13126         int pass, maxpasses;
13127 
13128         if (is_scalar) {
13129             maxpasses = 1;
13130         } else {
13131             maxpasses = is_q ? 4 : 2;
13132         }
13133 
13134         read_vec_element_i32(s, tcg_idx, rm, index, size);
13135 
13136         if (size == 1 && !is_scalar) {
13137             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13138              * the index into both halves of the 32 bit tcg_idx and then use
13139              * the usual Neon helpers.
13140              */
13141             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13142         }
13143 
13144         for (pass = 0; pass < maxpasses; pass++) {
13145             TCGv_i32 tcg_op = tcg_temp_new_i32();
13146             TCGv_i32 tcg_res = tcg_temp_new_i32();
13147 
13148             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13149 
13150             switch (16 * u + opcode) {
13151             case 0x08: /* MUL */
13152             case 0x10: /* MLA */
13153             case 0x14: /* MLS */
13154             {
13155                 static NeonGenTwoOpFn * const fns[2][2] = {
13156                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13157                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13158                 };
13159                 NeonGenTwoOpFn *genfn;
13160                 bool is_sub = opcode == 0x4;
13161 
13162                 if (size == 1) {
13163                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13164                 } else {
13165                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13166                 }
13167                 if (opcode == 0x8) {
13168                     break;
13169                 }
13170                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13171                 genfn = fns[size - 1][is_sub];
13172                 genfn(tcg_res, tcg_op, tcg_res);
13173                 break;
13174             }
13175             case 0x05: /* FMLS */
13176             case 0x01: /* FMLA */
13177                 read_vec_element_i32(s, tcg_res, rd, pass,
13178                                      is_scalar ? size : MO_32);
13179                 switch (size) {
13180                 case 1:
13181                     if (opcode == 0x5) {
13182                         /* As usual for ARM, separate negation for fused
13183                          * multiply-add */
13184                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13185                     }
13186                     if (is_scalar) {
13187                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13188                                                    tcg_res, fpst);
13189                     } else {
13190                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13191                                                     tcg_res, fpst);
13192                     }
13193                     break;
13194                 case 2:
13195                     if (opcode == 0x5) {
13196                         /* As usual for ARM, separate negation for
13197                          * fused multiply-add */
13198                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13199                     }
13200                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13201                                            tcg_res, fpst);
13202                     break;
13203                 default:
13204                     g_assert_not_reached();
13205                 }
13206                 break;
13207             case 0x09: /* FMUL */
13208                 switch (size) {
13209                 case 1:
13210                     if (is_scalar) {
13211                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13212                                                 tcg_idx, fpst);
13213                     } else {
13214                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13215                                                  tcg_idx, fpst);
13216                     }
13217                     break;
13218                 case 2:
13219                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13220                     break;
13221                 default:
13222                     g_assert_not_reached();
13223                 }
13224                 break;
13225             case 0x19: /* FMULX */
13226                 switch (size) {
13227                 case 1:
13228                     if (is_scalar) {
13229                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13230                                                  tcg_idx, fpst);
13231                     } else {
13232                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13233                                                   tcg_idx, fpst);
13234                     }
13235                     break;
13236                 case 2:
13237                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13238                     break;
13239                 default:
13240                     g_assert_not_reached();
13241                 }
13242                 break;
13243             case 0x0c: /* SQDMULH */
13244                 if (size == 1) {
13245                     gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13246                                                tcg_op, tcg_idx);
13247                 } else {
13248                     gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13249                                                tcg_op, tcg_idx);
13250                 }
13251                 break;
13252             case 0x0d: /* SQRDMULH */
13253                 if (size == 1) {
13254                     gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13255                                                 tcg_op, tcg_idx);
13256                 } else {
13257                     gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13258                                                 tcg_op, tcg_idx);
13259                 }
13260                 break;
13261             case 0x1d: /* SQRDMLAH */
13262                 read_vec_element_i32(s, tcg_res, rd, pass,
13263                                      is_scalar ? size : MO_32);
13264                 if (size == 1) {
13265                     gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13266                                                 tcg_op, tcg_idx, tcg_res);
13267                 } else {
13268                     gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13269                                                 tcg_op, tcg_idx, tcg_res);
13270                 }
13271                 break;
13272             case 0x1f: /* SQRDMLSH */
13273                 read_vec_element_i32(s, tcg_res, rd, pass,
13274                                      is_scalar ? size : MO_32);
13275                 if (size == 1) {
13276                     gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13277                                                 tcg_op, tcg_idx, tcg_res);
13278                 } else {
13279                     gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13280                                                 tcg_op, tcg_idx, tcg_res);
13281                 }
13282                 break;
13283             default:
13284                 g_assert_not_reached();
13285             }
13286 
13287             if (is_scalar) {
13288                 write_fp_sreg(s, rd, tcg_res);
13289             } else {
13290                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13291             }
13292         }
13293 
13294         clear_vec_high(s, is_q, rd);
13295     } else {
13296         /* long ops: 16x16->32 or 32x32->64 */
13297         TCGv_i64 tcg_res[2];
13298         int pass;
13299         bool satop = extract32(opcode, 0, 1);
13300         MemOp memop = MO_32;
13301 
13302         if (satop || !u) {
13303             memop |= MO_SIGN;
13304         }
13305 
13306         if (size == 2) {
13307             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13308 
13309             read_vec_element(s, tcg_idx, rm, index, memop);
13310 
13311             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13312                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13313                 TCGv_i64 tcg_passres;
13314                 int passelt;
13315 
13316                 if (is_scalar) {
13317                     passelt = 0;
13318                 } else {
13319                     passelt = pass + (is_q * 2);
13320                 }
13321 
13322                 read_vec_element(s, tcg_op, rn, passelt, memop);
13323 
13324                 tcg_res[pass] = tcg_temp_new_i64();
13325 
13326                 if (opcode == 0xa || opcode == 0xb) {
13327                     /* Non-accumulating ops */
13328                     tcg_passres = tcg_res[pass];
13329                 } else {
13330                     tcg_passres = tcg_temp_new_i64();
13331                 }
13332 
13333                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13334 
13335                 if (satop) {
13336                     /* saturating, doubling */
13337                     gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13338                                                       tcg_passres, tcg_passres);
13339                 }
13340 
13341                 if (opcode == 0xa || opcode == 0xb) {
13342                     continue;
13343                 }
13344 
13345                 /* Accumulating op: handle accumulate step */
13346                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13347 
13348                 switch (opcode) {
13349                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13350                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13351                     break;
13352                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13353                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13354                     break;
13355                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13356                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13357                     /* fall through */
13358                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13359                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13360                                                       tcg_res[pass],
13361                                                       tcg_passres);
13362                     break;
13363                 default:
13364                     g_assert_not_reached();
13365                 }
13366             }
13367 
13368             clear_vec_high(s, !is_scalar, rd);
13369         } else {
13370             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13371 
13372             assert(size == 1);
13373             read_vec_element_i32(s, tcg_idx, rm, index, size);
13374 
13375             if (!is_scalar) {
13376                 /* The simplest way to handle the 16x16 indexed ops is to
13377                  * duplicate the index into both halves of the 32 bit tcg_idx
13378                  * and then use the usual Neon helpers.
13379                  */
13380                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13381             }
13382 
13383             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13384                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13385                 TCGv_i64 tcg_passres;
13386 
13387                 if (is_scalar) {
13388                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13389                 } else {
13390                     read_vec_element_i32(s, tcg_op, rn,
13391                                          pass + (is_q * 2), MO_32);
13392                 }
13393 
13394                 tcg_res[pass] = tcg_temp_new_i64();
13395 
13396                 if (opcode == 0xa || opcode == 0xb) {
13397                     /* Non-accumulating ops */
13398                     tcg_passres = tcg_res[pass];
13399                 } else {
13400                     tcg_passres = tcg_temp_new_i64();
13401                 }
13402 
13403                 if (memop & MO_SIGN) {
13404                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13405                 } else {
13406                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13407                 }
13408                 if (satop) {
13409                     gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13410                                                       tcg_passres, tcg_passres);
13411                 }
13412 
13413                 if (opcode == 0xa || opcode == 0xb) {
13414                     continue;
13415                 }
13416 
13417                 /* Accumulating op: handle accumulate step */
13418                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13419 
13420                 switch (opcode) {
13421                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13422                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13423                                              tcg_passres);
13424                     break;
13425                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13426                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13427                                              tcg_passres);
13428                     break;
13429                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13430                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13431                     /* fall through */
13432                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13433                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13434                                                       tcg_res[pass],
13435                                                       tcg_passres);
13436                     break;
13437                 default:
13438                     g_assert_not_reached();
13439                 }
13440             }
13441 
13442             if (is_scalar) {
13443                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13444             }
13445         }
13446 
13447         if (is_scalar) {
13448             tcg_res[1] = tcg_constant_i64(0);
13449         }
13450 
13451         for (pass = 0; pass < 2; pass++) {
13452             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13453         }
13454     }
13455 }
13456 
13457 /* Crypto AES
13458  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13459  * +-----------------+------+-----------+--------+-----+------+------+
13460  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13461  * +-----------------+------+-----------+--------+-----+------+------+
13462  */
13463 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13464 {
13465     int size = extract32(insn, 22, 2);
13466     int opcode = extract32(insn, 12, 5);
13467     int rn = extract32(insn, 5, 5);
13468     int rd = extract32(insn, 0, 5);
13469     int decrypt;
13470     gen_helper_gvec_2 *genfn2 = NULL;
13471     gen_helper_gvec_3 *genfn3 = NULL;
13472 
13473     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13474         unallocated_encoding(s);
13475         return;
13476     }
13477 
13478     switch (opcode) {
13479     case 0x4: /* AESE */
13480         decrypt = 0;
13481         genfn3 = gen_helper_crypto_aese;
13482         break;
13483     case 0x6: /* AESMC */
13484         decrypt = 0;
13485         genfn2 = gen_helper_crypto_aesmc;
13486         break;
13487     case 0x5: /* AESD */
13488         decrypt = 1;
13489         genfn3 = gen_helper_crypto_aese;
13490         break;
13491     case 0x7: /* AESIMC */
13492         decrypt = 1;
13493         genfn2 = gen_helper_crypto_aesmc;
13494         break;
13495     default:
13496         unallocated_encoding(s);
13497         return;
13498     }
13499 
13500     if (!fp_access_check(s)) {
13501         return;
13502     }
13503     if (genfn2) {
13504         gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13505     } else {
13506         gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13507     }
13508 }
13509 
13510 /* Crypto three-reg SHA
13511  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13512  * +-----------------+------+---+------+---+--------+-----+------+------+
13513  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13514  * +-----------------+------+---+------+---+--------+-----+------+------+
13515  */
13516 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13517 {
13518     int size = extract32(insn, 22, 2);
13519     int opcode = extract32(insn, 12, 3);
13520     int rm = extract32(insn, 16, 5);
13521     int rn = extract32(insn, 5, 5);
13522     int rd = extract32(insn, 0, 5);
13523     gen_helper_gvec_3 *genfn;
13524     bool feature;
13525 
13526     if (size != 0) {
13527         unallocated_encoding(s);
13528         return;
13529     }
13530 
13531     switch (opcode) {
13532     case 0: /* SHA1C */
13533         genfn = gen_helper_crypto_sha1c;
13534         feature = dc_isar_feature(aa64_sha1, s);
13535         break;
13536     case 1: /* SHA1P */
13537         genfn = gen_helper_crypto_sha1p;
13538         feature = dc_isar_feature(aa64_sha1, s);
13539         break;
13540     case 2: /* SHA1M */
13541         genfn = gen_helper_crypto_sha1m;
13542         feature = dc_isar_feature(aa64_sha1, s);
13543         break;
13544     case 3: /* SHA1SU0 */
13545         genfn = gen_helper_crypto_sha1su0;
13546         feature = dc_isar_feature(aa64_sha1, s);
13547         break;
13548     case 4: /* SHA256H */
13549         genfn = gen_helper_crypto_sha256h;
13550         feature = dc_isar_feature(aa64_sha256, s);
13551         break;
13552     case 5: /* SHA256H2 */
13553         genfn = gen_helper_crypto_sha256h2;
13554         feature = dc_isar_feature(aa64_sha256, s);
13555         break;
13556     case 6: /* SHA256SU1 */
13557         genfn = gen_helper_crypto_sha256su1;
13558         feature = dc_isar_feature(aa64_sha256, s);
13559         break;
13560     default:
13561         unallocated_encoding(s);
13562         return;
13563     }
13564 
13565     if (!feature) {
13566         unallocated_encoding(s);
13567         return;
13568     }
13569 
13570     if (!fp_access_check(s)) {
13571         return;
13572     }
13573     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13574 }
13575 
13576 /* Crypto two-reg SHA
13577  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13578  * +-----------------+------+-----------+--------+-----+------+------+
13579  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13580  * +-----------------+------+-----------+--------+-----+------+------+
13581  */
13582 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13583 {
13584     int size = extract32(insn, 22, 2);
13585     int opcode = extract32(insn, 12, 5);
13586     int rn = extract32(insn, 5, 5);
13587     int rd = extract32(insn, 0, 5);
13588     gen_helper_gvec_2 *genfn;
13589     bool feature;
13590 
13591     if (size != 0) {
13592         unallocated_encoding(s);
13593         return;
13594     }
13595 
13596     switch (opcode) {
13597     case 0: /* SHA1H */
13598         feature = dc_isar_feature(aa64_sha1, s);
13599         genfn = gen_helper_crypto_sha1h;
13600         break;
13601     case 1: /* SHA1SU1 */
13602         feature = dc_isar_feature(aa64_sha1, s);
13603         genfn = gen_helper_crypto_sha1su1;
13604         break;
13605     case 2: /* SHA256SU0 */
13606         feature = dc_isar_feature(aa64_sha256, s);
13607         genfn = gen_helper_crypto_sha256su0;
13608         break;
13609     default:
13610         unallocated_encoding(s);
13611         return;
13612     }
13613 
13614     if (!feature) {
13615         unallocated_encoding(s);
13616         return;
13617     }
13618 
13619     if (!fp_access_check(s)) {
13620         return;
13621     }
13622     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13623 }
13624 
13625 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13626 {
13627     tcg_gen_rotli_i64(d, m, 1);
13628     tcg_gen_xor_i64(d, d, n);
13629 }
13630 
13631 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13632 {
13633     tcg_gen_rotli_vec(vece, d, m, 1);
13634     tcg_gen_xor_vec(vece, d, d, n);
13635 }
13636 
13637 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13638                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13639 {
13640     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13641     static const GVecGen3 op = {
13642         .fni8 = gen_rax1_i64,
13643         .fniv = gen_rax1_vec,
13644         .opt_opc = vecop_list,
13645         .fno = gen_helper_crypto_rax1,
13646         .vece = MO_64,
13647     };
13648     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13649 }
13650 
13651 /* Crypto three-reg SHA512
13652  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13653  * +-----------------------+------+---+---+-----+--------+------+------+
13654  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13655  * +-----------------------+------+---+---+-----+--------+------+------+
13656  */
13657 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13658 {
13659     int opcode = extract32(insn, 10, 2);
13660     int o =  extract32(insn, 14, 1);
13661     int rm = extract32(insn, 16, 5);
13662     int rn = extract32(insn, 5, 5);
13663     int rd = extract32(insn, 0, 5);
13664     bool feature;
13665     gen_helper_gvec_3 *oolfn = NULL;
13666     GVecGen3Fn *gvecfn = NULL;
13667 
13668     if (o == 0) {
13669         switch (opcode) {
13670         case 0: /* SHA512H */
13671             feature = dc_isar_feature(aa64_sha512, s);
13672             oolfn = gen_helper_crypto_sha512h;
13673             break;
13674         case 1: /* SHA512H2 */
13675             feature = dc_isar_feature(aa64_sha512, s);
13676             oolfn = gen_helper_crypto_sha512h2;
13677             break;
13678         case 2: /* SHA512SU1 */
13679             feature = dc_isar_feature(aa64_sha512, s);
13680             oolfn = gen_helper_crypto_sha512su1;
13681             break;
13682         case 3: /* RAX1 */
13683             feature = dc_isar_feature(aa64_sha3, s);
13684             gvecfn = gen_gvec_rax1;
13685             break;
13686         default:
13687             g_assert_not_reached();
13688         }
13689     } else {
13690         switch (opcode) {
13691         case 0: /* SM3PARTW1 */
13692             feature = dc_isar_feature(aa64_sm3, s);
13693             oolfn = gen_helper_crypto_sm3partw1;
13694             break;
13695         case 1: /* SM3PARTW2 */
13696             feature = dc_isar_feature(aa64_sm3, s);
13697             oolfn = gen_helper_crypto_sm3partw2;
13698             break;
13699         case 2: /* SM4EKEY */
13700             feature = dc_isar_feature(aa64_sm4, s);
13701             oolfn = gen_helper_crypto_sm4ekey;
13702             break;
13703         default:
13704             unallocated_encoding(s);
13705             return;
13706         }
13707     }
13708 
13709     if (!feature) {
13710         unallocated_encoding(s);
13711         return;
13712     }
13713 
13714     if (!fp_access_check(s)) {
13715         return;
13716     }
13717 
13718     if (oolfn) {
13719         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13720     } else {
13721         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13722     }
13723 }
13724 
13725 /* Crypto two-reg SHA512
13726  *  31                                     12  11  10  9    5 4    0
13727  * +-----------------------------------------+--------+------+------+
13728  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13729  * +-----------------------------------------+--------+------+------+
13730  */
13731 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13732 {
13733     int opcode = extract32(insn, 10, 2);
13734     int rn = extract32(insn, 5, 5);
13735     int rd = extract32(insn, 0, 5);
13736     bool feature;
13737 
13738     switch (opcode) {
13739     case 0: /* SHA512SU0 */
13740         feature = dc_isar_feature(aa64_sha512, s);
13741         break;
13742     case 1: /* SM4E */
13743         feature = dc_isar_feature(aa64_sm4, s);
13744         break;
13745     default:
13746         unallocated_encoding(s);
13747         return;
13748     }
13749 
13750     if (!feature) {
13751         unallocated_encoding(s);
13752         return;
13753     }
13754 
13755     if (!fp_access_check(s)) {
13756         return;
13757     }
13758 
13759     switch (opcode) {
13760     case 0: /* SHA512SU0 */
13761         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13762         break;
13763     case 1: /* SM4E */
13764         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13765         break;
13766     default:
13767         g_assert_not_reached();
13768     }
13769 }
13770 
13771 /* Crypto four-register
13772  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13773  * +-------------------+-----+------+---+------+------+------+
13774  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13775  * +-------------------+-----+------+---+------+------+------+
13776  */
13777 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13778 {
13779     int op0 = extract32(insn, 21, 2);
13780     int rm = extract32(insn, 16, 5);
13781     int ra = extract32(insn, 10, 5);
13782     int rn = extract32(insn, 5, 5);
13783     int rd = extract32(insn, 0, 5);
13784     bool feature;
13785 
13786     switch (op0) {
13787     case 0: /* EOR3 */
13788     case 1: /* BCAX */
13789         feature = dc_isar_feature(aa64_sha3, s);
13790         break;
13791     case 2: /* SM3SS1 */
13792         feature = dc_isar_feature(aa64_sm3, s);
13793         break;
13794     default:
13795         unallocated_encoding(s);
13796         return;
13797     }
13798 
13799     if (!feature) {
13800         unallocated_encoding(s);
13801         return;
13802     }
13803 
13804     if (!fp_access_check(s)) {
13805         return;
13806     }
13807 
13808     if (op0 < 2) {
13809         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13810         int pass;
13811 
13812         tcg_op1 = tcg_temp_new_i64();
13813         tcg_op2 = tcg_temp_new_i64();
13814         tcg_op3 = tcg_temp_new_i64();
13815         tcg_res[0] = tcg_temp_new_i64();
13816         tcg_res[1] = tcg_temp_new_i64();
13817 
13818         for (pass = 0; pass < 2; pass++) {
13819             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13820             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13821             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13822 
13823             if (op0 == 0) {
13824                 /* EOR3 */
13825                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13826             } else {
13827                 /* BCAX */
13828                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13829             }
13830             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13831         }
13832         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13833         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13834     } else {
13835         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13836 
13837         tcg_op1 = tcg_temp_new_i32();
13838         tcg_op2 = tcg_temp_new_i32();
13839         tcg_op3 = tcg_temp_new_i32();
13840         tcg_res = tcg_temp_new_i32();
13841         tcg_zero = tcg_constant_i32(0);
13842 
13843         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13844         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13845         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13846 
13847         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13848         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13849         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13850         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13851 
13852         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13853         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13854         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13855         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13856     }
13857 }
13858 
13859 /* Crypto XAR
13860  *  31                   21 20  16 15    10 9    5 4    0
13861  * +-----------------------+------+--------+------+------+
13862  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13863  * +-----------------------+------+--------+------+------+
13864  */
13865 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13866 {
13867     int rm = extract32(insn, 16, 5);
13868     int imm6 = extract32(insn, 10, 6);
13869     int rn = extract32(insn, 5, 5);
13870     int rd = extract32(insn, 0, 5);
13871 
13872     if (!dc_isar_feature(aa64_sha3, s)) {
13873         unallocated_encoding(s);
13874         return;
13875     }
13876 
13877     if (!fp_access_check(s)) {
13878         return;
13879     }
13880 
13881     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13882                  vec_full_reg_offset(s, rn),
13883                  vec_full_reg_offset(s, rm), imm6, 16,
13884                  vec_full_reg_size(s));
13885 }
13886 
13887 /* Crypto three-reg imm2
13888  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
13889  * +-----------------------+------+-----+------+--------+------+------+
13890  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
13891  * +-----------------------+------+-----+------+--------+------+------+
13892  */
13893 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13894 {
13895     static gen_helper_gvec_3 * const fns[4] = {
13896         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13897         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13898     };
13899     int opcode = extract32(insn, 10, 2);
13900     int imm2 = extract32(insn, 12, 2);
13901     int rm = extract32(insn, 16, 5);
13902     int rn = extract32(insn, 5, 5);
13903     int rd = extract32(insn, 0, 5);
13904 
13905     if (!dc_isar_feature(aa64_sm3, s)) {
13906         unallocated_encoding(s);
13907         return;
13908     }
13909 
13910     if (!fp_access_check(s)) {
13911         return;
13912     }
13913 
13914     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13915 }
13916 
13917 /* C3.6 Data processing - SIMD, inc Crypto
13918  *
13919  * As the decode gets a little complex we are using a table based
13920  * approach for this part of the decode.
13921  */
13922 static const AArch64DecodeTable data_proc_simd[] = {
13923     /* pattern  ,  mask     ,  fn                        */
13924     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13925     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13926     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13927     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13928     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13929     { 0x0e000400, 0x9fe08400, disas_simd_copy },
13930     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13931     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13932     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13933     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13934     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13935     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13936     { 0x2e000000, 0xbf208400, disas_simd_ext },
13937     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13938     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13939     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13940     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13941     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13942     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13943     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13944     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13945     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13946     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13947     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13948     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13949     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13950     { 0xce000000, 0xff808000, disas_crypto_four_reg },
13951     { 0xce800000, 0xffe00000, disas_crypto_xar },
13952     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13953     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13954     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13955     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13956     { 0x00000000, 0x00000000, NULL }
13957 };
13958 
13959 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13960 {
13961     /* Note that this is called with all non-FP cases from
13962      * table C3-6 so it must UNDEF for entries not specifically
13963      * allocated to instructions in that table.
13964      */
13965     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13966     if (fn) {
13967         fn(s, insn);
13968     } else {
13969         unallocated_encoding(s);
13970     }
13971 }
13972 
13973 /* C3.6 Data processing - SIMD and floating point */
13974 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13975 {
13976     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13977         disas_data_proc_fp(s, insn);
13978     } else {
13979         /* SIMD, including crypto */
13980         disas_data_proc_simd(s, insn);
13981     }
13982 }
13983 
13984 static bool trans_OK(DisasContext *s, arg_OK *a)
13985 {
13986     return true;
13987 }
13988 
13989 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13990 {
13991     s->is_nonstreaming = true;
13992     return true;
13993 }
13994 
13995 /**
13996  * is_guarded_page:
13997  * @env: The cpu environment
13998  * @s: The DisasContext
13999  *
14000  * Return true if the page is guarded.
14001  */
14002 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14003 {
14004     uint64_t addr = s->base.pc_first;
14005 #ifdef CONFIG_USER_ONLY
14006     return page_get_flags(addr) & PAGE_BTI;
14007 #else
14008     CPUTLBEntryFull *full;
14009     void *host;
14010     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14011     int flags;
14012 
14013     /*
14014      * We test this immediately after reading an insn, which means
14015      * that the TLB entry must be present and valid, and thus this
14016      * access will never raise an exception.
14017      */
14018     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
14019                               false, &host, &full, 0);
14020     assert(!(flags & TLB_INVALID_MASK));
14021 
14022     return full->guarded;
14023 #endif
14024 }
14025 
14026 /**
14027  * btype_destination_ok:
14028  * @insn: The instruction at the branch destination
14029  * @bt: SCTLR_ELx.BT
14030  * @btype: PSTATE.BTYPE, and is non-zero
14031  *
14032  * On a guarded page, there are a limited number of insns
14033  * that may be present at the branch target:
14034  *   - branch target identifiers,
14035  *   - paciasp, pacibsp,
14036  *   - BRK insn
14037  *   - HLT insn
14038  * Anything else causes a Branch Target Exception.
14039  *
14040  * Return true if the branch is compatible, false to raise BTITRAP.
14041  */
14042 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14043 {
14044     if ((insn & 0xfffff01fu) == 0xd503201fu) {
14045         /* HINT space */
14046         switch (extract32(insn, 5, 7)) {
14047         case 0b011001: /* PACIASP */
14048         case 0b011011: /* PACIBSP */
14049             /*
14050              * If SCTLR_ELx.BT, then PACI*SP are not compatible
14051              * with btype == 3.  Otherwise all btype are ok.
14052              */
14053             return !bt || btype != 3;
14054         case 0b100000: /* BTI */
14055             /* Not compatible with any btype.  */
14056             return false;
14057         case 0b100010: /* BTI c */
14058             /* Not compatible with btype == 3 */
14059             return btype != 3;
14060         case 0b100100: /* BTI j */
14061             /* Not compatible with btype == 2 */
14062             return btype != 2;
14063         case 0b100110: /* BTI jc */
14064             /* Compatible with any btype.  */
14065             return true;
14066         }
14067     } else {
14068         switch (insn & 0xffe0001fu) {
14069         case 0xd4200000u: /* BRK */
14070         case 0xd4400000u: /* HLT */
14071             /* Give priority to the breakpoint exception.  */
14072             return true;
14073         }
14074     }
14075     return false;
14076 }
14077 
14078 /* C3.1 A64 instruction index by encoding */
14079 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14080 {
14081     switch (extract32(insn, 25, 4)) {
14082     case 0xa: case 0xb: /* Branch, exception generation and system insns */
14083         disas_b_exc_sys(s, insn);
14084         break;
14085     case 0x4:
14086     case 0x6:
14087     case 0xc:
14088     case 0xe:      /* Loads and stores */
14089         disas_ldst(s, insn);
14090         break;
14091     case 0x5:
14092     case 0xd:      /* Data processing - register */
14093         disas_data_proc_reg(s, insn);
14094         break;
14095     case 0x7:
14096     case 0xf:      /* Data processing - SIMD and floating point */
14097         disas_data_proc_simd_fp(s, insn);
14098         break;
14099     default:
14100         unallocated_encoding(s);
14101         break;
14102     }
14103 }
14104 
14105 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14106                                           CPUState *cpu)
14107 {
14108     DisasContext *dc = container_of(dcbase, DisasContext, base);
14109     CPUARMState *env = cpu->env_ptr;
14110     ARMCPU *arm_cpu = env_archcpu(env);
14111     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14112     int bound, core_mmu_idx;
14113 
14114     dc->isar = &arm_cpu->isar;
14115     dc->condjmp = 0;
14116     dc->pc_save = dc->base.pc_first;
14117     dc->aarch64 = true;
14118     dc->thumb = false;
14119     dc->sctlr_b = 0;
14120     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14121     dc->condexec_mask = 0;
14122     dc->condexec_cond = 0;
14123     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14124     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14125     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14126     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14127     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14128     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14129 #if !defined(CONFIG_USER_ONLY)
14130     dc->user = (dc->current_el == 0);
14131 #endif
14132     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14133     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14134     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14135     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14136     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14137     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14138     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14139     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14140     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14141     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14142     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14143     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14144     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14145     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14146     dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14147     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14148     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14149     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14150     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14151     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14152     dc->vec_len = 0;
14153     dc->vec_stride = 0;
14154     dc->cp_regs = arm_cpu->cp_regs;
14155     dc->features = env->features;
14156     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14157 
14158 #ifdef CONFIG_USER_ONLY
14159     /* In sve_probe_page, we assume TBI is enabled. */
14160     tcg_debug_assert(dc->tbid & 1);
14161 #endif
14162 
14163     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14164 
14165     /* Single step state. The code-generation logic here is:
14166      *  SS_ACTIVE == 0:
14167      *   generate code with no special handling for single-stepping (except
14168      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14169      *   this happens anyway because those changes are all system register or
14170      *   PSTATE writes).
14171      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14172      *   emit code for one insn
14173      *   emit code to clear PSTATE.SS
14174      *   emit code to generate software step exception for completed step
14175      *   end TB (as usual for having generated an exception)
14176      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14177      *   emit code to generate a software step exception
14178      *   end the TB
14179      */
14180     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14181     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14182     dc->is_ldex = false;
14183 
14184     /* Bound the number of insns to execute to those left on the page.  */
14185     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14186 
14187     /* If architectural single step active, limit to 1.  */
14188     if (dc->ss_active) {
14189         bound = 1;
14190     }
14191     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14192 }
14193 
14194 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14195 {
14196 }
14197 
14198 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14199 {
14200     DisasContext *dc = container_of(dcbase, DisasContext, base);
14201     target_ulong pc_arg = dc->base.pc_next;
14202 
14203     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14204         pc_arg &= ~TARGET_PAGE_MASK;
14205     }
14206     tcg_gen_insn_start(pc_arg, 0, 0);
14207     dc->insn_start = tcg_last_op();
14208 }
14209 
14210 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14211 {
14212     DisasContext *s = container_of(dcbase, DisasContext, base);
14213     CPUARMState *env = cpu->env_ptr;
14214     uint64_t pc = s->base.pc_next;
14215     uint32_t insn;
14216 
14217     /* Singlestep exceptions have the highest priority. */
14218     if (s->ss_active && !s->pstate_ss) {
14219         /* Singlestep state is Active-pending.
14220          * If we're in this state at the start of a TB then either
14221          *  a) we just took an exception to an EL which is being debugged
14222          *     and this is the first insn in the exception handler
14223          *  b) debug exceptions were masked and we just unmasked them
14224          *     without changing EL (eg by clearing PSTATE.D)
14225          * In either case we're going to take a swstep exception in the
14226          * "did not step an insn" case, and so the syndrome ISV and EX
14227          * bits should be zero.
14228          */
14229         assert(s->base.num_insns == 1);
14230         gen_swstep_exception(s, 0, 0);
14231         s->base.is_jmp = DISAS_NORETURN;
14232         s->base.pc_next = pc + 4;
14233         return;
14234     }
14235 
14236     if (pc & 3) {
14237         /*
14238          * PC alignment fault.  This has priority over the instruction abort
14239          * that we would receive from a translation fault via arm_ldl_code.
14240          * This should only be possible after an indirect branch, at the
14241          * start of the TB.
14242          */
14243         assert(s->base.num_insns == 1);
14244         gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14245         s->base.is_jmp = DISAS_NORETURN;
14246         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14247         return;
14248     }
14249 
14250     s->pc_curr = pc;
14251     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14252     s->insn = insn;
14253     s->base.pc_next = pc + 4;
14254 
14255     s->fp_access_checked = false;
14256     s->sve_access_checked = false;
14257 
14258     if (s->pstate_il) {
14259         /*
14260          * Illegal execution state. This has priority over BTI
14261          * exceptions, but comes after instruction abort exceptions.
14262          */
14263         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14264         return;
14265     }
14266 
14267     if (dc_isar_feature(aa64_bti, s)) {
14268         if (s->base.num_insns == 1) {
14269             /*
14270              * At the first insn of the TB, compute s->guarded_page.
14271              * We delayed computing this until successfully reading
14272              * the first insn of the TB, above.  This (mostly) ensures
14273              * that the softmmu tlb entry has been populated, and the
14274              * page table GP bit is available.
14275              *
14276              * Note that we need to compute this even if btype == 0,
14277              * because this value is used for BR instructions later
14278              * where ENV is not available.
14279              */
14280             s->guarded_page = is_guarded_page(env, s);
14281 
14282             /* First insn can have btype set to non-zero.  */
14283             tcg_debug_assert(s->btype >= 0);
14284 
14285             /*
14286              * Note that the Branch Target Exception has fairly high
14287              * priority -- below debugging exceptions but above most
14288              * everything else.  This allows us to handle this now
14289              * instead of waiting until the insn is otherwise decoded.
14290              */
14291             if (s->btype != 0
14292                 && s->guarded_page
14293                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14294                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14295                 return;
14296             }
14297         } else {
14298             /* Not the first insn: btype must be 0.  */
14299             tcg_debug_assert(s->btype == 0);
14300         }
14301     }
14302 
14303     s->is_nonstreaming = false;
14304     if (s->sme_trap_nonstreaming) {
14305         disas_sme_fa64(s, insn);
14306     }
14307 
14308     if (!disas_a64(s, insn) &&
14309         !disas_sme(s, insn) &&
14310         !disas_sve(s, insn)) {
14311         disas_a64_legacy(s, insn);
14312     }
14313 
14314     /*
14315      * After execution of most insns, btype is reset to 0.
14316      * Note that we set btype == -1 when the insn sets btype.
14317      */
14318     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14319         reset_btype(s);
14320     }
14321 }
14322 
14323 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14324 {
14325     DisasContext *dc = container_of(dcbase, DisasContext, base);
14326 
14327     if (unlikely(dc->ss_active)) {
14328         /* Note that this means single stepping WFI doesn't halt the CPU.
14329          * For conditional branch insns this is harmless unreachable code as
14330          * gen_goto_tb() has already handled emitting the debug exception
14331          * (and thus a tb-jump is not possible when singlestepping).
14332          */
14333         switch (dc->base.is_jmp) {
14334         default:
14335             gen_a64_update_pc(dc, 4);
14336             /* fall through */
14337         case DISAS_EXIT:
14338         case DISAS_JUMP:
14339             gen_step_complete_exception(dc);
14340             break;
14341         case DISAS_NORETURN:
14342             break;
14343         }
14344     } else {
14345         switch (dc->base.is_jmp) {
14346         case DISAS_NEXT:
14347         case DISAS_TOO_MANY:
14348             gen_goto_tb(dc, 1, 4);
14349             break;
14350         default:
14351         case DISAS_UPDATE_EXIT:
14352             gen_a64_update_pc(dc, 4);
14353             /* fall through */
14354         case DISAS_EXIT:
14355             tcg_gen_exit_tb(NULL, 0);
14356             break;
14357         case DISAS_UPDATE_NOCHAIN:
14358             gen_a64_update_pc(dc, 4);
14359             /* fall through */
14360         case DISAS_JUMP:
14361             tcg_gen_lookup_and_goto_ptr();
14362             break;
14363         case DISAS_NORETURN:
14364         case DISAS_SWI:
14365             break;
14366         case DISAS_WFE:
14367             gen_a64_update_pc(dc, 4);
14368             gen_helper_wfe(cpu_env);
14369             break;
14370         case DISAS_YIELD:
14371             gen_a64_update_pc(dc, 4);
14372             gen_helper_yield(cpu_env);
14373             break;
14374         case DISAS_WFI:
14375             /*
14376              * This is a special case because we don't want to just halt
14377              * the CPU if trying to debug across a WFI.
14378              */
14379             gen_a64_update_pc(dc, 4);
14380             gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14381             /*
14382              * The helper doesn't necessarily throw an exception, but we
14383              * must go back to the main loop to check for interrupts anyway.
14384              */
14385             tcg_gen_exit_tb(NULL, 0);
14386             break;
14387         }
14388     }
14389 }
14390 
14391 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14392                                  CPUState *cpu, FILE *logfile)
14393 {
14394     DisasContext *dc = container_of(dcbase, DisasContext, base);
14395 
14396     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14397     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14398 }
14399 
14400 const TranslatorOps aarch64_translator_ops = {
14401     .init_disas_context = aarch64_tr_init_disas_context,
14402     .tb_start           = aarch64_tr_tb_start,
14403     .insn_start         = aarch64_tr_insn_start,
14404     .translate_insn     = aarch64_tr_translate_insn,
14405     .tb_stop            = aarch64_tr_tb_stop,
14406     .disas_log          = aarch64_tr_disas_log,
14407 };
14408