1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 268 269 ret = tcg_temp_new_i64(); 270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 271 272 return ret; 273 } 274 return clean_data_tbi(s, addr); 275 } 276 277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 278 bool tag_checked, MemOp memop) 279 { 280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 281 false, get_mem_index(s)); 282 } 283 284 /* 285 * For MTE, check multiple logical sequential accesses. 286 */ 287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int total_size, MemOp single_mop) 289 { 290 if (tag_checked && s->mte_active[0]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 typedef struct DisasCompare64 { 309 TCGCond cond; 310 TCGv_i64 value; 311 } DisasCompare64; 312 313 static void a64_test_cc(DisasCompare64 *c64, int cc) 314 { 315 DisasCompare c32; 316 317 arm_test_cc(&c32, cc); 318 319 /* 320 * Sign-extend the 32-bit value so that the GE/LT comparisons work 321 * properly. The NE/EQ comparisons are also fine with this choice. 322 */ 323 c64->cond = c32.cond; 324 c64->value = tcg_temp_new_i64(); 325 tcg_gen_ext_i32_i64(c64->value, c32.value); 326 } 327 328 static void gen_rebuild_hflags(DisasContext *s) 329 { 330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 331 } 332 333 static void gen_exception_internal(int excp) 334 { 335 assert(excp_is_internal(excp)); 336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 337 } 338 339 static void gen_exception_internal_insn(DisasContext *s, int excp) 340 { 341 gen_a64_update_pc(s, 0); 342 gen_exception_internal(excp); 343 s->base.is_jmp = DISAS_NORETURN; 344 } 345 346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 347 { 348 gen_a64_update_pc(s, 0); 349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 350 s->base.is_jmp = DISAS_NORETURN; 351 } 352 353 static void gen_step_complete_exception(DisasContext *s) 354 { 355 /* We just completed step of an insn. Move from Active-not-pending 356 * to Active-pending, and then also take the swstep exception. 357 * This corresponds to making the (IMPDEF) choice to prioritize 358 * swstep exceptions over asynchronous exceptions taken to an exception 359 * level where debug is disabled. This choice has the advantage that 360 * we do not need to maintain internal state corresponding to the 361 * ISV/EX syndrome bits between completion of the step and generation 362 * of the exception, and our syndrome information is always correct. 363 */ 364 gen_ss_advance(s); 365 gen_swstep_exception(s, 1, s->is_ldex); 366 s->base.is_jmp = DISAS_NORETURN; 367 } 368 369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 370 { 371 if (s->ss_active) { 372 return false; 373 } 374 return translator_use_goto_tb(&s->base, dest); 375 } 376 377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 378 { 379 if (use_goto_tb(s, s->pc_curr + diff)) { 380 /* 381 * For pcrel, the pc must always be up-to-date on entry to 382 * the linked TB, so that it can use simple additions for all 383 * further adjustments. For !pcrel, the linked TB is compiled 384 * to know its full virtual address, so we can delay the 385 * update to pc to the unlinked path. A long chain of links 386 * can thus avoid many updates to the PC. 387 */ 388 if (tb_cflags(s->base.tb) & CF_PCREL) { 389 gen_a64_update_pc(s, diff); 390 tcg_gen_goto_tb(n); 391 } else { 392 tcg_gen_goto_tb(n); 393 gen_a64_update_pc(s, diff); 394 } 395 tcg_gen_exit_tb(s->base.tb, n); 396 s->base.is_jmp = DISAS_NORETURN; 397 } else { 398 gen_a64_update_pc(s, diff); 399 if (s->ss_active) { 400 gen_step_complete_exception(s); 401 } else { 402 tcg_gen_lookup_and_goto_ptr(); 403 s->base.is_jmp = DISAS_NORETURN; 404 } 405 } 406 } 407 408 /* 409 * Register access functions 410 * 411 * These functions are used for directly accessing a register in where 412 * changes to the final register value are likely to be made. If you 413 * need to use a register for temporary calculation (e.g. index type 414 * operations) use the read_* form. 415 * 416 * B1.2.1 Register mappings 417 * 418 * In instruction register encoding 31 can refer to ZR (zero register) or 419 * the SP (stack pointer) depending on context. In QEMU's case we map SP 420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 421 * This is the point of the _sp forms. 422 */ 423 TCGv_i64 cpu_reg(DisasContext *s, int reg) 424 { 425 if (reg == 31) { 426 TCGv_i64 t = tcg_temp_new_i64(); 427 tcg_gen_movi_i64(t, 0); 428 return t; 429 } else { 430 return cpu_X[reg]; 431 } 432 } 433 434 /* register access for when 31 == SP */ 435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 436 { 437 return cpu_X[reg]; 438 } 439 440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 441 * representing the register contents. This TCGv is an auto-freed 442 * temporary so it need not be explicitly freed, and may be modified. 443 */ 444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 445 { 446 TCGv_i64 v = tcg_temp_new_i64(); 447 if (reg != 31) { 448 if (sf) { 449 tcg_gen_mov_i64(v, cpu_X[reg]); 450 } else { 451 tcg_gen_ext32u_i64(v, cpu_X[reg]); 452 } 453 } else { 454 tcg_gen_movi_i64(v, 0); 455 } 456 return v; 457 } 458 459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 460 { 461 TCGv_i64 v = tcg_temp_new_i64(); 462 if (sf) { 463 tcg_gen_mov_i64(v, cpu_X[reg]); 464 } else { 465 tcg_gen_ext32u_i64(v, cpu_X[reg]); 466 } 467 return v; 468 } 469 470 /* Return the offset into CPUARMState of a slice (from 471 * the least significant end) of FP register Qn (ie 472 * Dn, Sn, Hn or Bn). 473 * (Note that this is not the same mapping as for A32; see cpu.h) 474 */ 475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 476 { 477 return vec_reg_offset(s, regno, 0, size); 478 } 479 480 /* Offset of the high half of the 128 bit vector Qn */ 481 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 482 { 483 return vec_reg_offset(s, regno, 1, MO_64); 484 } 485 486 /* Convenience accessors for reading and writing single and double 487 * FP registers. Writing clears the upper parts of the associated 488 * 128 bit vector register, as required by the architecture. 489 * Note that unlike the GP register accessors, the values returned 490 * by the read functions must be manually freed. 491 */ 492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 493 { 494 TCGv_i64 v = tcg_temp_new_i64(); 495 496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 497 return v; 498 } 499 500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 501 { 502 TCGv_i32 v = tcg_temp_new_i32(); 503 504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 505 return v; 506 } 507 508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 509 { 510 TCGv_i32 v = tcg_temp_new_i32(); 511 512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 513 return v; 514 } 515 516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 517 * If SVE is not enabled, then there are only 128 bits in the vector. 518 */ 519 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 520 { 521 unsigned ofs = fp_reg_offset(s, rd, MO_64); 522 unsigned vsz = vec_full_reg_size(s); 523 524 /* Nop move, with side effect of clearing the tail. */ 525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 526 } 527 528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 529 { 530 unsigned ofs = fp_reg_offset(s, reg, MO_64); 531 532 tcg_gen_st_i64(v, cpu_env, ofs); 533 clear_vec_high(s, false, reg); 534 } 535 536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 537 { 538 TCGv_i64 tmp = tcg_temp_new_i64(); 539 540 tcg_gen_extu_i32_i64(tmp, v); 541 write_fp_dreg(s, reg, tmp); 542 } 543 544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 546 GVecGen2Fn *gvec_fn, int vece) 547 { 548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 549 is_q ? 16 : 8, vec_full_reg_size(s)); 550 } 551 552 /* Expand a 2-operand + immediate AdvSIMD vector operation using 553 * an expander function. 554 */ 555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 556 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 564 GVecGen3Fn *gvec_fn, int vece) 565 { 566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 568 } 569 570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 572 int rx, GVecGen4Fn *gvec_fn, int vece) 573 { 574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 576 is_q ? 16 : 8, vec_full_reg_size(s)); 577 } 578 579 /* Expand a 2-operand operation using an out-of-line helper. */ 580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 581 int rn, int data, gen_helper_gvec_2 *fn) 582 { 583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 584 vec_full_reg_offset(s, rn), 585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 586 } 587 588 /* Expand a 3-operand operation using an out-of-line helper. */ 589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 590 int rn, int rm, int data, gen_helper_gvec_3 *fn) 591 { 592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 593 vec_full_reg_offset(s, rn), 594 vec_full_reg_offset(s, rm), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 599 * an out-of-line helper. 600 */ 601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 602 int rm, bool is_fp16, int data, 603 gen_helper_gvec_3_ptr *fn) 604 { 605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 607 vec_full_reg_offset(s, rn), 608 vec_full_reg_offset(s, rm), fpst, 609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 610 } 611 612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 614 int rm, gen_helper_gvec_3_ptr *fn) 615 { 616 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 617 618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 620 vec_full_reg_offset(s, rn), 621 vec_full_reg_offset(s, rm), qc_ptr, 622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 623 } 624 625 /* Expand a 4-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 627 int rm, int ra, int data, gen_helper_gvec_4 *fn) 628 { 629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 vec_full_reg_offset(s, ra), 633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 634 } 635 636 /* 637 * Expand a 4-operand + fpstatus pointer + simd data value operation using 638 * an out-of-line helper. 639 */ 640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 641 int rm, int ra, bool is_fp16, int data, 642 gen_helper_gvec_4_ptr *fn) 643 { 644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 646 vec_full_reg_offset(s, rn), 647 vec_full_reg_offset(s, rm), 648 vec_full_reg_offset(s, ra), fpst, 649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 650 } 651 652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 653 * than the 32 bit equivalent. 654 */ 655 static inline void gen_set_NZ64(TCGv_i64 result) 656 { 657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 659 } 660 661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 662 static inline void gen_logic_CC(int sf, TCGv_i64 result) 663 { 664 if (sf) { 665 gen_set_NZ64(result); 666 } else { 667 tcg_gen_extrl_i64_i32(cpu_ZF, result); 668 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 669 } 670 tcg_gen_movi_i32(cpu_CF, 0); 671 tcg_gen_movi_i32(cpu_VF, 0); 672 } 673 674 /* dest = T0 + T1; compute C, N, V and Z flags */ 675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 676 { 677 TCGv_i64 result, flag, tmp; 678 result = tcg_temp_new_i64(); 679 flag = tcg_temp_new_i64(); 680 tmp = tcg_temp_new_i64(); 681 682 tcg_gen_movi_i64(tmp, 0); 683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 684 685 tcg_gen_extrl_i64_i32(cpu_CF, flag); 686 687 gen_set_NZ64(result); 688 689 tcg_gen_xor_i64(flag, result, t0); 690 tcg_gen_xor_i64(tmp, t0, t1); 691 tcg_gen_andc_i64(flag, flag, tmp); 692 tcg_gen_extrh_i64_i32(cpu_VF, flag); 693 694 tcg_gen_mov_i64(dest, result); 695 } 696 697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 698 { 699 TCGv_i32 t0_32 = tcg_temp_new_i32(); 700 TCGv_i32 t1_32 = tcg_temp_new_i32(); 701 TCGv_i32 tmp = tcg_temp_new_i32(); 702 703 tcg_gen_movi_i32(tmp, 0); 704 tcg_gen_extrl_i64_i32(t0_32, t0); 705 tcg_gen_extrl_i64_i32(t1_32, t1); 706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 707 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 709 tcg_gen_xor_i32(tmp, t0_32, t1_32); 710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 711 tcg_gen_extu_i32_i64(dest, cpu_NF); 712 } 713 714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 715 { 716 if (sf) { 717 gen_add64_CC(dest, t0, t1); 718 } else { 719 gen_add32_CC(dest, t0, t1); 720 } 721 } 722 723 /* dest = T0 - T1; compute C, N, V and Z flags */ 724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 /* 64 bit arithmetic */ 727 TCGv_i64 result, flag, tmp; 728 729 result = tcg_temp_new_i64(); 730 flag = tcg_temp_new_i64(); 731 tcg_gen_sub_i64(result, t0, t1); 732 733 gen_set_NZ64(result); 734 735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 736 tcg_gen_extrl_i64_i32(cpu_CF, flag); 737 738 tcg_gen_xor_i64(flag, result, t0); 739 tmp = tcg_temp_new_i64(); 740 tcg_gen_xor_i64(tmp, t0, t1); 741 tcg_gen_and_i64(flag, flag, tmp); 742 tcg_gen_extrh_i64_i32(cpu_VF, flag); 743 tcg_gen_mov_i64(dest, result); 744 } 745 746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 747 { 748 /* 32 bit arithmetic */ 749 TCGv_i32 t0_32 = tcg_temp_new_i32(); 750 TCGv_i32 t1_32 = tcg_temp_new_i32(); 751 TCGv_i32 tmp; 752 753 tcg_gen_extrl_i64_i32(t0_32, t0); 754 tcg_gen_extrl_i64_i32(t1_32, t1); 755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 756 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 759 tmp = tcg_temp_new_i32(); 760 tcg_gen_xor_i32(tmp, t0_32, t1_32); 761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 762 tcg_gen_extu_i32_i64(dest, cpu_NF); 763 } 764 765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 766 { 767 if (sf) { 768 gen_sub64_CC(dest, t0, t1); 769 } else { 770 gen_sub32_CC(dest, t0, t1); 771 } 772 } 773 774 /* dest = T0 + T1 + CF; do not compute flags. */ 775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 TCGv_i64 flag = tcg_temp_new_i64(); 778 tcg_gen_extu_i32_i64(flag, cpu_CF); 779 tcg_gen_add_i64(dest, t0, t1); 780 tcg_gen_add_i64(dest, dest, flag); 781 782 if (!sf) { 783 tcg_gen_ext32u_i64(dest, dest); 784 } 785 } 786 787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 789 { 790 if (sf) { 791 TCGv_i64 result = tcg_temp_new_i64(); 792 TCGv_i64 cf_64 = tcg_temp_new_i64(); 793 TCGv_i64 vf_64 = tcg_temp_new_i64(); 794 TCGv_i64 tmp = tcg_temp_new_i64(); 795 TCGv_i64 zero = tcg_constant_i64(0); 796 797 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 801 gen_set_NZ64(result); 802 803 tcg_gen_xor_i64(vf_64, result, t0); 804 tcg_gen_xor_i64(tmp, t0, t1); 805 tcg_gen_andc_i64(vf_64, vf_64, tmp); 806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 807 808 tcg_gen_mov_i64(dest, result); 809 } else { 810 TCGv_i32 t0_32 = tcg_temp_new_i32(); 811 TCGv_i32 t1_32 = tcg_temp_new_i32(); 812 TCGv_i32 tmp = tcg_temp_new_i32(); 813 TCGv_i32 zero = tcg_constant_i32(0); 814 815 tcg_gen_extrl_i64_i32(t0_32, t0); 816 tcg_gen_extrl_i64_i32(t1_32, t1); 817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 819 820 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 822 tcg_gen_xor_i32(tmp, t0_32, t1_32); 823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 824 tcg_gen_extu_i32_i64(dest, cpu_NF); 825 } 826 } 827 828 /* 829 * Load/Store generators 830 */ 831 832 /* 833 * Store from GPR register to memory. 834 */ 835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 836 TCGv_i64 tcg_addr, MemOp memop, int memidx, 837 bool iss_valid, 838 unsigned int iss_srt, 839 bool iss_sf, bool iss_ar) 840 { 841 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 842 843 if (iss_valid) { 844 uint32_t syn; 845 846 syn = syn_data_abort_with_iss(0, 847 (memop & MO_SIZE), 848 false, 849 iss_srt, 850 iss_sf, 851 iss_ar, 852 0, 0, 0, 0, 0, false); 853 disas_set_insn_syndrome(s, syn); 854 } 855 } 856 857 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 858 TCGv_i64 tcg_addr, MemOp memop, 859 bool iss_valid, 860 unsigned int iss_srt, 861 bool iss_sf, bool iss_ar) 862 { 863 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 864 iss_valid, iss_srt, iss_sf, iss_ar); 865 } 866 867 /* 868 * Load from memory to GPR register 869 */ 870 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 871 MemOp memop, bool extend, int memidx, 872 bool iss_valid, unsigned int iss_srt, 873 bool iss_sf, bool iss_ar) 874 { 875 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 876 877 if (extend && (memop & MO_SIGN)) { 878 g_assert((memop & MO_SIZE) <= MO_32); 879 tcg_gen_ext32u_i64(dest, dest); 880 } 881 882 if (iss_valid) { 883 uint32_t syn; 884 885 syn = syn_data_abort_with_iss(0, 886 (memop & MO_SIZE), 887 (memop & MO_SIGN) != 0, 888 iss_srt, 889 iss_sf, 890 iss_ar, 891 0, 0, 0, 0, 0, false); 892 disas_set_insn_syndrome(s, syn); 893 } 894 } 895 896 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 897 MemOp memop, bool extend, 898 bool iss_valid, unsigned int iss_srt, 899 bool iss_sf, bool iss_ar) 900 { 901 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 902 iss_valid, iss_srt, iss_sf, iss_ar); 903 } 904 905 /* 906 * Store from FP register to memory 907 */ 908 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 909 { 910 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 911 TCGv_i64 tmplo = tcg_temp_new_i64(); 912 913 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 914 915 if ((mop & MO_SIZE) < MO_128) { 916 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 917 } else { 918 TCGv_i64 tmphi = tcg_temp_new_i64(); 919 TCGv_i128 t16 = tcg_temp_new_i128(); 920 921 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 922 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 923 924 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 925 } 926 } 927 928 /* 929 * Load from memory to FP register 930 */ 931 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 932 { 933 /* This always zero-extends and writes to a full 128 bit wide vector */ 934 TCGv_i64 tmplo = tcg_temp_new_i64(); 935 TCGv_i64 tmphi = NULL; 936 937 if ((mop & MO_SIZE) < MO_128) { 938 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 939 } else { 940 TCGv_i128 t16 = tcg_temp_new_i128(); 941 942 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 943 944 tmphi = tcg_temp_new_i64(); 945 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 946 } 947 948 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 949 950 if (tmphi) { 951 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 952 } 953 clear_vec_high(s, tmphi != NULL, destidx); 954 } 955 956 /* 957 * Vector load/store helpers. 958 * 959 * The principal difference between this and a FP load is that we don't 960 * zero extend as we are filling a partial chunk of the vector register. 961 * These functions don't support 128 bit loads/stores, which would be 962 * normal load/store operations. 963 * 964 * The _i32 versions are useful when operating on 32 bit quantities 965 * (eg for floating point single or using Neon helper functions). 966 */ 967 968 /* Get value of an element within a vector register */ 969 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 970 int element, MemOp memop) 971 { 972 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 973 switch ((unsigned)memop) { 974 case MO_8: 975 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 976 break; 977 case MO_16: 978 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 979 break; 980 case MO_32: 981 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 982 break; 983 case MO_8|MO_SIGN: 984 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 985 break; 986 case MO_16|MO_SIGN: 987 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 988 break; 989 case MO_32|MO_SIGN: 990 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 991 break; 992 case MO_64: 993 case MO_64|MO_SIGN: 994 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 995 break; 996 default: 997 g_assert_not_reached(); 998 } 999 } 1000 1001 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1002 int element, MemOp memop) 1003 { 1004 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1005 switch (memop) { 1006 case MO_8: 1007 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1008 break; 1009 case MO_16: 1010 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1011 break; 1012 case MO_8|MO_SIGN: 1013 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1014 break; 1015 case MO_16|MO_SIGN: 1016 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1017 break; 1018 case MO_32: 1019 case MO_32|MO_SIGN: 1020 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1021 break; 1022 default: 1023 g_assert_not_reached(); 1024 } 1025 } 1026 1027 /* Set value of an element within a vector register */ 1028 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1029 int element, MemOp memop) 1030 { 1031 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1032 switch (memop) { 1033 case MO_8: 1034 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1035 break; 1036 case MO_16: 1037 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1038 break; 1039 case MO_32: 1040 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1041 break; 1042 case MO_64: 1043 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1044 break; 1045 default: 1046 g_assert_not_reached(); 1047 } 1048 } 1049 1050 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1051 int destidx, int element, MemOp memop) 1052 { 1053 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1054 switch (memop) { 1055 case MO_8: 1056 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1057 break; 1058 case MO_16: 1059 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1060 break; 1061 case MO_32: 1062 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1063 break; 1064 default: 1065 g_assert_not_reached(); 1066 } 1067 } 1068 1069 /* Store from vector register to memory */ 1070 static void do_vec_st(DisasContext *s, int srcidx, int element, 1071 TCGv_i64 tcg_addr, MemOp mop) 1072 { 1073 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1074 1075 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1076 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1077 } 1078 1079 /* Load from memory to vector register */ 1080 static void do_vec_ld(DisasContext *s, int destidx, int element, 1081 TCGv_i64 tcg_addr, MemOp mop) 1082 { 1083 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1084 1085 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1086 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1087 } 1088 1089 /* Check that FP/Neon access is enabled. If it is, return 1090 * true. If not, emit code to generate an appropriate exception, 1091 * and return false; the caller should not emit any code for 1092 * the instruction. Note that this check must happen after all 1093 * unallocated-encoding checks (otherwise the syndrome information 1094 * for the resulting exception will be incorrect). 1095 */ 1096 static bool fp_access_check_only(DisasContext *s) 1097 { 1098 if (s->fp_excp_el) { 1099 assert(!s->fp_access_checked); 1100 s->fp_access_checked = true; 1101 1102 gen_exception_insn_el(s, 0, EXCP_UDEF, 1103 syn_fp_access_trap(1, 0xe, false, 0), 1104 s->fp_excp_el); 1105 return false; 1106 } 1107 s->fp_access_checked = true; 1108 return true; 1109 } 1110 1111 static bool fp_access_check(DisasContext *s) 1112 { 1113 if (!fp_access_check_only(s)) { 1114 return false; 1115 } 1116 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1117 gen_exception_insn(s, 0, EXCP_UDEF, 1118 syn_smetrap(SME_ET_Streaming, false)); 1119 return false; 1120 } 1121 return true; 1122 } 1123 1124 /* 1125 * Check that SVE access is enabled. If it is, return true. 1126 * If not, emit code to generate an appropriate exception and return false. 1127 * This function corresponds to CheckSVEEnabled(). 1128 */ 1129 bool sve_access_check(DisasContext *s) 1130 { 1131 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1132 assert(dc_isar_feature(aa64_sme, s)); 1133 if (!sme_sm_enabled_check(s)) { 1134 goto fail_exit; 1135 } 1136 } else if (s->sve_excp_el) { 1137 gen_exception_insn_el(s, 0, EXCP_UDEF, 1138 syn_sve_access_trap(), s->sve_excp_el); 1139 goto fail_exit; 1140 } 1141 s->sve_access_checked = true; 1142 return fp_access_check(s); 1143 1144 fail_exit: 1145 /* Assert that we only raise one exception per instruction. */ 1146 assert(!s->sve_access_checked); 1147 s->sve_access_checked = true; 1148 return false; 1149 } 1150 1151 /* 1152 * Check that SME access is enabled, raise an exception if not. 1153 * Note that this function corresponds to CheckSMEAccess and is 1154 * only used directly for cpregs. 1155 */ 1156 static bool sme_access_check(DisasContext *s) 1157 { 1158 if (s->sme_excp_el) { 1159 gen_exception_insn_el(s, 0, EXCP_UDEF, 1160 syn_smetrap(SME_ET_AccessTrap, false), 1161 s->sme_excp_el); 1162 return false; 1163 } 1164 return true; 1165 } 1166 1167 /* This function corresponds to CheckSMEEnabled. */ 1168 bool sme_enabled_check(DisasContext *s) 1169 { 1170 /* 1171 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1172 * to be zero when fp_excp_el has priority. This is because we need 1173 * sme_excp_el by itself for cpregs access checks. 1174 */ 1175 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1176 s->fp_access_checked = true; 1177 return sme_access_check(s); 1178 } 1179 return fp_access_check_only(s); 1180 } 1181 1182 /* Common subroutine for CheckSMEAnd*Enabled. */ 1183 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1184 { 1185 if (!sme_enabled_check(s)) { 1186 return false; 1187 } 1188 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1189 gen_exception_insn(s, 0, EXCP_UDEF, 1190 syn_smetrap(SME_ET_NotStreaming, false)); 1191 return false; 1192 } 1193 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1194 gen_exception_insn(s, 0, EXCP_UDEF, 1195 syn_smetrap(SME_ET_InactiveZA, false)); 1196 return false; 1197 } 1198 return true; 1199 } 1200 1201 /* 1202 * This utility function is for doing register extension with an 1203 * optional shift. You will likely want to pass a temporary for the 1204 * destination register. See DecodeRegExtend() in the ARM ARM. 1205 */ 1206 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1207 int option, unsigned int shift) 1208 { 1209 int extsize = extract32(option, 0, 2); 1210 bool is_signed = extract32(option, 2, 1); 1211 1212 if (is_signed) { 1213 switch (extsize) { 1214 case 0: 1215 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1216 break; 1217 case 1: 1218 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1219 break; 1220 case 2: 1221 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1222 break; 1223 case 3: 1224 tcg_gen_mov_i64(tcg_out, tcg_in); 1225 break; 1226 } 1227 } else { 1228 switch (extsize) { 1229 case 0: 1230 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1231 break; 1232 case 1: 1233 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1234 break; 1235 case 2: 1236 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1237 break; 1238 case 3: 1239 tcg_gen_mov_i64(tcg_out, tcg_in); 1240 break; 1241 } 1242 } 1243 1244 if (shift) { 1245 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1246 } 1247 } 1248 1249 static inline void gen_check_sp_alignment(DisasContext *s) 1250 { 1251 /* The AArch64 architecture mandates that (if enabled via PSTATE 1252 * or SCTLR bits) there is a check that SP is 16-aligned on every 1253 * SP-relative load or store (with an exception generated if it is not). 1254 * In line with general QEMU practice regarding misaligned accesses, 1255 * we omit these checks for the sake of guest program performance. 1256 * This function is provided as a hook so we can more easily add these 1257 * checks in future (possibly as a "favour catching guest program bugs 1258 * over speed" user selectable option). 1259 */ 1260 } 1261 1262 /* 1263 * This provides a simple table based table lookup decoder. It is 1264 * intended to be used when the relevant bits for decode are too 1265 * awkwardly placed and switch/if based logic would be confusing and 1266 * deeply nested. Since it's a linear search through the table, tables 1267 * should be kept small. 1268 * 1269 * It returns the first handler where insn & mask == pattern, or 1270 * NULL if there is no match. 1271 * The table is terminated by an empty mask (i.e. 0) 1272 */ 1273 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1274 uint32_t insn) 1275 { 1276 const AArch64DecodeTable *tptr = table; 1277 1278 while (tptr->mask) { 1279 if ((insn & tptr->mask) == tptr->pattern) { 1280 return tptr->disas_fn; 1281 } 1282 tptr++; 1283 } 1284 return NULL; 1285 } 1286 1287 /* 1288 * The instruction disassembly implemented here matches 1289 * the instruction encoding classifications in chapter C4 1290 * of the ARM Architecture Reference Manual (DDI0487B_a); 1291 * classification names and decode diagrams here should generally 1292 * match up with those in the manual. 1293 */ 1294 1295 static bool trans_B(DisasContext *s, arg_i *a) 1296 { 1297 reset_btype(s); 1298 gen_goto_tb(s, 0, a->imm); 1299 return true; 1300 } 1301 1302 static bool trans_BL(DisasContext *s, arg_i *a) 1303 { 1304 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1305 reset_btype(s); 1306 gen_goto_tb(s, 0, a->imm); 1307 return true; 1308 } 1309 1310 1311 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1312 { 1313 DisasLabel match; 1314 TCGv_i64 tcg_cmp; 1315 1316 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1317 reset_btype(s); 1318 1319 match = gen_disas_label(s); 1320 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1321 tcg_cmp, 0, match.label); 1322 gen_goto_tb(s, 0, 4); 1323 set_disas_label(s, match); 1324 gen_goto_tb(s, 1, a->imm); 1325 return true; 1326 } 1327 1328 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1329 { 1330 DisasLabel match; 1331 TCGv_i64 tcg_cmp; 1332 1333 tcg_cmp = tcg_temp_new_i64(); 1334 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1335 1336 reset_btype(s); 1337 1338 match = gen_disas_label(s); 1339 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1340 tcg_cmp, 0, match.label); 1341 gen_goto_tb(s, 0, 4); 1342 set_disas_label(s, match); 1343 gen_goto_tb(s, 1, a->imm); 1344 return true; 1345 } 1346 1347 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1348 { 1349 reset_btype(s); 1350 if (a->cond < 0x0e) { 1351 /* genuinely conditional branches */ 1352 DisasLabel match = gen_disas_label(s); 1353 arm_gen_test_cc(a->cond, match.label); 1354 gen_goto_tb(s, 0, 4); 1355 set_disas_label(s, match); 1356 gen_goto_tb(s, 1, a->imm); 1357 } else { 1358 /* 0xe and 0xf are both "always" conditions */ 1359 gen_goto_tb(s, 0, a->imm); 1360 } 1361 return true; 1362 } 1363 1364 static void set_btype_for_br(DisasContext *s, int rn) 1365 { 1366 if (dc_isar_feature(aa64_bti, s)) { 1367 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1368 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1369 } 1370 } 1371 1372 static void set_btype_for_blr(DisasContext *s) 1373 { 1374 if (dc_isar_feature(aa64_bti, s)) { 1375 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1376 set_btype(s, 2); 1377 } 1378 } 1379 1380 static bool trans_BR(DisasContext *s, arg_r *a) 1381 { 1382 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1383 set_btype_for_br(s, a->rn); 1384 s->base.is_jmp = DISAS_JUMP; 1385 return true; 1386 } 1387 1388 static bool trans_BLR(DisasContext *s, arg_r *a) 1389 { 1390 TCGv_i64 dst = cpu_reg(s, a->rn); 1391 TCGv_i64 lr = cpu_reg(s, 30); 1392 if (dst == lr) { 1393 TCGv_i64 tmp = tcg_temp_new_i64(); 1394 tcg_gen_mov_i64(tmp, dst); 1395 dst = tmp; 1396 } 1397 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1398 gen_a64_set_pc(s, dst); 1399 set_btype_for_blr(s); 1400 s->base.is_jmp = DISAS_JUMP; 1401 return true; 1402 } 1403 1404 static bool trans_RET(DisasContext *s, arg_r *a) 1405 { 1406 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1407 s->base.is_jmp = DISAS_JUMP; 1408 return true; 1409 } 1410 1411 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1412 TCGv_i64 modifier, bool use_key_a) 1413 { 1414 TCGv_i64 truedst; 1415 /* 1416 * Return the branch target for a BRAA/RETA/etc, which is either 1417 * just the destination dst, or that value with the pauth check 1418 * done and the code removed from the high bits. 1419 */ 1420 if (!s->pauth_active) { 1421 return dst; 1422 } 1423 1424 truedst = tcg_temp_new_i64(); 1425 if (use_key_a) { 1426 gen_helper_autia(truedst, cpu_env, dst, modifier); 1427 } else { 1428 gen_helper_autib(truedst, cpu_env, dst, modifier); 1429 } 1430 return truedst; 1431 } 1432 1433 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1434 { 1435 TCGv_i64 dst; 1436 1437 if (!dc_isar_feature(aa64_pauth, s)) { 1438 return false; 1439 } 1440 1441 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1442 gen_a64_set_pc(s, dst); 1443 set_btype_for_br(s, a->rn); 1444 s->base.is_jmp = DISAS_JUMP; 1445 return true; 1446 } 1447 1448 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1449 { 1450 TCGv_i64 dst, lr; 1451 1452 if (!dc_isar_feature(aa64_pauth, s)) { 1453 return false; 1454 } 1455 1456 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1457 lr = cpu_reg(s, 30); 1458 if (dst == lr) { 1459 TCGv_i64 tmp = tcg_temp_new_i64(); 1460 tcg_gen_mov_i64(tmp, dst); 1461 dst = tmp; 1462 } 1463 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1464 gen_a64_set_pc(s, dst); 1465 set_btype_for_blr(s); 1466 s->base.is_jmp = DISAS_JUMP; 1467 return true; 1468 } 1469 1470 static bool trans_RETA(DisasContext *s, arg_reta *a) 1471 { 1472 TCGv_i64 dst; 1473 1474 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1475 gen_a64_set_pc(s, dst); 1476 s->base.is_jmp = DISAS_JUMP; 1477 return true; 1478 } 1479 1480 static bool trans_BRA(DisasContext *s, arg_bra *a) 1481 { 1482 TCGv_i64 dst; 1483 1484 if (!dc_isar_feature(aa64_pauth, s)) { 1485 return false; 1486 } 1487 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1488 gen_a64_set_pc(s, dst); 1489 set_btype_for_br(s, a->rn); 1490 s->base.is_jmp = DISAS_JUMP; 1491 return true; 1492 } 1493 1494 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1495 { 1496 TCGv_i64 dst, lr; 1497 1498 if (!dc_isar_feature(aa64_pauth, s)) { 1499 return false; 1500 } 1501 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1502 lr = cpu_reg(s, 30); 1503 if (dst == lr) { 1504 TCGv_i64 tmp = tcg_temp_new_i64(); 1505 tcg_gen_mov_i64(tmp, dst); 1506 dst = tmp; 1507 } 1508 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1509 gen_a64_set_pc(s, dst); 1510 set_btype_for_blr(s); 1511 s->base.is_jmp = DISAS_JUMP; 1512 return true; 1513 } 1514 1515 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1516 { 1517 TCGv_i64 dst; 1518 1519 if (s->current_el == 0) { 1520 return false; 1521 } 1522 if (s->fgt_eret) { 1523 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1524 return true; 1525 } 1526 dst = tcg_temp_new_i64(); 1527 tcg_gen_ld_i64(dst, cpu_env, 1528 offsetof(CPUARMState, elr_el[s->current_el])); 1529 1530 translator_io_start(&s->base); 1531 1532 gen_helper_exception_return(cpu_env, dst); 1533 /* Must exit loop to check un-masked IRQs */ 1534 s->base.is_jmp = DISAS_EXIT; 1535 return true; 1536 } 1537 1538 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1539 { 1540 TCGv_i64 dst; 1541 1542 if (!dc_isar_feature(aa64_pauth, s)) { 1543 return false; 1544 } 1545 if (s->current_el == 0) { 1546 return false; 1547 } 1548 /* The FGT trap takes precedence over an auth trap. */ 1549 if (s->fgt_eret) { 1550 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1551 return true; 1552 } 1553 dst = tcg_temp_new_i64(); 1554 tcg_gen_ld_i64(dst, cpu_env, 1555 offsetof(CPUARMState, elr_el[s->current_el])); 1556 1557 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1558 1559 translator_io_start(&s->base); 1560 1561 gen_helper_exception_return(cpu_env, dst); 1562 /* Must exit loop to check un-masked IRQs */ 1563 s->base.is_jmp = DISAS_EXIT; 1564 return true; 1565 } 1566 1567 /* HINT instruction group, including various allocated HINTs */ 1568 static void handle_hint(DisasContext *s, uint32_t insn, 1569 unsigned int op1, unsigned int op2, unsigned int crm) 1570 { 1571 unsigned int selector = crm << 3 | op2; 1572 1573 if (op1 != 3) { 1574 unallocated_encoding(s); 1575 return; 1576 } 1577 1578 switch (selector) { 1579 case 0b00000: /* NOP */ 1580 break; 1581 case 0b00011: /* WFI */ 1582 s->base.is_jmp = DISAS_WFI; 1583 break; 1584 case 0b00001: /* YIELD */ 1585 /* When running in MTTCG we don't generate jumps to the yield and 1586 * WFE helpers as it won't affect the scheduling of other vCPUs. 1587 * If we wanted to more completely model WFE/SEV so we don't busy 1588 * spin unnecessarily we would need to do something more involved. 1589 */ 1590 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1591 s->base.is_jmp = DISAS_YIELD; 1592 } 1593 break; 1594 case 0b00010: /* WFE */ 1595 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1596 s->base.is_jmp = DISAS_WFE; 1597 } 1598 break; 1599 case 0b00100: /* SEV */ 1600 case 0b00101: /* SEVL */ 1601 case 0b00110: /* DGH */ 1602 /* we treat all as NOP at least for now */ 1603 break; 1604 case 0b00111: /* XPACLRI */ 1605 if (s->pauth_active) { 1606 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1607 } 1608 break; 1609 case 0b01000: /* PACIA1716 */ 1610 if (s->pauth_active) { 1611 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1612 } 1613 break; 1614 case 0b01010: /* PACIB1716 */ 1615 if (s->pauth_active) { 1616 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1617 } 1618 break; 1619 case 0b01100: /* AUTIA1716 */ 1620 if (s->pauth_active) { 1621 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1622 } 1623 break; 1624 case 0b01110: /* AUTIB1716 */ 1625 if (s->pauth_active) { 1626 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1627 } 1628 break; 1629 case 0b10000: /* ESB */ 1630 /* Without RAS, we must implement this as NOP. */ 1631 if (dc_isar_feature(aa64_ras, s)) { 1632 /* 1633 * QEMU does not have a source of physical SErrors, 1634 * so we are only concerned with virtual SErrors. 1635 * The pseudocode in the ARM for this case is 1636 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1637 * AArch64.vESBOperation(); 1638 * Most of the condition can be evaluated at translation time. 1639 * Test for EL2 present, and defer test for SEL2 to runtime. 1640 */ 1641 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1642 gen_helper_vesb(cpu_env); 1643 } 1644 } 1645 break; 1646 case 0b11000: /* PACIAZ */ 1647 if (s->pauth_active) { 1648 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1649 tcg_constant_i64(0)); 1650 } 1651 break; 1652 case 0b11001: /* PACIASP */ 1653 if (s->pauth_active) { 1654 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1655 } 1656 break; 1657 case 0b11010: /* PACIBZ */ 1658 if (s->pauth_active) { 1659 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1660 tcg_constant_i64(0)); 1661 } 1662 break; 1663 case 0b11011: /* PACIBSP */ 1664 if (s->pauth_active) { 1665 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1666 } 1667 break; 1668 case 0b11100: /* AUTIAZ */ 1669 if (s->pauth_active) { 1670 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1671 tcg_constant_i64(0)); 1672 } 1673 break; 1674 case 0b11101: /* AUTIASP */ 1675 if (s->pauth_active) { 1676 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1677 } 1678 break; 1679 case 0b11110: /* AUTIBZ */ 1680 if (s->pauth_active) { 1681 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1682 tcg_constant_i64(0)); 1683 } 1684 break; 1685 case 0b11111: /* AUTIBSP */ 1686 if (s->pauth_active) { 1687 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1688 } 1689 break; 1690 default: 1691 /* default specified as NOP equivalent */ 1692 break; 1693 } 1694 } 1695 1696 static void gen_clrex(DisasContext *s, uint32_t insn) 1697 { 1698 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1699 } 1700 1701 /* CLREX, DSB, DMB, ISB */ 1702 static void handle_sync(DisasContext *s, uint32_t insn, 1703 unsigned int op1, unsigned int op2, unsigned int crm) 1704 { 1705 TCGBar bar; 1706 1707 if (op1 != 3) { 1708 unallocated_encoding(s); 1709 return; 1710 } 1711 1712 switch (op2) { 1713 case 2: /* CLREX */ 1714 gen_clrex(s, insn); 1715 return; 1716 case 4: /* DSB */ 1717 case 5: /* DMB */ 1718 switch (crm & 3) { 1719 case 1: /* MBReqTypes_Reads */ 1720 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1721 break; 1722 case 2: /* MBReqTypes_Writes */ 1723 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1724 break; 1725 default: /* MBReqTypes_All */ 1726 bar = TCG_BAR_SC | TCG_MO_ALL; 1727 break; 1728 } 1729 tcg_gen_mb(bar); 1730 return; 1731 case 6: /* ISB */ 1732 /* We need to break the TB after this insn to execute 1733 * a self-modified code correctly and also to take 1734 * any pending interrupts immediately. 1735 */ 1736 reset_btype(s); 1737 gen_goto_tb(s, 0, 4); 1738 return; 1739 1740 case 7: /* SB */ 1741 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1742 goto do_unallocated; 1743 } 1744 /* 1745 * TODO: There is no speculation barrier opcode for TCG; 1746 * MB and end the TB instead. 1747 */ 1748 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1749 gen_goto_tb(s, 0, 4); 1750 return; 1751 1752 default: 1753 do_unallocated: 1754 unallocated_encoding(s); 1755 return; 1756 } 1757 } 1758 1759 static void gen_xaflag(void) 1760 { 1761 TCGv_i32 z = tcg_temp_new_i32(); 1762 1763 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1764 1765 /* 1766 * (!C & !Z) << 31 1767 * (!(C | Z)) << 31 1768 * ~((C | Z) << 31) 1769 * ~-(C | Z) 1770 * (C | Z) - 1 1771 */ 1772 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1773 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1774 1775 /* !(Z & C) */ 1776 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1777 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1778 1779 /* (!C & Z) << 31 -> -(Z & ~C) */ 1780 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1781 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1782 1783 /* C | Z */ 1784 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1785 } 1786 1787 static void gen_axflag(void) 1788 { 1789 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1790 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1791 1792 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1793 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1794 1795 tcg_gen_movi_i32(cpu_NF, 0); 1796 tcg_gen_movi_i32(cpu_VF, 0); 1797 } 1798 1799 /* MSR (immediate) - move immediate to processor state field */ 1800 static void handle_msr_i(DisasContext *s, uint32_t insn, 1801 unsigned int op1, unsigned int op2, unsigned int crm) 1802 { 1803 int op = op1 << 3 | op2; 1804 1805 /* End the TB by default, chaining is ok. */ 1806 s->base.is_jmp = DISAS_TOO_MANY; 1807 1808 switch (op) { 1809 case 0x00: /* CFINV */ 1810 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1811 goto do_unallocated; 1812 } 1813 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1814 s->base.is_jmp = DISAS_NEXT; 1815 break; 1816 1817 case 0x01: /* XAFlag */ 1818 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1819 goto do_unallocated; 1820 } 1821 gen_xaflag(); 1822 s->base.is_jmp = DISAS_NEXT; 1823 break; 1824 1825 case 0x02: /* AXFlag */ 1826 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1827 goto do_unallocated; 1828 } 1829 gen_axflag(); 1830 s->base.is_jmp = DISAS_NEXT; 1831 break; 1832 1833 case 0x03: /* UAO */ 1834 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1835 goto do_unallocated; 1836 } 1837 if (crm & 1) { 1838 set_pstate_bits(PSTATE_UAO); 1839 } else { 1840 clear_pstate_bits(PSTATE_UAO); 1841 } 1842 gen_rebuild_hflags(s); 1843 break; 1844 1845 case 0x04: /* PAN */ 1846 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1847 goto do_unallocated; 1848 } 1849 if (crm & 1) { 1850 set_pstate_bits(PSTATE_PAN); 1851 } else { 1852 clear_pstate_bits(PSTATE_PAN); 1853 } 1854 gen_rebuild_hflags(s); 1855 break; 1856 1857 case 0x05: /* SPSel */ 1858 if (s->current_el == 0) { 1859 goto do_unallocated; 1860 } 1861 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1862 break; 1863 1864 case 0x19: /* SSBS */ 1865 if (!dc_isar_feature(aa64_ssbs, s)) { 1866 goto do_unallocated; 1867 } 1868 if (crm & 1) { 1869 set_pstate_bits(PSTATE_SSBS); 1870 } else { 1871 clear_pstate_bits(PSTATE_SSBS); 1872 } 1873 /* Don't need to rebuild hflags since SSBS is a nop */ 1874 break; 1875 1876 case 0x1a: /* DIT */ 1877 if (!dc_isar_feature(aa64_dit, s)) { 1878 goto do_unallocated; 1879 } 1880 if (crm & 1) { 1881 set_pstate_bits(PSTATE_DIT); 1882 } else { 1883 clear_pstate_bits(PSTATE_DIT); 1884 } 1885 /* There's no need to rebuild hflags because DIT is a nop */ 1886 break; 1887 1888 case 0x1e: /* DAIFSet */ 1889 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1890 break; 1891 1892 case 0x1f: /* DAIFClear */ 1893 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1894 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1895 s->base.is_jmp = DISAS_UPDATE_EXIT; 1896 break; 1897 1898 case 0x1c: /* TCO */ 1899 if (dc_isar_feature(aa64_mte, s)) { 1900 /* Full MTE is enabled -- set the TCO bit as directed. */ 1901 if (crm & 1) { 1902 set_pstate_bits(PSTATE_TCO); 1903 } else { 1904 clear_pstate_bits(PSTATE_TCO); 1905 } 1906 gen_rebuild_hflags(s); 1907 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1908 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1909 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1910 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1911 s->base.is_jmp = DISAS_NEXT; 1912 } else { 1913 goto do_unallocated; 1914 } 1915 break; 1916 1917 case 0x1b: /* SVCR* */ 1918 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1919 goto do_unallocated; 1920 } 1921 if (sme_access_check(s)) { 1922 int old = s->pstate_sm | (s->pstate_za << 1); 1923 int new = (crm & 1) * 3; 1924 int msk = (crm >> 1) & 3; 1925 1926 if ((old ^ new) & msk) { 1927 /* At least one bit changes. */ 1928 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1929 tcg_constant_i32(msk)); 1930 } else { 1931 s->base.is_jmp = DISAS_NEXT; 1932 } 1933 } 1934 break; 1935 1936 default: 1937 do_unallocated: 1938 unallocated_encoding(s); 1939 return; 1940 } 1941 } 1942 1943 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1944 { 1945 TCGv_i32 tmp = tcg_temp_new_i32(); 1946 TCGv_i32 nzcv = tcg_temp_new_i32(); 1947 1948 /* build bit 31, N */ 1949 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1950 /* build bit 30, Z */ 1951 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1952 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1953 /* build bit 29, C */ 1954 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1955 /* build bit 28, V */ 1956 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1957 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1958 /* generate result */ 1959 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1960 } 1961 1962 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1963 { 1964 TCGv_i32 nzcv = tcg_temp_new_i32(); 1965 1966 /* take NZCV from R[t] */ 1967 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1968 1969 /* bit 31, N */ 1970 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1971 /* bit 30, Z */ 1972 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1973 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1974 /* bit 29, C */ 1975 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1976 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1977 /* bit 28, V */ 1978 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1979 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1980 } 1981 1982 static void gen_sysreg_undef(DisasContext *s, bool isread, 1983 uint8_t op0, uint8_t op1, uint8_t op2, 1984 uint8_t crn, uint8_t crm, uint8_t rt) 1985 { 1986 /* 1987 * Generate code to emit an UNDEF with correct syndrome 1988 * information for a failed system register access. 1989 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1990 * but if FEAT_IDST is implemented then read accesses to registers 1991 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1992 * syndrome. 1993 */ 1994 uint32_t syndrome; 1995 1996 if (isread && dc_isar_feature(aa64_ids, s) && 1997 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 1998 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1999 } else { 2000 syndrome = syn_uncategorized(); 2001 } 2002 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2003 } 2004 2005 /* MRS - move from system register 2006 * MSR (register) - move to system register 2007 * SYS 2008 * SYSL 2009 * These are all essentially the same insn in 'read' and 'write' 2010 * versions, with varying op0 fields. 2011 */ 2012 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2013 unsigned int op0, unsigned int op1, unsigned int op2, 2014 unsigned int crn, unsigned int crm, unsigned int rt) 2015 { 2016 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2017 crn, crm, op0, op1, op2); 2018 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2019 bool need_exit_tb = false; 2020 TCGv_ptr tcg_ri = NULL; 2021 TCGv_i64 tcg_rt; 2022 2023 if (!ri) { 2024 /* Unknown register; this might be a guest error or a QEMU 2025 * unimplemented feature. 2026 */ 2027 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2028 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2029 isread ? "read" : "write", op0, op1, crn, crm, op2); 2030 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2031 return; 2032 } 2033 2034 /* Check access permissions */ 2035 if (!cp_access_ok(s->current_el, ri, isread)) { 2036 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2037 return; 2038 } 2039 2040 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2041 /* Emit code to perform further access permissions checks at 2042 * runtime; this may result in an exception. 2043 */ 2044 uint32_t syndrome; 2045 2046 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2047 gen_a64_update_pc(s, 0); 2048 tcg_ri = tcg_temp_new_ptr(); 2049 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2050 tcg_constant_i32(key), 2051 tcg_constant_i32(syndrome), 2052 tcg_constant_i32(isread)); 2053 } else if (ri->type & ARM_CP_RAISES_EXC) { 2054 /* 2055 * The readfn or writefn might raise an exception; 2056 * synchronize the CPU state in case it does. 2057 */ 2058 gen_a64_update_pc(s, 0); 2059 } 2060 2061 /* Handle special cases first */ 2062 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2063 case 0: 2064 break; 2065 case ARM_CP_NOP: 2066 return; 2067 case ARM_CP_NZCV: 2068 tcg_rt = cpu_reg(s, rt); 2069 if (isread) { 2070 gen_get_nzcv(tcg_rt); 2071 } else { 2072 gen_set_nzcv(tcg_rt); 2073 } 2074 return; 2075 case ARM_CP_CURRENTEL: 2076 /* Reads as current EL value from pstate, which is 2077 * guaranteed to be constant by the tb flags. 2078 */ 2079 tcg_rt = cpu_reg(s, rt); 2080 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2081 return; 2082 case ARM_CP_DC_ZVA: 2083 /* Writes clear the aligned block of memory which rt points into. */ 2084 if (s->mte_active[0]) { 2085 int desc = 0; 2086 2087 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2088 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2089 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2090 2091 tcg_rt = tcg_temp_new_i64(); 2092 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2093 tcg_constant_i32(desc), cpu_reg(s, rt)); 2094 } else { 2095 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2096 } 2097 gen_helper_dc_zva(cpu_env, tcg_rt); 2098 return; 2099 case ARM_CP_DC_GVA: 2100 { 2101 TCGv_i64 clean_addr, tag; 2102 2103 /* 2104 * DC_GVA, like DC_ZVA, requires that we supply the original 2105 * pointer for an invalid page. Probe that address first. 2106 */ 2107 tcg_rt = cpu_reg(s, rt); 2108 clean_addr = clean_data_tbi(s, tcg_rt); 2109 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2110 2111 if (s->ata) { 2112 /* Extract the tag from the register to match STZGM. */ 2113 tag = tcg_temp_new_i64(); 2114 tcg_gen_shri_i64(tag, tcg_rt, 56); 2115 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2116 } 2117 } 2118 return; 2119 case ARM_CP_DC_GZVA: 2120 { 2121 TCGv_i64 clean_addr, tag; 2122 2123 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2124 tcg_rt = cpu_reg(s, rt); 2125 clean_addr = clean_data_tbi(s, tcg_rt); 2126 gen_helper_dc_zva(cpu_env, clean_addr); 2127 2128 if (s->ata) { 2129 /* Extract the tag from the register to match STZGM. */ 2130 tag = tcg_temp_new_i64(); 2131 tcg_gen_shri_i64(tag, tcg_rt, 56); 2132 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2133 } 2134 } 2135 return; 2136 default: 2137 g_assert_not_reached(); 2138 } 2139 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2140 return; 2141 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2142 return; 2143 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2144 return; 2145 } 2146 2147 if (ri->type & ARM_CP_IO) { 2148 /* I/O operations must end the TB here (whether read or write) */ 2149 need_exit_tb = translator_io_start(&s->base); 2150 } 2151 2152 tcg_rt = cpu_reg(s, rt); 2153 2154 if (isread) { 2155 if (ri->type & ARM_CP_CONST) { 2156 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2157 } else if (ri->readfn) { 2158 if (!tcg_ri) { 2159 tcg_ri = gen_lookup_cp_reg(key); 2160 } 2161 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2162 } else { 2163 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2164 } 2165 } else { 2166 if (ri->type & ARM_CP_CONST) { 2167 /* If not forbidden by access permissions, treat as WI */ 2168 return; 2169 } else if (ri->writefn) { 2170 if (!tcg_ri) { 2171 tcg_ri = gen_lookup_cp_reg(key); 2172 } 2173 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2174 } else { 2175 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2176 } 2177 } 2178 2179 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2180 /* 2181 * A write to any coprocessor regiser that ends a TB 2182 * must rebuild the hflags for the next TB. 2183 */ 2184 gen_rebuild_hflags(s); 2185 /* 2186 * We default to ending the TB on a coprocessor register write, 2187 * but allow this to be suppressed by the register definition 2188 * (usually only necessary to work around guest bugs). 2189 */ 2190 need_exit_tb = true; 2191 } 2192 if (need_exit_tb) { 2193 s->base.is_jmp = DISAS_UPDATE_EXIT; 2194 } 2195 } 2196 2197 /* System 2198 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2199 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2200 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2201 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2202 */ 2203 static void disas_system(DisasContext *s, uint32_t insn) 2204 { 2205 unsigned int l, op0, op1, crn, crm, op2, rt; 2206 l = extract32(insn, 21, 1); 2207 op0 = extract32(insn, 19, 2); 2208 op1 = extract32(insn, 16, 3); 2209 crn = extract32(insn, 12, 4); 2210 crm = extract32(insn, 8, 4); 2211 op2 = extract32(insn, 5, 3); 2212 rt = extract32(insn, 0, 5); 2213 2214 if (op0 == 0) { 2215 if (l || rt != 31) { 2216 unallocated_encoding(s); 2217 return; 2218 } 2219 switch (crn) { 2220 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2221 handle_hint(s, insn, op1, op2, crm); 2222 break; 2223 case 3: /* CLREX, DSB, DMB, ISB */ 2224 handle_sync(s, insn, op1, op2, crm); 2225 break; 2226 case 4: /* MSR (immediate) */ 2227 handle_msr_i(s, insn, op1, op2, crm); 2228 break; 2229 default: 2230 unallocated_encoding(s); 2231 break; 2232 } 2233 return; 2234 } 2235 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2236 } 2237 2238 /* Exception generation 2239 * 2240 * 31 24 23 21 20 5 4 2 1 0 2241 * +-----------------+-----+------------------------+-----+----+ 2242 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2243 * +-----------------------+------------------------+----------+ 2244 */ 2245 static void disas_exc(DisasContext *s, uint32_t insn) 2246 { 2247 int opc = extract32(insn, 21, 3); 2248 int op2_ll = extract32(insn, 0, 5); 2249 int imm16 = extract32(insn, 5, 16); 2250 uint32_t syndrome; 2251 2252 switch (opc) { 2253 case 0: 2254 /* For SVC, HVC and SMC we advance the single-step state 2255 * machine before taking the exception. This is architecturally 2256 * mandated, to ensure that single-stepping a system call 2257 * instruction works properly. 2258 */ 2259 switch (op2_ll) { 2260 case 1: /* SVC */ 2261 syndrome = syn_aa64_svc(imm16); 2262 if (s->fgt_svc) { 2263 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2264 break; 2265 } 2266 gen_ss_advance(s); 2267 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2268 break; 2269 case 2: /* HVC */ 2270 if (s->current_el == 0) { 2271 unallocated_encoding(s); 2272 break; 2273 } 2274 /* The pre HVC helper handles cases when HVC gets trapped 2275 * as an undefined insn by runtime configuration. 2276 */ 2277 gen_a64_update_pc(s, 0); 2278 gen_helper_pre_hvc(cpu_env); 2279 gen_ss_advance(s); 2280 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2281 break; 2282 case 3: /* SMC */ 2283 if (s->current_el == 0) { 2284 unallocated_encoding(s); 2285 break; 2286 } 2287 gen_a64_update_pc(s, 0); 2288 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2289 gen_ss_advance(s); 2290 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2291 break; 2292 default: 2293 unallocated_encoding(s); 2294 break; 2295 } 2296 break; 2297 case 1: 2298 if (op2_ll != 0) { 2299 unallocated_encoding(s); 2300 break; 2301 } 2302 /* BRK */ 2303 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2304 break; 2305 case 2: 2306 if (op2_ll != 0) { 2307 unallocated_encoding(s); 2308 break; 2309 } 2310 /* HLT. This has two purposes. 2311 * Architecturally, it is an external halting debug instruction. 2312 * Since QEMU doesn't implement external debug, we treat this as 2313 * it is required for halting debug disabled: it will UNDEF. 2314 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2315 */ 2316 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2317 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2318 } else { 2319 unallocated_encoding(s); 2320 } 2321 break; 2322 case 5: 2323 if (op2_ll < 1 || op2_ll > 3) { 2324 unallocated_encoding(s); 2325 break; 2326 } 2327 /* DCPS1, DCPS2, DCPS3 */ 2328 unallocated_encoding(s); 2329 break; 2330 default: 2331 unallocated_encoding(s); 2332 break; 2333 } 2334 } 2335 2336 /* Branches, exception generating and system instructions */ 2337 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2338 { 2339 switch (extract32(insn, 25, 7)) { 2340 case 0x6a: /* Exception generation / System */ 2341 if (insn & (1 << 24)) { 2342 if (extract32(insn, 22, 2) == 0) { 2343 disas_system(s, insn); 2344 } else { 2345 unallocated_encoding(s); 2346 } 2347 } else { 2348 disas_exc(s, insn); 2349 } 2350 break; 2351 default: 2352 unallocated_encoding(s); 2353 break; 2354 } 2355 } 2356 2357 /* 2358 * Load/Store exclusive instructions are implemented by remembering 2359 * the value/address loaded, and seeing if these are the same 2360 * when the store is performed. This is not actually the architecturally 2361 * mandated semantics, but it works for typical guest code sequences 2362 * and avoids having to monitor regular stores. 2363 * 2364 * The store exclusive uses the atomic cmpxchg primitives to avoid 2365 * races in multi-threaded linux-user and when MTTCG softmmu is 2366 * enabled. 2367 */ 2368 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2369 int size, bool is_pair) 2370 { 2371 int idx = get_mem_index(s); 2372 TCGv_i64 dirty_addr, clean_addr; 2373 MemOp memop; 2374 2375 /* 2376 * For pairs: 2377 * if size == 2, the operation is single-copy atomic for the doubleword. 2378 * if size == 3, the operation is single-copy atomic for *each* doubleword, 2379 * not the entire quadword, however it must be quadword aligned. 2380 */ 2381 memop = size + is_pair; 2382 if (memop == MO_128) { 2383 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN, 2384 MO_ATOM_IFALIGN_PAIR); 2385 } else { 2386 memop = finalize_memop(s, memop | MO_ALIGN); 2387 } 2388 2389 s->is_ldex = true; 2390 dirty_addr = cpu_reg_sp(s, rn); 2391 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2392 2393 g_assert(size <= 3); 2394 if (is_pair) { 2395 g_assert(size >= 2); 2396 if (size == 2) { 2397 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2398 if (s->be_data == MO_LE) { 2399 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2400 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2401 } else { 2402 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2403 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2404 } 2405 } else { 2406 TCGv_i128 t16 = tcg_temp_new_i128(); 2407 2408 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2409 2410 if (s->be_data == MO_LE) { 2411 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2412 cpu_exclusive_high, t16); 2413 } else { 2414 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2415 cpu_exclusive_val, t16); 2416 } 2417 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2418 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2419 } 2420 } else { 2421 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2422 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2423 } 2424 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2425 } 2426 2427 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2428 int rn, int size, int is_pair) 2429 { 2430 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2431 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2432 * [addr] = {Rt}; 2433 * if (is_pair) { 2434 * [addr + datasize] = {Rt2}; 2435 * } 2436 * {Rd} = 0; 2437 * } else { 2438 * {Rd} = 1; 2439 * } 2440 * env->exclusive_addr = -1; 2441 */ 2442 TCGLabel *fail_label = gen_new_label(); 2443 TCGLabel *done_label = gen_new_label(); 2444 TCGv_i64 tmp, dirty_addr, clean_addr; 2445 MemOp memop; 2446 2447 memop = (size + is_pair) | MO_ALIGN; 2448 memop = finalize_memop(s, memop); 2449 2450 dirty_addr = cpu_reg_sp(s, rn); 2451 clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, memop); 2452 2453 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2454 2455 tmp = tcg_temp_new_i64(); 2456 if (is_pair) { 2457 if (size == 2) { 2458 if (s->be_data == MO_LE) { 2459 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2460 } else { 2461 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2462 } 2463 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2464 cpu_exclusive_val, tmp, 2465 get_mem_index(s), memop); 2466 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2467 } else { 2468 TCGv_i128 t16 = tcg_temp_new_i128(); 2469 TCGv_i128 c16 = tcg_temp_new_i128(); 2470 TCGv_i64 a, b; 2471 2472 if (s->be_data == MO_LE) { 2473 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2474 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2475 cpu_exclusive_high); 2476 } else { 2477 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2478 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2479 cpu_exclusive_val); 2480 } 2481 2482 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2483 get_mem_index(s), memop); 2484 2485 a = tcg_temp_new_i64(); 2486 b = tcg_temp_new_i64(); 2487 if (s->be_data == MO_LE) { 2488 tcg_gen_extr_i128_i64(a, b, t16); 2489 } else { 2490 tcg_gen_extr_i128_i64(b, a, t16); 2491 } 2492 2493 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2494 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2495 tcg_gen_or_i64(tmp, a, b); 2496 2497 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2498 } 2499 } else { 2500 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2501 cpu_reg(s, rt), get_mem_index(s), memop); 2502 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2503 } 2504 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2505 tcg_gen_br(done_label); 2506 2507 gen_set_label(fail_label); 2508 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2509 gen_set_label(done_label); 2510 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2511 } 2512 2513 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2514 int rn, int size) 2515 { 2516 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2517 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2518 int memidx = get_mem_index(s); 2519 TCGv_i64 clean_addr; 2520 MemOp memop; 2521 2522 if (rn == 31) { 2523 gen_check_sp_alignment(s); 2524 } 2525 memop = finalize_memop(s, size | MO_ALIGN); 2526 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2527 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2528 memidx, memop); 2529 } 2530 2531 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2532 int rn, int size) 2533 { 2534 TCGv_i64 s1 = cpu_reg(s, rs); 2535 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2536 TCGv_i64 t1 = cpu_reg(s, rt); 2537 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2538 TCGv_i64 clean_addr; 2539 int memidx = get_mem_index(s); 2540 MemOp memop; 2541 2542 if (rn == 31) { 2543 gen_check_sp_alignment(s); 2544 } 2545 2546 /* This is a single atomic access, despite the "pair". */ 2547 memop = finalize_memop(s, (size + 1) | MO_ALIGN); 2548 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2549 2550 if (size == 2) { 2551 TCGv_i64 cmp = tcg_temp_new_i64(); 2552 TCGv_i64 val = tcg_temp_new_i64(); 2553 2554 if (s->be_data == MO_LE) { 2555 tcg_gen_concat32_i64(val, t1, t2); 2556 tcg_gen_concat32_i64(cmp, s1, s2); 2557 } else { 2558 tcg_gen_concat32_i64(val, t2, t1); 2559 tcg_gen_concat32_i64(cmp, s2, s1); 2560 } 2561 2562 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2563 2564 if (s->be_data == MO_LE) { 2565 tcg_gen_extr32_i64(s1, s2, cmp); 2566 } else { 2567 tcg_gen_extr32_i64(s2, s1, cmp); 2568 } 2569 } else { 2570 TCGv_i128 cmp = tcg_temp_new_i128(); 2571 TCGv_i128 val = tcg_temp_new_i128(); 2572 2573 if (s->be_data == MO_LE) { 2574 tcg_gen_concat_i64_i128(val, t1, t2); 2575 tcg_gen_concat_i64_i128(cmp, s1, s2); 2576 } else { 2577 tcg_gen_concat_i64_i128(val, t2, t1); 2578 tcg_gen_concat_i64_i128(cmp, s2, s1); 2579 } 2580 2581 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2582 2583 if (s->be_data == MO_LE) { 2584 tcg_gen_extr_i128_i64(s1, s2, cmp); 2585 } else { 2586 tcg_gen_extr_i128_i64(s2, s1, cmp); 2587 } 2588 } 2589 } 2590 2591 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2592 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2593 */ 2594 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2595 { 2596 int opc0 = extract32(opc, 0, 1); 2597 int regsize; 2598 2599 if (is_signed) { 2600 regsize = opc0 ? 32 : 64; 2601 } else { 2602 regsize = size == 3 ? 64 : 32; 2603 } 2604 return regsize == 64; 2605 } 2606 2607 /* Load/store exclusive 2608 * 2609 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2610 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2611 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2612 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2613 * 2614 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2615 * L: 0 -> store, 1 -> load 2616 * o2: 0 -> exclusive, 1 -> not 2617 * o1: 0 -> single register, 1 -> register pair 2618 * o0: 1 -> load-acquire/store-release, 0 -> not 2619 */ 2620 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2621 { 2622 int rt = extract32(insn, 0, 5); 2623 int rn = extract32(insn, 5, 5); 2624 int rt2 = extract32(insn, 10, 5); 2625 int rs = extract32(insn, 16, 5); 2626 int is_lasr = extract32(insn, 15, 1); 2627 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2628 int size = extract32(insn, 30, 2); 2629 TCGv_i64 clean_addr; 2630 MemOp memop; 2631 2632 switch (o2_L_o1_o0) { 2633 case 0x0: /* STXR */ 2634 case 0x1: /* STLXR */ 2635 if (rn == 31) { 2636 gen_check_sp_alignment(s); 2637 } 2638 if (is_lasr) { 2639 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2640 } 2641 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2642 return; 2643 2644 case 0x4: /* LDXR */ 2645 case 0x5: /* LDAXR */ 2646 if (rn == 31) { 2647 gen_check_sp_alignment(s); 2648 } 2649 gen_load_exclusive(s, rt, rt2, rn, size, false); 2650 if (is_lasr) { 2651 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2652 } 2653 return; 2654 2655 case 0x8: /* STLLR */ 2656 if (!dc_isar_feature(aa64_lor, s)) { 2657 break; 2658 } 2659 /* StoreLORelease is the same as Store-Release for QEMU. */ 2660 /* fall through */ 2661 case 0x9: /* STLR */ 2662 /* Generate ISS for non-exclusive accesses including LASR. */ 2663 if (rn == 31) { 2664 gen_check_sp_alignment(s); 2665 } 2666 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2667 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2668 memop = finalize_memop(s, size | MO_ALIGN); 2669 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2670 true, rn != 31, memop); 2671 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2672 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2673 return; 2674 2675 case 0xc: /* LDLAR */ 2676 if (!dc_isar_feature(aa64_lor, s)) { 2677 break; 2678 } 2679 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2680 /* fall through */ 2681 case 0xd: /* LDAR */ 2682 /* Generate ISS for non-exclusive accesses including LASR. */ 2683 if (rn == 31) { 2684 gen_check_sp_alignment(s); 2685 } 2686 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2687 memop = finalize_memop(s, size | MO_ALIGN); 2688 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2689 false, rn != 31, memop); 2690 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2691 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2692 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2693 return; 2694 2695 case 0x2: case 0x3: /* CASP / STXP */ 2696 if (size & 2) { /* STXP / STLXP */ 2697 if (rn == 31) { 2698 gen_check_sp_alignment(s); 2699 } 2700 if (is_lasr) { 2701 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2702 } 2703 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2704 return; 2705 } 2706 if (rt2 == 31 2707 && ((rt | rs) & 1) == 0 2708 && dc_isar_feature(aa64_atomics, s)) { 2709 /* CASP / CASPL */ 2710 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2711 return; 2712 } 2713 break; 2714 2715 case 0x6: case 0x7: /* CASPA / LDXP */ 2716 if (size & 2) { /* LDXP / LDAXP */ 2717 if (rn == 31) { 2718 gen_check_sp_alignment(s); 2719 } 2720 gen_load_exclusive(s, rt, rt2, rn, size, true); 2721 if (is_lasr) { 2722 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2723 } 2724 return; 2725 } 2726 if (rt2 == 31 2727 && ((rt | rs) & 1) == 0 2728 && dc_isar_feature(aa64_atomics, s)) { 2729 /* CASPA / CASPAL */ 2730 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2731 return; 2732 } 2733 break; 2734 2735 case 0xa: /* CAS */ 2736 case 0xb: /* CASL */ 2737 case 0xe: /* CASA */ 2738 case 0xf: /* CASAL */ 2739 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2740 gen_compare_and_swap(s, rs, rt, rn, size); 2741 return; 2742 } 2743 break; 2744 } 2745 unallocated_encoding(s); 2746 } 2747 2748 /* 2749 * Load register (literal) 2750 * 2751 * 31 30 29 27 26 25 24 23 5 4 0 2752 * +-----+-------+---+-----+-------------------+-------+ 2753 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2754 * +-----+-------+---+-----+-------------------+-------+ 2755 * 2756 * V: 1 -> vector (simd/fp) 2757 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2758 * 10-> 32 bit signed, 11 -> prefetch 2759 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2760 */ 2761 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2762 { 2763 int rt = extract32(insn, 0, 5); 2764 int64_t imm = sextract32(insn, 5, 19) << 2; 2765 bool is_vector = extract32(insn, 26, 1); 2766 int opc = extract32(insn, 30, 2); 2767 bool is_signed = false; 2768 int size = 2; 2769 TCGv_i64 tcg_rt, clean_addr; 2770 MemOp memop; 2771 2772 if (is_vector) { 2773 if (opc == 3) { 2774 unallocated_encoding(s); 2775 return; 2776 } 2777 size = 2 + opc; 2778 if (!fp_access_check(s)) { 2779 return; 2780 } 2781 memop = finalize_memop_asimd(s, size); 2782 } else { 2783 if (opc == 3) { 2784 /* PRFM (literal) : prefetch */ 2785 return; 2786 } 2787 size = 2 + extract32(opc, 0, 1); 2788 is_signed = extract32(opc, 1, 1); 2789 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2790 } 2791 2792 tcg_rt = cpu_reg(s, rt); 2793 2794 clean_addr = tcg_temp_new_i64(); 2795 gen_pc_plus_diff(s, clean_addr, imm); 2796 2797 if (is_vector) { 2798 do_fp_ld(s, rt, clean_addr, memop); 2799 } else { 2800 /* Only unsigned 32bit loads target 32bit registers. */ 2801 bool iss_sf = opc != 0; 2802 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2803 } 2804 } 2805 2806 /* 2807 * LDNP (Load Pair - non-temporal hint) 2808 * LDP (Load Pair - non vector) 2809 * LDPSW (Load Pair Signed Word - non vector) 2810 * STNP (Store Pair - non-temporal hint) 2811 * STP (Store Pair - non vector) 2812 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2813 * LDP (Load Pair of SIMD&FP) 2814 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2815 * STP (Store Pair of SIMD&FP) 2816 * 2817 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2818 * +-----+-------+---+---+-------+---+-----------------------------+ 2819 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2820 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2821 * 2822 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2823 * LDPSW/STGP 01 2824 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2825 * V: 0 -> GPR, 1 -> Vector 2826 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2827 * 10 -> signed offset, 11 -> pre-index 2828 * L: 0 -> Store 1 -> Load 2829 * 2830 * Rt, Rt2 = GPR or SIMD registers to be stored 2831 * Rn = general purpose register containing address 2832 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2833 */ 2834 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2835 { 2836 int rt = extract32(insn, 0, 5); 2837 int rn = extract32(insn, 5, 5); 2838 int rt2 = extract32(insn, 10, 5); 2839 uint64_t offset = sextract64(insn, 15, 7); 2840 int index = extract32(insn, 23, 2); 2841 bool is_vector = extract32(insn, 26, 1); 2842 bool is_load = extract32(insn, 22, 1); 2843 int opc = extract32(insn, 30, 2); 2844 bool is_signed = false; 2845 bool postindex = false; 2846 bool wback = false; 2847 bool set_tag = false; 2848 TCGv_i64 clean_addr, dirty_addr; 2849 MemOp mop; 2850 int size; 2851 2852 if (opc == 3) { 2853 unallocated_encoding(s); 2854 return; 2855 } 2856 2857 if (is_vector) { 2858 size = 2 + opc; 2859 } else if (opc == 1 && !is_load) { 2860 /* STGP */ 2861 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2862 unallocated_encoding(s); 2863 return; 2864 } 2865 size = 3; 2866 set_tag = true; 2867 } else { 2868 size = 2 + extract32(opc, 1, 1); 2869 is_signed = extract32(opc, 0, 1); 2870 if (!is_load && is_signed) { 2871 unallocated_encoding(s); 2872 return; 2873 } 2874 } 2875 2876 switch (index) { 2877 case 1: /* post-index */ 2878 postindex = true; 2879 wback = true; 2880 break; 2881 case 0: 2882 /* signed offset with "non-temporal" hint. Since we don't emulate 2883 * caches we don't care about hints to the cache system about 2884 * data access patterns, and handle this identically to plain 2885 * signed offset. 2886 */ 2887 if (is_signed) { 2888 /* There is no non-temporal-hint version of LDPSW */ 2889 unallocated_encoding(s); 2890 return; 2891 } 2892 postindex = false; 2893 break; 2894 case 2: /* signed offset, rn not updated */ 2895 postindex = false; 2896 break; 2897 case 3: /* pre-index */ 2898 postindex = false; 2899 wback = true; 2900 break; 2901 } 2902 2903 if (is_vector && !fp_access_check(s)) { 2904 return; 2905 } 2906 2907 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2908 2909 if (rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 2913 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2914 if (!postindex) { 2915 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2916 } 2917 2918 if (set_tag) { 2919 if (!s->ata) { 2920 /* 2921 * TODO: We could rely on the stores below, at least for 2922 * system mode, if we arrange to add MO_ALIGN_16. 2923 */ 2924 gen_helper_stg_stub(cpu_env, dirty_addr); 2925 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2926 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2927 } else { 2928 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2929 } 2930 } 2931 2932 if (is_vector) { 2933 mop = finalize_memop_asimd(s, size); 2934 } else { 2935 mop = finalize_memop(s, size); 2936 } 2937 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2938 (wback || rn != 31) && !set_tag, 2939 2 << size, mop); 2940 2941 if (is_vector) { 2942 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2943 if (is_load) { 2944 do_fp_ld(s, rt, clean_addr, mop); 2945 } else { 2946 do_fp_st(s, rt, clean_addr, mop); 2947 } 2948 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2949 if (is_load) { 2950 do_fp_ld(s, rt2, clean_addr, mop); 2951 } else { 2952 do_fp_st(s, rt2, clean_addr, mop); 2953 } 2954 } else { 2955 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2956 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2957 2958 /* 2959 * We built mop above for the single logical access -- rebuild it 2960 * now for the paired operation. 2961 * 2962 * With LSE2, non-sign-extending pairs are treated atomically if 2963 * aligned, and if unaligned one of the pair will be completely 2964 * within a 16-byte block and that element will be atomic. 2965 * Otherwise each element is separately atomic. 2966 * In all cases, issue one operation with the correct atomicity. 2967 * 2968 * This treats sign-extending loads like zero-extending loads, 2969 * since that reuses the most code below. 2970 */ 2971 mop = size + 1; 2972 if (s->align_mem) { 2973 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2974 } 2975 mop = finalize_memop_pair(s, mop); 2976 2977 if (is_load) { 2978 if (size == 2) { 2979 int o2 = s->be_data == MO_LE ? 32 : 0; 2980 int o1 = o2 ^ 32; 2981 2982 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2983 if (is_signed) { 2984 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2985 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2986 } else { 2987 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2988 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2989 } 2990 } else { 2991 TCGv_i128 tmp = tcg_temp_new_i128(); 2992 2993 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2994 if (s->be_data == MO_LE) { 2995 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2996 } else { 2997 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2998 } 2999 } 3000 } else { 3001 if (size == 2) { 3002 TCGv_i64 tmp = tcg_temp_new_i64(); 3003 3004 if (s->be_data == MO_LE) { 3005 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3006 } else { 3007 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3008 } 3009 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3010 } else { 3011 TCGv_i128 tmp = tcg_temp_new_i128(); 3012 3013 if (s->be_data == MO_LE) { 3014 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3015 } else { 3016 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3017 } 3018 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3019 } 3020 } 3021 } 3022 3023 if (wback) { 3024 if (postindex) { 3025 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3026 } 3027 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3028 } 3029 } 3030 3031 /* 3032 * Load/store (immediate post-indexed) 3033 * Load/store (immediate pre-indexed) 3034 * Load/store (unscaled immediate) 3035 * 3036 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3037 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3038 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3039 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3040 * 3041 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3042 10 -> unprivileged 3043 * V = 0 -> non-vector 3044 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3045 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3046 */ 3047 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3048 int opc, 3049 int size, 3050 int rt, 3051 bool is_vector) 3052 { 3053 int rn = extract32(insn, 5, 5); 3054 int imm9 = sextract32(insn, 12, 9); 3055 int idx = extract32(insn, 10, 2); 3056 bool is_signed = false; 3057 bool is_store = false; 3058 bool is_extended = false; 3059 bool is_unpriv = (idx == 2); 3060 bool iss_valid; 3061 bool post_index; 3062 bool writeback; 3063 int memidx; 3064 MemOp memop; 3065 TCGv_i64 clean_addr, dirty_addr; 3066 3067 if (is_vector) { 3068 size |= (opc & 2) << 1; 3069 if (size > 4 || is_unpriv) { 3070 unallocated_encoding(s); 3071 return; 3072 } 3073 is_store = ((opc & 1) == 0); 3074 if (!fp_access_check(s)) { 3075 return; 3076 } 3077 memop = finalize_memop_asimd(s, size); 3078 } else { 3079 if (size == 3 && opc == 2) { 3080 /* PRFM - prefetch */ 3081 if (idx != 0) { 3082 unallocated_encoding(s); 3083 return; 3084 } 3085 return; 3086 } 3087 if (opc == 3 && size > 1) { 3088 unallocated_encoding(s); 3089 return; 3090 } 3091 is_store = (opc == 0); 3092 is_signed = !is_store && extract32(opc, 1, 1); 3093 is_extended = (size < 3) && extract32(opc, 0, 1); 3094 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3095 } 3096 3097 switch (idx) { 3098 case 0: 3099 case 2: 3100 post_index = false; 3101 writeback = false; 3102 break; 3103 case 1: 3104 post_index = true; 3105 writeback = true; 3106 break; 3107 case 3: 3108 post_index = false; 3109 writeback = true; 3110 break; 3111 default: 3112 g_assert_not_reached(); 3113 } 3114 3115 iss_valid = !is_vector && !writeback; 3116 3117 if (rn == 31) { 3118 gen_check_sp_alignment(s); 3119 } 3120 3121 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3122 if (!post_index) { 3123 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3124 } 3125 3126 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3127 3128 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3129 writeback || rn != 31, 3130 size, is_unpriv, memidx); 3131 3132 if (is_vector) { 3133 if (is_store) { 3134 do_fp_st(s, rt, clean_addr, memop); 3135 } else { 3136 do_fp_ld(s, rt, clean_addr, memop); 3137 } 3138 } else { 3139 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3140 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3141 3142 if (is_store) { 3143 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3144 iss_valid, rt, iss_sf, false); 3145 } else { 3146 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3147 is_extended, memidx, 3148 iss_valid, rt, iss_sf, false); 3149 } 3150 } 3151 3152 if (writeback) { 3153 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3154 if (post_index) { 3155 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3156 } 3157 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3158 } 3159 } 3160 3161 /* 3162 * Load/store (register offset) 3163 * 3164 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3165 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3166 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3167 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3168 * 3169 * For non-vector: 3170 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3171 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3172 * For vector: 3173 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3174 * opc<0>: 0 -> store, 1 -> load 3175 * V: 1 -> vector/simd 3176 * opt: extend encoding (see DecodeRegExtend) 3177 * S: if S=1 then scale (essentially index by sizeof(size)) 3178 * Rt: register to transfer into/out of 3179 * Rn: address register or SP for base 3180 * Rm: offset register or ZR for offset 3181 */ 3182 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3183 int opc, 3184 int size, 3185 int rt, 3186 bool is_vector) 3187 { 3188 int rn = extract32(insn, 5, 5); 3189 int shift = extract32(insn, 12, 1); 3190 int rm = extract32(insn, 16, 5); 3191 int opt = extract32(insn, 13, 3); 3192 bool is_signed = false; 3193 bool is_store = false; 3194 bool is_extended = false; 3195 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3196 MemOp memop; 3197 3198 if (extract32(opt, 1, 1) == 0) { 3199 unallocated_encoding(s); 3200 return; 3201 } 3202 3203 if (is_vector) { 3204 size |= (opc & 2) << 1; 3205 if (size > 4) { 3206 unallocated_encoding(s); 3207 return; 3208 } 3209 is_store = !extract32(opc, 0, 1); 3210 if (!fp_access_check(s)) { 3211 return; 3212 } 3213 } else { 3214 if (size == 3 && opc == 2) { 3215 /* PRFM - prefetch */ 3216 return; 3217 } 3218 if (opc == 3 && size > 1) { 3219 unallocated_encoding(s); 3220 return; 3221 } 3222 is_store = (opc == 0); 3223 is_signed = !is_store && extract32(opc, 1, 1); 3224 is_extended = (size < 3) && extract32(opc, 0, 1); 3225 } 3226 3227 if (rn == 31) { 3228 gen_check_sp_alignment(s); 3229 } 3230 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3231 3232 tcg_rm = read_cpu_reg(s, rm, 1); 3233 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3234 3235 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3236 3237 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3238 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3239 3240 if (is_vector) { 3241 if (is_store) { 3242 do_fp_st(s, rt, clean_addr, memop); 3243 } else { 3244 do_fp_ld(s, rt, clean_addr, memop); 3245 } 3246 } else { 3247 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3248 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3249 3250 if (is_store) { 3251 do_gpr_st(s, tcg_rt, clean_addr, memop, 3252 true, rt, iss_sf, false); 3253 } else { 3254 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3255 is_extended, true, rt, iss_sf, false); 3256 } 3257 } 3258 } 3259 3260 /* 3261 * Load/store (unsigned immediate) 3262 * 3263 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3264 * +----+-------+---+-----+-----+------------+-------+------+ 3265 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3266 * +----+-------+---+-----+-----+------------+-------+------+ 3267 * 3268 * For non-vector: 3269 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3270 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3271 * For vector: 3272 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3273 * opc<0>: 0 -> store, 1 -> load 3274 * Rn: base address register (inc SP) 3275 * Rt: target register 3276 */ 3277 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3278 int opc, 3279 int size, 3280 int rt, 3281 bool is_vector) 3282 { 3283 int rn = extract32(insn, 5, 5); 3284 unsigned int imm12 = extract32(insn, 10, 12); 3285 unsigned int offset; 3286 TCGv_i64 clean_addr, dirty_addr; 3287 bool is_store; 3288 bool is_signed = false; 3289 bool is_extended = false; 3290 MemOp memop; 3291 3292 if (is_vector) { 3293 size |= (opc & 2) << 1; 3294 if (size > 4) { 3295 unallocated_encoding(s); 3296 return; 3297 } 3298 is_store = !extract32(opc, 0, 1); 3299 if (!fp_access_check(s)) { 3300 return; 3301 } 3302 } else { 3303 if (size == 3 && opc == 2) { 3304 /* PRFM - prefetch */ 3305 return; 3306 } 3307 if (opc == 3 && size > 1) { 3308 unallocated_encoding(s); 3309 return; 3310 } 3311 is_store = (opc == 0); 3312 is_signed = !is_store && extract32(opc, 1, 1); 3313 is_extended = (size < 3) && extract32(opc, 0, 1); 3314 } 3315 3316 if (rn == 31) { 3317 gen_check_sp_alignment(s); 3318 } 3319 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3320 offset = imm12 << size; 3321 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3322 3323 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3324 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3325 3326 if (is_vector) { 3327 if (is_store) { 3328 do_fp_st(s, rt, clean_addr, memop); 3329 } else { 3330 do_fp_ld(s, rt, clean_addr, memop); 3331 } 3332 } else { 3333 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3334 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3335 if (is_store) { 3336 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3337 } else { 3338 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3339 is_extended, true, rt, iss_sf, false); 3340 } 3341 } 3342 } 3343 3344 /* Atomic memory operations 3345 * 3346 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3347 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3348 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3349 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3350 * 3351 * Rt: the result register 3352 * Rn: base address or SP 3353 * Rs: the source register for the operation 3354 * V: vector flag (always 0 as of v8.3) 3355 * A: acquire flag 3356 * R: release flag 3357 */ 3358 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3359 int size, int rt, bool is_vector) 3360 { 3361 int rs = extract32(insn, 16, 5); 3362 int rn = extract32(insn, 5, 5); 3363 int o3_opc = extract32(insn, 12, 4); 3364 bool r = extract32(insn, 22, 1); 3365 bool a = extract32(insn, 23, 1); 3366 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3367 AtomicThreeOpFn *fn = NULL; 3368 MemOp mop = finalize_memop(s, size | MO_ALIGN); 3369 3370 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3371 unallocated_encoding(s); 3372 return; 3373 } 3374 switch (o3_opc) { 3375 case 000: /* LDADD */ 3376 fn = tcg_gen_atomic_fetch_add_i64; 3377 break; 3378 case 001: /* LDCLR */ 3379 fn = tcg_gen_atomic_fetch_and_i64; 3380 break; 3381 case 002: /* LDEOR */ 3382 fn = tcg_gen_atomic_fetch_xor_i64; 3383 break; 3384 case 003: /* LDSET */ 3385 fn = tcg_gen_atomic_fetch_or_i64; 3386 break; 3387 case 004: /* LDSMAX */ 3388 fn = tcg_gen_atomic_fetch_smax_i64; 3389 mop |= MO_SIGN; 3390 break; 3391 case 005: /* LDSMIN */ 3392 fn = tcg_gen_atomic_fetch_smin_i64; 3393 mop |= MO_SIGN; 3394 break; 3395 case 006: /* LDUMAX */ 3396 fn = tcg_gen_atomic_fetch_umax_i64; 3397 break; 3398 case 007: /* LDUMIN */ 3399 fn = tcg_gen_atomic_fetch_umin_i64; 3400 break; 3401 case 010: /* SWP */ 3402 fn = tcg_gen_atomic_xchg_i64; 3403 break; 3404 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3405 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3406 rs != 31 || a != 1 || r != 0) { 3407 unallocated_encoding(s); 3408 return; 3409 } 3410 break; 3411 default: 3412 unallocated_encoding(s); 3413 return; 3414 } 3415 3416 if (rn == 31) { 3417 gen_check_sp_alignment(s); 3418 } 3419 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3420 3421 if (o3_opc == 014) { 3422 /* 3423 * LDAPR* are a special case because they are a simple load, not a 3424 * fetch-and-do-something op. 3425 * The architectural consistency requirements here are weaker than 3426 * full load-acquire (we only need "load-acquire processor consistent"), 3427 * but we choose to implement them as full LDAQ. 3428 */ 3429 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3430 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3431 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3432 return; 3433 } 3434 3435 tcg_rs = read_cpu_reg(s, rs, true); 3436 tcg_rt = cpu_reg(s, rt); 3437 3438 if (o3_opc == 1) { /* LDCLR */ 3439 tcg_gen_not_i64(tcg_rs, tcg_rs); 3440 } 3441 3442 /* The tcg atomic primitives are all full barriers. Therefore we 3443 * can ignore the Acquire and Release bits of this instruction. 3444 */ 3445 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3446 3447 if ((mop & MO_SIGN) && size != MO_64) { 3448 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3449 } 3450 } 3451 3452 /* 3453 * PAC memory operations 3454 * 3455 * 31 30 27 26 24 22 21 12 11 10 5 0 3456 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3457 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3458 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3459 * 3460 * Rt: the result register 3461 * Rn: base address or SP 3462 * V: vector flag (always 0 as of v8.3) 3463 * M: clear for key DA, set for key DB 3464 * W: pre-indexing flag 3465 * S: sign for imm9. 3466 */ 3467 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3468 int size, int rt, bool is_vector) 3469 { 3470 int rn = extract32(insn, 5, 5); 3471 bool is_wback = extract32(insn, 11, 1); 3472 bool use_key_a = !extract32(insn, 23, 1); 3473 int offset; 3474 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3475 MemOp memop; 3476 3477 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3478 unallocated_encoding(s); 3479 return; 3480 } 3481 3482 if (rn == 31) { 3483 gen_check_sp_alignment(s); 3484 } 3485 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3486 3487 if (s->pauth_active) { 3488 if (use_key_a) { 3489 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3490 tcg_constant_i64(0)); 3491 } else { 3492 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3493 tcg_constant_i64(0)); 3494 } 3495 } 3496 3497 /* Form the 10-bit signed, scaled offset. */ 3498 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3499 offset = sextract32(offset << size, 0, 10 + size); 3500 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3501 3502 memop = finalize_memop(s, size); 3503 3504 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3505 clean_addr = gen_mte_check1(s, dirty_addr, false, 3506 is_wback || rn != 31, memop); 3507 3508 tcg_rt = cpu_reg(s, rt); 3509 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3510 /* extend */ false, /* iss_valid */ !is_wback, 3511 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3512 3513 if (is_wback) { 3514 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3515 } 3516 } 3517 3518 /* 3519 * LDAPR/STLR (unscaled immediate) 3520 * 3521 * 31 30 24 22 21 12 10 5 0 3522 * +------+-------------+-----+---+--------+-----+----+-----+ 3523 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3524 * +------+-------------+-----+---+--------+-----+----+-----+ 3525 * 3526 * Rt: source or destination register 3527 * Rn: base register 3528 * imm9: unscaled immediate offset 3529 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3530 * size: size of load/store 3531 */ 3532 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3533 { 3534 int rt = extract32(insn, 0, 5); 3535 int rn = extract32(insn, 5, 5); 3536 int offset = sextract32(insn, 12, 9); 3537 int opc = extract32(insn, 22, 2); 3538 int size = extract32(insn, 30, 2); 3539 TCGv_i64 clean_addr, dirty_addr; 3540 bool is_store = false; 3541 bool extend = false; 3542 bool iss_sf; 3543 MemOp mop; 3544 3545 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3546 unallocated_encoding(s); 3547 return; 3548 } 3549 3550 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3551 mop = finalize_memop(s, size | MO_ALIGN); 3552 3553 switch (opc) { 3554 case 0: /* STLURB */ 3555 is_store = true; 3556 break; 3557 case 1: /* LDAPUR* */ 3558 break; 3559 case 2: /* LDAPURS* 64-bit variant */ 3560 if (size == 3) { 3561 unallocated_encoding(s); 3562 return; 3563 } 3564 mop |= MO_SIGN; 3565 break; 3566 case 3: /* LDAPURS* 32-bit variant */ 3567 if (size > 1) { 3568 unallocated_encoding(s); 3569 return; 3570 } 3571 mop |= MO_SIGN; 3572 extend = true; /* zero-extend 32->64 after signed load */ 3573 break; 3574 default: 3575 g_assert_not_reached(); 3576 } 3577 3578 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3579 3580 if (rn == 31) { 3581 gen_check_sp_alignment(s); 3582 } 3583 3584 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3585 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3586 clean_addr = clean_data_tbi(s, dirty_addr); 3587 3588 if (is_store) { 3589 /* Store-Release semantics */ 3590 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3591 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3592 } else { 3593 /* 3594 * Load-AcquirePC semantics; we implement as the slightly more 3595 * restrictive Load-Acquire. 3596 */ 3597 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3598 extend, true, rt, iss_sf, true); 3599 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3600 } 3601 } 3602 3603 /* Load/store register (all forms) */ 3604 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3605 { 3606 int rt = extract32(insn, 0, 5); 3607 int opc = extract32(insn, 22, 2); 3608 bool is_vector = extract32(insn, 26, 1); 3609 int size = extract32(insn, 30, 2); 3610 3611 switch (extract32(insn, 24, 2)) { 3612 case 0: 3613 if (extract32(insn, 21, 1) == 0) { 3614 /* Load/store register (unscaled immediate) 3615 * Load/store immediate pre/post-indexed 3616 * Load/store register unprivileged 3617 */ 3618 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3619 return; 3620 } 3621 switch (extract32(insn, 10, 2)) { 3622 case 0: 3623 disas_ldst_atomic(s, insn, size, rt, is_vector); 3624 return; 3625 case 2: 3626 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3627 return; 3628 default: 3629 disas_ldst_pac(s, insn, size, rt, is_vector); 3630 return; 3631 } 3632 break; 3633 case 1: 3634 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3635 return; 3636 } 3637 unallocated_encoding(s); 3638 } 3639 3640 /* AdvSIMD load/store multiple structures 3641 * 3642 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3643 * +---+---+---------------+---+-------------+--------+------+------+------+ 3644 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3645 * +---+---+---------------+---+-------------+--------+------+------+------+ 3646 * 3647 * AdvSIMD load/store multiple structures (post-indexed) 3648 * 3649 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3650 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3651 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3652 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3653 * 3654 * Rt: first (or only) SIMD&FP register to be transferred 3655 * Rn: base address or SP 3656 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3657 */ 3658 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3659 { 3660 int rt = extract32(insn, 0, 5); 3661 int rn = extract32(insn, 5, 5); 3662 int rm = extract32(insn, 16, 5); 3663 int size = extract32(insn, 10, 2); 3664 int opcode = extract32(insn, 12, 4); 3665 bool is_store = !extract32(insn, 22, 1); 3666 bool is_postidx = extract32(insn, 23, 1); 3667 bool is_q = extract32(insn, 30, 1); 3668 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3669 MemOp endian, align, mop; 3670 3671 int total; /* total bytes */ 3672 int elements; /* elements per vector */ 3673 int rpt; /* num iterations */ 3674 int selem; /* structure elements */ 3675 int r; 3676 3677 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3678 unallocated_encoding(s); 3679 return; 3680 } 3681 3682 if (!is_postidx && rm != 0) { 3683 unallocated_encoding(s); 3684 return; 3685 } 3686 3687 /* From the shared decode logic */ 3688 switch (opcode) { 3689 case 0x0: 3690 rpt = 1; 3691 selem = 4; 3692 break; 3693 case 0x2: 3694 rpt = 4; 3695 selem = 1; 3696 break; 3697 case 0x4: 3698 rpt = 1; 3699 selem = 3; 3700 break; 3701 case 0x6: 3702 rpt = 3; 3703 selem = 1; 3704 break; 3705 case 0x7: 3706 rpt = 1; 3707 selem = 1; 3708 break; 3709 case 0x8: 3710 rpt = 1; 3711 selem = 2; 3712 break; 3713 case 0xa: 3714 rpt = 2; 3715 selem = 1; 3716 break; 3717 default: 3718 unallocated_encoding(s); 3719 return; 3720 } 3721 3722 if (size == 3 && !is_q && selem != 1) { 3723 /* reserved */ 3724 unallocated_encoding(s); 3725 return; 3726 } 3727 3728 if (!fp_access_check(s)) { 3729 return; 3730 } 3731 3732 if (rn == 31) { 3733 gen_check_sp_alignment(s); 3734 } 3735 3736 /* For our purposes, bytes are always little-endian. */ 3737 endian = s->be_data; 3738 if (size == 0) { 3739 endian = MO_LE; 3740 } 3741 3742 total = rpt * selem * (is_q ? 16 : 8); 3743 tcg_rn = cpu_reg_sp(s, rn); 3744 3745 /* 3746 * Issue the MTE check vs the logical repeat count, before we 3747 * promote consecutive little-endian elements below. 3748 */ 3749 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3750 total, finalize_memop(s, size)); 3751 3752 /* 3753 * Consecutive little-endian elements from a single register 3754 * can be promoted to a larger little-endian operation. 3755 */ 3756 align = MO_ALIGN; 3757 if (selem == 1 && endian == MO_LE) { 3758 align = pow2_align(size); 3759 size = 3; 3760 } 3761 if (!s->align_mem) { 3762 align = 0; 3763 } 3764 mop = endian | size | align; 3765 3766 elements = (is_q ? 16 : 8) >> size; 3767 tcg_ebytes = tcg_constant_i64(1 << size); 3768 for (r = 0; r < rpt; r++) { 3769 int e; 3770 for (e = 0; e < elements; e++) { 3771 int xs; 3772 for (xs = 0; xs < selem; xs++) { 3773 int tt = (rt + r + xs) % 32; 3774 if (is_store) { 3775 do_vec_st(s, tt, e, clean_addr, mop); 3776 } else { 3777 do_vec_ld(s, tt, e, clean_addr, mop); 3778 } 3779 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3780 } 3781 } 3782 } 3783 3784 if (!is_store) { 3785 /* For non-quad operations, setting a slice of the low 3786 * 64 bits of the register clears the high 64 bits (in 3787 * the ARM ARM pseudocode this is implicit in the fact 3788 * that 'rval' is a 64 bit wide variable). 3789 * For quad operations, we might still need to zero the 3790 * high bits of SVE. 3791 */ 3792 for (r = 0; r < rpt * selem; r++) { 3793 int tt = (rt + r) % 32; 3794 clear_vec_high(s, is_q, tt); 3795 } 3796 } 3797 3798 if (is_postidx) { 3799 if (rm == 31) { 3800 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3801 } else { 3802 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3803 } 3804 } 3805 } 3806 3807 /* AdvSIMD load/store single structure 3808 * 3809 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3810 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3811 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3812 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3813 * 3814 * AdvSIMD load/store single structure (post-indexed) 3815 * 3816 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3817 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3818 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3819 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3820 * 3821 * Rt: first (or only) SIMD&FP register to be transferred 3822 * Rn: base address or SP 3823 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3824 * index = encoded in Q:S:size dependent on size 3825 * 3826 * lane_size = encoded in R, opc 3827 * transfer width = encoded in opc, S, size 3828 */ 3829 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3830 { 3831 int rt = extract32(insn, 0, 5); 3832 int rn = extract32(insn, 5, 5); 3833 int rm = extract32(insn, 16, 5); 3834 int size = extract32(insn, 10, 2); 3835 int S = extract32(insn, 12, 1); 3836 int opc = extract32(insn, 13, 3); 3837 int R = extract32(insn, 21, 1); 3838 int is_load = extract32(insn, 22, 1); 3839 int is_postidx = extract32(insn, 23, 1); 3840 int is_q = extract32(insn, 30, 1); 3841 3842 int scale = extract32(opc, 1, 2); 3843 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3844 bool replicate = false; 3845 int index = is_q << 3 | S << 2 | size; 3846 int xs, total; 3847 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3848 MemOp mop; 3849 3850 if (extract32(insn, 31, 1)) { 3851 unallocated_encoding(s); 3852 return; 3853 } 3854 if (!is_postidx && rm != 0) { 3855 unallocated_encoding(s); 3856 return; 3857 } 3858 3859 switch (scale) { 3860 case 3: 3861 if (!is_load || S) { 3862 unallocated_encoding(s); 3863 return; 3864 } 3865 scale = size; 3866 replicate = true; 3867 break; 3868 case 0: 3869 break; 3870 case 1: 3871 if (extract32(size, 0, 1)) { 3872 unallocated_encoding(s); 3873 return; 3874 } 3875 index >>= 1; 3876 break; 3877 case 2: 3878 if (extract32(size, 1, 1)) { 3879 unallocated_encoding(s); 3880 return; 3881 } 3882 if (!extract32(size, 0, 1)) { 3883 index >>= 2; 3884 } else { 3885 if (S) { 3886 unallocated_encoding(s); 3887 return; 3888 } 3889 index >>= 3; 3890 scale = 3; 3891 } 3892 break; 3893 default: 3894 g_assert_not_reached(); 3895 } 3896 3897 if (!fp_access_check(s)) { 3898 return; 3899 } 3900 3901 if (rn == 31) { 3902 gen_check_sp_alignment(s); 3903 } 3904 3905 total = selem << scale; 3906 tcg_rn = cpu_reg_sp(s, rn); 3907 3908 mop = finalize_memop(s, scale); 3909 3910 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3911 total, mop); 3912 3913 tcg_ebytes = tcg_constant_i64(1 << scale); 3914 for (xs = 0; xs < selem; xs++) { 3915 if (replicate) { 3916 /* Load and replicate to all elements */ 3917 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3918 3919 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3920 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3921 (is_q + 1) * 8, vec_full_reg_size(s), 3922 tcg_tmp); 3923 } else { 3924 /* Load/store one element per register */ 3925 if (is_load) { 3926 do_vec_ld(s, rt, index, clean_addr, mop); 3927 } else { 3928 do_vec_st(s, rt, index, clean_addr, mop); 3929 } 3930 } 3931 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3932 rt = (rt + 1) % 32; 3933 } 3934 3935 if (is_postidx) { 3936 if (rm == 31) { 3937 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3938 } else { 3939 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3940 } 3941 } 3942 } 3943 3944 /* 3945 * Load/Store memory tags 3946 * 3947 * 31 30 29 24 22 21 12 10 5 0 3948 * +-----+-------------+-----+---+------+-----+------+------+ 3949 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3950 * +-----+-------------+-----+---+------+-----+------+------+ 3951 */ 3952 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3953 { 3954 int rt = extract32(insn, 0, 5); 3955 int rn = extract32(insn, 5, 5); 3956 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3957 int op2 = extract32(insn, 10, 2); 3958 int op1 = extract32(insn, 22, 2); 3959 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3960 int index = 0; 3961 TCGv_i64 addr, clean_addr, tcg_rt; 3962 3963 /* We checked insn bits [29:24,21] in the caller. */ 3964 if (extract32(insn, 30, 2) != 3) { 3965 goto do_unallocated; 3966 } 3967 3968 /* 3969 * @index is a tri-state variable which has 3 states: 3970 * < 0 : post-index, writeback 3971 * = 0 : signed offset 3972 * > 0 : pre-index, writeback 3973 */ 3974 switch (op1) { 3975 case 0: 3976 if (op2 != 0) { 3977 /* STG */ 3978 index = op2 - 2; 3979 } else { 3980 /* STZGM */ 3981 if (s->current_el == 0 || offset != 0) { 3982 goto do_unallocated; 3983 } 3984 is_mult = is_zero = true; 3985 } 3986 break; 3987 case 1: 3988 if (op2 != 0) { 3989 /* STZG */ 3990 is_zero = true; 3991 index = op2 - 2; 3992 } else { 3993 /* LDG */ 3994 is_load = true; 3995 } 3996 break; 3997 case 2: 3998 if (op2 != 0) { 3999 /* ST2G */ 4000 is_pair = true; 4001 index = op2 - 2; 4002 } else { 4003 /* STGM */ 4004 if (s->current_el == 0 || offset != 0) { 4005 goto do_unallocated; 4006 } 4007 is_mult = true; 4008 } 4009 break; 4010 case 3: 4011 if (op2 != 0) { 4012 /* STZ2G */ 4013 is_pair = is_zero = true; 4014 index = op2 - 2; 4015 } else { 4016 /* LDGM */ 4017 if (s->current_el == 0 || offset != 0) { 4018 goto do_unallocated; 4019 } 4020 is_mult = is_load = true; 4021 } 4022 break; 4023 4024 default: 4025 do_unallocated: 4026 unallocated_encoding(s); 4027 return; 4028 } 4029 4030 if (is_mult 4031 ? !dc_isar_feature(aa64_mte, s) 4032 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4033 goto do_unallocated; 4034 } 4035 4036 if (rn == 31) { 4037 gen_check_sp_alignment(s); 4038 } 4039 4040 addr = read_cpu_reg_sp(s, rn, true); 4041 if (index >= 0) { 4042 /* pre-index or signed offset */ 4043 tcg_gen_addi_i64(addr, addr, offset); 4044 } 4045 4046 if (is_mult) { 4047 tcg_rt = cpu_reg(s, rt); 4048 4049 if (is_zero) { 4050 int size = 4 << s->dcz_blocksize; 4051 4052 if (s->ata) { 4053 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4054 } 4055 /* 4056 * The non-tags portion of STZGM is mostly like DC_ZVA, 4057 * except the alignment happens before the access. 4058 */ 4059 clean_addr = clean_data_tbi(s, addr); 4060 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4061 gen_helper_dc_zva(cpu_env, clean_addr); 4062 } else if (s->ata) { 4063 if (is_load) { 4064 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4065 } else { 4066 gen_helper_stgm(cpu_env, addr, tcg_rt); 4067 } 4068 } else { 4069 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4070 int size = 4 << GMID_EL1_BS; 4071 4072 clean_addr = clean_data_tbi(s, addr); 4073 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4074 gen_probe_access(s, clean_addr, acc, size); 4075 4076 if (is_load) { 4077 /* The result tags are zeros. */ 4078 tcg_gen_movi_i64(tcg_rt, 0); 4079 } 4080 } 4081 return; 4082 } 4083 4084 if (is_load) { 4085 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4086 tcg_rt = cpu_reg(s, rt); 4087 if (s->ata) { 4088 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4089 } else { 4090 clean_addr = clean_data_tbi(s, addr); 4091 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4092 gen_address_with_allocation_tag0(tcg_rt, addr); 4093 } 4094 } else { 4095 tcg_rt = cpu_reg_sp(s, rt); 4096 if (!s->ata) { 4097 /* 4098 * For STG and ST2G, we need to check alignment and probe memory. 4099 * TODO: For STZG and STZ2G, we could rely on the stores below, 4100 * at least for system mode; user-only won't enforce alignment. 4101 */ 4102 if (is_pair) { 4103 gen_helper_st2g_stub(cpu_env, addr); 4104 } else { 4105 gen_helper_stg_stub(cpu_env, addr); 4106 } 4107 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4108 if (is_pair) { 4109 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4110 } else { 4111 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4112 } 4113 } else { 4114 if (is_pair) { 4115 gen_helper_st2g(cpu_env, addr, tcg_rt); 4116 } else { 4117 gen_helper_stg(cpu_env, addr, tcg_rt); 4118 } 4119 } 4120 } 4121 4122 if (is_zero) { 4123 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4124 TCGv_i64 zero64 = tcg_constant_i64(0); 4125 TCGv_i128 zero128 = tcg_temp_new_i128(); 4126 int mem_index = get_mem_index(s); 4127 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4128 4129 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4130 4131 /* This is 1 or 2 atomic 16-byte operations. */ 4132 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4133 if (is_pair) { 4134 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4135 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4136 } 4137 } 4138 4139 if (index != 0) { 4140 /* pre-index or post-index */ 4141 if (index < 0) { 4142 /* post-index */ 4143 tcg_gen_addi_i64(addr, addr, offset); 4144 } 4145 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4146 } 4147 } 4148 4149 /* Loads and stores */ 4150 static void disas_ldst(DisasContext *s, uint32_t insn) 4151 { 4152 switch (extract32(insn, 24, 6)) { 4153 case 0x08: /* Load/store exclusive */ 4154 disas_ldst_excl(s, insn); 4155 break; 4156 case 0x18: case 0x1c: /* Load register (literal) */ 4157 disas_ld_lit(s, insn); 4158 break; 4159 case 0x28: case 0x29: 4160 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4161 disas_ldst_pair(s, insn); 4162 break; 4163 case 0x38: case 0x39: 4164 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4165 disas_ldst_reg(s, insn); 4166 break; 4167 case 0x0c: /* AdvSIMD load/store multiple structures */ 4168 disas_ldst_multiple_struct(s, insn); 4169 break; 4170 case 0x0d: /* AdvSIMD load/store single structure */ 4171 disas_ldst_single_struct(s, insn); 4172 break; 4173 case 0x19: 4174 if (extract32(insn, 21, 1) != 0) { 4175 disas_ldst_tag(s, insn); 4176 } else if (extract32(insn, 10, 2) == 0) { 4177 disas_ldst_ldapr_stlr(s, insn); 4178 } else { 4179 unallocated_encoding(s); 4180 } 4181 break; 4182 default: 4183 unallocated_encoding(s); 4184 break; 4185 } 4186 } 4187 4188 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4189 4190 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4191 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4192 { 4193 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4194 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4195 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4196 4197 fn(tcg_rd, tcg_rn, tcg_imm); 4198 if (!a->sf) { 4199 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4200 } 4201 return true; 4202 } 4203 4204 /* 4205 * PC-rel. addressing 4206 */ 4207 4208 static bool trans_ADR(DisasContext *s, arg_ri *a) 4209 { 4210 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4211 return true; 4212 } 4213 4214 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4215 { 4216 int64_t offset = (int64_t)a->imm << 12; 4217 4218 /* The page offset is ok for CF_PCREL. */ 4219 offset -= s->pc_curr & 0xfff; 4220 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4221 return true; 4222 } 4223 4224 /* 4225 * Add/subtract (immediate) 4226 */ 4227 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4228 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4229 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4230 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4231 4232 /* 4233 * Add/subtract (immediate, with tags) 4234 */ 4235 4236 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4237 bool sub_op) 4238 { 4239 TCGv_i64 tcg_rn, tcg_rd; 4240 int imm; 4241 4242 imm = a->uimm6 << LOG2_TAG_GRANULE; 4243 if (sub_op) { 4244 imm = -imm; 4245 } 4246 4247 tcg_rn = cpu_reg_sp(s, a->rn); 4248 tcg_rd = cpu_reg_sp(s, a->rd); 4249 4250 if (s->ata) { 4251 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4252 tcg_constant_i32(imm), 4253 tcg_constant_i32(a->uimm4)); 4254 } else { 4255 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4256 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4257 } 4258 return true; 4259 } 4260 4261 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4262 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4263 4264 /* The input should be a value in the bottom e bits (with higher 4265 * bits zero); returns that value replicated into every element 4266 * of size e in a 64 bit integer. 4267 */ 4268 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4269 { 4270 assert(e != 0); 4271 while (e < 64) { 4272 mask |= mask << e; 4273 e *= 2; 4274 } 4275 return mask; 4276 } 4277 4278 /* 4279 * Logical (immediate) 4280 */ 4281 4282 /* 4283 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4284 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4285 * value (ie should cause a guest UNDEF exception), and true if they are 4286 * valid, in which case the decoded bit pattern is written to result. 4287 */ 4288 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4289 unsigned int imms, unsigned int immr) 4290 { 4291 uint64_t mask; 4292 unsigned e, levels, s, r; 4293 int len; 4294 4295 assert(immn < 2 && imms < 64 && immr < 64); 4296 4297 /* The bit patterns we create here are 64 bit patterns which 4298 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4299 * 64 bits each. Each element contains the same value: a run 4300 * of between 1 and e-1 non-zero bits, rotated within the 4301 * element by between 0 and e-1 bits. 4302 * 4303 * The element size and run length are encoded into immn (1 bit) 4304 * and imms (6 bits) as follows: 4305 * 64 bit elements: immn = 1, imms = <length of run - 1> 4306 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4307 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4308 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4309 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4310 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4311 * Notice that immn = 0, imms = 11111x is the only combination 4312 * not covered by one of the above options; this is reserved. 4313 * Further, <length of run - 1> all-ones is a reserved pattern. 4314 * 4315 * In all cases the rotation is by immr % e (and immr is 6 bits). 4316 */ 4317 4318 /* First determine the element size */ 4319 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4320 if (len < 1) { 4321 /* This is the immn == 0, imms == 0x11111x case */ 4322 return false; 4323 } 4324 e = 1 << len; 4325 4326 levels = e - 1; 4327 s = imms & levels; 4328 r = immr & levels; 4329 4330 if (s == levels) { 4331 /* <length of run - 1> mustn't be all-ones. */ 4332 return false; 4333 } 4334 4335 /* Create the value of one element: s+1 set bits rotated 4336 * by r within the element (which is e bits wide)... 4337 */ 4338 mask = MAKE_64BIT_MASK(0, s + 1); 4339 if (r) { 4340 mask = (mask >> r) | (mask << (e - r)); 4341 mask &= MAKE_64BIT_MASK(0, e); 4342 } 4343 /* ...then replicate the element over the whole 64 bit value */ 4344 mask = bitfield_replicate(mask, e); 4345 *result = mask; 4346 return true; 4347 } 4348 4349 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4350 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4351 { 4352 TCGv_i64 tcg_rd, tcg_rn; 4353 uint64_t imm; 4354 4355 /* Some immediate field values are reserved. */ 4356 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4357 extract32(a->dbm, 0, 6), 4358 extract32(a->dbm, 6, 6))) { 4359 return false; 4360 } 4361 if (!a->sf) { 4362 imm &= 0xffffffffull; 4363 } 4364 4365 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4366 tcg_rn = cpu_reg(s, a->rn); 4367 4368 fn(tcg_rd, tcg_rn, imm); 4369 if (set_cc) { 4370 gen_logic_CC(a->sf, tcg_rd); 4371 } 4372 if (!a->sf) { 4373 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4374 } 4375 return true; 4376 } 4377 4378 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4379 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4380 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4381 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4382 4383 /* 4384 * Move wide (immediate) 4385 */ 4386 4387 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4388 { 4389 int pos = a->hw << 4; 4390 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4391 return true; 4392 } 4393 4394 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4395 { 4396 int pos = a->hw << 4; 4397 uint64_t imm = a->imm; 4398 4399 imm = ~(imm << pos); 4400 if (!a->sf) { 4401 imm = (uint32_t)imm; 4402 } 4403 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4404 return true; 4405 } 4406 4407 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4408 { 4409 int pos = a->hw << 4; 4410 TCGv_i64 tcg_rd, tcg_im; 4411 4412 tcg_rd = cpu_reg(s, a->rd); 4413 tcg_im = tcg_constant_i64(a->imm); 4414 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4415 if (!a->sf) { 4416 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4417 } 4418 return true; 4419 } 4420 4421 /* 4422 * Bitfield 4423 */ 4424 4425 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4426 { 4427 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4428 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4429 unsigned int bitsize = a->sf ? 64 : 32; 4430 unsigned int ri = a->immr; 4431 unsigned int si = a->imms; 4432 unsigned int pos, len; 4433 4434 if (si >= ri) { 4435 /* Wd<s-r:0> = Wn<s:r> */ 4436 len = (si - ri) + 1; 4437 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4438 if (!a->sf) { 4439 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4440 } 4441 } else { 4442 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4443 len = si + 1; 4444 pos = (bitsize - ri) & (bitsize - 1); 4445 4446 if (len < ri) { 4447 /* 4448 * Sign extend the destination field from len to fill the 4449 * balance of the word. Let the deposit below insert all 4450 * of those sign bits. 4451 */ 4452 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4453 len = ri; 4454 } 4455 4456 /* 4457 * We start with zero, and we haven't modified any bits outside 4458 * bitsize, therefore no final zero-extension is unneeded for !sf. 4459 */ 4460 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4461 } 4462 return true; 4463 } 4464 4465 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4466 { 4467 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4468 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4469 unsigned int bitsize = a->sf ? 64 : 32; 4470 unsigned int ri = a->immr; 4471 unsigned int si = a->imms; 4472 unsigned int pos, len; 4473 4474 tcg_rd = cpu_reg(s, a->rd); 4475 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4476 4477 if (si >= ri) { 4478 /* Wd<s-r:0> = Wn<s:r> */ 4479 len = (si - ri) + 1; 4480 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4481 } else { 4482 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4483 len = si + 1; 4484 pos = (bitsize - ri) & (bitsize - 1); 4485 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4486 } 4487 return true; 4488 } 4489 4490 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4491 { 4492 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4493 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4494 unsigned int bitsize = a->sf ? 64 : 32; 4495 unsigned int ri = a->immr; 4496 unsigned int si = a->imms; 4497 unsigned int pos, len; 4498 4499 tcg_rd = cpu_reg(s, a->rd); 4500 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4501 4502 if (si >= ri) { 4503 /* Wd<s-r:0> = Wn<s:r> */ 4504 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4505 len = (si - ri) + 1; 4506 pos = 0; 4507 } else { 4508 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4509 len = si + 1; 4510 pos = (bitsize - ri) & (bitsize - 1); 4511 } 4512 4513 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4514 if (!a->sf) { 4515 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4516 } 4517 return true; 4518 } 4519 4520 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4521 { 4522 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4523 4524 tcg_rd = cpu_reg(s, a->rd); 4525 4526 if (unlikely(a->imm == 0)) { 4527 /* 4528 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4529 * so an extract from bit 0 is a special case. 4530 */ 4531 if (a->sf) { 4532 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4533 } else { 4534 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4535 } 4536 } else { 4537 tcg_rm = cpu_reg(s, a->rm); 4538 tcg_rn = cpu_reg(s, a->rn); 4539 4540 if (a->sf) { 4541 /* Specialization to ROR happens in EXTRACT2. */ 4542 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4543 } else { 4544 TCGv_i32 t0 = tcg_temp_new_i32(); 4545 4546 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4547 if (a->rm == a->rn) { 4548 tcg_gen_rotri_i32(t0, t0, a->imm); 4549 } else { 4550 TCGv_i32 t1 = tcg_temp_new_i32(); 4551 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4552 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4553 } 4554 tcg_gen_extu_i32_i64(tcg_rd, t0); 4555 } 4556 } 4557 return true; 4558 } 4559 4560 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4561 * Note that it is the caller's responsibility to ensure that the 4562 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4563 * mandated semantics for out of range shifts. 4564 */ 4565 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4566 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4567 { 4568 switch (shift_type) { 4569 case A64_SHIFT_TYPE_LSL: 4570 tcg_gen_shl_i64(dst, src, shift_amount); 4571 break; 4572 case A64_SHIFT_TYPE_LSR: 4573 tcg_gen_shr_i64(dst, src, shift_amount); 4574 break; 4575 case A64_SHIFT_TYPE_ASR: 4576 if (!sf) { 4577 tcg_gen_ext32s_i64(dst, src); 4578 } 4579 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4580 break; 4581 case A64_SHIFT_TYPE_ROR: 4582 if (sf) { 4583 tcg_gen_rotr_i64(dst, src, shift_amount); 4584 } else { 4585 TCGv_i32 t0, t1; 4586 t0 = tcg_temp_new_i32(); 4587 t1 = tcg_temp_new_i32(); 4588 tcg_gen_extrl_i64_i32(t0, src); 4589 tcg_gen_extrl_i64_i32(t1, shift_amount); 4590 tcg_gen_rotr_i32(t0, t0, t1); 4591 tcg_gen_extu_i32_i64(dst, t0); 4592 } 4593 break; 4594 default: 4595 assert(FALSE); /* all shift types should be handled */ 4596 break; 4597 } 4598 4599 if (!sf) { /* zero extend final result */ 4600 tcg_gen_ext32u_i64(dst, dst); 4601 } 4602 } 4603 4604 /* Shift a TCGv src by immediate, put result in dst. 4605 * The shift amount must be in range (this should always be true as the 4606 * relevant instructions will UNDEF on bad shift immediates). 4607 */ 4608 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4609 enum a64_shift_type shift_type, unsigned int shift_i) 4610 { 4611 assert(shift_i < (sf ? 64 : 32)); 4612 4613 if (shift_i == 0) { 4614 tcg_gen_mov_i64(dst, src); 4615 } else { 4616 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4617 } 4618 } 4619 4620 /* Logical (shifted register) 4621 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4622 * +----+-----+-----------+-------+---+------+--------+------+------+ 4623 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4624 * +----+-----+-----------+-------+---+------+--------+------+------+ 4625 */ 4626 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4627 { 4628 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4629 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4630 4631 sf = extract32(insn, 31, 1); 4632 opc = extract32(insn, 29, 2); 4633 shift_type = extract32(insn, 22, 2); 4634 invert = extract32(insn, 21, 1); 4635 rm = extract32(insn, 16, 5); 4636 shift_amount = extract32(insn, 10, 6); 4637 rn = extract32(insn, 5, 5); 4638 rd = extract32(insn, 0, 5); 4639 4640 if (!sf && (shift_amount & (1 << 5))) { 4641 unallocated_encoding(s); 4642 return; 4643 } 4644 4645 tcg_rd = cpu_reg(s, rd); 4646 4647 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4648 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4649 * register-register MOV and MVN, so it is worth special casing. 4650 */ 4651 tcg_rm = cpu_reg(s, rm); 4652 if (invert) { 4653 tcg_gen_not_i64(tcg_rd, tcg_rm); 4654 if (!sf) { 4655 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4656 } 4657 } else { 4658 if (sf) { 4659 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4660 } else { 4661 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4662 } 4663 } 4664 return; 4665 } 4666 4667 tcg_rm = read_cpu_reg(s, rm, sf); 4668 4669 if (shift_amount) { 4670 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4671 } 4672 4673 tcg_rn = cpu_reg(s, rn); 4674 4675 switch (opc | (invert << 2)) { 4676 case 0: /* AND */ 4677 case 3: /* ANDS */ 4678 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4679 break; 4680 case 1: /* ORR */ 4681 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4682 break; 4683 case 2: /* EOR */ 4684 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4685 break; 4686 case 4: /* BIC */ 4687 case 7: /* BICS */ 4688 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4689 break; 4690 case 5: /* ORN */ 4691 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4692 break; 4693 case 6: /* EON */ 4694 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4695 break; 4696 default: 4697 assert(FALSE); 4698 break; 4699 } 4700 4701 if (!sf) { 4702 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4703 } 4704 4705 if (opc == 3) { 4706 gen_logic_CC(sf, tcg_rd); 4707 } 4708 } 4709 4710 /* 4711 * Add/subtract (extended register) 4712 * 4713 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4714 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4715 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4716 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4717 * 4718 * sf: 0 -> 32bit, 1 -> 64bit 4719 * op: 0 -> add , 1 -> sub 4720 * S: 1 -> set flags 4721 * opt: 00 4722 * option: extension type (see DecodeRegExtend) 4723 * imm3: optional shift to Rm 4724 * 4725 * Rd = Rn + LSL(extend(Rm), amount) 4726 */ 4727 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4728 { 4729 int rd = extract32(insn, 0, 5); 4730 int rn = extract32(insn, 5, 5); 4731 int imm3 = extract32(insn, 10, 3); 4732 int option = extract32(insn, 13, 3); 4733 int rm = extract32(insn, 16, 5); 4734 int opt = extract32(insn, 22, 2); 4735 bool setflags = extract32(insn, 29, 1); 4736 bool sub_op = extract32(insn, 30, 1); 4737 bool sf = extract32(insn, 31, 1); 4738 4739 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4740 TCGv_i64 tcg_rd; 4741 TCGv_i64 tcg_result; 4742 4743 if (imm3 > 4 || opt != 0) { 4744 unallocated_encoding(s); 4745 return; 4746 } 4747 4748 /* non-flag setting ops may use SP */ 4749 if (!setflags) { 4750 tcg_rd = cpu_reg_sp(s, rd); 4751 } else { 4752 tcg_rd = cpu_reg(s, rd); 4753 } 4754 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4755 4756 tcg_rm = read_cpu_reg(s, rm, sf); 4757 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4758 4759 tcg_result = tcg_temp_new_i64(); 4760 4761 if (!setflags) { 4762 if (sub_op) { 4763 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4764 } else { 4765 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4766 } 4767 } else { 4768 if (sub_op) { 4769 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4770 } else { 4771 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4772 } 4773 } 4774 4775 if (sf) { 4776 tcg_gen_mov_i64(tcg_rd, tcg_result); 4777 } else { 4778 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4779 } 4780 } 4781 4782 /* 4783 * Add/subtract (shifted register) 4784 * 4785 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4786 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4787 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4788 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4789 * 4790 * sf: 0 -> 32bit, 1 -> 64bit 4791 * op: 0 -> add , 1 -> sub 4792 * S: 1 -> set flags 4793 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4794 * imm6: Shift amount to apply to Rm before the add/sub 4795 */ 4796 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4797 { 4798 int rd = extract32(insn, 0, 5); 4799 int rn = extract32(insn, 5, 5); 4800 int imm6 = extract32(insn, 10, 6); 4801 int rm = extract32(insn, 16, 5); 4802 int shift_type = extract32(insn, 22, 2); 4803 bool setflags = extract32(insn, 29, 1); 4804 bool sub_op = extract32(insn, 30, 1); 4805 bool sf = extract32(insn, 31, 1); 4806 4807 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4808 TCGv_i64 tcg_rn, tcg_rm; 4809 TCGv_i64 tcg_result; 4810 4811 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4812 unallocated_encoding(s); 4813 return; 4814 } 4815 4816 tcg_rn = read_cpu_reg(s, rn, sf); 4817 tcg_rm = read_cpu_reg(s, rm, sf); 4818 4819 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4820 4821 tcg_result = tcg_temp_new_i64(); 4822 4823 if (!setflags) { 4824 if (sub_op) { 4825 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4826 } else { 4827 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4828 } 4829 } else { 4830 if (sub_op) { 4831 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4832 } else { 4833 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4834 } 4835 } 4836 4837 if (sf) { 4838 tcg_gen_mov_i64(tcg_rd, tcg_result); 4839 } else { 4840 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4841 } 4842 } 4843 4844 /* Data-processing (3 source) 4845 * 4846 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4847 * +--+------+-----------+------+------+----+------+------+------+ 4848 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4849 * +--+------+-----------+------+------+----+------+------+------+ 4850 */ 4851 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4852 { 4853 int rd = extract32(insn, 0, 5); 4854 int rn = extract32(insn, 5, 5); 4855 int ra = extract32(insn, 10, 5); 4856 int rm = extract32(insn, 16, 5); 4857 int op_id = (extract32(insn, 29, 3) << 4) | 4858 (extract32(insn, 21, 3) << 1) | 4859 extract32(insn, 15, 1); 4860 bool sf = extract32(insn, 31, 1); 4861 bool is_sub = extract32(op_id, 0, 1); 4862 bool is_high = extract32(op_id, 2, 1); 4863 bool is_signed = false; 4864 TCGv_i64 tcg_op1; 4865 TCGv_i64 tcg_op2; 4866 TCGv_i64 tcg_tmp; 4867 4868 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4869 switch (op_id) { 4870 case 0x42: /* SMADDL */ 4871 case 0x43: /* SMSUBL */ 4872 case 0x44: /* SMULH */ 4873 is_signed = true; 4874 break; 4875 case 0x0: /* MADD (32bit) */ 4876 case 0x1: /* MSUB (32bit) */ 4877 case 0x40: /* MADD (64bit) */ 4878 case 0x41: /* MSUB (64bit) */ 4879 case 0x4a: /* UMADDL */ 4880 case 0x4b: /* UMSUBL */ 4881 case 0x4c: /* UMULH */ 4882 break; 4883 default: 4884 unallocated_encoding(s); 4885 return; 4886 } 4887 4888 if (is_high) { 4889 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4890 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4891 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4892 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4893 4894 if (is_signed) { 4895 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4896 } else { 4897 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4898 } 4899 return; 4900 } 4901 4902 tcg_op1 = tcg_temp_new_i64(); 4903 tcg_op2 = tcg_temp_new_i64(); 4904 tcg_tmp = tcg_temp_new_i64(); 4905 4906 if (op_id < 0x42) { 4907 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4908 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4909 } else { 4910 if (is_signed) { 4911 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4912 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4913 } else { 4914 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4915 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4916 } 4917 } 4918 4919 if (ra == 31 && !is_sub) { 4920 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4921 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4922 } else { 4923 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4924 if (is_sub) { 4925 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4926 } else { 4927 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4928 } 4929 } 4930 4931 if (!sf) { 4932 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4933 } 4934 } 4935 4936 /* Add/subtract (with carry) 4937 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4938 * +--+--+--+------------------------+------+-------------+------+-----+ 4939 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4940 * +--+--+--+------------------------+------+-------------+------+-----+ 4941 */ 4942 4943 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4944 { 4945 unsigned int sf, op, setflags, rm, rn, rd; 4946 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4947 4948 sf = extract32(insn, 31, 1); 4949 op = extract32(insn, 30, 1); 4950 setflags = extract32(insn, 29, 1); 4951 rm = extract32(insn, 16, 5); 4952 rn = extract32(insn, 5, 5); 4953 rd = extract32(insn, 0, 5); 4954 4955 tcg_rd = cpu_reg(s, rd); 4956 tcg_rn = cpu_reg(s, rn); 4957 4958 if (op) { 4959 tcg_y = tcg_temp_new_i64(); 4960 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4961 } else { 4962 tcg_y = cpu_reg(s, rm); 4963 } 4964 4965 if (setflags) { 4966 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4967 } else { 4968 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4969 } 4970 } 4971 4972 /* 4973 * Rotate right into flags 4974 * 31 30 29 21 15 10 5 4 0 4975 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4976 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4977 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4978 */ 4979 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4980 { 4981 int mask = extract32(insn, 0, 4); 4982 int o2 = extract32(insn, 4, 1); 4983 int rn = extract32(insn, 5, 5); 4984 int imm6 = extract32(insn, 15, 6); 4985 int sf_op_s = extract32(insn, 29, 3); 4986 TCGv_i64 tcg_rn; 4987 TCGv_i32 nzcv; 4988 4989 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4990 unallocated_encoding(s); 4991 return; 4992 } 4993 4994 tcg_rn = read_cpu_reg(s, rn, 1); 4995 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4996 4997 nzcv = tcg_temp_new_i32(); 4998 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4999 5000 if (mask & 8) { /* N */ 5001 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5002 } 5003 if (mask & 4) { /* Z */ 5004 tcg_gen_not_i32(cpu_ZF, nzcv); 5005 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5006 } 5007 if (mask & 2) { /* C */ 5008 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5009 } 5010 if (mask & 1) { /* V */ 5011 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5012 } 5013 } 5014 5015 /* 5016 * Evaluate into flags 5017 * 31 30 29 21 15 14 10 5 4 0 5018 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5019 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5020 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5021 */ 5022 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5023 { 5024 int o3_mask = extract32(insn, 0, 5); 5025 int rn = extract32(insn, 5, 5); 5026 int o2 = extract32(insn, 15, 6); 5027 int sz = extract32(insn, 14, 1); 5028 int sf_op_s = extract32(insn, 29, 3); 5029 TCGv_i32 tmp; 5030 int shift; 5031 5032 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5033 !dc_isar_feature(aa64_condm_4, s)) { 5034 unallocated_encoding(s); 5035 return; 5036 } 5037 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5038 5039 tmp = tcg_temp_new_i32(); 5040 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5041 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5042 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5043 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5044 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5045 } 5046 5047 /* Conditional compare (immediate / register) 5048 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5049 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5050 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5051 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5052 * [1] y [0] [0] 5053 */ 5054 static void disas_cc(DisasContext *s, uint32_t insn) 5055 { 5056 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5057 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5058 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5059 DisasCompare c; 5060 5061 if (!extract32(insn, 29, 1)) { 5062 unallocated_encoding(s); 5063 return; 5064 } 5065 if (insn & (1 << 10 | 1 << 4)) { 5066 unallocated_encoding(s); 5067 return; 5068 } 5069 sf = extract32(insn, 31, 1); 5070 op = extract32(insn, 30, 1); 5071 is_imm = extract32(insn, 11, 1); 5072 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5073 cond = extract32(insn, 12, 4); 5074 rn = extract32(insn, 5, 5); 5075 nzcv = extract32(insn, 0, 4); 5076 5077 /* Set T0 = !COND. */ 5078 tcg_t0 = tcg_temp_new_i32(); 5079 arm_test_cc(&c, cond); 5080 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5081 5082 /* Load the arguments for the new comparison. */ 5083 if (is_imm) { 5084 tcg_y = tcg_temp_new_i64(); 5085 tcg_gen_movi_i64(tcg_y, y); 5086 } else { 5087 tcg_y = cpu_reg(s, y); 5088 } 5089 tcg_rn = cpu_reg(s, rn); 5090 5091 /* Set the flags for the new comparison. */ 5092 tcg_tmp = tcg_temp_new_i64(); 5093 if (op) { 5094 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5095 } else { 5096 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5097 } 5098 5099 /* If COND was false, force the flags to #nzcv. Compute two masks 5100 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5101 * For tcg hosts that support ANDC, we can make do with just T1. 5102 * In either case, allow the tcg optimizer to delete any unused mask. 5103 */ 5104 tcg_t1 = tcg_temp_new_i32(); 5105 tcg_t2 = tcg_temp_new_i32(); 5106 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5107 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5108 5109 if (nzcv & 8) { /* N */ 5110 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5111 } else { 5112 if (TCG_TARGET_HAS_andc_i32) { 5113 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5114 } else { 5115 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5116 } 5117 } 5118 if (nzcv & 4) { /* Z */ 5119 if (TCG_TARGET_HAS_andc_i32) { 5120 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5121 } else { 5122 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5123 } 5124 } else { 5125 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5126 } 5127 if (nzcv & 2) { /* C */ 5128 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5129 } else { 5130 if (TCG_TARGET_HAS_andc_i32) { 5131 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5132 } else { 5133 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5134 } 5135 } 5136 if (nzcv & 1) { /* V */ 5137 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5138 } else { 5139 if (TCG_TARGET_HAS_andc_i32) { 5140 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5141 } else { 5142 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5143 } 5144 } 5145 } 5146 5147 /* Conditional select 5148 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5149 * +----+----+---+-----------------+------+------+-----+------+------+ 5150 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5151 * +----+----+---+-----------------+------+------+-----+------+------+ 5152 */ 5153 static void disas_cond_select(DisasContext *s, uint32_t insn) 5154 { 5155 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5156 TCGv_i64 tcg_rd, zero; 5157 DisasCompare64 c; 5158 5159 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5160 /* S == 1 or op2<1> == 1 */ 5161 unallocated_encoding(s); 5162 return; 5163 } 5164 sf = extract32(insn, 31, 1); 5165 else_inv = extract32(insn, 30, 1); 5166 rm = extract32(insn, 16, 5); 5167 cond = extract32(insn, 12, 4); 5168 else_inc = extract32(insn, 10, 1); 5169 rn = extract32(insn, 5, 5); 5170 rd = extract32(insn, 0, 5); 5171 5172 tcg_rd = cpu_reg(s, rd); 5173 5174 a64_test_cc(&c, cond); 5175 zero = tcg_constant_i64(0); 5176 5177 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5178 /* CSET & CSETM. */ 5179 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5180 if (else_inv) { 5181 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5182 } 5183 } else { 5184 TCGv_i64 t_true = cpu_reg(s, rn); 5185 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5186 if (else_inv && else_inc) { 5187 tcg_gen_neg_i64(t_false, t_false); 5188 } else if (else_inv) { 5189 tcg_gen_not_i64(t_false, t_false); 5190 } else if (else_inc) { 5191 tcg_gen_addi_i64(t_false, t_false, 1); 5192 } 5193 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5194 } 5195 5196 if (!sf) { 5197 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5198 } 5199 } 5200 5201 static void handle_clz(DisasContext *s, unsigned int sf, 5202 unsigned int rn, unsigned int rd) 5203 { 5204 TCGv_i64 tcg_rd, tcg_rn; 5205 tcg_rd = cpu_reg(s, rd); 5206 tcg_rn = cpu_reg(s, rn); 5207 5208 if (sf) { 5209 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5210 } else { 5211 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5212 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5213 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5214 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5215 } 5216 } 5217 5218 static void handle_cls(DisasContext *s, unsigned int sf, 5219 unsigned int rn, unsigned int rd) 5220 { 5221 TCGv_i64 tcg_rd, tcg_rn; 5222 tcg_rd = cpu_reg(s, rd); 5223 tcg_rn = cpu_reg(s, rn); 5224 5225 if (sf) { 5226 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5227 } else { 5228 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5229 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5230 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5231 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5232 } 5233 } 5234 5235 static void handle_rbit(DisasContext *s, unsigned int sf, 5236 unsigned int rn, unsigned int rd) 5237 { 5238 TCGv_i64 tcg_rd, tcg_rn; 5239 tcg_rd = cpu_reg(s, rd); 5240 tcg_rn = cpu_reg(s, rn); 5241 5242 if (sf) { 5243 gen_helper_rbit64(tcg_rd, tcg_rn); 5244 } else { 5245 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5246 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5247 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5248 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5249 } 5250 } 5251 5252 /* REV with sf==1, opcode==3 ("REV64") */ 5253 static void handle_rev64(DisasContext *s, unsigned int sf, 5254 unsigned int rn, unsigned int rd) 5255 { 5256 if (!sf) { 5257 unallocated_encoding(s); 5258 return; 5259 } 5260 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5261 } 5262 5263 /* REV with sf==0, opcode==2 5264 * REV32 (sf==1, opcode==2) 5265 */ 5266 static void handle_rev32(DisasContext *s, unsigned int sf, 5267 unsigned int rn, unsigned int rd) 5268 { 5269 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5270 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5271 5272 if (sf) { 5273 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5274 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5275 } else { 5276 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5277 } 5278 } 5279 5280 /* REV16 (opcode==1) */ 5281 static void handle_rev16(DisasContext *s, unsigned int sf, 5282 unsigned int rn, unsigned int rd) 5283 { 5284 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5285 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5286 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5287 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5288 5289 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5290 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5291 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5292 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5293 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5294 } 5295 5296 /* Data-processing (1 source) 5297 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5298 * +----+---+---+-----------------+---------+--------+------+------+ 5299 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5300 * +----+---+---+-----------------+---------+--------+------+------+ 5301 */ 5302 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5303 { 5304 unsigned int sf, opcode, opcode2, rn, rd; 5305 TCGv_i64 tcg_rd; 5306 5307 if (extract32(insn, 29, 1)) { 5308 unallocated_encoding(s); 5309 return; 5310 } 5311 5312 sf = extract32(insn, 31, 1); 5313 opcode = extract32(insn, 10, 6); 5314 opcode2 = extract32(insn, 16, 5); 5315 rn = extract32(insn, 5, 5); 5316 rd = extract32(insn, 0, 5); 5317 5318 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5319 5320 switch (MAP(sf, opcode2, opcode)) { 5321 case MAP(0, 0x00, 0x00): /* RBIT */ 5322 case MAP(1, 0x00, 0x00): 5323 handle_rbit(s, sf, rn, rd); 5324 break; 5325 case MAP(0, 0x00, 0x01): /* REV16 */ 5326 case MAP(1, 0x00, 0x01): 5327 handle_rev16(s, sf, rn, rd); 5328 break; 5329 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5330 case MAP(1, 0x00, 0x02): 5331 handle_rev32(s, sf, rn, rd); 5332 break; 5333 case MAP(1, 0x00, 0x03): /* REV64 */ 5334 handle_rev64(s, sf, rn, rd); 5335 break; 5336 case MAP(0, 0x00, 0x04): /* CLZ */ 5337 case MAP(1, 0x00, 0x04): 5338 handle_clz(s, sf, rn, rd); 5339 break; 5340 case MAP(0, 0x00, 0x05): /* CLS */ 5341 case MAP(1, 0x00, 0x05): 5342 handle_cls(s, sf, rn, rd); 5343 break; 5344 case MAP(1, 0x01, 0x00): /* PACIA */ 5345 if (s->pauth_active) { 5346 tcg_rd = cpu_reg(s, rd); 5347 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5348 } else if (!dc_isar_feature(aa64_pauth, s)) { 5349 goto do_unallocated; 5350 } 5351 break; 5352 case MAP(1, 0x01, 0x01): /* PACIB */ 5353 if (s->pauth_active) { 5354 tcg_rd = cpu_reg(s, rd); 5355 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5356 } else if (!dc_isar_feature(aa64_pauth, s)) { 5357 goto do_unallocated; 5358 } 5359 break; 5360 case MAP(1, 0x01, 0x02): /* PACDA */ 5361 if (s->pauth_active) { 5362 tcg_rd = cpu_reg(s, rd); 5363 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5364 } else if (!dc_isar_feature(aa64_pauth, s)) { 5365 goto do_unallocated; 5366 } 5367 break; 5368 case MAP(1, 0x01, 0x03): /* PACDB */ 5369 if (s->pauth_active) { 5370 tcg_rd = cpu_reg(s, rd); 5371 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5372 } else if (!dc_isar_feature(aa64_pauth, s)) { 5373 goto do_unallocated; 5374 } 5375 break; 5376 case MAP(1, 0x01, 0x04): /* AUTIA */ 5377 if (s->pauth_active) { 5378 tcg_rd = cpu_reg(s, rd); 5379 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5380 } else if (!dc_isar_feature(aa64_pauth, s)) { 5381 goto do_unallocated; 5382 } 5383 break; 5384 case MAP(1, 0x01, 0x05): /* AUTIB */ 5385 if (s->pauth_active) { 5386 tcg_rd = cpu_reg(s, rd); 5387 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5388 } else if (!dc_isar_feature(aa64_pauth, s)) { 5389 goto do_unallocated; 5390 } 5391 break; 5392 case MAP(1, 0x01, 0x06): /* AUTDA */ 5393 if (s->pauth_active) { 5394 tcg_rd = cpu_reg(s, rd); 5395 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5396 } else if (!dc_isar_feature(aa64_pauth, s)) { 5397 goto do_unallocated; 5398 } 5399 break; 5400 case MAP(1, 0x01, 0x07): /* AUTDB */ 5401 if (s->pauth_active) { 5402 tcg_rd = cpu_reg(s, rd); 5403 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5404 } else if (!dc_isar_feature(aa64_pauth, s)) { 5405 goto do_unallocated; 5406 } 5407 break; 5408 case MAP(1, 0x01, 0x08): /* PACIZA */ 5409 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5410 goto do_unallocated; 5411 } else if (s->pauth_active) { 5412 tcg_rd = cpu_reg(s, rd); 5413 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5414 } 5415 break; 5416 case MAP(1, 0x01, 0x09): /* PACIZB */ 5417 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5418 goto do_unallocated; 5419 } else if (s->pauth_active) { 5420 tcg_rd = cpu_reg(s, rd); 5421 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5422 } 5423 break; 5424 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5425 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5426 goto do_unallocated; 5427 } else if (s->pauth_active) { 5428 tcg_rd = cpu_reg(s, rd); 5429 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5430 } 5431 break; 5432 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5433 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5434 goto do_unallocated; 5435 } else if (s->pauth_active) { 5436 tcg_rd = cpu_reg(s, rd); 5437 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5438 } 5439 break; 5440 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5441 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5442 goto do_unallocated; 5443 } else if (s->pauth_active) { 5444 tcg_rd = cpu_reg(s, rd); 5445 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5446 } 5447 break; 5448 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5449 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5450 goto do_unallocated; 5451 } else if (s->pauth_active) { 5452 tcg_rd = cpu_reg(s, rd); 5453 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5454 } 5455 break; 5456 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5457 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5458 goto do_unallocated; 5459 } else if (s->pauth_active) { 5460 tcg_rd = cpu_reg(s, rd); 5461 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5462 } 5463 break; 5464 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5465 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5466 goto do_unallocated; 5467 } else if (s->pauth_active) { 5468 tcg_rd = cpu_reg(s, rd); 5469 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5470 } 5471 break; 5472 case MAP(1, 0x01, 0x10): /* XPACI */ 5473 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5474 goto do_unallocated; 5475 } else if (s->pauth_active) { 5476 tcg_rd = cpu_reg(s, rd); 5477 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5478 } 5479 break; 5480 case MAP(1, 0x01, 0x11): /* XPACD */ 5481 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5482 goto do_unallocated; 5483 } else if (s->pauth_active) { 5484 tcg_rd = cpu_reg(s, rd); 5485 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5486 } 5487 break; 5488 default: 5489 do_unallocated: 5490 unallocated_encoding(s); 5491 break; 5492 } 5493 5494 #undef MAP 5495 } 5496 5497 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5498 unsigned int rm, unsigned int rn, unsigned int rd) 5499 { 5500 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5501 tcg_rd = cpu_reg(s, rd); 5502 5503 if (!sf && is_signed) { 5504 tcg_n = tcg_temp_new_i64(); 5505 tcg_m = tcg_temp_new_i64(); 5506 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5507 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5508 } else { 5509 tcg_n = read_cpu_reg(s, rn, sf); 5510 tcg_m = read_cpu_reg(s, rm, sf); 5511 } 5512 5513 if (is_signed) { 5514 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5515 } else { 5516 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5517 } 5518 5519 if (!sf) { /* zero extend final result */ 5520 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5521 } 5522 } 5523 5524 /* LSLV, LSRV, ASRV, RORV */ 5525 static void handle_shift_reg(DisasContext *s, 5526 enum a64_shift_type shift_type, unsigned int sf, 5527 unsigned int rm, unsigned int rn, unsigned int rd) 5528 { 5529 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5530 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5531 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5532 5533 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5534 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5535 } 5536 5537 /* CRC32[BHWX], CRC32C[BHWX] */ 5538 static void handle_crc32(DisasContext *s, 5539 unsigned int sf, unsigned int sz, bool crc32c, 5540 unsigned int rm, unsigned int rn, unsigned int rd) 5541 { 5542 TCGv_i64 tcg_acc, tcg_val; 5543 TCGv_i32 tcg_bytes; 5544 5545 if (!dc_isar_feature(aa64_crc32, s) 5546 || (sf == 1 && sz != 3) 5547 || (sf == 0 && sz == 3)) { 5548 unallocated_encoding(s); 5549 return; 5550 } 5551 5552 if (sz == 3) { 5553 tcg_val = cpu_reg(s, rm); 5554 } else { 5555 uint64_t mask; 5556 switch (sz) { 5557 case 0: 5558 mask = 0xFF; 5559 break; 5560 case 1: 5561 mask = 0xFFFF; 5562 break; 5563 case 2: 5564 mask = 0xFFFFFFFF; 5565 break; 5566 default: 5567 g_assert_not_reached(); 5568 } 5569 tcg_val = tcg_temp_new_i64(); 5570 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5571 } 5572 5573 tcg_acc = cpu_reg(s, rn); 5574 tcg_bytes = tcg_constant_i32(1 << sz); 5575 5576 if (crc32c) { 5577 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5578 } else { 5579 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5580 } 5581 } 5582 5583 /* Data-processing (2 source) 5584 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5585 * +----+---+---+-----------------+------+--------+------+------+ 5586 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5587 * +----+---+---+-----------------+------+--------+------+------+ 5588 */ 5589 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5590 { 5591 unsigned int sf, rm, opcode, rn, rd, setflag; 5592 sf = extract32(insn, 31, 1); 5593 setflag = extract32(insn, 29, 1); 5594 rm = extract32(insn, 16, 5); 5595 opcode = extract32(insn, 10, 6); 5596 rn = extract32(insn, 5, 5); 5597 rd = extract32(insn, 0, 5); 5598 5599 if (setflag && opcode != 0) { 5600 unallocated_encoding(s); 5601 return; 5602 } 5603 5604 switch (opcode) { 5605 case 0: /* SUBP(S) */ 5606 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5607 goto do_unallocated; 5608 } else { 5609 TCGv_i64 tcg_n, tcg_m, tcg_d; 5610 5611 tcg_n = read_cpu_reg_sp(s, rn, true); 5612 tcg_m = read_cpu_reg_sp(s, rm, true); 5613 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5614 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5615 tcg_d = cpu_reg(s, rd); 5616 5617 if (setflag) { 5618 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5619 } else { 5620 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5621 } 5622 } 5623 break; 5624 case 2: /* UDIV */ 5625 handle_div(s, false, sf, rm, rn, rd); 5626 break; 5627 case 3: /* SDIV */ 5628 handle_div(s, true, sf, rm, rn, rd); 5629 break; 5630 case 4: /* IRG */ 5631 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5632 goto do_unallocated; 5633 } 5634 if (s->ata) { 5635 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5636 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5637 } else { 5638 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5639 cpu_reg_sp(s, rn)); 5640 } 5641 break; 5642 case 5: /* GMI */ 5643 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5644 goto do_unallocated; 5645 } else { 5646 TCGv_i64 t = tcg_temp_new_i64(); 5647 5648 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5649 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5650 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5651 } 5652 break; 5653 case 8: /* LSLV */ 5654 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5655 break; 5656 case 9: /* LSRV */ 5657 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5658 break; 5659 case 10: /* ASRV */ 5660 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5661 break; 5662 case 11: /* RORV */ 5663 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5664 break; 5665 case 12: /* PACGA */ 5666 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5667 goto do_unallocated; 5668 } 5669 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5670 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5671 break; 5672 case 16: 5673 case 17: 5674 case 18: 5675 case 19: 5676 case 20: 5677 case 21: 5678 case 22: 5679 case 23: /* CRC32 */ 5680 { 5681 int sz = extract32(opcode, 0, 2); 5682 bool crc32c = extract32(opcode, 2, 1); 5683 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5684 break; 5685 } 5686 default: 5687 do_unallocated: 5688 unallocated_encoding(s); 5689 break; 5690 } 5691 } 5692 5693 /* 5694 * Data processing - register 5695 * 31 30 29 28 25 21 20 16 10 0 5696 * +--+---+--+---+-------+-----+-------+-------+---------+ 5697 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5698 * +--+---+--+---+-------+-----+-------+-------+---------+ 5699 */ 5700 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5701 { 5702 int op0 = extract32(insn, 30, 1); 5703 int op1 = extract32(insn, 28, 1); 5704 int op2 = extract32(insn, 21, 4); 5705 int op3 = extract32(insn, 10, 6); 5706 5707 if (!op1) { 5708 if (op2 & 8) { 5709 if (op2 & 1) { 5710 /* Add/sub (extended register) */ 5711 disas_add_sub_ext_reg(s, insn); 5712 } else { 5713 /* Add/sub (shifted register) */ 5714 disas_add_sub_reg(s, insn); 5715 } 5716 } else { 5717 /* Logical (shifted register) */ 5718 disas_logic_reg(s, insn); 5719 } 5720 return; 5721 } 5722 5723 switch (op2) { 5724 case 0x0: 5725 switch (op3) { 5726 case 0x00: /* Add/subtract (with carry) */ 5727 disas_adc_sbc(s, insn); 5728 break; 5729 5730 case 0x01: /* Rotate right into flags */ 5731 case 0x21: 5732 disas_rotate_right_into_flags(s, insn); 5733 break; 5734 5735 case 0x02: /* Evaluate into flags */ 5736 case 0x12: 5737 case 0x22: 5738 case 0x32: 5739 disas_evaluate_into_flags(s, insn); 5740 break; 5741 5742 default: 5743 goto do_unallocated; 5744 } 5745 break; 5746 5747 case 0x2: /* Conditional compare */ 5748 disas_cc(s, insn); /* both imm and reg forms */ 5749 break; 5750 5751 case 0x4: /* Conditional select */ 5752 disas_cond_select(s, insn); 5753 break; 5754 5755 case 0x6: /* Data-processing */ 5756 if (op0) { /* (1 source) */ 5757 disas_data_proc_1src(s, insn); 5758 } else { /* (2 source) */ 5759 disas_data_proc_2src(s, insn); 5760 } 5761 break; 5762 case 0x8 ... 0xf: /* (3 source) */ 5763 disas_data_proc_3src(s, insn); 5764 break; 5765 5766 default: 5767 do_unallocated: 5768 unallocated_encoding(s); 5769 break; 5770 } 5771 } 5772 5773 static void handle_fp_compare(DisasContext *s, int size, 5774 unsigned int rn, unsigned int rm, 5775 bool cmp_with_zero, bool signal_all_nans) 5776 { 5777 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5778 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5779 5780 if (size == MO_64) { 5781 TCGv_i64 tcg_vn, tcg_vm; 5782 5783 tcg_vn = read_fp_dreg(s, rn); 5784 if (cmp_with_zero) { 5785 tcg_vm = tcg_constant_i64(0); 5786 } else { 5787 tcg_vm = read_fp_dreg(s, rm); 5788 } 5789 if (signal_all_nans) { 5790 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5791 } else { 5792 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5793 } 5794 } else { 5795 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5796 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5797 5798 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5799 if (cmp_with_zero) { 5800 tcg_gen_movi_i32(tcg_vm, 0); 5801 } else { 5802 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5803 } 5804 5805 switch (size) { 5806 case MO_32: 5807 if (signal_all_nans) { 5808 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5809 } else { 5810 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5811 } 5812 break; 5813 case MO_16: 5814 if (signal_all_nans) { 5815 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5816 } else { 5817 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5818 } 5819 break; 5820 default: 5821 g_assert_not_reached(); 5822 } 5823 } 5824 5825 gen_set_nzcv(tcg_flags); 5826 } 5827 5828 /* Floating point compare 5829 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5830 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5831 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5832 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5833 */ 5834 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5835 { 5836 unsigned int mos, type, rm, op, rn, opc, op2r; 5837 int size; 5838 5839 mos = extract32(insn, 29, 3); 5840 type = extract32(insn, 22, 2); 5841 rm = extract32(insn, 16, 5); 5842 op = extract32(insn, 14, 2); 5843 rn = extract32(insn, 5, 5); 5844 opc = extract32(insn, 3, 2); 5845 op2r = extract32(insn, 0, 3); 5846 5847 if (mos || op || op2r) { 5848 unallocated_encoding(s); 5849 return; 5850 } 5851 5852 switch (type) { 5853 case 0: 5854 size = MO_32; 5855 break; 5856 case 1: 5857 size = MO_64; 5858 break; 5859 case 3: 5860 size = MO_16; 5861 if (dc_isar_feature(aa64_fp16, s)) { 5862 break; 5863 } 5864 /* fallthru */ 5865 default: 5866 unallocated_encoding(s); 5867 return; 5868 } 5869 5870 if (!fp_access_check(s)) { 5871 return; 5872 } 5873 5874 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5875 } 5876 5877 /* Floating point conditional compare 5878 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5879 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5880 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5881 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5882 */ 5883 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5884 { 5885 unsigned int mos, type, rm, cond, rn, op, nzcv; 5886 TCGLabel *label_continue = NULL; 5887 int size; 5888 5889 mos = extract32(insn, 29, 3); 5890 type = extract32(insn, 22, 2); 5891 rm = extract32(insn, 16, 5); 5892 cond = extract32(insn, 12, 4); 5893 rn = extract32(insn, 5, 5); 5894 op = extract32(insn, 4, 1); 5895 nzcv = extract32(insn, 0, 4); 5896 5897 if (mos) { 5898 unallocated_encoding(s); 5899 return; 5900 } 5901 5902 switch (type) { 5903 case 0: 5904 size = MO_32; 5905 break; 5906 case 1: 5907 size = MO_64; 5908 break; 5909 case 3: 5910 size = MO_16; 5911 if (dc_isar_feature(aa64_fp16, s)) { 5912 break; 5913 } 5914 /* fallthru */ 5915 default: 5916 unallocated_encoding(s); 5917 return; 5918 } 5919 5920 if (!fp_access_check(s)) { 5921 return; 5922 } 5923 5924 if (cond < 0x0e) { /* not always */ 5925 TCGLabel *label_match = gen_new_label(); 5926 label_continue = gen_new_label(); 5927 arm_gen_test_cc(cond, label_match); 5928 /* nomatch: */ 5929 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5930 tcg_gen_br(label_continue); 5931 gen_set_label(label_match); 5932 } 5933 5934 handle_fp_compare(s, size, rn, rm, false, op); 5935 5936 if (cond < 0x0e) { 5937 gen_set_label(label_continue); 5938 } 5939 } 5940 5941 /* Floating point conditional select 5942 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5943 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5944 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5945 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5946 */ 5947 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5948 { 5949 unsigned int mos, type, rm, cond, rn, rd; 5950 TCGv_i64 t_true, t_false; 5951 DisasCompare64 c; 5952 MemOp sz; 5953 5954 mos = extract32(insn, 29, 3); 5955 type = extract32(insn, 22, 2); 5956 rm = extract32(insn, 16, 5); 5957 cond = extract32(insn, 12, 4); 5958 rn = extract32(insn, 5, 5); 5959 rd = extract32(insn, 0, 5); 5960 5961 if (mos) { 5962 unallocated_encoding(s); 5963 return; 5964 } 5965 5966 switch (type) { 5967 case 0: 5968 sz = MO_32; 5969 break; 5970 case 1: 5971 sz = MO_64; 5972 break; 5973 case 3: 5974 sz = MO_16; 5975 if (dc_isar_feature(aa64_fp16, s)) { 5976 break; 5977 } 5978 /* fallthru */ 5979 default: 5980 unallocated_encoding(s); 5981 return; 5982 } 5983 5984 if (!fp_access_check(s)) { 5985 return; 5986 } 5987 5988 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5989 t_true = tcg_temp_new_i64(); 5990 t_false = tcg_temp_new_i64(); 5991 read_vec_element(s, t_true, rn, 0, sz); 5992 read_vec_element(s, t_false, rm, 0, sz); 5993 5994 a64_test_cc(&c, cond); 5995 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5996 t_true, t_false); 5997 5998 /* Note that sregs & hregs write back zeros to the high bits, 5999 and we've already done the zero-extension. */ 6000 write_fp_dreg(s, rd, t_true); 6001 } 6002 6003 /* Floating-point data-processing (1 source) - half precision */ 6004 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6005 { 6006 TCGv_ptr fpst = NULL; 6007 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6008 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6009 6010 switch (opcode) { 6011 case 0x0: /* FMOV */ 6012 tcg_gen_mov_i32(tcg_res, tcg_op); 6013 break; 6014 case 0x1: /* FABS */ 6015 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6016 break; 6017 case 0x2: /* FNEG */ 6018 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6019 break; 6020 case 0x3: /* FSQRT */ 6021 fpst = fpstatus_ptr(FPST_FPCR_F16); 6022 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6023 break; 6024 case 0x8: /* FRINTN */ 6025 case 0x9: /* FRINTP */ 6026 case 0xa: /* FRINTM */ 6027 case 0xb: /* FRINTZ */ 6028 case 0xc: /* FRINTA */ 6029 { 6030 TCGv_i32 tcg_rmode; 6031 6032 fpst = fpstatus_ptr(FPST_FPCR_F16); 6033 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6034 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6035 gen_restore_rmode(tcg_rmode, fpst); 6036 break; 6037 } 6038 case 0xe: /* FRINTX */ 6039 fpst = fpstatus_ptr(FPST_FPCR_F16); 6040 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6041 break; 6042 case 0xf: /* FRINTI */ 6043 fpst = fpstatus_ptr(FPST_FPCR_F16); 6044 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6045 break; 6046 default: 6047 g_assert_not_reached(); 6048 } 6049 6050 write_fp_sreg(s, rd, tcg_res); 6051 } 6052 6053 /* Floating-point data-processing (1 source) - single precision */ 6054 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6055 { 6056 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6057 TCGv_i32 tcg_op, tcg_res; 6058 TCGv_ptr fpst; 6059 int rmode = -1; 6060 6061 tcg_op = read_fp_sreg(s, rn); 6062 tcg_res = tcg_temp_new_i32(); 6063 6064 switch (opcode) { 6065 case 0x0: /* FMOV */ 6066 tcg_gen_mov_i32(tcg_res, tcg_op); 6067 goto done; 6068 case 0x1: /* FABS */ 6069 gen_helper_vfp_abss(tcg_res, tcg_op); 6070 goto done; 6071 case 0x2: /* FNEG */ 6072 gen_helper_vfp_negs(tcg_res, tcg_op); 6073 goto done; 6074 case 0x3: /* FSQRT */ 6075 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6076 goto done; 6077 case 0x6: /* BFCVT */ 6078 gen_fpst = gen_helper_bfcvt; 6079 break; 6080 case 0x8: /* FRINTN */ 6081 case 0x9: /* FRINTP */ 6082 case 0xa: /* FRINTM */ 6083 case 0xb: /* FRINTZ */ 6084 case 0xc: /* FRINTA */ 6085 rmode = opcode & 7; 6086 gen_fpst = gen_helper_rints; 6087 break; 6088 case 0xe: /* FRINTX */ 6089 gen_fpst = gen_helper_rints_exact; 6090 break; 6091 case 0xf: /* FRINTI */ 6092 gen_fpst = gen_helper_rints; 6093 break; 6094 case 0x10: /* FRINT32Z */ 6095 rmode = FPROUNDING_ZERO; 6096 gen_fpst = gen_helper_frint32_s; 6097 break; 6098 case 0x11: /* FRINT32X */ 6099 gen_fpst = gen_helper_frint32_s; 6100 break; 6101 case 0x12: /* FRINT64Z */ 6102 rmode = FPROUNDING_ZERO; 6103 gen_fpst = gen_helper_frint64_s; 6104 break; 6105 case 0x13: /* FRINT64X */ 6106 gen_fpst = gen_helper_frint64_s; 6107 break; 6108 default: 6109 g_assert_not_reached(); 6110 } 6111 6112 fpst = fpstatus_ptr(FPST_FPCR); 6113 if (rmode >= 0) { 6114 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6115 gen_fpst(tcg_res, tcg_op, fpst); 6116 gen_restore_rmode(tcg_rmode, fpst); 6117 } else { 6118 gen_fpst(tcg_res, tcg_op, fpst); 6119 } 6120 6121 done: 6122 write_fp_sreg(s, rd, tcg_res); 6123 } 6124 6125 /* Floating-point data-processing (1 source) - double precision */ 6126 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6127 { 6128 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6129 TCGv_i64 tcg_op, tcg_res; 6130 TCGv_ptr fpst; 6131 int rmode = -1; 6132 6133 switch (opcode) { 6134 case 0x0: /* FMOV */ 6135 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6136 return; 6137 } 6138 6139 tcg_op = read_fp_dreg(s, rn); 6140 tcg_res = tcg_temp_new_i64(); 6141 6142 switch (opcode) { 6143 case 0x1: /* FABS */ 6144 gen_helper_vfp_absd(tcg_res, tcg_op); 6145 goto done; 6146 case 0x2: /* FNEG */ 6147 gen_helper_vfp_negd(tcg_res, tcg_op); 6148 goto done; 6149 case 0x3: /* FSQRT */ 6150 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6151 goto done; 6152 case 0x8: /* FRINTN */ 6153 case 0x9: /* FRINTP */ 6154 case 0xa: /* FRINTM */ 6155 case 0xb: /* FRINTZ */ 6156 case 0xc: /* FRINTA */ 6157 rmode = opcode & 7; 6158 gen_fpst = gen_helper_rintd; 6159 break; 6160 case 0xe: /* FRINTX */ 6161 gen_fpst = gen_helper_rintd_exact; 6162 break; 6163 case 0xf: /* FRINTI */ 6164 gen_fpst = gen_helper_rintd; 6165 break; 6166 case 0x10: /* FRINT32Z */ 6167 rmode = FPROUNDING_ZERO; 6168 gen_fpst = gen_helper_frint32_d; 6169 break; 6170 case 0x11: /* FRINT32X */ 6171 gen_fpst = gen_helper_frint32_d; 6172 break; 6173 case 0x12: /* FRINT64Z */ 6174 rmode = FPROUNDING_ZERO; 6175 gen_fpst = gen_helper_frint64_d; 6176 break; 6177 case 0x13: /* FRINT64X */ 6178 gen_fpst = gen_helper_frint64_d; 6179 break; 6180 default: 6181 g_assert_not_reached(); 6182 } 6183 6184 fpst = fpstatus_ptr(FPST_FPCR); 6185 if (rmode >= 0) { 6186 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6187 gen_fpst(tcg_res, tcg_op, fpst); 6188 gen_restore_rmode(tcg_rmode, fpst); 6189 } else { 6190 gen_fpst(tcg_res, tcg_op, fpst); 6191 } 6192 6193 done: 6194 write_fp_dreg(s, rd, tcg_res); 6195 } 6196 6197 static void handle_fp_fcvt(DisasContext *s, int opcode, 6198 int rd, int rn, int dtype, int ntype) 6199 { 6200 switch (ntype) { 6201 case 0x0: 6202 { 6203 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6204 if (dtype == 1) { 6205 /* Single to double */ 6206 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6207 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6208 write_fp_dreg(s, rd, tcg_rd); 6209 } else { 6210 /* Single to half */ 6211 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6212 TCGv_i32 ahp = get_ahp_flag(); 6213 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6214 6215 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6216 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6217 write_fp_sreg(s, rd, tcg_rd); 6218 } 6219 break; 6220 } 6221 case 0x1: 6222 { 6223 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6224 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6225 if (dtype == 0) { 6226 /* Double to single */ 6227 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6228 } else { 6229 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6230 TCGv_i32 ahp = get_ahp_flag(); 6231 /* Double to half */ 6232 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6233 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6234 } 6235 write_fp_sreg(s, rd, tcg_rd); 6236 break; 6237 } 6238 case 0x3: 6239 { 6240 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6241 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6242 TCGv_i32 tcg_ahp = get_ahp_flag(); 6243 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6244 if (dtype == 0) { 6245 /* Half to single */ 6246 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6247 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6248 write_fp_sreg(s, rd, tcg_rd); 6249 } else { 6250 /* Half to double */ 6251 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6252 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6253 write_fp_dreg(s, rd, tcg_rd); 6254 } 6255 break; 6256 } 6257 default: 6258 g_assert_not_reached(); 6259 } 6260 } 6261 6262 /* Floating point data-processing (1 source) 6263 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6264 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6265 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6266 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6267 */ 6268 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6269 { 6270 int mos = extract32(insn, 29, 3); 6271 int type = extract32(insn, 22, 2); 6272 int opcode = extract32(insn, 15, 6); 6273 int rn = extract32(insn, 5, 5); 6274 int rd = extract32(insn, 0, 5); 6275 6276 if (mos) { 6277 goto do_unallocated; 6278 } 6279 6280 switch (opcode) { 6281 case 0x4: case 0x5: case 0x7: 6282 { 6283 /* FCVT between half, single and double precision */ 6284 int dtype = extract32(opcode, 0, 2); 6285 if (type == 2 || dtype == type) { 6286 goto do_unallocated; 6287 } 6288 if (!fp_access_check(s)) { 6289 return; 6290 } 6291 6292 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6293 break; 6294 } 6295 6296 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6297 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6298 goto do_unallocated; 6299 } 6300 /* fall through */ 6301 case 0x0 ... 0x3: 6302 case 0x8 ... 0xc: 6303 case 0xe ... 0xf: 6304 /* 32-to-32 and 64-to-64 ops */ 6305 switch (type) { 6306 case 0: 6307 if (!fp_access_check(s)) { 6308 return; 6309 } 6310 handle_fp_1src_single(s, opcode, rd, rn); 6311 break; 6312 case 1: 6313 if (!fp_access_check(s)) { 6314 return; 6315 } 6316 handle_fp_1src_double(s, opcode, rd, rn); 6317 break; 6318 case 3: 6319 if (!dc_isar_feature(aa64_fp16, s)) { 6320 goto do_unallocated; 6321 } 6322 6323 if (!fp_access_check(s)) { 6324 return; 6325 } 6326 handle_fp_1src_half(s, opcode, rd, rn); 6327 break; 6328 default: 6329 goto do_unallocated; 6330 } 6331 break; 6332 6333 case 0x6: 6334 switch (type) { 6335 case 1: /* BFCVT */ 6336 if (!dc_isar_feature(aa64_bf16, s)) { 6337 goto do_unallocated; 6338 } 6339 if (!fp_access_check(s)) { 6340 return; 6341 } 6342 handle_fp_1src_single(s, opcode, rd, rn); 6343 break; 6344 default: 6345 goto do_unallocated; 6346 } 6347 break; 6348 6349 default: 6350 do_unallocated: 6351 unallocated_encoding(s); 6352 break; 6353 } 6354 } 6355 6356 /* Floating-point data-processing (2 source) - single precision */ 6357 static void handle_fp_2src_single(DisasContext *s, int opcode, 6358 int rd, int rn, int rm) 6359 { 6360 TCGv_i32 tcg_op1; 6361 TCGv_i32 tcg_op2; 6362 TCGv_i32 tcg_res; 6363 TCGv_ptr fpst; 6364 6365 tcg_res = tcg_temp_new_i32(); 6366 fpst = fpstatus_ptr(FPST_FPCR); 6367 tcg_op1 = read_fp_sreg(s, rn); 6368 tcg_op2 = read_fp_sreg(s, rm); 6369 6370 switch (opcode) { 6371 case 0x0: /* FMUL */ 6372 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6373 break; 6374 case 0x1: /* FDIV */ 6375 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6376 break; 6377 case 0x2: /* FADD */ 6378 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6379 break; 6380 case 0x3: /* FSUB */ 6381 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6382 break; 6383 case 0x4: /* FMAX */ 6384 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6385 break; 6386 case 0x5: /* FMIN */ 6387 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6388 break; 6389 case 0x6: /* FMAXNM */ 6390 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6391 break; 6392 case 0x7: /* FMINNM */ 6393 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6394 break; 6395 case 0x8: /* FNMUL */ 6396 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6397 gen_helper_vfp_negs(tcg_res, tcg_res); 6398 break; 6399 } 6400 6401 write_fp_sreg(s, rd, tcg_res); 6402 } 6403 6404 /* Floating-point data-processing (2 source) - double precision */ 6405 static void handle_fp_2src_double(DisasContext *s, int opcode, 6406 int rd, int rn, int rm) 6407 { 6408 TCGv_i64 tcg_op1; 6409 TCGv_i64 tcg_op2; 6410 TCGv_i64 tcg_res; 6411 TCGv_ptr fpst; 6412 6413 tcg_res = tcg_temp_new_i64(); 6414 fpst = fpstatus_ptr(FPST_FPCR); 6415 tcg_op1 = read_fp_dreg(s, rn); 6416 tcg_op2 = read_fp_dreg(s, rm); 6417 6418 switch (opcode) { 6419 case 0x0: /* FMUL */ 6420 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6421 break; 6422 case 0x1: /* FDIV */ 6423 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6424 break; 6425 case 0x2: /* FADD */ 6426 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6427 break; 6428 case 0x3: /* FSUB */ 6429 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6430 break; 6431 case 0x4: /* FMAX */ 6432 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6433 break; 6434 case 0x5: /* FMIN */ 6435 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6436 break; 6437 case 0x6: /* FMAXNM */ 6438 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6439 break; 6440 case 0x7: /* FMINNM */ 6441 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6442 break; 6443 case 0x8: /* FNMUL */ 6444 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6445 gen_helper_vfp_negd(tcg_res, tcg_res); 6446 break; 6447 } 6448 6449 write_fp_dreg(s, rd, tcg_res); 6450 } 6451 6452 /* Floating-point data-processing (2 source) - half precision */ 6453 static void handle_fp_2src_half(DisasContext *s, int opcode, 6454 int rd, int rn, int rm) 6455 { 6456 TCGv_i32 tcg_op1; 6457 TCGv_i32 tcg_op2; 6458 TCGv_i32 tcg_res; 6459 TCGv_ptr fpst; 6460 6461 tcg_res = tcg_temp_new_i32(); 6462 fpst = fpstatus_ptr(FPST_FPCR_F16); 6463 tcg_op1 = read_fp_hreg(s, rn); 6464 tcg_op2 = read_fp_hreg(s, rm); 6465 6466 switch (opcode) { 6467 case 0x0: /* FMUL */ 6468 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6469 break; 6470 case 0x1: /* FDIV */ 6471 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6472 break; 6473 case 0x2: /* FADD */ 6474 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6475 break; 6476 case 0x3: /* FSUB */ 6477 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6478 break; 6479 case 0x4: /* FMAX */ 6480 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6481 break; 6482 case 0x5: /* FMIN */ 6483 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6484 break; 6485 case 0x6: /* FMAXNM */ 6486 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6487 break; 6488 case 0x7: /* FMINNM */ 6489 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6490 break; 6491 case 0x8: /* FNMUL */ 6492 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6493 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6494 break; 6495 default: 6496 g_assert_not_reached(); 6497 } 6498 6499 write_fp_sreg(s, rd, tcg_res); 6500 } 6501 6502 /* Floating point data-processing (2 source) 6503 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6504 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6505 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6506 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6507 */ 6508 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6509 { 6510 int mos = extract32(insn, 29, 3); 6511 int type = extract32(insn, 22, 2); 6512 int rd = extract32(insn, 0, 5); 6513 int rn = extract32(insn, 5, 5); 6514 int rm = extract32(insn, 16, 5); 6515 int opcode = extract32(insn, 12, 4); 6516 6517 if (opcode > 8 || mos) { 6518 unallocated_encoding(s); 6519 return; 6520 } 6521 6522 switch (type) { 6523 case 0: 6524 if (!fp_access_check(s)) { 6525 return; 6526 } 6527 handle_fp_2src_single(s, opcode, rd, rn, rm); 6528 break; 6529 case 1: 6530 if (!fp_access_check(s)) { 6531 return; 6532 } 6533 handle_fp_2src_double(s, opcode, rd, rn, rm); 6534 break; 6535 case 3: 6536 if (!dc_isar_feature(aa64_fp16, s)) { 6537 unallocated_encoding(s); 6538 return; 6539 } 6540 if (!fp_access_check(s)) { 6541 return; 6542 } 6543 handle_fp_2src_half(s, opcode, rd, rn, rm); 6544 break; 6545 default: 6546 unallocated_encoding(s); 6547 } 6548 } 6549 6550 /* Floating-point data-processing (3 source) - single precision */ 6551 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6552 int rd, int rn, int rm, int ra) 6553 { 6554 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6555 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6556 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6557 6558 tcg_op1 = read_fp_sreg(s, rn); 6559 tcg_op2 = read_fp_sreg(s, rm); 6560 tcg_op3 = read_fp_sreg(s, ra); 6561 6562 /* These are fused multiply-add, and must be done as one 6563 * floating point operation with no rounding between the 6564 * multiplication and addition steps. 6565 * NB that doing the negations here as separate steps is 6566 * correct : an input NaN should come out with its sign bit 6567 * flipped if it is a negated-input. 6568 */ 6569 if (o1 == true) { 6570 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6571 } 6572 6573 if (o0 != o1) { 6574 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6575 } 6576 6577 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6578 6579 write_fp_sreg(s, rd, tcg_res); 6580 } 6581 6582 /* Floating-point data-processing (3 source) - double precision */ 6583 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6584 int rd, int rn, int rm, int ra) 6585 { 6586 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6587 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6588 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6589 6590 tcg_op1 = read_fp_dreg(s, rn); 6591 tcg_op2 = read_fp_dreg(s, rm); 6592 tcg_op3 = read_fp_dreg(s, ra); 6593 6594 /* These are fused multiply-add, and must be done as one 6595 * floating point operation with no rounding between the 6596 * multiplication and addition steps. 6597 * NB that doing the negations here as separate steps is 6598 * correct : an input NaN should come out with its sign bit 6599 * flipped if it is a negated-input. 6600 */ 6601 if (o1 == true) { 6602 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6603 } 6604 6605 if (o0 != o1) { 6606 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6607 } 6608 6609 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6610 6611 write_fp_dreg(s, rd, tcg_res); 6612 } 6613 6614 /* Floating-point data-processing (3 source) - half precision */ 6615 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6616 int rd, int rn, int rm, int ra) 6617 { 6618 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6619 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6620 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6621 6622 tcg_op1 = read_fp_hreg(s, rn); 6623 tcg_op2 = read_fp_hreg(s, rm); 6624 tcg_op3 = read_fp_hreg(s, ra); 6625 6626 /* These are fused multiply-add, and must be done as one 6627 * floating point operation with no rounding between the 6628 * multiplication and addition steps. 6629 * NB that doing the negations here as separate steps is 6630 * correct : an input NaN should come out with its sign bit 6631 * flipped if it is a negated-input. 6632 */ 6633 if (o1 == true) { 6634 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6635 } 6636 6637 if (o0 != o1) { 6638 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6639 } 6640 6641 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6642 6643 write_fp_sreg(s, rd, tcg_res); 6644 } 6645 6646 /* Floating point data-processing (3 source) 6647 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6648 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6649 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6650 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6651 */ 6652 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6653 { 6654 int mos = extract32(insn, 29, 3); 6655 int type = extract32(insn, 22, 2); 6656 int rd = extract32(insn, 0, 5); 6657 int rn = extract32(insn, 5, 5); 6658 int ra = extract32(insn, 10, 5); 6659 int rm = extract32(insn, 16, 5); 6660 bool o0 = extract32(insn, 15, 1); 6661 bool o1 = extract32(insn, 21, 1); 6662 6663 if (mos) { 6664 unallocated_encoding(s); 6665 return; 6666 } 6667 6668 switch (type) { 6669 case 0: 6670 if (!fp_access_check(s)) { 6671 return; 6672 } 6673 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6674 break; 6675 case 1: 6676 if (!fp_access_check(s)) { 6677 return; 6678 } 6679 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6680 break; 6681 case 3: 6682 if (!dc_isar_feature(aa64_fp16, s)) { 6683 unallocated_encoding(s); 6684 return; 6685 } 6686 if (!fp_access_check(s)) { 6687 return; 6688 } 6689 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6690 break; 6691 default: 6692 unallocated_encoding(s); 6693 } 6694 } 6695 6696 /* Floating point immediate 6697 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6698 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6699 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6700 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6701 */ 6702 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6703 { 6704 int rd = extract32(insn, 0, 5); 6705 int imm5 = extract32(insn, 5, 5); 6706 int imm8 = extract32(insn, 13, 8); 6707 int type = extract32(insn, 22, 2); 6708 int mos = extract32(insn, 29, 3); 6709 uint64_t imm; 6710 MemOp sz; 6711 6712 if (mos || imm5) { 6713 unallocated_encoding(s); 6714 return; 6715 } 6716 6717 switch (type) { 6718 case 0: 6719 sz = MO_32; 6720 break; 6721 case 1: 6722 sz = MO_64; 6723 break; 6724 case 3: 6725 sz = MO_16; 6726 if (dc_isar_feature(aa64_fp16, s)) { 6727 break; 6728 } 6729 /* fallthru */ 6730 default: 6731 unallocated_encoding(s); 6732 return; 6733 } 6734 6735 if (!fp_access_check(s)) { 6736 return; 6737 } 6738 6739 imm = vfp_expand_imm(sz, imm8); 6740 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6741 } 6742 6743 /* Handle floating point <=> fixed point conversions. Note that we can 6744 * also deal with fp <=> integer conversions as a special case (scale == 64) 6745 * OPTME: consider handling that special case specially or at least skipping 6746 * the call to scalbn in the helpers for zero shifts. 6747 */ 6748 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6749 bool itof, int rmode, int scale, int sf, int type) 6750 { 6751 bool is_signed = !(opcode & 1); 6752 TCGv_ptr tcg_fpstatus; 6753 TCGv_i32 tcg_shift, tcg_single; 6754 TCGv_i64 tcg_double; 6755 6756 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6757 6758 tcg_shift = tcg_constant_i32(64 - scale); 6759 6760 if (itof) { 6761 TCGv_i64 tcg_int = cpu_reg(s, rn); 6762 if (!sf) { 6763 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6764 6765 if (is_signed) { 6766 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6767 } else { 6768 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6769 } 6770 6771 tcg_int = tcg_extend; 6772 } 6773 6774 switch (type) { 6775 case 1: /* float64 */ 6776 tcg_double = tcg_temp_new_i64(); 6777 if (is_signed) { 6778 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6779 tcg_shift, tcg_fpstatus); 6780 } else { 6781 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6782 tcg_shift, tcg_fpstatus); 6783 } 6784 write_fp_dreg(s, rd, tcg_double); 6785 break; 6786 6787 case 0: /* float32 */ 6788 tcg_single = tcg_temp_new_i32(); 6789 if (is_signed) { 6790 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6791 tcg_shift, tcg_fpstatus); 6792 } else { 6793 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6794 tcg_shift, tcg_fpstatus); 6795 } 6796 write_fp_sreg(s, rd, tcg_single); 6797 break; 6798 6799 case 3: /* float16 */ 6800 tcg_single = tcg_temp_new_i32(); 6801 if (is_signed) { 6802 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6803 tcg_shift, tcg_fpstatus); 6804 } else { 6805 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6806 tcg_shift, tcg_fpstatus); 6807 } 6808 write_fp_sreg(s, rd, tcg_single); 6809 break; 6810 6811 default: 6812 g_assert_not_reached(); 6813 } 6814 } else { 6815 TCGv_i64 tcg_int = cpu_reg(s, rd); 6816 TCGv_i32 tcg_rmode; 6817 6818 if (extract32(opcode, 2, 1)) { 6819 /* There are too many rounding modes to all fit into rmode, 6820 * so FCVTA[US] is a special case. 6821 */ 6822 rmode = FPROUNDING_TIEAWAY; 6823 } 6824 6825 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6826 6827 switch (type) { 6828 case 1: /* float64 */ 6829 tcg_double = read_fp_dreg(s, rn); 6830 if (is_signed) { 6831 if (!sf) { 6832 gen_helper_vfp_tosld(tcg_int, tcg_double, 6833 tcg_shift, tcg_fpstatus); 6834 } else { 6835 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6836 tcg_shift, tcg_fpstatus); 6837 } 6838 } else { 6839 if (!sf) { 6840 gen_helper_vfp_tould(tcg_int, tcg_double, 6841 tcg_shift, tcg_fpstatus); 6842 } else { 6843 gen_helper_vfp_touqd(tcg_int, tcg_double, 6844 tcg_shift, tcg_fpstatus); 6845 } 6846 } 6847 if (!sf) { 6848 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6849 } 6850 break; 6851 6852 case 0: /* float32 */ 6853 tcg_single = read_fp_sreg(s, rn); 6854 if (sf) { 6855 if (is_signed) { 6856 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6857 tcg_shift, tcg_fpstatus); 6858 } else { 6859 gen_helper_vfp_touqs(tcg_int, tcg_single, 6860 tcg_shift, tcg_fpstatus); 6861 } 6862 } else { 6863 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6864 if (is_signed) { 6865 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6866 tcg_shift, tcg_fpstatus); 6867 } else { 6868 gen_helper_vfp_touls(tcg_dest, tcg_single, 6869 tcg_shift, tcg_fpstatus); 6870 } 6871 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6872 } 6873 break; 6874 6875 case 3: /* float16 */ 6876 tcg_single = read_fp_sreg(s, rn); 6877 if (sf) { 6878 if (is_signed) { 6879 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6880 tcg_shift, tcg_fpstatus); 6881 } else { 6882 gen_helper_vfp_touqh(tcg_int, tcg_single, 6883 tcg_shift, tcg_fpstatus); 6884 } 6885 } else { 6886 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6887 if (is_signed) { 6888 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6889 tcg_shift, tcg_fpstatus); 6890 } else { 6891 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6892 tcg_shift, tcg_fpstatus); 6893 } 6894 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6895 } 6896 break; 6897 6898 default: 6899 g_assert_not_reached(); 6900 } 6901 6902 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6903 } 6904 } 6905 6906 /* Floating point <-> fixed point conversions 6907 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6908 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6909 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6910 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6911 */ 6912 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6913 { 6914 int rd = extract32(insn, 0, 5); 6915 int rn = extract32(insn, 5, 5); 6916 int scale = extract32(insn, 10, 6); 6917 int opcode = extract32(insn, 16, 3); 6918 int rmode = extract32(insn, 19, 2); 6919 int type = extract32(insn, 22, 2); 6920 bool sbit = extract32(insn, 29, 1); 6921 bool sf = extract32(insn, 31, 1); 6922 bool itof; 6923 6924 if (sbit || (!sf && scale < 32)) { 6925 unallocated_encoding(s); 6926 return; 6927 } 6928 6929 switch (type) { 6930 case 0: /* float32 */ 6931 case 1: /* float64 */ 6932 break; 6933 case 3: /* float16 */ 6934 if (dc_isar_feature(aa64_fp16, s)) { 6935 break; 6936 } 6937 /* fallthru */ 6938 default: 6939 unallocated_encoding(s); 6940 return; 6941 } 6942 6943 switch ((rmode << 3) | opcode) { 6944 case 0x2: /* SCVTF */ 6945 case 0x3: /* UCVTF */ 6946 itof = true; 6947 break; 6948 case 0x18: /* FCVTZS */ 6949 case 0x19: /* FCVTZU */ 6950 itof = false; 6951 break; 6952 default: 6953 unallocated_encoding(s); 6954 return; 6955 } 6956 6957 if (!fp_access_check(s)) { 6958 return; 6959 } 6960 6961 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6962 } 6963 6964 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6965 { 6966 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6967 * without conversion. 6968 */ 6969 6970 if (itof) { 6971 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6972 TCGv_i64 tmp; 6973 6974 switch (type) { 6975 case 0: 6976 /* 32 bit */ 6977 tmp = tcg_temp_new_i64(); 6978 tcg_gen_ext32u_i64(tmp, tcg_rn); 6979 write_fp_dreg(s, rd, tmp); 6980 break; 6981 case 1: 6982 /* 64 bit */ 6983 write_fp_dreg(s, rd, tcg_rn); 6984 break; 6985 case 2: 6986 /* 64 bit to top half. */ 6987 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6988 clear_vec_high(s, true, rd); 6989 break; 6990 case 3: 6991 /* 16 bit */ 6992 tmp = tcg_temp_new_i64(); 6993 tcg_gen_ext16u_i64(tmp, tcg_rn); 6994 write_fp_dreg(s, rd, tmp); 6995 break; 6996 default: 6997 g_assert_not_reached(); 6998 } 6999 } else { 7000 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7001 7002 switch (type) { 7003 case 0: 7004 /* 32 bit */ 7005 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7006 break; 7007 case 1: 7008 /* 64 bit */ 7009 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7010 break; 7011 case 2: 7012 /* 64 bits from top half */ 7013 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7014 break; 7015 case 3: 7016 /* 16 bit */ 7017 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7018 break; 7019 default: 7020 g_assert_not_reached(); 7021 } 7022 } 7023 } 7024 7025 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7026 { 7027 TCGv_i64 t = read_fp_dreg(s, rn); 7028 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7029 7030 gen_helper_fjcvtzs(t, t, fpstatus); 7031 7032 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7033 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7034 tcg_gen_movi_i32(cpu_CF, 0); 7035 tcg_gen_movi_i32(cpu_NF, 0); 7036 tcg_gen_movi_i32(cpu_VF, 0); 7037 } 7038 7039 /* Floating point <-> integer conversions 7040 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7041 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7042 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7043 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7044 */ 7045 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7046 { 7047 int rd = extract32(insn, 0, 5); 7048 int rn = extract32(insn, 5, 5); 7049 int opcode = extract32(insn, 16, 3); 7050 int rmode = extract32(insn, 19, 2); 7051 int type = extract32(insn, 22, 2); 7052 bool sbit = extract32(insn, 29, 1); 7053 bool sf = extract32(insn, 31, 1); 7054 bool itof = false; 7055 7056 if (sbit) { 7057 goto do_unallocated; 7058 } 7059 7060 switch (opcode) { 7061 case 2: /* SCVTF */ 7062 case 3: /* UCVTF */ 7063 itof = true; 7064 /* fallthru */ 7065 case 4: /* FCVTAS */ 7066 case 5: /* FCVTAU */ 7067 if (rmode != 0) { 7068 goto do_unallocated; 7069 } 7070 /* fallthru */ 7071 case 0: /* FCVT[NPMZ]S */ 7072 case 1: /* FCVT[NPMZ]U */ 7073 switch (type) { 7074 case 0: /* float32 */ 7075 case 1: /* float64 */ 7076 break; 7077 case 3: /* float16 */ 7078 if (!dc_isar_feature(aa64_fp16, s)) { 7079 goto do_unallocated; 7080 } 7081 break; 7082 default: 7083 goto do_unallocated; 7084 } 7085 if (!fp_access_check(s)) { 7086 return; 7087 } 7088 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7089 break; 7090 7091 default: 7092 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7093 case 0b01100110: /* FMOV half <-> 32-bit int */ 7094 case 0b01100111: 7095 case 0b11100110: /* FMOV half <-> 64-bit int */ 7096 case 0b11100111: 7097 if (!dc_isar_feature(aa64_fp16, s)) { 7098 goto do_unallocated; 7099 } 7100 /* fallthru */ 7101 case 0b00000110: /* FMOV 32-bit */ 7102 case 0b00000111: 7103 case 0b10100110: /* FMOV 64-bit */ 7104 case 0b10100111: 7105 case 0b11001110: /* FMOV top half of 128-bit */ 7106 case 0b11001111: 7107 if (!fp_access_check(s)) { 7108 return; 7109 } 7110 itof = opcode & 1; 7111 handle_fmov(s, rd, rn, type, itof); 7112 break; 7113 7114 case 0b00111110: /* FJCVTZS */ 7115 if (!dc_isar_feature(aa64_jscvt, s)) { 7116 goto do_unallocated; 7117 } else if (fp_access_check(s)) { 7118 handle_fjcvtzs(s, rd, rn); 7119 } 7120 break; 7121 7122 default: 7123 do_unallocated: 7124 unallocated_encoding(s); 7125 return; 7126 } 7127 break; 7128 } 7129 } 7130 7131 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7132 * 31 30 29 28 25 24 0 7133 * +---+---+---+---------+-----------------------------+ 7134 * | | 0 | | 1 1 1 1 | | 7135 * +---+---+---+---------+-----------------------------+ 7136 */ 7137 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7138 { 7139 if (extract32(insn, 24, 1)) { 7140 /* Floating point data-processing (3 source) */ 7141 disas_fp_3src(s, insn); 7142 } else if (extract32(insn, 21, 1) == 0) { 7143 /* Floating point to fixed point conversions */ 7144 disas_fp_fixed_conv(s, insn); 7145 } else { 7146 switch (extract32(insn, 10, 2)) { 7147 case 1: 7148 /* Floating point conditional compare */ 7149 disas_fp_ccomp(s, insn); 7150 break; 7151 case 2: 7152 /* Floating point data-processing (2 source) */ 7153 disas_fp_2src(s, insn); 7154 break; 7155 case 3: 7156 /* Floating point conditional select */ 7157 disas_fp_csel(s, insn); 7158 break; 7159 case 0: 7160 switch (ctz32(extract32(insn, 12, 4))) { 7161 case 0: /* [15:12] == xxx1 */ 7162 /* Floating point immediate */ 7163 disas_fp_imm(s, insn); 7164 break; 7165 case 1: /* [15:12] == xx10 */ 7166 /* Floating point compare */ 7167 disas_fp_compare(s, insn); 7168 break; 7169 case 2: /* [15:12] == x100 */ 7170 /* Floating point data-processing (1 source) */ 7171 disas_fp_1src(s, insn); 7172 break; 7173 case 3: /* [15:12] == 1000 */ 7174 unallocated_encoding(s); 7175 break; 7176 default: /* [15:12] == 0000 */ 7177 /* Floating point <-> integer conversions */ 7178 disas_fp_int_conv(s, insn); 7179 break; 7180 } 7181 break; 7182 } 7183 } 7184 } 7185 7186 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7187 int pos) 7188 { 7189 /* Extract 64 bits from the middle of two concatenated 64 bit 7190 * vector register slices left:right. The extracted bits start 7191 * at 'pos' bits into the right (least significant) side. 7192 * We return the result in tcg_right, and guarantee not to 7193 * trash tcg_left. 7194 */ 7195 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7196 assert(pos > 0 && pos < 64); 7197 7198 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7199 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7200 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7201 } 7202 7203 /* EXT 7204 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7205 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7206 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7207 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7208 */ 7209 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7210 { 7211 int is_q = extract32(insn, 30, 1); 7212 int op2 = extract32(insn, 22, 2); 7213 int imm4 = extract32(insn, 11, 4); 7214 int rm = extract32(insn, 16, 5); 7215 int rn = extract32(insn, 5, 5); 7216 int rd = extract32(insn, 0, 5); 7217 int pos = imm4 << 3; 7218 TCGv_i64 tcg_resl, tcg_resh; 7219 7220 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7221 unallocated_encoding(s); 7222 return; 7223 } 7224 7225 if (!fp_access_check(s)) { 7226 return; 7227 } 7228 7229 tcg_resh = tcg_temp_new_i64(); 7230 tcg_resl = tcg_temp_new_i64(); 7231 7232 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7233 * either extracting 128 bits from a 128:128 concatenation, or 7234 * extracting 64 bits from a 64:64 concatenation. 7235 */ 7236 if (!is_q) { 7237 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7238 if (pos != 0) { 7239 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7240 do_ext64(s, tcg_resh, tcg_resl, pos); 7241 } 7242 } else { 7243 TCGv_i64 tcg_hh; 7244 typedef struct { 7245 int reg; 7246 int elt; 7247 } EltPosns; 7248 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7249 EltPosns *elt = eltposns; 7250 7251 if (pos >= 64) { 7252 elt++; 7253 pos -= 64; 7254 } 7255 7256 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7257 elt++; 7258 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7259 elt++; 7260 if (pos != 0) { 7261 do_ext64(s, tcg_resh, tcg_resl, pos); 7262 tcg_hh = tcg_temp_new_i64(); 7263 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7264 do_ext64(s, tcg_hh, tcg_resh, pos); 7265 } 7266 } 7267 7268 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7269 if (is_q) { 7270 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7271 } 7272 clear_vec_high(s, is_q, rd); 7273 } 7274 7275 /* TBL/TBX 7276 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7277 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7278 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7279 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7280 */ 7281 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7282 { 7283 int op2 = extract32(insn, 22, 2); 7284 int is_q = extract32(insn, 30, 1); 7285 int rm = extract32(insn, 16, 5); 7286 int rn = extract32(insn, 5, 5); 7287 int rd = extract32(insn, 0, 5); 7288 int is_tbx = extract32(insn, 12, 1); 7289 int len = (extract32(insn, 13, 2) + 1) * 16; 7290 7291 if (op2 != 0) { 7292 unallocated_encoding(s); 7293 return; 7294 } 7295 7296 if (!fp_access_check(s)) { 7297 return; 7298 } 7299 7300 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7301 vec_full_reg_offset(s, rm), cpu_env, 7302 is_q ? 16 : 8, vec_full_reg_size(s), 7303 (len << 6) | (is_tbx << 5) | rn, 7304 gen_helper_simd_tblx); 7305 } 7306 7307 /* ZIP/UZP/TRN 7308 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7309 * +---+---+-------------+------+---+------+---+------------------+------+ 7310 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7311 * +---+---+-------------+------+---+------+---+------------------+------+ 7312 */ 7313 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7314 { 7315 int rd = extract32(insn, 0, 5); 7316 int rn = extract32(insn, 5, 5); 7317 int rm = extract32(insn, 16, 5); 7318 int size = extract32(insn, 22, 2); 7319 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7320 * bit 2 indicates 1 vs 2 variant of the insn. 7321 */ 7322 int opcode = extract32(insn, 12, 2); 7323 bool part = extract32(insn, 14, 1); 7324 bool is_q = extract32(insn, 30, 1); 7325 int esize = 8 << size; 7326 int i; 7327 int datasize = is_q ? 128 : 64; 7328 int elements = datasize / esize; 7329 TCGv_i64 tcg_res[2], tcg_ele; 7330 7331 if (opcode == 0 || (size == 3 && !is_q)) { 7332 unallocated_encoding(s); 7333 return; 7334 } 7335 7336 if (!fp_access_check(s)) { 7337 return; 7338 } 7339 7340 tcg_res[0] = tcg_temp_new_i64(); 7341 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7342 tcg_ele = tcg_temp_new_i64(); 7343 7344 for (i = 0; i < elements; i++) { 7345 int o, w; 7346 7347 switch (opcode) { 7348 case 1: /* UZP1/2 */ 7349 { 7350 int midpoint = elements / 2; 7351 if (i < midpoint) { 7352 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7353 } else { 7354 read_vec_element(s, tcg_ele, rm, 7355 2 * (i - midpoint) + part, size); 7356 } 7357 break; 7358 } 7359 case 2: /* TRN1/2 */ 7360 if (i & 1) { 7361 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7362 } else { 7363 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7364 } 7365 break; 7366 case 3: /* ZIP1/2 */ 7367 { 7368 int base = part * elements / 2; 7369 if (i & 1) { 7370 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7371 } else { 7372 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7373 } 7374 break; 7375 } 7376 default: 7377 g_assert_not_reached(); 7378 } 7379 7380 w = (i * esize) / 64; 7381 o = (i * esize) % 64; 7382 if (o == 0) { 7383 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7384 } else { 7385 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7386 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7387 } 7388 } 7389 7390 for (i = 0; i <= is_q; ++i) { 7391 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7392 } 7393 clear_vec_high(s, is_q, rd); 7394 } 7395 7396 /* 7397 * do_reduction_op helper 7398 * 7399 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7400 * important for correct NaN propagation that we do these 7401 * operations in exactly the order specified by the pseudocode. 7402 * 7403 * This is a recursive function, TCG temps should be freed by the 7404 * calling function once it is done with the values. 7405 */ 7406 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7407 int esize, int size, int vmap, TCGv_ptr fpst) 7408 { 7409 if (esize == size) { 7410 int element; 7411 MemOp msize = esize == 16 ? MO_16 : MO_32; 7412 TCGv_i32 tcg_elem; 7413 7414 /* We should have one register left here */ 7415 assert(ctpop8(vmap) == 1); 7416 element = ctz32(vmap); 7417 assert(element < 8); 7418 7419 tcg_elem = tcg_temp_new_i32(); 7420 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7421 return tcg_elem; 7422 } else { 7423 int bits = size / 2; 7424 int shift = ctpop8(vmap) / 2; 7425 int vmap_lo = (vmap >> shift) & vmap; 7426 int vmap_hi = (vmap & ~vmap_lo); 7427 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7428 7429 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7430 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7431 tcg_res = tcg_temp_new_i32(); 7432 7433 switch (fpopcode) { 7434 case 0x0c: /* fmaxnmv half-precision */ 7435 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7436 break; 7437 case 0x0f: /* fmaxv half-precision */ 7438 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7439 break; 7440 case 0x1c: /* fminnmv half-precision */ 7441 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7442 break; 7443 case 0x1f: /* fminv half-precision */ 7444 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7445 break; 7446 case 0x2c: /* fmaxnmv */ 7447 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7448 break; 7449 case 0x2f: /* fmaxv */ 7450 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7451 break; 7452 case 0x3c: /* fminnmv */ 7453 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7454 break; 7455 case 0x3f: /* fminv */ 7456 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7457 break; 7458 default: 7459 g_assert_not_reached(); 7460 } 7461 return tcg_res; 7462 } 7463 } 7464 7465 /* AdvSIMD across lanes 7466 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7467 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7468 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7469 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7470 */ 7471 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7472 { 7473 int rd = extract32(insn, 0, 5); 7474 int rn = extract32(insn, 5, 5); 7475 int size = extract32(insn, 22, 2); 7476 int opcode = extract32(insn, 12, 5); 7477 bool is_q = extract32(insn, 30, 1); 7478 bool is_u = extract32(insn, 29, 1); 7479 bool is_fp = false; 7480 bool is_min = false; 7481 int esize; 7482 int elements; 7483 int i; 7484 TCGv_i64 tcg_res, tcg_elt; 7485 7486 switch (opcode) { 7487 case 0x1b: /* ADDV */ 7488 if (is_u) { 7489 unallocated_encoding(s); 7490 return; 7491 } 7492 /* fall through */ 7493 case 0x3: /* SADDLV, UADDLV */ 7494 case 0xa: /* SMAXV, UMAXV */ 7495 case 0x1a: /* SMINV, UMINV */ 7496 if (size == 3 || (size == 2 && !is_q)) { 7497 unallocated_encoding(s); 7498 return; 7499 } 7500 break; 7501 case 0xc: /* FMAXNMV, FMINNMV */ 7502 case 0xf: /* FMAXV, FMINV */ 7503 /* Bit 1 of size field encodes min vs max and the actual size 7504 * depends on the encoding of the U bit. If not set (and FP16 7505 * enabled) then we do half-precision float instead of single 7506 * precision. 7507 */ 7508 is_min = extract32(size, 1, 1); 7509 is_fp = true; 7510 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7511 size = 1; 7512 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7513 unallocated_encoding(s); 7514 return; 7515 } else { 7516 size = 2; 7517 } 7518 break; 7519 default: 7520 unallocated_encoding(s); 7521 return; 7522 } 7523 7524 if (!fp_access_check(s)) { 7525 return; 7526 } 7527 7528 esize = 8 << size; 7529 elements = (is_q ? 128 : 64) / esize; 7530 7531 tcg_res = tcg_temp_new_i64(); 7532 tcg_elt = tcg_temp_new_i64(); 7533 7534 /* These instructions operate across all lanes of a vector 7535 * to produce a single result. We can guarantee that a 64 7536 * bit intermediate is sufficient: 7537 * + for [US]ADDLV the maximum element size is 32 bits, and 7538 * the result type is 64 bits 7539 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7540 * same as the element size, which is 32 bits at most 7541 * For the integer operations we can choose to work at 64 7542 * or 32 bits and truncate at the end; for simplicity 7543 * we use 64 bits always. The floating point 7544 * ops do require 32 bit intermediates, though. 7545 */ 7546 if (!is_fp) { 7547 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7548 7549 for (i = 1; i < elements; i++) { 7550 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7551 7552 switch (opcode) { 7553 case 0x03: /* SADDLV / UADDLV */ 7554 case 0x1b: /* ADDV */ 7555 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7556 break; 7557 case 0x0a: /* SMAXV / UMAXV */ 7558 if (is_u) { 7559 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7560 } else { 7561 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7562 } 7563 break; 7564 case 0x1a: /* SMINV / UMINV */ 7565 if (is_u) { 7566 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7567 } else { 7568 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7569 } 7570 break; 7571 default: 7572 g_assert_not_reached(); 7573 } 7574 7575 } 7576 } else { 7577 /* Floating point vector reduction ops which work across 32 7578 * bit (single) or 16 bit (half-precision) intermediates. 7579 * Note that correct NaN propagation requires that we do these 7580 * operations in exactly the order specified by the pseudocode. 7581 */ 7582 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7583 int fpopcode = opcode | is_min << 4 | is_u << 5; 7584 int vmap = (1 << elements) - 1; 7585 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7586 (is_q ? 128 : 64), vmap, fpst); 7587 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7588 } 7589 7590 /* Now truncate the result to the width required for the final output */ 7591 if (opcode == 0x03) { 7592 /* SADDLV, UADDLV: result is 2*esize */ 7593 size++; 7594 } 7595 7596 switch (size) { 7597 case 0: 7598 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7599 break; 7600 case 1: 7601 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7602 break; 7603 case 2: 7604 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7605 break; 7606 case 3: 7607 break; 7608 default: 7609 g_assert_not_reached(); 7610 } 7611 7612 write_fp_dreg(s, rd, tcg_res); 7613 } 7614 7615 /* DUP (Element, Vector) 7616 * 7617 * 31 30 29 21 20 16 15 10 9 5 4 0 7618 * +---+---+-------------------+--------+-------------+------+------+ 7619 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7620 * +---+---+-------------------+--------+-------------+------+------+ 7621 * 7622 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7623 */ 7624 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7625 int imm5) 7626 { 7627 int size = ctz32(imm5); 7628 int index; 7629 7630 if (size > 3 || (size == 3 && !is_q)) { 7631 unallocated_encoding(s); 7632 return; 7633 } 7634 7635 if (!fp_access_check(s)) { 7636 return; 7637 } 7638 7639 index = imm5 >> (size + 1); 7640 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7641 vec_reg_offset(s, rn, index, size), 7642 is_q ? 16 : 8, vec_full_reg_size(s)); 7643 } 7644 7645 /* DUP (element, scalar) 7646 * 31 21 20 16 15 10 9 5 4 0 7647 * +-----------------------+--------+-------------+------+------+ 7648 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7649 * +-----------------------+--------+-------------+------+------+ 7650 */ 7651 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7652 int imm5) 7653 { 7654 int size = ctz32(imm5); 7655 int index; 7656 TCGv_i64 tmp; 7657 7658 if (size > 3) { 7659 unallocated_encoding(s); 7660 return; 7661 } 7662 7663 if (!fp_access_check(s)) { 7664 return; 7665 } 7666 7667 index = imm5 >> (size + 1); 7668 7669 /* This instruction just extracts the specified element and 7670 * zero-extends it into the bottom of the destination register. 7671 */ 7672 tmp = tcg_temp_new_i64(); 7673 read_vec_element(s, tmp, rn, index, size); 7674 write_fp_dreg(s, rd, tmp); 7675 } 7676 7677 /* DUP (General) 7678 * 7679 * 31 30 29 21 20 16 15 10 9 5 4 0 7680 * +---+---+-------------------+--------+-------------+------+------+ 7681 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7682 * +---+---+-------------------+--------+-------------+------+------+ 7683 * 7684 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7685 */ 7686 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7687 int imm5) 7688 { 7689 int size = ctz32(imm5); 7690 uint32_t dofs, oprsz, maxsz; 7691 7692 if (size > 3 || ((size == 3) && !is_q)) { 7693 unallocated_encoding(s); 7694 return; 7695 } 7696 7697 if (!fp_access_check(s)) { 7698 return; 7699 } 7700 7701 dofs = vec_full_reg_offset(s, rd); 7702 oprsz = is_q ? 16 : 8; 7703 maxsz = vec_full_reg_size(s); 7704 7705 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7706 } 7707 7708 /* INS (Element) 7709 * 7710 * 31 21 20 16 15 14 11 10 9 5 4 0 7711 * +-----------------------+--------+------------+---+------+------+ 7712 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7713 * +-----------------------+--------+------------+---+------+------+ 7714 * 7715 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7716 * index: encoded in imm5<4:size+1> 7717 */ 7718 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7719 int imm4, int imm5) 7720 { 7721 int size = ctz32(imm5); 7722 int src_index, dst_index; 7723 TCGv_i64 tmp; 7724 7725 if (size > 3) { 7726 unallocated_encoding(s); 7727 return; 7728 } 7729 7730 if (!fp_access_check(s)) { 7731 return; 7732 } 7733 7734 dst_index = extract32(imm5, 1+size, 5); 7735 src_index = extract32(imm4, size, 4); 7736 7737 tmp = tcg_temp_new_i64(); 7738 7739 read_vec_element(s, tmp, rn, src_index, size); 7740 write_vec_element(s, tmp, rd, dst_index, size); 7741 7742 /* INS is considered a 128-bit write for SVE. */ 7743 clear_vec_high(s, true, rd); 7744 } 7745 7746 7747 /* INS (General) 7748 * 7749 * 31 21 20 16 15 10 9 5 4 0 7750 * +-----------------------+--------+-------------+------+------+ 7751 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7752 * +-----------------------+--------+-------------+------+------+ 7753 * 7754 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7755 * index: encoded in imm5<4:size+1> 7756 */ 7757 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7758 { 7759 int size = ctz32(imm5); 7760 int idx; 7761 7762 if (size > 3) { 7763 unallocated_encoding(s); 7764 return; 7765 } 7766 7767 if (!fp_access_check(s)) { 7768 return; 7769 } 7770 7771 idx = extract32(imm5, 1 + size, 4 - size); 7772 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7773 7774 /* INS is considered a 128-bit write for SVE. */ 7775 clear_vec_high(s, true, rd); 7776 } 7777 7778 /* 7779 * UMOV (General) 7780 * SMOV (General) 7781 * 7782 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7783 * +---+---+-------------------+--------+-------------+------+------+ 7784 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7785 * +---+---+-------------------+--------+-------------+------+------+ 7786 * 7787 * U: unsigned when set 7788 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7789 */ 7790 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7791 int rn, int rd, int imm5) 7792 { 7793 int size = ctz32(imm5); 7794 int element; 7795 TCGv_i64 tcg_rd; 7796 7797 /* Check for UnallocatedEncodings */ 7798 if (is_signed) { 7799 if (size > 2 || (size == 2 && !is_q)) { 7800 unallocated_encoding(s); 7801 return; 7802 } 7803 } else { 7804 if (size > 3 7805 || (size < 3 && is_q) 7806 || (size == 3 && !is_q)) { 7807 unallocated_encoding(s); 7808 return; 7809 } 7810 } 7811 7812 if (!fp_access_check(s)) { 7813 return; 7814 } 7815 7816 element = extract32(imm5, 1+size, 4); 7817 7818 tcg_rd = cpu_reg(s, rd); 7819 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7820 if (is_signed && !is_q) { 7821 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7822 } 7823 } 7824 7825 /* AdvSIMD copy 7826 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7827 * +---+---+----+-----------------+------+---+------+---+------+------+ 7828 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7829 * +---+---+----+-----------------+------+---+------+---+------+------+ 7830 */ 7831 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7832 { 7833 int rd = extract32(insn, 0, 5); 7834 int rn = extract32(insn, 5, 5); 7835 int imm4 = extract32(insn, 11, 4); 7836 int op = extract32(insn, 29, 1); 7837 int is_q = extract32(insn, 30, 1); 7838 int imm5 = extract32(insn, 16, 5); 7839 7840 if (op) { 7841 if (is_q) { 7842 /* INS (element) */ 7843 handle_simd_inse(s, rd, rn, imm4, imm5); 7844 } else { 7845 unallocated_encoding(s); 7846 } 7847 } else { 7848 switch (imm4) { 7849 case 0: 7850 /* DUP (element - vector) */ 7851 handle_simd_dupe(s, is_q, rd, rn, imm5); 7852 break; 7853 case 1: 7854 /* DUP (general) */ 7855 handle_simd_dupg(s, is_q, rd, rn, imm5); 7856 break; 7857 case 3: 7858 if (is_q) { 7859 /* INS (general) */ 7860 handle_simd_insg(s, rd, rn, imm5); 7861 } else { 7862 unallocated_encoding(s); 7863 } 7864 break; 7865 case 5: 7866 case 7: 7867 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7868 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7869 break; 7870 default: 7871 unallocated_encoding(s); 7872 break; 7873 } 7874 } 7875 } 7876 7877 /* AdvSIMD modified immediate 7878 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7879 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7880 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7881 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7882 * 7883 * There are a number of operations that can be carried out here: 7884 * MOVI - move (shifted) imm into register 7885 * MVNI - move inverted (shifted) imm into register 7886 * ORR - bitwise OR of (shifted) imm with register 7887 * BIC - bitwise clear of (shifted) imm with register 7888 * With ARMv8.2 we also have: 7889 * FMOV half-precision 7890 */ 7891 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7892 { 7893 int rd = extract32(insn, 0, 5); 7894 int cmode = extract32(insn, 12, 4); 7895 int o2 = extract32(insn, 11, 1); 7896 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7897 bool is_neg = extract32(insn, 29, 1); 7898 bool is_q = extract32(insn, 30, 1); 7899 uint64_t imm = 0; 7900 7901 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7902 /* Check for FMOV (vector, immediate) - half-precision */ 7903 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7904 unallocated_encoding(s); 7905 return; 7906 } 7907 } 7908 7909 if (!fp_access_check(s)) { 7910 return; 7911 } 7912 7913 if (cmode == 15 && o2 && !is_neg) { 7914 /* FMOV (vector, immediate) - half-precision */ 7915 imm = vfp_expand_imm(MO_16, abcdefgh); 7916 /* now duplicate across the lanes */ 7917 imm = dup_const(MO_16, imm); 7918 } else { 7919 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7920 } 7921 7922 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7923 /* MOVI or MVNI, with MVNI negation handled above. */ 7924 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7925 vec_full_reg_size(s), imm); 7926 } else { 7927 /* ORR or BIC, with BIC negation to AND handled above. */ 7928 if (is_neg) { 7929 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7930 } else { 7931 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7932 } 7933 } 7934 } 7935 7936 /* AdvSIMD scalar copy 7937 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7938 * +-----+----+-----------------+------+---+------+---+------+------+ 7939 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7940 * +-----+----+-----------------+------+---+------+---+------+------+ 7941 */ 7942 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7943 { 7944 int rd = extract32(insn, 0, 5); 7945 int rn = extract32(insn, 5, 5); 7946 int imm4 = extract32(insn, 11, 4); 7947 int imm5 = extract32(insn, 16, 5); 7948 int op = extract32(insn, 29, 1); 7949 7950 if (op != 0 || imm4 != 0) { 7951 unallocated_encoding(s); 7952 return; 7953 } 7954 7955 /* DUP (element, scalar) */ 7956 handle_simd_dupes(s, rd, rn, imm5); 7957 } 7958 7959 /* AdvSIMD scalar pairwise 7960 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7961 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7962 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7963 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7964 */ 7965 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7966 { 7967 int u = extract32(insn, 29, 1); 7968 int size = extract32(insn, 22, 2); 7969 int opcode = extract32(insn, 12, 5); 7970 int rn = extract32(insn, 5, 5); 7971 int rd = extract32(insn, 0, 5); 7972 TCGv_ptr fpst; 7973 7974 /* For some ops (the FP ones), size[1] is part of the encoding. 7975 * For ADDP strictly it is not but size[1] is always 1 for valid 7976 * encodings. 7977 */ 7978 opcode |= (extract32(size, 1, 1) << 5); 7979 7980 switch (opcode) { 7981 case 0x3b: /* ADDP */ 7982 if (u || size != 3) { 7983 unallocated_encoding(s); 7984 return; 7985 } 7986 if (!fp_access_check(s)) { 7987 return; 7988 } 7989 7990 fpst = NULL; 7991 break; 7992 case 0xc: /* FMAXNMP */ 7993 case 0xd: /* FADDP */ 7994 case 0xf: /* FMAXP */ 7995 case 0x2c: /* FMINNMP */ 7996 case 0x2f: /* FMINP */ 7997 /* FP op, size[0] is 32 or 64 bit*/ 7998 if (!u) { 7999 if (!dc_isar_feature(aa64_fp16, s)) { 8000 unallocated_encoding(s); 8001 return; 8002 } else { 8003 size = MO_16; 8004 } 8005 } else { 8006 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8007 } 8008 8009 if (!fp_access_check(s)) { 8010 return; 8011 } 8012 8013 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8014 break; 8015 default: 8016 unallocated_encoding(s); 8017 return; 8018 } 8019 8020 if (size == MO_64) { 8021 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8022 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8023 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8024 8025 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8026 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8027 8028 switch (opcode) { 8029 case 0x3b: /* ADDP */ 8030 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8031 break; 8032 case 0xc: /* FMAXNMP */ 8033 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8034 break; 8035 case 0xd: /* FADDP */ 8036 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8037 break; 8038 case 0xf: /* FMAXP */ 8039 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8040 break; 8041 case 0x2c: /* FMINNMP */ 8042 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8043 break; 8044 case 0x2f: /* FMINP */ 8045 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8046 break; 8047 default: 8048 g_assert_not_reached(); 8049 } 8050 8051 write_fp_dreg(s, rd, tcg_res); 8052 } else { 8053 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8054 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8055 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8056 8057 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8058 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8059 8060 if (size == MO_16) { 8061 switch (opcode) { 8062 case 0xc: /* FMAXNMP */ 8063 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8064 break; 8065 case 0xd: /* FADDP */ 8066 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8067 break; 8068 case 0xf: /* FMAXP */ 8069 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8070 break; 8071 case 0x2c: /* FMINNMP */ 8072 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8073 break; 8074 case 0x2f: /* FMINP */ 8075 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8076 break; 8077 default: 8078 g_assert_not_reached(); 8079 } 8080 } else { 8081 switch (opcode) { 8082 case 0xc: /* FMAXNMP */ 8083 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8084 break; 8085 case 0xd: /* FADDP */ 8086 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8087 break; 8088 case 0xf: /* FMAXP */ 8089 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8090 break; 8091 case 0x2c: /* FMINNMP */ 8092 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8093 break; 8094 case 0x2f: /* FMINP */ 8095 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8096 break; 8097 default: 8098 g_assert_not_reached(); 8099 } 8100 } 8101 8102 write_fp_sreg(s, rd, tcg_res); 8103 } 8104 } 8105 8106 /* 8107 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8108 * 8109 * This code is handles the common shifting code and is used by both 8110 * the vector and scalar code. 8111 */ 8112 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8113 TCGv_i64 tcg_rnd, bool accumulate, 8114 bool is_u, int size, int shift) 8115 { 8116 bool extended_result = false; 8117 bool round = tcg_rnd != NULL; 8118 int ext_lshift = 0; 8119 TCGv_i64 tcg_src_hi; 8120 8121 if (round && size == 3) { 8122 extended_result = true; 8123 ext_lshift = 64 - shift; 8124 tcg_src_hi = tcg_temp_new_i64(); 8125 } else if (shift == 64) { 8126 if (!accumulate && is_u) { 8127 /* result is zero */ 8128 tcg_gen_movi_i64(tcg_res, 0); 8129 return; 8130 } 8131 } 8132 8133 /* Deal with the rounding step */ 8134 if (round) { 8135 if (extended_result) { 8136 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8137 if (!is_u) { 8138 /* take care of sign extending tcg_res */ 8139 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8140 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8141 tcg_src, tcg_src_hi, 8142 tcg_rnd, tcg_zero); 8143 } else { 8144 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8145 tcg_src, tcg_zero, 8146 tcg_rnd, tcg_zero); 8147 } 8148 } else { 8149 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8150 } 8151 } 8152 8153 /* Now do the shift right */ 8154 if (round && extended_result) { 8155 /* extended case, >64 bit precision required */ 8156 if (ext_lshift == 0) { 8157 /* special case, only high bits matter */ 8158 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8159 } else { 8160 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8161 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8162 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8163 } 8164 } else { 8165 if (is_u) { 8166 if (shift == 64) { 8167 /* essentially shifting in 64 zeros */ 8168 tcg_gen_movi_i64(tcg_src, 0); 8169 } else { 8170 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8171 } 8172 } else { 8173 if (shift == 64) { 8174 /* effectively extending the sign-bit */ 8175 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8176 } else { 8177 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8178 } 8179 } 8180 } 8181 8182 if (accumulate) { 8183 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8184 } else { 8185 tcg_gen_mov_i64(tcg_res, tcg_src); 8186 } 8187 } 8188 8189 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8190 static void handle_scalar_simd_shri(DisasContext *s, 8191 bool is_u, int immh, int immb, 8192 int opcode, int rn, int rd) 8193 { 8194 const int size = 3; 8195 int immhb = immh << 3 | immb; 8196 int shift = 2 * (8 << size) - immhb; 8197 bool accumulate = false; 8198 bool round = false; 8199 bool insert = false; 8200 TCGv_i64 tcg_rn; 8201 TCGv_i64 tcg_rd; 8202 TCGv_i64 tcg_round; 8203 8204 if (!extract32(immh, 3, 1)) { 8205 unallocated_encoding(s); 8206 return; 8207 } 8208 8209 if (!fp_access_check(s)) { 8210 return; 8211 } 8212 8213 switch (opcode) { 8214 case 0x02: /* SSRA / USRA (accumulate) */ 8215 accumulate = true; 8216 break; 8217 case 0x04: /* SRSHR / URSHR (rounding) */ 8218 round = true; 8219 break; 8220 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8221 accumulate = round = true; 8222 break; 8223 case 0x08: /* SRI */ 8224 insert = true; 8225 break; 8226 } 8227 8228 if (round) { 8229 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8230 } else { 8231 tcg_round = NULL; 8232 } 8233 8234 tcg_rn = read_fp_dreg(s, rn); 8235 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8236 8237 if (insert) { 8238 /* shift count same as element size is valid but does nothing; 8239 * special case to avoid potential shift by 64. 8240 */ 8241 int esize = 8 << size; 8242 if (shift != esize) { 8243 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8244 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8245 } 8246 } else { 8247 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8248 accumulate, is_u, size, shift); 8249 } 8250 8251 write_fp_dreg(s, rd, tcg_rd); 8252 } 8253 8254 /* SHL/SLI - Scalar shift left */ 8255 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8256 int immh, int immb, int opcode, 8257 int rn, int rd) 8258 { 8259 int size = 32 - clz32(immh) - 1; 8260 int immhb = immh << 3 | immb; 8261 int shift = immhb - (8 << size); 8262 TCGv_i64 tcg_rn; 8263 TCGv_i64 tcg_rd; 8264 8265 if (!extract32(immh, 3, 1)) { 8266 unallocated_encoding(s); 8267 return; 8268 } 8269 8270 if (!fp_access_check(s)) { 8271 return; 8272 } 8273 8274 tcg_rn = read_fp_dreg(s, rn); 8275 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8276 8277 if (insert) { 8278 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8279 } else { 8280 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8281 } 8282 8283 write_fp_dreg(s, rd, tcg_rd); 8284 } 8285 8286 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8287 * (signed/unsigned) narrowing */ 8288 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8289 bool is_u_shift, bool is_u_narrow, 8290 int immh, int immb, int opcode, 8291 int rn, int rd) 8292 { 8293 int immhb = immh << 3 | immb; 8294 int size = 32 - clz32(immh) - 1; 8295 int esize = 8 << size; 8296 int shift = (2 * esize) - immhb; 8297 int elements = is_scalar ? 1 : (64 / esize); 8298 bool round = extract32(opcode, 0, 1); 8299 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8300 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8301 TCGv_i32 tcg_rd_narrowed; 8302 TCGv_i64 tcg_final; 8303 8304 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8305 { gen_helper_neon_narrow_sat_s8, 8306 gen_helper_neon_unarrow_sat8 }, 8307 { gen_helper_neon_narrow_sat_s16, 8308 gen_helper_neon_unarrow_sat16 }, 8309 { gen_helper_neon_narrow_sat_s32, 8310 gen_helper_neon_unarrow_sat32 }, 8311 { NULL, NULL }, 8312 }; 8313 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8314 gen_helper_neon_narrow_sat_u8, 8315 gen_helper_neon_narrow_sat_u16, 8316 gen_helper_neon_narrow_sat_u32, 8317 NULL 8318 }; 8319 NeonGenNarrowEnvFn *narrowfn; 8320 8321 int i; 8322 8323 assert(size < 4); 8324 8325 if (extract32(immh, 3, 1)) { 8326 unallocated_encoding(s); 8327 return; 8328 } 8329 8330 if (!fp_access_check(s)) { 8331 return; 8332 } 8333 8334 if (is_u_shift) { 8335 narrowfn = unsigned_narrow_fns[size]; 8336 } else { 8337 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8338 } 8339 8340 tcg_rn = tcg_temp_new_i64(); 8341 tcg_rd = tcg_temp_new_i64(); 8342 tcg_rd_narrowed = tcg_temp_new_i32(); 8343 tcg_final = tcg_temp_new_i64(); 8344 8345 if (round) { 8346 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8347 } else { 8348 tcg_round = NULL; 8349 } 8350 8351 for (i = 0; i < elements; i++) { 8352 read_vec_element(s, tcg_rn, rn, i, ldop); 8353 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8354 false, is_u_shift, size+1, shift); 8355 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8356 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8357 if (i == 0) { 8358 tcg_gen_mov_i64(tcg_final, tcg_rd); 8359 } else { 8360 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8361 } 8362 } 8363 8364 if (!is_q) { 8365 write_vec_element(s, tcg_final, rd, 0, MO_64); 8366 } else { 8367 write_vec_element(s, tcg_final, rd, 1, MO_64); 8368 } 8369 clear_vec_high(s, is_q, rd); 8370 } 8371 8372 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8373 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8374 bool src_unsigned, bool dst_unsigned, 8375 int immh, int immb, int rn, int rd) 8376 { 8377 int immhb = immh << 3 | immb; 8378 int size = 32 - clz32(immh) - 1; 8379 int shift = immhb - (8 << size); 8380 int pass; 8381 8382 assert(immh != 0); 8383 assert(!(scalar && is_q)); 8384 8385 if (!scalar) { 8386 if (!is_q && extract32(immh, 3, 1)) { 8387 unallocated_encoding(s); 8388 return; 8389 } 8390 8391 /* Since we use the variable-shift helpers we must 8392 * replicate the shift count into each element of 8393 * the tcg_shift value. 8394 */ 8395 switch (size) { 8396 case 0: 8397 shift |= shift << 8; 8398 /* fall through */ 8399 case 1: 8400 shift |= shift << 16; 8401 break; 8402 case 2: 8403 case 3: 8404 break; 8405 default: 8406 g_assert_not_reached(); 8407 } 8408 } 8409 8410 if (!fp_access_check(s)) { 8411 return; 8412 } 8413 8414 if (size == 3) { 8415 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8416 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8417 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8418 { NULL, gen_helper_neon_qshl_u64 }, 8419 }; 8420 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8421 int maxpass = is_q ? 2 : 1; 8422 8423 for (pass = 0; pass < maxpass; pass++) { 8424 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8425 8426 read_vec_element(s, tcg_op, rn, pass, MO_64); 8427 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8428 write_vec_element(s, tcg_op, rd, pass, MO_64); 8429 } 8430 clear_vec_high(s, is_q, rd); 8431 } else { 8432 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8433 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8434 { 8435 { gen_helper_neon_qshl_s8, 8436 gen_helper_neon_qshl_s16, 8437 gen_helper_neon_qshl_s32 }, 8438 { gen_helper_neon_qshlu_s8, 8439 gen_helper_neon_qshlu_s16, 8440 gen_helper_neon_qshlu_s32 } 8441 }, { 8442 { NULL, NULL, NULL }, 8443 { gen_helper_neon_qshl_u8, 8444 gen_helper_neon_qshl_u16, 8445 gen_helper_neon_qshl_u32 } 8446 } 8447 }; 8448 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8449 MemOp memop = scalar ? size : MO_32; 8450 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8451 8452 for (pass = 0; pass < maxpass; pass++) { 8453 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8454 8455 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8456 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8457 if (scalar) { 8458 switch (size) { 8459 case 0: 8460 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8461 break; 8462 case 1: 8463 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8464 break; 8465 case 2: 8466 break; 8467 default: 8468 g_assert_not_reached(); 8469 } 8470 write_fp_sreg(s, rd, tcg_op); 8471 } else { 8472 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8473 } 8474 } 8475 8476 if (!scalar) { 8477 clear_vec_high(s, is_q, rd); 8478 } 8479 } 8480 } 8481 8482 /* Common vector code for handling integer to FP conversion */ 8483 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8484 int elements, int is_signed, 8485 int fracbits, int size) 8486 { 8487 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8488 TCGv_i32 tcg_shift = NULL; 8489 8490 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8491 int pass; 8492 8493 if (fracbits || size == MO_64) { 8494 tcg_shift = tcg_constant_i32(fracbits); 8495 } 8496 8497 if (size == MO_64) { 8498 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8499 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8500 8501 for (pass = 0; pass < elements; pass++) { 8502 read_vec_element(s, tcg_int64, rn, pass, mop); 8503 8504 if (is_signed) { 8505 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8506 tcg_shift, tcg_fpst); 8507 } else { 8508 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8509 tcg_shift, tcg_fpst); 8510 } 8511 if (elements == 1) { 8512 write_fp_dreg(s, rd, tcg_double); 8513 } else { 8514 write_vec_element(s, tcg_double, rd, pass, MO_64); 8515 } 8516 } 8517 } else { 8518 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8519 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8520 8521 for (pass = 0; pass < elements; pass++) { 8522 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8523 8524 switch (size) { 8525 case MO_32: 8526 if (fracbits) { 8527 if (is_signed) { 8528 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8529 tcg_shift, tcg_fpst); 8530 } else { 8531 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8532 tcg_shift, tcg_fpst); 8533 } 8534 } else { 8535 if (is_signed) { 8536 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8537 } else { 8538 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8539 } 8540 } 8541 break; 8542 case MO_16: 8543 if (fracbits) { 8544 if (is_signed) { 8545 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8546 tcg_shift, tcg_fpst); 8547 } else { 8548 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8549 tcg_shift, tcg_fpst); 8550 } 8551 } else { 8552 if (is_signed) { 8553 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8554 } else { 8555 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8556 } 8557 } 8558 break; 8559 default: 8560 g_assert_not_reached(); 8561 } 8562 8563 if (elements == 1) { 8564 write_fp_sreg(s, rd, tcg_float); 8565 } else { 8566 write_vec_element_i32(s, tcg_float, rd, pass, size); 8567 } 8568 } 8569 } 8570 8571 clear_vec_high(s, elements << size == 16, rd); 8572 } 8573 8574 /* UCVTF/SCVTF - Integer to FP conversion */ 8575 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8576 bool is_q, bool is_u, 8577 int immh, int immb, int opcode, 8578 int rn, int rd) 8579 { 8580 int size, elements, fracbits; 8581 int immhb = immh << 3 | immb; 8582 8583 if (immh & 8) { 8584 size = MO_64; 8585 if (!is_scalar && !is_q) { 8586 unallocated_encoding(s); 8587 return; 8588 } 8589 } else if (immh & 4) { 8590 size = MO_32; 8591 } else if (immh & 2) { 8592 size = MO_16; 8593 if (!dc_isar_feature(aa64_fp16, s)) { 8594 unallocated_encoding(s); 8595 return; 8596 } 8597 } else { 8598 /* immh == 0 would be a failure of the decode logic */ 8599 g_assert(immh == 1); 8600 unallocated_encoding(s); 8601 return; 8602 } 8603 8604 if (is_scalar) { 8605 elements = 1; 8606 } else { 8607 elements = (8 << is_q) >> size; 8608 } 8609 fracbits = (16 << size) - immhb; 8610 8611 if (!fp_access_check(s)) { 8612 return; 8613 } 8614 8615 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8616 } 8617 8618 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8619 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8620 bool is_q, bool is_u, 8621 int immh, int immb, int rn, int rd) 8622 { 8623 int immhb = immh << 3 | immb; 8624 int pass, size, fracbits; 8625 TCGv_ptr tcg_fpstatus; 8626 TCGv_i32 tcg_rmode, tcg_shift; 8627 8628 if (immh & 0x8) { 8629 size = MO_64; 8630 if (!is_scalar && !is_q) { 8631 unallocated_encoding(s); 8632 return; 8633 } 8634 } else if (immh & 0x4) { 8635 size = MO_32; 8636 } else if (immh & 0x2) { 8637 size = MO_16; 8638 if (!dc_isar_feature(aa64_fp16, s)) { 8639 unallocated_encoding(s); 8640 return; 8641 } 8642 } else { 8643 /* Should have split out AdvSIMD modified immediate earlier. */ 8644 assert(immh == 1); 8645 unallocated_encoding(s); 8646 return; 8647 } 8648 8649 if (!fp_access_check(s)) { 8650 return; 8651 } 8652 8653 assert(!(is_scalar && is_q)); 8654 8655 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8656 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8657 fracbits = (16 << size) - immhb; 8658 tcg_shift = tcg_constant_i32(fracbits); 8659 8660 if (size == MO_64) { 8661 int maxpass = is_scalar ? 1 : 2; 8662 8663 for (pass = 0; pass < maxpass; pass++) { 8664 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8665 8666 read_vec_element(s, tcg_op, rn, pass, MO_64); 8667 if (is_u) { 8668 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8669 } else { 8670 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8671 } 8672 write_vec_element(s, tcg_op, rd, pass, MO_64); 8673 } 8674 clear_vec_high(s, is_q, rd); 8675 } else { 8676 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8677 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8678 8679 switch (size) { 8680 case MO_16: 8681 if (is_u) { 8682 fn = gen_helper_vfp_touhh; 8683 } else { 8684 fn = gen_helper_vfp_toshh; 8685 } 8686 break; 8687 case MO_32: 8688 if (is_u) { 8689 fn = gen_helper_vfp_touls; 8690 } else { 8691 fn = gen_helper_vfp_tosls; 8692 } 8693 break; 8694 default: 8695 g_assert_not_reached(); 8696 } 8697 8698 for (pass = 0; pass < maxpass; pass++) { 8699 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8700 8701 read_vec_element_i32(s, tcg_op, rn, pass, size); 8702 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8703 if (is_scalar) { 8704 write_fp_sreg(s, rd, tcg_op); 8705 } else { 8706 write_vec_element_i32(s, tcg_op, rd, pass, size); 8707 } 8708 } 8709 if (!is_scalar) { 8710 clear_vec_high(s, is_q, rd); 8711 } 8712 } 8713 8714 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8715 } 8716 8717 /* AdvSIMD scalar shift by immediate 8718 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8719 * +-----+---+-------------+------+------+--------+---+------+------+ 8720 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8721 * +-----+---+-------------+------+------+--------+---+------+------+ 8722 * 8723 * This is the scalar version so it works on a fixed sized registers 8724 */ 8725 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8726 { 8727 int rd = extract32(insn, 0, 5); 8728 int rn = extract32(insn, 5, 5); 8729 int opcode = extract32(insn, 11, 5); 8730 int immb = extract32(insn, 16, 3); 8731 int immh = extract32(insn, 19, 4); 8732 bool is_u = extract32(insn, 29, 1); 8733 8734 if (immh == 0) { 8735 unallocated_encoding(s); 8736 return; 8737 } 8738 8739 switch (opcode) { 8740 case 0x08: /* SRI */ 8741 if (!is_u) { 8742 unallocated_encoding(s); 8743 return; 8744 } 8745 /* fall through */ 8746 case 0x00: /* SSHR / USHR */ 8747 case 0x02: /* SSRA / USRA */ 8748 case 0x04: /* SRSHR / URSHR */ 8749 case 0x06: /* SRSRA / URSRA */ 8750 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8751 break; 8752 case 0x0a: /* SHL / SLI */ 8753 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8754 break; 8755 case 0x1c: /* SCVTF, UCVTF */ 8756 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8757 opcode, rn, rd); 8758 break; 8759 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8760 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8761 if (!is_u) { 8762 unallocated_encoding(s); 8763 return; 8764 } 8765 handle_vec_simd_sqshrn(s, true, false, false, true, 8766 immh, immb, opcode, rn, rd); 8767 break; 8768 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8769 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8770 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8771 immh, immb, opcode, rn, rd); 8772 break; 8773 case 0xc: /* SQSHLU */ 8774 if (!is_u) { 8775 unallocated_encoding(s); 8776 return; 8777 } 8778 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8779 break; 8780 case 0xe: /* SQSHL, UQSHL */ 8781 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8782 break; 8783 case 0x1f: /* FCVTZS, FCVTZU */ 8784 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8785 break; 8786 default: 8787 unallocated_encoding(s); 8788 break; 8789 } 8790 } 8791 8792 /* AdvSIMD scalar three different 8793 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8794 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8795 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8796 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8797 */ 8798 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8799 { 8800 bool is_u = extract32(insn, 29, 1); 8801 int size = extract32(insn, 22, 2); 8802 int opcode = extract32(insn, 12, 4); 8803 int rm = extract32(insn, 16, 5); 8804 int rn = extract32(insn, 5, 5); 8805 int rd = extract32(insn, 0, 5); 8806 8807 if (is_u) { 8808 unallocated_encoding(s); 8809 return; 8810 } 8811 8812 switch (opcode) { 8813 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8814 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8815 case 0xd: /* SQDMULL, SQDMULL2 */ 8816 if (size == 0 || size == 3) { 8817 unallocated_encoding(s); 8818 return; 8819 } 8820 break; 8821 default: 8822 unallocated_encoding(s); 8823 return; 8824 } 8825 8826 if (!fp_access_check(s)) { 8827 return; 8828 } 8829 8830 if (size == 2) { 8831 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8832 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8833 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8834 8835 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8836 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8837 8838 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8839 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8840 8841 switch (opcode) { 8842 case 0xd: /* SQDMULL, SQDMULL2 */ 8843 break; 8844 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8845 tcg_gen_neg_i64(tcg_res, tcg_res); 8846 /* fall through */ 8847 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8848 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8849 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8850 tcg_res, tcg_op1); 8851 break; 8852 default: 8853 g_assert_not_reached(); 8854 } 8855 8856 write_fp_dreg(s, rd, tcg_res); 8857 } else { 8858 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8859 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8860 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8861 8862 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8863 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8864 8865 switch (opcode) { 8866 case 0xd: /* SQDMULL, SQDMULL2 */ 8867 break; 8868 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8869 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8870 /* fall through */ 8871 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8872 { 8873 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8874 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8875 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8876 tcg_res, tcg_op3); 8877 break; 8878 } 8879 default: 8880 g_assert_not_reached(); 8881 } 8882 8883 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8884 write_fp_dreg(s, rd, tcg_res); 8885 } 8886 } 8887 8888 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8889 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8890 { 8891 /* Handle 64x64->64 opcodes which are shared between the scalar 8892 * and vector 3-same groups. We cover every opcode where size == 3 8893 * is valid in either the three-reg-same (integer, not pairwise) 8894 * or scalar-three-reg-same groups. 8895 */ 8896 TCGCond cond; 8897 8898 switch (opcode) { 8899 case 0x1: /* SQADD */ 8900 if (u) { 8901 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8902 } else { 8903 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8904 } 8905 break; 8906 case 0x5: /* SQSUB */ 8907 if (u) { 8908 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8909 } else { 8910 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8911 } 8912 break; 8913 case 0x6: /* CMGT, CMHI */ 8914 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8915 * We implement this using setcond (test) and then negating. 8916 */ 8917 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8918 do_cmop: 8919 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8920 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8921 break; 8922 case 0x7: /* CMGE, CMHS */ 8923 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8924 goto do_cmop; 8925 case 0x11: /* CMTST, CMEQ */ 8926 if (u) { 8927 cond = TCG_COND_EQ; 8928 goto do_cmop; 8929 } 8930 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8931 break; 8932 case 0x8: /* SSHL, USHL */ 8933 if (u) { 8934 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8935 } else { 8936 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8937 } 8938 break; 8939 case 0x9: /* SQSHL, UQSHL */ 8940 if (u) { 8941 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8942 } else { 8943 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8944 } 8945 break; 8946 case 0xa: /* SRSHL, URSHL */ 8947 if (u) { 8948 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8949 } else { 8950 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8951 } 8952 break; 8953 case 0xb: /* SQRSHL, UQRSHL */ 8954 if (u) { 8955 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8956 } else { 8957 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8958 } 8959 break; 8960 case 0x10: /* ADD, SUB */ 8961 if (u) { 8962 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8963 } else { 8964 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8965 } 8966 break; 8967 default: 8968 g_assert_not_reached(); 8969 } 8970 } 8971 8972 /* Handle the 3-same-operands float operations; shared by the scalar 8973 * and vector encodings. The caller must filter out any encodings 8974 * not allocated for the encoding it is dealing with. 8975 */ 8976 static void handle_3same_float(DisasContext *s, int size, int elements, 8977 int fpopcode, int rd, int rn, int rm) 8978 { 8979 int pass; 8980 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8981 8982 for (pass = 0; pass < elements; pass++) { 8983 if (size) { 8984 /* Double */ 8985 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8986 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8987 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8988 8989 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8990 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8991 8992 switch (fpopcode) { 8993 case 0x39: /* FMLS */ 8994 /* As usual for ARM, separate negation for fused multiply-add */ 8995 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8996 /* fall through */ 8997 case 0x19: /* FMLA */ 8998 read_vec_element(s, tcg_res, rd, pass, MO_64); 8999 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9000 tcg_res, fpst); 9001 break; 9002 case 0x18: /* FMAXNM */ 9003 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9004 break; 9005 case 0x1a: /* FADD */ 9006 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9007 break; 9008 case 0x1b: /* FMULX */ 9009 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9010 break; 9011 case 0x1c: /* FCMEQ */ 9012 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9013 break; 9014 case 0x1e: /* FMAX */ 9015 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9016 break; 9017 case 0x1f: /* FRECPS */ 9018 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9019 break; 9020 case 0x38: /* FMINNM */ 9021 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9022 break; 9023 case 0x3a: /* FSUB */ 9024 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9025 break; 9026 case 0x3e: /* FMIN */ 9027 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9028 break; 9029 case 0x3f: /* FRSQRTS */ 9030 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9031 break; 9032 case 0x5b: /* FMUL */ 9033 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9034 break; 9035 case 0x5c: /* FCMGE */ 9036 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9037 break; 9038 case 0x5d: /* FACGE */ 9039 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9040 break; 9041 case 0x5f: /* FDIV */ 9042 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9043 break; 9044 case 0x7a: /* FABD */ 9045 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9046 gen_helper_vfp_absd(tcg_res, tcg_res); 9047 break; 9048 case 0x7c: /* FCMGT */ 9049 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9050 break; 9051 case 0x7d: /* FACGT */ 9052 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9053 break; 9054 default: 9055 g_assert_not_reached(); 9056 } 9057 9058 write_vec_element(s, tcg_res, rd, pass, MO_64); 9059 } else { 9060 /* Single */ 9061 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9062 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9063 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9064 9065 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9066 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9067 9068 switch (fpopcode) { 9069 case 0x39: /* FMLS */ 9070 /* As usual for ARM, separate negation for fused multiply-add */ 9071 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9072 /* fall through */ 9073 case 0x19: /* FMLA */ 9074 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9075 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9076 tcg_res, fpst); 9077 break; 9078 case 0x1a: /* FADD */ 9079 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9080 break; 9081 case 0x1b: /* FMULX */ 9082 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9083 break; 9084 case 0x1c: /* FCMEQ */ 9085 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9086 break; 9087 case 0x1e: /* FMAX */ 9088 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9089 break; 9090 case 0x1f: /* FRECPS */ 9091 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9092 break; 9093 case 0x18: /* FMAXNM */ 9094 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9095 break; 9096 case 0x38: /* FMINNM */ 9097 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9098 break; 9099 case 0x3a: /* FSUB */ 9100 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9101 break; 9102 case 0x3e: /* FMIN */ 9103 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9104 break; 9105 case 0x3f: /* FRSQRTS */ 9106 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9107 break; 9108 case 0x5b: /* FMUL */ 9109 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9110 break; 9111 case 0x5c: /* FCMGE */ 9112 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9113 break; 9114 case 0x5d: /* FACGE */ 9115 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9116 break; 9117 case 0x5f: /* FDIV */ 9118 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9119 break; 9120 case 0x7a: /* FABD */ 9121 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9122 gen_helper_vfp_abss(tcg_res, tcg_res); 9123 break; 9124 case 0x7c: /* FCMGT */ 9125 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9126 break; 9127 case 0x7d: /* FACGT */ 9128 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9129 break; 9130 default: 9131 g_assert_not_reached(); 9132 } 9133 9134 if (elements == 1) { 9135 /* scalar single so clear high part */ 9136 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9137 9138 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9139 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9140 } else { 9141 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9142 } 9143 } 9144 } 9145 9146 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9147 } 9148 9149 /* AdvSIMD scalar three same 9150 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9151 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9152 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9153 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9154 */ 9155 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9156 { 9157 int rd = extract32(insn, 0, 5); 9158 int rn = extract32(insn, 5, 5); 9159 int opcode = extract32(insn, 11, 5); 9160 int rm = extract32(insn, 16, 5); 9161 int size = extract32(insn, 22, 2); 9162 bool u = extract32(insn, 29, 1); 9163 TCGv_i64 tcg_rd; 9164 9165 if (opcode >= 0x18) { 9166 /* Floating point: U, size[1] and opcode indicate operation */ 9167 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9168 switch (fpopcode) { 9169 case 0x1b: /* FMULX */ 9170 case 0x1f: /* FRECPS */ 9171 case 0x3f: /* FRSQRTS */ 9172 case 0x5d: /* FACGE */ 9173 case 0x7d: /* FACGT */ 9174 case 0x1c: /* FCMEQ */ 9175 case 0x5c: /* FCMGE */ 9176 case 0x7c: /* FCMGT */ 9177 case 0x7a: /* FABD */ 9178 break; 9179 default: 9180 unallocated_encoding(s); 9181 return; 9182 } 9183 9184 if (!fp_access_check(s)) { 9185 return; 9186 } 9187 9188 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9189 return; 9190 } 9191 9192 switch (opcode) { 9193 case 0x1: /* SQADD, UQADD */ 9194 case 0x5: /* SQSUB, UQSUB */ 9195 case 0x9: /* SQSHL, UQSHL */ 9196 case 0xb: /* SQRSHL, UQRSHL */ 9197 break; 9198 case 0x8: /* SSHL, USHL */ 9199 case 0xa: /* SRSHL, URSHL */ 9200 case 0x6: /* CMGT, CMHI */ 9201 case 0x7: /* CMGE, CMHS */ 9202 case 0x11: /* CMTST, CMEQ */ 9203 case 0x10: /* ADD, SUB (vector) */ 9204 if (size != 3) { 9205 unallocated_encoding(s); 9206 return; 9207 } 9208 break; 9209 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9210 if (size != 1 && size != 2) { 9211 unallocated_encoding(s); 9212 return; 9213 } 9214 break; 9215 default: 9216 unallocated_encoding(s); 9217 return; 9218 } 9219 9220 if (!fp_access_check(s)) { 9221 return; 9222 } 9223 9224 tcg_rd = tcg_temp_new_i64(); 9225 9226 if (size == 3) { 9227 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9228 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9229 9230 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9231 } else { 9232 /* Do a single operation on the lowest element in the vector. 9233 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9234 * no side effects for all these operations. 9235 * OPTME: special-purpose helpers would avoid doing some 9236 * unnecessary work in the helper for the 8 and 16 bit cases. 9237 */ 9238 NeonGenTwoOpEnvFn *genenvfn; 9239 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9240 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9241 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9242 9243 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9244 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9245 9246 switch (opcode) { 9247 case 0x1: /* SQADD, UQADD */ 9248 { 9249 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9250 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9251 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9252 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9253 }; 9254 genenvfn = fns[size][u]; 9255 break; 9256 } 9257 case 0x5: /* SQSUB, UQSUB */ 9258 { 9259 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9260 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9261 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9262 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9263 }; 9264 genenvfn = fns[size][u]; 9265 break; 9266 } 9267 case 0x9: /* SQSHL, UQSHL */ 9268 { 9269 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9270 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9271 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9272 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9273 }; 9274 genenvfn = fns[size][u]; 9275 break; 9276 } 9277 case 0xb: /* SQRSHL, UQRSHL */ 9278 { 9279 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9280 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9281 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9282 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9283 }; 9284 genenvfn = fns[size][u]; 9285 break; 9286 } 9287 case 0x16: /* SQDMULH, SQRDMULH */ 9288 { 9289 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9290 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9291 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9292 }; 9293 assert(size == 1 || size == 2); 9294 genenvfn = fns[size - 1][u]; 9295 break; 9296 } 9297 default: 9298 g_assert_not_reached(); 9299 } 9300 9301 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9302 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9303 } 9304 9305 write_fp_dreg(s, rd, tcg_rd); 9306 } 9307 9308 /* AdvSIMD scalar three same FP16 9309 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9310 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9311 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9312 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9313 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9314 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9315 */ 9316 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9317 uint32_t insn) 9318 { 9319 int rd = extract32(insn, 0, 5); 9320 int rn = extract32(insn, 5, 5); 9321 int opcode = extract32(insn, 11, 3); 9322 int rm = extract32(insn, 16, 5); 9323 bool u = extract32(insn, 29, 1); 9324 bool a = extract32(insn, 23, 1); 9325 int fpopcode = opcode | (a << 3) | (u << 4); 9326 TCGv_ptr fpst; 9327 TCGv_i32 tcg_op1; 9328 TCGv_i32 tcg_op2; 9329 TCGv_i32 tcg_res; 9330 9331 switch (fpopcode) { 9332 case 0x03: /* FMULX */ 9333 case 0x04: /* FCMEQ (reg) */ 9334 case 0x07: /* FRECPS */ 9335 case 0x0f: /* FRSQRTS */ 9336 case 0x14: /* FCMGE (reg) */ 9337 case 0x15: /* FACGE */ 9338 case 0x1a: /* FABD */ 9339 case 0x1c: /* FCMGT (reg) */ 9340 case 0x1d: /* FACGT */ 9341 break; 9342 default: 9343 unallocated_encoding(s); 9344 return; 9345 } 9346 9347 if (!dc_isar_feature(aa64_fp16, s)) { 9348 unallocated_encoding(s); 9349 } 9350 9351 if (!fp_access_check(s)) { 9352 return; 9353 } 9354 9355 fpst = fpstatus_ptr(FPST_FPCR_F16); 9356 9357 tcg_op1 = read_fp_hreg(s, rn); 9358 tcg_op2 = read_fp_hreg(s, rm); 9359 tcg_res = tcg_temp_new_i32(); 9360 9361 switch (fpopcode) { 9362 case 0x03: /* FMULX */ 9363 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9364 break; 9365 case 0x04: /* FCMEQ (reg) */ 9366 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9367 break; 9368 case 0x07: /* FRECPS */ 9369 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9370 break; 9371 case 0x0f: /* FRSQRTS */ 9372 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9373 break; 9374 case 0x14: /* FCMGE (reg) */ 9375 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9376 break; 9377 case 0x15: /* FACGE */ 9378 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9379 break; 9380 case 0x1a: /* FABD */ 9381 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9382 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9383 break; 9384 case 0x1c: /* FCMGT (reg) */ 9385 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9386 break; 9387 case 0x1d: /* FACGT */ 9388 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9389 break; 9390 default: 9391 g_assert_not_reached(); 9392 } 9393 9394 write_fp_sreg(s, rd, tcg_res); 9395 } 9396 9397 /* AdvSIMD scalar three same extra 9398 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9399 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9400 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9401 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9402 */ 9403 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9404 uint32_t insn) 9405 { 9406 int rd = extract32(insn, 0, 5); 9407 int rn = extract32(insn, 5, 5); 9408 int opcode = extract32(insn, 11, 4); 9409 int rm = extract32(insn, 16, 5); 9410 int size = extract32(insn, 22, 2); 9411 bool u = extract32(insn, 29, 1); 9412 TCGv_i32 ele1, ele2, ele3; 9413 TCGv_i64 res; 9414 bool feature; 9415 9416 switch (u * 16 + opcode) { 9417 case 0x10: /* SQRDMLAH (vector) */ 9418 case 0x11: /* SQRDMLSH (vector) */ 9419 if (size != 1 && size != 2) { 9420 unallocated_encoding(s); 9421 return; 9422 } 9423 feature = dc_isar_feature(aa64_rdm, s); 9424 break; 9425 default: 9426 unallocated_encoding(s); 9427 return; 9428 } 9429 if (!feature) { 9430 unallocated_encoding(s); 9431 return; 9432 } 9433 if (!fp_access_check(s)) { 9434 return; 9435 } 9436 9437 /* Do a single operation on the lowest element in the vector. 9438 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9439 * with no side effects for all these operations. 9440 * OPTME: special-purpose helpers would avoid doing some 9441 * unnecessary work in the helper for the 16 bit cases. 9442 */ 9443 ele1 = tcg_temp_new_i32(); 9444 ele2 = tcg_temp_new_i32(); 9445 ele3 = tcg_temp_new_i32(); 9446 9447 read_vec_element_i32(s, ele1, rn, 0, size); 9448 read_vec_element_i32(s, ele2, rm, 0, size); 9449 read_vec_element_i32(s, ele3, rd, 0, size); 9450 9451 switch (opcode) { 9452 case 0x0: /* SQRDMLAH */ 9453 if (size == 1) { 9454 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9455 } else { 9456 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9457 } 9458 break; 9459 case 0x1: /* SQRDMLSH */ 9460 if (size == 1) { 9461 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9462 } else { 9463 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9464 } 9465 break; 9466 default: 9467 g_assert_not_reached(); 9468 } 9469 9470 res = tcg_temp_new_i64(); 9471 tcg_gen_extu_i32_i64(res, ele3); 9472 write_fp_dreg(s, rd, res); 9473 } 9474 9475 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9476 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9477 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9478 { 9479 /* Handle 64->64 opcodes which are shared between the scalar and 9480 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9481 * is valid in either group and also the double-precision fp ops. 9482 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9483 * requires them. 9484 */ 9485 TCGCond cond; 9486 9487 switch (opcode) { 9488 case 0x4: /* CLS, CLZ */ 9489 if (u) { 9490 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9491 } else { 9492 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9493 } 9494 break; 9495 case 0x5: /* NOT */ 9496 /* This opcode is shared with CNT and RBIT but we have earlier 9497 * enforced that size == 3 if and only if this is the NOT insn. 9498 */ 9499 tcg_gen_not_i64(tcg_rd, tcg_rn); 9500 break; 9501 case 0x7: /* SQABS, SQNEG */ 9502 if (u) { 9503 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9504 } else { 9505 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9506 } 9507 break; 9508 case 0xa: /* CMLT */ 9509 /* 64 bit integer comparison against zero, result is 9510 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9511 * subtracting 1. 9512 */ 9513 cond = TCG_COND_LT; 9514 do_cmop: 9515 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9516 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9517 break; 9518 case 0x8: /* CMGT, CMGE */ 9519 cond = u ? TCG_COND_GE : TCG_COND_GT; 9520 goto do_cmop; 9521 case 0x9: /* CMEQ, CMLE */ 9522 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9523 goto do_cmop; 9524 case 0xb: /* ABS, NEG */ 9525 if (u) { 9526 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9527 } else { 9528 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9529 } 9530 break; 9531 case 0x2f: /* FABS */ 9532 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9533 break; 9534 case 0x6f: /* FNEG */ 9535 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9536 break; 9537 case 0x7f: /* FSQRT */ 9538 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9539 break; 9540 case 0x1a: /* FCVTNS */ 9541 case 0x1b: /* FCVTMS */ 9542 case 0x1c: /* FCVTAS */ 9543 case 0x3a: /* FCVTPS */ 9544 case 0x3b: /* FCVTZS */ 9545 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9546 break; 9547 case 0x5a: /* FCVTNU */ 9548 case 0x5b: /* FCVTMU */ 9549 case 0x5c: /* FCVTAU */ 9550 case 0x7a: /* FCVTPU */ 9551 case 0x7b: /* FCVTZU */ 9552 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9553 break; 9554 case 0x18: /* FRINTN */ 9555 case 0x19: /* FRINTM */ 9556 case 0x38: /* FRINTP */ 9557 case 0x39: /* FRINTZ */ 9558 case 0x58: /* FRINTA */ 9559 case 0x79: /* FRINTI */ 9560 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9561 break; 9562 case 0x59: /* FRINTX */ 9563 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9564 break; 9565 case 0x1e: /* FRINT32Z */ 9566 case 0x5e: /* FRINT32X */ 9567 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9568 break; 9569 case 0x1f: /* FRINT64Z */ 9570 case 0x5f: /* FRINT64X */ 9571 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9572 break; 9573 default: 9574 g_assert_not_reached(); 9575 } 9576 } 9577 9578 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9579 bool is_scalar, bool is_u, bool is_q, 9580 int size, int rn, int rd) 9581 { 9582 bool is_double = (size == MO_64); 9583 TCGv_ptr fpst; 9584 9585 if (!fp_access_check(s)) { 9586 return; 9587 } 9588 9589 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9590 9591 if (is_double) { 9592 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9593 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9594 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9595 NeonGenTwoDoubleOpFn *genfn; 9596 bool swap = false; 9597 int pass; 9598 9599 switch (opcode) { 9600 case 0x2e: /* FCMLT (zero) */ 9601 swap = true; 9602 /* fallthrough */ 9603 case 0x2c: /* FCMGT (zero) */ 9604 genfn = gen_helper_neon_cgt_f64; 9605 break; 9606 case 0x2d: /* FCMEQ (zero) */ 9607 genfn = gen_helper_neon_ceq_f64; 9608 break; 9609 case 0x6d: /* FCMLE (zero) */ 9610 swap = true; 9611 /* fall through */ 9612 case 0x6c: /* FCMGE (zero) */ 9613 genfn = gen_helper_neon_cge_f64; 9614 break; 9615 default: 9616 g_assert_not_reached(); 9617 } 9618 9619 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9620 read_vec_element(s, tcg_op, rn, pass, MO_64); 9621 if (swap) { 9622 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9623 } else { 9624 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9625 } 9626 write_vec_element(s, tcg_res, rd, pass, MO_64); 9627 } 9628 9629 clear_vec_high(s, !is_scalar, rd); 9630 } else { 9631 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9632 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9633 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9634 NeonGenTwoSingleOpFn *genfn; 9635 bool swap = false; 9636 int pass, maxpasses; 9637 9638 if (size == MO_16) { 9639 switch (opcode) { 9640 case 0x2e: /* FCMLT (zero) */ 9641 swap = true; 9642 /* fall through */ 9643 case 0x2c: /* FCMGT (zero) */ 9644 genfn = gen_helper_advsimd_cgt_f16; 9645 break; 9646 case 0x2d: /* FCMEQ (zero) */ 9647 genfn = gen_helper_advsimd_ceq_f16; 9648 break; 9649 case 0x6d: /* FCMLE (zero) */ 9650 swap = true; 9651 /* fall through */ 9652 case 0x6c: /* FCMGE (zero) */ 9653 genfn = gen_helper_advsimd_cge_f16; 9654 break; 9655 default: 9656 g_assert_not_reached(); 9657 } 9658 } else { 9659 switch (opcode) { 9660 case 0x2e: /* FCMLT (zero) */ 9661 swap = true; 9662 /* fall through */ 9663 case 0x2c: /* FCMGT (zero) */ 9664 genfn = gen_helper_neon_cgt_f32; 9665 break; 9666 case 0x2d: /* FCMEQ (zero) */ 9667 genfn = gen_helper_neon_ceq_f32; 9668 break; 9669 case 0x6d: /* FCMLE (zero) */ 9670 swap = true; 9671 /* fall through */ 9672 case 0x6c: /* FCMGE (zero) */ 9673 genfn = gen_helper_neon_cge_f32; 9674 break; 9675 default: 9676 g_assert_not_reached(); 9677 } 9678 } 9679 9680 if (is_scalar) { 9681 maxpasses = 1; 9682 } else { 9683 int vector_size = 8 << is_q; 9684 maxpasses = vector_size >> size; 9685 } 9686 9687 for (pass = 0; pass < maxpasses; pass++) { 9688 read_vec_element_i32(s, tcg_op, rn, pass, size); 9689 if (swap) { 9690 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9691 } else { 9692 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9693 } 9694 if (is_scalar) { 9695 write_fp_sreg(s, rd, tcg_res); 9696 } else { 9697 write_vec_element_i32(s, tcg_res, rd, pass, size); 9698 } 9699 } 9700 9701 if (!is_scalar) { 9702 clear_vec_high(s, is_q, rd); 9703 } 9704 } 9705 } 9706 9707 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9708 bool is_scalar, bool is_u, bool is_q, 9709 int size, int rn, int rd) 9710 { 9711 bool is_double = (size == 3); 9712 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9713 9714 if (is_double) { 9715 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9716 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9717 int pass; 9718 9719 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9720 read_vec_element(s, tcg_op, rn, pass, MO_64); 9721 switch (opcode) { 9722 case 0x3d: /* FRECPE */ 9723 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9724 break; 9725 case 0x3f: /* FRECPX */ 9726 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9727 break; 9728 case 0x7d: /* FRSQRTE */ 9729 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9730 break; 9731 default: 9732 g_assert_not_reached(); 9733 } 9734 write_vec_element(s, tcg_res, rd, pass, MO_64); 9735 } 9736 clear_vec_high(s, !is_scalar, rd); 9737 } else { 9738 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9739 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9740 int pass, maxpasses; 9741 9742 if (is_scalar) { 9743 maxpasses = 1; 9744 } else { 9745 maxpasses = is_q ? 4 : 2; 9746 } 9747 9748 for (pass = 0; pass < maxpasses; pass++) { 9749 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9750 9751 switch (opcode) { 9752 case 0x3c: /* URECPE */ 9753 gen_helper_recpe_u32(tcg_res, tcg_op); 9754 break; 9755 case 0x3d: /* FRECPE */ 9756 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9757 break; 9758 case 0x3f: /* FRECPX */ 9759 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9760 break; 9761 case 0x7d: /* FRSQRTE */ 9762 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9763 break; 9764 default: 9765 g_assert_not_reached(); 9766 } 9767 9768 if (is_scalar) { 9769 write_fp_sreg(s, rd, tcg_res); 9770 } else { 9771 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9772 } 9773 } 9774 if (!is_scalar) { 9775 clear_vec_high(s, is_q, rd); 9776 } 9777 } 9778 } 9779 9780 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9781 int opcode, bool u, bool is_q, 9782 int size, int rn, int rd) 9783 { 9784 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9785 * in the source becomes a size element in the destination). 9786 */ 9787 int pass; 9788 TCGv_i32 tcg_res[2]; 9789 int destelt = is_q ? 2 : 0; 9790 int passes = scalar ? 1 : 2; 9791 9792 if (scalar) { 9793 tcg_res[1] = tcg_constant_i32(0); 9794 } 9795 9796 for (pass = 0; pass < passes; pass++) { 9797 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9798 NeonGenNarrowFn *genfn = NULL; 9799 NeonGenNarrowEnvFn *genenvfn = NULL; 9800 9801 if (scalar) { 9802 read_vec_element(s, tcg_op, rn, pass, size + 1); 9803 } else { 9804 read_vec_element(s, tcg_op, rn, pass, MO_64); 9805 } 9806 tcg_res[pass] = tcg_temp_new_i32(); 9807 9808 switch (opcode) { 9809 case 0x12: /* XTN, SQXTUN */ 9810 { 9811 static NeonGenNarrowFn * const xtnfns[3] = { 9812 gen_helper_neon_narrow_u8, 9813 gen_helper_neon_narrow_u16, 9814 tcg_gen_extrl_i64_i32, 9815 }; 9816 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9817 gen_helper_neon_unarrow_sat8, 9818 gen_helper_neon_unarrow_sat16, 9819 gen_helper_neon_unarrow_sat32, 9820 }; 9821 if (u) { 9822 genenvfn = sqxtunfns[size]; 9823 } else { 9824 genfn = xtnfns[size]; 9825 } 9826 break; 9827 } 9828 case 0x14: /* SQXTN, UQXTN */ 9829 { 9830 static NeonGenNarrowEnvFn * const fns[3][2] = { 9831 { gen_helper_neon_narrow_sat_s8, 9832 gen_helper_neon_narrow_sat_u8 }, 9833 { gen_helper_neon_narrow_sat_s16, 9834 gen_helper_neon_narrow_sat_u16 }, 9835 { gen_helper_neon_narrow_sat_s32, 9836 gen_helper_neon_narrow_sat_u32 }, 9837 }; 9838 genenvfn = fns[size][u]; 9839 break; 9840 } 9841 case 0x16: /* FCVTN, FCVTN2 */ 9842 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9843 if (size == 2) { 9844 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9845 } else { 9846 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9847 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9848 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9849 TCGv_i32 ahp = get_ahp_flag(); 9850 9851 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9852 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9853 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9854 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9855 } 9856 break; 9857 case 0x36: /* BFCVTN, BFCVTN2 */ 9858 { 9859 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9860 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9861 } 9862 break; 9863 case 0x56: /* FCVTXN, FCVTXN2 */ 9864 /* 64 bit to 32 bit float conversion 9865 * with von Neumann rounding (round to odd) 9866 */ 9867 assert(size == 2); 9868 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9869 break; 9870 default: 9871 g_assert_not_reached(); 9872 } 9873 9874 if (genfn) { 9875 genfn(tcg_res[pass], tcg_op); 9876 } else if (genenvfn) { 9877 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9878 } 9879 } 9880 9881 for (pass = 0; pass < 2; pass++) { 9882 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9883 } 9884 clear_vec_high(s, is_q, rd); 9885 } 9886 9887 /* Remaining saturating accumulating ops */ 9888 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9889 bool is_q, int size, int rn, int rd) 9890 { 9891 bool is_double = (size == 3); 9892 9893 if (is_double) { 9894 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9895 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9896 int pass; 9897 9898 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9899 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9900 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9901 9902 if (is_u) { /* USQADD */ 9903 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9904 } else { /* SUQADD */ 9905 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9906 } 9907 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9908 } 9909 clear_vec_high(s, !is_scalar, rd); 9910 } else { 9911 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9912 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9913 int pass, maxpasses; 9914 9915 if (is_scalar) { 9916 maxpasses = 1; 9917 } else { 9918 maxpasses = is_q ? 4 : 2; 9919 } 9920 9921 for (pass = 0; pass < maxpasses; pass++) { 9922 if (is_scalar) { 9923 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9924 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9925 } else { 9926 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9927 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9928 } 9929 9930 if (is_u) { /* USQADD */ 9931 switch (size) { 9932 case 0: 9933 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9934 break; 9935 case 1: 9936 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9937 break; 9938 case 2: 9939 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9940 break; 9941 default: 9942 g_assert_not_reached(); 9943 } 9944 } else { /* SUQADD */ 9945 switch (size) { 9946 case 0: 9947 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9948 break; 9949 case 1: 9950 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9951 break; 9952 case 2: 9953 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9954 break; 9955 default: 9956 g_assert_not_reached(); 9957 } 9958 } 9959 9960 if (is_scalar) { 9961 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9962 } 9963 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9964 } 9965 clear_vec_high(s, is_q, rd); 9966 } 9967 } 9968 9969 /* AdvSIMD scalar two reg misc 9970 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9971 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9972 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9973 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9974 */ 9975 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9976 { 9977 int rd = extract32(insn, 0, 5); 9978 int rn = extract32(insn, 5, 5); 9979 int opcode = extract32(insn, 12, 5); 9980 int size = extract32(insn, 22, 2); 9981 bool u = extract32(insn, 29, 1); 9982 bool is_fcvt = false; 9983 int rmode; 9984 TCGv_i32 tcg_rmode; 9985 TCGv_ptr tcg_fpstatus; 9986 9987 switch (opcode) { 9988 case 0x3: /* USQADD / SUQADD*/ 9989 if (!fp_access_check(s)) { 9990 return; 9991 } 9992 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9993 return; 9994 case 0x7: /* SQABS / SQNEG */ 9995 break; 9996 case 0xa: /* CMLT */ 9997 if (u) { 9998 unallocated_encoding(s); 9999 return; 10000 } 10001 /* fall through */ 10002 case 0x8: /* CMGT, CMGE */ 10003 case 0x9: /* CMEQ, CMLE */ 10004 case 0xb: /* ABS, NEG */ 10005 if (size != 3) { 10006 unallocated_encoding(s); 10007 return; 10008 } 10009 break; 10010 case 0x12: /* SQXTUN */ 10011 if (!u) { 10012 unallocated_encoding(s); 10013 return; 10014 } 10015 /* fall through */ 10016 case 0x14: /* SQXTN, UQXTN */ 10017 if (size == 3) { 10018 unallocated_encoding(s); 10019 return; 10020 } 10021 if (!fp_access_check(s)) { 10022 return; 10023 } 10024 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10025 return; 10026 case 0xc ... 0xf: 10027 case 0x16 ... 0x1d: 10028 case 0x1f: 10029 /* Floating point: U, size[1] and opcode indicate operation; 10030 * size[0] indicates single or double precision. 10031 */ 10032 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10033 size = extract32(size, 0, 1) ? 3 : 2; 10034 switch (opcode) { 10035 case 0x2c: /* FCMGT (zero) */ 10036 case 0x2d: /* FCMEQ (zero) */ 10037 case 0x2e: /* FCMLT (zero) */ 10038 case 0x6c: /* FCMGE (zero) */ 10039 case 0x6d: /* FCMLE (zero) */ 10040 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10041 return; 10042 case 0x1d: /* SCVTF */ 10043 case 0x5d: /* UCVTF */ 10044 { 10045 bool is_signed = (opcode == 0x1d); 10046 if (!fp_access_check(s)) { 10047 return; 10048 } 10049 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10050 return; 10051 } 10052 case 0x3d: /* FRECPE */ 10053 case 0x3f: /* FRECPX */ 10054 case 0x7d: /* FRSQRTE */ 10055 if (!fp_access_check(s)) { 10056 return; 10057 } 10058 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10059 return; 10060 case 0x1a: /* FCVTNS */ 10061 case 0x1b: /* FCVTMS */ 10062 case 0x3a: /* FCVTPS */ 10063 case 0x3b: /* FCVTZS */ 10064 case 0x5a: /* FCVTNU */ 10065 case 0x5b: /* FCVTMU */ 10066 case 0x7a: /* FCVTPU */ 10067 case 0x7b: /* FCVTZU */ 10068 is_fcvt = true; 10069 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10070 break; 10071 case 0x1c: /* FCVTAS */ 10072 case 0x5c: /* FCVTAU */ 10073 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10074 is_fcvt = true; 10075 rmode = FPROUNDING_TIEAWAY; 10076 break; 10077 case 0x56: /* FCVTXN, FCVTXN2 */ 10078 if (size == 2) { 10079 unallocated_encoding(s); 10080 return; 10081 } 10082 if (!fp_access_check(s)) { 10083 return; 10084 } 10085 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10086 return; 10087 default: 10088 unallocated_encoding(s); 10089 return; 10090 } 10091 break; 10092 default: 10093 unallocated_encoding(s); 10094 return; 10095 } 10096 10097 if (!fp_access_check(s)) { 10098 return; 10099 } 10100 10101 if (is_fcvt) { 10102 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10103 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10104 } else { 10105 tcg_fpstatus = NULL; 10106 tcg_rmode = NULL; 10107 } 10108 10109 if (size == 3) { 10110 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10111 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10112 10113 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10114 write_fp_dreg(s, rd, tcg_rd); 10115 } else { 10116 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10117 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10118 10119 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10120 10121 switch (opcode) { 10122 case 0x7: /* SQABS, SQNEG */ 10123 { 10124 NeonGenOneOpEnvFn *genfn; 10125 static NeonGenOneOpEnvFn * const fns[3][2] = { 10126 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10127 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10128 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10129 }; 10130 genfn = fns[size][u]; 10131 genfn(tcg_rd, cpu_env, tcg_rn); 10132 break; 10133 } 10134 case 0x1a: /* FCVTNS */ 10135 case 0x1b: /* FCVTMS */ 10136 case 0x1c: /* FCVTAS */ 10137 case 0x3a: /* FCVTPS */ 10138 case 0x3b: /* FCVTZS */ 10139 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10140 tcg_fpstatus); 10141 break; 10142 case 0x5a: /* FCVTNU */ 10143 case 0x5b: /* FCVTMU */ 10144 case 0x5c: /* FCVTAU */ 10145 case 0x7a: /* FCVTPU */ 10146 case 0x7b: /* FCVTZU */ 10147 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10148 tcg_fpstatus); 10149 break; 10150 default: 10151 g_assert_not_reached(); 10152 } 10153 10154 write_fp_sreg(s, rd, tcg_rd); 10155 } 10156 10157 if (is_fcvt) { 10158 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10159 } 10160 } 10161 10162 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10163 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10164 int immh, int immb, int opcode, int rn, int rd) 10165 { 10166 int size = 32 - clz32(immh) - 1; 10167 int immhb = immh << 3 | immb; 10168 int shift = 2 * (8 << size) - immhb; 10169 GVecGen2iFn *gvec_fn; 10170 10171 if (extract32(immh, 3, 1) && !is_q) { 10172 unallocated_encoding(s); 10173 return; 10174 } 10175 tcg_debug_assert(size <= 3); 10176 10177 if (!fp_access_check(s)) { 10178 return; 10179 } 10180 10181 switch (opcode) { 10182 case 0x02: /* SSRA / USRA (accumulate) */ 10183 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10184 break; 10185 10186 case 0x08: /* SRI */ 10187 gvec_fn = gen_gvec_sri; 10188 break; 10189 10190 case 0x00: /* SSHR / USHR */ 10191 if (is_u) { 10192 if (shift == 8 << size) { 10193 /* Shift count the same size as element size produces zero. */ 10194 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10195 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10196 return; 10197 } 10198 gvec_fn = tcg_gen_gvec_shri; 10199 } else { 10200 /* Shift count the same size as element size produces all sign. */ 10201 if (shift == 8 << size) { 10202 shift -= 1; 10203 } 10204 gvec_fn = tcg_gen_gvec_sari; 10205 } 10206 break; 10207 10208 case 0x04: /* SRSHR / URSHR (rounding) */ 10209 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10210 break; 10211 10212 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10213 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10214 break; 10215 10216 default: 10217 g_assert_not_reached(); 10218 } 10219 10220 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10221 } 10222 10223 /* SHL/SLI - Vector shift left */ 10224 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10225 int immh, int immb, int opcode, int rn, int rd) 10226 { 10227 int size = 32 - clz32(immh) - 1; 10228 int immhb = immh << 3 | immb; 10229 int shift = immhb - (8 << size); 10230 10231 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10232 assert(size >= 0 && size <= 3); 10233 10234 if (extract32(immh, 3, 1) && !is_q) { 10235 unallocated_encoding(s); 10236 return; 10237 } 10238 10239 if (!fp_access_check(s)) { 10240 return; 10241 } 10242 10243 if (insert) { 10244 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10245 } else { 10246 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10247 } 10248 } 10249 10250 /* USHLL/SHLL - Vector shift left with widening */ 10251 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10252 int immh, int immb, int opcode, int rn, int rd) 10253 { 10254 int size = 32 - clz32(immh) - 1; 10255 int immhb = immh << 3 | immb; 10256 int shift = immhb - (8 << size); 10257 int dsize = 64; 10258 int esize = 8 << size; 10259 int elements = dsize/esize; 10260 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10261 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10262 int i; 10263 10264 if (size >= 3) { 10265 unallocated_encoding(s); 10266 return; 10267 } 10268 10269 if (!fp_access_check(s)) { 10270 return; 10271 } 10272 10273 /* For the LL variants the store is larger than the load, 10274 * so if rd == rn we would overwrite parts of our input. 10275 * So load everything right now and use shifts in the main loop. 10276 */ 10277 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10278 10279 for (i = 0; i < elements; i++) { 10280 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10281 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10282 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10283 write_vec_element(s, tcg_rd, rd, i, size + 1); 10284 } 10285 } 10286 10287 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10288 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10289 int immh, int immb, int opcode, int rn, int rd) 10290 { 10291 int immhb = immh << 3 | immb; 10292 int size = 32 - clz32(immh) - 1; 10293 int dsize = 64; 10294 int esize = 8 << size; 10295 int elements = dsize/esize; 10296 int shift = (2 * esize) - immhb; 10297 bool round = extract32(opcode, 0, 1); 10298 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10299 TCGv_i64 tcg_round; 10300 int i; 10301 10302 if (extract32(immh, 3, 1)) { 10303 unallocated_encoding(s); 10304 return; 10305 } 10306 10307 if (!fp_access_check(s)) { 10308 return; 10309 } 10310 10311 tcg_rn = tcg_temp_new_i64(); 10312 tcg_rd = tcg_temp_new_i64(); 10313 tcg_final = tcg_temp_new_i64(); 10314 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10315 10316 if (round) { 10317 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10318 } else { 10319 tcg_round = NULL; 10320 } 10321 10322 for (i = 0; i < elements; i++) { 10323 read_vec_element(s, tcg_rn, rn, i, size+1); 10324 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10325 false, true, size+1, shift); 10326 10327 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10328 } 10329 10330 if (!is_q) { 10331 write_vec_element(s, tcg_final, rd, 0, MO_64); 10332 } else { 10333 write_vec_element(s, tcg_final, rd, 1, MO_64); 10334 } 10335 10336 clear_vec_high(s, is_q, rd); 10337 } 10338 10339 10340 /* AdvSIMD shift by immediate 10341 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10342 * +---+---+---+-------------+------+------+--------+---+------+------+ 10343 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10344 * +---+---+---+-------------+------+------+--------+---+------+------+ 10345 */ 10346 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10347 { 10348 int rd = extract32(insn, 0, 5); 10349 int rn = extract32(insn, 5, 5); 10350 int opcode = extract32(insn, 11, 5); 10351 int immb = extract32(insn, 16, 3); 10352 int immh = extract32(insn, 19, 4); 10353 bool is_u = extract32(insn, 29, 1); 10354 bool is_q = extract32(insn, 30, 1); 10355 10356 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10357 assert(immh != 0); 10358 10359 switch (opcode) { 10360 case 0x08: /* SRI */ 10361 if (!is_u) { 10362 unallocated_encoding(s); 10363 return; 10364 } 10365 /* fall through */ 10366 case 0x00: /* SSHR / USHR */ 10367 case 0x02: /* SSRA / USRA (accumulate) */ 10368 case 0x04: /* SRSHR / URSHR (rounding) */ 10369 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10370 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10371 break; 10372 case 0x0a: /* SHL / SLI */ 10373 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10374 break; 10375 case 0x10: /* SHRN */ 10376 case 0x11: /* RSHRN / SQRSHRUN */ 10377 if (is_u) { 10378 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10379 opcode, rn, rd); 10380 } else { 10381 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10382 } 10383 break; 10384 case 0x12: /* SQSHRN / UQSHRN */ 10385 case 0x13: /* SQRSHRN / UQRSHRN */ 10386 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10387 opcode, rn, rd); 10388 break; 10389 case 0x14: /* SSHLL / USHLL */ 10390 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10391 break; 10392 case 0x1c: /* SCVTF / UCVTF */ 10393 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10394 opcode, rn, rd); 10395 break; 10396 case 0xc: /* SQSHLU */ 10397 if (!is_u) { 10398 unallocated_encoding(s); 10399 return; 10400 } 10401 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10402 break; 10403 case 0xe: /* SQSHL, UQSHL */ 10404 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10405 break; 10406 case 0x1f: /* FCVTZS/ FCVTZU */ 10407 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10408 return; 10409 default: 10410 unallocated_encoding(s); 10411 return; 10412 } 10413 } 10414 10415 /* Generate code to do a "long" addition or subtraction, ie one done in 10416 * TCGv_i64 on vector lanes twice the width specified by size. 10417 */ 10418 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10419 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10420 { 10421 static NeonGenTwo64OpFn * const fns[3][2] = { 10422 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10423 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10424 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10425 }; 10426 NeonGenTwo64OpFn *genfn; 10427 assert(size < 3); 10428 10429 genfn = fns[size][is_sub]; 10430 genfn(tcg_res, tcg_op1, tcg_op2); 10431 } 10432 10433 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10434 int opcode, int rd, int rn, int rm) 10435 { 10436 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10437 TCGv_i64 tcg_res[2]; 10438 int pass, accop; 10439 10440 tcg_res[0] = tcg_temp_new_i64(); 10441 tcg_res[1] = tcg_temp_new_i64(); 10442 10443 /* Does this op do an adding accumulate, a subtracting accumulate, 10444 * or no accumulate at all? 10445 */ 10446 switch (opcode) { 10447 case 5: 10448 case 8: 10449 case 9: 10450 accop = 1; 10451 break; 10452 case 10: 10453 case 11: 10454 accop = -1; 10455 break; 10456 default: 10457 accop = 0; 10458 break; 10459 } 10460 10461 if (accop != 0) { 10462 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10463 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10464 } 10465 10466 /* size == 2 means two 32x32->64 operations; this is worth special 10467 * casing because we can generally handle it inline. 10468 */ 10469 if (size == 2) { 10470 for (pass = 0; pass < 2; pass++) { 10471 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10472 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10473 TCGv_i64 tcg_passres; 10474 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10475 10476 int elt = pass + is_q * 2; 10477 10478 read_vec_element(s, tcg_op1, rn, elt, memop); 10479 read_vec_element(s, tcg_op2, rm, elt, memop); 10480 10481 if (accop == 0) { 10482 tcg_passres = tcg_res[pass]; 10483 } else { 10484 tcg_passres = tcg_temp_new_i64(); 10485 } 10486 10487 switch (opcode) { 10488 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10489 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10490 break; 10491 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10492 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10493 break; 10494 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10495 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10496 { 10497 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10498 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10499 10500 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10501 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10502 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10503 tcg_passres, 10504 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10505 break; 10506 } 10507 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10508 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10509 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10510 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10511 break; 10512 case 9: /* SQDMLAL, SQDMLAL2 */ 10513 case 11: /* SQDMLSL, SQDMLSL2 */ 10514 case 13: /* SQDMULL, SQDMULL2 */ 10515 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10516 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10517 tcg_passres, tcg_passres); 10518 break; 10519 default: 10520 g_assert_not_reached(); 10521 } 10522 10523 if (opcode == 9 || opcode == 11) { 10524 /* saturating accumulate ops */ 10525 if (accop < 0) { 10526 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10527 } 10528 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10529 tcg_res[pass], tcg_passres); 10530 } else if (accop > 0) { 10531 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10532 } else if (accop < 0) { 10533 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10534 } 10535 } 10536 } else { 10537 /* size 0 or 1, generally helper functions */ 10538 for (pass = 0; pass < 2; pass++) { 10539 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10540 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10541 TCGv_i64 tcg_passres; 10542 int elt = pass + is_q * 2; 10543 10544 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10545 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10546 10547 if (accop == 0) { 10548 tcg_passres = tcg_res[pass]; 10549 } else { 10550 tcg_passres = tcg_temp_new_i64(); 10551 } 10552 10553 switch (opcode) { 10554 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10555 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10556 { 10557 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10558 static NeonGenWidenFn * const widenfns[2][2] = { 10559 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10560 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10561 }; 10562 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10563 10564 widenfn(tcg_op2_64, tcg_op2); 10565 widenfn(tcg_passres, tcg_op1); 10566 gen_neon_addl(size, (opcode == 2), tcg_passres, 10567 tcg_passres, tcg_op2_64); 10568 break; 10569 } 10570 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10571 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10572 if (size == 0) { 10573 if (is_u) { 10574 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10575 } else { 10576 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10577 } 10578 } else { 10579 if (is_u) { 10580 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10581 } else { 10582 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10583 } 10584 } 10585 break; 10586 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10587 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10588 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10589 if (size == 0) { 10590 if (is_u) { 10591 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10592 } else { 10593 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10594 } 10595 } else { 10596 if (is_u) { 10597 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10598 } else { 10599 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10600 } 10601 } 10602 break; 10603 case 9: /* SQDMLAL, SQDMLAL2 */ 10604 case 11: /* SQDMLSL, SQDMLSL2 */ 10605 case 13: /* SQDMULL, SQDMULL2 */ 10606 assert(size == 1); 10607 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10608 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10609 tcg_passres, tcg_passres); 10610 break; 10611 default: 10612 g_assert_not_reached(); 10613 } 10614 10615 if (accop != 0) { 10616 if (opcode == 9 || opcode == 11) { 10617 /* saturating accumulate ops */ 10618 if (accop < 0) { 10619 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10620 } 10621 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10622 tcg_res[pass], 10623 tcg_passres); 10624 } else { 10625 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10626 tcg_res[pass], tcg_passres); 10627 } 10628 } 10629 } 10630 } 10631 10632 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10633 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10634 } 10635 10636 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10637 int opcode, int rd, int rn, int rm) 10638 { 10639 TCGv_i64 tcg_res[2]; 10640 int part = is_q ? 2 : 0; 10641 int pass; 10642 10643 for (pass = 0; pass < 2; pass++) { 10644 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10645 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10646 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10647 static NeonGenWidenFn * const widenfns[3][2] = { 10648 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10649 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10650 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10651 }; 10652 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10653 10654 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10655 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10656 widenfn(tcg_op2_wide, tcg_op2); 10657 tcg_res[pass] = tcg_temp_new_i64(); 10658 gen_neon_addl(size, (opcode == 3), 10659 tcg_res[pass], tcg_op1, tcg_op2_wide); 10660 } 10661 10662 for (pass = 0; pass < 2; pass++) { 10663 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10664 } 10665 } 10666 10667 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10668 { 10669 tcg_gen_addi_i64(in, in, 1U << 31); 10670 tcg_gen_extrh_i64_i32(res, in); 10671 } 10672 10673 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10674 int opcode, int rd, int rn, int rm) 10675 { 10676 TCGv_i32 tcg_res[2]; 10677 int part = is_q ? 2 : 0; 10678 int pass; 10679 10680 for (pass = 0; pass < 2; pass++) { 10681 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10682 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10683 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10684 static NeonGenNarrowFn * const narrowfns[3][2] = { 10685 { gen_helper_neon_narrow_high_u8, 10686 gen_helper_neon_narrow_round_high_u8 }, 10687 { gen_helper_neon_narrow_high_u16, 10688 gen_helper_neon_narrow_round_high_u16 }, 10689 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10690 }; 10691 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10692 10693 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10694 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10695 10696 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10697 10698 tcg_res[pass] = tcg_temp_new_i32(); 10699 gennarrow(tcg_res[pass], tcg_wideres); 10700 } 10701 10702 for (pass = 0; pass < 2; pass++) { 10703 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10704 } 10705 clear_vec_high(s, is_q, rd); 10706 } 10707 10708 /* AdvSIMD three different 10709 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10710 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10711 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10712 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10713 */ 10714 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10715 { 10716 /* Instructions in this group fall into three basic classes 10717 * (in each case with the operation working on each element in 10718 * the input vectors): 10719 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10720 * 128 bit input) 10721 * (2) wide 64 x 128 -> 128 10722 * (3) narrowing 128 x 128 -> 64 10723 * Here we do initial decode, catch unallocated cases and 10724 * dispatch to separate functions for each class. 10725 */ 10726 int is_q = extract32(insn, 30, 1); 10727 int is_u = extract32(insn, 29, 1); 10728 int size = extract32(insn, 22, 2); 10729 int opcode = extract32(insn, 12, 4); 10730 int rm = extract32(insn, 16, 5); 10731 int rn = extract32(insn, 5, 5); 10732 int rd = extract32(insn, 0, 5); 10733 10734 switch (opcode) { 10735 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10736 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10737 /* 64 x 128 -> 128 */ 10738 if (size == 3) { 10739 unallocated_encoding(s); 10740 return; 10741 } 10742 if (!fp_access_check(s)) { 10743 return; 10744 } 10745 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10746 break; 10747 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10748 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10749 /* 128 x 128 -> 64 */ 10750 if (size == 3) { 10751 unallocated_encoding(s); 10752 return; 10753 } 10754 if (!fp_access_check(s)) { 10755 return; 10756 } 10757 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10758 break; 10759 case 14: /* PMULL, PMULL2 */ 10760 if (is_u) { 10761 unallocated_encoding(s); 10762 return; 10763 } 10764 switch (size) { 10765 case 0: /* PMULL.P8 */ 10766 if (!fp_access_check(s)) { 10767 return; 10768 } 10769 /* The Q field specifies lo/hi half input for this insn. */ 10770 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10771 gen_helper_neon_pmull_h); 10772 break; 10773 10774 case 3: /* PMULL.P64 */ 10775 if (!dc_isar_feature(aa64_pmull, s)) { 10776 unallocated_encoding(s); 10777 return; 10778 } 10779 if (!fp_access_check(s)) { 10780 return; 10781 } 10782 /* The Q field specifies lo/hi half input for this insn. */ 10783 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10784 gen_helper_gvec_pmull_q); 10785 break; 10786 10787 default: 10788 unallocated_encoding(s); 10789 break; 10790 } 10791 return; 10792 case 9: /* SQDMLAL, SQDMLAL2 */ 10793 case 11: /* SQDMLSL, SQDMLSL2 */ 10794 case 13: /* SQDMULL, SQDMULL2 */ 10795 if (is_u || size == 0) { 10796 unallocated_encoding(s); 10797 return; 10798 } 10799 /* fall through */ 10800 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10801 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10802 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10803 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10804 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10805 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10806 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10807 /* 64 x 64 -> 128 */ 10808 if (size == 3) { 10809 unallocated_encoding(s); 10810 return; 10811 } 10812 if (!fp_access_check(s)) { 10813 return; 10814 } 10815 10816 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10817 break; 10818 default: 10819 /* opcode 15 not allocated */ 10820 unallocated_encoding(s); 10821 break; 10822 } 10823 } 10824 10825 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10826 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10827 { 10828 int rd = extract32(insn, 0, 5); 10829 int rn = extract32(insn, 5, 5); 10830 int rm = extract32(insn, 16, 5); 10831 int size = extract32(insn, 22, 2); 10832 bool is_u = extract32(insn, 29, 1); 10833 bool is_q = extract32(insn, 30, 1); 10834 10835 if (!fp_access_check(s)) { 10836 return; 10837 } 10838 10839 switch (size + 4 * is_u) { 10840 case 0: /* AND */ 10841 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10842 return; 10843 case 1: /* BIC */ 10844 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10845 return; 10846 case 2: /* ORR */ 10847 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10848 return; 10849 case 3: /* ORN */ 10850 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10851 return; 10852 case 4: /* EOR */ 10853 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10854 return; 10855 10856 case 5: /* BSL bitwise select */ 10857 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10858 return; 10859 case 6: /* BIT, bitwise insert if true */ 10860 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10861 return; 10862 case 7: /* BIF, bitwise insert if false */ 10863 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10864 return; 10865 10866 default: 10867 g_assert_not_reached(); 10868 } 10869 } 10870 10871 /* Pairwise op subgroup of C3.6.16. 10872 * 10873 * This is called directly or via the handle_3same_float for float pairwise 10874 * operations where the opcode and size are calculated differently. 10875 */ 10876 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10877 int size, int rn, int rm, int rd) 10878 { 10879 TCGv_ptr fpst; 10880 int pass; 10881 10882 /* Floating point operations need fpst */ 10883 if (opcode >= 0x58) { 10884 fpst = fpstatus_ptr(FPST_FPCR); 10885 } else { 10886 fpst = NULL; 10887 } 10888 10889 if (!fp_access_check(s)) { 10890 return; 10891 } 10892 10893 /* These operations work on the concatenated rm:rn, with each pair of 10894 * adjacent elements being operated on to produce an element in the result. 10895 */ 10896 if (size == 3) { 10897 TCGv_i64 tcg_res[2]; 10898 10899 for (pass = 0; pass < 2; pass++) { 10900 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10901 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10902 int passreg = (pass == 0) ? rn : rm; 10903 10904 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10905 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10906 tcg_res[pass] = tcg_temp_new_i64(); 10907 10908 switch (opcode) { 10909 case 0x17: /* ADDP */ 10910 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10911 break; 10912 case 0x58: /* FMAXNMP */ 10913 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10914 break; 10915 case 0x5a: /* FADDP */ 10916 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10917 break; 10918 case 0x5e: /* FMAXP */ 10919 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10920 break; 10921 case 0x78: /* FMINNMP */ 10922 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10923 break; 10924 case 0x7e: /* FMINP */ 10925 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10926 break; 10927 default: 10928 g_assert_not_reached(); 10929 } 10930 } 10931 10932 for (pass = 0; pass < 2; pass++) { 10933 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10934 } 10935 } else { 10936 int maxpass = is_q ? 4 : 2; 10937 TCGv_i32 tcg_res[4]; 10938 10939 for (pass = 0; pass < maxpass; pass++) { 10940 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10941 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10942 NeonGenTwoOpFn *genfn = NULL; 10943 int passreg = pass < (maxpass / 2) ? rn : rm; 10944 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10945 10946 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10947 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10948 tcg_res[pass] = tcg_temp_new_i32(); 10949 10950 switch (opcode) { 10951 case 0x17: /* ADDP */ 10952 { 10953 static NeonGenTwoOpFn * const fns[3] = { 10954 gen_helper_neon_padd_u8, 10955 gen_helper_neon_padd_u16, 10956 tcg_gen_add_i32, 10957 }; 10958 genfn = fns[size]; 10959 break; 10960 } 10961 case 0x14: /* SMAXP, UMAXP */ 10962 { 10963 static NeonGenTwoOpFn * const fns[3][2] = { 10964 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10965 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10966 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10967 }; 10968 genfn = fns[size][u]; 10969 break; 10970 } 10971 case 0x15: /* SMINP, UMINP */ 10972 { 10973 static NeonGenTwoOpFn * const fns[3][2] = { 10974 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10975 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10976 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10977 }; 10978 genfn = fns[size][u]; 10979 break; 10980 } 10981 /* The FP operations are all on single floats (32 bit) */ 10982 case 0x58: /* FMAXNMP */ 10983 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10984 break; 10985 case 0x5a: /* FADDP */ 10986 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10987 break; 10988 case 0x5e: /* FMAXP */ 10989 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10990 break; 10991 case 0x78: /* FMINNMP */ 10992 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10993 break; 10994 case 0x7e: /* FMINP */ 10995 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10996 break; 10997 default: 10998 g_assert_not_reached(); 10999 } 11000 11001 /* FP ops called directly, otherwise call now */ 11002 if (genfn) { 11003 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11004 } 11005 } 11006 11007 for (pass = 0; pass < maxpass; pass++) { 11008 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11009 } 11010 clear_vec_high(s, is_q, rd); 11011 } 11012 } 11013 11014 /* Floating point op subgroup of C3.6.16. */ 11015 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11016 { 11017 /* For floating point ops, the U, size[1] and opcode bits 11018 * together indicate the operation. size[0] indicates single 11019 * or double. 11020 */ 11021 int fpopcode = extract32(insn, 11, 5) 11022 | (extract32(insn, 23, 1) << 5) 11023 | (extract32(insn, 29, 1) << 6); 11024 int is_q = extract32(insn, 30, 1); 11025 int size = extract32(insn, 22, 1); 11026 int rm = extract32(insn, 16, 5); 11027 int rn = extract32(insn, 5, 5); 11028 int rd = extract32(insn, 0, 5); 11029 11030 int datasize = is_q ? 128 : 64; 11031 int esize = 32 << size; 11032 int elements = datasize / esize; 11033 11034 if (size == 1 && !is_q) { 11035 unallocated_encoding(s); 11036 return; 11037 } 11038 11039 switch (fpopcode) { 11040 case 0x58: /* FMAXNMP */ 11041 case 0x5a: /* FADDP */ 11042 case 0x5e: /* FMAXP */ 11043 case 0x78: /* FMINNMP */ 11044 case 0x7e: /* FMINP */ 11045 if (size && !is_q) { 11046 unallocated_encoding(s); 11047 return; 11048 } 11049 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11050 rn, rm, rd); 11051 return; 11052 case 0x1b: /* FMULX */ 11053 case 0x1f: /* FRECPS */ 11054 case 0x3f: /* FRSQRTS */ 11055 case 0x5d: /* FACGE */ 11056 case 0x7d: /* FACGT */ 11057 case 0x19: /* FMLA */ 11058 case 0x39: /* FMLS */ 11059 case 0x18: /* FMAXNM */ 11060 case 0x1a: /* FADD */ 11061 case 0x1c: /* FCMEQ */ 11062 case 0x1e: /* FMAX */ 11063 case 0x38: /* FMINNM */ 11064 case 0x3a: /* FSUB */ 11065 case 0x3e: /* FMIN */ 11066 case 0x5b: /* FMUL */ 11067 case 0x5c: /* FCMGE */ 11068 case 0x5f: /* FDIV */ 11069 case 0x7a: /* FABD */ 11070 case 0x7c: /* FCMGT */ 11071 if (!fp_access_check(s)) { 11072 return; 11073 } 11074 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11075 return; 11076 11077 case 0x1d: /* FMLAL */ 11078 case 0x3d: /* FMLSL */ 11079 case 0x59: /* FMLAL2 */ 11080 case 0x79: /* FMLSL2 */ 11081 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11082 unallocated_encoding(s); 11083 return; 11084 } 11085 if (fp_access_check(s)) { 11086 int is_s = extract32(insn, 23, 1); 11087 int is_2 = extract32(insn, 29, 1); 11088 int data = (is_2 << 1) | is_s; 11089 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11090 vec_full_reg_offset(s, rn), 11091 vec_full_reg_offset(s, rm), cpu_env, 11092 is_q ? 16 : 8, vec_full_reg_size(s), 11093 data, gen_helper_gvec_fmlal_a64); 11094 } 11095 return; 11096 11097 default: 11098 unallocated_encoding(s); 11099 return; 11100 } 11101 } 11102 11103 /* Integer op subgroup of C3.6.16. */ 11104 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11105 { 11106 int is_q = extract32(insn, 30, 1); 11107 int u = extract32(insn, 29, 1); 11108 int size = extract32(insn, 22, 2); 11109 int opcode = extract32(insn, 11, 5); 11110 int rm = extract32(insn, 16, 5); 11111 int rn = extract32(insn, 5, 5); 11112 int rd = extract32(insn, 0, 5); 11113 int pass; 11114 TCGCond cond; 11115 11116 switch (opcode) { 11117 case 0x13: /* MUL, PMUL */ 11118 if (u && size != 0) { 11119 unallocated_encoding(s); 11120 return; 11121 } 11122 /* fall through */ 11123 case 0x0: /* SHADD, UHADD */ 11124 case 0x2: /* SRHADD, URHADD */ 11125 case 0x4: /* SHSUB, UHSUB */ 11126 case 0xc: /* SMAX, UMAX */ 11127 case 0xd: /* SMIN, UMIN */ 11128 case 0xe: /* SABD, UABD */ 11129 case 0xf: /* SABA, UABA */ 11130 case 0x12: /* MLA, MLS */ 11131 if (size == 3) { 11132 unallocated_encoding(s); 11133 return; 11134 } 11135 break; 11136 case 0x16: /* SQDMULH, SQRDMULH */ 11137 if (size == 0 || size == 3) { 11138 unallocated_encoding(s); 11139 return; 11140 } 11141 break; 11142 default: 11143 if (size == 3 && !is_q) { 11144 unallocated_encoding(s); 11145 return; 11146 } 11147 break; 11148 } 11149 11150 if (!fp_access_check(s)) { 11151 return; 11152 } 11153 11154 switch (opcode) { 11155 case 0x01: /* SQADD, UQADD */ 11156 if (u) { 11157 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11158 } else { 11159 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11160 } 11161 return; 11162 case 0x05: /* SQSUB, UQSUB */ 11163 if (u) { 11164 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11165 } else { 11166 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11167 } 11168 return; 11169 case 0x08: /* SSHL, USHL */ 11170 if (u) { 11171 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11172 } else { 11173 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11174 } 11175 return; 11176 case 0x0c: /* SMAX, UMAX */ 11177 if (u) { 11178 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11179 } else { 11180 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11181 } 11182 return; 11183 case 0x0d: /* SMIN, UMIN */ 11184 if (u) { 11185 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11186 } else { 11187 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11188 } 11189 return; 11190 case 0xe: /* SABD, UABD */ 11191 if (u) { 11192 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11193 } else { 11194 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11195 } 11196 return; 11197 case 0xf: /* SABA, UABA */ 11198 if (u) { 11199 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11200 } else { 11201 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11202 } 11203 return; 11204 case 0x10: /* ADD, SUB */ 11205 if (u) { 11206 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11207 } else { 11208 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11209 } 11210 return; 11211 case 0x13: /* MUL, PMUL */ 11212 if (!u) { /* MUL */ 11213 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11214 } else { /* PMUL */ 11215 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11216 } 11217 return; 11218 case 0x12: /* MLA, MLS */ 11219 if (u) { 11220 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11221 } else { 11222 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11223 } 11224 return; 11225 case 0x16: /* SQDMULH, SQRDMULH */ 11226 { 11227 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11228 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11229 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11230 }; 11231 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11232 } 11233 return; 11234 case 0x11: 11235 if (!u) { /* CMTST */ 11236 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11237 return; 11238 } 11239 /* else CMEQ */ 11240 cond = TCG_COND_EQ; 11241 goto do_gvec_cmp; 11242 case 0x06: /* CMGT, CMHI */ 11243 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11244 goto do_gvec_cmp; 11245 case 0x07: /* CMGE, CMHS */ 11246 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11247 do_gvec_cmp: 11248 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11249 vec_full_reg_offset(s, rn), 11250 vec_full_reg_offset(s, rm), 11251 is_q ? 16 : 8, vec_full_reg_size(s)); 11252 return; 11253 } 11254 11255 if (size == 3) { 11256 assert(is_q); 11257 for (pass = 0; pass < 2; pass++) { 11258 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11259 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11260 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11261 11262 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11263 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11264 11265 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11266 11267 write_vec_element(s, tcg_res, rd, pass, MO_64); 11268 } 11269 } else { 11270 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11271 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11272 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11273 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11274 NeonGenTwoOpFn *genfn = NULL; 11275 NeonGenTwoOpEnvFn *genenvfn = NULL; 11276 11277 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11278 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11279 11280 switch (opcode) { 11281 case 0x0: /* SHADD, UHADD */ 11282 { 11283 static NeonGenTwoOpFn * const fns[3][2] = { 11284 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11285 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11286 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11287 }; 11288 genfn = fns[size][u]; 11289 break; 11290 } 11291 case 0x2: /* SRHADD, URHADD */ 11292 { 11293 static NeonGenTwoOpFn * const fns[3][2] = { 11294 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11295 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11296 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11297 }; 11298 genfn = fns[size][u]; 11299 break; 11300 } 11301 case 0x4: /* SHSUB, UHSUB */ 11302 { 11303 static NeonGenTwoOpFn * const fns[3][2] = { 11304 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11305 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11306 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11307 }; 11308 genfn = fns[size][u]; 11309 break; 11310 } 11311 case 0x9: /* SQSHL, UQSHL */ 11312 { 11313 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11314 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11315 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11316 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11317 }; 11318 genenvfn = fns[size][u]; 11319 break; 11320 } 11321 case 0xa: /* SRSHL, URSHL */ 11322 { 11323 static NeonGenTwoOpFn * const fns[3][2] = { 11324 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11325 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11326 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11327 }; 11328 genfn = fns[size][u]; 11329 break; 11330 } 11331 case 0xb: /* SQRSHL, UQRSHL */ 11332 { 11333 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11334 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11335 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11336 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11337 }; 11338 genenvfn = fns[size][u]; 11339 break; 11340 } 11341 default: 11342 g_assert_not_reached(); 11343 } 11344 11345 if (genenvfn) { 11346 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11347 } else { 11348 genfn(tcg_res, tcg_op1, tcg_op2); 11349 } 11350 11351 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11352 } 11353 } 11354 clear_vec_high(s, is_q, rd); 11355 } 11356 11357 /* AdvSIMD three same 11358 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11359 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11360 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11361 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11362 */ 11363 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11364 { 11365 int opcode = extract32(insn, 11, 5); 11366 11367 switch (opcode) { 11368 case 0x3: /* logic ops */ 11369 disas_simd_3same_logic(s, insn); 11370 break; 11371 case 0x17: /* ADDP */ 11372 case 0x14: /* SMAXP, UMAXP */ 11373 case 0x15: /* SMINP, UMINP */ 11374 { 11375 /* Pairwise operations */ 11376 int is_q = extract32(insn, 30, 1); 11377 int u = extract32(insn, 29, 1); 11378 int size = extract32(insn, 22, 2); 11379 int rm = extract32(insn, 16, 5); 11380 int rn = extract32(insn, 5, 5); 11381 int rd = extract32(insn, 0, 5); 11382 if (opcode == 0x17) { 11383 if (u || (size == 3 && !is_q)) { 11384 unallocated_encoding(s); 11385 return; 11386 } 11387 } else { 11388 if (size == 3) { 11389 unallocated_encoding(s); 11390 return; 11391 } 11392 } 11393 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11394 break; 11395 } 11396 case 0x18 ... 0x31: 11397 /* floating point ops, sz[1] and U are part of opcode */ 11398 disas_simd_3same_float(s, insn); 11399 break; 11400 default: 11401 disas_simd_3same_int(s, insn); 11402 break; 11403 } 11404 } 11405 11406 /* 11407 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11408 * 11409 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11410 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11411 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11412 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11413 * 11414 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11415 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11416 * 11417 */ 11418 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11419 { 11420 int opcode = extract32(insn, 11, 3); 11421 int u = extract32(insn, 29, 1); 11422 int a = extract32(insn, 23, 1); 11423 int is_q = extract32(insn, 30, 1); 11424 int rm = extract32(insn, 16, 5); 11425 int rn = extract32(insn, 5, 5); 11426 int rd = extract32(insn, 0, 5); 11427 /* 11428 * For these floating point ops, the U, a and opcode bits 11429 * together indicate the operation. 11430 */ 11431 int fpopcode = opcode | (a << 3) | (u << 4); 11432 int datasize = is_q ? 128 : 64; 11433 int elements = datasize / 16; 11434 bool pairwise; 11435 TCGv_ptr fpst; 11436 int pass; 11437 11438 switch (fpopcode) { 11439 case 0x0: /* FMAXNM */ 11440 case 0x1: /* FMLA */ 11441 case 0x2: /* FADD */ 11442 case 0x3: /* FMULX */ 11443 case 0x4: /* FCMEQ */ 11444 case 0x6: /* FMAX */ 11445 case 0x7: /* FRECPS */ 11446 case 0x8: /* FMINNM */ 11447 case 0x9: /* FMLS */ 11448 case 0xa: /* FSUB */ 11449 case 0xe: /* FMIN */ 11450 case 0xf: /* FRSQRTS */ 11451 case 0x13: /* FMUL */ 11452 case 0x14: /* FCMGE */ 11453 case 0x15: /* FACGE */ 11454 case 0x17: /* FDIV */ 11455 case 0x1a: /* FABD */ 11456 case 0x1c: /* FCMGT */ 11457 case 0x1d: /* FACGT */ 11458 pairwise = false; 11459 break; 11460 case 0x10: /* FMAXNMP */ 11461 case 0x12: /* FADDP */ 11462 case 0x16: /* FMAXP */ 11463 case 0x18: /* FMINNMP */ 11464 case 0x1e: /* FMINP */ 11465 pairwise = true; 11466 break; 11467 default: 11468 unallocated_encoding(s); 11469 return; 11470 } 11471 11472 if (!dc_isar_feature(aa64_fp16, s)) { 11473 unallocated_encoding(s); 11474 return; 11475 } 11476 11477 if (!fp_access_check(s)) { 11478 return; 11479 } 11480 11481 fpst = fpstatus_ptr(FPST_FPCR_F16); 11482 11483 if (pairwise) { 11484 int maxpass = is_q ? 8 : 4; 11485 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11486 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11487 TCGv_i32 tcg_res[8]; 11488 11489 for (pass = 0; pass < maxpass; pass++) { 11490 int passreg = pass < (maxpass / 2) ? rn : rm; 11491 int passelt = (pass << 1) & (maxpass - 1); 11492 11493 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11494 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11495 tcg_res[pass] = tcg_temp_new_i32(); 11496 11497 switch (fpopcode) { 11498 case 0x10: /* FMAXNMP */ 11499 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11500 fpst); 11501 break; 11502 case 0x12: /* FADDP */ 11503 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11504 break; 11505 case 0x16: /* FMAXP */ 11506 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11507 break; 11508 case 0x18: /* FMINNMP */ 11509 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11510 fpst); 11511 break; 11512 case 0x1e: /* FMINP */ 11513 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11514 break; 11515 default: 11516 g_assert_not_reached(); 11517 } 11518 } 11519 11520 for (pass = 0; pass < maxpass; pass++) { 11521 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11522 } 11523 } else { 11524 for (pass = 0; pass < elements; pass++) { 11525 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11526 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11527 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11528 11529 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11530 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11531 11532 switch (fpopcode) { 11533 case 0x0: /* FMAXNM */ 11534 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11535 break; 11536 case 0x1: /* FMLA */ 11537 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11538 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11539 fpst); 11540 break; 11541 case 0x2: /* FADD */ 11542 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11543 break; 11544 case 0x3: /* FMULX */ 11545 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11546 break; 11547 case 0x4: /* FCMEQ */ 11548 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11549 break; 11550 case 0x6: /* FMAX */ 11551 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11552 break; 11553 case 0x7: /* FRECPS */ 11554 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11555 break; 11556 case 0x8: /* FMINNM */ 11557 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11558 break; 11559 case 0x9: /* FMLS */ 11560 /* As usual for ARM, separate negation for fused multiply-add */ 11561 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11562 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11563 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11564 fpst); 11565 break; 11566 case 0xa: /* FSUB */ 11567 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11568 break; 11569 case 0xe: /* FMIN */ 11570 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11571 break; 11572 case 0xf: /* FRSQRTS */ 11573 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11574 break; 11575 case 0x13: /* FMUL */ 11576 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11577 break; 11578 case 0x14: /* FCMGE */ 11579 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11580 break; 11581 case 0x15: /* FACGE */ 11582 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11583 break; 11584 case 0x17: /* FDIV */ 11585 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11586 break; 11587 case 0x1a: /* FABD */ 11588 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11589 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11590 break; 11591 case 0x1c: /* FCMGT */ 11592 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11593 break; 11594 case 0x1d: /* FACGT */ 11595 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11596 break; 11597 default: 11598 g_assert_not_reached(); 11599 } 11600 11601 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11602 } 11603 } 11604 11605 clear_vec_high(s, is_q, rd); 11606 } 11607 11608 /* AdvSIMD three same extra 11609 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11610 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11611 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11612 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11613 */ 11614 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11615 { 11616 int rd = extract32(insn, 0, 5); 11617 int rn = extract32(insn, 5, 5); 11618 int opcode = extract32(insn, 11, 4); 11619 int rm = extract32(insn, 16, 5); 11620 int size = extract32(insn, 22, 2); 11621 bool u = extract32(insn, 29, 1); 11622 bool is_q = extract32(insn, 30, 1); 11623 bool feature; 11624 int rot; 11625 11626 switch (u * 16 + opcode) { 11627 case 0x10: /* SQRDMLAH (vector) */ 11628 case 0x11: /* SQRDMLSH (vector) */ 11629 if (size != 1 && size != 2) { 11630 unallocated_encoding(s); 11631 return; 11632 } 11633 feature = dc_isar_feature(aa64_rdm, s); 11634 break; 11635 case 0x02: /* SDOT (vector) */ 11636 case 0x12: /* UDOT (vector) */ 11637 if (size != MO_32) { 11638 unallocated_encoding(s); 11639 return; 11640 } 11641 feature = dc_isar_feature(aa64_dp, s); 11642 break; 11643 case 0x03: /* USDOT */ 11644 if (size != MO_32) { 11645 unallocated_encoding(s); 11646 return; 11647 } 11648 feature = dc_isar_feature(aa64_i8mm, s); 11649 break; 11650 case 0x04: /* SMMLA */ 11651 case 0x14: /* UMMLA */ 11652 case 0x05: /* USMMLA */ 11653 if (!is_q || size != MO_32) { 11654 unallocated_encoding(s); 11655 return; 11656 } 11657 feature = dc_isar_feature(aa64_i8mm, s); 11658 break; 11659 case 0x18: /* FCMLA, #0 */ 11660 case 0x19: /* FCMLA, #90 */ 11661 case 0x1a: /* FCMLA, #180 */ 11662 case 0x1b: /* FCMLA, #270 */ 11663 case 0x1c: /* FCADD, #90 */ 11664 case 0x1e: /* FCADD, #270 */ 11665 if (size == 0 11666 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11667 || (size == 3 && !is_q)) { 11668 unallocated_encoding(s); 11669 return; 11670 } 11671 feature = dc_isar_feature(aa64_fcma, s); 11672 break; 11673 case 0x1d: /* BFMMLA */ 11674 if (size != MO_16 || !is_q) { 11675 unallocated_encoding(s); 11676 return; 11677 } 11678 feature = dc_isar_feature(aa64_bf16, s); 11679 break; 11680 case 0x1f: 11681 switch (size) { 11682 case 1: /* BFDOT */ 11683 case 3: /* BFMLAL{B,T} */ 11684 feature = dc_isar_feature(aa64_bf16, s); 11685 break; 11686 default: 11687 unallocated_encoding(s); 11688 return; 11689 } 11690 break; 11691 default: 11692 unallocated_encoding(s); 11693 return; 11694 } 11695 if (!feature) { 11696 unallocated_encoding(s); 11697 return; 11698 } 11699 if (!fp_access_check(s)) { 11700 return; 11701 } 11702 11703 switch (opcode) { 11704 case 0x0: /* SQRDMLAH (vector) */ 11705 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11706 return; 11707 11708 case 0x1: /* SQRDMLSH (vector) */ 11709 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11710 return; 11711 11712 case 0x2: /* SDOT / UDOT */ 11713 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11714 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11715 return; 11716 11717 case 0x3: /* USDOT */ 11718 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11719 return; 11720 11721 case 0x04: /* SMMLA, UMMLA */ 11722 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11723 u ? gen_helper_gvec_ummla_b 11724 : gen_helper_gvec_smmla_b); 11725 return; 11726 case 0x05: /* USMMLA */ 11727 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11728 return; 11729 11730 case 0x8: /* FCMLA, #0 */ 11731 case 0x9: /* FCMLA, #90 */ 11732 case 0xa: /* FCMLA, #180 */ 11733 case 0xb: /* FCMLA, #270 */ 11734 rot = extract32(opcode, 0, 2); 11735 switch (size) { 11736 case 1: 11737 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11738 gen_helper_gvec_fcmlah); 11739 break; 11740 case 2: 11741 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11742 gen_helper_gvec_fcmlas); 11743 break; 11744 case 3: 11745 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11746 gen_helper_gvec_fcmlad); 11747 break; 11748 default: 11749 g_assert_not_reached(); 11750 } 11751 return; 11752 11753 case 0xc: /* FCADD, #90 */ 11754 case 0xe: /* FCADD, #270 */ 11755 rot = extract32(opcode, 1, 1); 11756 switch (size) { 11757 case 1: 11758 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11759 gen_helper_gvec_fcaddh); 11760 break; 11761 case 2: 11762 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11763 gen_helper_gvec_fcadds); 11764 break; 11765 case 3: 11766 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11767 gen_helper_gvec_fcaddd); 11768 break; 11769 default: 11770 g_assert_not_reached(); 11771 } 11772 return; 11773 11774 case 0xd: /* BFMMLA */ 11775 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11776 return; 11777 case 0xf: 11778 switch (size) { 11779 case 1: /* BFDOT */ 11780 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11781 break; 11782 case 3: /* BFMLAL{B,T} */ 11783 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11784 gen_helper_gvec_bfmlal); 11785 break; 11786 default: 11787 g_assert_not_reached(); 11788 } 11789 return; 11790 11791 default: 11792 g_assert_not_reached(); 11793 } 11794 } 11795 11796 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11797 int size, int rn, int rd) 11798 { 11799 /* Handle 2-reg-misc ops which are widening (so each size element 11800 * in the source becomes a 2*size element in the destination. 11801 * The only instruction like this is FCVTL. 11802 */ 11803 int pass; 11804 11805 if (size == 3) { 11806 /* 32 -> 64 bit fp conversion */ 11807 TCGv_i64 tcg_res[2]; 11808 int srcelt = is_q ? 2 : 0; 11809 11810 for (pass = 0; pass < 2; pass++) { 11811 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11812 tcg_res[pass] = tcg_temp_new_i64(); 11813 11814 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11815 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11816 } 11817 for (pass = 0; pass < 2; pass++) { 11818 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11819 } 11820 } else { 11821 /* 16 -> 32 bit fp conversion */ 11822 int srcelt = is_q ? 4 : 0; 11823 TCGv_i32 tcg_res[4]; 11824 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11825 TCGv_i32 ahp = get_ahp_flag(); 11826 11827 for (pass = 0; pass < 4; pass++) { 11828 tcg_res[pass] = tcg_temp_new_i32(); 11829 11830 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11831 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11832 fpst, ahp); 11833 } 11834 for (pass = 0; pass < 4; pass++) { 11835 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11836 } 11837 } 11838 } 11839 11840 static void handle_rev(DisasContext *s, int opcode, bool u, 11841 bool is_q, int size, int rn, int rd) 11842 { 11843 int op = (opcode << 1) | u; 11844 int opsz = op + size; 11845 int grp_size = 3 - opsz; 11846 int dsize = is_q ? 128 : 64; 11847 int i; 11848 11849 if (opsz >= 3) { 11850 unallocated_encoding(s); 11851 return; 11852 } 11853 11854 if (!fp_access_check(s)) { 11855 return; 11856 } 11857 11858 if (size == 0) { 11859 /* Special case bytes, use bswap op on each group of elements */ 11860 int groups = dsize / (8 << grp_size); 11861 11862 for (i = 0; i < groups; i++) { 11863 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11864 11865 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11866 switch (grp_size) { 11867 case MO_16: 11868 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11869 break; 11870 case MO_32: 11871 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11872 break; 11873 case MO_64: 11874 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11875 break; 11876 default: 11877 g_assert_not_reached(); 11878 } 11879 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11880 } 11881 clear_vec_high(s, is_q, rd); 11882 } else { 11883 int revmask = (1 << grp_size) - 1; 11884 int esize = 8 << size; 11885 int elements = dsize / esize; 11886 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11887 TCGv_i64 tcg_rd[2]; 11888 11889 for (i = 0; i < 2; i++) { 11890 tcg_rd[i] = tcg_temp_new_i64(); 11891 tcg_gen_movi_i64(tcg_rd[i], 0); 11892 } 11893 11894 for (i = 0; i < elements; i++) { 11895 int e_rev = (i & 0xf) ^ revmask; 11896 int w = (e_rev * esize) / 64; 11897 int o = (e_rev * esize) % 64; 11898 11899 read_vec_element(s, tcg_rn, rn, i, size); 11900 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11901 } 11902 11903 for (i = 0; i < 2; i++) { 11904 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11905 } 11906 clear_vec_high(s, true, rd); 11907 } 11908 } 11909 11910 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11911 bool is_q, int size, int rn, int rd) 11912 { 11913 /* Implement the pairwise operations from 2-misc: 11914 * SADDLP, UADDLP, SADALP, UADALP. 11915 * These all add pairs of elements in the input to produce a 11916 * double-width result element in the output (possibly accumulating). 11917 */ 11918 bool accum = (opcode == 0x6); 11919 int maxpass = is_q ? 2 : 1; 11920 int pass; 11921 TCGv_i64 tcg_res[2]; 11922 11923 if (size == 2) { 11924 /* 32 + 32 -> 64 op */ 11925 MemOp memop = size + (u ? 0 : MO_SIGN); 11926 11927 for (pass = 0; pass < maxpass; pass++) { 11928 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11929 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11930 11931 tcg_res[pass] = tcg_temp_new_i64(); 11932 11933 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11934 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11935 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11936 if (accum) { 11937 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11938 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11939 } 11940 } 11941 } else { 11942 for (pass = 0; pass < maxpass; pass++) { 11943 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11944 NeonGenOne64OpFn *genfn; 11945 static NeonGenOne64OpFn * const fns[2][2] = { 11946 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11947 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11948 }; 11949 11950 genfn = fns[size][u]; 11951 11952 tcg_res[pass] = tcg_temp_new_i64(); 11953 11954 read_vec_element(s, tcg_op, rn, pass, MO_64); 11955 genfn(tcg_res[pass], tcg_op); 11956 11957 if (accum) { 11958 read_vec_element(s, tcg_op, rd, pass, MO_64); 11959 if (size == 0) { 11960 gen_helper_neon_addl_u16(tcg_res[pass], 11961 tcg_res[pass], tcg_op); 11962 } else { 11963 gen_helper_neon_addl_u32(tcg_res[pass], 11964 tcg_res[pass], tcg_op); 11965 } 11966 } 11967 } 11968 } 11969 if (!is_q) { 11970 tcg_res[1] = tcg_constant_i64(0); 11971 } 11972 for (pass = 0; pass < 2; pass++) { 11973 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11974 } 11975 } 11976 11977 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11978 { 11979 /* Implement SHLL and SHLL2 */ 11980 int pass; 11981 int part = is_q ? 2 : 0; 11982 TCGv_i64 tcg_res[2]; 11983 11984 for (pass = 0; pass < 2; pass++) { 11985 static NeonGenWidenFn * const widenfns[3] = { 11986 gen_helper_neon_widen_u8, 11987 gen_helper_neon_widen_u16, 11988 tcg_gen_extu_i32_i64, 11989 }; 11990 NeonGenWidenFn *widenfn = widenfns[size]; 11991 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11992 11993 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11994 tcg_res[pass] = tcg_temp_new_i64(); 11995 widenfn(tcg_res[pass], tcg_op); 11996 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11997 } 11998 11999 for (pass = 0; pass < 2; pass++) { 12000 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12001 } 12002 } 12003 12004 /* AdvSIMD two reg misc 12005 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12006 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12007 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12008 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12009 */ 12010 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12011 { 12012 int size = extract32(insn, 22, 2); 12013 int opcode = extract32(insn, 12, 5); 12014 bool u = extract32(insn, 29, 1); 12015 bool is_q = extract32(insn, 30, 1); 12016 int rn = extract32(insn, 5, 5); 12017 int rd = extract32(insn, 0, 5); 12018 bool need_fpstatus = false; 12019 int rmode = -1; 12020 TCGv_i32 tcg_rmode; 12021 TCGv_ptr tcg_fpstatus; 12022 12023 switch (opcode) { 12024 case 0x0: /* REV64, REV32 */ 12025 case 0x1: /* REV16 */ 12026 handle_rev(s, opcode, u, is_q, size, rn, rd); 12027 return; 12028 case 0x5: /* CNT, NOT, RBIT */ 12029 if (u && size == 0) { 12030 /* NOT */ 12031 break; 12032 } else if (u && size == 1) { 12033 /* RBIT */ 12034 break; 12035 } else if (!u && size == 0) { 12036 /* CNT */ 12037 break; 12038 } 12039 unallocated_encoding(s); 12040 return; 12041 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12042 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12043 if (size == 3) { 12044 unallocated_encoding(s); 12045 return; 12046 } 12047 if (!fp_access_check(s)) { 12048 return; 12049 } 12050 12051 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12052 return; 12053 case 0x4: /* CLS, CLZ */ 12054 if (size == 3) { 12055 unallocated_encoding(s); 12056 return; 12057 } 12058 break; 12059 case 0x2: /* SADDLP, UADDLP */ 12060 case 0x6: /* SADALP, UADALP */ 12061 if (size == 3) { 12062 unallocated_encoding(s); 12063 return; 12064 } 12065 if (!fp_access_check(s)) { 12066 return; 12067 } 12068 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12069 return; 12070 case 0x13: /* SHLL, SHLL2 */ 12071 if (u == 0 || size == 3) { 12072 unallocated_encoding(s); 12073 return; 12074 } 12075 if (!fp_access_check(s)) { 12076 return; 12077 } 12078 handle_shll(s, is_q, size, rn, rd); 12079 return; 12080 case 0xa: /* CMLT */ 12081 if (u == 1) { 12082 unallocated_encoding(s); 12083 return; 12084 } 12085 /* fall through */ 12086 case 0x8: /* CMGT, CMGE */ 12087 case 0x9: /* CMEQ, CMLE */ 12088 case 0xb: /* ABS, NEG */ 12089 if (size == 3 && !is_q) { 12090 unallocated_encoding(s); 12091 return; 12092 } 12093 break; 12094 case 0x3: /* SUQADD, USQADD */ 12095 if (size == 3 && !is_q) { 12096 unallocated_encoding(s); 12097 return; 12098 } 12099 if (!fp_access_check(s)) { 12100 return; 12101 } 12102 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12103 return; 12104 case 0x7: /* SQABS, SQNEG */ 12105 if (size == 3 && !is_q) { 12106 unallocated_encoding(s); 12107 return; 12108 } 12109 break; 12110 case 0xc ... 0xf: 12111 case 0x16 ... 0x1f: 12112 { 12113 /* Floating point: U, size[1] and opcode indicate operation; 12114 * size[0] indicates single or double precision. 12115 */ 12116 int is_double = extract32(size, 0, 1); 12117 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12118 size = is_double ? 3 : 2; 12119 switch (opcode) { 12120 case 0x2f: /* FABS */ 12121 case 0x6f: /* FNEG */ 12122 if (size == 3 && !is_q) { 12123 unallocated_encoding(s); 12124 return; 12125 } 12126 break; 12127 case 0x1d: /* SCVTF */ 12128 case 0x5d: /* UCVTF */ 12129 { 12130 bool is_signed = (opcode == 0x1d) ? true : false; 12131 int elements = is_double ? 2 : is_q ? 4 : 2; 12132 if (is_double && !is_q) { 12133 unallocated_encoding(s); 12134 return; 12135 } 12136 if (!fp_access_check(s)) { 12137 return; 12138 } 12139 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12140 return; 12141 } 12142 case 0x2c: /* FCMGT (zero) */ 12143 case 0x2d: /* FCMEQ (zero) */ 12144 case 0x2e: /* FCMLT (zero) */ 12145 case 0x6c: /* FCMGE (zero) */ 12146 case 0x6d: /* FCMLE (zero) */ 12147 if (size == 3 && !is_q) { 12148 unallocated_encoding(s); 12149 return; 12150 } 12151 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12152 return; 12153 case 0x7f: /* FSQRT */ 12154 if (size == 3 && !is_q) { 12155 unallocated_encoding(s); 12156 return; 12157 } 12158 break; 12159 case 0x1a: /* FCVTNS */ 12160 case 0x1b: /* FCVTMS */ 12161 case 0x3a: /* FCVTPS */ 12162 case 0x3b: /* FCVTZS */ 12163 case 0x5a: /* FCVTNU */ 12164 case 0x5b: /* FCVTMU */ 12165 case 0x7a: /* FCVTPU */ 12166 case 0x7b: /* FCVTZU */ 12167 need_fpstatus = true; 12168 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12169 if (size == 3 && !is_q) { 12170 unallocated_encoding(s); 12171 return; 12172 } 12173 break; 12174 case 0x5c: /* FCVTAU */ 12175 case 0x1c: /* FCVTAS */ 12176 need_fpstatus = true; 12177 rmode = FPROUNDING_TIEAWAY; 12178 if (size == 3 && !is_q) { 12179 unallocated_encoding(s); 12180 return; 12181 } 12182 break; 12183 case 0x3c: /* URECPE */ 12184 if (size == 3) { 12185 unallocated_encoding(s); 12186 return; 12187 } 12188 /* fall through */ 12189 case 0x3d: /* FRECPE */ 12190 case 0x7d: /* FRSQRTE */ 12191 if (size == 3 && !is_q) { 12192 unallocated_encoding(s); 12193 return; 12194 } 12195 if (!fp_access_check(s)) { 12196 return; 12197 } 12198 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12199 return; 12200 case 0x56: /* FCVTXN, FCVTXN2 */ 12201 if (size == 2) { 12202 unallocated_encoding(s); 12203 return; 12204 } 12205 /* fall through */ 12206 case 0x16: /* FCVTN, FCVTN2 */ 12207 /* handle_2misc_narrow does a 2*size -> size operation, but these 12208 * instructions encode the source size rather than dest size. 12209 */ 12210 if (!fp_access_check(s)) { 12211 return; 12212 } 12213 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12214 return; 12215 case 0x36: /* BFCVTN, BFCVTN2 */ 12216 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12217 unallocated_encoding(s); 12218 return; 12219 } 12220 if (!fp_access_check(s)) { 12221 return; 12222 } 12223 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12224 return; 12225 case 0x17: /* FCVTL, FCVTL2 */ 12226 if (!fp_access_check(s)) { 12227 return; 12228 } 12229 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12230 return; 12231 case 0x18: /* FRINTN */ 12232 case 0x19: /* FRINTM */ 12233 case 0x38: /* FRINTP */ 12234 case 0x39: /* FRINTZ */ 12235 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12236 /* fall through */ 12237 case 0x59: /* FRINTX */ 12238 case 0x79: /* FRINTI */ 12239 need_fpstatus = true; 12240 if (size == 3 && !is_q) { 12241 unallocated_encoding(s); 12242 return; 12243 } 12244 break; 12245 case 0x58: /* FRINTA */ 12246 rmode = FPROUNDING_TIEAWAY; 12247 need_fpstatus = true; 12248 if (size == 3 && !is_q) { 12249 unallocated_encoding(s); 12250 return; 12251 } 12252 break; 12253 case 0x7c: /* URSQRTE */ 12254 if (size == 3) { 12255 unallocated_encoding(s); 12256 return; 12257 } 12258 break; 12259 case 0x1e: /* FRINT32Z */ 12260 case 0x1f: /* FRINT64Z */ 12261 rmode = FPROUNDING_ZERO; 12262 /* fall through */ 12263 case 0x5e: /* FRINT32X */ 12264 case 0x5f: /* FRINT64X */ 12265 need_fpstatus = true; 12266 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12267 unallocated_encoding(s); 12268 return; 12269 } 12270 break; 12271 default: 12272 unallocated_encoding(s); 12273 return; 12274 } 12275 break; 12276 } 12277 default: 12278 unallocated_encoding(s); 12279 return; 12280 } 12281 12282 if (!fp_access_check(s)) { 12283 return; 12284 } 12285 12286 if (need_fpstatus || rmode >= 0) { 12287 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12288 } else { 12289 tcg_fpstatus = NULL; 12290 } 12291 if (rmode >= 0) { 12292 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12293 } else { 12294 tcg_rmode = NULL; 12295 } 12296 12297 switch (opcode) { 12298 case 0x5: 12299 if (u && size == 0) { /* NOT */ 12300 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12301 return; 12302 } 12303 break; 12304 case 0x8: /* CMGT, CMGE */ 12305 if (u) { 12306 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12307 } else { 12308 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12309 } 12310 return; 12311 case 0x9: /* CMEQ, CMLE */ 12312 if (u) { 12313 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12314 } else { 12315 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12316 } 12317 return; 12318 case 0xa: /* CMLT */ 12319 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12320 return; 12321 case 0xb: 12322 if (u) { /* ABS, NEG */ 12323 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12324 } else { 12325 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12326 } 12327 return; 12328 } 12329 12330 if (size == 3) { 12331 /* All 64-bit element operations can be shared with scalar 2misc */ 12332 int pass; 12333 12334 /* Coverity claims (size == 3 && !is_q) has been eliminated 12335 * from all paths leading to here. 12336 */ 12337 tcg_debug_assert(is_q); 12338 for (pass = 0; pass < 2; pass++) { 12339 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12340 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12341 12342 read_vec_element(s, tcg_op, rn, pass, MO_64); 12343 12344 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12345 tcg_rmode, tcg_fpstatus); 12346 12347 write_vec_element(s, tcg_res, rd, pass, MO_64); 12348 } 12349 } else { 12350 int pass; 12351 12352 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12353 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12354 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12355 12356 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12357 12358 if (size == 2) { 12359 /* Special cases for 32 bit elements */ 12360 switch (opcode) { 12361 case 0x4: /* CLS */ 12362 if (u) { 12363 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12364 } else { 12365 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12366 } 12367 break; 12368 case 0x7: /* SQABS, SQNEG */ 12369 if (u) { 12370 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12371 } else { 12372 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12373 } 12374 break; 12375 case 0x2f: /* FABS */ 12376 gen_helper_vfp_abss(tcg_res, tcg_op); 12377 break; 12378 case 0x6f: /* FNEG */ 12379 gen_helper_vfp_negs(tcg_res, tcg_op); 12380 break; 12381 case 0x7f: /* FSQRT */ 12382 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12383 break; 12384 case 0x1a: /* FCVTNS */ 12385 case 0x1b: /* FCVTMS */ 12386 case 0x1c: /* FCVTAS */ 12387 case 0x3a: /* FCVTPS */ 12388 case 0x3b: /* FCVTZS */ 12389 gen_helper_vfp_tosls(tcg_res, tcg_op, 12390 tcg_constant_i32(0), tcg_fpstatus); 12391 break; 12392 case 0x5a: /* FCVTNU */ 12393 case 0x5b: /* FCVTMU */ 12394 case 0x5c: /* FCVTAU */ 12395 case 0x7a: /* FCVTPU */ 12396 case 0x7b: /* FCVTZU */ 12397 gen_helper_vfp_touls(tcg_res, tcg_op, 12398 tcg_constant_i32(0), tcg_fpstatus); 12399 break; 12400 case 0x18: /* FRINTN */ 12401 case 0x19: /* FRINTM */ 12402 case 0x38: /* FRINTP */ 12403 case 0x39: /* FRINTZ */ 12404 case 0x58: /* FRINTA */ 12405 case 0x79: /* FRINTI */ 12406 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12407 break; 12408 case 0x59: /* FRINTX */ 12409 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12410 break; 12411 case 0x7c: /* URSQRTE */ 12412 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12413 break; 12414 case 0x1e: /* FRINT32Z */ 12415 case 0x5e: /* FRINT32X */ 12416 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12417 break; 12418 case 0x1f: /* FRINT64Z */ 12419 case 0x5f: /* FRINT64X */ 12420 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12421 break; 12422 default: 12423 g_assert_not_reached(); 12424 } 12425 } else { 12426 /* Use helpers for 8 and 16 bit elements */ 12427 switch (opcode) { 12428 case 0x5: /* CNT, RBIT */ 12429 /* For these two insns size is part of the opcode specifier 12430 * (handled earlier); they always operate on byte elements. 12431 */ 12432 if (u) { 12433 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12434 } else { 12435 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12436 } 12437 break; 12438 case 0x7: /* SQABS, SQNEG */ 12439 { 12440 NeonGenOneOpEnvFn *genfn; 12441 static NeonGenOneOpEnvFn * const fns[2][2] = { 12442 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12443 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12444 }; 12445 genfn = fns[size][u]; 12446 genfn(tcg_res, cpu_env, tcg_op); 12447 break; 12448 } 12449 case 0x4: /* CLS, CLZ */ 12450 if (u) { 12451 if (size == 0) { 12452 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12453 } else { 12454 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12455 } 12456 } else { 12457 if (size == 0) { 12458 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12459 } else { 12460 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12461 } 12462 } 12463 break; 12464 default: 12465 g_assert_not_reached(); 12466 } 12467 } 12468 12469 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12470 } 12471 } 12472 clear_vec_high(s, is_q, rd); 12473 12474 if (tcg_rmode) { 12475 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12476 } 12477 } 12478 12479 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12480 * 12481 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12482 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12483 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12484 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12485 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12486 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12487 * 12488 * This actually covers two groups where scalar access is governed by 12489 * bit 28. A bunch of the instructions (float to integral) only exist 12490 * in the vector form and are un-allocated for the scalar decode. Also 12491 * in the scalar decode Q is always 1. 12492 */ 12493 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12494 { 12495 int fpop, opcode, a, u; 12496 int rn, rd; 12497 bool is_q; 12498 bool is_scalar; 12499 bool only_in_vector = false; 12500 12501 int pass; 12502 TCGv_i32 tcg_rmode = NULL; 12503 TCGv_ptr tcg_fpstatus = NULL; 12504 bool need_fpst = true; 12505 int rmode = -1; 12506 12507 if (!dc_isar_feature(aa64_fp16, s)) { 12508 unallocated_encoding(s); 12509 return; 12510 } 12511 12512 rd = extract32(insn, 0, 5); 12513 rn = extract32(insn, 5, 5); 12514 12515 a = extract32(insn, 23, 1); 12516 u = extract32(insn, 29, 1); 12517 is_scalar = extract32(insn, 28, 1); 12518 is_q = extract32(insn, 30, 1); 12519 12520 opcode = extract32(insn, 12, 5); 12521 fpop = deposit32(opcode, 5, 1, a); 12522 fpop = deposit32(fpop, 6, 1, u); 12523 12524 switch (fpop) { 12525 case 0x1d: /* SCVTF */ 12526 case 0x5d: /* UCVTF */ 12527 { 12528 int elements; 12529 12530 if (is_scalar) { 12531 elements = 1; 12532 } else { 12533 elements = (is_q ? 8 : 4); 12534 } 12535 12536 if (!fp_access_check(s)) { 12537 return; 12538 } 12539 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12540 return; 12541 } 12542 break; 12543 case 0x2c: /* FCMGT (zero) */ 12544 case 0x2d: /* FCMEQ (zero) */ 12545 case 0x2e: /* FCMLT (zero) */ 12546 case 0x6c: /* FCMGE (zero) */ 12547 case 0x6d: /* FCMLE (zero) */ 12548 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12549 return; 12550 case 0x3d: /* FRECPE */ 12551 case 0x3f: /* FRECPX */ 12552 break; 12553 case 0x18: /* FRINTN */ 12554 only_in_vector = true; 12555 rmode = FPROUNDING_TIEEVEN; 12556 break; 12557 case 0x19: /* FRINTM */ 12558 only_in_vector = true; 12559 rmode = FPROUNDING_NEGINF; 12560 break; 12561 case 0x38: /* FRINTP */ 12562 only_in_vector = true; 12563 rmode = FPROUNDING_POSINF; 12564 break; 12565 case 0x39: /* FRINTZ */ 12566 only_in_vector = true; 12567 rmode = FPROUNDING_ZERO; 12568 break; 12569 case 0x58: /* FRINTA */ 12570 only_in_vector = true; 12571 rmode = FPROUNDING_TIEAWAY; 12572 break; 12573 case 0x59: /* FRINTX */ 12574 case 0x79: /* FRINTI */ 12575 only_in_vector = true; 12576 /* current rounding mode */ 12577 break; 12578 case 0x1a: /* FCVTNS */ 12579 rmode = FPROUNDING_TIEEVEN; 12580 break; 12581 case 0x1b: /* FCVTMS */ 12582 rmode = FPROUNDING_NEGINF; 12583 break; 12584 case 0x1c: /* FCVTAS */ 12585 rmode = FPROUNDING_TIEAWAY; 12586 break; 12587 case 0x3a: /* FCVTPS */ 12588 rmode = FPROUNDING_POSINF; 12589 break; 12590 case 0x3b: /* FCVTZS */ 12591 rmode = FPROUNDING_ZERO; 12592 break; 12593 case 0x5a: /* FCVTNU */ 12594 rmode = FPROUNDING_TIEEVEN; 12595 break; 12596 case 0x5b: /* FCVTMU */ 12597 rmode = FPROUNDING_NEGINF; 12598 break; 12599 case 0x5c: /* FCVTAU */ 12600 rmode = FPROUNDING_TIEAWAY; 12601 break; 12602 case 0x7a: /* FCVTPU */ 12603 rmode = FPROUNDING_POSINF; 12604 break; 12605 case 0x7b: /* FCVTZU */ 12606 rmode = FPROUNDING_ZERO; 12607 break; 12608 case 0x2f: /* FABS */ 12609 case 0x6f: /* FNEG */ 12610 need_fpst = false; 12611 break; 12612 case 0x7d: /* FRSQRTE */ 12613 case 0x7f: /* FSQRT (vector) */ 12614 break; 12615 default: 12616 unallocated_encoding(s); 12617 return; 12618 } 12619 12620 12621 /* Check additional constraints for the scalar encoding */ 12622 if (is_scalar) { 12623 if (!is_q) { 12624 unallocated_encoding(s); 12625 return; 12626 } 12627 /* FRINTxx is only in the vector form */ 12628 if (only_in_vector) { 12629 unallocated_encoding(s); 12630 return; 12631 } 12632 } 12633 12634 if (!fp_access_check(s)) { 12635 return; 12636 } 12637 12638 if (rmode >= 0 || need_fpst) { 12639 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12640 } 12641 12642 if (rmode >= 0) { 12643 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12644 } 12645 12646 if (is_scalar) { 12647 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12648 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12649 12650 switch (fpop) { 12651 case 0x1a: /* FCVTNS */ 12652 case 0x1b: /* FCVTMS */ 12653 case 0x1c: /* FCVTAS */ 12654 case 0x3a: /* FCVTPS */ 12655 case 0x3b: /* FCVTZS */ 12656 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12657 break; 12658 case 0x3d: /* FRECPE */ 12659 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12660 break; 12661 case 0x3f: /* FRECPX */ 12662 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12663 break; 12664 case 0x5a: /* FCVTNU */ 12665 case 0x5b: /* FCVTMU */ 12666 case 0x5c: /* FCVTAU */ 12667 case 0x7a: /* FCVTPU */ 12668 case 0x7b: /* FCVTZU */ 12669 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12670 break; 12671 case 0x6f: /* FNEG */ 12672 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12673 break; 12674 case 0x7d: /* FRSQRTE */ 12675 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12676 break; 12677 default: 12678 g_assert_not_reached(); 12679 } 12680 12681 /* limit any sign extension going on */ 12682 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12683 write_fp_sreg(s, rd, tcg_res); 12684 } else { 12685 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12686 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12687 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12688 12689 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12690 12691 switch (fpop) { 12692 case 0x1a: /* FCVTNS */ 12693 case 0x1b: /* FCVTMS */ 12694 case 0x1c: /* FCVTAS */ 12695 case 0x3a: /* FCVTPS */ 12696 case 0x3b: /* FCVTZS */ 12697 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12698 break; 12699 case 0x3d: /* FRECPE */ 12700 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12701 break; 12702 case 0x5a: /* FCVTNU */ 12703 case 0x5b: /* FCVTMU */ 12704 case 0x5c: /* FCVTAU */ 12705 case 0x7a: /* FCVTPU */ 12706 case 0x7b: /* FCVTZU */ 12707 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12708 break; 12709 case 0x18: /* FRINTN */ 12710 case 0x19: /* FRINTM */ 12711 case 0x38: /* FRINTP */ 12712 case 0x39: /* FRINTZ */ 12713 case 0x58: /* FRINTA */ 12714 case 0x79: /* FRINTI */ 12715 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12716 break; 12717 case 0x59: /* FRINTX */ 12718 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12719 break; 12720 case 0x2f: /* FABS */ 12721 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12722 break; 12723 case 0x6f: /* FNEG */ 12724 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12725 break; 12726 case 0x7d: /* FRSQRTE */ 12727 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12728 break; 12729 case 0x7f: /* FSQRT */ 12730 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12731 break; 12732 default: 12733 g_assert_not_reached(); 12734 } 12735 12736 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12737 } 12738 12739 clear_vec_high(s, is_q, rd); 12740 } 12741 12742 if (tcg_rmode) { 12743 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12744 } 12745 } 12746 12747 /* AdvSIMD scalar x indexed element 12748 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12749 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12750 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12751 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12752 * AdvSIMD vector x indexed element 12753 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12754 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12755 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12756 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12757 */ 12758 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12759 { 12760 /* This encoding has two kinds of instruction: 12761 * normal, where we perform elt x idxelt => elt for each 12762 * element in the vector 12763 * long, where we perform elt x idxelt and generate a result of 12764 * double the width of the input element 12765 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12766 */ 12767 bool is_scalar = extract32(insn, 28, 1); 12768 bool is_q = extract32(insn, 30, 1); 12769 bool u = extract32(insn, 29, 1); 12770 int size = extract32(insn, 22, 2); 12771 int l = extract32(insn, 21, 1); 12772 int m = extract32(insn, 20, 1); 12773 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12774 int rm = extract32(insn, 16, 4); 12775 int opcode = extract32(insn, 12, 4); 12776 int h = extract32(insn, 11, 1); 12777 int rn = extract32(insn, 5, 5); 12778 int rd = extract32(insn, 0, 5); 12779 bool is_long = false; 12780 int is_fp = 0; 12781 bool is_fp16 = false; 12782 int index; 12783 TCGv_ptr fpst; 12784 12785 switch (16 * u + opcode) { 12786 case 0x08: /* MUL */ 12787 case 0x10: /* MLA */ 12788 case 0x14: /* MLS */ 12789 if (is_scalar) { 12790 unallocated_encoding(s); 12791 return; 12792 } 12793 break; 12794 case 0x02: /* SMLAL, SMLAL2 */ 12795 case 0x12: /* UMLAL, UMLAL2 */ 12796 case 0x06: /* SMLSL, SMLSL2 */ 12797 case 0x16: /* UMLSL, UMLSL2 */ 12798 case 0x0a: /* SMULL, SMULL2 */ 12799 case 0x1a: /* UMULL, UMULL2 */ 12800 if (is_scalar) { 12801 unallocated_encoding(s); 12802 return; 12803 } 12804 is_long = true; 12805 break; 12806 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12807 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12808 case 0x0b: /* SQDMULL, SQDMULL2 */ 12809 is_long = true; 12810 break; 12811 case 0x0c: /* SQDMULH */ 12812 case 0x0d: /* SQRDMULH */ 12813 break; 12814 case 0x01: /* FMLA */ 12815 case 0x05: /* FMLS */ 12816 case 0x09: /* FMUL */ 12817 case 0x19: /* FMULX */ 12818 is_fp = 1; 12819 break; 12820 case 0x1d: /* SQRDMLAH */ 12821 case 0x1f: /* SQRDMLSH */ 12822 if (!dc_isar_feature(aa64_rdm, s)) { 12823 unallocated_encoding(s); 12824 return; 12825 } 12826 break; 12827 case 0x0e: /* SDOT */ 12828 case 0x1e: /* UDOT */ 12829 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12830 unallocated_encoding(s); 12831 return; 12832 } 12833 break; 12834 case 0x0f: 12835 switch (size) { 12836 case 0: /* SUDOT */ 12837 case 2: /* USDOT */ 12838 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12839 unallocated_encoding(s); 12840 return; 12841 } 12842 size = MO_32; 12843 break; 12844 case 1: /* BFDOT */ 12845 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12846 unallocated_encoding(s); 12847 return; 12848 } 12849 size = MO_32; 12850 break; 12851 case 3: /* BFMLAL{B,T} */ 12852 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12853 unallocated_encoding(s); 12854 return; 12855 } 12856 /* can't set is_fp without other incorrect size checks */ 12857 size = MO_16; 12858 break; 12859 default: 12860 unallocated_encoding(s); 12861 return; 12862 } 12863 break; 12864 case 0x11: /* FCMLA #0 */ 12865 case 0x13: /* FCMLA #90 */ 12866 case 0x15: /* FCMLA #180 */ 12867 case 0x17: /* FCMLA #270 */ 12868 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12869 unallocated_encoding(s); 12870 return; 12871 } 12872 is_fp = 2; 12873 break; 12874 case 0x00: /* FMLAL */ 12875 case 0x04: /* FMLSL */ 12876 case 0x18: /* FMLAL2 */ 12877 case 0x1c: /* FMLSL2 */ 12878 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12879 unallocated_encoding(s); 12880 return; 12881 } 12882 size = MO_16; 12883 /* is_fp, but we pass cpu_env not fp_status. */ 12884 break; 12885 default: 12886 unallocated_encoding(s); 12887 return; 12888 } 12889 12890 switch (is_fp) { 12891 case 1: /* normal fp */ 12892 /* convert insn encoded size to MemOp size */ 12893 switch (size) { 12894 case 0: /* half-precision */ 12895 size = MO_16; 12896 is_fp16 = true; 12897 break; 12898 case MO_32: /* single precision */ 12899 case MO_64: /* double precision */ 12900 break; 12901 default: 12902 unallocated_encoding(s); 12903 return; 12904 } 12905 break; 12906 12907 case 2: /* complex fp */ 12908 /* Each indexable element is a complex pair. */ 12909 size += 1; 12910 switch (size) { 12911 case MO_32: 12912 if (h && !is_q) { 12913 unallocated_encoding(s); 12914 return; 12915 } 12916 is_fp16 = true; 12917 break; 12918 case MO_64: 12919 break; 12920 default: 12921 unallocated_encoding(s); 12922 return; 12923 } 12924 break; 12925 12926 default: /* integer */ 12927 switch (size) { 12928 case MO_8: 12929 case MO_64: 12930 unallocated_encoding(s); 12931 return; 12932 } 12933 break; 12934 } 12935 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12936 unallocated_encoding(s); 12937 return; 12938 } 12939 12940 /* Given MemOp size, adjust register and indexing. */ 12941 switch (size) { 12942 case MO_16: 12943 index = h << 2 | l << 1 | m; 12944 break; 12945 case MO_32: 12946 index = h << 1 | l; 12947 rm |= m << 4; 12948 break; 12949 case MO_64: 12950 if (l || !is_q) { 12951 unallocated_encoding(s); 12952 return; 12953 } 12954 index = h; 12955 rm |= m << 4; 12956 break; 12957 default: 12958 g_assert_not_reached(); 12959 } 12960 12961 if (!fp_access_check(s)) { 12962 return; 12963 } 12964 12965 if (is_fp) { 12966 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12967 } else { 12968 fpst = NULL; 12969 } 12970 12971 switch (16 * u + opcode) { 12972 case 0x0e: /* SDOT */ 12973 case 0x1e: /* UDOT */ 12974 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12975 u ? gen_helper_gvec_udot_idx_b 12976 : gen_helper_gvec_sdot_idx_b); 12977 return; 12978 case 0x0f: 12979 switch (extract32(insn, 22, 2)) { 12980 case 0: /* SUDOT */ 12981 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12982 gen_helper_gvec_sudot_idx_b); 12983 return; 12984 case 1: /* BFDOT */ 12985 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12986 gen_helper_gvec_bfdot_idx); 12987 return; 12988 case 2: /* USDOT */ 12989 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12990 gen_helper_gvec_usdot_idx_b); 12991 return; 12992 case 3: /* BFMLAL{B,T} */ 12993 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12994 gen_helper_gvec_bfmlal_idx); 12995 return; 12996 } 12997 g_assert_not_reached(); 12998 case 0x11: /* FCMLA #0 */ 12999 case 0x13: /* FCMLA #90 */ 13000 case 0x15: /* FCMLA #180 */ 13001 case 0x17: /* FCMLA #270 */ 13002 { 13003 int rot = extract32(insn, 13, 2); 13004 int data = (index << 2) | rot; 13005 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13006 vec_full_reg_offset(s, rn), 13007 vec_full_reg_offset(s, rm), 13008 vec_full_reg_offset(s, rd), fpst, 13009 is_q ? 16 : 8, vec_full_reg_size(s), data, 13010 size == MO_64 13011 ? gen_helper_gvec_fcmlas_idx 13012 : gen_helper_gvec_fcmlah_idx); 13013 } 13014 return; 13015 13016 case 0x00: /* FMLAL */ 13017 case 0x04: /* FMLSL */ 13018 case 0x18: /* FMLAL2 */ 13019 case 0x1c: /* FMLSL2 */ 13020 { 13021 int is_s = extract32(opcode, 2, 1); 13022 int is_2 = u; 13023 int data = (index << 2) | (is_2 << 1) | is_s; 13024 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13025 vec_full_reg_offset(s, rn), 13026 vec_full_reg_offset(s, rm), cpu_env, 13027 is_q ? 16 : 8, vec_full_reg_size(s), 13028 data, gen_helper_gvec_fmlal_idx_a64); 13029 } 13030 return; 13031 13032 case 0x08: /* MUL */ 13033 if (!is_long && !is_scalar) { 13034 static gen_helper_gvec_3 * const fns[3] = { 13035 gen_helper_gvec_mul_idx_h, 13036 gen_helper_gvec_mul_idx_s, 13037 gen_helper_gvec_mul_idx_d, 13038 }; 13039 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13040 vec_full_reg_offset(s, rn), 13041 vec_full_reg_offset(s, rm), 13042 is_q ? 16 : 8, vec_full_reg_size(s), 13043 index, fns[size - 1]); 13044 return; 13045 } 13046 break; 13047 13048 case 0x10: /* MLA */ 13049 if (!is_long && !is_scalar) { 13050 static gen_helper_gvec_4 * const fns[3] = { 13051 gen_helper_gvec_mla_idx_h, 13052 gen_helper_gvec_mla_idx_s, 13053 gen_helper_gvec_mla_idx_d, 13054 }; 13055 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13056 vec_full_reg_offset(s, rn), 13057 vec_full_reg_offset(s, rm), 13058 vec_full_reg_offset(s, rd), 13059 is_q ? 16 : 8, vec_full_reg_size(s), 13060 index, fns[size - 1]); 13061 return; 13062 } 13063 break; 13064 13065 case 0x14: /* MLS */ 13066 if (!is_long && !is_scalar) { 13067 static gen_helper_gvec_4 * const fns[3] = { 13068 gen_helper_gvec_mls_idx_h, 13069 gen_helper_gvec_mls_idx_s, 13070 gen_helper_gvec_mls_idx_d, 13071 }; 13072 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13073 vec_full_reg_offset(s, rn), 13074 vec_full_reg_offset(s, rm), 13075 vec_full_reg_offset(s, rd), 13076 is_q ? 16 : 8, vec_full_reg_size(s), 13077 index, fns[size - 1]); 13078 return; 13079 } 13080 break; 13081 } 13082 13083 if (size == 3) { 13084 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13085 int pass; 13086 13087 assert(is_fp && is_q && !is_long); 13088 13089 read_vec_element(s, tcg_idx, rm, index, MO_64); 13090 13091 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13092 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13093 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13094 13095 read_vec_element(s, tcg_op, rn, pass, MO_64); 13096 13097 switch (16 * u + opcode) { 13098 case 0x05: /* FMLS */ 13099 /* As usual for ARM, separate negation for fused multiply-add */ 13100 gen_helper_vfp_negd(tcg_op, tcg_op); 13101 /* fall through */ 13102 case 0x01: /* FMLA */ 13103 read_vec_element(s, tcg_res, rd, pass, MO_64); 13104 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13105 break; 13106 case 0x09: /* FMUL */ 13107 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13108 break; 13109 case 0x19: /* FMULX */ 13110 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13111 break; 13112 default: 13113 g_assert_not_reached(); 13114 } 13115 13116 write_vec_element(s, tcg_res, rd, pass, MO_64); 13117 } 13118 13119 clear_vec_high(s, !is_scalar, rd); 13120 } else if (!is_long) { 13121 /* 32 bit floating point, or 16 or 32 bit integer. 13122 * For the 16 bit scalar case we use the usual Neon helpers and 13123 * rely on the fact that 0 op 0 == 0 with no side effects. 13124 */ 13125 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13126 int pass, maxpasses; 13127 13128 if (is_scalar) { 13129 maxpasses = 1; 13130 } else { 13131 maxpasses = is_q ? 4 : 2; 13132 } 13133 13134 read_vec_element_i32(s, tcg_idx, rm, index, size); 13135 13136 if (size == 1 && !is_scalar) { 13137 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13138 * the index into both halves of the 32 bit tcg_idx and then use 13139 * the usual Neon helpers. 13140 */ 13141 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13142 } 13143 13144 for (pass = 0; pass < maxpasses; pass++) { 13145 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13146 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13147 13148 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13149 13150 switch (16 * u + opcode) { 13151 case 0x08: /* MUL */ 13152 case 0x10: /* MLA */ 13153 case 0x14: /* MLS */ 13154 { 13155 static NeonGenTwoOpFn * const fns[2][2] = { 13156 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13157 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13158 }; 13159 NeonGenTwoOpFn *genfn; 13160 bool is_sub = opcode == 0x4; 13161 13162 if (size == 1) { 13163 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13164 } else { 13165 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13166 } 13167 if (opcode == 0x8) { 13168 break; 13169 } 13170 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13171 genfn = fns[size - 1][is_sub]; 13172 genfn(tcg_res, tcg_op, tcg_res); 13173 break; 13174 } 13175 case 0x05: /* FMLS */ 13176 case 0x01: /* FMLA */ 13177 read_vec_element_i32(s, tcg_res, rd, pass, 13178 is_scalar ? size : MO_32); 13179 switch (size) { 13180 case 1: 13181 if (opcode == 0x5) { 13182 /* As usual for ARM, separate negation for fused 13183 * multiply-add */ 13184 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13185 } 13186 if (is_scalar) { 13187 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13188 tcg_res, fpst); 13189 } else { 13190 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13191 tcg_res, fpst); 13192 } 13193 break; 13194 case 2: 13195 if (opcode == 0x5) { 13196 /* As usual for ARM, separate negation for 13197 * fused multiply-add */ 13198 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13199 } 13200 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13201 tcg_res, fpst); 13202 break; 13203 default: 13204 g_assert_not_reached(); 13205 } 13206 break; 13207 case 0x09: /* FMUL */ 13208 switch (size) { 13209 case 1: 13210 if (is_scalar) { 13211 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13212 tcg_idx, fpst); 13213 } else { 13214 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13215 tcg_idx, fpst); 13216 } 13217 break; 13218 case 2: 13219 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13220 break; 13221 default: 13222 g_assert_not_reached(); 13223 } 13224 break; 13225 case 0x19: /* FMULX */ 13226 switch (size) { 13227 case 1: 13228 if (is_scalar) { 13229 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13230 tcg_idx, fpst); 13231 } else { 13232 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13233 tcg_idx, fpst); 13234 } 13235 break; 13236 case 2: 13237 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13238 break; 13239 default: 13240 g_assert_not_reached(); 13241 } 13242 break; 13243 case 0x0c: /* SQDMULH */ 13244 if (size == 1) { 13245 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13246 tcg_op, tcg_idx); 13247 } else { 13248 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13249 tcg_op, tcg_idx); 13250 } 13251 break; 13252 case 0x0d: /* SQRDMULH */ 13253 if (size == 1) { 13254 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13255 tcg_op, tcg_idx); 13256 } else { 13257 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13258 tcg_op, tcg_idx); 13259 } 13260 break; 13261 case 0x1d: /* SQRDMLAH */ 13262 read_vec_element_i32(s, tcg_res, rd, pass, 13263 is_scalar ? size : MO_32); 13264 if (size == 1) { 13265 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13266 tcg_op, tcg_idx, tcg_res); 13267 } else { 13268 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13269 tcg_op, tcg_idx, tcg_res); 13270 } 13271 break; 13272 case 0x1f: /* SQRDMLSH */ 13273 read_vec_element_i32(s, tcg_res, rd, pass, 13274 is_scalar ? size : MO_32); 13275 if (size == 1) { 13276 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13277 tcg_op, tcg_idx, tcg_res); 13278 } else { 13279 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13280 tcg_op, tcg_idx, tcg_res); 13281 } 13282 break; 13283 default: 13284 g_assert_not_reached(); 13285 } 13286 13287 if (is_scalar) { 13288 write_fp_sreg(s, rd, tcg_res); 13289 } else { 13290 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13291 } 13292 } 13293 13294 clear_vec_high(s, is_q, rd); 13295 } else { 13296 /* long ops: 16x16->32 or 32x32->64 */ 13297 TCGv_i64 tcg_res[2]; 13298 int pass; 13299 bool satop = extract32(opcode, 0, 1); 13300 MemOp memop = MO_32; 13301 13302 if (satop || !u) { 13303 memop |= MO_SIGN; 13304 } 13305 13306 if (size == 2) { 13307 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13308 13309 read_vec_element(s, tcg_idx, rm, index, memop); 13310 13311 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13312 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13313 TCGv_i64 tcg_passres; 13314 int passelt; 13315 13316 if (is_scalar) { 13317 passelt = 0; 13318 } else { 13319 passelt = pass + (is_q * 2); 13320 } 13321 13322 read_vec_element(s, tcg_op, rn, passelt, memop); 13323 13324 tcg_res[pass] = tcg_temp_new_i64(); 13325 13326 if (opcode == 0xa || opcode == 0xb) { 13327 /* Non-accumulating ops */ 13328 tcg_passres = tcg_res[pass]; 13329 } else { 13330 tcg_passres = tcg_temp_new_i64(); 13331 } 13332 13333 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13334 13335 if (satop) { 13336 /* saturating, doubling */ 13337 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13338 tcg_passres, tcg_passres); 13339 } 13340 13341 if (opcode == 0xa || opcode == 0xb) { 13342 continue; 13343 } 13344 13345 /* Accumulating op: handle accumulate step */ 13346 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13347 13348 switch (opcode) { 13349 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13350 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13351 break; 13352 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13353 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13354 break; 13355 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13356 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13357 /* fall through */ 13358 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13359 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13360 tcg_res[pass], 13361 tcg_passres); 13362 break; 13363 default: 13364 g_assert_not_reached(); 13365 } 13366 } 13367 13368 clear_vec_high(s, !is_scalar, rd); 13369 } else { 13370 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13371 13372 assert(size == 1); 13373 read_vec_element_i32(s, tcg_idx, rm, index, size); 13374 13375 if (!is_scalar) { 13376 /* The simplest way to handle the 16x16 indexed ops is to 13377 * duplicate the index into both halves of the 32 bit tcg_idx 13378 * and then use the usual Neon helpers. 13379 */ 13380 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13381 } 13382 13383 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13384 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13385 TCGv_i64 tcg_passres; 13386 13387 if (is_scalar) { 13388 read_vec_element_i32(s, tcg_op, rn, pass, size); 13389 } else { 13390 read_vec_element_i32(s, tcg_op, rn, 13391 pass + (is_q * 2), MO_32); 13392 } 13393 13394 tcg_res[pass] = tcg_temp_new_i64(); 13395 13396 if (opcode == 0xa || opcode == 0xb) { 13397 /* Non-accumulating ops */ 13398 tcg_passres = tcg_res[pass]; 13399 } else { 13400 tcg_passres = tcg_temp_new_i64(); 13401 } 13402 13403 if (memop & MO_SIGN) { 13404 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13405 } else { 13406 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13407 } 13408 if (satop) { 13409 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13410 tcg_passres, tcg_passres); 13411 } 13412 13413 if (opcode == 0xa || opcode == 0xb) { 13414 continue; 13415 } 13416 13417 /* Accumulating op: handle accumulate step */ 13418 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13419 13420 switch (opcode) { 13421 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13422 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13423 tcg_passres); 13424 break; 13425 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13426 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13427 tcg_passres); 13428 break; 13429 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13430 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13431 /* fall through */ 13432 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13433 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13434 tcg_res[pass], 13435 tcg_passres); 13436 break; 13437 default: 13438 g_assert_not_reached(); 13439 } 13440 } 13441 13442 if (is_scalar) { 13443 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13444 } 13445 } 13446 13447 if (is_scalar) { 13448 tcg_res[1] = tcg_constant_i64(0); 13449 } 13450 13451 for (pass = 0; pass < 2; pass++) { 13452 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13453 } 13454 } 13455 } 13456 13457 /* Crypto AES 13458 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13459 * +-----------------+------+-----------+--------+-----+------+------+ 13460 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13461 * +-----------------+------+-----------+--------+-----+------+------+ 13462 */ 13463 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13464 { 13465 int size = extract32(insn, 22, 2); 13466 int opcode = extract32(insn, 12, 5); 13467 int rn = extract32(insn, 5, 5); 13468 int rd = extract32(insn, 0, 5); 13469 int decrypt; 13470 gen_helper_gvec_2 *genfn2 = NULL; 13471 gen_helper_gvec_3 *genfn3 = NULL; 13472 13473 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13474 unallocated_encoding(s); 13475 return; 13476 } 13477 13478 switch (opcode) { 13479 case 0x4: /* AESE */ 13480 decrypt = 0; 13481 genfn3 = gen_helper_crypto_aese; 13482 break; 13483 case 0x6: /* AESMC */ 13484 decrypt = 0; 13485 genfn2 = gen_helper_crypto_aesmc; 13486 break; 13487 case 0x5: /* AESD */ 13488 decrypt = 1; 13489 genfn3 = gen_helper_crypto_aese; 13490 break; 13491 case 0x7: /* AESIMC */ 13492 decrypt = 1; 13493 genfn2 = gen_helper_crypto_aesmc; 13494 break; 13495 default: 13496 unallocated_encoding(s); 13497 return; 13498 } 13499 13500 if (!fp_access_check(s)) { 13501 return; 13502 } 13503 if (genfn2) { 13504 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13505 } else { 13506 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13507 } 13508 } 13509 13510 /* Crypto three-reg SHA 13511 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13512 * +-----------------+------+---+------+---+--------+-----+------+------+ 13513 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13514 * +-----------------+------+---+------+---+--------+-----+------+------+ 13515 */ 13516 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13517 { 13518 int size = extract32(insn, 22, 2); 13519 int opcode = extract32(insn, 12, 3); 13520 int rm = extract32(insn, 16, 5); 13521 int rn = extract32(insn, 5, 5); 13522 int rd = extract32(insn, 0, 5); 13523 gen_helper_gvec_3 *genfn; 13524 bool feature; 13525 13526 if (size != 0) { 13527 unallocated_encoding(s); 13528 return; 13529 } 13530 13531 switch (opcode) { 13532 case 0: /* SHA1C */ 13533 genfn = gen_helper_crypto_sha1c; 13534 feature = dc_isar_feature(aa64_sha1, s); 13535 break; 13536 case 1: /* SHA1P */ 13537 genfn = gen_helper_crypto_sha1p; 13538 feature = dc_isar_feature(aa64_sha1, s); 13539 break; 13540 case 2: /* SHA1M */ 13541 genfn = gen_helper_crypto_sha1m; 13542 feature = dc_isar_feature(aa64_sha1, s); 13543 break; 13544 case 3: /* SHA1SU0 */ 13545 genfn = gen_helper_crypto_sha1su0; 13546 feature = dc_isar_feature(aa64_sha1, s); 13547 break; 13548 case 4: /* SHA256H */ 13549 genfn = gen_helper_crypto_sha256h; 13550 feature = dc_isar_feature(aa64_sha256, s); 13551 break; 13552 case 5: /* SHA256H2 */ 13553 genfn = gen_helper_crypto_sha256h2; 13554 feature = dc_isar_feature(aa64_sha256, s); 13555 break; 13556 case 6: /* SHA256SU1 */ 13557 genfn = gen_helper_crypto_sha256su1; 13558 feature = dc_isar_feature(aa64_sha256, s); 13559 break; 13560 default: 13561 unallocated_encoding(s); 13562 return; 13563 } 13564 13565 if (!feature) { 13566 unallocated_encoding(s); 13567 return; 13568 } 13569 13570 if (!fp_access_check(s)) { 13571 return; 13572 } 13573 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13574 } 13575 13576 /* Crypto two-reg SHA 13577 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13578 * +-----------------+------+-----------+--------+-----+------+------+ 13579 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13580 * +-----------------+------+-----------+--------+-----+------+------+ 13581 */ 13582 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13583 { 13584 int size = extract32(insn, 22, 2); 13585 int opcode = extract32(insn, 12, 5); 13586 int rn = extract32(insn, 5, 5); 13587 int rd = extract32(insn, 0, 5); 13588 gen_helper_gvec_2 *genfn; 13589 bool feature; 13590 13591 if (size != 0) { 13592 unallocated_encoding(s); 13593 return; 13594 } 13595 13596 switch (opcode) { 13597 case 0: /* SHA1H */ 13598 feature = dc_isar_feature(aa64_sha1, s); 13599 genfn = gen_helper_crypto_sha1h; 13600 break; 13601 case 1: /* SHA1SU1 */ 13602 feature = dc_isar_feature(aa64_sha1, s); 13603 genfn = gen_helper_crypto_sha1su1; 13604 break; 13605 case 2: /* SHA256SU0 */ 13606 feature = dc_isar_feature(aa64_sha256, s); 13607 genfn = gen_helper_crypto_sha256su0; 13608 break; 13609 default: 13610 unallocated_encoding(s); 13611 return; 13612 } 13613 13614 if (!feature) { 13615 unallocated_encoding(s); 13616 return; 13617 } 13618 13619 if (!fp_access_check(s)) { 13620 return; 13621 } 13622 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13623 } 13624 13625 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13626 { 13627 tcg_gen_rotli_i64(d, m, 1); 13628 tcg_gen_xor_i64(d, d, n); 13629 } 13630 13631 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13632 { 13633 tcg_gen_rotli_vec(vece, d, m, 1); 13634 tcg_gen_xor_vec(vece, d, d, n); 13635 } 13636 13637 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13638 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13639 { 13640 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13641 static const GVecGen3 op = { 13642 .fni8 = gen_rax1_i64, 13643 .fniv = gen_rax1_vec, 13644 .opt_opc = vecop_list, 13645 .fno = gen_helper_crypto_rax1, 13646 .vece = MO_64, 13647 }; 13648 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13649 } 13650 13651 /* Crypto three-reg SHA512 13652 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13653 * +-----------------------+------+---+---+-----+--------+------+------+ 13654 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13655 * +-----------------------+------+---+---+-----+--------+------+------+ 13656 */ 13657 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13658 { 13659 int opcode = extract32(insn, 10, 2); 13660 int o = extract32(insn, 14, 1); 13661 int rm = extract32(insn, 16, 5); 13662 int rn = extract32(insn, 5, 5); 13663 int rd = extract32(insn, 0, 5); 13664 bool feature; 13665 gen_helper_gvec_3 *oolfn = NULL; 13666 GVecGen3Fn *gvecfn = NULL; 13667 13668 if (o == 0) { 13669 switch (opcode) { 13670 case 0: /* SHA512H */ 13671 feature = dc_isar_feature(aa64_sha512, s); 13672 oolfn = gen_helper_crypto_sha512h; 13673 break; 13674 case 1: /* SHA512H2 */ 13675 feature = dc_isar_feature(aa64_sha512, s); 13676 oolfn = gen_helper_crypto_sha512h2; 13677 break; 13678 case 2: /* SHA512SU1 */ 13679 feature = dc_isar_feature(aa64_sha512, s); 13680 oolfn = gen_helper_crypto_sha512su1; 13681 break; 13682 case 3: /* RAX1 */ 13683 feature = dc_isar_feature(aa64_sha3, s); 13684 gvecfn = gen_gvec_rax1; 13685 break; 13686 default: 13687 g_assert_not_reached(); 13688 } 13689 } else { 13690 switch (opcode) { 13691 case 0: /* SM3PARTW1 */ 13692 feature = dc_isar_feature(aa64_sm3, s); 13693 oolfn = gen_helper_crypto_sm3partw1; 13694 break; 13695 case 1: /* SM3PARTW2 */ 13696 feature = dc_isar_feature(aa64_sm3, s); 13697 oolfn = gen_helper_crypto_sm3partw2; 13698 break; 13699 case 2: /* SM4EKEY */ 13700 feature = dc_isar_feature(aa64_sm4, s); 13701 oolfn = gen_helper_crypto_sm4ekey; 13702 break; 13703 default: 13704 unallocated_encoding(s); 13705 return; 13706 } 13707 } 13708 13709 if (!feature) { 13710 unallocated_encoding(s); 13711 return; 13712 } 13713 13714 if (!fp_access_check(s)) { 13715 return; 13716 } 13717 13718 if (oolfn) { 13719 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13720 } else { 13721 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13722 } 13723 } 13724 13725 /* Crypto two-reg SHA512 13726 * 31 12 11 10 9 5 4 0 13727 * +-----------------------------------------+--------+------+------+ 13728 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13729 * +-----------------------------------------+--------+------+------+ 13730 */ 13731 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13732 { 13733 int opcode = extract32(insn, 10, 2); 13734 int rn = extract32(insn, 5, 5); 13735 int rd = extract32(insn, 0, 5); 13736 bool feature; 13737 13738 switch (opcode) { 13739 case 0: /* SHA512SU0 */ 13740 feature = dc_isar_feature(aa64_sha512, s); 13741 break; 13742 case 1: /* SM4E */ 13743 feature = dc_isar_feature(aa64_sm4, s); 13744 break; 13745 default: 13746 unallocated_encoding(s); 13747 return; 13748 } 13749 13750 if (!feature) { 13751 unallocated_encoding(s); 13752 return; 13753 } 13754 13755 if (!fp_access_check(s)) { 13756 return; 13757 } 13758 13759 switch (opcode) { 13760 case 0: /* SHA512SU0 */ 13761 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13762 break; 13763 case 1: /* SM4E */ 13764 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13765 break; 13766 default: 13767 g_assert_not_reached(); 13768 } 13769 } 13770 13771 /* Crypto four-register 13772 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13773 * +-------------------+-----+------+---+------+------+------+ 13774 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13775 * +-------------------+-----+------+---+------+------+------+ 13776 */ 13777 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13778 { 13779 int op0 = extract32(insn, 21, 2); 13780 int rm = extract32(insn, 16, 5); 13781 int ra = extract32(insn, 10, 5); 13782 int rn = extract32(insn, 5, 5); 13783 int rd = extract32(insn, 0, 5); 13784 bool feature; 13785 13786 switch (op0) { 13787 case 0: /* EOR3 */ 13788 case 1: /* BCAX */ 13789 feature = dc_isar_feature(aa64_sha3, s); 13790 break; 13791 case 2: /* SM3SS1 */ 13792 feature = dc_isar_feature(aa64_sm3, s); 13793 break; 13794 default: 13795 unallocated_encoding(s); 13796 return; 13797 } 13798 13799 if (!feature) { 13800 unallocated_encoding(s); 13801 return; 13802 } 13803 13804 if (!fp_access_check(s)) { 13805 return; 13806 } 13807 13808 if (op0 < 2) { 13809 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13810 int pass; 13811 13812 tcg_op1 = tcg_temp_new_i64(); 13813 tcg_op2 = tcg_temp_new_i64(); 13814 tcg_op3 = tcg_temp_new_i64(); 13815 tcg_res[0] = tcg_temp_new_i64(); 13816 tcg_res[1] = tcg_temp_new_i64(); 13817 13818 for (pass = 0; pass < 2; pass++) { 13819 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13820 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13821 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13822 13823 if (op0 == 0) { 13824 /* EOR3 */ 13825 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13826 } else { 13827 /* BCAX */ 13828 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13829 } 13830 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13831 } 13832 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13833 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13834 } else { 13835 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13836 13837 tcg_op1 = tcg_temp_new_i32(); 13838 tcg_op2 = tcg_temp_new_i32(); 13839 tcg_op3 = tcg_temp_new_i32(); 13840 tcg_res = tcg_temp_new_i32(); 13841 tcg_zero = tcg_constant_i32(0); 13842 13843 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13844 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13845 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13846 13847 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13848 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13849 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13850 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13851 13852 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13853 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13854 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13855 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13856 } 13857 } 13858 13859 /* Crypto XAR 13860 * 31 21 20 16 15 10 9 5 4 0 13861 * +-----------------------+------+--------+------+------+ 13862 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13863 * +-----------------------+------+--------+------+------+ 13864 */ 13865 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13866 { 13867 int rm = extract32(insn, 16, 5); 13868 int imm6 = extract32(insn, 10, 6); 13869 int rn = extract32(insn, 5, 5); 13870 int rd = extract32(insn, 0, 5); 13871 13872 if (!dc_isar_feature(aa64_sha3, s)) { 13873 unallocated_encoding(s); 13874 return; 13875 } 13876 13877 if (!fp_access_check(s)) { 13878 return; 13879 } 13880 13881 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13882 vec_full_reg_offset(s, rn), 13883 vec_full_reg_offset(s, rm), imm6, 16, 13884 vec_full_reg_size(s)); 13885 } 13886 13887 /* Crypto three-reg imm2 13888 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13889 * +-----------------------+------+-----+------+--------+------+------+ 13890 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13891 * +-----------------------+------+-----+------+--------+------+------+ 13892 */ 13893 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13894 { 13895 static gen_helper_gvec_3 * const fns[4] = { 13896 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13897 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13898 }; 13899 int opcode = extract32(insn, 10, 2); 13900 int imm2 = extract32(insn, 12, 2); 13901 int rm = extract32(insn, 16, 5); 13902 int rn = extract32(insn, 5, 5); 13903 int rd = extract32(insn, 0, 5); 13904 13905 if (!dc_isar_feature(aa64_sm3, s)) { 13906 unallocated_encoding(s); 13907 return; 13908 } 13909 13910 if (!fp_access_check(s)) { 13911 return; 13912 } 13913 13914 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13915 } 13916 13917 /* C3.6 Data processing - SIMD, inc Crypto 13918 * 13919 * As the decode gets a little complex we are using a table based 13920 * approach for this part of the decode. 13921 */ 13922 static const AArch64DecodeTable data_proc_simd[] = { 13923 /* pattern , mask , fn */ 13924 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13925 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13926 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13927 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13928 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13929 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13930 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13931 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13932 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13933 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13934 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13935 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13936 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13937 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13938 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13939 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13940 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13941 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13942 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13943 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13944 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13945 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13946 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13947 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13948 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13949 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13950 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13951 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13952 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13953 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13954 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13955 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13956 { 0x00000000, 0x00000000, NULL } 13957 }; 13958 13959 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13960 { 13961 /* Note that this is called with all non-FP cases from 13962 * table C3-6 so it must UNDEF for entries not specifically 13963 * allocated to instructions in that table. 13964 */ 13965 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13966 if (fn) { 13967 fn(s, insn); 13968 } else { 13969 unallocated_encoding(s); 13970 } 13971 } 13972 13973 /* C3.6 Data processing - SIMD and floating point */ 13974 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13975 { 13976 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13977 disas_data_proc_fp(s, insn); 13978 } else { 13979 /* SIMD, including crypto */ 13980 disas_data_proc_simd(s, insn); 13981 } 13982 } 13983 13984 static bool trans_OK(DisasContext *s, arg_OK *a) 13985 { 13986 return true; 13987 } 13988 13989 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13990 { 13991 s->is_nonstreaming = true; 13992 return true; 13993 } 13994 13995 /** 13996 * is_guarded_page: 13997 * @env: The cpu environment 13998 * @s: The DisasContext 13999 * 14000 * Return true if the page is guarded. 14001 */ 14002 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14003 { 14004 uint64_t addr = s->base.pc_first; 14005 #ifdef CONFIG_USER_ONLY 14006 return page_get_flags(addr) & PAGE_BTI; 14007 #else 14008 CPUTLBEntryFull *full; 14009 void *host; 14010 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14011 int flags; 14012 14013 /* 14014 * We test this immediately after reading an insn, which means 14015 * that the TLB entry must be present and valid, and thus this 14016 * access will never raise an exception. 14017 */ 14018 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14019 false, &host, &full, 0); 14020 assert(!(flags & TLB_INVALID_MASK)); 14021 14022 return full->guarded; 14023 #endif 14024 } 14025 14026 /** 14027 * btype_destination_ok: 14028 * @insn: The instruction at the branch destination 14029 * @bt: SCTLR_ELx.BT 14030 * @btype: PSTATE.BTYPE, and is non-zero 14031 * 14032 * On a guarded page, there are a limited number of insns 14033 * that may be present at the branch target: 14034 * - branch target identifiers, 14035 * - paciasp, pacibsp, 14036 * - BRK insn 14037 * - HLT insn 14038 * Anything else causes a Branch Target Exception. 14039 * 14040 * Return true if the branch is compatible, false to raise BTITRAP. 14041 */ 14042 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14043 { 14044 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14045 /* HINT space */ 14046 switch (extract32(insn, 5, 7)) { 14047 case 0b011001: /* PACIASP */ 14048 case 0b011011: /* PACIBSP */ 14049 /* 14050 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14051 * with btype == 3. Otherwise all btype are ok. 14052 */ 14053 return !bt || btype != 3; 14054 case 0b100000: /* BTI */ 14055 /* Not compatible with any btype. */ 14056 return false; 14057 case 0b100010: /* BTI c */ 14058 /* Not compatible with btype == 3 */ 14059 return btype != 3; 14060 case 0b100100: /* BTI j */ 14061 /* Not compatible with btype == 2 */ 14062 return btype != 2; 14063 case 0b100110: /* BTI jc */ 14064 /* Compatible with any btype. */ 14065 return true; 14066 } 14067 } else { 14068 switch (insn & 0xffe0001fu) { 14069 case 0xd4200000u: /* BRK */ 14070 case 0xd4400000u: /* HLT */ 14071 /* Give priority to the breakpoint exception. */ 14072 return true; 14073 } 14074 } 14075 return false; 14076 } 14077 14078 /* C3.1 A64 instruction index by encoding */ 14079 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14080 { 14081 switch (extract32(insn, 25, 4)) { 14082 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14083 disas_b_exc_sys(s, insn); 14084 break; 14085 case 0x4: 14086 case 0x6: 14087 case 0xc: 14088 case 0xe: /* Loads and stores */ 14089 disas_ldst(s, insn); 14090 break; 14091 case 0x5: 14092 case 0xd: /* Data processing - register */ 14093 disas_data_proc_reg(s, insn); 14094 break; 14095 case 0x7: 14096 case 0xf: /* Data processing - SIMD and floating point */ 14097 disas_data_proc_simd_fp(s, insn); 14098 break; 14099 default: 14100 unallocated_encoding(s); 14101 break; 14102 } 14103 } 14104 14105 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14106 CPUState *cpu) 14107 { 14108 DisasContext *dc = container_of(dcbase, DisasContext, base); 14109 CPUARMState *env = cpu->env_ptr; 14110 ARMCPU *arm_cpu = env_archcpu(env); 14111 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14112 int bound, core_mmu_idx; 14113 14114 dc->isar = &arm_cpu->isar; 14115 dc->condjmp = 0; 14116 dc->pc_save = dc->base.pc_first; 14117 dc->aarch64 = true; 14118 dc->thumb = false; 14119 dc->sctlr_b = 0; 14120 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14121 dc->condexec_mask = 0; 14122 dc->condexec_cond = 0; 14123 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14124 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14125 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14126 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14127 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14128 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14129 #if !defined(CONFIG_USER_ONLY) 14130 dc->user = (dc->current_el == 0); 14131 #endif 14132 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14133 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14134 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14135 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14136 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14137 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14138 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14139 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14140 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14141 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14142 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14143 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14144 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14145 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14146 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14147 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14148 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14149 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14150 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14151 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14152 dc->vec_len = 0; 14153 dc->vec_stride = 0; 14154 dc->cp_regs = arm_cpu->cp_regs; 14155 dc->features = env->features; 14156 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14157 14158 #ifdef CONFIG_USER_ONLY 14159 /* In sve_probe_page, we assume TBI is enabled. */ 14160 tcg_debug_assert(dc->tbid & 1); 14161 #endif 14162 14163 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14164 14165 /* Single step state. The code-generation logic here is: 14166 * SS_ACTIVE == 0: 14167 * generate code with no special handling for single-stepping (except 14168 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14169 * this happens anyway because those changes are all system register or 14170 * PSTATE writes). 14171 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14172 * emit code for one insn 14173 * emit code to clear PSTATE.SS 14174 * emit code to generate software step exception for completed step 14175 * end TB (as usual for having generated an exception) 14176 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14177 * emit code to generate a software step exception 14178 * end the TB 14179 */ 14180 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14181 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14182 dc->is_ldex = false; 14183 14184 /* Bound the number of insns to execute to those left on the page. */ 14185 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14186 14187 /* If architectural single step active, limit to 1. */ 14188 if (dc->ss_active) { 14189 bound = 1; 14190 } 14191 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14192 } 14193 14194 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14195 { 14196 } 14197 14198 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14199 { 14200 DisasContext *dc = container_of(dcbase, DisasContext, base); 14201 target_ulong pc_arg = dc->base.pc_next; 14202 14203 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14204 pc_arg &= ~TARGET_PAGE_MASK; 14205 } 14206 tcg_gen_insn_start(pc_arg, 0, 0); 14207 dc->insn_start = tcg_last_op(); 14208 } 14209 14210 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14211 { 14212 DisasContext *s = container_of(dcbase, DisasContext, base); 14213 CPUARMState *env = cpu->env_ptr; 14214 uint64_t pc = s->base.pc_next; 14215 uint32_t insn; 14216 14217 /* Singlestep exceptions have the highest priority. */ 14218 if (s->ss_active && !s->pstate_ss) { 14219 /* Singlestep state is Active-pending. 14220 * If we're in this state at the start of a TB then either 14221 * a) we just took an exception to an EL which is being debugged 14222 * and this is the first insn in the exception handler 14223 * b) debug exceptions were masked and we just unmasked them 14224 * without changing EL (eg by clearing PSTATE.D) 14225 * In either case we're going to take a swstep exception in the 14226 * "did not step an insn" case, and so the syndrome ISV and EX 14227 * bits should be zero. 14228 */ 14229 assert(s->base.num_insns == 1); 14230 gen_swstep_exception(s, 0, 0); 14231 s->base.is_jmp = DISAS_NORETURN; 14232 s->base.pc_next = pc + 4; 14233 return; 14234 } 14235 14236 if (pc & 3) { 14237 /* 14238 * PC alignment fault. This has priority over the instruction abort 14239 * that we would receive from a translation fault via arm_ldl_code. 14240 * This should only be possible after an indirect branch, at the 14241 * start of the TB. 14242 */ 14243 assert(s->base.num_insns == 1); 14244 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14245 s->base.is_jmp = DISAS_NORETURN; 14246 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14247 return; 14248 } 14249 14250 s->pc_curr = pc; 14251 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14252 s->insn = insn; 14253 s->base.pc_next = pc + 4; 14254 14255 s->fp_access_checked = false; 14256 s->sve_access_checked = false; 14257 14258 if (s->pstate_il) { 14259 /* 14260 * Illegal execution state. This has priority over BTI 14261 * exceptions, but comes after instruction abort exceptions. 14262 */ 14263 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14264 return; 14265 } 14266 14267 if (dc_isar_feature(aa64_bti, s)) { 14268 if (s->base.num_insns == 1) { 14269 /* 14270 * At the first insn of the TB, compute s->guarded_page. 14271 * We delayed computing this until successfully reading 14272 * the first insn of the TB, above. This (mostly) ensures 14273 * that the softmmu tlb entry has been populated, and the 14274 * page table GP bit is available. 14275 * 14276 * Note that we need to compute this even if btype == 0, 14277 * because this value is used for BR instructions later 14278 * where ENV is not available. 14279 */ 14280 s->guarded_page = is_guarded_page(env, s); 14281 14282 /* First insn can have btype set to non-zero. */ 14283 tcg_debug_assert(s->btype >= 0); 14284 14285 /* 14286 * Note that the Branch Target Exception has fairly high 14287 * priority -- below debugging exceptions but above most 14288 * everything else. This allows us to handle this now 14289 * instead of waiting until the insn is otherwise decoded. 14290 */ 14291 if (s->btype != 0 14292 && s->guarded_page 14293 && !btype_destination_ok(insn, s->bt, s->btype)) { 14294 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14295 return; 14296 } 14297 } else { 14298 /* Not the first insn: btype must be 0. */ 14299 tcg_debug_assert(s->btype == 0); 14300 } 14301 } 14302 14303 s->is_nonstreaming = false; 14304 if (s->sme_trap_nonstreaming) { 14305 disas_sme_fa64(s, insn); 14306 } 14307 14308 if (!disas_a64(s, insn) && 14309 !disas_sme(s, insn) && 14310 !disas_sve(s, insn)) { 14311 disas_a64_legacy(s, insn); 14312 } 14313 14314 /* 14315 * After execution of most insns, btype is reset to 0. 14316 * Note that we set btype == -1 when the insn sets btype. 14317 */ 14318 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14319 reset_btype(s); 14320 } 14321 } 14322 14323 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14324 { 14325 DisasContext *dc = container_of(dcbase, DisasContext, base); 14326 14327 if (unlikely(dc->ss_active)) { 14328 /* Note that this means single stepping WFI doesn't halt the CPU. 14329 * For conditional branch insns this is harmless unreachable code as 14330 * gen_goto_tb() has already handled emitting the debug exception 14331 * (and thus a tb-jump is not possible when singlestepping). 14332 */ 14333 switch (dc->base.is_jmp) { 14334 default: 14335 gen_a64_update_pc(dc, 4); 14336 /* fall through */ 14337 case DISAS_EXIT: 14338 case DISAS_JUMP: 14339 gen_step_complete_exception(dc); 14340 break; 14341 case DISAS_NORETURN: 14342 break; 14343 } 14344 } else { 14345 switch (dc->base.is_jmp) { 14346 case DISAS_NEXT: 14347 case DISAS_TOO_MANY: 14348 gen_goto_tb(dc, 1, 4); 14349 break; 14350 default: 14351 case DISAS_UPDATE_EXIT: 14352 gen_a64_update_pc(dc, 4); 14353 /* fall through */ 14354 case DISAS_EXIT: 14355 tcg_gen_exit_tb(NULL, 0); 14356 break; 14357 case DISAS_UPDATE_NOCHAIN: 14358 gen_a64_update_pc(dc, 4); 14359 /* fall through */ 14360 case DISAS_JUMP: 14361 tcg_gen_lookup_and_goto_ptr(); 14362 break; 14363 case DISAS_NORETURN: 14364 case DISAS_SWI: 14365 break; 14366 case DISAS_WFE: 14367 gen_a64_update_pc(dc, 4); 14368 gen_helper_wfe(cpu_env); 14369 break; 14370 case DISAS_YIELD: 14371 gen_a64_update_pc(dc, 4); 14372 gen_helper_yield(cpu_env); 14373 break; 14374 case DISAS_WFI: 14375 /* 14376 * This is a special case because we don't want to just halt 14377 * the CPU if trying to debug across a WFI. 14378 */ 14379 gen_a64_update_pc(dc, 4); 14380 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14381 /* 14382 * The helper doesn't necessarily throw an exception, but we 14383 * must go back to the main loop to check for interrupts anyway. 14384 */ 14385 tcg_gen_exit_tb(NULL, 0); 14386 break; 14387 } 14388 } 14389 } 14390 14391 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14392 CPUState *cpu, FILE *logfile) 14393 { 14394 DisasContext *dc = container_of(dcbase, DisasContext, base); 14395 14396 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14397 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14398 } 14399 14400 const TranslatorOps aarch64_translator_ops = { 14401 .init_disas_context = aarch64_tr_init_disas_context, 14402 .tb_start = aarch64_tr_tb_start, 14403 .insn_start = aarch64_tr_insn_start, 14404 .translate_insn = aarch64_tr_translate_insn, 14405 .tb_stop = aarch64_tr_tb_stop, 14406 .disas_log = aarch64_tr_disas_log, 14407 }; 14408