xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 372b7ec3)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30 #include "semihosting/semihost.h"
31 #include "exec/gen-icount.h"
32 #include "exec/helper-proto.h"
33 #include "exec/helper-gen.h"
34 #include "exec/log.h"
35 #include "cpregs.h"
36 #include "translate-a64.h"
37 #include "qemu/atomic128.h"
38 
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
41 
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
44 
45 static const char *regnames[] = {
46     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
47     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
48     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
49     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
50 };
51 
52 enum a64_shift_type {
53     A64_SHIFT_TYPE_LSL = 0,
54     A64_SHIFT_TYPE_LSR = 1,
55     A64_SHIFT_TYPE_ASR = 2,
56     A64_SHIFT_TYPE_ROR = 3
57 };
58 
59 /*
60  * Include the generated decoders.
61  */
62 
63 #include "decode-sme-fa64.c.inc"
64 #include "decode-a64.c.inc"
65 
66 /* Table based decoder typedefs - used when the relevant bits for decode
67  * are too awkwardly scattered across the instruction (eg SIMD).
68  */
69 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
70 
71 typedef struct AArch64DecodeTable {
72     uint32_t pattern;
73     uint32_t mask;
74     AArch64DecodeFn *disas_fn;
75 } AArch64DecodeTable;
76 
77 /* initialize TCG globals.  */
78 void a64_translate_init(void)
79 {
80     int i;
81 
82     cpu_pc = tcg_global_mem_new_i64(cpu_env,
83                                     offsetof(CPUARMState, pc),
84                                     "pc");
85     for (i = 0; i < 32; i++) {
86         cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
87                                           offsetof(CPUARMState, xregs[i]),
88                                           regnames[i]);
89     }
90 
91     cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
92         offsetof(CPUARMState, exclusive_high), "exclusive_high");
93 }
94 
95 /*
96  * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
97  */
98 static int get_a64_user_mem_index(DisasContext *s)
99 {
100     /*
101      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
102      * which is the usual mmu_idx for this cpu state.
103      */
104     ARMMMUIdx useridx = s->mmu_idx;
105 
106     if (s->unpriv) {
107         /*
108          * We have pre-computed the condition for AccType_UNPRIV.
109          * Therefore we should never get here with a mmu_idx for
110          * which we do not know the corresponding user mmu_idx.
111          */
112         switch (useridx) {
113         case ARMMMUIdx_E10_1:
114         case ARMMMUIdx_E10_1_PAN:
115             useridx = ARMMMUIdx_E10_0;
116             break;
117         case ARMMMUIdx_E20_2:
118         case ARMMMUIdx_E20_2_PAN:
119             useridx = ARMMMUIdx_E20_0;
120             break;
121         default:
122             g_assert_not_reached();
123         }
124     }
125     return arm_to_core_mmu_idx(useridx);
126 }
127 
128 static void set_btype_raw(int val)
129 {
130     tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
131                    offsetof(CPUARMState, btype));
132 }
133 
134 static void set_btype(DisasContext *s, int val)
135 {
136     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
137     tcg_debug_assert(val >= 1 && val <= 3);
138     set_btype_raw(val);
139     s->btype = -1;
140 }
141 
142 static void reset_btype(DisasContext *s)
143 {
144     if (s->btype != 0) {
145         set_btype_raw(0);
146         s->btype = 0;
147     }
148 }
149 
150 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
151 {
152     assert(s->pc_save != -1);
153     if (tb_cflags(s->base.tb) & CF_PCREL) {
154         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
155     } else {
156         tcg_gen_movi_i64(dest, s->pc_curr + diff);
157     }
158 }
159 
160 void gen_a64_update_pc(DisasContext *s, target_long diff)
161 {
162     gen_pc_plus_diff(s, cpu_pc, diff);
163     s->pc_save = s->pc_curr + diff;
164 }
165 
166 /*
167  * Handle Top Byte Ignore (TBI) bits.
168  *
169  * If address tagging is enabled via the TCR TBI bits:
170  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
171  *    then the address is zero-extended, clearing bits [63:56]
172  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
173  *    and TBI1 controls addressses with bit 55 == 1.
174  *    If the appropriate TBI bit is set for the address then
175  *    the address is sign-extended from bit 55 into bits [63:56]
176  *
177  * Here We have concatenated TBI{1,0} into tbi.
178  */
179 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
180                                 TCGv_i64 src, int tbi)
181 {
182     if (tbi == 0) {
183         /* Load unmodified address */
184         tcg_gen_mov_i64(dst, src);
185     } else if (!regime_has_2_ranges(s->mmu_idx)) {
186         /* Force tag byte to all zero */
187         tcg_gen_extract_i64(dst, src, 0, 56);
188     } else {
189         /* Sign-extend from bit 55.  */
190         tcg_gen_sextract_i64(dst, src, 0, 56);
191 
192         switch (tbi) {
193         case 1:
194             /* tbi0 but !tbi1: only use the extension if positive */
195             tcg_gen_and_i64(dst, dst, src);
196             break;
197         case 2:
198             /* !tbi0 but tbi1: only use the extension if negative */
199             tcg_gen_or_i64(dst, dst, src);
200             break;
201         case 3:
202             /* tbi0 and tbi1: always use the extension */
203             break;
204         default:
205             g_assert_not_reached();
206         }
207     }
208 }
209 
210 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
211 {
212     /*
213      * If address tagging is enabled for instructions via the TCR TBI bits,
214      * then loading an address into the PC will clear out any tag.
215      */
216     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
217     s->pc_save = -1;
218 }
219 
220 /*
221  * Handle MTE and/or TBI.
222  *
223  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
224  * for the tag to be present in the FAR_ELx register.  But for user-only
225  * mode we do not have a TLB with which to implement this, so we must
226  * remove the top byte now.
227  *
228  * Always return a fresh temporary that we can increment independently
229  * of the write-back address.
230  */
231 
232 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
233 {
234     TCGv_i64 clean = tcg_temp_new_i64();
235 #ifdef CONFIG_USER_ONLY
236     gen_top_byte_ignore(s, clean, addr, s->tbid);
237 #else
238     tcg_gen_mov_i64(clean, addr);
239 #endif
240     return clean;
241 }
242 
243 /* Insert a zero tag into src, with the result at dst. */
244 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
245 {
246     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
247 }
248 
249 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
250                              MMUAccessType acc, int log2_size)
251 {
252     gen_helper_probe_access(cpu_env, ptr,
253                             tcg_constant_i32(acc),
254                             tcg_constant_i32(get_mem_index(s)),
255                             tcg_constant_i32(1 << log2_size));
256 }
257 
258 /*
259  * For MTE, check a single logical or atomic access.  This probes a single
260  * address, the exact one specified.  The size and alignment of the access
261  * is not relevant to MTE, per se, but watchpoints do require the size,
262  * and we want to recognize those before making any other changes to state.
263  */
264 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
265                                       bool is_write, bool tag_checked,
266                                       int log2_size, bool is_unpriv,
267                                       int core_idx)
268 {
269     if (tag_checked && s->mte_active[is_unpriv]) {
270         TCGv_i64 ret;
271         int desc = 0;
272 
273         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
274         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
275         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
276         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
277         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
278 
279         ret = tcg_temp_new_i64();
280         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
281 
282         return ret;
283     }
284     return clean_data_tbi(s, addr);
285 }
286 
287 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
288                         bool tag_checked, int log2_size)
289 {
290     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
291                                  false, get_mem_index(s));
292 }
293 
294 /*
295  * For MTE, check multiple logical sequential accesses.
296  */
297 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
298                         bool tag_checked, int size)
299 {
300     if (tag_checked && s->mte_active[0]) {
301         TCGv_i64 ret;
302         int desc = 0;
303 
304         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
305         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
306         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
307         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
308         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
309 
310         ret = tcg_temp_new_i64();
311         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
312 
313         return ret;
314     }
315     return clean_data_tbi(s, addr);
316 }
317 
318 typedef struct DisasCompare64 {
319     TCGCond cond;
320     TCGv_i64 value;
321 } DisasCompare64;
322 
323 static void a64_test_cc(DisasCompare64 *c64, int cc)
324 {
325     DisasCompare c32;
326 
327     arm_test_cc(&c32, cc);
328 
329     /*
330      * Sign-extend the 32-bit value so that the GE/LT comparisons work
331      * properly.  The NE/EQ comparisons are also fine with this choice.
332       */
333     c64->cond = c32.cond;
334     c64->value = tcg_temp_new_i64();
335     tcg_gen_ext_i32_i64(c64->value, c32.value);
336 }
337 
338 static void gen_rebuild_hflags(DisasContext *s)
339 {
340     gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
341 }
342 
343 static void gen_exception_internal(int excp)
344 {
345     assert(excp_is_internal(excp));
346     gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
347 }
348 
349 static void gen_exception_internal_insn(DisasContext *s, int excp)
350 {
351     gen_a64_update_pc(s, 0);
352     gen_exception_internal(excp);
353     s->base.is_jmp = DISAS_NORETURN;
354 }
355 
356 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
357 {
358     gen_a64_update_pc(s, 0);
359     gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
360     s->base.is_jmp = DISAS_NORETURN;
361 }
362 
363 static void gen_step_complete_exception(DisasContext *s)
364 {
365     /* We just completed step of an insn. Move from Active-not-pending
366      * to Active-pending, and then also take the swstep exception.
367      * This corresponds to making the (IMPDEF) choice to prioritize
368      * swstep exceptions over asynchronous exceptions taken to an exception
369      * level where debug is disabled. This choice has the advantage that
370      * we do not need to maintain internal state corresponding to the
371      * ISV/EX syndrome bits between completion of the step and generation
372      * of the exception, and our syndrome information is always correct.
373      */
374     gen_ss_advance(s);
375     gen_swstep_exception(s, 1, s->is_ldex);
376     s->base.is_jmp = DISAS_NORETURN;
377 }
378 
379 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
380 {
381     if (s->ss_active) {
382         return false;
383     }
384     return translator_use_goto_tb(&s->base, dest);
385 }
386 
387 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
388 {
389     if (use_goto_tb(s, s->pc_curr + diff)) {
390         /*
391          * For pcrel, the pc must always be up-to-date on entry to
392          * the linked TB, so that it can use simple additions for all
393          * further adjustments.  For !pcrel, the linked TB is compiled
394          * to know its full virtual address, so we can delay the
395          * update to pc to the unlinked path.  A long chain of links
396          * can thus avoid many updates to the PC.
397          */
398         if (tb_cflags(s->base.tb) & CF_PCREL) {
399             gen_a64_update_pc(s, diff);
400             tcg_gen_goto_tb(n);
401         } else {
402             tcg_gen_goto_tb(n);
403             gen_a64_update_pc(s, diff);
404         }
405         tcg_gen_exit_tb(s->base.tb, n);
406         s->base.is_jmp = DISAS_NORETURN;
407     } else {
408         gen_a64_update_pc(s, diff);
409         if (s->ss_active) {
410             gen_step_complete_exception(s);
411         } else {
412             tcg_gen_lookup_and_goto_ptr();
413             s->base.is_jmp = DISAS_NORETURN;
414         }
415     }
416 }
417 
418 /*
419  * Register access functions
420  *
421  * These functions are used for directly accessing a register in where
422  * changes to the final register value are likely to be made. If you
423  * need to use a register for temporary calculation (e.g. index type
424  * operations) use the read_* form.
425  *
426  * B1.2.1 Register mappings
427  *
428  * In instruction register encoding 31 can refer to ZR (zero register) or
429  * the SP (stack pointer) depending on context. In QEMU's case we map SP
430  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
431  * This is the point of the _sp forms.
432  */
433 TCGv_i64 cpu_reg(DisasContext *s, int reg)
434 {
435     if (reg == 31) {
436         TCGv_i64 t = tcg_temp_new_i64();
437         tcg_gen_movi_i64(t, 0);
438         return t;
439     } else {
440         return cpu_X[reg];
441     }
442 }
443 
444 /* register access for when 31 == SP */
445 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
446 {
447     return cpu_X[reg];
448 }
449 
450 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
451  * representing the register contents. This TCGv is an auto-freed
452  * temporary so it need not be explicitly freed, and may be modified.
453  */
454 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
455 {
456     TCGv_i64 v = tcg_temp_new_i64();
457     if (reg != 31) {
458         if (sf) {
459             tcg_gen_mov_i64(v, cpu_X[reg]);
460         } else {
461             tcg_gen_ext32u_i64(v, cpu_X[reg]);
462         }
463     } else {
464         tcg_gen_movi_i64(v, 0);
465     }
466     return v;
467 }
468 
469 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
470 {
471     TCGv_i64 v = tcg_temp_new_i64();
472     if (sf) {
473         tcg_gen_mov_i64(v, cpu_X[reg]);
474     } else {
475         tcg_gen_ext32u_i64(v, cpu_X[reg]);
476     }
477     return v;
478 }
479 
480 /* Return the offset into CPUARMState of a slice (from
481  * the least significant end) of FP register Qn (ie
482  * Dn, Sn, Hn or Bn).
483  * (Note that this is not the same mapping as for A32; see cpu.h)
484  */
485 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
486 {
487     return vec_reg_offset(s, regno, 0, size);
488 }
489 
490 /* Offset of the high half of the 128 bit vector Qn */
491 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
492 {
493     return vec_reg_offset(s, regno, 1, MO_64);
494 }
495 
496 /* Convenience accessors for reading and writing single and double
497  * FP registers. Writing clears the upper parts of the associated
498  * 128 bit vector register, as required by the architecture.
499  * Note that unlike the GP register accessors, the values returned
500  * by the read functions must be manually freed.
501  */
502 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
503 {
504     TCGv_i64 v = tcg_temp_new_i64();
505 
506     tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
507     return v;
508 }
509 
510 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
511 {
512     TCGv_i32 v = tcg_temp_new_i32();
513 
514     tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
515     return v;
516 }
517 
518 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
519 {
520     TCGv_i32 v = tcg_temp_new_i32();
521 
522     tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
523     return v;
524 }
525 
526 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
527  * If SVE is not enabled, then there are only 128 bits in the vector.
528  */
529 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
530 {
531     unsigned ofs = fp_reg_offset(s, rd, MO_64);
532     unsigned vsz = vec_full_reg_size(s);
533 
534     /* Nop move, with side effect of clearing the tail. */
535     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
536 }
537 
538 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
539 {
540     unsigned ofs = fp_reg_offset(s, reg, MO_64);
541 
542     tcg_gen_st_i64(v, cpu_env, ofs);
543     clear_vec_high(s, false, reg);
544 }
545 
546 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
547 {
548     TCGv_i64 tmp = tcg_temp_new_i64();
549 
550     tcg_gen_extu_i32_i64(tmp, v);
551     write_fp_dreg(s, reg, tmp);
552 }
553 
554 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
555 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
556                          GVecGen2Fn *gvec_fn, int vece)
557 {
558     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
559             is_q ? 16 : 8, vec_full_reg_size(s));
560 }
561 
562 /* Expand a 2-operand + immediate AdvSIMD vector operation using
563  * an expander function.
564  */
565 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
566                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
567 {
568     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
569             imm, is_q ? 16 : 8, vec_full_reg_size(s));
570 }
571 
572 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
573 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
574                          GVecGen3Fn *gvec_fn, int vece)
575 {
576     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
577             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
578 }
579 
580 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
581 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
582                          int rx, GVecGen4Fn *gvec_fn, int vece)
583 {
584     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
585             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
586             is_q ? 16 : 8, vec_full_reg_size(s));
587 }
588 
589 /* Expand a 2-operand operation using an out-of-line helper.  */
590 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
591                              int rn, int data, gen_helper_gvec_2 *fn)
592 {
593     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
594                        vec_full_reg_offset(s, rn),
595                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
596 }
597 
598 /* Expand a 3-operand operation using an out-of-line helper.  */
599 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
600                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
601 {
602     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
603                        vec_full_reg_offset(s, rn),
604                        vec_full_reg_offset(s, rm),
605                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
606 }
607 
608 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
609  * an out-of-line helper.
610  */
611 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
612                               int rm, bool is_fp16, int data,
613                               gen_helper_gvec_3_ptr *fn)
614 {
615     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
616     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
617                        vec_full_reg_offset(s, rn),
618                        vec_full_reg_offset(s, rm), fpst,
619                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
620 }
621 
622 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
623 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
624                             int rm, gen_helper_gvec_3_ptr *fn)
625 {
626     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
627 
628     tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
629     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
630                        vec_full_reg_offset(s, rn),
631                        vec_full_reg_offset(s, rm), qc_ptr,
632                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
633 }
634 
635 /* Expand a 4-operand operation using an out-of-line helper.  */
636 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
637                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
638 {
639     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
640                        vec_full_reg_offset(s, rn),
641                        vec_full_reg_offset(s, rm),
642                        vec_full_reg_offset(s, ra),
643                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
644 }
645 
646 /*
647  * Expand a 4-operand + fpstatus pointer + simd data value operation using
648  * an out-of-line helper.
649  */
650 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
651                               int rm, int ra, bool is_fp16, int data,
652                               gen_helper_gvec_4_ptr *fn)
653 {
654     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
655     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
656                        vec_full_reg_offset(s, rn),
657                        vec_full_reg_offset(s, rm),
658                        vec_full_reg_offset(s, ra), fpst,
659                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
660 }
661 
662 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
663  * than the 32 bit equivalent.
664  */
665 static inline void gen_set_NZ64(TCGv_i64 result)
666 {
667     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
668     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
669 }
670 
671 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
672 static inline void gen_logic_CC(int sf, TCGv_i64 result)
673 {
674     if (sf) {
675         gen_set_NZ64(result);
676     } else {
677         tcg_gen_extrl_i64_i32(cpu_ZF, result);
678         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
679     }
680     tcg_gen_movi_i32(cpu_CF, 0);
681     tcg_gen_movi_i32(cpu_VF, 0);
682 }
683 
684 /* dest = T0 + T1; compute C, N, V and Z flags */
685 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
686 {
687     TCGv_i64 result, flag, tmp;
688     result = tcg_temp_new_i64();
689     flag = tcg_temp_new_i64();
690     tmp = tcg_temp_new_i64();
691 
692     tcg_gen_movi_i64(tmp, 0);
693     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
694 
695     tcg_gen_extrl_i64_i32(cpu_CF, flag);
696 
697     gen_set_NZ64(result);
698 
699     tcg_gen_xor_i64(flag, result, t0);
700     tcg_gen_xor_i64(tmp, t0, t1);
701     tcg_gen_andc_i64(flag, flag, tmp);
702     tcg_gen_extrh_i64_i32(cpu_VF, flag);
703 
704     tcg_gen_mov_i64(dest, result);
705 }
706 
707 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
708 {
709     TCGv_i32 t0_32 = tcg_temp_new_i32();
710     TCGv_i32 t1_32 = tcg_temp_new_i32();
711     TCGv_i32 tmp = tcg_temp_new_i32();
712 
713     tcg_gen_movi_i32(tmp, 0);
714     tcg_gen_extrl_i64_i32(t0_32, t0);
715     tcg_gen_extrl_i64_i32(t1_32, t1);
716     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
717     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
718     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
719     tcg_gen_xor_i32(tmp, t0_32, t1_32);
720     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
721     tcg_gen_extu_i32_i64(dest, cpu_NF);
722 }
723 
724 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
725 {
726     if (sf) {
727         gen_add64_CC(dest, t0, t1);
728     } else {
729         gen_add32_CC(dest, t0, t1);
730     }
731 }
732 
733 /* dest = T0 - T1; compute C, N, V and Z flags */
734 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
735 {
736     /* 64 bit arithmetic */
737     TCGv_i64 result, flag, tmp;
738 
739     result = tcg_temp_new_i64();
740     flag = tcg_temp_new_i64();
741     tcg_gen_sub_i64(result, t0, t1);
742 
743     gen_set_NZ64(result);
744 
745     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
746     tcg_gen_extrl_i64_i32(cpu_CF, flag);
747 
748     tcg_gen_xor_i64(flag, result, t0);
749     tmp = tcg_temp_new_i64();
750     tcg_gen_xor_i64(tmp, t0, t1);
751     tcg_gen_and_i64(flag, flag, tmp);
752     tcg_gen_extrh_i64_i32(cpu_VF, flag);
753     tcg_gen_mov_i64(dest, result);
754 }
755 
756 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
757 {
758     /* 32 bit arithmetic */
759     TCGv_i32 t0_32 = tcg_temp_new_i32();
760     TCGv_i32 t1_32 = tcg_temp_new_i32();
761     TCGv_i32 tmp;
762 
763     tcg_gen_extrl_i64_i32(t0_32, t0);
764     tcg_gen_extrl_i64_i32(t1_32, t1);
765     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
766     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
767     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
768     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
769     tmp = tcg_temp_new_i32();
770     tcg_gen_xor_i32(tmp, t0_32, t1_32);
771     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
772     tcg_gen_extu_i32_i64(dest, cpu_NF);
773 }
774 
775 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
776 {
777     if (sf) {
778         gen_sub64_CC(dest, t0, t1);
779     } else {
780         gen_sub32_CC(dest, t0, t1);
781     }
782 }
783 
784 /* dest = T0 + T1 + CF; do not compute flags. */
785 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
786 {
787     TCGv_i64 flag = tcg_temp_new_i64();
788     tcg_gen_extu_i32_i64(flag, cpu_CF);
789     tcg_gen_add_i64(dest, t0, t1);
790     tcg_gen_add_i64(dest, dest, flag);
791 
792     if (!sf) {
793         tcg_gen_ext32u_i64(dest, dest);
794     }
795 }
796 
797 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
798 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
799 {
800     if (sf) {
801         TCGv_i64 result = tcg_temp_new_i64();
802         TCGv_i64 cf_64 = tcg_temp_new_i64();
803         TCGv_i64 vf_64 = tcg_temp_new_i64();
804         TCGv_i64 tmp = tcg_temp_new_i64();
805         TCGv_i64 zero = tcg_constant_i64(0);
806 
807         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
808         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
809         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
810         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
811         gen_set_NZ64(result);
812 
813         tcg_gen_xor_i64(vf_64, result, t0);
814         tcg_gen_xor_i64(tmp, t0, t1);
815         tcg_gen_andc_i64(vf_64, vf_64, tmp);
816         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
817 
818         tcg_gen_mov_i64(dest, result);
819     } else {
820         TCGv_i32 t0_32 = tcg_temp_new_i32();
821         TCGv_i32 t1_32 = tcg_temp_new_i32();
822         TCGv_i32 tmp = tcg_temp_new_i32();
823         TCGv_i32 zero = tcg_constant_i32(0);
824 
825         tcg_gen_extrl_i64_i32(t0_32, t0);
826         tcg_gen_extrl_i64_i32(t1_32, t1);
827         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
828         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
829 
830         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
831         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
832         tcg_gen_xor_i32(tmp, t0_32, t1_32);
833         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
834         tcg_gen_extu_i32_i64(dest, cpu_NF);
835     }
836 }
837 
838 /*
839  * Load/Store generators
840  */
841 
842 /*
843  * Store from GPR register to memory.
844  */
845 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
846                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
847                              bool iss_valid,
848                              unsigned int iss_srt,
849                              bool iss_sf, bool iss_ar)
850 {
851     memop = finalize_memop(s, memop);
852     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
853 
854     if (iss_valid) {
855         uint32_t syn;
856 
857         syn = syn_data_abort_with_iss(0,
858                                       (memop & MO_SIZE),
859                                       false,
860                                       iss_srt,
861                                       iss_sf,
862                                       iss_ar,
863                                       0, 0, 0, 0, 0, false);
864         disas_set_insn_syndrome(s, syn);
865     }
866 }
867 
868 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
869                       TCGv_i64 tcg_addr, MemOp memop,
870                       bool iss_valid,
871                       unsigned int iss_srt,
872                       bool iss_sf, bool iss_ar)
873 {
874     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
875                      iss_valid, iss_srt, iss_sf, iss_ar);
876 }
877 
878 /*
879  * Load from memory to GPR register
880  */
881 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
882                              MemOp memop, bool extend, int memidx,
883                              bool iss_valid, unsigned int iss_srt,
884                              bool iss_sf, bool iss_ar)
885 {
886     memop = finalize_memop(s, memop);
887     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
888 
889     if (extend && (memop & MO_SIGN)) {
890         g_assert((memop & MO_SIZE) <= MO_32);
891         tcg_gen_ext32u_i64(dest, dest);
892     }
893 
894     if (iss_valid) {
895         uint32_t syn;
896 
897         syn = syn_data_abort_with_iss(0,
898                                       (memop & MO_SIZE),
899                                       (memop & MO_SIGN) != 0,
900                                       iss_srt,
901                                       iss_sf,
902                                       iss_ar,
903                                       0, 0, 0, 0, 0, false);
904         disas_set_insn_syndrome(s, syn);
905     }
906 }
907 
908 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
909                       MemOp memop, bool extend,
910                       bool iss_valid, unsigned int iss_srt,
911                       bool iss_sf, bool iss_ar)
912 {
913     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
914                      iss_valid, iss_srt, iss_sf, iss_ar);
915 }
916 
917 /*
918  * Store from FP register to memory
919  */
920 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
921 {
922     /* This writes the bottom N bits of a 128 bit wide vector to memory */
923     TCGv_i64 tmplo = tcg_temp_new_i64();
924     MemOp mop;
925 
926     tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
927 
928     if (size < 4) {
929         mop = finalize_memop(s, size);
930         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
931     } else {
932         bool be = s->be_data == MO_BE;
933         TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
934         TCGv_i64 tmphi = tcg_temp_new_i64();
935 
936         tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
937 
938         mop = s->be_data | MO_UQ;
939         tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
940                             mop | (s->align_mem ? MO_ALIGN_16 : 0));
941         tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
942         tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr,
943                             get_mem_index(s), mop);
944     }
945 }
946 
947 /*
948  * Load from memory to FP register
949  */
950 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
951 {
952     /* This always zero-extends and writes to a full 128 bit wide vector */
953     TCGv_i64 tmplo = tcg_temp_new_i64();
954     TCGv_i64 tmphi = NULL;
955     MemOp mop;
956 
957     if (size < 4) {
958         mop = finalize_memop(s, size);
959         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
960     } else {
961         bool be = s->be_data == MO_BE;
962         TCGv_i64 tcg_hiaddr;
963 
964         tmphi = tcg_temp_new_i64();
965         tcg_hiaddr = tcg_temp_new_i64();
966 
967         mop = s->be_data | MO_UQ;
968         tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
969                             mop | (s->align_mem ? MO_ALIGN_16 : 0));
970         tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
971         tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr,
972                             get_mem_index(s), mop);
973     }
974 
975     tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
976 
977     if (tmphi) {
978         tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
979     }
980     clear_vec_high(s, tmphi != NULL, destidx);
981 }
982 
983 /*
984  * Vector load/store helpers.
985  *
986  * The principal difference between this and a FP load is that we don't
987  * zero extend as we are filling a partial chunk of the vector register.
988  * These functions don't support 128 bit loads/stores, which would be
989  * normal load/store operations.
990  *
991  * The _i32 versions are useful when operating on 32 bit quantities
992  * (eg for floating point single or using Neon helper functions).
993  */
994 
995 /* Get value of an element within a vector register */
996 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
997                              int element, MemOp memop)
998 {
999     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1000     switch ((unsigned)memop) {
1001     case MO_8:
1002         tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1003         break;
1004     case MO_16:
1005         tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1006         break;
1007     case MO_32:
1008         tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1009         break;
1010     case MO_8|MO_SIGN:
1011         tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1012         break;
1013     case MO_16|MO_SIGN:
1014         tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1015         break;
1016     case MO_32|MO_SIGN:
1017         tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1018         break;
1019     case MO_64:
1020     case MO_64|MO_SIGN:
1021         tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1022         break;
1023     default:
1024         g_assert_not_reached();
1025     }
1026 }
1027 
1028 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1029                                  int element, MemOp memop)
1030 {
1031     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1032     switch (memop) {
1033     case MO_8:
1034         tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1035         break;
1036     case MO_16:
1037         tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1038         break;
1039     case MO_8|MO_SIGN:
1040         tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1041         break;
1042     case MO_16|MO_SIGN:
1043         tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1044         break;
1045     case MO_32:
1046     case MO_32|MO_SIGN:
1047         tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1048         break;
1049     default:
1050         g_assert_not_reached();
1051     }
1052 }
1053 
1054 /* Set value of an element within a vector register */
1055 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1056                               int element, MemOp memop)
1057 {
1058     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1059     switch (memop) {
1060     case MO_8:
1061         tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1062         break;
1063     case MO_16:
1064         tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1065         break;
1066     case MO_32:
1067         tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1068         break;
1069     case MO_64:
1070         tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1071         break;
1072     default:
1073         g_assert_not_reached();
1074     }
1075 }
1076 
1077 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1078                                   int destidx, int element, MemOp memop)
1079 {
1080     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1081     switch (memop) {
1082     case MO_8:
1083         tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1084         break;
1085     case MO_16:
1086         tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1087         break;
1088     case MO_32:
1089         tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1090         break;
1091     default:
1092         g_assert_not_reached();
1093     }
1094 }
1095 
1096 /* Store from vector register to memory */
1097 static void do_vec_st(DisasContext *s, int srcidx, int element,
1098                       TCGv_i64 tcg_addr, MemOp mop)
1099 {
1100     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1101 
1102     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1103     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1104 }
1105 
1106 /* Load from memory to vector register */
1107 static void do_vec_ld(DisasContext *s, int destidx, int element,
1108                       TCGv_i64 tcg_addr, MemOp mop)
1109 {
1110     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1111 
1112     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1113     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1114 }
1115 
1116 /* Check that FP/Neon access is enabled. If it is, return
1117  * true. If not, emit code to generate an appropriate exception,
1118  * and return false; the caller should not emit any code for
1119  * the instruction. Note that this check must happen after all
1120  * unallocated-encoding checks (otherwise the syndrome information
1121  * for the resulting exception will be incorrect).
1122  */
1123 static bool fp_access_check_only(DisasContext *s)
1124 {
1125     if (s->fp_excp_el) {
1126         assert(!s->fp_access_checked);
1127         s->fp_access_checked = true;
1128 
1129         gen_exception_insn_el(s, 0, EXCP_UDEF,
1130                               syn_fp_access_trap(1, 0xe, false, 0),
1131                               s->fp_excp_el);
1132         return false;
1133     }
1134     s->fp_access_checked = true;
1135     return true;
1136 }
1137 
1138 static bool fp_access_check(DisasContext *s)
1139 {
1140     if (!fp_access_check_only(s)) {
1141         return false;
1142     }
1143     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1144         gen_exception_insn(s, 0, EXCP_UDEF,
1145                            syn_smetrap(SME_ET_Streaming, false));
1146         return false;
1147     }
1148     return true;
1149 }
1150 
1151 /*
1152  * Check that SVE access is enabled.  If it is, return true.
1153  * If not, emit code to generate an appropriate exception and return false.
1154  * This function corresponds to CheckSVEEnabled().
1155  */
1156 bool sve_access_check(DisasContext *s)
1157 {
1158     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1159         assert(dc_isar_feature(aa64_sme, s));
1160         if (!sme_sm_enabled_check(s)) {
1161             goto fail_exit;
1162         }
1163     } else if (s->sve_excp_el) {
1164         gen_exception_insn_el(s, 0, EXCP_UDEF,
1165                               syn_sve_access_trap(), s->sve_excp_el);
1166         goto fail_exit;
1167     }
1168     s->sve_access_checked = true;
1169     return fp_access_check(s);
1170 
1171  fail_exit:
1172     /* Assert that we only raise one exception per instruction. */
1173     assert(!s->sve_access_checked);
1174     s->sve_access_checked = true;
1175     return false;
1176 }
1177 
1178 /*
1179  * Check that SME access is enabled, raise an exception if not.
1180  * Note that this function corresponds to CheckSMEAccess and is
1181  * only used directly for cpregs.
1182  */
1183 static bool sme_access_check(DisasContext *s)
1184 {
1185     if (s->sme_excp_el) {
1186         gen_exception_insn_el(s, 0, EXCP_UDEF,
1187                               syn_smetrap(SME_ET_AccessTrap, false),
1188                               s->sme_excp_el);
1189         return false;
1190     }
1191     return true;
1192 }
1193 
1194 /* This function corresponds to CheckSMEEnabled. */
1195 bool sme_enabled_check(DisasContext *s)
1196 {
1197     /*
1198      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1199      * to be zero when fp_excp_el has priority.  This is because we need
1200      * sme_excp_el by itself for cpregs access checks.
1201      */
1202     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1203         s->fp_access_checked = true;
1204         return sme_access_check(s);
1205     }
1206     return fp_access_check_only(s);
1207 }
1208 
1209 /* Common subroutine for CheckSMEAnd*Enabled. */
1210 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1211 {
1212     if (!sme_enabled_check(s)) {
1213         return false;
1214     }
1215     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1216         gen_exception_insn(s, 0, EXCP_UDEF,
1217                            syn_smetrap(SME_ET_NotStreaming, false));
1218         return false;
1219     }
1220     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1221         gen_exception_insn(s, 0, EXCP_UDEF,
1222                            syn_smetrap(SME_ET_InactiveZA, false));
1223         return false;
1224     }
1225     return true;
1226 }
1227 
1228 /*
1229  * This utility function is for doing register extension with an
1230  * optional shift. You will likely want to pass a temporary for the
1231  * destination register. See DecodeRegExtend() in the ARM ARM.
1232  */
1233 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1234                               int option, unsigned int shift)
1235 {
1236     int extsize = extract32(option, 0, 2);
1237     bool is_signed = extract32(option, 2, 1);
1238 
1239     if (is_signed) {
1240         switch (extsize) {
1241         case 0:
1242             tcg_gen_ext8s_i64(tcg_out, tcg_in);
1243             break;
1244         case 1:
1245             tcg_gen_ext16s_i64(tcg_out, tcg_in);
1246             break;
1247         case 2:
1248             tcg_gen_ext32s_i64(tcg_out, tcg_in);
1249             break;
1250         case 3:
1251             tcg_gen_mov_i64(tcg_out, tcg_in);
1252             break;
1253         }
1254     } else {
1255         switch (extsize) {
1256         case 0:
1257             tcg_gen_ext8u_i64(tcg_out, tcg_in);
1258             break;
1259         case 1:
1260             tcg_gen_ext16u_i64(tcg_out, tcg_in);
1261             break;
1262         case 2:
1263             tcg_gen_ext32u_i64(tcg_out, tcg_in);
1264             break;
1265         case 3:
1266             tcg_gen_mov_i64(tcg_out, tcg_in);
1267             break;
1268         }
1269     }
1270 
1271     if (shift) {
1272         tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1273     }
1274 }
1275 
1276 static inline void gen_check_sp_alignment(DisasContext *s)
1277 {
1278     /* The AArch64 architecture mandates that (if enabled via PSTATE
1279      * or SCTLR bits) there is a check that SP is 16-aligned on every
1280      * SP-relative load or store (with an exception generated if it is not).
1281      * In line with general QEMU practice regarding misaligned accesses,
1282      * we omit these checks for the sake of guest program performance.
1283      * This function is provided as a hook so we can more easily add these
1284      * checks in future (possibly as a "favour catching guest program bugs
1285      * over speed" user selectable option).
1286      */
1287 }
1288 
1289 /*
1290  * This provides a simple table based table lookup decoder. It is
1291  * intended to be used when the relevant bits for decode are too
1292  * awkwardly placed and switch/if based logic would be confusing and
1293  * deeply nested. Since it's a linear search through the table, tables
1294  * should be kept small.
1295  *
1296  * It returns the first handler where insn & mask == pattern, or
1297  * NULL if there is no match.
1298  * The table is terminated by an empty mask (i.e. 0)
1299  */
1300 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1301                                                uint32_t insn)
1302 {
1303     const AArch64DecodeTable *tptr = table;
1304 
1305     while (tptr->mask) {
1306         if ((insn & tptr->mask) == tptr->pattern) {
1307             return tptr->disas_fn;
1308         }
1309         tptr++;
1310     }
1311     return NULL;
1312 }
1313 
1314 /*
1315  * The instruction disassembly implemented here matches
1316  * the instruction encoding classifications in chapter C4
1317  * of the ARM Architecture Reference Manual (DDI0487B_a);
1318  * classification names and decode diagrams here should generally
1319  * match up with those in the manual.
1320  */
1321 
1322 /* Unconditional branch (immediate)
1323  *   31  30       26 25                                  0
1324  * +----+-----------+-------------------------------------+
1325  * | op | 0 0 1 0 1 |                 imm26               |
1326  * +----+-----------+-------------------------------------+
1327  */
1328 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1329 {
1330     int64_t diff = sextract32(insn, 0, 26) * 4;
1331 
1332     if (insn & (1U << 31)) {
1333         /* BL Branch with link */
1334         gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1335     }
1336 
1337     /* B Branch / BL Branch with link */
1338     reset_btype(s);
1339     gen_goto_tb(s, 0, diff);
1340 }
1341 
1342 /* Compare and branch (immediate)
1343  *   31  30         25  24  23                  5 4      0
1344  * +----+-------------+----+---------------------+--------+
1345  * | sf | 0 1 1 0 1 0 | op |         imm19       |   Rt   |
1346  * +----+-------------+----+---------------------+--------+
1347  */
1348 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1349 {
1350     unsigned int sf, op, rt;
1351     int64_t diff;
1352     DisasLabel match;
1353     TCGv_i64 tcg_cmp;
1354 
1355     sf = extract32(insn, 31, 1);
1356     op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1357     rt = extract32(insn, 0, 5);
1358     diff = sextract32(insn, 5, 19) * 4;
1359 
1360     tcg_cmp = read_cpu_reg(s, rt, sf);
1361     reset_btype(s);
1362 
1363     match = gen_disas_label(s);
1364     tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1365                         tcg_cmp, 0, match.label);
1366     gen_goto_tb(s, 0, 4);
1367     set_disas_label(s, match);
1368     gen_goto_tb(s, 1, diff);
1369 }
1370 
1371 /* Test and branch (immediate)
1372  *   31  30         25  24  23   19 18          5 4    0
1373  * +----+-------------+----+-------+-------------+------+
1374  * | b5 | 0 1 1 0 1 1 | op |  b40  |    imm14    |  Rt  |
1375  * +----+-------------+----+-------+-------------+------+
1376  */
1377 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1378 {
1379     unsigned int bit_pos, op, rt;
1380     int64_t diff;
1381     DisasLabel match;
1382     TCGv_i64 tcg_cmp;
1383 
1384     bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1385     op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1386     diff = sextract32(insn, 5, 14) * 4;
1387     rt = extract32(insn, 0, 5);
1388 
1389     tcg_cmp = tcg_temp_new_i64();
1390     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1391 
1392     reset_btype(s);
1393 
1394     match = gen_disas_label(s);
1395     tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1396                         tcg_cmp, 0, match.label);
1397     gen_goto_tb(s, 0, 4);
1398     set_disas_label(s, match);
1399     gen_goto_tb(s, 1, diff);
1400 }
1401 
1402 /* Conditional branch (immediate)
1403  *  31           25  24  23                  5   4  3    0
1404  * +---------------+----+---------------------+----+------+
1405  * | 0 1 0 1 0 1 0 | o1 |         imm19       | o0 | cond |
1406  * +---------------+----+---------------------+----+------+
1407  */
1408 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1409 {
1410     unsigned int cond;
1411     int64_t diff;
1412 
1413     if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1414         unallocated_encoding(s);
1415         return;
1416     }
1417     diff = sextract32(insn, 5, 19) * 4;
1418     cond = extract32(insn, 0, 4);
1419 
1420     reset_btype(s);
1421     if (cond < 0x0e) {
1422         /* genuinely conditional branches */
1423         DisasLabel match = gen_disas_label(s);
1424         arm_gen_test_cc(cond, match.label);
1425         gen_goto_tb(s, 0, 4);
1426         set_disas_label(s, match);
1427         gen_goto_tb(s, 1, diff);
1428     } else {
1429         /* 0xe and 0xf are both "always" conditions */
1430         gen_goto_tb(s, 0, diff);
1431     }
1432 }
1433 
1434 /* HINT instruction group, including various allocated HINTs */
1435 static void handle_hint(DisasContext *s, uint32_t insn,
1436                         unsigned int op1, unsigned int op2, unsigned int crm)
1437 {
1438     unsigned int selector = crm << 3 | op2;
1439 
1440     if (op1 != 3) {
1441         unallocated_encoding(s);
1442         return;
1443     }
1444 
1445     switch (selector) {
1446     case 0b00000: /* NOP */
1447         break;
1448     case 0b00011: /* WFI */
1449         s->base.is_jmp = DISAS_WFI;
1450         break;
1451     case 0b00001: /* YIELD */
1452         /* When running in MTTCG we don't generate jumps to the yield and
1453          * WFE helpers as it won't affect the scheduling of other vCPUs.
1454          * If we wanted to more completely model WFE/SEV so we don't busy
1455          * spin unnecessarily we would need to do something more involved.
1456          */
1457         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1458             s->base.is_jmp = DISAS_YIELD;
1459         }
1460         break;
1461     case 0b00010: /* WFE */
1462         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1463             s->base.is_jmp = DISAS_WFE;
1464         }
1465         break;
1466     case 0b00100: /* SEV */
1467     case 0b00101: /* SEVL */
1468     case 0b00110: /* DGH */
1469         /* we treat all as NOP at least for now */
1470         break;
1471     case 0b00111: /* XPACLRI */
1472         if (s->pauth_active) {
1473             gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1474         }
1475         break;
1476     case 0b01000: /* PACIA1716 */
1477         if (s->pauth_active) {
1478             gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1479         }
1480         break;
1481     case 0b01010: /* PACIB1716 */
1482         if (s->pauth_active) {
1483             gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1484         }
1485         break;
1486     case 0b01100: /* AUTIA1716 */
1487         if (s->pauth_active) {
1488             gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1489         }
1490         break;
1491     case 0b01110: /* AUTIB1716 */
1492         if (s->pauth_active) {
1493             gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1494         }
1495         break;
1496     case 0b10000: /* ESB */
1497         /* Without RAS, we must implement this as NOP. */
1498         if (dc_isar_feature(aa64_ras, s)) {
1499             /*
1500              * QEMU does not have a source of physical SErrors,
1501              * so we are only concerned with virtual SErrors.
1502              * The pseudocode in the ARM for this case is
1503              *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1504              *      AArch64.vESBOperation();
1505              * Most of the condition can be evaluated at translation time.
1506              * Test for EL2 present, and defer test for SEL2 to runtime.
1507              */
1508             if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1509                 gen_helper_vesb(cpu_env);
1510             }
1511         }
1512         break;
1513     case 0b11000: /* PACIAZ */
1514         if (s->pauth_active) {
1515             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1516                              tcg_constant_i64(0));
1517         }
1518         break;
1519     case 0b11001: /* PACIASP */
1520         if (s->pauth_active) {
1521             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1522         }
1523         break;
1524     case 0b11010: /* PACIBZ */
1525         if (s->pauth_active) {
1526             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1527                              tcg_constant_i64(0));
1528         }
1529         break;
1530     case 0b11011: /* PACIBSP */
1531         if (s->pauth_active) {
1532             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1533         }
1534         break;
1535     case 0b11100: /* AUTIAZ */
1536         if (s->pauth_active) {
1537             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1538                              tcg_constant_i64(0));
1539         }
1540         break;
1541     case 0b11101: /* AUTIASP */
1542         if (s->pauth_active) {
1543             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1544         }
1545         break;
1546     case 0b11110: /* AUTIBZ */
1547         if (s->pauth_active) {
1548             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1549                              tcg_constant_i64(0));
1550         }
1551         break;
1552     case 0b11111: /* AUTIBSP */
1553         if (s->pauth_active) {
1554             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1555         }
1556         break;
1557     default:
1558         /* default specified as NOP equivalent */
1559         break;
1560     }
1561 }
1562 
1563 static void gen_clrex(DisasContext *s, uint32_t insn)
1564 {
1565     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1566 }
1567 
1568 /* CLREX, DSB, DMB, ISB */
1569 static void handle_sync(DisasContext *s, uint32_t insn,
1570                         unsigned int op1, unsigned int op2, unsigned int crm)
1571 {
1572     TCGBar bar;
1573 
1574     if (op1 != 3) {
1575         unallocated_encoding(s);
1576         return;
1577     }
1578 
1579     switch (op2) {
1580     case 2: /* CLREX */
1581         gen_clrex(s, insn);
1582         return;
1583     case 4: /* DSB */
1584     case 5: /* DMB */
1585         switch (crm & 3) {
1586         case 1: /* MBReqTypes_Reads */
1587             bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1588             break;
1589         case 2: /* MBReqTypes_Writes */
1590             bar = TCG_BAR_SC | TCG_MO_ST_ST;
1591             break;
1592         default: /* MBReqTypes_All */
1593             bar = TCG_BAR_SC | TCG_MO_ALL;
1594             break;
1595         }
1596         tcg_gen_mb(bar);
1597         return;
1598     case 6: /* ISB */
1599         /* We need to break the TB after this insn to execute
1600          * a self-modified code correctly and also to take
1601          * any pending interrupts immediately.
1602          */
1603         reset_btype(s);
1604         gen_goto_tb(s, 0, 4);
1605         return;
1606 
1607     case 7: /* SB */
1608         if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1609             goto do_unallocated;
1610         }
1611         /*
1612          * TODO: There is no speculation barrier opcode for TCG;
1613          * MB and end the TB instead.
1614          */
1615         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1616         gen_goto_tb(s, 0, 4);
1617         return;
1618 
1619     default:
1620     do_unallocated:
1621         unallocated_encoding(s);
1622         return;
1623     }
1624 }
1625 
1626 static void gen_xaflag(void)
1627 {
1628     TCGv_i32 z = tcg_temp_new_i32();
1629 
1630     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1631 
1632     /*
1633      * (!C & !Z) << 31
1634      * (!(C | Z)) << 31
1635      * ~((C | Z) << 31)
1636      * ~-(C | Z)
1637      * (C | Z) - 1
1638      */
1639     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1640     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1641 
1642     /* !(Z & C) */
1643     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1644     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1645 
1646     /* (!C & Z) << 31 -> -(Z & ~C) */
1647     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1648     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1649 
1650     /* C | Z */
1651     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1652 }
1653 
1654 static void gen_axflag(void)
1655 {
1656     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1657     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1658 
1659     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1660     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1661 
1662     tcg_gen_movi_i32(cpu_NF, 0);
1663     tcg_gen_movi_i32(cpu_VF, 0);
1664 }
1665 
1666 /* MSR (immediate) - move immediate to processor state field */
1667 static void handle_msr_i(DisasContext *s, uint32_t insn,
1668                          unsigned int op1, unsigned int op2, unsigned int crm)
1669 {
1670     int op = op1 << 3 | op2;
1671 
1672     /* End the TB by default, chaining is ok.  */
1673     s->base.is_jmp = DISAS_TOO_MANY;
1674 
1675     switch (op) {
1676     case 0x00: /* CFINV */
1677         if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1678             goto do_unallocated;
1679         }
1680         tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1681         s->base.is_jmp = DISAS_NEXT;
1682         break;
1683 
1684     case 0x01: /* XAFlag */
1685         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1686             goto do_unallocated;
1687         }
1688         gen_xaflag();
1689         s->base.is_jmp = DISAS_NEXT;
1690         break;
1691 
1692     case 0x02: /* AXFlag */
1693         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1694             goto do_unallocated;
1695         }
1696         gen_axflag();
1697         s->base.is_jmp = DISAS_NEXT;
1698         break;
1699 
1700     case 0x03: /* UAO */
1701         if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1702             goto do_unallocated;
1703         }
1704         if (crm & 1) {
1705             set_pstate_bits(PSTATE_UAO);
1706         } else {
1707             clear_pstate_bits(PSTATE_UAO);
1708         }
1709         gen_rebuild_hflags(s);
1710         break;
1711 
1712     case 0x04: /* PAN */
1713         if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1714             goto do_unallocated;
1715         }
1716         if (crm & 1) {
1717             set_pstate_bits(PSTATE_PAN);
1718         } else {
1719             clear_pstate_bits(PSTATE_PAN);
1720         }
1721         gen_rebuild_hflags(s);
1722         break;
1723 
1724     case 0x05: /* SPSel */
1725         if (s->current_el == 0) {
1726             goto do_unallocated;
1727         }
1728         gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1729         break;
1730 
1731     case 0x19: /* SSBS */
1732         if (!dc_isar_feature(aa64_ssbs, s)) {
1733             goto do_unallocated;
1734         }
1735         if (crm & 1) {
1736             set_pstate_bits(PSTATE_SSBS);
1737         } else {
1738             clear_pstate_bits(PSTATE_SSBS);
1739         }
1740         /* Don't need to rebuild hflags since SSBS is a nop */
1741         break;
1742 
1743     case 0x1a: /* DIT */
1744         if (!dc_isar_feature(aa64_dit, s)) {
1745             goto do_unallocated;
1746         }
1747         if (crm & 1) {
1748             set_pstate_bits(PSTATE_DIT);
1749         } else {
1750             clear_pstate_bits(PSTATE_DIT);
1751         }
1752         /* There's no need to rebuild hflags because DIT is a nop */
1753         break;
1754 
1755     case 0x1e: /* DAIFSet */
1756         gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1757         break;
1758 
1759     case 0x1f: /* DAIFClear */
1760         gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1761         /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs.  */
1762         s->base.is_jmp = DISAS_UPDATE_EXIT;
1763         break;
1764 
1765     case 0x1c: /* TCO */
1766         if (dc_isar_feature(aa64_mte, s)) {
1767             /* Full MTE is enabled -- set the TCO bit as directed. */
1768             if (crm & 1) {
1769                 set_pstate_bits(PSTATE_TCO);
1770             } else {
1771                 clear_pstate_bits(PSTATE_TCO);
1772             }
1773             gen_rebuild_hflags(s);
1774             /* Many factors, including TCO, go into MTE_ACTIVE. */
1775             s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1776         } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1777             /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
1778             s->base.is_jmp = DISAS_NEXT;
1779         } else {
1780             goto do_unallocated;
1781         }
1782         break;
1783 
1784     case 0x1b: /* SVCR* */
1785         if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1786             goto do_unallocated;
1787         }
1788         if (sme_access_check(s)) {
1789             int old = s->pstate_sm | (s->pstate_za << 1);
1790             int new = (crm & 1) * 3;
1791             int msk = (crm >> 1) & 3;
1792 
1793             if ((old ^ new) & msk) {
1794                 /* At least one bit changes. */
1795                 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
1796                                     tcg_constant_i32(msk));
1797             } else {
1798                 s->base.is_jmp = DISAS_NEXT;
1799             }
1800         }
1801         break;
1802 
1803     default:
1804     do_unallocated:
1805         unallocated_encoding(s);
1806         return;
1807     }
1808 }
1809 
1810 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1811 {
1812     TCGv_i32 tmp = tcg_temp_new_i32();
1813     TCGv_i32 nzcv = tcg_temp_new_i32();
1814 
1815     /* build bit 31, N */
1816     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1817     /* build bit 30, Z */
1818     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1819     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1820     /* build bit 29, C */
1821     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1822     /* build bit 28, V */
1823     tcg_gen_shri_i32(tmp, cpu_VF, 31);
1824     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1825     /* generate result */
1826     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1827 }
1828 
1829 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1830 {
1831     TCGv_i32 nzcv = tcg_temp_new_i32();
1832 
1833     /* take NZCV from R[t] */
1834     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1835 
1836     /* bit 31, N */
1837     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1838     /* bit 30, Z */
1839     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1840     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1841     /* bit 29, C */
1842     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1843     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1844     /* bit 28, V */
1845     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1846     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1847 }
1848 
1849 static void gen_sysreg_undef(DisasContext *s, bool isread,
1850                              uint8_t op0, uint8_t op1, uint8_t op2,
1851                              uint8_t crn, uint8_t crm, uint8_t rt)
1852 {
1853     /*
1854      * Generate code to emit an UNDEF with correct syndrome
1855      * information for a failed system register access.
1856      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
1857      * but if FEAT_IDST is implemented then read accesses to registers
1858      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
1859      * syndrome.
1860      */
1861     uint32_t syndrome;
1862 
1863     if (isread && dc_isar_feature(aa64_ids, s) &&
1864         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
1865         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1866     } else {
1867         syndrome = syn_uncategorized();
1868     }
1869     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
1870 }
1871 
1872 /* MRS - move from system register
1873  * MSR (register) - move to system register
1874  * SYS
1875  * SYSL
1876  * These are all essentially the same insn in 'read' and 'write'
1877  * versions, with varying op0 fields.
1878  */
1879 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1880                        unsigned int op0, unsigned int op1, unsigned int op2,
1881                        unsigned int crn, unsigned int crm, unsigned int rt)
1882 {
1883     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1884                                       crn, crm, op0, op1, op2);
1885     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
1886     TCGv_ptr tcg_ri = NULL;
1887     TCGv_i64 tcg_rt;
1888 
1889     if (!ri) {
1890         /* Unknown register; this might be a guest error or a QEMU
1891          * unimplemented feature.
1892          */
1893         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1894                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1895                       isread ? "read" : "write", op0, op1, crn, crm, op2);
1896         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1897         return;
1898     }
1899 
1900     /* Check access permissions */
1901     if (!cp_access_ok(s->current_el, ri, isread)) {
1902         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1903         return;
1904     }
1905 
1906     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
1907         /* Emit code to perform further access permissions checks at
1908          * runtime; this may result in an exception.
1909          */
1910         uint32_t syndrome;
1911 
1912         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1913         gen_a64_update_pc(s, 0);
1914         tcg_ri = tcg_temp_new_ptr();
1915         gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
1916                                        tcg_constant_i32(key),
1917                                        tcg_constant_i32(syndrome),
1918                                        tcg_constant_i32(isread));
1919     } else if (ri->type & ARM_CP_RAISES_EXC) {
1920         /*
1921          * The readfn or writefn might raise an exception;
1922          * synchronize the CPU state in case it does.
1923          */
1924         gen_a64_update_pc(s, 0);
1925     }
1926 
1927     /* Handle special cases first */
1928     switch (ri->type & ARM_CP_SPECIAL_MASK) {
1929     case 0:
1930         break;
1931     case ARM_CP_NOP:
1932         return;
1933     case ARM_CP_NZCV:
1934         tcg_rt = cpu_reg(s, rt);
1935         if (isread) {
1936             gen_get_nzcv(tcg_rt);
1937         } else {
1938             gen_set_nzcv(tcg_rt);
1939         }
1940         return;
1941     case ARM_CP_CURRENTEL:
1942         /* Reads as current EL value from pstate, which is
1943          * guaranteed to be constant by the tb flags.
1944          */
1945         tcg_rt = cpu_reg(s, rt);
1946         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1947         return;
1948     case ARM_CP_DC_ZVA:
1949         /* Writes clear the aligned block of memory which rt points into. */
1950         if (s->mte_active[0]) {
1951             int desc = 0;
1952 
1953             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
1954             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
1955             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
1956 
1957             tcg_rt = tcg_temp_new_i64();
1958             gen_helper_mte_check_zva(tcg_rt, cpu_env,
1959                                      tcg_constant_i32(desc), cpu_reg(s, rt));
1960         } else {
1961             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1962         }
1963         gen_helper_dc_zva(cpu_env, tcg_rt);
1964         return;
1965     case ARM_CP_DC_GVA:
1966         {
1967             TCGv_i64 clean_addr, tag;
1968 
1969             /*
1970              * DC_GVA, like DC_ZVA, requires that we supply the original
1971              * pointer for an invalid page.  Probe that address first.
1972              */
1973             tcg_rt = cpu_reg(s, rt);
1974             clean_addr = clean_data_tbi(s, tcg_rt);
1975             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
1976 
1977             if (s->ata) {
1978                 /* Extract the tag from the register to match STZGM.  */
1979                 tag = tcg_temp_new_i64();
1980                 tcg_gen_shri_i64(tag, tcg_rt, 56);
1981                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1982             }
1983         }
1984         return;
1985     case ARM_CP_DC_GZVA:
1986         {
1987             TCGv_i64 clean_addr, tag;
1988 
1989             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
1990             tcg_rt = cpu_reg(s, rt);
1991             clean_addr = clean_data_tbi(s, tcg_rt);
1992             gen_helper_dc_zva(cpu_env, clean_addr);
1993 
1994             if (s->ata) {
1995                 /* Extract the tag from the register to match STZGM.  */
1996                 tag = tcg_temp_new_i64();
1997                 tcg_gen_shri_i64(tag, tcg_rt, 56);
1998                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1999             }
2000         }
2001         return;
2002     default:
2003         g_assert_not_reached();
2004     }
2005     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2006         return;
2007     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2008         return;
2009     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2010         return;
2011     }
2012 
2013     if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2014         gen_io_start();
2015     }
2016 
2017     tcg_rt = cpu_reg(s, rt);
2018 
2019     if (isread) {
2020         if (ri->type & ARM_CP_CONST) {
2021             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2022         } else if (ri->readfn) {
2023             if (!tcg_ri) {
2024                 tcg_ri = gen_lookup_cp_reg(key);
2025             }
2026             gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2027         } else {
2028             tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2029         }
2030     } else {
2031         if (ri->type & ARM_CP_CONST) {
2032             /* If not forbidden by access permissions, treat as WI */
2033             return;
2034         } else if (ri->writefn) {
2035             if (!tcg_ri) {
2036                 tcg_ri = gen_lookup_cp_reg(key);
2037             }
2038             gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2039         } else {
2040             tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2041         }
2042     }
2043 
2044     if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2045         /* I/O operations must end the TB here (whether read or write) */
2046         s->base.is_jmp = DISAS_UPDATE_EXIT;
2047     }
2048     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2049         /*
2050          * A write to any coprocessor regiser that ends a TB
2051          * must rebuild the hflags for the next TB.
2052          */
2053         gen_rebuild_hflags(s);
2054         /*
2055          * We default to ending the TB on a coprocessor register write,
2056          * but allow this to be suppressed by the register definition
2057          * (usually only necessary to work around guest bugs).
2058          */
2059         s->base.is_jmp = DISAS_UPDATE_EXIT;
2060     }
2061 }
2062 
2063 /* System
2064  *  31                 22 21  20 19 18 16 15   12 11    8 7   5 4    0
2065  * +---------------------+---+-----+-----+-------+-------+-----+------+
2066  * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 |  CRn  |  CRm  | op2 |  Rt  |
2067  * +---------------------+---+-----+-----+-------+-------+-----+------+
2068  */
2069 static void disas_system(DisasContext *s, uint32_t insn)
2070 {
2071     unsigned int l, op0, op1, crn, crm, op2, rt;
2072     l = extract32(insn, 21, 1);
2073     op0 = extract32(insn, 19, 2);
2074     op1 = extract32(insn, 16, 3);
2075     crn = extract32(insn, 12, 4);
2076     crm = extract32(insn, 8, 4);
2077     op2 = extract32(insn, 5, 3);
2078     rt = extract32(insn, 0, 5);
2079 
2080     if (op0 == 0) {
2081         if (l || rt != 31) {
2082             unallocated_encoding(s);
2083             return;
2084         }
2085         switch (crn) {
2086         case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2087             handle_hint(s, insn, op1, op2, crm);
2088             break;
2089         case 3: /* CLREX, DSB, DMB, ISB */
2090             handle_sync(s, insn, op1, op2, crm);
2091             break;
2092         case 4: /* MSR (immediate) */
2093             handle_msr_i(s, insn, op1, op2, crm);
2094             break;
2095         default:
2096             unallocated_encoding(s);
2097             break;
2098         }
2099         return;
2100     }
2101     handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2102 }
2103 
2104 /* Exception generation
2105  *
2106  *  31             24 23 21 20                     5 4   2 1  0
2107  * +-----------------+-----+------------------------+-----+----+
2108  * | 1 1 0 1 0 1 0 0 | opc |          imm16         | op2 | LL |
2109  * +-----------------------+------------------------+----------+
2110  */
2111 static void disas_exc(DisasContext *s, uint32_t insn)
2112 {
2113     int opc = extract32(insn, 21, 3);
2114     int op2_ll = extract32(insn, 0, 5);
2115     int imm16 = extract32(insn, 5, 16);
2116     uint32_t syndrome;
2117 
2118     switch (opc) {
2119     case 0:
2120         /* For SVC, HVC and SMC we advance the single-step state
2121          * machine before taking the exception. This is architecturally
2122          * mandated, to ensure that single-stepping a system call
2123          * instruction works properly.
2124          */
2125         switch (op2_ll) {
2126         case 1:                                                     /* SVC */
2127             syndrome = syn_aa64_svc(imm16);
2128             if (s->fgt_svc) {
2129                 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2130                 break;
2131             }
2132             gen_ss_advance(s);
2133             gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2134             break;
2135         case 2:                                                     /* HVC */
2136             if (s->current_el == 0) {
2137                 unallocated_encoding(s);
2138                 break;
2139             }
2140             /* The pre HVC helper handles cases when HVC gets trapped
2141              * as an undefined insn by runtime configuration.
2142              */
2143             gen_a64_update_pc(s, 0);
2144             gen_helper_pre_hvc(cpu_env);
2145             gen_ss_advance(s);
2146             gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2147             break;
2148         case 3:                                                     /* SMC */
2149             if (s->current_el == 0) {
2150                 unallocated_encoding(s);
2151                 break;
2152             }
2153             gen_a64_update_pc(s, 0);
2154             gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2155             gen_ss_advance(s);
2156             gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2157             break;
2158         default:
2159             unallocated_encoding(s);
2160             break;
2161         }
2162         break;
2163     case 1:
2164         if (op2_ll != 0) {
2165             unallocated_encoding(s);
2166             break;
2167         }
2168         /* BRK */
2169         gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2170         break;
2171     case 2:
2172         if (op2_ll != 0) {
2173             unallocated_encoding(s);
2174             break;
2175         }
2176         /* HLT. This has two purposes.
2177          * Architecturally, it is an external halting debug instruction.
2178          * Since QEMU doesn't implement external debug, we treat this as
2179          * it is required for halting debug disabled: it will UNDEF.
2180          * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2181          */
2182         if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2183             gen_exception_internal_insn(s, EXCP_SEMIHOST);
2184         } else {
2185             unallocated_encoding(s);
2186         }
2187         break;
2188     case 5:
2189         if (op2_ll < 1 || op2_ll > 3) {
2190             unallocated_encoding(s);
2191             break;
2192         }
2193         /* DCPS1, DCPS2, DCPS3 */
2194         unallocated_encoding(s);
2195         break;
2196     default:
2197         unallocated_encoding(s);
2198         break;
2199     }
2200 }
2201 
2202 /* Unconditional branch (register)
2203  *  31           25 24   21 20   16 15   10 9    5 4     0
2204  * +---------------+-------+-------+-------+------+-------+
2205  * | 1 1 0 1 0 1 1 |  opc  |  op2  |  op3  |  Rn  |  op4  |
2206  * +---------------+-------+-------+-------+------+-------+
2207  */
2208 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2209 {
2210     unsigned int opc, op2, op3, rn, op4;
2211     unsigned btype_mod = 2;   /* 0: BR, 1: BLR, 2: other */
2212     TCGv_i64 dst;
2213     TCGv_i64 modifier;
2214 
2215     opc = extract32(insn, 21, 4);
2216     op2 = extract32(insn, 16, 5);
2217     op3 = extract32(insn, 10, 6);
2218     rn = extract32(insn, 5, 5);
2219     op4 = extract32(insn, 0, 5);
2220 
2221     if (op2 != 0x1f) {
2222         goto do_unallocated;
2223     }
2224 
2225     switch (opc) {
2226     case 0: /* BR */
2227     case 1: /* BLR */
2228     case 2: /* RET */
2229         btype_mod = opc;
2230         switch (op3) {
2231         case 0:
2232             /* BR, BLR, RET */
2233             if (op4 != 0) {
2234                 goto do_unallocated;
2235             }
2236             dst = cpu_reg(s, rn);
2237             break;
2238 
2239         case 2:
2240         case 3:
2241             if (!dc_isar_feature(aa64_pauth, s)) {
2242                 goto do_unallocated;
2243             }
2244             if (opc == 2) {
2245                 /* RETAA, RETAB */
2246                 if (rn != 0x1f || op4 != 0x1f) {
2247                     goto do_unallocated;
2248                 }
2249                 rn = 30;
2250                 modifier = cpu_X[31];
2251             } else {
2252                 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2253                 if (op4 != 0x1f) {
2254                     goto do_unallocated;
2255                 }
2256                 modifier = tcg_constant_i64(0);
2257             }
2258             if (s->pauth_active) {
2259                 dst = tcg_temp_new_i64();
2260                 if (op3 == 2) {
2261                     gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2262                 } else {
2263                     gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2264                 }
2265             } else {
2266                 dst = cpu_reg(s, rn);
2267             }
2268             break;
2269 
2270         default:
2271             goto do_unallocated;
2272         }
2273         /* BLR also needs to load return address */
2274         if (opc == 1) {
2275             TCGv_i64 lr = cpu_reg(s, 30);
2276             if (dst == lr) {
2277                 TCGv_i64 tmp = tcg_temp_new_i64();
2278                 tcg_gen_mov_i64(tmp, dst);
2279                 dst = tmp;
2280             }
2281             gen_pc_plus_diff(s, lr, curr_insn_len(s));
2282         }
2283         gen_a64_set_pc(s, dst);
2284         break;
2285 
2286     case 8: /* BRAA */
2287     case 9: /* BLRAA */
2288         if (!dc_isar_feature(aa64_pauth, s)) {
2289             goto do_unallocated;
2290         }
2291         if ((op3 & ~1) != 2) {
2292             goto do_unallocated;
2293         }
2294         btype_mod = opc & 1;
2295         if (s->pauth_active) {
2296             dst = tcg_temp_new_i64();
2297             modifier = cpu_reg_sp(s, op4);
2298             if (op3 == 2) {
2299                 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2300             } else {
2301                 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2302             }
2303         } else {
2304             dst = cpu_reg(s, rn);
2305         }
2306         /* BLRAA also needs to load return address */
2307         if (opc == 9) {
2308             TCGv_i64 lr = cpu_reg(s, 30);
2309             if (dst == lr) {
2310                 TCGv_i64 tmp = tcg_temp_new_i64();
2311                 tcg_gen_mov_i64(tmp, dst);
2312                 dst = tmp;
2313             }
2314             gen_pc_plus_diff(s, lr, curr_insn_len(s));
2315         }
2316         gen_a64_set_pc(s, dst);
2317         break;
2318 
2319     case 4: /* ERET */
2320         if (s->current_el == 0) {
2321             goto do_unallocated;
2322         }
2323         switch (op3) {
2324         case 0: /* ERET */
2325             if (op4 != 0) {
2326                 goto do_unallocated;
2327             }
2328             if (s->fgt_eret) {
2329                 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2330                 return;
2331             }
2332             dst = tcg_temp_new_i64();
2333             tcg_gen_ld_i64(dst, cpu_env,
2334                            offsetof(CPUARMState, elr_el[s->current_el]));
2335             break;
2336 
2337         case 2: /* ERETAA */
2338         case 3: /* ERETAB */
2339             if (!dc_isar_feature(aa64_pauth, s)) {
2340                 goto do_unallocated;
2341             }
2342             if (rn != 0x1f || op4 != 0x1f) {
2343                 goto do_unallocated;
2344             }
2345             /* The FGT trap takes precedence over an auth trap. */
2346             if (s->fgt_eret) {
2347                 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2348                 return;
2349             }
2350             dst = tcg_temp_new_i64();
2351             tcg_gen_ld_i64(dst, cpu_env,
2352                            offsetof(CPUARMState, elr_el[s->current_el]));
2353             if (s->pauth_active) {
2354                 modifier = cpu_X[31];
2355                 if (op3 == 2) {
2356                     gen_helper_autia(dst, cpu_env, dst, modifier);
2357                 } else {
2358                     gen_helper_autib(dst, cpu_env, dst, modifier);
2359                 }
2360             }
2361             break;
2362 
2363         default:
2364             goto do_unallocated;
2365         }
2366         if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2367             gen_io_start();
2368         }
2369 
2370         gen_helper_exception_return(cpu_env, dst);
2371         /* Must exit loop to check un-masked IRQs */
2372         s->base.is_jmp = DISAS_EXIT;
2373         return;
2374 
2375     case 5: /* DRPS */
2376         if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2377             goto do_unallocated;
2378         } else {
2379             unallocated_encoding(s);
2380         }
2381         return;
2382 
2383     default:
2384     do_unallocated:
2385         unallocated_encoding(s);
2386         return;
2387     }
2388 
2389     switch (btype_mod) {
2390     case 0: /* BR */
2391         if (dc_isar_feature(aa64_bti, s)) {
2392             /* BR to {x16,x17} or !guard -> 1, else 3.  */
2393             set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2394         }
2395         break;
2396 
2397     case 1: /* BLR */
2398         if (dc_isar_feature(aa64_bti, s)) {
2399             /* BLR sets BTYPE to 2, regardless of source guarded page.  */
2400             set_btype(s, 2);
2401         }
2402         break;
2403 
2404     default: /* RET or none of the above.  */
2405         /* BTYPE will be set to 0 by normal end-of-insn processing.  */
2406         break;
2407     }
2408 
2409     s->base.is_jmp = DISAS_JUMP;
2410 }
2411 
2412 /* Branches, exception generating and system instructions */
2413 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2414 {
2415     switch (extract32(insn, 25, 7)) {
2416     case 0x0a: case 0x0b:
2417     case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2418         disas_uncond_b_imm(s, insn);
2419         break;
2420     case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2421         disas_comp_b_imm(s, insn);
2422         break;
2423     case 0x1b: case 0x5b: /* Test & branch (immediate) */
2424         disas_test_b_imm(s, insn);
2425         break;
2426     case 0x2a: /* Conditional branch (immediate) */
2427         disas_cond_b_imm(s, insn);
2428         break;
2429     case 0x6a: /* Exception generation / System */
2430         if (insn & (1 << 24)) {
2431             if (extract32(insn, 22, 2) == 0) {
2432                 disas_system(s, insn);
2433             } else {
2434                 unallocated_encoding(s);
2435             }
2436         } else {
2437             disas_exc(s, insn);
2438         }
2439         break;
2440     case 0x6b: /* Unconditional branch (register) */
2441         disas_uncond_b_reg(s, insn);
2442         break;
2443     default:
2444         unallocated_encoding(s);
2445         break;
2446     }
2447 }
2448 
2449 /*
2450  * Load/Store exclusive instructions are implemented by remembering
2451  * the value/address loaded, and seeing if these are the same
2452  * when the store is performed. This is not actually the architecturally
2453  * mandated semantics, but it works for typical guest code sequences
2454  * and avoids having to monitor regular stores.
2455  *
2456  * The store exclusive uses the atomic cmpxchg primitives to avoid
2457  * races in multi-threaded linux-user and when MTTCG softmmu is
2458  * enabled.
2459  */
2460 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2461                                TCGv_i64 addr, int size, bool is_pair)
2462 {
2463     int idx = get_mem_index(s);
2464     MemOp memop = s->be_data;
2465 
2466     g_assert(size <= 3);
2467     if (is_pair) {
2468         g_assert(size >= 2);
2469         if (size == 2) {
2470             /* The pair must be single-copy atomic for the doubleword.  */
2471             memop |= MO_64 | MO_ALIGN;
2472             tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2473             if (s->be_data == MO_LE) {
2474                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2475                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2476             } else {
2477                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2478                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2479             }
2480         } else {
2481             /* The pair must be single-copy atomic for *each* doubleword, not
2482                the entire quadword, however it must be quadword aligned.  */
2483             memop |= MO_64;
2484             tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2485                                 memop | MO_ALIGN_16);
2486 
2487             TCGv_i64 addr2 = tcg_temp_new_i64();
2488             tcg_gen_addi_i64(addr2, addr, 8);
2489             tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2490 
2491             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2492             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2493         }
2494     } else {
2495         memop |= size | MO_ALIGN;
2496         tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2497         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2498     }
2499     tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2500 }
2501 
2502 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2503                                 TCGv_i64 addr, int size, int is_pair)
2504 {
2505     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2506      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2507      *     [addr] = {Rt};
2508      *     if (is_pair) {
2509      *         [addr + datasize] = {Rt2};
2510      *     }
2511      *     {Rd} = 0;
2512      * } else {
2513      *     {Rd} = 1;
2514      * }
2515      * env->exclusive_addr = -1;
2516      */
2517     TCGLabel *fail_label = gen_new_label();
2518     TCGLabel *done_label = gen_new_label();
2519     TCGv_i64 tmp;
2520 
2521     tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2522 
2523     tmp = tcg_temp_new_i64();
2524     if (is_pair) {
2525         if (size == 2) {
2526             if (s->be_data == MO_LE) {
2527                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2528             } else {
2529                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2530             }
2531             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2532                                        cpu_exclusive_val, tmp,
2533                                        get_mem_index(s),
2534                                        MO_64 | MO_ALIGN | s->be_data);
2535             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2536         } else {
2537             TCGv_i128 t16 = tcg_temp_new_i128();
2538             TCGv_i128 c16 = tcg_temp_new_i128();
2539             TCGv_i64 a, b;
2540 
2541             if (s->be_data == MO_LE) {
2542                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2543                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2544                                         cpu_exclusive_high);
2545             } else {
2546                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2547                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2548                                         cpu_exclusive_val);
2549             }
2550 
2551             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2552                                         get_mem_index(s),
2553                                         MO_128 | MO_ALIGN | s->be_data);
2554 
2555             a = tcg_temp_new_i64();
2556             b = tcg_temp_new_i64();
2557             if (s->be_data == MO_LE) {
2558                 tcg_gen_extr_i128_i64(a, b, t16);
2559             } else {
2560                 tcg_gen_extr_i128_i64(b, a, t16);
2561             }
2562 
2563             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2564             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2565             tcg_gen_or_i64(tmp, a, b);
2566 
2567             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2568         }
2569     } else {
2570         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2571                                    cpu_reg(s, rt), get_mem_index(s),
2572                                    size | MO_ALIGN | s->be_data);
2573         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2574     }
2575     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2576     tcg_gen_br(done_label);
2577 
2578     gen_set_label(fail_label);
2579     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2580     gen_set_label(done_label);
2581     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2582 }
2583 
2584 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2585                                  int rn, int size)
2586 {
2587     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2588     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2589     int memidx = get_mem_index(s);
2590     TCGv_i64 clean_addr;
2591 
2592     if (rn == 31) {
2593         gen_check_sp_alignment(s);
2594     }
2595     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2596     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2597                                size | MO_ALIGN | s->be_data);
2598 }
2599 
2600 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2601                                       int rn, int size)
2602 {
2603     TCGv_i64 s1 = cpu_reg(s, rs);
2604     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2605     TCGv_i64 t1 = cpu_reg(s, rt);
2606     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2607     TCGv_i64 clean_addr;
2608     int memidx = get_mem_index(s);
2609 
2610     if (rn == 31) {
2611         gen_check_sp_alignment(s);
2612     }
2613 
2614     /* This is a single atomic access, despite the "pair". */
2615     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2616 
2617     if (size == 2) {
2618         TCGv_i64 cmp = tcg_temp_new_i64();
2619         TCGv_i64 val = tcg_temp_new_i64();
2620 
2621         if (s->be_data == MO_LE) {
2622             tcg_gen_concat32_i64(val, t1, t2);
2623             tcg_gen_concat32_i64(cmp, s1, s2);
2624         } else {
2625             tcg_gen_concat32_i64(val, t2, t1);
2626             tcg_gen_concat32_i64(cmp, s2, s1);
2627         }
2628 
2629         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2630                                    MO_64 | MO_ALIGN | s->be_data);
2631 
2632         if (s->be_data == MO_LE) {
2633             tcg_gen_extr32_i64(s1, s2, cmp);
2634         } else {
2635             tcg_gen_extr32_i64(s2, s1, cmp);
2636         }
2637     } else {
2638         TCGv_i128 cmp = tcg_temp_new_i128();
2639         TCGv_i128 val = tcg_temp_new_i128();
2640 
2641         if (s->be_data == MO_LE) {
2642             tcg_gen_concat_i64_i128(val, t1, t2);
2643             tcg_gen_concat_i64_i128(cmp, s1, s2);
2644         } else {
2645             tcg_gen_concat_i64_i128(val, t2, t1);
2646             tcg_gen_concat_i64_i128(cmp, s2, s1);
2647         }
2648 
2649         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx,
2650                                     MO_128 | MO_ALIGN | s->be_data);
2651 
2652         if (s->be_data == MO_LE) {
2653             tcg_gen_extr_i128_i64(s1, s2, cmp);
2654         } else {
2655             tcg_gen_extr_i128_i64(s2, s1, cmp);
2656         }
2657     }
2658 }
2659 
2660 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2661  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2662  */
2663 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2664 {
2665     int opc0 = extract32(opc, 0, 1);
2666     int regsize;
2667 
2668     if (is_signed) {
2669         regsize = opc0 ? 32 : 64;
2670     } else {
2671         regsize = size == 3 ? 64 : 32;
2672     }
2673     return regsize == 64;
2674 }
2675 
2676 /* Load/store exclusive
2677  *
2678  *  31 30 29         24  23  22   21  20  16  15  14   10 9    5 4    0
2679  * +-----+-------------+----+---+----+------+----+-------+------+------+
2680  * | sz  | 0 0 1 0 0 0 | o2 | L | o1 |  Rs  | o0 |  Rt2  |  Rn  | Rt   |
2681  * +-----+-------------+----+---+----+------+----+-------+------+------+
2682  *
2683  *  sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2684  *   L: 0 -> store, 1 -> load
2685  *  o2: 0 -> exclusive, 1 -> not
2686  *  o1: 0 -> single register, 1 -> register pair
2687  *  o0: 1 -> load-acquire/store-release, 0 -> not
2688  */
2689 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2690 {
2691     int rt = extract32(insn, 0, 5);
2692     int rn = extract32(insn, 5, 5);
2693     int rt2 = extract32(insn, 10, 5);
2694     int rs = extract32(insn, 16, 5);
2695     int is_lasr = extract32(insn, 15, 1);
2696     int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2697     int size = extract32(insn, 30, 2);
2698     TCGv_i64 clean_addr;
2699 
2700     switch (o2_L_o1_o0) {
2701     case 0x0: /* STXR */
2702     case 0x1: /* STLXR */
2703         if (rn == 31) {
2704             gen_check_sp_alignment(s);
2705         }
2706         if (is_lasr) {
2707             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2708         }
2709         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2710                                     true, rn != 31, size);
2711         gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2712         return;
2713 
2714     case 0x4: /* LDXR */
2715     case 0x5: /* LDAXR */
2716         if (rn == 31) {
2717             gen_check_sp_alignment(s);
2718         }
2719         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2720                                     false, rn != 31, size);
2721         s->is_ldex = true;
2722         gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2723         if (is_lasr) {
2724             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2725         }
2726         return;
2727 
2728     case 0x8: /* STLLR */
2729         if (!dc_isar_feature(aa64_lor, s)) {
2730             break;
2731         }
2732         /* StoreLORelease is the same as Store-Release for QEMU.  */
2733         /* fall through */
2734     case 0x9: /* STLR */
2735         /* Generate ISS for non-exclusive accesses including LASR.  */
2736         if (rn == 31) {
2737             gen_check_sp_alignment(s);
2738         }
2739         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2740         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2741                                     true, rn != 31, size);
2742         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2743         do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2744                   disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2745         return;
2746 
2747     case 0xc: /* LDLAR */
2748         if (!dc_isar_feature(aa64_lor, s)) {
2749             break;
2750         }
2751         /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2752         /* fall through */
2753     case 0xd: /* LDAR */
2754         /* Generate ISS for non-exclusive accesses including LASR.  */
2755         if (rn == 31) {
2756             gen_check_sp_alignment(s);
2757         }
2758         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2759                                     false, rn != 31, size);
2760         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2761         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2762                   rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2763         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2764         return;
2765 
2766     case 0x2: case 0x3: /* CASP / STXP */
2767         if (size & 2) { /* STXP / STLXP */
2768             if (rn == 31) {
2769                 gen_check_sp_alignment(s);
2770             }
2771             if (is_lasr) {
2772                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2773             }
2774             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2775                                         true, rn != 31, size);
2776             gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2777             return;
2778         }
2779         if (rt2 == 31
2780             && ((rt | rs) & 1) == 0
2781             && dc_isar_feature(aa64_atomics, s)) {
2782             /* CASP / CASPL */
2783             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2784             return;
2785         }
2786         break;
2787 
2788     case 0x6: case 0x7: /* CASPA / LDXP */
2789         if (size & 2) { /* LDXP / LDAXP */
2790             if (rn == 31) {
2791                 gen_check_sp_alignment(s);
2792             }
2793             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2794                                         false, rn != 31, size);
2795             s->is_ldex = true;
2796             gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2797             if (is_lasr) {
2798                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2799             }
2800             return;
2801         }
2802         if (rt2 == 31
2803             && ((rt | rs) & 1) == 0
2804             && dc_isar_feature(aa64_atomics, s)) {
2805             /* CASPA / CASPAL */
2806             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2807             return;
2808         }
2809         break;
2810 
2811     case 0xa: /* CAS */
2812     case 0xb: /* CASL */
2813     case 0xe: /* CASA */
2814     case 0xf: /* CASAL */
2815         if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2816             gen_compare_and_swap(s, rs, rt, rn, size);
2817             return;
2818         }
2819         break;
2820     }
2821     unallocated_encoding(s);
2822 }
2823 
2824 /*
2825  * Load register (literal)
2826  *
2827  *  31 30 29   27  26 25 24 23                5 4     0
2828  * +-----+-------+---+-----+-------------------+-------+
2829  * | opc | 0 1 1 | V | 0 0 |     imm19         |  Rt   |
2830  * +-----+-------+---+-----+-------------------+-------+
2831  *
2832  * V: 1 -> vector (simd/fp)
2833  * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2834  *                   10-> 32 bit signed, 11 -> prefetch
2835  * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2836  */
2837 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2838 {
2839     int rt = extract32(insn, 0, 5);
2840     int64_t imm = sextract32(insn, 5, 19) << 2;
2841     bool is_vector = extract32(insn, 26, 1);
2842     int opc = extract32(insn, 30, 2);
2843     bool is_signed = false;
2844     int size = 2;
2845     TCGv_i64 tcg_rt, clean_addr;
2846 
2847     if (is_vector) {
2848         if (opc == 3) {
2849             unallocated_encoding(s);
2850             return;
2851         }
2852         size = 2 + opc;
2853         if (!fp_access_check(s)) {
2854             return;
2855         }
2856     } else {
2857         if (opc == 3) {
2858             /* PRFM (literal) : prefetch */
2859             return;
2860         }
2861         size = 2 + extract32(opc, 0, 1);
2862         is_signed = extract32(opc, 1, 1);
2863     }
2864 
2865     tcg_rt = cpu_reg(s, rt);
2866 
2867     clean_addr = tcg_temp_new_i64();
2868     gen_pc_plus_diff(s, clean_addr, imm);
2869     if (is_vector) {
2870         do_fp_ld(s, rt, clean_addr, size);
2871     } else {
2872         /* Only unsigned 32bit loads target 32bit registers.  */
2873         bool iss_sf = opc != 0;
2874 
2875         do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2876                   false, true, rt, iss_sf, false);
2877     }
2878 }
2879 
2880 /*
2881  * LDNP (Load Pair - non-temporal hint)
2882  * LDP (Load Pair - non vector)
2883  * LDPSW (Load Pair Signed Word - non vector)
2884  * STNP (Store Pair - non-temporal hint)
2885  * STP (Store Pair - non vector)
2886  * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2887  * LDP (Load Pair of SIMD&FP)
2888  * STNP (Store Pair of SIMD&FP - non-temporal hint)
2889  * STP (Store Pair of SIMD&FP)
2890  *
2891  *  31 30 29   27  26  25 24   23  22 21   15 14   10 9    5 4    0
2892  * +-----+-------+---+---+-------+---+-----------------------------+
2893  * | opc | 1 0 1 | V | 0 | index | L |  imm7 |  Rt2  |  Rn  | Rt   |
2894  * +-----+-------+---+---+-------+---+-------+-------+------+------+
2895  *
2896  * opc: LDP/STP/LDNP/STNP        00 -> 32 bit, 10 -> 64 bit
2897  *      LDPSW/STGP               01
2898  *      LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2899  *   V: 0 -> GPR, 1 -> Vector
2900  * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2901  *      10 -> signed offset, 11 -> pre-index
2902  *   L: 0 -> Store 1 -> Load
2903  *
2904  * Rt, Rt2 = GPR or SIMD registers to be stored
2905  * Rn = general purpose register containing address
2906  * imm7 = signed offset (multiple of 4 or 8 depending on size)
2907  */
2908 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2909 {
2910     int rt = extract32(insn, 0, 5);
2911     int rn = extract32(insn, 5, 5);
2912     int rt2 = extract32(insn, 10, 5);
2913     uint64_t offset = sextract64(insn, 15, 7);
2914     int index = extract32(insn, 23, 2);
2915     bool is_vector = extract32(insn, 26, 1);
2916     bool is_load = extract32(insn, 22, 1);
2917     int opc = extract32(insn, 30, 2);
2918 
2919     bool is_signed = false;
2920     bool postindex = false;
2921     bool wback = false;
2922     bool set_tag = false;
2923 
2924     TCGv_i64 clean_addr, dirty_addr;
2925 
2926     int size;
2927 
2928     if (opc == 3) {
2929         unallocated_encoding(s);
2930         return;
2931     }
2932 
2933     if (is_vector) {
2934         size = 2 + opc;
2935     } else if (opc == 1 && !is_load) {
2936         /* STGP */
2937         if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2938             unallocated_encoding(s);
2939             return;
2940         }
2941         size = 3;
2942         set_tag = true;
2943     } else {
2944         size = 2 + extract32(opc, 1, 1);
2945         is_signed = extract32(opc, 0, 1);
2946         if (!is_load && is_signed) {
2947             unallocated_encoding(s);
2948             return;
2949         }
2950     }
2951 
2952     switch (index) {
2953     case 1: /* post-index */
2954         postindex = true;
2955         wback = true;
2956         break;
2957     case 0:
2958         /* signed offset with "non-temporal" hint. Since we don't emulate
2959          * caches we don't care about hints to the cache system about
2960          * data access patterns, and handle this identically to plain
2961          * signed offset.
2962          */
2963         if (is_signed) {
2964             /* There is no non-temporal-hint version of LDPSW */
2965             unallocated_encoding(s);
2966             return;
2967         }
2968         postindex = false;
2969         break;
2970     case 2: /* signed offset, rn not updated */
2971         postindex = false;
2972         break;
2973     case 3: /* pre-index */
2974         postindex = false;
2975         wback = true;
2976         break;
2977     }
2978 
2979     if (is_vector && !fp_access_check(s)) {
2980         return;
2981     }
2982 
2983     offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2984 
2985     if (rn == 31) {
2986         gen_check_sp_alignment(s);
2987     }
2988 
2989     dirty_addr = read_cpu_reg_sp(s, rn, 1);
2990     if (!postindex) {
2991         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2992     }
2993 
2994     if (set_tag) {
2995         if (!s->ata) {
2996             /*
2997              * TODO: We could rely on the stores below, at least for
2998              * system mode, if we arrange to add MO_ALIGN_16.
2999              */
3000             gen_helper_stg_stub(cpu_env, dirty_addr);
3001         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3002             gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
3003         } else {
3004             gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
3005         }
3006     }
3007 
3008     clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
3009                                 (wback || rn != 31) && !set_tag, 2 << size);
3010 
3011     if (is_vector) {
3012         if (is_load) {
3013             do_fp_ld(s, rt, clean_addr, size);
3014         } else {
3015             do_fp_st(s, rt, clean_addr, size);
3016         }
3017         tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3018         if (is_load) {
3019             do_fp_ld(s, rt2, clean_addr, size);
3020         } else {
3021             do_fp_st(s, rt2, clean_addr, size);
3022         }
3023     } else {
3024         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3025         TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
3026 
3027         if (is_load) {
3028             TCGv_i64 tmp = tcg_temp_new_i64();
3029 
3030             /* Do not modify tcg_rt before recognizing any exception
3031              * from the second load.
3032              */
3033             do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
3034                       false, false, 0, false, false);
3035             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3036             do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
3037                       false, false, 0, false, false);
3038 
3039             tcg_gen_mov_i64(tcg_rt, tmp);
3040         } else {
3041             do_gpr_st(s, tcg_rt, clean_addr, size,
3042                       false, 0, false, false);
3043             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3044             do_gpr_st(s, tcg_rt2, clean_addr, size,
3045                       false, 0, false, false);
3046         }
3047     }
3048 
3049     if (wback) {
3050         if (postindex) {
3051             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3052         }
3053         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3054     }
3055 }
3056 
3057 /*
3058  * Load/store (immediate post-indexed)
3059  * Load/store (immediate pre-indexed)
3060  * Load/store (unscaled immediate)
3061  *
3062  * 31 30 29   27  26 25 24 23 22 21  20    12 11 10 9    5 4    0
3063  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3064  * |size| 1 1 1 | V | 0 0 | opc | 0 |  imm9  | idx |  Rn  |  Rt  |
3065  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3066  *
3067  * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3068          10 -> unprivileged
3069  * V = 0 -> non-vector
3070  * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3071  * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3072  */
3073 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3074                                 int opc,
3075                                 int size,
3076                                 int rt,
3077                                 bool is_vector)
3078 {
3079     int rn = extract32(insn, 5, 5);
3080     int imm9 = sextract32(insn, 12, 9);
3081     int idx = extract32(insn, 10, 2);
3082     bool is_signed = false;
3083     bool is_store = false;
3084     bool is_extended = false;
3085     bool is_unpriv = (idx == 2);
3086     bool iss_valid;
3087     bool post_index;
3088     bool writeback;
3089     int memidx;
3090 
3091     TCGv_i64 clean_addr, dirty_addr;
3092 
3093     if (is_vector) {
3094         size |= (opc & 2) << 1;
3095         if (size > 4 || is_unpriv) {
3096             unallocated_encoding(s);
3097             return;
3098         }
3099         is_store = ((opc & 1) == 0);
3100         if (!fp_access_check(s)) {
3101             return;
3102         }
3103     } else {
3104         if (size == 3 && opc == 2) {
3105             /* PRFM - prefetch */
3106             if (idx != 0) {
3107                 unallocated_encoding(s);
3108                 return;
3109             }
3110             return;
3111         }
3112         if (opc == 3 && size > 1) {
3113             unallocated_encoding(s);
3114             return;
3115         }
3116         is_store = (opc == 0);
3117         is_signed = extract32(opc, 1, 1);
3118         is_extended = (size < 3) && extract32(opc, 0, 1);
3119     }
3120 
3121     switch (idx) {
3122     case 0:
3123     case 2:
3124         post_index = false;
3125         writeback = false;
3126         break;
3127     case 1:
3128         post_index = true;
3129         writeback = true;
3130         break;
3131     case 3:
3132         post_index = false;
3133         writeback = true;
3134         break;
3135     default:
3136         g_assert_not_reached();
3137     }
3138 
3139     iss_valid = !is_vector && !writeback;
3140 
3141     if (rn == 31) {
3142         gen_check_sp_alignment(s);
3143     }
3144 
3145     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3146     if (!post_index) {
3147         tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3148     }
3149 
3150     memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3151     clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3152                                        writeback || rn != 31,
3153                                        size, is_unpriv, memidx);
3154 
3155     if (is_vector) {
3156         if (is_store) {
3157             do_fp_st(s, rt, clean_addr, size);
3158         } else {
3159             do_fp_ld(s, rt, clean_addr, size);
3160         }
3161     } else {
3162         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3163         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3164 
3165         if (is_store) {
3166             do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3167                              iss_valid, rt, iss_sf, false);
3168         } else {
3169             do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3170                              is_extended, memidx,
3171                              iss_valid, rt, iss_sf, false);
3172         }
3173     }
3174 
3175     if (writeback) {
3176         TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3177         if (post_index) {
3178             tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3179         }
3180         tcg_gen_mov_i64(tcg_rn, dirty_addr);
3181     }
3182 }
3183 
3184 /*
3185  * Load/store (register offset)
3186  *
3187  * 31 30 29   27  26 25 24 23 22 21  20  16 15 13 12 11 10 9  5 4  0
3188  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3189  * |size| 1 1 1 | V | 0 0 | opc | 1 |  Rm  | opt | S| 1 0 | Rn | Rt |
3190  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3191  *
3192  * For non-vector:
3193  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3194  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3195  * For vector:
3196  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3197  *   opc<0>: 0 -> store, 1 -> load
3198  * V: 1 -> vector/simd
3199  * opt: extend encoding (see DecodeRegExtend)
3200  * S: if S=1 then scale (essentially index by sizeof(size))
3201  * Rt: register to transfer into/out of
3202  * Rn: address register or SP for base
3203  * Rm: offset register or ZR for offset
3204  */
3205 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3206                                    int opc,
3207                                    int size,
3208                                    int rt,
3209                                    bool is_vector)
3210 {
3211     int rn = extract32(insn, 5, 5);
3212     int shift = extract32(insn, 12, 1);
3213     int rm = extract32(insn, 16, 5);
3214     int opt = extract32(insn, 13, 3);
3215     bool is_signed = false;
3216     bool is_store = false;
3217     bool is_extended = false;
3218 
3219     TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3220 
3221     if (extract32(opt, 1, 1) == 0) {
3222         unallocated_encoding(s);
3223         return;
3224     }
3225 
3226     if (is_vector) {
3227         size |= (opc & 2) << 1;
3228         if (size > 4) {
3229             unallocated_encoding(s);
3230             return;
3231         }
3232         is_store = !extract32(opc, 0, 1);
3233         if (!fp_access_check(s)) {
3234             return;
3235         }
3236     } else {
3237         if (size == 3 && opc == 2) {
3238             /* PRFM - prefetch */
3239             return;
3240         }
3241         if (opc == 3 && size > 1) {
3242             unallocated_encoding(s);
3243             return;
3244         }
3245         is_store = (opc == 0);
3246         is_signed = extract32(opc, 1, 1);
3247         is_extended = (size < 3) && extract32(opc, 0, 1);
3248     }
3249 
3250     if (rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3254 
3255     tcg_rm = read_cpu_reg(s, rm, 1);
3256     ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3257 
3258     tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3259     clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3260 
3261     if (is_vector) {
3262         if (is_store) {
3263             do_fp_st(s, rt, clean_addr, size);
3264         } else {
3265             do_fp_ld(s, rt, clean_addr, size);
3266         }
3267     } else {
3268         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3269         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3270         if (is_store) {
3271             do_gpr_st(s, tcg_rt, clean_addr, size,
3272                       true, rt, iss_sf, false);
3273         } else {
3274             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3275                       is_extended, true, rt, iss_sf, false);
3276         }
3277     }
3278 }
3279 
3280 /*
3281  * Load/store (unsigned immediate)
3282  *
3283  * 31 30 29   27  26 25 24 23 22 21        10 9     5
3284  * +----+-------+---+-----+-----+------------+-------+------+
3285  * |size| 1 1 1 | V | 0 1 | opc |   imm12    |  Rn   |  Rt  |
3286  * +----+-------+---+-----+-----+------------+-------+------+
3287  *
3288  * For non-vector:
3289  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3290  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3291  * For vector:
3292  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3293  *   opc<0>: 0 -> store, 1 -> load
3294  * Rn: base address register (inc SP)
3295  * Rt: target register
3296  */
3297 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3298                                         int opc,
3299                                         int size,
3300                                         int rt,
3301                                         bool is_vector)
3302 {
3303     int rn = extract32(insn, 5, 5);
3304     unsigned int imm12 = extract32(insn, 10, 12);
3305     unsigned int offset;
3306 
3307     TCGv_i64 clean_addr, dirty_addr;
3308 
3309     bool is_store;
3310     bool is_signed = false;
3311     bool is_extended = false;
3312 
3313     if (is_vector) {
3314         size |= (opc & 2) << 1;
3315         if (size > 4) {
3316             unallocated_encoding(s);
3317             return;
3318         }
3319         is_store = !extract32(opc, 0, 1);
3320         if (!fp_access_check(s)) {
3321             return;
3322         }
3323     } else {
3324         if (size == 3 && opc == 2) {
3325             /* PRFM - prefetch */
3326             return;
3327         }
3328         if (opc == 3 && size > 1) {
3329             unallocated_encoding(s);
3330             return;
3331         }
3332         is_store = (opc == 0);
3333         is_signed = extract32(opc, 1, 1);
3334         is_extended = (size < 3) && extract32(opc, 0, 1);
3335     }
3336 
3337     if (rn == 31) {
3338         gen_check_sp_alignment(s);
3339     }
3340     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3341     offset = imm12 << size;
3342     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3343     clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3344 
3345     if (is_vector) {
3346         if (is_store) {
3347             do_fp_st(s, rt, clean_addr, size);
3348         } else {
3349             do_fp_ld(s, rt, clean_addr, size);
3350         }
3351     } else {
3352         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3353         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3354         if (is_store) {
3355             do_gpr_st(s, tcg_rt, clean_addr, size,
3356                       true, rt, iss_sf, false);
3357         } else {
3358             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3359                       is_extended, true, rt, iss_sf, false);
3360         }
3361     }
3362 }
3363 
3364 /* Atomic memory operations
3365  *
3366  *  31  30      27  26    24    22  21   16   15    12    10    5     0
3367  * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3368  * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn |  Rt |
3369  * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3370  *
3371  * Rt: the result register
3372  * Rn: base address or SP
3373  * Rs: the source register for the operation
3374  * V: vector flag (always 0 as of v8.3)
3375  * A: acquire flag
3376  * R: release flag
3377  */
3378 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3379                               int size, int rt, bool is_vector)
3380 {
3381     int rs = extract32(insn, 16, 5);
3382     int rn = extract32(insn, 5, 5);
3383     int o3_opc = extract32(insn, 12, 4);
3384     bool r = extract32(insn, 22, 1);
3385     bool a = extract32(insn, 23, 1);
3386     TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3387     AtomicThreeOpFn *fn = NULL;
3388     MemOp mop = s->be_data | size | MO_ALIGN;
3389 
3390     if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3391         unallocated_encoding(s);
3392         return;
3393     }
3394     switch (o3_opc) {
3395     case 000: /* LDADD */
3396         fn = tcg_gen_atomic_fetch_add_i64;
3397         break;
3398     case 001: /* LDCLR */
3399         fn = tcg_gen_atomic_fetch_and_i64;
3400         break;
3401     case 002: /* LDEOR */
3402         fn = tcg_gen_atomic_fetch_xor_i64;
3403         break;
3404     case 003: /* LDSET */
3405         fn = tcg_gen_atomic_fetch_or_i64;
3406         break;
3407     case 004: /* LDSMAX */
3408         fn = tcg_gen_atomic_fetch_smax_i64;
3409         mop |= MO_SIGN;
3410         break;
3411     case 005: /* LDSMIN */
3412         fn = tcg_gen_atomic_fetch_smin_i64;
3413         mop |= MO_SIGN;
3414         break;
3415     case 006: /* LDUMAX */
3416         fn = tcg_gen_atomic_fetch_umax_i64;
3417         break;
3418     case 007: /* LDUMIN */
3419         fn = tcg_gen_atomic_fetch_umin_i64;
3420         break;
3421     case 010: /* SWP */
3422         fn = tcg_gen_atomic_xchg_i64;
3423         break;
3424     case 014: /* LDAPR, LDAPRH, LDAPRB */
3425         if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3426             rs != 31 || a != 1 || r != 0) {
3427             unallocated_encoding(s);
3428             return;
3429         }
3430         break;
3431     default:
3432         unallocated_encoding(s);
3433         return;
3434     }
3435 
3436     if (rn == 31) {
3437         gen_check_sp_alignment(s);
3438     }
3439     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3440 
3441     if (o3_opc == 014) {
3442         /*
3443          * LDAPR* are a special case because they are a simple load, not a
3444          * fetch-and-do-something op.
3445          * The architectural consistency requirements here are weaker than
3446          * full load-acquire (we only need "load-acquire processor consistent"),
3447          * but we choose to implement them as full LDAQ.
3448          */
3449         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3450                   true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3451         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3452         return;
3453     }
3454 
3455     tcg_rs = read_cpu_reg(s, rs, true);
3456     tcg_rt = cpu_reg(s, rt);
3457 
3458     if (o3_opc == 1) { /* LDCLR */
3459         tcg_gen_not_i64(tcg_rs, tcg_rs);
3460     }
3461 
3462     /* The tcg atomic primitives are all full barriers.  Therefore we
3463      * can ignore the Acquire and Release bits of this instruction.
3464      */
3465     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3466 
3467     if ((mop & MO_SIGN) && size != MO_64) {
3468         tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3469     }
3470 }
3471 
3472 /*
3473  * PAC memory operations
3474  *
3475  *  31  30      27  26    24    22  21       12  11  10    5     0
3476  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3477  * | size | 1 1 1 | V | 0 0 | M S | 1 |  imm9  | W | 1 | Rn |  Rt |
3478  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3479  *
3480  * Rt: the result register
3481  * Rn: base address or SP
3482  * V: vector flag (always 0 as of v8.3)
3483  * M: clear for key DA, set for key DB
3484  * W: pre-indexing flag
3485  * S: sign for imm9.
3486  */
3487 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3488                            int size, int rt, bool is_vector)
3489 {
3490     int rn = extract32(insn, 5, 5);
3491     bool is_wback = extract32(insn, 11, 1);
3492     bool use_key_a = !extract32(insn, 23, 1);
3493     int offset;
3494     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3495 
3496     if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3497         unallocated_encoding(s);
3498         return;
3499     }
3500 
3501     if (rn == 31) {
3502         gen_check_sp_alignment(s);
3503     }
3504     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3505 
3506     if (s->pauth_active) {
3507         if (use_key_a) {
3508             gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3509                              tcg_constant_i64(0));
3510         } else {
3511             gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3512                              tcg_constant_i64(0));
3513         }
3514     }
3515 
3516     /* Form the 10-bit signed, scaled offset.  */
3517     offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3518     offset = sextract32(offset << size, 0, 10 + size);
3519     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3520 
3521     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3522     clean_addr = gen_mte_check1(s, dirty_addr, false,
3523                                 is_wback || rn != 31, size);
3524 
3525     tcg_rt = cpu_reg(s, rt);
3526     do_gpr_ld(s, tcg_rt, clean_addr, size,
3527               /* extend */ false, /* iss_valid */ !is_wback,
3528               /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3529 
3530     if (is_wback) {
3531         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3532     }
3533 }
3534 
3535 /*
3536  * LDAPR/STLR (unscaled immediate)
3537  *
3538  *  31  30            24    22  21       12    10    5     0
3539  * +------+-------------+-----+---+--------+-----+----+-----+
3540  * | size | 0 1 1 0 0 1 | opc | 0 |  imm9  | 0 0 | Rn |  Rt |
3541  * +------+-------------+-----+---+--------+-----+----+-----+
3542  *
3543  * Rt: source or destination register
3544  * Rn: base register
3545  * imm9: unscaled immediate offset
3546  * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3547  * size: size of load/store
3548  */
3549 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3550 {
3551     int rt = extract32(insn, 0, 5);
3552     int rn = extract32(insn, 5, 5);
3553     int offset = sextract32(insn, 12, 9);
3554     int opc = extract32(insn, 22, 2);
3555     int size = extract32(insn, 30, 2);
3556     TCGv_i64 clean_addr, dirty_addr;
3557     bool is_store = false;
3558     bool extend = false;
3559     bool iss_sf;
3560     MemOp mop;
3561 
3562     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3563         unallocated_encoding(s);
3564         return;
3565     }
3566 
3567     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3568     mop = size | MO_ALIGN;
3569 
3570     switch (opc) {
3571     case 0: /* STLURB */
3572         is_store = true;
3573         break;
3574     case 1: /* LDAPUR* */
3575         break;
3576     case 2: /* LDAPURS* 64-bit variant */
3577         if (size == 3) {
3578             unallocated_encoding(s);
3579             return;
3580         }
3581         mop |= MO_SIGN;
3582         break;
3583     case 3: /* LDAPURS* 32-bit variant */
3584         if (size > 1) {
3585             unallocated_encoding(s);
3586             return;
3587         }
3588         mop |= MO_SIGN;
3589         extend = true; /* zero-extend 32->64 after signed load */
3590         break;
3591     default:
3592         g_assert_not_reached();
3593     }
3594 
3595     iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3596 
3597     if (rn == 31) {
3598         gen_check_sp_alignment(s);
3599     }
3600 
3601     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3602     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3603     clean_addr = clean_data_tbi(s, dirty_addr);
3604 
3605     if (is_store) {
3606         /* Store-Release semantics */
3607         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3608         do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3609     } else {
3610         /*
3611          * Load-AcquirePC semantics; we implement as the slightly more
3612          * restrictive Load-Acquire.
3613          */
3614         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3615                   extend, true, rt, iss_sf, true);
3616         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3617     }
3618 }
3619 
3620 /* Load/store register (all forms) */
3621 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3622 {
3623     int rt = extract32(insn, 0, 5);
3624     int opc = extract32(insn, 22, 2);
3625     bool is_vector = extract32(insn, 26, 1);
3626     int size = extract32(insn, 30, 2);
3627 
3628     switch (extract32(insn, 24, 2)) {
3629     case 0:
3630         if (extract32(insn, 21, 1) == 0) {
3631             /* Load/store register (unscaled immediate)
3632              * Load/store immediate pre/post-indexed
3633              * Load/store register unprivileged
3634              */
3635             disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3636             return;
3637         }
3638         switch (extract32(insn, 10, 2)) {
3639         case 0:
3640             disas_ldst_atomic(s, insn, size, rt, is_vector);
3641             return;
3642         case 2:
3643             disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3644             return;
3645         default:
3646             disas_ldst_pac(s, insn, size, rt, is_vector);
3647             return;
3648         }
3649         break;
3650     case 1:
3651         disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3652         return;
3653     }
3654     unallocated_encoding(s);
3655 }
3656 
3657 /* AdvSIMD load/store multiple structures
3658  *
3659  *  31  30  29           23 22  21         16 15    12 11  10 9    5 4    0
3660  * +---+---+---------------+---+-------------+--------+------+------+------+
3661  * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size |  Rn  |  Rt  |
3662  * +---+---+---------------+---+-------------+--------+------+------+------+
3663  *
3664  * AdvSIMD load/store multiple structures (post-indexed)
3665  *
3666  *  31  30  29           23 22  21  20     16 15    12 11  10 9    5 4    0
3667  * +---+---+---------------+---+---+---------+--------+------+------+------+
3668  * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 |   Rm    | opcode | size |  Rn  |  Rt  |
3669  * +---+---+---------------+---+---+---------+--------+------+------+------+
3670  *
3671  * Rt: first (or only) SIMD&FP register to be transferred
3672  * Rn: base address or SP
3673  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3674  */
3675 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3676 {
3677     int rt = extract32(insn, 0, 5);
3678     int rn = extract32(insn, 5, 5);
3679     int rm = extract32(insn, 16, 5);
3680     int size = extract32(insn, 10, 2);
3681     int opcode = extract32(insn, 12, 4);
3682     bool is_store = !extract32(insn, 22, 1);
3683     bool is_postidx = extract32(insn, 23, 1);
3684     bool is_q = extract32(insn, 30, 1);
3685     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3686     MemOp endian, align, mop;
3687 
3688     int total;    /* total bytes */
3689     int elements; /* elements per vector */
3690     int rpt;    /* num iterations */
3691     int selem;  /* structure elements */
3692     int r;
3693 
3694     if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3695         unallocated_encoding(s);
3696         return;
3697     }
3698 
3699     if (!is_postidx && rm != 0) {
3700         unallocated_encoding(s);
3701         return;
3702     }
3703 
3704     /* From the shared decode logic */
3705     switch (opcode) {
3706     case 0x0:
3707         rpt = 1;
3708         selem = 4;
3709         break;
3710     case 0x2:
3711         rpt = 4;
3712         selem = 1;
3713         break;
3714     case 0x4:
3715         rpt = 1;
3716         selem = 3;
3717         break;
3718     case 0x6:
3719         rpt = 3;
3720         selem = 1;
3721         break;
3722     case 0x7:
3723         rpt = 1;
3724         selem = 1;
3725         break;
3726     case 0x8:
3727         rpt = 1;
3728         selem = 2;
3729         break;
3730     case 0xa:
3731         rpt = 2;
3732         selem = 1;
3733         break;
3734     default:
3735         unallocated_encoding(s);
3736         return;
3737     }
3738 
3739     if (size == 3 && !is_q && selem != 1) {
3740         /* reserved */
3741         unallocated_encoding(s);
3742         return;
3743     }
3744 
3745     if (!fp_access_check(s)) {
3746         return;
3747     }
3748 
3749     if (rn == 31) {
3750         gen_check_sp_alignment(s);
3751     }
3752 
3753     /* For our purposes, bytes are always little-endian.  */
3754     endian = s->be_data;
3755     if (size == 0) {
3756         endian = MO_LE;
3757     }
3758 
3759     total = rpt * selem * (is_q ? 16 : 8);
3760     tcg_rn = cpu_reg_sp(s, rn);
3761 
3762     /*
3763      * Issue the MTE check vs the logical repeat count, before we
3764      * promote consecutive little-endian elements below.
3765      */
3766     clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3767                                 total);
3768 
3769     /*
3770      * Consecutive little-endian elements from a single register
3771      * can be promoted to a larger little-endian operation.
3772      */
3773     align = MO_ALIGN;
3774     if (selem == 1 && endian == MO_LE) {
3775         align = pow2_align(size);
3776         size = 3;
3777     }
3778     if (!s->align_mem) {
3779         align = 0;
3780     }
3781     mop = endian | size | align;
3782 
3783     elements = (is_q ? 16 : 8) >> size;
3784     tcg_ebytes = tcg_constant_i64(1 << size);
3785     for (r = 0; r < rpt; r++) {
3786         int e;
3787         for (e = 0; e < elements; e++) {
3788             int xs;
3789             for (xs = 0; xs < selem; xs++) {
3790                 int tt = (rt + r + xs) % 32;
3791                 if (is_store) {
3792                     do_vec_st(s, tt, e, clean_addr, mop);
3793                 } else {
3794                     do_vec_ld(s, tt, e, clean_addr, mop);
3795                 }
3796                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3797             }
3798         }
3799     }
3800 
3801     if (!is_store) {
3802         /* For non-quad operations, setting a slice of the low
3803          * 64 bits of the register clears the high 64 bits (in
3804          * the ARM ARM pseudocode this is implicit in the fact
3805          * that 'rval' is a 64 bit wide variable).
3806          * For quad operations, we might still need to zero the
3807          * high bits of SVE.
3808          */
3809         for (r = 0; r < rpt * selem; r++) {
3810             int tt = (rt + r) % 32;
3811             clear_vec_high(s, is_q, tt);
3812         }
3813     }
3814 
3815     if (is_postidx) {
3816         if (rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3820         }
3821     }
3822 }
3823 
3824 /* AdvSIMD load/store single structure
3825  *
3826  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3827  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3828  * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size |  Rn  |  Rt  |
3829  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3830  *
3831  * AdvSIMD load/store single structure (post-indexed)
3832  *
3833  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3834  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3835  * | 0 | Q | 0 0 1 1 0 1 1 | L R |     Rm    | opc | S | size |  Rn  |  Rt  |
3836  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3837  *
3838  * Rt: first (or only) SIMD&FP register to be transferred
3839  * Rn: base address or SP
3840  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3841  * index = encoded in Q:S:size dependent on size
3842  *
3843  * lane_size = encoded in R, opc
3844  * transfer width = encoded in opc, S, size
3845  */
3846 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3847 {
3848     int rt = extract32(insn, 0, 5);
3849     int rn = extract32(insn, 5, 5);
3850     int rm = extract32(insn, 16, 5);
3851     int size = extract32(insn, 10, 2);
3852     int S = extract32(insn, 12, 1);
3853     int opc = extract32(insn, 13, 3);
3854     int R = extract32(insn, 21, 1);
3855     int is_load = extract32(insn, 22, 1);
3856     int is_postidx = extract32(insn, 23, 1);
3857     int is_q = extract32(insn, 30, 1);
3858 
3859     int scale = extract32(opc, 1, 2);
3860     int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3861     bool replicate = false;
3862     int index = is_q << 3 | S << 2 | size;
3863     int xs, total;
3864     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3865     MemOp mop;
3866 
3867     if (extract32(insn, 31, 1)) {
3868         unallocated_encoding(s);
3869         return;
3870     }
3871     if (!is_postidx && rm != 0) {
3872         unallocated_encoding(s);
3873         return;
3874     }
3875 
3876     switch (scale) {
3877     case 3:
3878         if (!is_load || S) {
3879             unallocated_encoding(s);
3880             return;
3881         }
3882         scale = size;
3883         replicate = true;
3884         break;
3885     case 0:
3886         break;
3887     case 1:
3888         if (extract32(size, 0, 1)) {
3889             unallocated_encoding(s);
3890             return;
3891         }
3892         index >>= 1;
3893         break;
3894     case 2:
3895         if (extract32(size, 1, 1)) {
3896             unallocated_encoding(s);
3897             return;
3898         }
3899         if (!extract32(size, 0, 1)) {
3900             index >>= 2;
3901         } else {
3902             if (S) {
3903                 unallocated_encoding(s);
3904                 return;
3905             }
3906             index >>= 3;
3907             scale = 3;
3908         }
3909         break;
3910     default:
3911         g_assert_not_reached();
3912     }
3913 
3914     if (!fp_access_check(s)) {
3915         return;
3916     }
3917 
3918     if (rn == 31) {
3919         gen_check_sp_alignment(s);
3920     }
3921 
3922     total = selem << scale;
3923     tcg_rn = cpu_reg_sp(s, rn);
3924 
3925     clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3926                                 total);
3927     mop = finalize_memop(s, scale);
3928 
3929     tcg_ebytes = tcg_constant_i64(1 << scale);
3930     for (xs = 0; xs < selem; xs++) {
3931         if (replicate) {
3932             /* Load and replicate to all elements */
3933             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3934 
3935             tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3936             tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3937                                  (is_q + 1) * 8, vec_full_reg_size(s),
3938                                  tcg_tmp);
3939         } else {
3940             /* Load/store one element per register */
3941             if (is_load) {
3942                 do_vec_ld(s, rt, index, clean_addr, mop);
3943             } else {
3944                 do_vec_st(s, rt, index, clean_addr, mop);
3945             }
3946         }
3947         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3948         rt = (rt + 1) % 32;
3949     }
3950 
3951     if (is_postidx) {
3952         if (rm == 31) {
3953             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3954         } else {
3955             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3956         }
3957     }
3958 }
3959 
3960 /*
3961  * Load/Store memory tags
3962  *
3963  *  31 30 29         24     22  21     12    10      5      0
3964  * +-----+-------------+-----+---+------+-----+------+------+
3965  * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 |  Rn  |  Rt  |
3966  * +-----+-------------+-----+---+------+-----+------+------+
3967  */
3968 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3969 {
3970     int rt = extract32(insn, 0, 5);
3971     int rn = extract32(insn, 5, 5);
3972     uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3973     int op2 = extract32(insn, 10, 2);
3974     int op1 = extract32(insn, 22, 2);
3975     bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3976     int index = 0;
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     /* We checked insn bits [29:24,21] in the caller.  */
3980     if (extract32(insn, 30, 2) != 3) {
3981         goto do_unallocated;
3982     }
3983 
3984     /*
3985      * @index is a tri-state variable which has 3 states:
3986      * < 0 : post-index, writeback
3987      * = 0 : signed offset
3988      * > 0 : pre-index, writeback
3989      */
3990     switch (op1) {
3991     case 0:
3992         if (op2 != 0) {
3993             /* STG */
3994             index = op2 - 2;
3995         } else {
3996             /* STZGM */
3997             if (s->current_el == 0 || offset != 0) {
3998                 goto do_unallocated;
3999             }
4000             is_mult = is_zero = true;
4001         }
4002         break;
4003     case 1:
4004         if (op2 != 0) {
4005             /* STZG */
4006             is_zero = true;
4007             index = op2 - 2;
4008         } else {
4009             /* LDG */
4010             is_load = true;
4011         }
4012         break;
4013     case 2:
4014         if (op2 != 0) {
4015             /* ST2G */
4016             is_pair = true;
4017             index = op2 - 2;
4018         } else {
4019             /* STGM */
4020             if (s->current_el == 0 || offset != 0) {
4021                 goto do_unallocated;
4022             }
4023             is_mult = true;
4024         }
4025         break;
4026     case 3:
4027         if (op2 != 0) {
4028             /* STZ2G */
4029             is_pair = is_zero = true;
4030             index = op2 - 2;
4031         } else {
4032             /* LDGM */
4033             if (s->current_el == 0 || offset != 0) {
4034                 goto do_unallocated;
4035             }
4036             is_mult = is_load = true;
4037         }
4038         break;
4039 
4040     default:
4041     do_unallocated:
4042         unallocated_encoding(s);
4043         return;
4044     }
4045 
4046     if (is_mult
4047         ? !dc_isar_feature(aa64_mte, s)
4048         : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4049         goto do_unallocated;
4050     }
4051 
4052     if (rn == 31) {
4053         gen_check_sp_alignment(s);
4054     }
4055 
4056     addr = read_cpu_reg_sp(s, rn, true);
4057     if (index >= 0) {
4058         /* pre-index or signed offset */
4059         tcg_gen_addi_i64(addr, addr, offset);
4060     }
4061 
4062     if (is_mult) {
4063         tcg_rt = cpu_reg(s, rt);
4064 
4065         if (is_zero) {
4066             int size = 4 << s->dcz_blocksize;
4067 
4068             if (s->ata) {
4069                 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4070             }
4071             /*
4072              * The non-tags portion of STZGM is mostly like DC_ZVA,
4073              * except the alignment happens before the access.
4074              */
4075             clean_addr = clean_data_tbi(s, addr);
4076             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4077             gen_helper_dc_zva(cpu_env, clean_addr);
4078         } else if (s->ata) {
4079             if (is_load) {
4080                 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4081             } else {
4082                 gen_helper_stgm(cpu_env, addr, tcg_rt);
4083             }
4084         } else {
4085             MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4086             int size = 4 << GMID_EL1_BS;
4087 
4088             clean_addr = clean_data_tbi(s, addr);
4089             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4090             gen_probe_access(s, clean_addr, acc, size);
4091 
4092             if (is_load) {
4093                 /* The result tags are zeros.  */
4094                 tcg_gen_movi_i64(tcg_rt, 0);
4095             }
4096         }
4097         return;
4098     }
4099 
4100     if (is_load) {
4101         tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4102         tcg_rt = cpu_reg(s, rt);
4103         if (s->ata) {
4104             gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4105         } else {
4106             clean_addr = clean_data_tbi(s, addr);
4107             gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4108             gen_address_with_allocation_tag0(tcg_rt, addr);
4109         }
4110     } else {
4111         tcg_rt = cpu_reg_sp(s, rt);
4112         if (!s->ata) {
4113             /*
4114              * For STG and ST2G, we need to check alignment and probe memory.
4115              * TODO: For STZG and STZ2G, we could rely on the stores below,
4116              * at least for system mode; user-only won't enforce alignment.
4117              */
4118             if (is_pair) {
4119                 gen_helper_st2g_stub(cpu_env, addr);
4120             } else {
4121                 gen_helper_stg_stub(cpu_env, addr);
4122             }
4123         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4124             if (is_pair) {
4125                 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4126             } else {
4127                 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4128             }
4129         } else {
4130             if (is_pair) {
4131                 gen_helper_st2g(cpu_env, addr, tcg_rt);
4132             } else {
4133                 gen_helper_stg(cpu_env, addr, tcg_rt);
4134             }
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 tcg_zero = tcg_constant_i64(0);
4141         int mem_index = get_mem_index(s);
4142         int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4143 
4144         tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4145                             MO_UQ | MO_ALIGN_16);
4146         for (i = 8; i < n; i += 8) {
4147             tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4148             tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ);
4149         }
4150     }
4151 
4152     if (index != 0) {
4153         /* pre-index or post-index */
4154         if (index < 0) {
4155             /* post-index */
4156             tcg_gen_addi_i64(addr, addr, offset);
4157         }
4158         tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4159     }
4160 }
4161 
4162 /* Loads and stores */
4163 static void disas_ldst(DisasContext *s, uint32_t insn)
4164 {
4165     switch (extract32(insn, 24, 6)) {
4166     case 0x08: /* Load/store exclusive */
4167         disas_ldst_excl(s, insn);
4168         break;
4169     case 0x18: case 0x1c: /* Load register (literal) */
4170         disas_ld_lit(s, insn);
4171         break;
4172     case 0x28: case 0x29:
4173     case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4174         disas_ldst_pair(s, insn);
4175         break;
4176     case 0x38: case 0x39:
4177     case 0x3c: case 0x3d: /* Load/store register (all forms) */
4178         disas_ldst_reg(s, insn);
4179         break;
4180     case 0x0c: /* AdvSIMD load/store multiple structures */
4181         disas_ldst_multiple_struct(s, insn);
4182         break;
4183     case 0x0d: /* AdvSIMD load/store single structure */
4184         disas_ldst_single_struct(s, insn);
4185         break;
4186     case 0x19:
4187         if (extract32(insn, 21, 1) != 0) {
4188             disas_ldst_tag(s, insn);
4189         } else if (extract32(insn, 10, 2) == 0) {
4190             disas_ldst_ldapr_stlr(s, insn);
4191         } else {
4192             unallocated_encoding(s);
4193         }
4194         break;
4195     default:
4196         unallocated_encoding(s);
4197         break;
4198     }
4199 }
4200 
4201 /*
4202  * PC-rel. addressing
4203  */
4204 
4205 static bool trans_ADR(DisasContext *s, arg_ri *a)
4206 {
4207     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4208     return true;
4209 }
4210 
4211 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4212 {
4213     int64_t offset = (int64_t)a->imm << 12;
4214 
4215     /* The page offset is ok for CF_PCREL. */
4216     offset -= s->pc_curr & 0xfff;
4217     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4218     return true;
4219 }
4220 
4221 /*
4222  * Add/subtract (immediate)
4223  *
4224  *  31 30 29 28         23 22 21         10 9   5 4   0
4225  * +--+--+--+-------------+--+-------------+-----+-----+
4226  * |sf|op| S| 1 0 0 0 1 0 |sh|    imm12    |  Rn | Rd  |
4227  * +--+--+--+-------------+--+-------------+-----+-----+
4228  *
4229  *    sf: 0 -> 32bit, 1 -> 64bit
4230  *    op: 0 -> add  , 1 -> sub
4231  *     S: 1 -> set flags
4232  *    sh: 1 -> LSL imm by 12
4233  */
4234 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4235 {
4236     int rd = extract32(insn, 0, 5);
4237     int rn = extract32(insn, 5, 5);
4238     uint64_t imm = extract32(insn, 10, 12);
4239     bool shift = extract32(insn, 22, 1);
4240     bool setflags = extract32(insn, 29, 1);
4241     bool sub_op = extract32(insn, 30, 1);
4242     bool is_64bit = extract32(insn, 31, 1);
4243 
4244     TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4245     TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4246     TCGv_i64 tcg_result;
4247 
4248     if (shift) {
4249         imm <<= 12;
4250     }
4251 
4252     tcg_result = tcg_temp_new_i64();
4253     if (!setflags) {
4254         if (sub_op) {
4255             tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4256         } else {
4257             tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4258         }
4259     } else {
4260         TCGv_i64 tcg_imm = tcg_constant_i64(imm);
4261         if (sub_op) {
4262             gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4263         } else {
4264             gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4265         }
4266     }
4267 
4268     if (is_64bit) {
4269         tcg_gen_mov_i64(tcg_rd, tcg_result);
4270     } else {
4271         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4272     }
4273 }
4274 
4275 /*
4276  * Add/subtract (immediate, with tags)
4277  *
4278  *  31 30 29 28         23 22 21     16 14      10 9   5 4   0
4279  * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4280  * |sf|op| S| 1 0 0 0 1 1 |o2|  uimm6  |o3| uimm4 |  Rn | Rd  |
4281  * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4282  *
4283  *    op: 0 -> add, 1 -> sub
4284  */
4285 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4286 {
4287     int rd = extract32(insn, 0, 5);
4288     int rn = extract32(insn, 5, 5);
4289     int uimm4 = extract32(insn, 10, 4);
4290     int uimm6 = extract32(insn, 16, 6);
4291     bool sub_op = extract32(insn, 30, 1);
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     /* Test all of sf=1, S=0, o2=0, o3=0.  */
4296     if ((insn & 0xa040c000u) != 0x80000000u ||
4297         !dc_isar_feature(aa64_mte_insn_reg, s)) {
4298         unallocated_encoding(s);
4299         return;
4300     }
4301 
4302     imm = uimm6 << LOG2_TAG_GRANULE;
4303     if (sub_op) {
4304         imm = -imm;
4305     }
4306 
4307     tcg_rn = cpu_reg_sp(s, rn);
4308     tcg_rd = cpu_reg_sp(s, rd);
4309 
4310     if (s->ata) {
4311         gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4312                            tcg_constant_i32(imm),
4313                            tcg_constant_i32(uimm4));
4314     } else {
4315         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4316         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4317     }
4318 }
4319 
4320 /* The input should be a value in the bottom e bits (with higher
4321  * bits zero); returns that value replicated into every element
4322  * of size e in a 64 bit integer.
4323  */
4324 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4325 {
4326     assert(e != 0);
4327     while (e < 64) {
4328         mask |= mask << e;
4329         e *= 2;
4330     }
4331     return mask;
4332 }
4333 
4334 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4335 static inline uint64_t bitmask64(unsigned int length)
4336 {
4337     assert(length > 0 && length <= 64);
4338     return ~0ULL >> (64 - length);
4339 }
4340 
4341 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4342  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4343  * value (ie should cause a guest UNDEF exception), and true if they are
4344  * valid, in which case the decoded bit pattern is written to result.
4345  */
4346 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4347                             unsigned int imms, unsigned int immr)
4348 {
4349     uint64_t mask;
4350     unsigned e, levels, s, r;
4351     int len;
4352 
4353     assert(immn < 2 && imms < 64 && immr < 64);
4354 
4355     /* The bit patterns we create here are 64 bit patterns which
4356      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4357      * 64 bits each. Each element contains the same value: a run
4358      * of between 1 and e-1 non-zero bits, rotated within the
4359      * element by between 0 and e-1 bits.
4360      *
4361      * The element size and run length are encoded into immn (1 bit)
4362      * and imms (6 bits) as follows:
4363      * 64 bit elements: immn = 1, imms = <length of run - 1>
4364      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4365      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4366      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4367      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4368      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4369      * Notice that immn = 0, imms = 11111x is the only combination
4370      * not covered by one of the above options; this is reserved.
4371      * Further, <length of run - 1> all-ones is a reserved pattern.
4372      *
4373      * In all cases the rotation is by immr % e (and immr is 6 bits).
4374      */
4375 
4376     /* First determine the element size */
4377     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4378     if (len < 1) {
4379         /* This is the immn == 0, imms == 0x11111x case */
4380         return false;
4381     }
4382     e = 1 << len;
4383 
4384     levels = e - 1;
4385     s = imms & levels;
4386     r = immr & levels;
4387 
4388     if (s == levels) {
4389         /* <length of run - 1> mustn't be all-ones. */
4390         return false;
4391     }
4392 
4393     /* Create the value of one element: s+1 set bits rotated
4394      * by r within the element (which is e bits wide)...
4395      */
4396     mask = bitmask64(s + 1);
4397     if (r) {
4398         mask = (mask >> r) | (mask << (e - r));
4399         mask &= bitmask64(e);
4400     }
4401     /* ...then replicate the element over the whole 64 bit value */
4402     mask = bitfield_replicate(mask, e);
4403     *result = mask;
4404     return true;
4405 }
4406 
4407 /* Logical (immediate)
4408  *   31  30 29 28         23 22  21  16 15  10 9    5 4    0
4409  * +----+-----+-------------+---+------+------+------+------+
4410  * | sf | opc | 1 0 0 1 0 0 | N | immr | imms |  Rn  |  Rd  |
4411  * +----+-----+-------------+---+------+------+------+------+
4412  */
4413 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4414 {
4415     unsigned int sf, opc, is_n, immr, imms, rn, rd;
4416     TCGv_i64 tcg_rd, tcg_rn;
4417     uint64_t wmask;
4418     bool is_and = false;
4419 
4420     sf = extract32(insn, 31, 1);
4421     opc = extract32(insn, 29, 2);
4422     is_n = extract32(insn, 22, 1);
4423     immr = extract32(insn, 16, 6);
4424     imms = extract32(insn, 10, 6);
4425     rn = extract32(insn, 5, 5);
4426     rd = extract32(insn, 0, 5);
4427 
4428     if (!sf && is_n) {
4429         unallocated_encoding(s);
4430         return;
4431     }
4432 
4433     if (opc == 0x3) { /* ANDS */
4434         tcg_rd = cpu_reg(s, rd);
4435     } else {
4436         tcg_rd = cpu_reg_sp(s, rd);
4437     }
4438     tcg_rn = cpu_reg(s, rn);
4439 
4440     if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4441         /* some immediate field values are reserved */
4442         unallocated_encoding(s);
4443         return;
4444     }
4445 
4446     if (!sf) {
4447         wmask &= 0xffffffff;
4448     }
4449 
4450     switch (opc) {
4451     case 0x3: /* ANDS */
4452     case 0x0: /* AND */
4453         tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4454         is_and = true;
4455         break;
4456     case 0x1: /* ORR */
4457         tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4458         break;
4459     case 0x2: /* EOR */
4460         tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4461         break;
4462     default:
4463         assert(FALSE); /* must handle all above */
4464         break;
4465     }
4466 
4467     if (!sf && !is_and) {
4468         /* zero extend final result; we know we can skip this for AND
4469          * since the immediate had the high 32 bits clear.
4470          */
4471         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4472     }
4473 
4474     if (opc == 3) { /* ANDS */
4475         gen_logic_CC(sf, tcg_rd);
4476     }
4477 }
4478 
4479 /*
4480  * Move wide (immediate)
4481  *
4482  *  31 30 29 28         23 22 21 20             5 4    0
4483  * +--+-----+-------------+-----+----------------+------+
4484  * |sf| opc | 1 0 0 1 0 1 |  hw |  imm16         |  Rd  |
4485  * +--+-----+-------------+-----+----------------+------+
4486  *
4487  * sf: 0 -> 32 bit, 1 -> 64 bit
4488  * opc: 00 -> N, 10 -> Z, 11 -> K
4489  * hw: shift/16 (0,16, and sf only 32, 48)
4490  */
4491 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4492 {
4493     int rd = extract32(insn, 0, 5);
4494     uint64_t imm = extract32(insn, 5, 16);
4495     int sf = extract32(insn, 31, 1);
4496     int opc = extract32(insn, 29, 2);
4497     int pos = extract32(insn, 21, 2) << 4;
4498     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4499 
4500     if (!sf && (pos >= 32)) {
4501         unallocated_encoding(s);
4502         return;
4503     }
4504 
4505     switch (opc) {
4506     case 0: /* MOVN */
4507     case 2: /* MOVZ */
4508         imm <<= pos;
4509         if (opc == 0) {
4510             imm = ~imm;
4511         }
4512         if (!sf) {
4513             imm &= 0xffffffffu;
4514         }
4515         tcg_gen_movi_i64(tcg_rd, imm);
4516         break;
4517     case 3: /* MOVK */
4518         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16);
4519         if (!sf) {
4520             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4521         }
4522         break;
4523     default:
4524         unallocated_encoding(s);
4525         break;
4526     }
4527 }
4528 
4529 /* Bitfield
4530  *   31  30 29 28         23 22  21  16 15  10 9    5 4    0
4531  * +----+-----+-------------+---+------+------+------+------+
4532  * | sf | opc | 1 0 0 1 1 0 | N | immr | imms |  Rn  |  Rd  |
4533  * +----+-----+-------------+---+------+------+------+------+
4534  */
4535 static void disas_bitfield(DisasContext *s, uint32_t insn)
4536 {
4537     unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4538     TCGv_i64 tcg_rd, tcg_tmp;
4539 
4540     sf = extract32(insn, 31, 1);
4541     opc = extract32(insn, 29, 2);
4542     n = extract32(insn, 22, 1);
4543     ri = extract32(insn, 16, 6);
4544     si = extract32(insn, 10, 6);
4545     rn = extract32(insn, 5, 5);
4546     rd = extract32(insn, 0, 5);
4547     bitsize = sf ? 64 : 32;
4548 
4549     if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4550         unallocated_encoding(s);
4551         return;
4552     }
4553 
4554     tcg_rd = cpu_reg(s, rd);
4555 
4556     /* Suppress the zero-extend for !sf.  Since RI and SI are constrained
4557        to be smaller than bitsize, we'll never reference data outside the
4558        low 32-bits anyway.  */
4559     tcg_tmp = read_cpu_reg(s, rn, 1);
4560 
4561     /* Recognize simple(r) extractions.  */
4562     if (si >= ri) {
4563         /* Wd<s-r:0> = Wn<s:r> */
4564         len = (si - ri) + 1;
4565         if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4566             tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4567             goto done;
4568         } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4569             tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4570             return;
4571         }
4572         /* opc == 1, BFXIL fall through to deposit */
4573         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4574         pos = 0;
4575     } else {
4576         /* Handle the ri > si case with a deposit
4577          * Wd<32+s-r,32-r> = Wn<s:0>
4578          */
4579         len = si + 1;
4580         pos = (bitsize - ri) & (bitsize - 1);
4581     }
4582 
4583     if (opc == 0 && len < ri) {
4584         /* SBFM: sign extend the destination field from len to fill
4585            the balance of the word.  Let the deposit below insert all
4586            of those sign bits.  */
4587         tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4588         len = ri;
4589     }
4590 
4591     if (opc == 1) { /* BFM, BFXIL */
4592         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4593     } else {
4594         /* SBFM or UBFM: We start with zero, and we haven't modified
4595            any bits outside bitsize, therefore the zero-extension
4596            below is unneeded.  */
4597         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4598         return;
4599     }
4600 
4601  done:
4602     if (!sf) { /* zero extend final result */
4603         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4604     }
4605 }
4606 
4607 /* Extract
4608  *   31  30  29 28         23 22   21  20  16 15    10 9    5 4    0
4609  * +----+------+-------------+---+----+------+--------+------+------+
4610  * | sf | op21 | 1 0 0 1 1 1 | N | o0 |  Rm  |  imms  |  Rn  |  Rd  |
4611  * +----+------+-------------+---+----+------+--------+------+------+
4612  */
4613 static void disas_extract(DisasContext *s, uint32_t insn)
4614 {
4615     unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4616 
4617     sf = extract32(insn, 31, 1);
4618     n = extract32(insn, 22, 1);
4619     rm = extract32(insn, 16, 5);
4620     imm = extract32(insn, 10, 6);
4621     rn = extract32(insn, 5, 5);
4622     rd = extract32(insn, 0, 5);
4623     op21 = extract32(insn, 29, 2);
4624     op0 = extract32(insn, 21, 1);
4625     bitsize = sf ? 64 : 32;
4626 
4627     if (sf != n || op21 || op0 || imm >= bitsize) {
4628         unallocated_encoding(s);
4629     } else {
4630         TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4631 
4632         tcg_rd = cpu_reg(s, rd);
4633 
4634         if (unlikely(imm == 0)) {
4635             /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4636              * so an extract from bit 0 is a special case.
4637              */
4638             if (sf) {
4639                 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4640             } else {
4641                 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4642             }
4643         } else {
4644             tcg_rm = cpu_reg(s, rm);
4645             tcg_rn = cpu_reg(s, rn);
4646 
4647             if (sf) {
4648                 /* Specialization to ROR happens in EXTRACT2.  */
4649                 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4650             } else {
4651                 TCGv_i32 t0 = tcg_temp_new_i32();
4652 
4653                 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4654                 if (rm == rn) {
4655                     tcg_gen_rotri_i32(t0, t0, imm);
4656                 } else {
4657                     TCGv_i32 t1 = tcg_temp_new_i32();
4658                     tcg_gen_extrl_i64_i32(t1, tcg_rn);
4659                     tcg_gen_extract2_i32(t0, t0, t1, imm);
4660                 }
4661                 tcg_gen_extu_i32_i64(tcg_rd, t0);
4662             }
4663         }
4664     }
4665 }
4666 
4667 /* Data processing - immediate */
4668 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4669 {
4670     switch (extract32(insn, 23, 6)) {
4671     case 0x22: /* Add/subtract (immediate) */
4672         disas_add_sub_imm(s, insn);
4673         break;
4674     case 0x23: /* Add/subtract (immediate, with tags) */
4675         disas_add_sub_imm_with_tags(s, insn);
4676         break;
4677     case 0x24: /* Logical (immediate) */
4678         disas_logic_imm(s, insn);
4679         break;
4680     case 0x25: /* Move wide (immediate) */
4681         disas_movw_imm(s, insn);
4682         break;
4683     case 0x26: /* Bitfield */
4684         disas_bitfield(s, insn);
4685         break;
4686     case 0x27: /* Extract */
4687         disas_extract(s, insn);
4688         break;
4689     default:
4690         unallocated_encoding(s);
4691         break;
4692     }
4693 }
4694 
4695 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4696  * Note that it is the caller's responsibility to ensure that the
4697  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4698  * mandated semantics for out of range shifts.
4699  */
4700 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4701                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4702 {
4703     switch (shift_type) {
4704     case A64_SHIFT_TYPE_LSL:
4705         tcg_gen_shl_i64(dst, src, shift_amount);
4706         break;
4707     case A64_SHIFT_TYPE_LSR:
4708         tcg_gen_shr_i64(dst, src, shift_amount);
4709         break;
4710     case A64_SHIFT_TYPE_ASR:
4711         if (!sf) {
4712             tcg_gen_ext32s_i64(dst, src);
4713         }
4714         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4715         break;
4716     case A64_SHIFT_TYPE_ROR:
4717         if (sf) {
4718             tcg_gen_rotr_i64(dst, src, shift_amount);
4719         } else {
4720             TCGv_i32 t0, t1;
4721             t0 = tcg_temp_new_i32();
4722             t1 = tcg_temp_new_i32();
4723             tcg_gen_extrl_i64_i32(t0, src);
4724             tcg_gen_extrl_i64_i32(t1, shift_amount);
4725             tcg_gen_rotr_i32(t0, t0, t1);
4726             tcg_gen_extu_i32_i64(dst, t0);
4727         }
4728         break;
4729     default:
4730         assert(FALSE); /* all shift types should be handled */
4731         break;
4732     }
4733 
4734     if (!sf) { /* zero extend final result */
4735         tcg_gen_ext32u_i64(dst, dst);
4736     }
4737 }
4738 
4739 /* Shift a TCGv src by immediate, put result in dst.
4740  * The shift amount must be in range (this should always be true as the
4741  * relevant instructions will UNDEF on bad shift immediates).
4742  */
4743 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4744                           enum a64_shift_type shift_type, unsigned int shift_i)
4745 {
4746     assert(shift_i < (sf ? 64 : 32));
4747 
4748     if (shift_i == 0) {
4749         tcg_gen_mov_i64(dst, src);
4750     } else {
4751         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4752     }
4753 }
4754 
4755 /* Logical (shifted register)
4756  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4757  * +----+-----+-----------+-------+---+------+--------+------+------+
4758  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4759  * +----+-----+-----------+-------+---+------+--------+------+------+
4760  */
4761 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4762 {
4763     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4764     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4765 
4766     sf = extract32(insn, 31, 1);
4767     opc = extract32(insn, 29, 2);
4768     shift_type = extract32(insn, 22, 2);
4769     invert = extract32(insn, 21, 1);
4770     rm = extract32(insn, 16, 5);
4771     shift_amount = extract32(insn, 10, 6);
4772     rn = extract32(insn, 5, 5);
4773     rd = extract32(insn, 0, 5);
4774 
4775     if (!sf && (shift_amount & (1 << 5))) {
4776         unallocated_encoding(s);
4777         return;
4778     }
4779 
4780     tcg_rd = cpu_reg(s, rd);
4781 
4782     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4783         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4784          * register-register MOV and MVN, so it is worth special casing.
4785          */
4786         tcg_rm = cpu_reg(s, rm);
4787         if (invert) {
4788             tcg_gen_not_i64(tcg_rd, tcg_rm);
4789             if (!sf) {
4790                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4791             }
4792         } else {
4793             if (sf) {
4794                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4795             } else {
4796                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4797             }
4798         }
4799         return;
4800     }
4801 
4802     tcg_rm = read_cpu_reg(s, rm, sf);
4803 
4804     if (shift_amount) {
4805         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4806     }
4807 
4808     tcg_rn = cpu_reg(s, rn);
4809 
4810     switch (opc | (invert << 2)) {
4811     case 0: /* AND */
4812     case 3: /* ANDS */
4813         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4814         break;
4815     case 1: /* ORR */
4816         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4817         break;
4818     case 2: /* EOR */
4819         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4820         break;
4821     case 4: /* BIC */
4822     case 7: /* BICS */
4823         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4824         break;
4825     case 5: /* ORN */
4826         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4827         break;
4828     case 6: /* EON */
4829         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4830         break;
4831     default:
4832         assert(FALSE);
4833         break;
4834     }
4835 
4836     if (!sf) {
4837         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4838     }
4839 
4840     if (opc == 3) {
4841         gen_logic_CC(sf, tcg_rd);
4842     }
4843 }
4844 
4845 /*
4846  * Add/subtract (extended register)
4847  *
4848  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4849  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4850  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4851  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4852  *
4853  *  sf: 0 -> 32bit, 1 -> 64bit
4854  *  op: 0 -> add  , 1 -> sub
4855  *   S: 1 -> set flags
4856  * opt: 00
4857  * option: extension type (see DecodeRegExtend)
4858  * imm3: optional shift to Rm
4859  *
4860  * Rd = Rn + LSL(extend(Rm), amount)
4861  */
4862 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4863 {
4864     int rd = extract32(insn, 0, 5);
4865     int rn = extract32(insn, 5, 5);
4866     int imm3 = extract32(insn, 10, 3);
4867     int option = extract32(insn, 13, 3);
4868     int rm = extract32(insn, 16, 5);
4869     int opt = extract32(insn, 22, 2);
4870     bool setflags = extract32(insn, 29, 1);
4871     bool sub_op = extract32(insn, 30, 1);
4872     bool sf = extract32(insn, 31, 1);
4873 
4874     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4875     TCGv_i64 tcg_rd;
4876     TCGv_i64 tcg_result;
4877 
4878     if (imm3 > 4 || opt != 0) {
4879         unallocated_encoding(s);
4880         return;
4881     }
4882 
4883     /* non-flag setting ops may use SP */
4884     if (!setflags) {
4885         tcg_rd = cpu_reg_sp(s, rd);
4886     } else {
4887         tcg_rd = cpu_reg(s, rd);
4888     }
4889     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4890 
4891     tcg_rm = read_cpu_reg(s, rm, sf);
4892     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4893 
4894     tcg_result = tcg_temp_new_i64();
4895 
4896     if (!setflags) {
4897         if (sub_op) {
4898             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4899         } else {
4900             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4901         }
4902     } else {
4903         if (sub_op) {
4904             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4905         } else {
4906             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4907         }
4908     }
4909 
4910     if (sf) {
4911         tcg_gen_mov_i64(tcg_rd, tcg_result);
4912     } else {
4913         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4914     }
4915 }
4916 
4917 /*
4918  * Add/subtract (shifted register)
4919  *
4920  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4921  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4922  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4923  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4924  *
4925  *    sf: 0 -> 32bit, 1 -> 64bit
4926  *    op: 0 -> add  , 1 -> sub
4927  *     S: 1 -> set flags
4928  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4929  *  imm6: Shift amount to apply to Rm before the add/sub
4930  */
4931 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4932 {
4933     int rd = extract32(insn, 0, 5);
4934     int rn = extract32(insn, 5, 5);
4935     int imm6 = extract32(insn, 10, 6);
4936     int rm = extract32(insn, 16, 5);
4937     int shift_type = extract32(insn, 22, 2);
4938     bool setflags = extract32(insn, 29, 1);
4939     bool sub_op = extract32(insn, 30, 1);
4940     bool sf = extract32(insn, 31, 1);
4941 
4942     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4943     TCGv_i64 tcg_rn, tcg_rm;
4944     TCGv_i64 tcg_result;
4945 
4946     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4947         unallocated_encoding(s);
4948         return;
4949     }
4950 
4951     tcg_rn = read_cpu_reg(s, rn, sf);
4952     tcg_rm = read_cpu_reg(s, rm, sf);
4953 
4954     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4955 
4956     tcg_result = tcg_temp_new_i64();
4957 
4958     if (!setflags) {
4959         if (sub_op) {
4960             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4961         } else {
4962             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4963         }
4964     } else {
4965         if (sub_op) {
4966             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4967         } else {
4968             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4969         }
4970     }
4971 
4972     if (sf) {
4973         tcg_gen_mov_i64(tcg_rd, tcg_result);
4974     } else {
4975         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4976     }
4977 }
4978 
4979 /* Data-processing (3 source)
4980  *
4981  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4982  *  +--+------+-----------+------+------+----+------+------+------+
4983  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4984  *  +--+------+-----------+------+------+----+------+------+------+
4985  */
4986 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4987 {
4988     int rd = extract32(insn, 0, 5);
4989     int rn = extract32(insn, 5, 5);
4990     int ra = extract32(insn, 10, 5);
4991     int rm = extract32(insn, 16, 5);
4992     int op_id = (extract32(insn, 29, 3) << 4) |
4993         (extract32(insn, 21, 3) << 1) |
4994         extract32(insn, 15, 1);
4995     bool sf = extract32(insn, 31, 1);
4996     bool is_sub = extract32(op_id, 0, 1);
4997     bool is_high = extract32(op_id, 2, 1);
4998     bool is_signed = false;
4999     TCGv_i64 tcg_op1;
5000     TCGv_i64 tcg_op2;
5001     TCGv_i64 tcg_tmp;
5002 
5003     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5004     switch (op_id) {
5005     case 0x42: /* SMADDL */
5006     case 0x43: /* SMSUBL */
5007     case 0x44: /* SMULH */
5008         is_signed = true;
5009         break;
5010     case 0x0: /* MADD (32bit) */
5011     case 0x1: /* MSUB (32bit) */
5012     case 0x40: /* MADD (64bit) */
5013     case 0x41: /* MSUB (64bit) */
5014     case 0x4a: /* UMADDL */
5015     case 0x4b: /* UMSUBL */
5016     case 0x4c: /* UMULH */
5017         break;
5018     default:
5019         unallocated_encoding(s);
5020         return;
5021     }
5022 
5023     if (is_high) {
5024         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5025         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5026         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5027         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5028 
5029         if (is_signed) {
5030             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5031         } else {
5032             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5033         }
5034         return;
5035     }
5036 
5037     tcg_op1 = tcg_temp_new_i64();
5038     tcg_op2 = tcg_temp_new_i64();
5039     tcg_tmp = tcg_temp_new_i64();
5040 
5041     if (op_id < 0x42) {
5042         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5043         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5044     } else {
5045         if (is_signed) {
5046             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5047             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5048         } else {
5049             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5050             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5051         }
5052     }
5053 
5054     if (ra == 31 && !is_sub) {
5055         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5056         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5057     } else {
5058         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5059         if (is_sub) {
5060             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5061         } else {
5062             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5063         }
5064     }
5065 
5066     if (!sf) {
5067         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5068     }
5069 }
5070 
5071 /* Add/subtract (with carry)
5072  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5073  * +--+--+--+------------------------+------+-------------+------+-----+
5074  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5075  * +--+--+--+------------------------+------+-------------+------+-----+
5076  */
5077 
5078 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5079 {
5080     unsigned int sf, op, setflags, rm, rn, rd;
5081     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5082 
5083     sf = extract32(insn, 31, 1);
5084     op = extract32(insn, 30, 1);
5085     setflags = extract32(insn, 29, 1);
5086     rm = extract32(insn, 16, 5);
5087     rn = extract32(insn, 5, 5);
5088     rd = extract32(insn, 0, 5);
5089 
5090     tcg_rd = cpu_reg(s, rd);
5091     tcg_rn = cpu_reg(s, rn);
5092 
5093     if (op) {
5094         tcg_y = tcg_temp_new_i64();
5095         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5096     } else {
5097         tcg_y = cpu_reg(s, rm);
5098     }
5099 
5100     if (setflags) {
5101         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5102     } else {
5103         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5104     }
5105 }
5106 
5107 /*
5108  * Rotate right into flags
5109  *  31 30 29                21       15          10      5  4      0
5110  * +--+--+--+-----------------+--------+-----------+------+--+------+
5111  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5112  * +--+--+--+-----------------+--------+-----------+------+--+------+
5113  */
5114 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5115 {
5116     int mask = extract32(insn, 0, 4);
5117     int o2 = extract32(insn, 4, 1);
5118     int rn = extract32(insn, 5, 5);
5119     int imm6 = extract32(insn, 15, 6);
5120     int sf_op_s = extract32(insn, 29, 3);
5121     TCGv_i64 tcg_rn;
5122     TCGv_i32 nzcv;
5123 
5124     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5125         unallocated_encoding(s);
5126         return;
5127     }
5128 
5129     tcg_rn = read_cpu_reg(s, rn, 1);
5130     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5131 
5132     nzcv = tcg_temp_new_i32();
5133     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5134 
5135     if (mask & 8) { /* N */
5136         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5137     }
5138     if (mask & 4) { /* Z */
5139         tcg_gen_not_i32(cpu_ZF, nzcv);
5140         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5141     }
5142     if (mask & 2) { /* C */
5143         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5144     }
5145     if (mask & 1) { /* V */
5146         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5147     }
5148 }
5149 
5150 /*
5151  * Evaluate into flags
5152  *  31 30 29                21        15   14        10      5  4      0
5153  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5154  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5155  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5156  */
5157 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5158 {
5159     int o3_mask = extract32(insn, 0, 5);
5160     int rn = extract32(insn, 5, 5);
5161     int o2 = extract32(insn, 15, 6);
5162     int sz = extract32(insn, 14, 1);
5163     int sf_op_s = extract32(insn, 29, 3);
5164     TCGv_i32 tmp;
5165     int shift;
5166 
5167     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5168         !dc_isar_feature(aa64_condm_4, s)) {
5169         unallocated_encoding(s);
5170         return;
5171     }
5172     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5173 
5174     tmp = tcg_temp_new_i32();
5175     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5176     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5177     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5178     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5179     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5180 }
5181 
5182 /* Conditional compare (immediate / register)
5183  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5184  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5185  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5186  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5187  *        [1]                             y                [0]       [0]
5188  */
5189 static void disas_cc(DisasContext *s, uint32_t insn)
5190 {
5191     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5192     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5193     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5194     DisasCompare c;
5195 
5196     if (!extract32(insn, 29, 1)) {
5197         unallocated_encoding(s);
5198         return;
5199     }
5200     if (insn & (1 << 10 | 1 << 4)) {
5201         unallocated_encoding(s);
5202         return;
5203     }
5204     sf = extract32(insn, 31, 1);
5205     op = extract32(insn, 30, 1);
5206     is_imm = extract32(insn, 11, 1);
5207     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5208     cond = extract32(insn, 12, 4);
5209     rn = extract32(insn, 5, 5);
5210     nzcv = extract32(insn, 0, 4);
5211 
5212     /* Set T0 = !COND.  */
5213     tcg_t0 = tcg_temp_new_i32();
5214     arm_test_cc(&c, cond);
5215     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5216 
5217     /* Load the arguments for the new comparison.  */
5218     if (is_imm) {
5219         tcg_y = tcg_temp_new_i64();
5220         tcg_gen_movi_i64(tcg_y, y);
5221     } else {
5222         tcg_y = cpu_reg(s, y);
5223     }
5224     tcg_rn = cpu_reg(s, rn);
5225 
5226     /* Set the flags for the new comparison.  */
5227     tcg_tmp = tcg_temp_new_i64();
5228     if (op) {
5229         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5230     } else {
5231         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5232     }
5233 
5234     /* If COND was false, force the flags to #nzcv.  Compute two masks
5235      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5236      * For tcg hosts that support ANDC, we can make do with just T1.
5237      * In either case, allow the tcg optimizer to delete any unused mask.
5238      */
5239     tcg_t1 = tcg_temp_new_i32();
5240     tcg_t2 = tcg_temp_new_i32();
5241     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5242     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5243 
5244     if (nzcv & 8) { /* N */
5245         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5246     } else {
5247         if (TCG_TARGET_HAS_andc_i32) {
5248             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5249         } else {
5250             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5251         }
5252     }
5253     if (nzcv & 4) { /* Z */
5254         if (TCG_TARGET_HAS_andc_i32) {
5255             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5256         } else {
5257             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5258         }
5259     } else {
5260         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5261     }
5262     if (nzcv & 2) { /* C */
5263         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5264     } else {
5265         if (TCG_TARGET_HAS_andc_i32) {
5266             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5267         } else {
5268             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5269         }
5270     }
5271     if (nzcv & 1) { /* V */
5272         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5273     } else {
5274         if (TCG_TARGET_HAS_andc_i32) {
5275             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5276         } else {
5277             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5278         }
5279     }
5280 }
5281 
5282 /* Conditional select
5283  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5284  * +----+----+---+-----------------+------+------+-----+------+------+
5285  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5286  * +----+----+---+-----------------+------+------+-----+------+------+
5287  */
5288 static void disas_cond_select(DisasContext *s, uint32_t insn)
5289 {
5290     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5291     TCGv_i64 tcg_rd, zero;
5292     DisasCompare64 c;
5293 
5294     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5295         /* S == 1 or op2<1> == 1 */
5296         unallocated_encoding(s);
5297         return;
5298     }
5299     sf = extract32(insn, 31, 1);
5300     else_inv = extract32(insn, 30, 1);
5301     rm = extract32(insn, 16, 5);
5302     cond = extract32(insn, 12, 4);
5303     else_inc = extract32(insn, 10, 1);
5304     rn = extract32(insn, 5, 5);
5305     rd = extract32(insn, 0, 5);
5306 
5307     tcg_rd = cpu_reg(s, rd);
5308 
5309     a64_test_cc(&c, cond);
5310     zero = tcg_constant_i64(0);
5311 
5312     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5313         /* CSET & CSETM.  */
5314         tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5315         if (else_inv) {
5316             tcg_gen_neg_i64(tcg_rd, tcg_rd);
5317         }
5318     } else {
5319         TCGv_i64 t_true = cpu_reg(s, rn);
5320         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5321         if (else_inv && else_inc) {
5322             tcg_gen_neg_i64(t_false, t_false);
5323         } else if (else_inv) {
5324             tcg_gen_not_i64(t_false, t_false);
5325         } else if (else_inc) {
5326             tcg_gen_addi_i64(t_false, t_false, 1);
5327         }
5328         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5329     }
5330 
5331     if (!sf) {
5332         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5333     }
5334 }
5335 
5336 static void handle_clz(DisasContext *s, unsigned int sf,
5337                        unsigned int rn, unsigned int rd)
5338 {
5339     TCGv_i64 tcg_rd, tcg_rn;
5340     tcg_rd = cpu_reg(s, rd);
5341     tcg_rn = cpu_reg(s, rn);
5342 
5343     if (sf) {
5344         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5345     } else {
5346         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5347         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5348         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5349         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5350     }
5351 }
5352 
5353 static void handle_cls(DisasContext *s, unsigned int sf,
5354                        unsigned int rn, unsigned int rd)
5355 {
5356     TCGv_i64 tcg_rd, tcg_rn;
5357     tcg_rd = cpu_reg(s, rd);
5358     tcg_rn = cpu_reg(s, rn);
5359 
5360     if (sf) {
5361         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5362     } else {
5363         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5364         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5365         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5366         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5367     }
5368 }
5369 
5370 static void handle_rbit(DisasContext *s, unsigned int sf,
5371                         unsigned int rn, unsigned int rd)
5372 {
5373     TCGv_i64 tcg_rd, tcg_rn;
5374     tcg_rd = cpu_reg(s, rd);
5375     tcg_rn = cpu_reg(s, rn);
5376 
5377     if (sf) {
5378         gen_helper_rbit64(tcg_rd, tcg_rn);
5379     } else {
5380         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5381         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5382         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5383         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5384     }
5385 }
5386 
5387 /* REV with sf==1, opcode==3 ("REV64") */
5388 static void handle_rev64(DisasContext *s, unsigned int sf,
5389                          unsigned int rn, unsigned int rd)
5390 {
5391     if (!sf) {
5392         unallocated_encoding(s);
5393         return;
5394     }
5395     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5396 }
5397 
5398 /* REV with sf==0, opcode==2
5399  * REV32 (sf==1, opcode==2)
5400  */
5401 static void handle_rev32(DisasContext *s, unsigned int sf,
5402                          unsigned int rn, unsigned int rd)
5403 {
5404     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5405     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5406 
5407     if (sf) {
5408         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5409         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5410     } else {
5411         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5412     }
5413 }
5414 
5415 /* REV16 (opcode==1) */
5416 static void handle_rev16(DisasContext *s, unsigned int sf,
5417                          unsigned int rn, unsigned int rd)
5418 {
5419     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5420     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5421     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5422     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5423 
5424     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5425     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5426     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5427     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5428     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5429 }
5430 
5431 /* Data-processing (1 source)
5432  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5433  * +----+---+---+-----------------+---------+--------+------+------+
5434  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5435  * +----+---+---+-----------------+---------+--------+------+------+
5436  */
5437 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5438 {
5439     unsigned int sf, opcode, opcode2, rn, rd;
5440     TCGv_i64 tcg_rd;
5441 
5442     if (extract32(insn, 29, 1)) {
5443         unallocated_encoding(s);
5444         return;
5445     }
5446 
5447     sf = extract32(insn, 31, 1);
5448     opcode = extract32(insn, 10, 6);
5449     opcode2 = extract32(insn, 16, 5);
5450     rn = extract32(insn, 5, 5);
5451     rd = extract32(insn, 0, 5);
5452 
5453 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5454 
5455     switch (MAP(sf, opcode2, opcode)) {
5456     case MAP(0, 0x00, 0x00): /* RBIT */
5457     case MAP(1, 0x00, 0x00):
5458         handle_rbit(s, sf, rn, rd);
5459         break;
5460     case MAP(0, 0x00, 0x01): /* REV16 */
5461     case MAP(1, 0x00, 0x01):
5462         handle_rev16(s, sf, rn, rd);
5463         break;
5464     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5465     case MAP(1, 0x00, 0x02):
5466         handle_rev32(s, sf, rn, rd);
5467         break;
5468     case MAP(1, 0x00, 0x03): /* REV64 */
5469         handle_rev64(s, sf, rn, rd);
5470         break;
5471     case MAP(0, 0x00, 0x04): /* CLZ */
5472     case MAP(1, 0x00, 0x04):
5473         handle_clz(s, sf, rn, rd);
5474         break;
5475     case MAP(0, 0x00, 0x05): /* CLS */
5476     case MAP(1, 0x00, 0x05):
5477         handle_cls(s, sf, rn, rd);
5478         break;
5479     case MAP(1, 0x01, 0x00): /* PACIA */
5480         if (s->pauth_active) {
5481             tcg_rd = cpu_reg(s, rd);
5482             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5483         } else if (!dc_isar_feature(aa64_pauth, s)) {
5484             goto do_unallocated;
5485         }
5486         break;
5487     case MAP(1, 0x01, 0x01): /* PACIB */
5488         if (s->pauth_active) {
5489             tcg_rd = cpu_reg(s, rd);
5490             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5491         } else if (!dc_isar_feature(aa64_pauth, s)) {
5492             goto do_unallocated;
5493         }
5494         break;
5495     case MAP(1, 0x01, 0x02): /* PACDA */
5496         if (s->pauth_active) {
5497             tcg_rd = cpu_reg(s, rd);
5498             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5499         } else if (!dc_isar_feature(aa64_pauth, s)) {
5500             goto do_unallocated;
5501         }
5502         break;
5503     case MAP(1, 0x01, 0x03): /* PACDB */
5504         if (s->pauth_active) {
5505             tcg_rd = cpu_reg(s, rd);
5506             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5507         } else if (!dc_isar_feature(aa64_pauth, s)) {
5508             goto do_unallocated;
5509         }
5510         break;
5511     case MAP(1, 0x01, 0x04): /* AUTIA */
5512         if (s->pauth_active) {
5513             tcg_rd = cpu_reg(s, rd);
5514             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5515         } else if (!dc_isar_feature(aa64_pauth, s)) {
5516             goto do_unallocated;
5517         }
5518         break;
5519     case MAP(1, 0x01, 0x05): /* AUTIB */
5520         if (s->pauth_active) {
5521             tcg_rd = cpu_reg(s, rd);
5522             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5523         } else if (!dc_isar_feature(aa64_pauth, s)) {
5524             goto do_unallocated;
5525         }
5526         break;
5527     case MAP(1, 0x01, 0x06): /* AUTDA */
5528         if (s->pauth_active) {
5529             tcg_rd = cpu_reg(s, rd);
5530             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5531         } else if (!dc_isar_feature(aa64_pauth, s)) {
5532             goto do_unallocated;
5533         }
5534         break;
5535     case MAP(1, 0x01, 0x07): /* AUTDB */
5536         if (s->pauth_active) {
5537             tcg_rd = cpu_reg(s, rd);
5538             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5539         } else if (!dc_isar_feature(aa64_pauth, s)) {
5540             goto do_unallocated;
5541         }
5542         break;
5543     case MAP(1, 0x01, 0x08): /* PACIZA */
5544         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5545             goto do_unallocated;
5546         } else if (s->pauth_active) {
5547             tcg_rd = cpu_reg(s, rd);
5548             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5549         }
5550         break;
5551     case MAP(1, 0x01, 0x09): /* PACIZB */
5552         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5553             goto do_unallocated;
5554         } else if (s->pauth_active) {
5555             tcg_rd = cpu_reg(s, rd);
5556             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5557         }
5558         break;
5559     case MAP(1, 0x01, 0x0a): /* PACDZA */
5560         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5561             goto do_unallocated;
5562         } else if (s->pauth_active) {
5563             tcg_rd = cpu_reg(s, rd);
5564             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5565         }
5566         break;
5567     case MAP(1, 0x01, 0x0b): /* PACDZB */
5568         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5569             goto do_unallocated;
5570         } else if (s->pauth_active) {
5571             tcg_rd = cpu_reg(s, rd);
5572             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5573         }
5574         break;
5575     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5576         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5577             goto do_unallocated;
5578         } else if (s->pauth_active) {
5579             tcg_rd = cpu_reg(s, rd);
5580             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5581         }
5582         break;
5583     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5584         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5585             goto do_unallocated;
5586         } else if (s->pauth_active) {
5587             tcg_rd = cpu_reg(s, rd);
5588             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5589         }
5590         break;
5591     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5592         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5593             goto do_unallocated;
5594         } else if (s->pauth_active) {
5595             tcg_rd = cpu_reg(s, rd);
5596             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5597         }
5598         break;
5599     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5600         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5601             goto do_unallocated;
5602         } else if (s->pauth_active) {
5603             tcg_rd = cpu_reg(s, rd);
5604             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5605         }
5606         break;
5607     case MAP(1, 0x01, 0x10): /* XPACI */
5608         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5609             goto do_unallocated;
5610         } else if (s->pauth_active) {
5611             tcg_rd = cpu_reg(s, rd);
5612             gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5613         }
5614         break;
5615     case MAP(1, 0x01, 0x11): /* XPACD */
5616         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5617             goto do_unallocated;
5618         } else if (s->pauth_active) {
5619             tcg_rd = cpu_reg(s, rd);
5620             gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5621         }
5622         break;
5623     default:
5624     do_unallocated:
5625         unallocated_encoding(s);
5626         break;
5627     }
5628 
5629 #undef MAP
5630 }
5631 
5632 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5633                        unsigned int rm, unsigned int rn, unsigned int rd)
5634 {
5635     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5636     tcg_rd = cpu_reg(s, rd);
5637 
5638     if (!sf && is_signed) {
5639         tcg_n = tcg_temp_new_i64();
5640         tcg_m = tcg_temp_new_i64();
5641         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5642         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5643     } else {
5644         tcg_n = read_cpu_reg(s, rn, sf);
5645         tcg_m = read_cpu_reg(s, rm, sf);
5646     }
5647 
5648     if (is_signed) {
5649         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5650     } else {
5651         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5652     }
5653 
5654     if (!sf) { /* zero extend final result */
5655         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5656     }
5657 }
5658 
5659 /* LSLV, LSRV, ASRV, RORV */
5660 static void handle_shift_reg(DisasContext *s,
5661                              enum a64_shift_type shift_type, unsigned int sf,
5662                              unsigned int rm, unsigned int rn, unsigned int rd)
5663 {
5664     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5665     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5666     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5667 
5668     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5669     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5670 }
5671 
5672 /* CRC32[BHWX], CRC32C[BHWX] */
5673 static void handle_crc32(DisasContext *s,
5674                          unsigned int sf, unsigned int sz, bool crc32c,
5675                          unsigned int rm, unsigned int rn, unsigned int rd)
5676 {
5677     TCGv_i64 tcg_acc, tcg_val;
5678     TCGv_i32 tcg_bytes;
5679 
5680     if (!dc_isar_feature(aa64_crc32, s)
5681         || (sf == 1 && sz != 3)
5682         || (sf == 0 && sz == 3)) {
5683         unallocated_encoding(s);
5684         return;
5685     }
5686 
5687     if (sz == 3) {
5688         tcg_val = cpu_reg(s, rm);
5689     } else {
5690         uint64_t mask;
5691         switch (sz) {
5692         case 0:
5693             mask = 0xFF;
5694             break;
5695         case 1:
5696             mask = 0xFFFF;
5697             break;
5698         case 2:
5699             mask = 0xFFFFFFFF;
5700             break;
5701         default:
5702             g_assert_not_reached();
5703         }
5704         tcg_val = tcg_temp_new_i64();
5705         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5706     }
5707 
5708     tcg_acc = cpu_reg(s, rn);
5709     tcg_bytes = tcg_constant_i32(1 << sz);
5710 
5711     if (crc32c) {
5712         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5713     } else {
5714         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5715     }
5716 }
5717 
5718 /* Data-processing (2 source)
5719  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5720  * +----+---+---+-----------------+------+--------+------+------+
5721  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5722  * +----+---+---+-----------------+------+--------+------+------+
5723  */
5724 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5725 {
5726     unsigned int sf, rm, opcode, rn, rd, setflag;
5727     sf = extract32(insn, 31, 1);
5728     setflag = extract32(insn, 29, 1);
5729     rm = extract32(insn, 16, 5);
5730     opcode = extract32(insn, 10, 6);
5731     rn = extract32(insn, 5, 5);
5732     rd = extract32(insn, 0, 5);
5733 
5734     if (setflag && opcode != 0) {
5735         unallocated_encoding(s);
5736         return;
5737     }
5738 
5739     switch (opcode) {
5740     case 0: /* SUBP(S) */
5741         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5742             goto do_unallocated;
5743         } else {
5744             TCGv_i64 tcg_n, tcg_m, tcg_d;
5745 
5746             tcg_n = read_cpu_reg_sp(s, rn, true);
5747             tcg_m = read_cpu_reg_sp(s, rm, true);
5748             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5749             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5750             tcg_d = cpu_reg(s, rd);
5751 
5752             if (setflag) {
5753                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5754             } else {
5755                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5756             }
5757         }
5758         break;
5759     case 2: /* UDIV */
5760         handle_div(s, false, sf, rm, rn, rd);
5761         break;
5762     case 3: /* SDIV */
5763         handle_div(s, true, sf, rm, rn, rd);
5764         break;
5765     case 4: /* IRG */
5766         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5767             goto do_unallocated;
5768         }
5769         if (s->ata) {
5770             gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5771                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5772         } else {
5773             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5774                                              cpu_reg_sp(s, rn));
5775         }
5776         break;
5777     case 5: /* GMI */
5778         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5779             goto do_unallocated;
5780         } else {
5781             TCGv_i64 t = tcg_temp_new_i64();
5782 
5783             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5784             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5785             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5786         }
5787         break;
5788     case 8: /* LSLV */
5789         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5790         break;
5791     case 9: /* LSRV */
5792         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5793         break;
5794     case 10: /* ASRV */
5795         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5796         break;
5797     case 11: /* RORV */
5798         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5799         break;
5800     case 12: /* PACGA */
5801         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5802             goto do_unallocated;
5803         }
5804         gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5805                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5806         break;
5807     case 16:
5808     case 17:
5809     case 18:
5810     case 19:
5811     case 20:
5812     case 21:
5813     case 22:
5814     case 23: /* CRC32 */
5815     {
5816         int sz = extract32(opcode, 0, 2);
5817         bool crc32c = extract32(opcode, 2, 1);
5818         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5819         break;
5820     }
5821     default:
5822     do_unallocated:
5823         unallocated_encoding(s);
5824         break;
5825     }
5826 }
5827 
5828 /*
5829  * Data processing - register
5830  *  31  30 29  28      25    21  20  16      10         0
5831  * +--+---+--+---+-------+-----+-------+-------+---------+
5832  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5833  * +--+---+--+---+-------+-----+-------+-------+---------+
5834  */
5835 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5836 {
5837     int op0 = extract32(insn, 30, 1);
5838     int op1 = extract32(insn, 28, 1);
5839     int op2 = extract32(insn, 21, 4);
5840     int op3 = extract32(insn, 10, 6);
5841 
5842     if (!op1) {
5843         if (op2 & 8) {
5844             if (op2 & 1) {
5845                 /* Add/sub (extended register) */
5846                 disas_add_sub_ext_reg(s, insn);
5847             } else {
5848                 /* Add/sub (shifted register) */
5849                 disas_add_sub_reg(s, insn);
5850             }
5851         } else {
5852             /* Logical (shifted register) */
5853             disas_logic_reg(s, insn);
5854         }
5855         return;
5856     }
5857 
5858     switch (op2) {
5859     case 0x0:
5860         switch (op3) {
5861         case 0x00: /* Add/subtract (with carry) */
5862             disas_adc_sbc(s, insn);
5863             break;
5864 
5865         case 0x01: /* Rotate right into flags */
5866         case 0x21:
5867             disas_rotate_right_into_flags(s, insn);
5868             break;
5869 
5870         case 0x02: /* Evaluate into flags */
5871         case 0x12:
5872         case 0x22:
5873         case 0x32:
5874             disas_evaluate_into_flags(s, insn);
5875             break;
5876 
5877         default:
5878             goto do_unallocated;
5879         }
5880         break;
5881 
5882     case 0x2: /* Conditional compare */
5883         disas_cc(s, insn); /* both imm and reg forms */
5884         break;
5885 
5886     case 0x4: /* Conditional select */
5887         disas_cond_select(s, insn);
5888         break;
5889 
5890     case 0x6: /* Data-processing */
5891         if (op0) {    /* (1 source) */
5892             disas_data_proc_1src(s, insn);
5893         } else {      /* (2 source) */
5894             disas_data_proc_2src(s, insn);
5895         }
5896         break;
5897     case 0x8 ... 0xf: /* (3 source) */
5898         disas_data_proc_3src(s, insn);
5899         break;
5900 
5901     default:
5902     do_unallocated:
5903         unallocated_encoding(s);
5904         break;
5905     }
5906 }
5907 
5908 static void handle_fp_compare(DisasContext *s, int size,
5909                               unsigned int rn, unsigned int rm,
5910                               bool cmp_with_zero, bool signal_all_nans)
5911 {
5912     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5913     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5914 
5915     if (size == MO_64) {
5916         TCGv_i64 tcg_vn, tcg_vm;
5917 
5918         tcg_vn = read_fp_dreg(s, rn);
5919         if (cmp_with_zero) {
5920             tcg_vm = tcg_constant_i64(0);
5921         } else {
5922             tcg_vm = read_fp_dreg(s, rm);
5923         }
5924         if (signal_all_nans) {
5925             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5926         } else {
5927             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5928         }
5929     } else {
5930         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5931         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5932 
5933         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5934         if (cmp_with_zero) {
5935             tcg_gen_movi_i32(tcg_vm, 0);
5936         } else {
5937             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5938         }
5939 
5940         switch (size) {
5941         case MO_32:
5942             if (signal_all_nans) {
5943                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5944             } else {
5945                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5946             }
5947             break;
5948         case MO_16:
5949             if (signal_all_nans) {
5950                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5951             } else {
5952                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5953             }
5954             break;
5955         default:
5956             g_assert_not_reached();
5957         }
5958     }
5959 
5960     gen_set_nzcv(tcg_flags);
5961 }
5962 
5963 /* Floating point compare
5964  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5965  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5966  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5967  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5968  */
5969 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5970 {
5971     unsigned int mos, type, rm, op, rn, opc, op2r;
5972     int size;
5973 
5974     mos = extract32(insn, 29, 3);
5975     type = extract32(insn, 22, 2);
5976     rm = extract32(insn, 16, 5);
5977     op = extract32(insn, 14, 2);
5978     rn = extract32(insn, 5, 5);
5979     opc = extract32(insn, 3, 2);
5980     op2r = extract32(insn, 0, 3);
5981 
5982     if (mos || op || op2r) {
5983         unallocated_encoding(s);
5984         return;
5985     }
5986 
5987     switch (type) {
5988     case 0:
5989         size = MO_32;
5990         break;
5991     case 1:
5992         size = MO_64;
5993         break;
5994     case 3:
5995         size = MO_16;
5996         if (dc_isar_feature(aa64_fp16, s)) {
5997             break;
5998         }
5999         /* fallthru */
6000     default:
6001         unallocated_encoding(s);
6002         return;
6003     }
6004 
6005     if (!fp_access_check(s)) {
6006         return;
6007     }
6008 
6009     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6010 }
6011 
6012 /* Floating point conditional compare
6013  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6014  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6015  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6016  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6017  */
6018 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6019 {
6020     unsigned int mos, type, rm, cond, rn, op, nzcv;
6021     TCGLabel *label_continue = NULL;
6022     int size;
6023 
6024     mos = extract32(insn, 29, 3);
6025     type = extract32(insn, 22, 2);
6026     rm = extract32(insn, 16, 5);
6027     cond = extract32(insn, 12, 4);
6028     rn = extract32(insn, 5, 5);
6029     op = extract32(insn, 4, 1);
6030     nzcv = extract32(insn, 0, 4);
6031 
6032     if (mos) {
6033         unallocated_encoding(s);
6034         return;
6035     }
6036 
6037     switch (type) {
6038     case 0:
6039         size = MO_32;
6040         break;
6041     case 1:
6042         size = MO_64;
6043         break;
6044     case 3:
6045         size = MO_16;
6046         if (dc_isar_feature(aa64_fp16, s)) {
6047             break;
6048         }
6049         /* fallthru */
6050     default:
6051         unallocated_encoding(s);
6052         return;
6053     }
6054 
6055     if (!fp_access_check(s)) {
6056         return;
6057     }
6058 
6059     if (cond < 0x0e) { /* not always */
6060         TCGLabel *label_match = gen_new_label();
6061         label_continue = gen_new_label();
6062         arm_gen_test_cc(cond, label_match);
6063         /* nomatch: */
6064         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6065         tcg_gen_br(label_continue);
6066         gen_set_label(label_match);
6067     }
6068 
6069     handle_fp_compare(s, size, rn, rm, false, op);
6070 
6071     if (cond < 0x0e) {
6072         gen_set_label(label_continue);
6073     }
6074 }
6075 
6076 /* Floating point conditional select
6077  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6078  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6079  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6080  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6081  */
6082 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6083 {
6084     unsigned int mos, type, rm, cond, rn, rd;
6085     TCGv_i64 t_true, t_false;
6086     DisasCompare64 c;
6087     MemOp sz;
6088 
6089     mos = extract32(insn, 29, 3);
6090     type = extract32(insn, 22, 2);
6091     rm = extract32(insn, 16, 5);
6092     cond = extract32(insn, 12, 4);
6093     rn = extract32(insn, 5, 5);
6094     rd = extract32(insn, 0, 5);
6095 
6096     if (mos) {
6097         unallocated_encoding(s);
6098         return;
6099     }
6100 
6101     switch (type) {
6102     case 0:
6103         sz = MO_32;
6104         break;
6105     case 1:
6106         sz = MO_64;
6107         break;
6108     case 3:
6109         sz = MO_16;
6110         if (dc_isar_feature(aa64_fp16, s)) {
6111             break;
6112         }
6113         /* fallthru */
6114     default:
6115         unallocated_encoding(s);
6116         return;
6117     }
6118 
6119     if (!fp_access_check(s)) {
6120         return;
6121     }
6122 
6123     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6124     t_true = tcg_temp_new_i64();
6125     t_false = tcg_temp_new_i64();
6126     read_vec_element(s, t_true, rn, 0, sz);
6127     read_vec_element(s, t_false, rm, 0, sz);
6128 
6129     a64_test_cc(&c, cond);
6130     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6131                         t_true, t_false);
6132 
6133     /* Note that sregs & hregs write back zeros to the high bits,
6134        and we've already done the zero-extension.  */
6135     write_fp_dreg(s, rd, t_true);
6136 }
6137 
6138 /* Floating-point data-processing (1 source) - half precision */
6139 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6140 {
6141     TCGv_ptr fpst = NULL;
6142     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6143     TCGv_i32 tcg_res = tcg_temp_new_i32();
6144 
6145     switch (opcode) {
6146     case 0x0: /* FMOV */
6147         tcg_gen_mov_i32(tcg_res, tcg_op);
6148         break;
6149     case 0x1: /* FABS */
6150         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6151         break;
6152     case 0x2: /* FNEG */
6153         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6154         break;
6155     case 0x3: /* FSQRT */
6156         fpst = fpstatus_ptr(FPST_FPCR_F16);
6157         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6158         break;
6159     case 0x8: /* FRINTN */
6160     case 0x9: /* FRINTP */
6161     case 0xa: /* FRINTM */
6162     case 0xb: /* FRINTZ */
6163     case 0xc: /* FRINTA */
6164     {
6165         TCGv_i32 tcg_rmode;
6166 
6167         fpst = fpstatus_ptr(FPST_FPCR_F16);
6168         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6169         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6170         gen_restore_rmode(tcg_rmode, fpst);
6171         break;
6172     }
6173     case 0xe: /* FRINTX */
6174         fpst = fpstatus_ptr(FPST_FPCR_F16);
6175         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6176         break;
6177     case 0xf: /* FRINTI */
6178         fpst = fpstatus_ptr(FPST_FPCR_F16);
6179         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6180         break;
6181     default:
6182         g_assert_not_reached();
6183     }
6184 
6185     write_fp_sreg(s, rd, tcg_res);
6186 }
6187 
6188 /* Floating-point data-processing (1 source) - single precision */
6189 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6190 {
6191     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6192     TCGv_i32 tcg_op, tcg_res;
6193     TCGv_ptr fpst;
6194     int rmode = -1;
6195 
6196     tcg_op = read_fp_sreg(s, rn);
6197     tcg_res = tcg_temp_new_i32();
6198 
6199     switch (opcode) {
6200     case 0x0: /* FMOV */
6201         tcg_gen_mov_i32(tcg_res, tcg_op);
6202         goto done;
6203     case 0x1: /* FABS */
6204         gen_helper_vfp_abss(tcg_res, tcg_op);
6205         goto done;
6206     case 0x2: /* FNEG */
6207         gen_helper_vfp_negs(tcg_res, tcg_op);
6208         goto done;
6209     case 0x3: /* FSQRT */
6210         gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6211         goto done;
6212     case 0x6: /* BFCVT */
6213         gen_fpst = gen_helper_bfcvt;
6214         break;
6215     case 0x8: /* FRINTN */
6216     case 0x9: /* FRINTP */
6217     case 0xa: /* FRINTM */
6218     case 0xb: /* FRINTZ */
6219     case 0xc: /* FRINTA */
6220         rmode = opcode & 7;
6221         gen_fpst = gen_helper_rints;
6222         break;
6223     case 0xe: /* FRINTX */
6224         gen_fpst = gen_helper_rints_exact;
6225         break;
6226     case 0xf: /* FRINTI */
6227         gen_fpst = gen_helper_rints;
6228         break;
6229     case 0x10: /* FRINT32Z */
6230         rmode = FPROUNDING_ZERO;
6231         gen_fpst = gen_helper_frint32_s;
6232         break;
6233     case 0x11: /* FRINT32X */
6234         gen_fpst = gen_helper_frint32_s;
6235         break;
6236     case 0x12: /* FRINT64Z */
6237         rmode = FPROUNDING_ZERO;
6238         gen_fpst = gen_helper_frint64_s;
6239         break;
6240     case 0x13: /* FRINT64X */
6241         gen_fpst = gen_helper_frint64_s;
6242         break;
6243     default:
6244         g_assert_not_reached();
6245     }
6246 
6247     fpst = fpstatus_ptr(FPST_FPCR);
6248     if (rmode >= 0) {
6249         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6250         gen_fpst(tcg_res, tcg_op, fpst);
6251         gen_restore_rmode(tcg_rmode, fpst);
6252     } else {
6253         gen_fpst(tcg_res, tcg_op, fpst);
6254     }
6255 
6256  done:
6257     write_fp_sreg(s, rd, tcg_res);
6258 }
6259 
6260 /* Floating-point data-processing (1 source) - double precision */
6261 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6262 {
6263     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6264     TCGv_i64 tcg_op, tcg_res;
6265     TCGv_ptr fpst;
6266     int rmode = -1;
6267 
6268     switch (opcode) {
6269     case 0x0: /* FMOV */
6270         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6271         return;
6272     }
6273 
6274     tcg_op = read_fp_dreg(s, rn);
6275     tcg_res = tcg_temp_new_i64();
6276 
6277     switch (opcode) {
6278     case 0x1: /* FABS */
6279         gen_helper_vfp_absd(tcg_res, tcg_op);
6280         goto done;
6281     case 0x2: /* FNEG */
6282         gen_helper_vfp_negd(tcg_res, tcg_op);
6283         goto done;
6284     case 0x3: /* FSQRT */
6285         gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6286         goto done;
6287     case 0x8: /* FRINTN */
6288     case 0x9: /* FRINTP */
6289     case 0xa: /* FRINTM */
6290     case 0xb: /* FRINTZ */
6291     case 0xc: /* FRINTA */
6292         rmode = opcode & 7;
6293         gen_fpst = gen_helper_rintd;
6294         break;
6295     case 0xe: /* FRINTX */
6296         gen_fpst = gen_helper_rintd_exact;
6297         break;
6298     case 0xf: /* FRINTI */
6299         gen_fpst = gen_helper_rintd;
6300         break;
6301     case 0x10: /* FRINT32Z */
6302         rmode = FPROUNDING_ZERO;
6303         gen_fpst = gen_helper_frint32_d;
6304         break;
6305     case 0x11: /* FRINT32X */
6306         gen_fpst = gen_helper_frint32_d;
6307         break;
6308     case 0x12: /* FRINT64Z */
6309         rmode = FPROUNDING_ZERO;
6310         gen_fpst = gen_helper_frint64_d;
6311         break;
6312     case 0x13: /* FRINT64X */
6313         gen_fpst = gen_helper_frint64_d;
6314         break;
6315     default:
6316         g_assert_not_reached();
6317     }
6318 
6319     fpst = fpstatus_ptr(FPST_FPCR);
6320     if (rmode >= 0) {
6321         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6322         gen_fpst(tcg_res, tcg_op, fpst);
6323         gen_restore_rmode(tcg_rmode, fpst);
6324     } else {
6325         gen_fpst(tcg_res, tcg_op, fpst);
6326     }
6327 
6328  done:
6329     write_fp_dreg(s, rd, tcg_res);
6330 }
6331 
6332 static void handle_fp_fcvt(DisasContext *s, int opcode,
6333                            int rd, int rn, int dtype, int ntype)
6334 {
6335     switch (ntype) {
6336     case 0x0:
6337     {
6338         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6339         if (dtype == 1) {
6340             /* Single to double */
6341             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6342             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6343             write_fp_dreg(s, rd, tcg_rd);
6344         } else {
6345             /* Single to half */
6346             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6347             TCGv_i32 ahp = get_ahp_flag();
6348             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6349 
6350             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6351             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6352             write_fp_sreg(s, rd, tcg_rd);
6353         }
6354         break;
6355     }
6356     case 0x1:
6357     {
6358         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6359         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6360         if (dtype == 0) {
6361             /* Double to single */
6362             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6363         } else {
6364             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6365             TCGv_i32 ahp = get_ahp_flag();
6366             /* Double to half */
6367             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6368             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6369         }
6370         write_fp_sreg(s, rd, tcg_rd);
6371         break;
6372     }
6373     case 0x3:
6374     {
6375         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6376         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6377         TCGv_i32 tcg_ahp = get_ahp_flag();
6378         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6379         if (dtype == 0) {
6380             /* Half to single */
6381             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6382             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6383             write_fp_sreg(s, rd, tcg_rd);
6384         } else {
6385             /* Half to double */
6386             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6387             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6388             write_fp_dreg(s, rd, tcg_rd);
6389         }
6390         break;
6391     }
6392     default:
6393         g_assert_not_reached();
6394     }
6395 }
6396 
6397 /* Floating point data-processing (1 source)
6398  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6399  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6400  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6401  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6402  */
6403 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6404 {
6405     int mos = extract32(insn, 29, 3);
6406     int type = extract32(insn, 22, 2);
6407     int opcode = extract32(insn, 15, 6);
6408     int rn = extract32(insn, 5, 5);
6409     int rd = extract32(insn, 0, 5);
6410 
6411     if (mos) {
6412         goto do_unallocated;
6413     }
6414 
6415     switch (opcode) {
6416     case 0x4: case 0x5: case 0x7:
6417     {
6418         /* FCVT between half, single and double precision */
6419         int dtype = extract32(opcode, 0, 2);
6420         if (type == 2 || dtype == type) {
6421             goto do_unallocated;
6422         }
6423         if (!fp_access_check(s)) {
6424             return;
6425         }
6426 
6427         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6428         break;
6429     }
6430 
6431     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6432         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6433             goto do_unallocated;
6434         }
6435         /* fall through */
6436     case 0x0 ... 0x3:
6437     case 0x8 ... 0xc:
6438     case 0xe ... 0xf:
6439         /* 32-to-32 and 64-to-64 ops */
6440         switch (type) {
6441         case 0:
6442             if (!fp_access_check(s)) {
6443                 return;
6444             }
6445             handle_fp_1src_single(s, opcode, rd, rn);
6446             break;
6447         case 1:
6448             if (!fp_access_check(s)) {
6449                 return;
6450             }
6451             handle_fp_1src_double(s, opcode, rd, rn);
6452             break;
6453         case 3:
6454             if (!dc_isar_feature(aa64_fp16, s)) {
6455                 goto do_unallocated;
6456             }
6457 
6458             if (!fp_access_check(s)) {
6459                 return;
6460             }
6461             handle_fp_1src_half(s, opcode, rd, rn);
6462             break;
6463         default:
6464             goto do_unallocated;
6465         }
6466         break;
6467 
6468     case 0x6:
6469         switch (type) {
6470         case 1: /* BFCVT */
6471             if (!dc_isar_feature(aa64_bf16, s)) {
6472                 goto do_unallocated;
6473             }
6474             if (!fp_access_check(s)) {
6475                 return;
6476             }
6477             handle_fp_1src_single(s, opcode, rd, rn);
6478             break;
6479         default:
6480             goto do_unallocated;
6481         }
6482         break;
6483 
6484     default:
6485     do_unallocated:
6486         unallocated_encoding(s);
6487         break;
6488     }
6489 }
6490 
6491 /* Floating-point data-processing (2 source) - single precision */
6492 static void handle_fp_2src_single(DisasContext *s, int opcode,
6493                                   int rd, int rn, int rm)
6494 {
6495     TCGv_i32 tcg_op1;
6496     TCGv_i32 tcg_op2;
6497     TCGv_i32 tcg_res;
6498     TCGv_ptr fpst;
6499 
6500     tcg_res = tcg_temp_new_i32();
6501     fpst = fpstatus_ptr(FPST_FPCR);
6502     tcg_op1 = read_fp_sreg(s, rn);
6503     tcg_op2 = read_fp_sreg(s, rm);
6504 
6505     switch (opcode) {
6506     case 0x0: /* FMUL */
6507         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6508         break;
6509     case 0x1: /* FDIV */
6510         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6511         break;
6512     case 0x2: /* FADD */
6513         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6514         break;
6515     case 0x3: /* FSUB */
6516         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6517         break;
6518     case 0x4: /* FMAX */
6519         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6520         break;
6521     case 0x5: /* FMIN */
6522         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6523         break;
6524     case 0x6: /* FMAXNM */
6525         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6526         break;
6527     case 0x7: /* FMINNM */
6528         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6529         break;
6530     case 0x8: /* FNMUL */
6531         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6532         gen_helper_vfp_negs(tcg_res, tcg_res);
6533         break;
6534     }
6535 
6536     write_fp_sreg(s, rd, tcg_res);
6537 }
6538 
6539 /* Floating-point data-processing (2 source) - double precision */
6540 static void handle_fp_2src_double(DisasContext *s, int opcode,
6541                                   int rd, int rn, int rm)
6542 {
6543     TCGv_i64 tcg_op1;
6544     TCGv_i64 tcg_op2;
6545     TCGv_i64 tcg_res;
6546     TCGv_ptr fpst;
6547 
6548     tcg_res = tcg_temp_new_i64();
6549     fpst = fpstatus_ptr(FPST_FPCR);
6550     tcg_op1 = read_fp_dreg(s, rn);
6551     tcg_op2 = read_fp_dreg(s, rm);
6552 
6553     switch (opcode) {
6554     case 0x0: /* FMUL */
6555         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6556         break;
6557     case 0x1: /* FDIV */
6558         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6559         break;
6560     case 0x2: /* FADD */
6561         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6562         break;
6563     case 0x3: /* FSUB */
6564         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6565         break;
6566     case 0x4: /* FMAX */
6567         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6568         break;
6569     case 0x5: /* FMIN */
6570         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6571         break;
6572     case 0x6: /* FMAXNM */
6573         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6574         break;
6575     case 0x7: /* FMINNM */
6576         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6577         break;
6578     case 0x8: /* FNMUL */
6579         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6580         gen_helper_vfp_negd(tcg_res, tcg_res);
6581         break;
6582     }
6583 
6584     write_fp_dreg(s, rd, tcg_res);
6585 }
6586 
6587 /* Floating-point data-processing (2 source) - half precision */
6588 static void handle_fp_2src_half(DisasContext *s, int opcode,
6589                                 int rd, int rn, int rm)
6590 {
6591     TCGv_i32 tcg_op1;
6592     TCGv_i32 tcg_op2;
6593     TCGv_i32 tcg_res;
6594     TCGv_ptr fpst;
6595 
6596     tcg_res = tcg_temp_new_i32();
6597     fpst = fpstatus_ptr(FPST_FPCR_F16);
6598     tcg_op1 = read_fp_hreg(s, rn);
6599     tcg_op2 = read_fp_hreg(s, rm);
6600 
6601     switch (opcode) {
6602     case 0x0: /* FMUL */
6603         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6604         break;
6605     case 0x1: /* FDIV */
6606         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6607         break;
6608     case 0x2: /* FADD */
6609         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6610         break;
6611     case 0x3: /* FSUB */
6612         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6613         break;
6614     case 0x4: /* FMAX */
6615         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6616         break;
6617     case 0x5: /* FMIN */
6618         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6619         break;
6620     case 0x6: /* FMAXNM */
6621         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6622         break;
6623     case 0x7: /* FMINNM */
6624         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6625         break;
6626     case 0x8: /* FNMUL */
6627         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6628         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6629         break;
6630     default:
6631         g_assert_not_reached();
6632     }
6633 
6634     write_fp_sreg(s, rd, tcg_res);
6635 }
6636 
6637 /* Floating point data-processing (2 source)
6638  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6639  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6640  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6641  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6642  */
6643 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6644 {
6645     int mos = extract32(insn, 29, 3);
6646     int type = extract32(insn, 22, 2);
6647     int rd = extract32(insn, 0, 5);
6648     int rn = extract32(insn, 5, 5);
6649     int rm = extract32(insn, 16, 5);
6650     int opcode = extract32(insn, 12, 4);
6651 
6652     if (opcode > 8 || mos) {
6653         unallocated_encoding(s);
6654         return;
6655     }
6656 
6657     switch (type) {
6658     case 0:
6659         if (!fp_access_check(s)) {
6660             return;
6661         }
6662         handle_fp_2src_single(s, opcode, rd, rn, rm);
6663         break;
6664     case 1:
6665         if (!fp_access_check(s)) {
6666             return;
6667         }
6668         handle_fp_2src_double(s, opcode, rd, rn, rm);
6669         break;
6670     case 3:
6671         if (!dc_isar_feature(aa64_fp16, s)) {
6672             unallocated_encoding(s);
6673             return;
6674         }
6675         if (!fp_access_check(s)) {
6676             return;
6677         }
6678         handle_fp_2src_half(s, opcode, rd, rn, rm);
6679         break;
6680     default:
6681         unallocated_encoding(s);
6682     }
6683 }
6684 
6685 /* Floating-point data-processing (3 source) - single precision */
6686 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6687                                   int rd, int rn, int rm, int ra)
6688 {
6689     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6690     TCGv_i32 tcg_res = tcg_temp_new_i32();
6691     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6692 
6693     tcg_op1 = read_fp_sreg(s, rn);
6694     tcg_op2 = read_fp_sreg(s, rm);
6695     tcg_op3 = read_fp_sreg(s, ra);
6696 
6697     /* These are fused multiply-add, and must be done as one
6698      * floating point operation with no rounding between the
6699      * multiplication and addition steps.
6700      * NB that doing the negations here as separate steps is
6701      * correct : an input NaN should come out with its sign bit
6702      * flipped if it is a negated-input.
6703      */
6704     if (o1 == true) {
6705         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6706     }
6707 
6708     if (o0 != o1) {
6709         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6710     }
6711 
6712     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6713 
6714     write_fp_sreg(s, rd, tcg_res);
6715 }
6716 
6717 /* Floating-point data-processing (3 source) - double precision */
6718 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6719                                   int rd, int rn, int rm, int ra)
6720 {
6721     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6722     TCGv_i64 tcg_res = tcg_temp_new_i64();
6723     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6724 
6725     tcg_op1 = read_fp_dreg(s, rn);
6726     tcg_op2 = read_fp_dreg(s, rm);
6727     tcg_op3 = read_fp_dreg(s, ra);
6728 
6729     /* These are fused multiply-add, and must be done as one
6730      * floating point operation with no rounding between the
6731      * multiplication and addition steps.
6732      * NB that doing the negations here as separate steps is
6733      * correct : an input NaN should come out with its sign bit
6734      * flipped if it is a negated-input.
6735      */
6736     if (o1 == true) {
6737         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6738     }
6739 
6740     if (o0 != o1) {
6741         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6742     }
6743 
6744     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6745 
6746     write_fp_dreg(s, rd, tcg_res);
6747 }
6748 
6749 /* Floating-point data-processing (3 source) - half precision */
6750 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6751                                 int rd, int rn, int rm, int ra)
6752 {
6753     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6754     TCGv_i32 tcg_res = tcg_temp_new_i32();
6755     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6756 
6757     tcg_op1 = read_fp_hreg(s, rn);
6758     tcg_op2 = read_fp_hreg(s, rm);
6759     tcg_op3 = read_fp_hreg(s, ra);
6760 
6761     /* These are fused multiply-add, and must be done as one
6762      * floating point operation with no rounding between the
6763      * multiplication and addition steps.
6764      * NB that doing the negations here as separate steps is
6765      * correct : an input NaN should come out with its sign bit
6766      * flipped if it is a negated-input.
6767      */
6768     if (o1 == true) {
6769         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6770     }
6771 
6772     if (o0 != o1) {
6773         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6774     }
6775 
6776     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6777 
6778     write_fp_sreg(s, rd, tcg_res);
6779 }
6780 
6781 /* Floating point data-processing (3 source)
6782  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6783  * +---+---+---+-----------+------+----+------+----+------+------+------+
6784  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6785  * +---+---+---+-----------+------+----+------+----+------+------+------+
6786  */
6787 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6788 {
6789     int mos = extract32(insn, 29, 3);
6790     int type = extract32(insn, 22, 2);
6791     int rd = extract32(insn, 0, 5);
6792     int rn = extract32(insn, 5, 5);
6793     int ra = extract32(insn, 10, 5);
6794     int rm = extract32(insn, 16, 5);
6795     bool o0 = extract32(insn, 15, 1);
6796     bool o1 = extract32(insn, 21, 1);
6797 
6798     if (mos) {
6799         unallocated_encoding(s);
6800         return;
6801     }
6802 
6803     switch (type) {
6804     case 0:
6805         if (!fp_access_check(s)) {
6806             return;
6807         }
6808         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6809         break;
6810     case 1:
6811         if (!fp_access_check(s)) {
6812             return;
6813         }
6814         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6815         break;
6816     case 3:
6817         if (!dc_isar_feature(aa64_fp16, s)) {
6818             unallocated_encoding(s);
6819             return;
6820         }
6821         if (!fp_access_check(s)) {
6822             return;
6823         }
6824         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6825         break;
6826     default:
6827         unallocated_encoding(s);
6828     }
6829 }
6830 
6831 /* Floating point immediate
6832  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6833  * +---+---+---+-----------+------+---+------------+-------+------+------+
6834  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6835  * +---+---+---+-----------+------+---+------------+-------+------+------+
6836  */
6837 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6838 {
6839     int rd = extract32(insn, 0, 5);
6840     int imm5 = extract32(insn, 5, 5);
6841     int imm8 = extract32(insn, 13, 8);
6842     int type = extract32(insn, 22, 2);
6843     int mos = extract32(insn, 29, 3);
6844     uint64_t imm;
6845     MemOp sz;
6846 
6847     if (mos || imm5) {
6848         unallocated_encoding(s);
6849         return;
6850     }
6851 
6852     switch (type) {
6853     case 0:
6854         sz = MO_32;
6855         break;
6856     case 1:
6857         sz = MO_64;
6858         break;
6859     case 3:
6860         sz = MO_16;
6861         if (dc_isar_feature(aa64_fp16, s)) {
6862             break;
6863         }
6864         /* fallthru */
6865     default:
6866         unallocated_encoding(s);
6867         return;
6868     }
6869 
6870     if (!fp_access_check(s)) {
6871         return;
6872     }
6873 
6874     imm = vfp_expand_imm(sz, imm8);
6875     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6876 }
6877 
6878 /* Handle floating point <=> fixed point conversions. Note that we can
6879  * also deal with fp <=> integer conversions as a special case (scale == 64)
6880  * OPTME: consider handling that special case specially or at least skipping
6881  * the call to scalbn in the helpers for zero shifts.
6882  */
6883 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6884                            bool itof, int rmode, int scale, int sf, int type)
6885 {
6886     bool is_signed = !(opcode & 1);
6887     TCGv_ptr tcg_fpstatus;
6888     TCGv_i32 tcg_shift, tcg_single;
6889     TCGv_i64 tcg_double;
6890 
6891     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6892 
6893     tcg_shift = tcg_constant_i32(64 - scale);
6894 
6895     if (itof) {
6896         TCGv_i64 tcg_int = cpu_reg(s, rn);
6897         if (!sf) {
6898             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6899 
6900             if (is_signed) {
6901                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6902             } else {
6903                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6904             }
6905 
6906             tcg_int = tcg_extend;
6907         }
6908 
6909         switch (type) {
6910         case 1: /* float64 */
6911             tcg_double = tcg_temp_new_i64();
6912             if (is_signed) {
6913                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6914                                      tcg_shift, tcg_fpstatus);
6915             } else {
6916                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6917                                      tcg_shift, tcg_fpstatus);
6918             }
6919             write_fp_dreg(s, rd, tcg_double);
6920             break;
6921 
6922         case 0: /* float32 */
6923             tcg_single = tcg_temp_new_i32();
6924             if (is_signed) {
6925                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6926                                      tcg_shift, tcg_fpstatus);
6927             } else {
6928                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6929                                      tcg_shift, tcg_fpstatus);
6930             }
6931             write_fp_sreg(s, rd, tcg_single);
6932             break;
6933 
6934         case 3: /* float16 */
6935             tcg_single = tcg_temp_new_i32();
6936             if (is_signed) {
6937                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6938                                      tcg_shift, tcg_fpstatus);
6939             } else {
6940                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6941                                      tcg_shift, tcg_fpstatus);
6942             }
6943             write_fp_sreg(s, rd, tcg_single);
6944             break;
6945 
6946         default:
6947             g_assert_not_reached();
6948         }
6949     } else {
6950         TCGv_i64 tcg_int = cpu_reg(s, rd);
6951         TCGv_i32 tcg_rmode;
6952 
6953         if (extract32(opcode, 2, 1)) {
6954             /* There are too many rounding modes to all fit into rmode,
6955              * so FCVTA[US] is a special case.
6956              */
6957             rmode = FPROUNDING_TIEAWAY;
6958         }
6959 
6960         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6961 
6962         switch (type) {
6963         case 1: /* float64 */
6964             tcg_double = read_fp_dreg(s, rn);
6965             if (is_signed) {
6966                 if (!sf) {
6967                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6968                                          tcg_shift, tcg_fpstatus);
6969                 } else {
6970                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6971                                          tcg_shift, tcg_fpstatus);
6972                 }
6973             } else {
6974                 if (!sf) {
6975                     gen_helper_vfp_tould(tcg_int, tcg_double,
6976                                          tcg_shift, tcg_fpstatus);
6977                 } else {
6978                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6979                                          tcg_shift, tcg_fpstatus);
6980                 }
6981             }
6982             if (!sf) {
6983                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6984             }
6985             break;
6986 
6987         case 0: /* float32 */
6988             tcg_single = read_fp_sreg(s, rn);
6989             if (sf) {
6990                 if (is_signed) {
6991                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6992                                          tcg_shift, tcg_fpstatus);
6993                 } else {
6994                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6995                                          tcg_shift, tcg_fpstatus);
6996                 }
6997             } else {
6998                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6999                 if (is_signed) {
7000                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7001                                          tcg_shift, tcg_fpstatus);
7002                 } else {
7003                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7004                                          tcg_shift, tcg_fpstatus);
7005                 }
7006                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7007             }
7008             break;
7009 
7010         case 3: /* float16 */
7011             tcg_single = read_fp_sreg(s, rn);
7012             if (sf) {
7013                 if (is_signed) {
7014                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7015                                          tcg_shift, tcg_fpstatus);
7016                 } else {
7017                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7018                                          tcg_shift, tcg_fpstatus);
7019                 }
7020             } else {
7021                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7022                 if (is_signed) {
7023                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7024                                          tcg_shift, tcg_fpstatus);
7025                 } else {
7026                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7027                                          tcg_shift, tcg_fpstatus);
7028                 }
7029                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7030             }
7031             break;
7032 
7033         default:
7034             g_assert_not_reached();
7035         }
7036 
7037         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7038     }
7039 }
7040 
7041 /* Floating point <-> fixed point conversions
7042  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7043  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7044  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7045  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7046  */
7047 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7048 {
7049     int rd = extract32(insn, 0, 5);
7050     int rn = extract32(insn, 5, 5);
7051     int scale = extract32(insn, 10, 6);
7052     int opcode = extract32(insn, 16, 3);
7053     int rmode = extract32(insn, 19, 2);
7054     int type = extract32(insn, 22, 2);
7055     bool sbit = extract32(insn, 29, 1);
7056     bool sf = extract32(insn, 31, 1);
7057     bool itof;
7058 
7059     if (sbit || (!sf && scale < 32)) {
7060         unallocated_encoding(s);
7061         return;
7062     }
7063 
7064     switch (type) {
7065     case 0: /* float32 */
7066     case 1: /* float64 */
7067         break;
7068     case 3: /* float16 */
7069         if (dc_isar_feature(aa64_fp16, s)) {
7070             break;
7071         }
7072         /* fallthru */
7073     default:
7074         unallocated_encoding(s);
7075         return;
7076     }
7077 
7078     switch ((rmode << 3) | opcode) {
7079     case 0x2: /* SCVTF */
7080     case 0x3: /* UCVTF */
7081         itof = true;
7082         break;
7083     case 0x18: /* FCVTZS */
7084     case 0x19: /* FCVTZU */
7085         itof = false;
7086         break;
7087     default:
7088         unallocated_encoding(s);
7089         return;
7090     }
7091 
7092     if (!fp_access_check(s)) {
7093         return;
7094     }
7095 
7096     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7097 }
7098 
7099 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7100 {
7101     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7102      * without conversion.
7103      */
7104 
7105     if (itof) {
7106         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7107         TCGv_i64 tmp;
7108 
7109         switch (type) {
7110         case 0:
7111             /* 32 bit */
7112             tmp = tcg_temp_new_i64();
7113             tcg_gen_ext32u_i64(tmp, tcg_rn);
7114             write_fp_dreg(s, rd, tmp);
7115             break;
7116         case 1:
7117             /* 64 bit */
7118             write_fp_dreg(s, rd, tcg_rn);
7119             break;
7120         case 2:
7121             /* 64 bit to top half. */
7122             tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7123             clear_vec_high(s, true, rd);
7124             break;
7125         case 3:
7126             /* 16 bit */
7127             tmp = tcg_temp_new_i64();
7128             tcg_gen_ext16u_i64(tmp, tcg_rn);
7129             write_fp_dreg(s, rd, tmp);
7130             break;
7131         default:
7132             g_assert_not_reached();
7133         }
7134     } else {
7135         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7136 
7137         switch (type) {
7138         case 0:
7139             /* 32 bit */
7140             tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7141             break;
7142         case 1:
7143             /* 64 bit */
7144             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7145             break;
7146         case 2:
7147             /* 64 bits from top half */
7148             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7149             break;
7150         case 3:
7151             /* 16 bit */
7152             tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7153             break;
7154         default:
7155             g_assert_not_reached();
7156         }
7157     }
7158 }
7159 
7160 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7161 {
7162     TCGv_i64 t = read_fp_dreg(s, rn);
7163     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7164 
7165     gen_helper_fjcvtzs(t, t, fpstatus);
7166 
7167     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7168     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7169     tcg_gen_movi_i32(cpu_CF, 0);
7170     tcg_gen_movi_i32(cpu_NF, 0);
7171     tcg_gen_movi_i32(cpu_VF, 0);
7172 }
7173 
7174 /* Floating point <-> integer conversions
7175  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7176  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7177  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7178  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7179  */
7180 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7181 {
7182     int rd = extract32(insn, 0, 5);
7183     int rn = extract32(insn, 5, 5);
7184     int opcode = extract32(insn, 16, 3);
7185     int rmode = extract32(insn, 19, 2);
7186     int type = extract32(insn, 22, 2);
7187     bool sbit = extract32(insn, 29, 1);
7188     bool sf = extract32(insn, 31, 1);
7189     bool itof = false;
7190 
7191     if (sbit) {
7192         goto do_unallocated;
7193     }
7194 
7195     switch (opcode) {
7196     case 2: /* SCVTF */
7197     case 3: /* UCVTF */
7198         itof = true;
7199         /* fallthru */
7200     case 4: /* FCVTAS */
7201     case 5: /* FCVTAU */
7202         if (rmode != 0) {
7203             goto do_unallocated;
7204         }
7205         /* fallthru */
7206     case 0: /* FCVT[NPMZ]S */
7207     case 1: /* FCVT[NPMZ]U */
7208         switch (type) {
7209         case 0: /* float32 */
7210         case 1: /* float64 */
7211             break;
7212         case 3: /* float16 */
7213             if (!dc_isar_feature(aa64_fp16, s)) {
7214                 goto do_unallocated;
7215             }
7216             break;
7217         default:
7218             goto do_unallocated;
7219         }
7220         if (!fp_access_check(s)) {
7221             return;
7222         }
7223         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7224         break;
7225 
7226     default:
7227         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7228         case 0b01100110: /* FMOV half <-> 32-bit int */
7229         case 0b01100111:
7230         case 0b11100110: /* FMOV half <-> 64-bit int */
7231         case 0b11100111:
7232             if (!dc_isar_feature(aa64_fp16, s)) {
7233                 goto do_unallocated;
7234             }
7235             /* fallthru */
7236         case 0b00000110: /* FMOV 32-bit */
7237         case 0b00000111:
7238         case 0b10100110: /* FMOV 64-bit */
7239         case 0b10100111:
7240         case 0b11001110: /* FMOV top half of 128-bit */
7241         case 0b11001111:
7242             if (!fp_access_check(s)) {
7243                 return;
7244             }
7245             itof = opcode & 1;
7246             handle_fmov(s, rd, rn, type, itof);
7247             break;
7248 
7249         case 0b00111110: /* FJCVTZS */
7250             if (!dc_isar_feature(aa64_jscvt, s)) {
7251                 goto do_unallocated;
7252             } else if (fp_access_check(s)) {
7253                 handle_fjcvtzs(s, rd, rn);
7254             }
7255             break;
7256 
7257         default:
7258         do_unallocated:
7259             unallocated_encoding(s);
7260             return;
7261         }
7262         break;
7263     }
7264 }
7265 
7266 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7267  *   31  30  29 28     25 24                          0
7268  * +---+---+---+---------+-----------------------------+
7269  * |   | 0 |   | 1 1 1 1 |                             |
7270  * +---+---+---+---------+-----------------------------+
7271  */
7272 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7273 {
7274     if (extract32(insn, 24, 1)) {
7275         /* Floating point data-processing (3 source) */
7276         disas_fp_3src(s, insn);
7277     } else if (extract32(insn, 21, 1) == 0) {
7278         /* Floating point to fixed point conversions */
7279         disas_fp_fixed_conv(s, insn);
7280     } else {
7281         switch (extract32(insn, 10, 2)) {
7282         case 1:
7283             /* Floating point conditional compare */
7284             disas_fp_ccomp(s, insn);
7285             break;
7286         case 2:
7287             /* Floating point data-processing (2 source) */
7288             disas_fp_2src(s, insn);
7289             break;
7290         case 3:
7291             /* Floating point conditional select */
7292             disas_fp_csel(s, insn);
7293             break;
7294         case 0:
7295             switch (ctz32(extract32(insn, 12, 4))) {
7296             case 0: /* [15:12] == xxx1 */
7297                 /* Floating point immediate */
7298                 disas_fp_imm(s, insn);
7299                 break;
7300             case 1: /* [15:12] == xx10 */
7301                 /* Floating point compare */
7302                 disas_fp_compare(s, insn);
7303                 break;
7304             case 2: /* [15:12] == x100 */
7305                 /* Floating point data-processing (1 source) */
7306                 disas_fp_1src(s, insn);
7307                 break;
7308             case 3: /* [15:12] == 1000 */
7309                 unallocated_encoding(s);
7310                 break;
7311             default: /* [15:12] == 0000 */
7312                 /* Floating point <-> integer conversions */
7313                 disas_fp_int_conv(s, insn);
7314                 break;
7315             }
7316             break;
7317         }
7318     }
7319 }
7320 
7321 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7322                      int pos)
7323 {
7324     /* Extract 64 bits from the middle of two concatenated 64 bit
7325      * vector register slices left:right. The extracted bits start
7326      * at 'pos' bits into the right (least significant) side.
7327      * We return the result in tcg_right, and guarantee not to
7328      * trash tcg_left.
7329      */
7330     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7331     assert(pos > 0 && pos < 64);
7332 
7333     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7334     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7335     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7336 }
7337 
7338 /* EXT
7339  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7340  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7341  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7342  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7343  */
7344 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7345 {
7346     int is_q = extract32(insn, 30, 1);
7347     int op2 = extract32(insn, 22, 2);
7348     int imm4 = extract32(insn, 11, 4);
7349     int rm = extract32(insn, 16, 5);
7350     int rn = extract32(insn, 5, 5);
7351     int rd = extract32(insn, 0, 5);
7352     int pos = imm4 << 3;
7353     TCGv_i64 tcg_resl, tcg_resh;
7354 
7355     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7356         unallocated_encoding(s);
7357         return;
7358     }
7359 
7360     if (!fp_access_check(s)) {
7361         return;
7362     }
7363 
7364     tcg_resh = tcg_temp_new_i64();
7365     tcg_resl = tcg_temp_new_i64();
7366 
7367     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7368      * either extracting 128 bits from a 128:128 concatenation, or
7369      * extracting 64 bits from a 64:64 concatenation.
7370      */
7371     if (!is_q) {
7372         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7373         if (pos != 0) {
7374             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7375             do_ext64(s, tcg_resh, tcg_resl, pos);
7376         }
7377     } else {
7378         TCGv_i64 tcg_hh;
7379         typedef struct {
7380             int reg;
7381             int elt;
7382         } EltPosns;
7383         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7384         EltPosns *elt = eltposns;
7385 
7386         if (pos >= 64) {
7387             elt++;
7388             pos -= 64;
7389         }
7390 
7391         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7392         elt++;
7393         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7394         elt++;
7395         if (pos != 0) {
7396             do_ext64(s, tcg_resh, tcg_resl, pos);
7397             tcg_hh = tcg_temp_new_i64();
7398             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7399             do_ext64(s, tcg_hh, tcg_resh, pos);
7400         }
7401     }
7402 
7403     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7404     if (is_q) {
7405         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7406     }
7407     clear_vec_high(s, is_q, rd);
7408 }
7409 
7410 /* TBL/TBX
7411  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7412  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7413  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7414  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7415  */
7416 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7417 {
7418     int op2 = extract32(insn, 22, 2);
7419     int is_q = extract32(insn, 30, 1);
7420     int rm = extract32(insn, 16, 5);
7421     int rn = extract32(insn, 5, 5);
7422     int rd = extract32(insn, 0, 5);
7423     int is_tbx = extract32(insn, 12, 1);
7424     int len = (extract32(insn, 13, 2) + 1) * 16;
7425 
7426     if (op2 != 0) {
7427         unallocated_encoding(s);
7428         return;
7429     }
7430 
7431     if (!fp_access_check(s)) {
7432         return;
7433     }
7434 
7435     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7436                        vec_full_reg_offset(s, rm), cpu_env,
7437                        is_q ? 16 : 8, vec_full_reg_size(s),
7438                        (len << 6) | (is_tbx << 5) | rn,
7439                        gen_helper_simd_tblx);
7440 }
7441 
7442 /* ZIP/UZP/TRN
7443  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7444  * +---+---+-------------+------+---+------+---+------------------+------+
7445  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7446  * +---+---+-------------+------+---+------+---+------------------+------+
7447  */
7448 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7449 {
7450     int rd = extract32(insn, 0, 5);
7451     int rn = extract32(insn, 5, 5);
7452     int rm = extract32(insn, 16, 5);
7453     int size = extract32(insn, 22, 2);
7454     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7455      * bit 2 indicates 1 vs 2 variant of the insn.
7456      */
7457     int opcode = extract32(insn, 12, 2);
7458     bool part = extract32(insn, 14, 1);
7459     bool is_q = extract32(insn, 30, 1);
7460     int esize = 8 << size;
7461     int i;
7462     int datasize = is_q ? 128 : 64;
7463     int elements = datasize / esize;
7464     TCGv_i64 tcg_res[2], tcg_ele;
7465 
7466     if (opcode == 0 || (size == 3 && !is_q)) {
7467         unallocated_encoding(s);
7468         return;
7469     }
7470 
7471     if (!fp_access_check(s)) {
7472         return;
7473     }
7474 
7475     tcg_res[0] = tcg_temp_new_i64();
7476     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7477     tcg_ele = tcg_temp_new_i64();
7478 
7479     for (i = 0; i < elements; i++) {
7480         int o, w;
7481 
7482         switch (opcode) {
7483         case 1: /* UZP1/2 */
7484         {
7485             int midpoint = elements / 2;
7486             if (i < midpoint) {
7487                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7488             } else {
7489                 read_vec_element(s, tcg_ele, rm,
7490                                  2 * (i - midpoint) + part, size);
7491             }
7492             break;
7493         }
7494         case 2: /* TRN1/2 */
7495             if (i & 1) {
7496                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7497             } else {
7498                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7499             }
7500             break;
7501         case 3: /* ZIP1/2 */
7502         {
7503             int base = part * elements / 2;
7504             if (i & 1) {
7505                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7506             } else {
7507                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7508             }
7509             break;
7510         }
7511         default:
7512             g_assert_not_reached();
7513         }
7514 
7515         w = (i * esize) / 64;
7516         o = (i * esize) % 64;
7517         if (o == 0) {
7518             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7519         } else {
7520             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7521             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7522         }
7523     }
7524 
7525     for (i = 0; i <= is_q; ++i) {
7526         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7527     }
7528     clear_vec_high(s, is_q, rd);
7529 }
7530 
7531 /*
7532  * do_reduction_op helper
7533  *
7534  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7535  * important for correct NaN propagation that we do these
7536  * operations in exactly the order specified by the pseudocode.
7537  *
7538  * This is a recursive function, TCG temps should be freed by the
7539  * calling function once it is done with the values.
7540  */
7541 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7542                                 int esize, int size, int vmap, TCGv_ptr fpst)
7543 {
7544     if (esize == size) {
7545         int element;
7546         MemOp msize = esize == 16 ? MO_16 : MO_32;
7547         TCGv_i32 tcg_elem;
7548 
7549         /* We should have one register left here */
7550         assert(ctpop8(vmap) == 1);
7551         element = ctz32(vmap);
7552         assert(element < 8);
7553 
7554         tcg_elem = tcg_temp_new_i32();
7555         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7556         return tcg_elem;
7557     } else {
7558         int bits = size / 2;
7559         int shift = ctpop8(vmap) / 2;
7560         int vmap_lo = (vmap >> shift) & vmap;
7561         int vmap_hi = (vmap & ~vmap_lo);
7562         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7563 
7564         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7565         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7566         tcg_res = tcg_temp_new_i32();
7567 
7568         switch (fpopcode) {
7569         case 0x0c: /* fmaxnmv half-precision */
7570             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7571             break;
7572         case 0x0f: /* fmaxv half-precision */
7573             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7574             break;
7575         case 0x1c: /* fminnmv half-precision */
7576             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7577             break;
7578         case 0x1f: /* fminv half-precision */
7579             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7580             break;
7581         case 0x2c: /* fmaxnmv */
7582             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7583             break;
7584         case 0x2f: /* fmaxv */
7585             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7586             break;
7587         case 0x3c: /* fminnmv */
7588             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7589             break;
7590         case 0x3f: /* fminv */
7591             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7592             break;
7593         default:
7594             g_assert_not_reached();
7595         }
7596         return tcg_res;
7597     }
7598 }
7599 
7600 /* AdvSIMD across lanes
7601  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7602  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7603  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7604  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7605  */
7606 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7607 {
7608     int rd = extract32(insn, 0, 5);
7609     int rn = extract32(insn, 5, 5);
7610     int size = extract32(insn, 22, 2);
7611     int opcode = extract32(insn, 12, 5);
7612     bool is_q = extract32(insn, 30, 1);
7613     bool is_u = extract32(insn, 29, 1);
7614     bool is_fp = false;
7615     bool is_min = false;
7616     int esize;
7617     int elements;
7618     int i;
7619     TCGv_i64 tcg_res, tcg_elt;
7620 
7621     switch (opcode) {
7622     case 0x1b: /* ADDV */
7623         if (is_u) {
7624             unallocated_encoding(s);
7625             return;
7626         }
7627         /* fall through */
7628     case 0x3: /* SADDLV, UADDLV */
7629     case 0xa: /* SMAXV, UMAXV */
7630     case 0x1a: /* SMINV, UMINV */
7631         if (size == 3 || (size == 2 && !is_q)) {
7632             unallocated_encoding(s);
7633             return;
7634         }
7635         break;
7636     case 0xc: /* FMAXNMV, FMINNMV */
7637     case 0xf: /* FMAXV, FMINV */
7638         /* Bit 1 of size field encodes min vs max and the actual size
7639          * depends on the encoding of the U bit. If not set (and FP16
7640          * enabled) then we do half-precision float instead of single
7641          * precision.
7642          */
7643         is_min = extract32(size, 1, 1);
7644         is_fp = true;
7645         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7646             size = 1;
7647         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7648             unallocated_encoding(s);
7649             return;
7650         } else {
7651             size = 2;
7652         }
7653         break;
7654     default:
7655         unallocated_encoding(s);
7656         return;
7657     }
7658 
7659     if (!fp_access_check(s)) {
7660         return;
7661     }
7662 
7663     esize = 8 << size;
7664     elements = (is_q ? 128 : 64) / esize;
7665 
7666     tcg_res = tcg_temp_new_i64();
7667     tcg_elt = tcg_temp_new_i64();
7668 
7669     /* These instructions operate across all lanes of a vector
7670      * to produce a single result. We can guarantee that a 64
7671      * bit intermediate is sufficient:
7672      *  + for [US]ADDLV the maximum element size is 32 bits, and
7673      *    the result type is 64 bits
7674      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7675      *    same as the element size, which is 32 bits at most
7676      * For the integer operations we can choose to work at 64
7677      * or 32 bits and truncate at the end; for simplicity
7678      * we use 64 bits always. The floating point
7679      * ops do require 32 bit intermediates, though.
7680      */
7681     if (!is_fp) {
7682         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7683 
7684         for (i = 1; i < elements; i++) {
7685             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7686 
7687             switch (opcode) {
7688             case 0x03: /* SADDLV / UADDLV */
7689             case 0x1b: /* ADDV */
7690                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7691                 break;
7692             case 0x0a: /* SMAXV / UMAXV */
7693                 if (is_u) {
7694                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7695                 } else {
7696                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7697                 }
7698                 break;
7699             case 0x1a: /* SMINV / UMINV */
7700                 if (is_u) {
7701                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7702                 } else {
7703                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7704                 }
7705                 break;
7706             default:
7707                 g_assert_not_reached();
7708             }
7709 
7710         }
7711     } else {
7712         /* Floating point vector reduction ops which work across 32
7713          * bit (single) or 16 bit (half-precision) intermediates.
7714          * Note that correct NaN propagation requires that we do these
7715          * operations in exactly the order specified by the pseudocode.
7716          */
7717         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7718         int fpopcode = opcode | is_min << 4 | is_u << 5;
7719         int vmap = (1 << elements) - 1;
7720         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7721                                              (is_q ? 128 : 64), vmap, fpst);
7722         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7723     }
7724 
7725     /* Now truncate the result to the width required for the final output */
7726     if (opcode == 0x03) {
7727         /* SADDLV, UADDLV: result is 2*esize */
7728         size++;
7729     }
7730 
7731     switch (size) {
7732     case 0:
7733         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7734         break;
7735     case 1:
7736         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7737         break;
7738     case 2:
7739         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7740         break;
7741     case 3:
7742         break;
7743     default:
7744         g_assert_not_reached();
7745     }
7746 
7747     write_fp_dreg(s, rd, tcg_res);
7748 }
7749 
7750 /* DUP (Element, Vector)
7751  *
7752  *  31  30   29              21 20    16 15        10  9    5 4    0
7753  * +---+---+-------------------+--------+-------------+------+------+
7754  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7755  * +---+---+-------------------+--------+-------------+------+------+
7756  *
7757  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7758  */
7759 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7760                              int imm5)
7761 {
7762     int size = ctz32(imm5);
7763     int index;
7764 
7765     if (size > 3 || (size == 3 && !is_q)) {
7766         unallocated_encoding(s);
7767         return;
7768     }
7769 
7770     if (!fp_access_check(s)) {
7771         return;
7772     }
7773 
7774     index = imm5 >> (size + 1);
7775     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7776                          vec_reg_offset(s, rn, index, size),
7777                          is_q ? 16 : 8, vec_full_reg_size(s));
7778 }
7779 
7780 /* DUP (element, scalar)
7781  *  31                   21 20    16 15        10  9    5 4    0
7782  * +-----------------------+--------+-------------+------+------+
7783  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7784  * +-----------------------+--------+-------------+------+------+
7785  */
7786 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7787                               int imm5)
7788 {
7789     int size = ctz32(imm5);
7790     int index;
7791     TCGv_i64 tmp;
7792 
7793     if (size > 3) {
7794         unallocated_encoding(s);
7795         return;
7796     }
7797 
7798     if (!fp_access_check(s)) {
7799         return;
7800     }
7801 
7802     index = imm5 >> (size + 1);
7803 
7804     /* This instruction just extracts the specified element and
7805      * zero-extends it into the bottom of the destination register.
7806      */
7807     tmp = tcg_temp_new_i64();
7808     read_vec_element(s, tmp, rn, index, size);
7809     write_fp_dreg(s, rd, tmp);
7810 }
7811 
7812 /* DUP (General)
7813  *
7814  *  31  30   29              21 20    16 15        10  9    5 4    0
7815  * +---+---+-------------------+--------+-------------+------+------+
7816  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7817  * +---+---+-------------------+--------+-------------+------+------+
7818  *
7819  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7820  */
7821 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7822                              int imm5)
7823 {
7824     int size = ctz32(imm5);
7825     uint32_t dofs, oprsz, maxsz;
7826 
7827     if (size > 3 || ((size == 3) && !is_q)) {
7828         unallocated_encoding(s);
7829         return;
7830     }
7831 
7832     if (!fp_access_check(s)) {
7833         return;
7834     }
7835 
7836     dofs = vec_full_reg_offset(s, rd);
7837     oprsz = is_q ? 16 : 8;
7838     maxsz = vec_full_reg_size(s);
7839 
7840     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7841 }
7842 
7843 /* INS (Element)
7844  *
7845  *  31                   21 20    16 15  14    11  10 9    5 4    0
7846  * +-----------------------+--------+------------+---+------+------+
7847  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7848  * +-----------------------+--------+------------+---+------+------+
7849  *
7850  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7851  * index: encoded in imm5<4:size+1>
7852  */
7853 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7854                              int imm4, int imm5)
7855 {
7856     int size = ctz32(imm5);
7857     int src_index, dst_index;
7858     TCGv_i64 tmp;
7859 
7860     if (size > 3) {
7861         unallocated_encoding(s);
7862         return;
7863     }
7864 
7865     if (!fp_access_check(s)) {
7866         return;
7867     }
7868 
7869     dst_index = extract32(imm5, 1+size, 5);
7870     src_index = extract32(imm4, size, 4);
7871 
7872     tmp = tcg_temp_new_i64();
7873 
7874     read_vec_element(s, tmp, rn, src_index, size);
7875     write_vec_element(s, tmp, rd, dst_index, size);
7876 
7877     /* INS is considered a 128-bit write for SVE. */
7878     clear_vec_high(s, true, rd);
7879 }
7880 
7881 
7882 /* INS (General)
7883  *
7884  *  31                   21 20    16 15        10  9    5 4    0
7885  * +-----------------------+--------+-------------+------+------+
7886  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7887  * +-----------------------+--------+-------------+------+------+
7888  *
7889  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7890  * index: encoded in imm5<4:size+1>
7891  */
7892 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7893 {
7894     int size = ctz32(imm5);
7895     int idx;
7896 
7897     if (size > 3) {
7898         unallocated_encoding(s);
7899         return;
7900     }
7901 
7902     if (!fp_access_check(s)) {
7903         return;
7904     }
7905 
7906     idx = extract32(imm5, 1 + size, 4 - size);
7907     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7908 
7909     /* INS is considered a 128-bit write for SVE. */
7910     clear_vec_high(s, true, rd);
7911 }
7912 
7913 /*
7914  * UMOV (General)
7915  * SMOV (General)
7916  *
7917  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7918  * +---+---+-------------------+--------+-------------+------+------+
7919  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7920  * +---+---+-------------------+--------+-------------+------+------+
7921  *
7922  * U: unsigned when set
7923  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7924  */
7925 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7926                                   int rn, int rd, int imm5)
7927 {
7928     int size = ctz32(imm5);
7929     int element;
7930     TCGv_i64 tcg_rd;
7931 
7932     /* Check for UnallocatedEncodings */
7933     if (is_signed) {
7934         if (size > 2 || (size == 2 && !is_q)) {
7935             unallocated_encoding(s);
7936             return;
7937         }
7938     } else {
7939         if (size > 3
7940             || (size < 3 && is_q)
7941             || (size == 3 && !is_q)) {
7942             unallocated_encoding(s);
7943             return;
7944         }
7945     }
7946 
7947     if (!fp_access_check(s)) {
7948         return;
7949     }
7950 
7951     element = extract32(imm5, 1+size, 4);
7952 
7953     tcg_rd = cpu_reg(s, rd);
7954     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7955     if (is_signed && !is_q) {
7956         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7957     }
7958 }
7959 
7960 /* AdvSIMD copy
7961  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7962  * +---+---+----+-----------------+------+---+------+---+------+------+
7963  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7964  * +---+---+----+-----------------+------+---+------+---+------+------+
7965  */
7966 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7967 {
7968     int rd = extract32(insn, 0, 5);
7969     int rn = extract32(insn, 5, 5);
7970     int imm4 = extract32(insn, 11, 4);
7971     int op = extract32(insn, 29, 1);
7972     int is_q = extract32(insn, 30, 1);
7973     int imm5 = extract32(insn, 16, 5);
7974 
7975     if (op) {
7976         if (is_q) {
7977             /* INS (element) */
7978             handle_simd_inse(s, rd, rn, imm4, imm5);
7979         } else {
7980             unallocated_encoding(s);
7981         }
7982     } else {
7983         switch (imm4) {
7984         case 0:
7985             /* DUP (element - vector) */
7986             handle_simd_dupe(s, is_q, rd, rn, imm5);
7987             break;
7988         case 1:
7989             /* DUP (general) */
7990             handle_simd_dupg(s, is_q, rd, rn, imm5);
7991             break;
7992         case 3:
7993             if (is_q) {
7994                 /* INS (general) */
7995                 handle_simd_insg(s, rd, rn, imm5);
7996             } else {
7997                 unallocated_encoding(s);
7998             }
7999             break;
8000         case 5:
8001         case 7:
8002             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8003             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8004             break;
8005         default:
8006             unallocated_encoding(s);
8007             break;
8008         }
8009     }
8010 }
8011 
8012 /* AdvSIMD modified immediate
8013  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8014  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8015  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8016  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8017  *
8018  * There are a number of operations that can be carried out here:
8019  *   MOVI - move (shifted) imm into register
8020  *   MVNI - move inverted (shifted) imm into register
8021  *   ORR  - bitwise OR of (shifted) imm with register
8022  *   BIC  - bitwise clear of (shifted) imm with register
8023  * With ARMv8.2 we also have:
8024  *   FMOV half-precision
8025  */
8026 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8027 {
8028     int rd = extract32(insn, 0, 5);
8029     int cmode = extract32(insn, 12, 4);
8030     int o2 = extract32(insn, 11, 1);
8031     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8032     bool is_neg = extract32(insn, 29, 1);
8033     bool is_q = extract32(insn, 30, 1);
8034     uint64_t imm = 0;
8035 
8036     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8037         /* Check for FMOV (vector, immediate) - half-precision */
8038         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8039             unallocated_encoding(s);
8040             return;
8041         }
8042     }
8043 
8044     if (!fp_access_check(s)) {
8045         return;
8046     }
8047 
8048     if (cmode == 15 && o2 && !is_neg) {
8049         /* FMOV (vector, immediate) - half-precision */
8050         imm = vfp_expand_imm(MO_16, abcdefgh);
8051         /* now duplicate across the lanes */
8052         imm = dup_const(MO_16, imm);
8053     } else {
8054         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8055     }
8056 
8057     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8058         /* MOVI or MVNI, with MVNI negation handled above.  */
8059         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8060                              vec_full_reg_size(s), imm);
8061     } else {
8062         /* ORR or BIC, with BIC negation to AND handled above.  */
8063         if (is_neg) {
8064             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8065         } else {
8066             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8067         }
8068     }
8069 }
8070 
8071 /* AdvSIMD scalar copy
8072  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
8073  * +-----+----+-----------------+------+---+------+---+------+------+
8074  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
8075  * +-----+----+-----------------+------+---+------+---+------+------+
8076  */
8077 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8078 {
8079     int rd = extract32(insn, 0, 5);
8080     int rn = extract32(insn, 5, 5);
8081     int imm4 = extract32(insn, 11, 4);
8082     int imm5 = extract32(insn, 16, 5);
8083     int op = extract32(insn, 29, 1);
8084 
8085     if (op != 0 || imm4 != 0) {
8086         unallocated_encoding(s);
8087         return;
8088     }
8089 
8090     /* DUP (element, scalar) */
8091     handle_simd_dupes(s, rd, rn, imm5);
8092 }
8093 
8094 /* AdvSIMD scalar pairwise
8095  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8096  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8097  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8098  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8099  */
8100 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8101 {
8102     int u = extract32(insn, 29, 1);
8103     int size = extract32(insn, 22, 2);
8104     int opcode = extract32(insn, 12, 5);
8105     int rn = extract32(insn, 5, 5);
8106     int rd = extract32(insn, 0, 5);
8107     TCGv_ptr fpst;
8108 
8109     /* For some ops (the FP ones), size[1] is part of the encoding.
8110      * For ADDP strictly it is not but size[1] is always 1 for valid
8111      * encodings.
8112      */
8113     opcode |= (extract32(size, 1, 1) << 5);
8114 
8115     switch (opcode) {
8116     case 0x3b: /* ADDP */
8117         if (u || size != 3) {
8118             unallocated_encoding(s);
8119             return;
8120         }
8121         if (!fp_access_check(s)) {
8122             return;
8123         }
8124 
8125         fpst = NULL;
8126         break;
8127     case 0xc: /* FMAXNMP */
8128     case 0xd: /* FADDP */
8129     case 0xf: /* FMAXP */
8130     case 0x2c: /* FMINNMP */
8131     case 0x2f: /* FMINP */
8132         /* FP op, size[0] is 32 or 64 bit*/
8133         if (!u) {
8134             if (!dc_isar_feature(aa64_fp16, s)) {
8135                 unallocated_encoding(s);
8136                 return;
8137             } else {
8138                 size = MO_16;
8139             }
8140         } else {
8141             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8142         }
8143 
8144         if (!fp_access_check(s)) {
8145             return;
8146         }
8147 
8148         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8149         break;
8150     default:
8151         unallocated_encoding(s);
8152         return;
8153     }
8154 
8155     if (size == MO_64) {
8156         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8157         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8158         TCGv_i64 tcg_res = tcg_temp_new_i64();
8159 
8160         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8161         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8162 
8163         switch (opcode) {
8164         case 0x3b: /* ADDP */
8165             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8166             break;
8167         case 0xc: /* FMAXNMP */
8168             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8169             break;
8170         case 0xd: /* FADDP */
8171             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8172             break;
8173         case 0xf: /* FMAXP */
8174             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8175             break;
8176         case 0x2c: /* FMINNMP */
8177             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8178             break;
8179         case 0x2f: /* FMINP */
8180             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8181             break;
8182         default:
8183             g_assert_not_reached();
8184         }
8185 
8186         write_fp_dreg(s, rd, tcg_res);
8187     } else {
8188         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8189         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8190         TCGv_i32 tcg_res = tcg_temp_new_i32();
8191 
8192         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8193         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8194 
8195         if (size == MO_16) {
8196             switch (opcode) {
8197             case 0xc: /* FMAXNMP */
8198                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8199                 break;
8200             case 0xd: /* FADDP */
8201                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8202                 break;
8203             case 0xf: /* FMAXP */
8204                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8205                 break;
8206             case 0x2c: /* FMINNMP */
8207                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8208                 break;
8209             case 0x2f: /* FMINP */
8210                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8211                 break;
8212             default:
8213                 g_assert_not_reached();
8214             }
8215         } else {
8216             switch (opcode) {
8217             case 0xc: /* FMAXNMP */
8218                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8219                 break;
8220             case 0xd: /* FADDP */
8221                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8222                 break;
8223             case 0xf: /* FMAXP */
8224                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8225                 break;
8226             case 0x2c: /* FMINNMP */
8227                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8228                 break;
8229             case 0x2f: /* FMINP */
8230                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8231                 break;
8232             default:
8233                 g_assert_not_reached();
8234             }
8235         }
8236 
8237         write_fp_sreg(s, rd, tcg_res);
8238     }
8239 }
8240 
8241 /*
8242  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8243  *
8244  * This code is handles the common shifting code and is used by both
8245  * the vector and scalar code.
8246  */
8247 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8248                                     TCGv_i64 tcg_rnd, bool accumulate,
8249                                     bool is_u, int size, int shift)
8250 {
8251     bool extended_result = false;
8252     bool round = tcg_rnd != NULL;
8253     int ext_lshift = 0;
8254     TCGv_i64 tcg_src_hi;
8255 
8256     if (round && size == 3) {
8257         extended_result = true;
8258         ext_lshift = 64 - shift;
8259         tcg_src_hi = tcg_temp_new_i64();
8260     } else if (shift == 64) {
8261         if (!accumulate && is_u) {
8262             /* result is zero */
8263             tcg_gen_movi_i64(tcg_res, 0);
8264             return;
8265         }
8266     }
8267 
8268     /* Deal with the rounding step */
8269     if (round) {
8270         if (extended_result) {
8271             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8272             if (!is_u) {
8273                 /* take care of sign extending tcg_res */
8274                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8275                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8276                                  tcg_src, tcg_src_hi,
8277                                  tcg_rnd, tcg_zero);
8278             } else {
8279                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8280                                  tcg_src, tcg_zero,
8281                                  tcg_rnd, tcg_zero);
8282             }
8283         } else {
8284             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8285         }
8286     }
8287 
8288     /* Now do the shift right */
8289     if (round && extended_result) {
8290         /* extended case, >64 bit precision required */
8291         if (ext_lshift == 0) {
8292             /* special case, only high bits matter */
8293             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8294         } else {
8295             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8296             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8297             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8298         }
8299     } else {
8300         if (is_u) {
8301             if (shift == 64) {
8302                 /* essentially shifting in 64 zeros */
8303                 tcg_gen_movi_i64(tcg_src, 0);
8304             } else {
8305                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8306             }
8307         } else {
8308             if (shift == 64) {
8309                 /* effectively extending the sign-bit */
8310                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8311             } else {
8312                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8313             }
8314         }
8315     }
8316 
8317     if (accumulate) {
8318         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8319     } else {
8320         tcg_gen_mov_i64(tcg_res, tcg_src);
8321     }
8322 }
8323 
8324 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8325 static void handle_scalar_simd_shri(DisasContext *s,
8326                                     bool is_u, int immh, int immb,
8327                                     int opcode, int rn, int rd)
8328 {
8329     const int size = 3;
8330     int immhb = immh << 3 | immb;
8331     int shift = 2 * (8 << size) - immhb;
8332     bool accumulate = false;
8333     bool round = false;
8334     bool insert = false;
8335     TCGv_i64 tcg_rn;
8336     TCGv_i64 tcg_rd;
8337     TCGv_i64 tcg_round;
8338 
8339     if (!extract32(immh, 3, 1)) {
8340         unallocated_encoding(s);
8341         return;
8342     }
8343 
8344     if (!fp_access_check(s)) {
8345         return;
8346     }
8347 
8348     switch (opcode) {
8349     case 0x02: /* SSRA / USRA (accumulate) */
8350         accumulate = true;
8351         break;
8352     case 0x04: /* SRSHR / URSHR (rounding) */
8353         round = true;
8354         break;
8355     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8356         accumulate = round = true;
8357         break;
8358     case 0x08: /* SRI */
8359         insert = true;
8360         break;
8361     }
8362 
8363     if (round) {
8364         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8365     } else {
8366         tcg_round = NULL;
8367     }
8368 
8369     tcg_rn = read_fp_dreg(s, rn);
8370     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8371 
8372     if (insert) {
8373         /* shift count same as element size is valid but does nothing;
8374          * special case to avoid potential shift by 64.
8375          */
8376         int esize = 8 << size;
8377         if (shift != esize) {
8378             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8379             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8380         }
8381     } else {
8382         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8383                                 accumulate, is_u, size, shift);
8384     }
8385 
8386     write_fp_dreg(s, rd, tcg_rd);
8387 }
8388 
8389 /* SHL/SLI - Scalar shift left */
8390 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8391                                     int immh, int immb, int opcode,
8392                                     int rn, int rd)
8393 {
8394     int size = 32 - clz32(immh) - 1;
8395     int immhb = immh << 3 | immb;
8396     int shift = immhb - (8 << size);
8397     TCGv_i64 tcg_rn;
8398     TCGv_i64 tcg_rd;
8399 
8400     if (!extract32(immh, 3, 1)) {
8401         unallocated_encoding(s);
8402         return;
8403     }
8404 
8405     if (!fp_access_check(s)) {
8406         return;
8407     }
8408 
8409     tcg_rn = read_fp_dreg(s, rn);
8410     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8411 
8412     if (insert) {
8413         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8414     } else {
8415         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8416     }
8417 
8418     write_fp_dreg(s, rd, tcg_rd);
8419 }
8420 
8421 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8422  * (signed/unsigned) narrowing */
8423 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8424                                    bool is_u_shift, bool is_u_narrow,
8425                                    int immh, int immb, int opcode,
8426                                    int rn, int rd)
8427 {
8428     int immhb = immh << 3 | immb;
8429     int size = 32 - clz32(immh) - 1;
8430     int esize = 8 << size;
8431     int shift = (2 * esize) - immhb;
8432     int elements = is_scalar ? 1 : (64 / esize);
8433     bool round = extract32(opcode, 0, 1);
8434     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8435     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8436     TCGv_i32 tcg_rd_narrowed;
8437     TCGv_i64 tcg_final;
8438 
8439     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8440         { gen_helper_neon_narrow_sat_s8,
8441           gen_helper_neon_unarrow_sat8 },
8442         { gen_helper_neon_narrow_sat_s16,
8443           gen_helper_neon_unarrow_sat16 },
8444         { gen_helper_neon_narrow_sat_s32,
8445           gen_helper_neon_unarrow_sat32 },
8446         { NULL, NULL },
8447     };
8448     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8449         gen_helper_neon_narrow_sat_u8,
8450         gen_helper_neon_narrow_sat_u16,
8451         gen_helper_neon_narrow_sat_u32,
8452         NULL
8453     };
8454     NeonGenNarrowEnvFn *narrowfn;
8455 
8456     int i;
8457 
8458     assert(size < 4);
8459 
8460     if (extract32(immh, 3, 1)) {
8461         unallocated_encoding(s);
8462         return;
8463     }
8464 
8465     if (!fp_access_check(s)) {
8466         return;
8467     }
8468 
8469     if (is_u_shift) {
8470         narrowfn = unsigned_narrow_fns[size];
8471     } else {
8472         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8473     }
8474 
8475     tcg_rn = tcg_temp_new_i64();
8476     tcg_rd = tcg_temp_new_i64();
8477     tcg_rd_narrowed = tcg_temp_new_i32();
8478     tcg_final = tcg_temp_new_i64();
8479 
8480     if (round) {
8481         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8482     } else {
8483         tcg_round = NULL;
8484     }
8485 
8486     for (i = 0; i < elements; i++) {
8487         read_vec_element(s, tcg_rn, rn, i, ldop);
8488         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8489                                 false, is_u_shift, size+1, shift);
8490         narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8491         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8492         if (i == 0) {
8493             tcg_gen_mov_i64(tcg_final, tcg_rd);
8494         } else {
8495             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8496         }
8497     }
8498 
8499     if (!is_q) {
8500         write_vec_element(s, tcg_final, rd, 0, MO_64);
8501     } else {
8502         write_vec_element(s, tcg_final, rd, 1, MO_64);
8503     }
8504     clear_vec_high(s, is_q, rd);
8505 }
8506 
8507 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8508 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8509                              bool src_unsigned, bool dst_unsigned,
8510                              int immh, int immb, int rn, int rd)
8511 {
8512     int immhb = immh << 3 | immb;
8513     int size = 32 - clz32(immh) - 1;
8514     int shift = immhb - (8 << size);
8515     int pass;
8516 
8517     assert(immh != 0);
8518     assert(!(scalar && is_q));
8519 
8520     if (!scalar) {
8521         if (!is_q && extract32(immh, 3, 1)) {
8522             unallocated_encoding(s);
8523             return;
8524         }
8525 
8526         /* Since we use the variable-shift helpers we must
8527          * replicate the shift count into each element of
8528          * the tcg_shift value.
8529          */
8530         switch (size) {
8531         case 0:
8532             shift |= shift << 8;
8533             /* fall through */
8534         case 1:
8535             shift |= shift << 16;
8536             break;
8537         case 2:
8538         case 3:
8539             break;
8540         default:
8541             g_assert_not_reached();
8542         }
8543     }
8544 
8545     if (!fp_access_check(s)) {
8546         return;
8547     }
8548 
8549     if (size == 3) {
8550         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8551         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8552             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8553             { NULL, gen_helper_neon_qshl_u64 },
8554         };
8555         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8556         int maxpass = is_q ? 2 : 1;
8557 
8558         for (pass = 0; pass < maxpass; pass++) {
8559             TCGv_i64 tcg_op = tcg_temp_new_i64();
8560 
8561             read_vec_element(s, tcg_op, rn, pass, MO_64);
8562             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8563             write_vec_element(s, tcg_op, rd, pass, MO_64);
8564         }
8565         clear_vec_high(s, is_q, rd);
8566     } else {
8567         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8568         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8569             {
8570                 { gen_helper_neon_qshl_s8,
8571                   gen_helper_neon_qshl_s16,
8572                   gen_helper_neon_qshl_s32 },
8573                 { gen_helper_neon_qshlu_s8,
8574                   gen_helper_neon_qshlu_s16,
8575                   gen_helper_neon_qshlu_s32 }
8576             }, {
8577                 { NULL, NULL, NULL },
8578                 { gen_helper_neon_qshl_u8,
8579                   gen_helper_neon_qshl_u16,
8580                   gen_helper_neon_qshl_u32 }
8581             }
8582         };
8583         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8584         MemOp memop = scalar ? size : MO_32;
8585         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8586 
8587         for (pass = 0; pass < maxpass; pass++) {
8588             TCGv_i32 tcg_op = tcg_temp_new_i32();
8589 
8590             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8591             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8592             if (scalar) {
8593                 switch (size) {
8594                 case 0:
8595                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8596                     break;
8597                 case 1:
8598                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8599                     break;
8600                 case 2:
8601                     break;
8602                 default:
8603                     g_assert_not_reached();
8604                 }
8605                 write_fp_sreg(s, rd, tcg_op);
8606             } else {
8607                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8608             }
8609         }
8610 
8611         if (!scalar) {
8612             clear_vec_high(s, is_q, rd);
8613         }
8614     }
8615 }
8616 
8617 /* Common vector code for handling integer to FP conversion */
8618 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8619                                    int elements, int is_signed,
8620                                    int fracbits, int size)
8621 {
8622     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8623     TCGv_i32 tcg_shift = NULL;
8624 
8625     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8626     int pass;
8627 
8628     if (fracbits || size == MO_64) {
8629         tcg_shift = tcg_constant_i32(fracbits);
8630     }
8631 
8632     if (size == MO_64) {
8633         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8634         TCGv_i64 tcg_double = tcg_temp_new_i64();
8635 
8636         for (pass = 0; pass < elements; pass++) {
8637             read_vec_element(s, tcg_int64, rn, pass, mop);
8638 
8639             if (is_signed) {
8640                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8641                                      tcg_shift, tcg_fpst);
8642             } else {
8643                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8644                                      tcg_shift, tcg_fpst);
8645             }
8646             if (elements == 1) {
8647                 write_fp_dreg(s, rd, tcg_double);
8648             } else {
8649                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8650             }
8651         }
8652     } else {
8653         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8654         TCGv_i32 tcg_float = tcg_temp_new_i32();
8655 
8656         for (pass = 0; pass < elements; pass++) {
8657             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8658 
8659             switch (size) {
8660             case MO_32:
8661                 if (fracbits) {
8662                     if (is_signed) {
8663                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8664                                              tcg_shift, tcg_fpst);
8665                     } else {
8666                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8667                                              tcg_shift, tcg_fpst);
8668                     }
8669                 } else {
8670                     if (is_signed) {
8671                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8672                     } else {
8673                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8674                     }
8675                 }
8676                 break;
8677             case MO_16:
8678                 if (fracbits) {
8679                     if (is_signed) {
8680                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8681                                              tcg_shift, tcg_fpst);
8682                     } else {
8683                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8684                                              tcg_shift, tcg_fpst);
8685                     }
8686                 } else {
8687                     if (is_signed) {
8688                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8689                     } else {
8690                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8691                     }
8692                 }
8693                 break;
8694             default:
8695                 g_assert_not_reached();
8696             }
8697 
8698             if (elements == 1) {
8699                 write_fp_sreg(s, rd, tcg_float);
8700             } else {
8701                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8702             }
8703         }
8704     }
8705 
8706     clear_vec_high(s, elements << size == 16, rd);
8707 }
8708 
8709 /* UCVTF/SCVTF - Integer to FP conversion */
8710 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8711                                          bool is_q, bool is_u,
8712                                          int immh, int immb, int opcode,
8713                                          int rn, int rd)
8714 {
8715     int size, elements, fracbits;
8716     int immhb = immh << 3 | immb;
8717 
8718     if (immh & 8) {
8719         size = MO_64;
8720         if (!is_scalar && !is_q) {
8721             unallocated_encoding(s);
8722             return;
8723         }
8724     } else if (immh & 4) {
8725         size = MO_32;
8726     } else if (immh & 2) {
8727         size = MO_16;
8728         if (!dc_isar_feature(aa64_fp16, s)) {
8729             unallocated_encoding(s);
8730             return;
8731         }
8732     } else {
8733         /* immh == 0 would be a failure of the decode logic */
8734         g_assert(immh == 1);
8735         unallocated_encoding(s);
8736         return;
8737     }
8738 
8739     if (is_scalar) {
8740         elements = 1;
8741     } else {
8742         elements = (8 << is_q) >> size;
8743     }
8744     fracbits = (16 << size) - immhb;
8745 
8746     if (!fp_access_check(s)) {
8747         return;
8748     }
8749 
8750     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8751 }
8752 
8753 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8754 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8755                                          bool is_q, bool is_u,
8756                                          int immh, int immb, int rn, int rd)
8757 {
8758     int immhb = immh << 3 | immb;
8759     int pass, size, fracbits;
8760     TCGv_ptr tcg_fpstatus;
8761     TCGv_i32 tcg_rmode, tcg_shift;
8762 
8763     if (immh & 0x8) {
8764         size = MO_64;
8765         if (!is_scalar && !is_q) {
8766             unallocated_encoding(s);
8767             return;
8768         }
8769     } else if (immh & 0x4) {
8770         size = MO_32;
8771     } else if (immh & 0x2) {
8772         size = MO_16;
8773         if (!dc_isar_feature(aa64_fp16, s)) {
8774             unallocated_encoding(s);
8775             return;
8776         }
8777     } else {
8778         /* Should have split out AdvSIMD modified immediate earlier.  */
8779         assert(immh == 1);
8780         unallocated_encoding(s);
8781         return;
8782     }
8783 
8784     if (!fp_access_check(s)) {
8785         return;
8786     }
8787 
8788     assert(!(is_scalar && is_q));
8789 
8790     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8791     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8792     fracbits = (16 << size) - immhb;
8793     tcg_shift = tcg_constant_i32(fracbits);
8794 
8795     if (size == MO_64) {
8796         int maxpass = is_scalar ? 1 : 2;
8797 
8798         for (pass = 0; pass < maxpass; pass++) {
8799             TCGv_i64 tcg_op = tcg_temp_new_i64();
8800 
8801             read_vec_element(s, tcg_op, rn, pass, MO_64);
8802             if (is_u) {
8803                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8804             } else {
8805                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8806             }
8807             write_vec_element(s, tcg_op, rd, pass, MO_64);
8808         }
8809         clear_vec_high(s, is_q, rd);
8810     } else {
8811         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8812         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8813 
8814         switch (size) {
8815         case MO_16:
8816             if (is_u) {
8817                 fn = gen_helper_vfp_touhh;
8818             } else {
8819                 fn = gen_helper_vfp_toshh;
8820             }
8821             break;
8822         case MO_32:
8823             if (is_u) {
8824                 fn = gen_helper_vfp_touls;
8825             } else {
8826                 fn = gen_helper_vfp_tosls;
8827             }
8828             break;
8829         default:
8830             g_assert_not_reached();
8831         }
8832 
8833         for (pass = 0; pass < maxpass; pass++) {
8834             TCGv_i32 tcg_op = tcg_temp_new_i32();
8835 
8836             read_vec_element_i32(s, tcg_op, rn, pass, size);
8837             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8838             if (is_scalar) {
8839                 write_fp_sreg(s, rd, tcg_op);
8840             } else {
8841                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8842             }
8843         }
8844         if (!is_scalar) {
8845             clear_vec_high(s, is_q, rd);
8846         }
8847     }
8848 
8849     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8850 }
8851 
8852 /* AdvSIMD scalar shift by immediate
8853  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8854  * +-----+---+-------------+------+------+--------+---+------+------+
8855  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8856  * +-----+---+-------------+------+------+--------+---+------+------+
8857  *
8858  * This is the scalar version so it works on a fixed sized registers
8859  */
8860 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8861 {
8862     int rd = extract32(insn, 0, 5);
8863     int rn = extract32(insn, 5, 5);
8864     int opcode = extract32(insn, 11, 5);
8865     int immb = extract32(insn, 16, 3);
8866     int immh = extract32(insn, 19, 4);
8867     bool is_u = extract32(insn, 29, 1);
8868 
8869     if (immh == 0) {
8870         unallocated_encoding(s);
8871         return;
8872     }
8873 
8874     switch (opcode) {
8875     case 0x08: /* SRI */
8876         if (!is_u) {
8877             unallocated_encoding(s);
8878             return;
8879         }
8880         /* fall through */
8881     case 0x00: /* SSHR / USHR */
8882     case 0x02: /* SSRA / USRA */
8883     case 0x04: /* SRSHR / URSHR */
8884     case 0x06: /* SRSRA / URSRA */
8885         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8886         break;
8887     case 0x0a: /* SHL / SLI */
8888         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8889         break;
8890     case 0x1c: /* SCVTF, UCVTF */
8891         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8892                                      opcode, rn, rd);
8893         break;
8894     case 0x10: /* SQSHRUN, SQSHRUN2 */
8895     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8896         if (!is_u) {
8897             unallocated_encoding(s);
8898             return;
8899         }
8900         handle_vec_simd_sqshrn(s, true, false, false, true,
8901                                immh, immb, opcode, rn, rd);
8902         break;
8903     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8904     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8905         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8906                                immh, immb, opcode, rn, rd);
8907         break;
8908     case 0xc: /* SQSHLU */
8909         if (!is_u) {
8910             unallocated_encoding(s);
8911             return;
8912         }
8913         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8914         break;
8915     case 0xe: /* SQSHL, UQSHL */
8916         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8917         break;
8918     case 0x1f: /* FCVTZS, FCVTZU */
8919         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8920         break;
8921     default:
8922         unallocated_encoding(s);
8923         break;
8924     }
8925 }
8926 
8927 /* AdvSIMD scalar three different
8928  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8929  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8930  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8931  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8932  */
8933 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8934 {
8935     bool is_u = extract32(insn, 29, 1);
8936     int size = extract32(insn, 22, 2);
8937     int opcode = extract32(insn, 12, 4);
8938     int rm = extract32(insn, 16, 5);
8939     int rn = extract32(insn, 5, 5);
8940     int rd = extract32(insn, 0, 5);
8941 
8942     if (is_u) {
8943         unallocated_encoding(s);
8944         return;
8945     }
8946 
8947     switch (opcode) {
8948     case 0x9: /* SQDMLAL, SQDMLAL2 */
8949     case 0xb: /* SQDMLSL, SQDMLSL2 */
8950     case 0xd: /* SQDMULL, SQDMULL2 */
8951         if (size == 0 || size == 3) {
8952             unallocated_encoding(s);
8953             return;
8954         }
8955         break;
8956     default:
8957         unallocated_encoding(s);
8958         return;
8959     }
8960 
8961     if (!fp_access_check(s)) {
8962         return;
8963     }
8964 
8965     if (size == 2) {
8966         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8967         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8968         TCGv_i64 tcg_res = tcg_temp_new_i64();
8969 
8970         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8971         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8972 
8973         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8974         gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8975 
8976         switch (opcode) {
8977         case 0xd: /* SQDMULL, SQDMULL2 */
8978             break;
8979         case 0xb: /* SQDMLSL, SQDMLSL2 */
8980             tcg_gen_neg_i64(tcg_res, tcg_res);
8981             /* fall through */
8982         case 0x9: /* SQDMLAL, SQDMLAL2 */
8983             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8984             gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8985                                               tcg_res, tcg_op1);
8986             break;
8987         default:
8988             g_assert_not_reached();
8989         }
8990 
8991         write_fp_dreg(s, rd, tcg_res);
8992     } else {
8993         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8994         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8995         TCGv_i64 tcg_res = tcg_temp_new_i64();
8996 
8997         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8998         gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8999 
9000         switch (opcode) {
9001         case 0xd: /* SQDMULL, SQDMULL2 */
9002             break;
9003         case 0xb: /* SQDMLSL, SQDMLSL2 */
9004             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9005             /* fall through */
9006         case 0x9: /* SQDMLAL, SQDMLAL2 */
9007         {
9008             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9009             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9010             gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9011                                               tcg_res, tcg_op3);
9012             break;
9013         }
9014         default:
9015             g_assert_not_reached();
9016         }
9017 
9018         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9019         write_fp_dreg(s, rd, tcg_res);
9020     }
9021 }
9022 
9023 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9024                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9025 {
9026     /* Handle 64x64->64 opcodes which are shared between the scalar
9027      * and vector 3-same groups. We cover every opcode where size == 3
9028      * is valid in either the three-reg-same (integer, not pairwise)
9029      * or scalar-three-reg-same groups.
9030      */
9031     TCGCond cond;
9032 
9033     switch (opcode) {
9034     case 0x1: /* SQADD */
9035         if (u) {
9036             gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9037         } else {
9038             gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9039         }
9040         break;
9041     case 0x5: /* SQSUB */
9042         if (u) {
9043             gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9044         } else {
9045             gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9046         }
9047         break;
9048     case 0x6: /* CMGT, CMHI */
9049         /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9050          * We implement this using setcond (test) and then negating.
9051          */
9052         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9053     do_cmop:
9054         tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9055         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9056         break;
9057     case 0x7: /* CMGE, CMHS */
9058         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9059         goto do_cmop;
9060     case 0x11: /* CMTST, CMEQ */
9061         if (u) {
9062             cond = TCG_COND_EQ;
9063             goto do_cmop;
9064         }
9065         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9066         break;
9067     case 0x8: /* SSHL, USHL */
9068         if (u) {
9069             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9070         } else {
9071             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9072         }
9073         break;
9074     case 0x9: /* SQSHL, UQSHL */
9075         if (u) {
9076             gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9077         } else {
9078             gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9079         }
9080         break;
9081     case 0xa: /* SRSHL, URSHL */
9082         if (u) {
9083             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9084         } else {
9085             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9086         }
9087         break;
9088     case 0xb: /* SQRSHL, UQRSHL */
9089         if (u) {
9090             gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9091         } else {
9092             gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9093         }
9094         break;
9095     case 0x10: /* ADD, SUB */
9096         if (u) {
9097             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9098         } else {
9099             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9100         }
9101         break;
9102     default:
9103         g_assert_not_reached();
9104     }
9105 }
9106 
9107 /* Handle the 3-same-operands float operations; shared by the scalar
9108  * and vector encodings. The caller must filter out any encodings
9109  * not allocated for the encoding it is dealing with.
9110  */
9111 static void handle_3same_float(DisasContext *s, int size, int elements,
9112                                int fpopcode, int rd, int rn, int rm)
9113 {
9114     int pass;
9115     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9116 
9117     for (pass = 0; pass < elements; pass++) {
9118         if (size) {
9119             /* Double */
9120             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9121             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9122             TCGv_i64 tcg_res = tcg_temp_new_i64();
9123 
9124             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9125             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9126 
9127             switch (fpopcode) {
9128             case 0x39: /* FMLS */
9129                 /* As usual for ARM, separate negation for fused multiply-add */
9130                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9131                 /* fall through */
9132             case 0x19: /* FMLA */
9133                 read_vec_element(s, tcg_res, rd, pass, MO_64);
9134                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9135                                        tcg_res, fpst);
9136                 break;
9137             case 0x18: /* FMAXNM */
9138                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9139                 break;
9140             case 0x1a: /* FADD */
9141                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9142                 break;
9143             case 0x1b: /* FMULX */
9144                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9145                 break;
9146             case 0x1c: /* FCMEQ */
9147                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9148                 break;
9149             case 0x1e: /* FMAX */
9150                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9151                 break;
9152             case 0x1f: /* FRECPS */
9153                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9154                 break;
9155             case 0x38: /* FMINNM */
9156                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9157                 break;
9158             case 0x3a: /* FSUB */
9159                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9160                 break;
9161             case 0x3e: /* FMIN */
9162                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9163                 break;
9164             case 0x3f: /* FRSQRTS */
9165                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9166                 break;
9167             case 0x5b: /* FMUL */
9168                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9169                 break;
9170             case 0x5c: /* FCMGE */
9171                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9172                 break;
9173             case 0x5d: /* FACGE */
9174                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9175                 break;
9176             case 0x5f: /* FDIV */
9177                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9178                 break;
9179             case 0x7a: /* FABD */
9180                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9181                 gen_helper_vfp_absd(tcg_res, tcg_res);
9182                 break;
9183             case 0x7c: /* FCMGT */
9184                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9185                 break;
9186             case 0x7d: /* FACGT */
9187                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9188                 break;
9189             default:
9190                 g_assert_not_reached();
9191             }
9192 
9193             write_vec_element(s, tcg_res, rd, pass, MO_64);
9194         } else {
9195             /* Single */
9196             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9197             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9198             TCGv_i32 tcg_res = tcg_temp_new_i32();
9199 
9200             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9201             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9202 
9203             switch (fpopcode) {
9204             case 0x39: /* FMLS */
9205                 /* As usual for ARM, separate negation for fused multiply-add */
9206                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9207                 /* fall through */
9208             case 0x19: /* FMLA */
9209                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9210                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9211                                        tcg_res, fpst);
9212                 break;
9213             case 0x1a: /* FADD */
9214                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9215                 break;
9216             case 0x1b: /* FMULX */
9217                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9218                 break;
9219             case 0x1c: /* FCMEQ */
9220                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9221                 break;
9222             case 0x1e: /* FMAX */
9223                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9224                 break;
9225             case 0x1f: /* FRECPS */
9226                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9227                 break;
9228             case 0x18: /* FMAXNM */
9229                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9230                 break;
9231             case 0x38: /* FMINNM */
9232                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9233                 break;
9234             case 0x3a: /* FSUB */
9235                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9236                 break;
9237             case 0x3e: /* FMIN */
9238                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9239                 break;
9240             case 0x3f: /* FRSQRTS */
9241                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9242                 break;
9243             case 0x5b: /* FMUL */
9244                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9245                 break;
9246             case 0x5c: /* FCMGE */
9247                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9248                 break;
9249             case 0x5d: /* FACGE */
9250                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9251                 break;
9252             case 0x5f: /* FDIV */
9253                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9254                 break;
9255             case 0x7a: /* FABD */
9256                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9257                 gen_helper_vfp_abss(tcg_res, tcg_res);
9258                 break;
9259             case 0x7c: /* FCMGT */
9260                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9261                 break;
9262             case 0x7d: /* FACGT */
9263                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9264                 break;
9265             default:
9266                 g_assert_not_reached();
9267             }
9268 
9269             if (elements == 1) {
9270                 /* scalar single so clear high part */
9271                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9272 
9273                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9274                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9275             } else {
9276                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9277             }
9278         }
9279     }
9280 
9281     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9282 }
9283 
9284 /* AdvSIMD scalar three same
9285  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9286  * +-----+---+-----------+------+---+------+--------+---+------+------+
9287  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9288  * +-----+---+-----------+------+---+------+--------+---+------+------+
9289  */
9290 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9291 {
9292     int rd = extract32(insn, 0, 5);
9293     int rn = extract32(insn, 5, 5);
9294     int opcode = extract32(insn, 11, 5);
9295     int rm = extract32(insn, 16, 5);
9296     int size = extract32(insn, 22, 2);
9297     bool u = extract32(insn, 29, 1);
9298     TCGv_i64 tcg_rd;
9299 
9300     if (opcode >= 0x18) {
9301         /* Floating point: U, size[1] and opcode indicate operation */
9302         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9303         switch (fpopcode) {
9304         case 0x1b: /* FMULX */
9305         case 0x1f: /* FRECPS */
9306         case 0x3f: /* FRSQRTS */
9307         case 0x5d: /* FACGE */
9308         case 0x7d: /* FACGT */
9309         case 0x1c: /* FCMEQ */
9310         case 0x5c: /* FCMGE */
9311         case 0x7c: /* FCMGT */
9312         case 0x7a: /* FABD */
9313             break;
9314         default:
9315             unallocated_encoding(s);
9316             return;
9317         }
9318 
9319         if (!fp_access_check(s)) {
9320             return;
9321         }
9322 
9323         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9324         return;
9325     }
9326 
9327     switch (opcode) {
9328     case 0x1: /* SQADD, UQADD */
9329     case 0x5: /* SQSUB, UQSUB */
9330     case 0x9: /* SQSHL, UQSHL */
9331     case 0xb: /* SQRSHL, UQRSHL */
9332         break;
9333     case 0x8: /* SSHL, USHL */
9334     case 0xa: /* SRSHL, URSHL */
9335     case 0x6: /* CMGT, CMHI */
9336     case 0x7: /* CMGE, CMHS */
9337     case 0x11: /* CMTST, CMEQ */
9338     case 0x10: /* ADD, SUB (vector) */
9339         if (size != 3) {
9340             unallocated_encoding(s);
9341             return;
9342         }
9343         break;
9344     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9345         if (size != 1 && size != 2) {
9346             unallocated_encoding(s);
9347             return;
9348         }
9349         break;
9350     default:
9351         unallocated_encoding(s);
9352         return;
9353     }
9354 
9355     if (!fp_access_check(s)) {
9356         return;
9357     }
9358 
9359     tcg_rd = tcg_temp_new_i64();
9360 
9361     if (size == 3) {
9362         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9363         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9364 
9365         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9366     } else {
9367         /* Do a single operation on the lowest element in the vector.
9368          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9369          * no side effects for all these operations.
9370          * OPTME: special-purpose helpers would avoid doing some
9371          * unnecessary work in the helper for the 8 and 16 bit cases.
9372          */
9373         NeonGenTwoOpEnvFn *genenvfn;
9374         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9375         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9376         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9377 
9378         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9379         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9380 
9381         switch (opcode) {
9382         case 0x1: /* SQADD, UQADD */
9383         {
9384             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9385                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9386                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9387                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9388             };
9389             genenvfn = fns[size][u];
9390             break;
9391         }
9392         case 0x5: /* SQSUB, UQSUB */
9393         {
9394             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9395                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9396                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9397                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9398             };
9399             genenvfn = fns[size][u];
9400             break;
9401         }
9402         case 0x9: /* SQSHL, UQSHL */
9403         {
9404             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9405                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9406                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9407                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9408             };
9409             genenvfn = fns[size][u];
9410             break;
9411         }
9412         case 0xb: /* SQRSHL, UQRSHL */
9413         {
9414             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9415                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9416                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9417                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9418             };
9419             genenvfn = fns[size][u];
9420             break;
9421         }
9422         case 0x16: /* SQDMULH, SQRDMULH */
9423         {
9424             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9425                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9426                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9427             };
9428             assert(size == 1 || size == 2);
9429             genenvfn = fns[size - 1][u];
9430             break;
9431         }
9432         default:
9433             g_assert_not_reached();
9434         }
9435 
9436         genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9437         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9438     }
9439 
9440     write_fp_dreg(s, rd, tcg_rd);
9441 }
9442 
9443 /* AdvSIMD scalar three same FP16
9444  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9445  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9446  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9447  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9448  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9449  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9450  */
9451 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9452                                                   uint32_t insn)
9453 {
9454     int rd = extract32(insn, 0, 5);
9455     int rn = extract32(insn, 5, 5);
9456     int opcode = extract32(insn, 11, 3);
9457     int rm = extract32(insn, 16, 5);
9458     bool u = extract32(insn, 29, 1);
9459     bool a = extract32(insn, 23, 1);
9460     int fpopcode = opcode | (a << 3) |  (u << 4);
9461     TCGv_ptr fpst;
9462     TCGv_i32 tcg_op1;
9463     TCGv_i32 tcg_op2;
9464     TCGv_i32 tcg_res;
9465 
9466     switch (fpopcode) {
9467     case 0x03: /* FMULX */
9468     case 0x04: /* FCMEQ (reg) */
9469     case 0x07: /* FRECPS */
9470     case 0x0f: /* FRSQRTS */
9471     case 0x14: /* FCMGE (reg) */
9472     case 0x15: /* FACGE */
9473     case 0x1a: /* FABD */
9474     case 0x1c: /* FCMGT (reg) */
9475     case 0x1d: /* FACGT */
9476         break;
9477     default:
9478         unallocated_encoding(s);
9479         return;
9480     }
9481 
9482     if (!dc_isar_feature(aa64_fp16, s)) {
9483         unallocated_encoding(s);
9484     }
9485 
9486     if (!fp_access_check(s)) {
9487         return;
9488     }
9489 
9490     fpst = fpstatus_ptr(FPST_FPCR_F16);
9491 
9492     tcg_op1 = read_fp_hreg(s, rn);
9493     tcg_op2 = read_fp_hreg(s, rm);
9494     tcg_res = tcg_temp_new_i32();
9495 
9496     switch (fpopcode) {
9497     case 0x03: /* FMULX */
9498         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9499         break;
9500     case 0x04: /* FCMEQ (reg) */
9501         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9502         break;
9503     case 0x07: /* FRECPS */
9504         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9505         break;
9506     case 0x0f: /* FRSQRTS */
9507         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9508         break;
9509     case 0x14: /* FCMGE (reg) */
9510         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9511         break;
9512     case 0x15: /* FACGE */
9513         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9514         break;
9515     case 0x1a: /* FABD */
9516         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9517         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9518         break;
9519     case 0x1c: /* FCMGT (reg) */
9520         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9521         break;
9522     case 0x1d: /* FACGT */
9523         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9524         break;
9525     default:
9526         g_assert_not_reached();
9527     }
9528 
9529     write_fp_sreg(s, rd, tcg_res);
9530 }
9531 
9532 /* AdvSIMD scalar three same extra
9533  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9534  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9535  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9536  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9537  */
9538 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9539                                                    uint32_t insn)
9540 {
9541     int rd = extract32(insn, 0, 5);
9542     int rn = extract32(insn, 5, 5);
9543     int opcode = extract32(insn, 11, 4);
9544     int rm = extract32(insn, 16, 5);
9545     int size = extract32(insn, 22, 2);
9546     bool u = extract32(insn, 29, 1);
9547     TCGv_i32 ele1, ele2, ele3;
9548     TCGv_i64 res;
9549     bool feature;
9550 
9551     switch (u * 16 + opcode) {
9552     case 0x10: /* SQRDMLAH (vector) */
9553     case 0x11: /* SQRDMLSH (vector) */
9554         if (size != 1 && size != 2) {
9555             unallocated_encoding(s);
9556             return;
9557         }
9558         feature = dc_isar_feature(aa64_rdm, s);
9559         break;
9560     default:
9561         unallocated_encoding(s);
9562         return;
9563     }
9564     if (!feature) {
9565         unallocated_encoding(s);
9566         return;
9567     }
9568     if (!fp_access_check(s)) {
9569         return;
9570     }
9571 
9572     /* Do a single operation on the lowest element in the vector.
9573      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9574      * with no side effects for all these operations.
9575      * OPTME: special-purpose helpers would avoid doing some
9576      * unnecessary work in the helper for the 16 bit cases.
9577      */
9578     ele1 = tcg_temp_new_i32();
9579     ele2 = tcg_temp_new_i32();
9580     ele3 = tcg_temp_new_i32();
9581 
9582     read_vec_element_i32(s, ele1, rn, 0, size);
9583     read_vec_element_i32(s, ele2, rm, 0, size);
9584     read_vec_element_i32(s, ele3, rd, 0, size);
9585 
9586     switch (opcode) {
9587     case 0x0: /* SQRDMLAH */
9588         if (size == 1) {
9589             gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9590         } else {
9591             gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9592         }
9593         break;
9594     case 0x1: /* SQRDMLSH */
9595         if (size == 1) {
9596             gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9597         } else {
9598             gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9599         }
9600         break;
9601     default:
9602         g_assert_not_reached();
9603     }
9604 
9605     res = tcg_temp_new_i64();
9606     tcg_gen_extu_i32_i64(res, ele3);
9607     write_fp_dreg(s, rd, res);
9608 }
9609 
9610 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9611                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9612                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9613 {
9614     /* Handle 64->64 opcodes which are shared between the scalar and
9615      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9616      * is valid in either group and also the double-precision fp ops.
9617      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9618      * requires them.
9619      */
9620     TCGCond cond;
9621 
9622     switch (opcode) {
9623     case 0x4: /* CLS, CLZ */
9624         if (u) {
9625             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9626         } else {
9627             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9628         }
9629         break;
9630     case 0x5: /* NOT */
9631         /* This opcode is shared with CNT and RBIT but we have earlier
9632          * enforced that size == 3 if and only if this is the NOT insn.
9633          */
9634         tcg_gen_not_i64(tcg_rd, tcg_rn);
9635         break;
9636     case 0x7: /* SQABS, SQNEG */
9637         if (u) {
9638             gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9639         } else {
9640             gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9641         }
9642         break;
9643     case 0xa: /* CMLT */
9644         /* 64 bit integer comparison against zero, result is
9645          * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9646          * subtracting 1.
9647          */
9648         cond = TCG_COND_LT;
9649     do_cmop:
9650         tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9651         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9652         break;
9653     case 0x8: /* CMGT, CMGE */
9654         cond = u ? TCG_COND_GE : TCG_COND_GT;
9655         goto do_cmop;
9656     case 0x9: /* CMEQ, CMLE */
9657         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9658         goto do_cmop;
9659     case 0xb: /* ABS, NEG */
9660         if (u) {
9661             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9662         } else {
9663             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9664         }
9665         break;
9666     case 0x2f: /* FABS */
9667         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9668         break;
9669     case 0x6f: /* FNEG */
9670         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9671         break;
9672     case 0x7f: /* FSQRT */
9673         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9674         break;
9675     case 0x1a: /* FCVTNS */
9676     case 0x1b: /* FCVTMS */
9677     case 0x1c: /* FCVTAS */
9678     case 0x3a: /* FCVTPS */
9679     case 0x3b: /* FCVTZS */
9680         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9681         break;
9682     case 0x5a: /* FCVTNU */
9683     case 0x5b: /* FCVTMU */
9684     case 0x5c: /* FCVTAU */
9685     case 0x7a: /* FCVTPU */
9686     case 0x7b: /* FCVTZU */
9687         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9688         break;
9689     case 0x18: /* FRINTN */
9690     case 0x19: /* FRINTM */
9691     case 0x38: /* FRINTP */
9692     case 0x39: /* FRINTZ */
9693     case 0x58: /* FRINTA */
9694     case 0x79: /* FRINTI */
9695         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9696         break;
9697     case 0x59: /* FRINTX */
9698         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9699         break;
9700     case 0x1e: /* FRINT32Z */
9701     case 0x5e: /* FRINT32X */
9702         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9703         break;
9704     case 0x1f: /* FRINT64Z */
9705     case 0x5f: /* FRINT64X */
9706         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9707         break;
9708     default:
9709         g_assert_not_reached();
9710     }
9711 }
9712 
9713 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9714                                    bool is_scalar, bool is_u, bool is_q,
9715                                    int size, int rn, int rd)
9716 {
9717     bool is_double = (size == MO_64);
9718     TCGv_ptr fpst;
9719 
9720     if (!fp_access_check(s)) {
9721         return;
9722     }
9723 
9724     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9725 
9726     if (is_double) {
9727         TCGv_i64 tcg_op = tcg_temp_new_i64();
9728         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9729         TCGv_i64 tcg_res = tcg_temp_new_i64();
9730         NeonGenTwoDoubleOpFn *genfn;
9731         bool swap = false;
9732         int pass;
9733 
9734         switch (opcode) {
9735         case 0x2e: /* FCMLT (zero) */
9736             swap = true;
9737             /* fallthrough */
9738         case 0x2c: /* FCMGT (zero) */
9739             genfn = gen_helper_neon_cgt_f64;
9740             break;
9741         case 0x2d: /* FCMEQ (zero) */
9742             genfn = gen_helper_neon_ceq_f64;
9743             break;
9744         case 0x6d: /* FCMLE (zero) */
9745             swap = true;
9746             /* fall through */
9747         case 0x6c: /* FCMGE (zero) */
9748             genfn = gen_helper_neon_cge_f64;
9749             break;
9750         default:
9751             g_assert_not_reached();
9752         }
9753 
9754         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9755             read_vec_element(s, tcg_op, rn, pass, MO_64);
9756             if (swap) {
9757                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9758             } else {
9759                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9760             }
9761             write_vec_element(s, tcg_res, rd, pass, MO_64);
9762         }
9763 
9764         clear_vec_high(s, !is_scalar, rd);
9765     } else {
9766         TCGv_i32 tcg_op = tcg_temp_new_i32();
9767         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9768         TCGv_i32 tcg_res = tcg_temp_new_i32();
9769         NeonGenTwoSingleOpFn *genfn;
9770         bool swap = false;
9771         int pass, maxpasses;
9772 
9773         if (size == MO_16) {
9774             switch (opcode) {
9775             case 0x2e: /* FCMLT (zero) */
9776                 swap = true;
9777                 /* fall through */
9778             case 0x2c: /* FCMGT (zero) */
9779                 genfn = gen_helper_advsimd_cgt_f16;
9780                 break;
9781             case 0x2d: /* FCMEQ (zero) */
9782                 genfn = gen_helper_advsimd_ceq_f16;
9783                 break;
9784             case 0x6d: /* FCMLE (zero) */
9785                 swap = true;
9786                 /* fall through */
9787             case 0x6c: /* FCMGE (zero) */
9788                 genfn = gen_helper_advsimd_cge_f16;
9789                 break;
9790             default:
9791                 g_assert_not_reached();
9792             }
9793         } else {
9794             switch (opcode) {
9795             case 0x2e: /* FCMLT (zero) */
9796                 swap = true;
9797                 /* fall through */
9798             case 0x2c: /* FCMGT (zero) */
9799                 genfn = gen_helper_neon_cgt_f32;
9800                 break;
9801             case 0x2d: /* FCMEQ (zero) */
9802                 genfn = gen_helper_neon_ceq_f32;
9803                 break;
9804             case 0x6d: /* FCMLE (zero) */
9805                 swap = true;
9806                 /* fall through */
9807             case 0x6c: /* FCMGE (zero) */
9808                 genfn = gen_helper_neon_cge_f32;
9809                 break;
9810             default:
9811                 g_assert_not_reached();
9812             }
9813         }
9814 
9815         if (is_scalar) {
9816             maxpasses = 1;
9817         } else {
9818             int vector_size = 8 << is_q;
9819             maxpasses = vector_size >> size;
9820         }
9821 
9822         for (pass = 0; pass < maxpasses; pass++) {
9823             read_vec_element_i32(s, tcg_op, rn, pass, size);
9824             if (swap) {
9825                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9826             } else {
9827                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9828             }
9829             if (is_scalar) {
9830                 write_fp_sreg(s, rd, tcg_res);
9831             } else {
9832                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9833             }
9834         }
9835 
9836         if (!is_scalar) {
9837             clear_vec_high(s, is_q, rd);
9838         }
9839     }
9840 }
9841 
9842 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9843                                     bool is_scalar, bool is_u, bool is_q,
9844                                     int size, int rn, int rd)
9845 {
9846     bool is_double = (size == 3);
9847     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9848 
9849     if (is_double) {
9850         TCGv_i64 tcg_op = tcg_temp_new_i64();
9851         TCGv_i64 tcg_res = tcg_temp_new_i64();
9852         int pass;
9853 
9854         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9855             read_vec_element(s, tcg_op, rn, pass, MO_64);
9856             switch (opcode) {
9857             case 0x3d: /* FRECPE */
9858                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9859                 break;
9860             case 0x3f: /* FRECPX */
9861                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9862                 break;
9863             case 0x7d: /* FRSQRTE */
9864                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9865                 break;
9866             default:
9867                 g_assert_not_reached();
9868             }
9869             write_vec_element(s, tcg_res, rd, pass, MO_64);
9870         }
9871         clear_vec_high(s, !is_scalar, rd);
9872     } else {
9873         TCGv_i32 tcg_op = tcg_temp_new_i32();
9874         TCGv_i32 tcg_res = tcg_temp_new_i32();
9875         int pass, maxpasses;
9876 
9877         if (is_scalar) {
9878             maxpasses = 1;
9879         } else {
9880             maxpasses = is_q ? 4 : 2;
9881         }
9882 
9883         for (pass = 0; pass < maxpasses; pass++) {
9884             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9885 
9886             switch (opcode) {
9887             case 0x3c: /* URECPE */
9888                 gen_helper_recpe_u32(tcg_res, tcg_op);
9889                 break;
9890             case 0x3d: /* FRECPE */
9891                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9892                 break;
9893             case 0x3f: /* FRECPX */
9894                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9895                 break;
9896             case 0x7d: /* FRSQRTE */
9897                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9898                 break;
9899             default:
9900                 g_assert_not_reached();
9901             }
9902 
9903             if (is_scalar) {
9904                 write_fp_sreg(s, rd, tcg_res);
9905             } else {
9906                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9907             }
9908         }
9909         if (!is_scalar) {
9910             clear_vec_high(s, is_q, rd);
9911         }
9912     }
9913 }
9914 
9915 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9916                                 int opcode, bool u, bool is_q,
9917                                 int size, int rn, int rd)
9918 {
9919     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9920      * in the source becomes a size element in the destination).
9921      */
9922     int pass;
9923     TCGv_i32 tcg_res[2];
9924     int destelt = is_q ? 2 : 0;
9925     int passes = scalar ? 1 : 2;
9926 
9927     if (scalar) {
9928         tcg_res[1] = tcg_constant_i32(0);
9929     }
9930 
9931     for (pass = 0; pass < passes; pass++) {
9932         TCGv_i64 tcg_op = tcg_temp_new_i64();
9933         NeonGenNarrowFn *genfn = NULL;
9934         NeonGenNarrowEnvFn *genenvfn = NULL;
9935 
9936         if (scalar) {
9937             read_vec_element(s, tcg_op, rn, pass, size + 1);
9938         } else {
9939             read_vec_element(s, tcg_op, rn, pass, MO_64);
9940         }
9941         tcg_res[pass] = tcg_temp_new_i32();
9942 
9943         switch (opcode) {
9944         case 0x12: /* XTN, SQXTUN */
9945         {
9946             static NeonGenNarrowFn * const xtnfns[3] = {
9947                 gen_helper_neon_narrow_u8,
9948                 gen_helper_neon_narrow_u16,
9949                 tcg_gen_extrl_i64_i32,
9950             };
9951             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9952                 gen_helper_neon_unarrow_sat8,
9953                 gen_helper_neon_unarrow_sat16,
9954                 gen_helper_neon_unarrow_sat32,
9955             };
9956             if (u) {
9957                 genenvfn = sqxtunfns[size];
9958             } else {
9959                 genfn = xtnfns[size];
9960             }
9961             break;
9962         }
9963         case 0x14: /* SQXTN, UQXTN */
9964         {
9965             static NeonGenNarrowEnvFn * const fns[3][2] = {
9966                 { gen_helper_neon_narrow_sat_s8,
9967                   gen_helper_neon_narrow_sat_u8 },
9968                 { gen_helper_neon_narrow_sat_s16,
9969                   gen_helper_neon_narrow_sat_u16 },
9970                 { gen_helper_neon_narrow_sat_s32,
9971                   gen_helper_neon_narrow_sat_u32 },
9972             };
9973             genenvfn = fns[size][u];
9974             break;
9975         }
9976         case 0x16: /* FCVTN, FCVTN2 */
9977             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9978             if (size == 2) {
9979                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9980             } else {
9981                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9982                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9983                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9984                 TCGv_i32 ahp = get_ahp_flag();
9985 
9986                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9987                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9988                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9989                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9990             }
9991             break;
9992         case 0x36: /* BFCVTN, BFCVTN2 */
9993             {
9994                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9995                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9996             }
9997             break;
9998         case 0x56:  /* FCVTXN, FCVTXN2 */
9999             /* 64 bit to 32 bit float conversion
10000              * with von Neumann rounding (round to odd)
10001              */
10002             assert(size == 2);
10003             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10004             break;
10005         default:
10006             g_assert_not_reached();
10007         }
10008 
10009         if (genfn) {
10010             genfn(tcg_res[pass], tcg_op);
10011         } else if (genenvfn) {
10012             genenvfn(tcg_res[pass], cpu_env, tcg_op);
10013         }
10014     }
10015 
10016     for (pass = 0; pass < 2; pass++) {
10017         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10018     }
10019     clear_vec_high(s, is_q, rd);
10020 }
10021 
10022 /* Remaining saturating accumulating ops */
10023 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10024                                 bool is_q, int size, int rn, int rd)
10025 {
10026     bool is_double = (size == 3);
10027 
10028     if (is_double) {
10029         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10030         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10031         int pass;
10032 
10033         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10034             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10035             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10036 
10037             if (is_u) { /* USQADD */
10038                 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10039             } else { /* SUQADD */
10040                 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10041             }
10042             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10043         }
10044         clear_vec_high(s, !is_scalar, rd);
10045     } else {
10046         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10047         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10048         int pass, maxpasses;
10049 
10050         if (is_scalar) {
10051             maxpasses = 1;
10052         } else {
10053             maxpasses = is_q ? 4 : 2;
10054         }
10055 
10056         for (pass = 0; pass < maxpasses; pass++) {
10057             if (is_scalar) {
10058                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10059                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10060             } else {
10061                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10062                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10063             }
10064 
10065             if (is_u) { /* USQADD */
10066                 switch (size) {
10067                 case 0:
10068                     gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10069                     break;
10070                 case 1:
10071                     gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10072                     break;
10073                 case 2:
10074                     gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10075                     break;
10076                 default:
10077                     g_assert_not_reached();
10078                 }
10079             } else { /* SUQADD */
10080                 switch (size) {
10081                 case 0:
10082                     gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10083                     break;
10084                 case 1:
10085                     gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10086                     break;
10087                 case 2:
10088                     gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10089                     break;
10090                 default:
10091                     g_assert_not_reached();
10092                 }
10093             }
10094 
10095             if (is_scalar) {
10096                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10097             }
10098             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10099         }
10100         clear_vec_high(s, is_q, rd);
10101     }
10102 }
10103 
10104 /* AdvSIMD scalar two reg misc
10105  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10106  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10107  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10108  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10109  */
10110 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10111 {
10112     int rd = extract32(insn, 0, 5);
10113     int rn = extract32(insn, 5, 5);
10114     int opcode = extract32(insn, 12, 5);
10115     int size = extract32(insn, 22, 2);
10116     bool u = extract32(insn, 29, 1);
10117     bool is_fcvt = false;
10118     int rmode;
10119     TCGv_i32 tcg_rmode;
10120     TCGv_ptr tcg_fpstatus;
10121 
10122     switch (opcode) {
10123     case 0x3: /* USQADD / SUQADD*/
10124         if (!fp_access_check(s)) {
10125             return;
10126         }
10127         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10128         return;
10129     case 0x7: /* SQABS / SQNEG */
10130         break;
10131     case 0xa: /* CMLT */
10132         if (u) {
10133             unallocated_encoding(s);
10134             return;
10135         }
10136         /* fall through */
10137     case 0x8: /* CMGT, CMGE */
10138     case 0x9: /* CMEQ, CMLE */
10139     case 0xb: /* ABS, NEG */
10140         if (size != 3) {
10141             unallocated_encoding(s);
10142             return;
10143         }
10144         break;
10145     case 0x12: /* SQXTUN */
10146         if (!u) {
10147             unallocated_encoding(s);
10148             return;
10149         }
10150         /* fall through */
10151     case 0x14: /* SQXTN, UQXTN */
10152         if (size == 3) {
10153             unallocated_encoding(s);
10154             return;
10155         }
10156         if (!fp_access_check(s)) {
10157             return;
10158         }
10159         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10160         return;
10161     case 0xc ... 0xf:
10162     case 0x16 ... 0x1d:
10163     case 0x1f:
10164         /* Floating point: U, size[1] and opcode indicate operation;
10165          * size[0] indicates single or double precision.
10166          */
10167         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10168         size = extract32(size, 0, 1) ? 3 : 2;
10169         switch (opcode) {
10170         case 0x2c: /* FCMGT (zero) */
10171         case 0x2d: /* FCMEQ (zero) */
10172         case 0x2e: /* FCMLT (zero) */
10173         case 0x6c: /* FCMGE (zero) */
10174         case 0x6d: /* FCMLE (zero) */
10175             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10176             return;
10177         case 0x1d: /* SCVTF */
10178         case 0x5d: /* UCVTF */
10179         {
10180             bool is_signed = (opcode == 0x1d);
10181             if (!fp_access_check(s)) {
10182                 return;
10183             }
10184             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10185             return;
10186         }
10187         case 0x3d: /* FRECPE */
10188         case 0x3f: /* FRECPX */
10189         case 0x7d: /* FRSQRTE */
10190             if (!fp_access_check(s)) {
10191                 return;
10192             }
10193             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10194             return;
10195         case 0x1a: /* FCVTNS */
10196         case 0x1b: /* FCVTMS */
10197         case 0x3a: /* FCVTPS */
10198         case 0x3b: /* FCVTZS */
10199         case 0x5a: /* FCVTNU */
10200         case 0x5b: /* FCVTMU */
10201         case 0x7a: /* FCVTPU */
10202         case 0x7b: /* FCVTZU */
10203             is_fcvt = true;
10204             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10205             break;
10206         case 0x1c: /* FCVTAS */
10207         case 0x5c: /* FCVTAU */
10208             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10209             is_fcvt = true;
10210             rmode = FPROUNDING_TIEAWAY;
10211             break;
10212         case 0x56: /* FCVTXN, FCVTXN2 */
10213             if (size == 2) {
10214                 unallocated_encoding(s);
10215                 return;
10216             }
10217             if (!fp_access_check(s)) {
10218                 return;
10219             }
10220             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10221             return;
10222         default:
10223             unallocated_encoding(s);
10224             return;
10225         }
10226         break;
10227     default:
10228         unallocated_encoding(s);
10229         return;
10230     }
10231 
10232     if (!fp_access_check(s)) {
10233         return;
10234     }
10235 
10236     if (is_fcvt) {
10237         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10238         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10239     } else {
10240         tcg_fpstatus = NULL;
10241         tcg_rmode = NULL;
10242     }
10243 
10244     if (size == 3) {
10245         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10246         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10247 
10248         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10249         write_fp_dreg(s, rd, tcg_rd);
10250     } else {
10251         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10252         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10253 
10254         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10255 
10256         switch (opcode) {
10257         case 0x7: /* SQABS, SQNEG */
10258         {
10259             NeonGenOneOpEnvFn *genfn;
10260             static NeonGenOneOpEnvFn * const fns[3][2] = {
10261                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10262                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10263                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10264             };
10265             genfn = fns[size][u];
10266             genfn(tcg_rd, cpu_env, tcg_rn);
10267             break;
10268         }
10269         case 0x1a: /* FCVTNS */
10270         case 0x1b: /* FCVTMS */
10271         case 0x1c: /* FCVTAS */
10272         case 0x3a: /* FCVTPS */
10273         case 0x3b: /* FCVTZS */
10274             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10275                                  tcg_fpstatus);
10276             break;
10277         case 0x5a: /* FCVTNU */
10278         case 0x5b: /* FCVTMU */
10279         case 0x5c: /* FCVTAU */
10280         case 0x7a: /* FCVTPU */
10281         case 0x7b: /* FCVTZU */
10282             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10283                                  tcg_fpstatus);
10284             break;
10285         default:
10286             g_assert_not_reached();
10287         }
10288 
10289         write_fp_sreg(s, rd, tcg_rd);
10290     }
10291 
10292     if (is_fcvt) {
10293         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10294     }
10295 }
10296 
10297 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10298 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10299                                  int immh, int immb, int opcode, int rn, int rd)
10300 {
10301     int size = 32 - clz32(immh) - 1;
10302     int immhb = immh << 3 | immb;
10303     int shift = 2 * (8 << size) - immhb;
10304     GVecGen2iFn *gvec_fn;
10305 
10306     if (extract32(immh, 3, 1) && !is_q) {
10307         unallocated_encoding(s);
10308         return;
10309     }
10310     tcg_debug_assert(size <= 3);
10311 
10312     if (!fp_access_check(s)) {
10313         return;
10314     }
10315 
10316     switch (opcode) {
10317     case 0x02: /* SSRA / USRA (accumulate) */
10318         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10319         break;
10320 
10321     case 0x08: /* SRI */
10322         gvec_fn = gen_gvec_sri;
10323         break;
10324 
10325     case 0x00: /* SSHR / USHR */
10326         if (is_u) {
10327             if (shift == 8 << size) {
10328                 /* Shift count the same size as element size produces zero.  */
10329                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10330                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10331                 return;
10332             }
10333             gvec_fn = tcg_gen_gvec_shri;
10334         } else {
10335             /* Shift count the same size as element size produces all sign.  */
10336             if (shift == 8 << size) {
10337                 shift -= 1;
10338             }
10339             gvec_fn = tcg_gen_gvec_sari;
10340         }
10341         break;
10342 
10343     case 0x04: /* SRSHR / URSHR (rounding) */
10344         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10345         break;
10346 
10347     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10348         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10349         break;
10350 
10351     default:
10352         g_assert_not_reached();
10353     }
10354 
10355     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10356 }
10357 
10358 /* SHL/SLI - Vector shift left */
10359 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10360                                  int immh, int immb, int opcode, int rn, int rd)
10361 {
10362     int size = 32 - clz32(immh) - 1;
10363     int immhb = immh << 3 | immb;
10364     int shift = immhb - (8 << size);
10365 
10366     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10367     assert(size >= 0 && size <= 3);
10368 
10369     if (extract32(immh, 3, 1) && !is_q) {
10370         unallocated_encoding(s);
10371         return;
10372     }
10373 
10374     if (!fp_access_check(s)) {
10375         return;
10376     }
10377 
10378     if (insert) {
10379         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10380     } else {
10381         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10382     }
10383 }
10384 
10385 /* USHLL/SHLL - Vector shift left with widening */
10386 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10387                                  int immh, int immb, int opcode, int rn, int rd)
10388 {
10389     int size = 32 - clz32(immh) - 1;
10390     int immhb = immh << 3 | immb;
10391     int shift = immhb - (8 << size);
10392     int dsize = 64;
10393     int esize = 8 << size;
10394     int elements = dsize/esize;
10395     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10396     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10397     int i;
10398 
10399     if (size >= 3) {
10400         unallocated_encoding(s);
10401         return;
10402     }
10403 
10404     if (!fp_access_check(s)) {
10405         return;
10406     }
10407 
10408     /* For the LL variants the store is larger than the load,
10409      * so if rd == rn we would overwrite parts of our input.
10410      * So load everything right now and use shifts in the main loop.
10411      */
10412     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10413 
10414     for (i = 0; i < elements; i++) {
10415         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10416         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10417         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10418         write_vec_element(s, tcg_rd, rd, i, size + 1);
10419     }
10420 }
10421 
10422 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10423 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10424                                  int immh, int immb, int opcode, int rn, int rd)
10425 {
10426     int immhb = immh << 3 | immb;
10427     int size = 32 - clz32(immh) - 1;
10428     int dsize = 64;
10429     int esize = 8 << size;
10430     int elements = dsize/esize;
10431     int shift = (2 * esize) - immhb;
10432     bool round = extract32(opcode, 0, 1);
10433     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10434     TCGv_i64 tcg_round;
10435     int i;
10436 
10437     if (extract32(immh, 3, 1)) {
10438         unallocated_encoding(s);
10439         return;
10440     }
10441 
10442     if (!fp_access_check(s)) {
10443         return;
10444     }
10445 
10446     tcg_rn = tcg_temp_new_i64();
10447     tcg_rd = tcg_temp_new_i64();
10448     tcg_final = tcg_temp_new_i64();
10449     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10450 
10451     if (round) {
10452         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10453     } else {
10454         tcg_round = NULL;
10455     }
10456 
10457     for (i = 0; i < elements; i++) {
10458         read_vec_element(s, tcg_rn, rn, i, size+1);
10459         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10460                                 false, true, size+1, shift);
10461 
10462         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10463     }
10464 
10465     if (!is_q) {
10466         write_vec_element(s, tcg_final, rd, 0, MO_64);
10467     } else {
10468         write_vec_element(s, tcg_final, rd, 1, MO_64);
10469     }
10470 
10471     clear_vec_high(s, is_q, rd);
10472 }
10473 
10474 
10475 /* AdvSIMD shift by immediate
10476  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10477  * +---+---+---+-------------+------+------+--------+---+------+------+
10478  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10479  * +---+---+---+-------------+------+------+--------+---+------+------+
10480  */
10481 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10482 {
10483     int rd = extract32(insn, 0, 5);
10484     int rn = extract32(insn, 5, 5);
10485     int opcode = extract32(insn, 11, 5);
10486     int immb = extract32(insn, 16, 3);
10487     int immh = extract32(insn, 19, 4);
10488     bool is_u = extract32(insn, 29, 1);
10489     bool is_q = extract32(insn, 30, 1);
10490 
10491     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10492     assert(immh != 0);
10493 
10494     switch (opcode) {
10495     case 0x08: /* SRI */
10496         if (!is_u) {
10497             unallocated_encoding(s);
10498             return;
10499         }
10500         /* fall through */
10501     case 0x00: /* SSHR / USHR */
10502     case 0x02: /* SSRA / USRA (accumulate) */
10503     case 0x04: /* SRSHR / URSHR (rounding) */
10504     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10505         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10506         break;
10507     case 0x0a: /* SHL / SLI */
10508         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10509         break;
10510     case 0x10: /* SHRN */
10511     case 0x11: /* RSHRN / SQRSHRUN */
10512         if (is_u) {
10513             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10514                                    opcode, rn, rd);
10515         } else {
10516             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10517         }
10518         break;
10519     case 0x12: /* SQSHRN / UQSHRN */
10520     case 0x13: /* SQRSHRN / UQRSHRN */
10521         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10522                                opcode, rn, rd);
10523         break;
10524     case 0x14: /* SSHLL / USHLL */
10525         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10526         break;
10527     case 0x1c: /* SCVTF / UCVTF */
10528         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10529                                      opcode, rn, rd);
10530         break;
10531     case 0xc: /* SQSHLU */
10532         if (!is_u) {
10533             unallocated_encoding(s);
10534             return;
10535         }
10536         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10537         break;
10538     case 0xe: /* SQSHL, UQSHL */
10539         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10540         break;
10541     case 0x1f: /* FCVTZS/ FCVTZU */
10542         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10543         return;
10544     default:
10545         unallocated_encoding(s);
10546         return;
10547     }
10548 }
10549 
10550 /* Generate code to do a "long" addition or subtraction, ie one done in
10551  * TCGv_i64 on vector lanes twice the width specified by size.
10552  */
10553 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10554                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10555 {
10556     static NeonGenTwo64OpFn * const fns[3][2] = {
10557         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10558         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10559         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10560     };
10561     NeonGenTwo64OpFn *genfn;
10562     assert(size < 3);
10563 
10564     genfn = fns[size][is_sub];
10565     genfn(tcg_res, tcg_op1, tcg_op2);
10566 }
10567 
10568 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10569                                 int opcode, int rd, int rn, int rm)
10570 {
10571     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10572     TCGv_i64 tcg_res[2];
10573     int pass, accop;
10574 
10575     tcg_res[0] = tcg_temp_new_i64();
10576     tcg_res[1] = tcg_temp_new_i64();
10577 
10578     /* Does this op do an adding accumulate, a subtracting accumulate,
10579      * or no accumulate at all?
10580      */
10581     switch (opcode) {
10582     case 5:
10583     case 8:
10584     case 9:
10585         accop = 1;
10586         break;
10587     case 10:
10588     case 11:
10589         accop = -1;
10590         break;
10591     default:
10592         accop = 0;
10593         break;
10594     }
10595 
10596     if (accop != 0) {
10597         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10598         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10599     }
10600 
10601     /* size == 2 means two 32x32->64 operations; this is worth special
10602      * casing because we can generally handle it inline.
10603      */
10604     if (size == 2) {
10605         for (pass = 0; pass < 2; pass++) {
10606             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10607             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10608             TCGv_i64 tcg_passres;
10609             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10610 
10611             int elt = pass + is_q * 2;
10612 
10613             read_vec_element(s, tcg_op1, rn, elt, memop);
10614             read_vec_element(s, tcg_op2, rm, elt, memop);
10615 
10616             if (accop == 0) {
10617                 tcg_passres = tcg_res[pass];
10618             } else {
10619                 tcg_passres = tcg_temp_new_i64();
10620             }
10621 
10622             switch (opcode) {
10623             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10624                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10625                 break;
10626             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10627                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10628                 break;
10629             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10630             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10631             {
10632                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10633                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10634 
10635                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10636                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10637                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10638                                     tcg_passres,
10639                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10640                 break;
10641             }
10642             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10643             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10644             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10645                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10646                 break;
10647             case 9: /* SQDMLAL, SQDMLAL2 */
10648             case 11: /* SQDMLSL, SQDMLSL2 */
10649             case 13: /* SQDMULL, SQDMULL2 */
10650                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10651                 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10652                                                   tcg_passres, tcg_passres);
10653                 break;
10654             default:
10655                 g_assert_not_reached();
10656             }
10657 
10658             if (opcode == 9 || opcode == 11) {
10659                 /* saturating accumulate ops */
10660                 if (accop < 0) {
10661                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10662                 }
10663                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10664                                                   tcg_res[pass], tcg_passres);
10665             } else if (accop > 0) {
10666                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10667             } else if (accop < 0) {
10668                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10669             }
10670         }
10671     } else {
10672         /* size 0 or 1, generally helper functions */
10673         for (pass = 0; pass < 2; pass++) {
10674             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10675             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10676             TCGv_i64 tcg_passres;
10677             int elt = pass + is_q * 2;
10678 
10679             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10680             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10681 
10682             if (accop == 0) {
10683                 tcg_passres = tcg_res[pass];
10684             } else {
10685                 tcg_passres = tcg_temp_new_i64();
10686             }
10687 
10688             switch (opcode) {
10689             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10690             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10691             {
10692                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10693                 static NeonGenWidenFn * const widenfns[2][2] = {
10694                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10695                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10696                 };
10697                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10698 
10699                 widenfn(tcg_op2_64, tcg_op2);
10700                 widenfn(tcg_passres, tcg_op1);
10701                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10702                               tcg_passres, tcg_op2_64);
10703                 break;
10704             }
10705             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10706             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10707                 if (size == 0) {
10708                     if (is_u) {
10709                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10710                     } else {
10711                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10712                     }
10713                 } else {
10714                     if (is_u) {
10715                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10716                     } else {
10717                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10718                     }
10719                 }
10720                 break;
10721             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10722             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10723             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10724                 if (size == 0) {
10725                     if (is_u) {
10726                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10727                     } else {
10728                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10729                     }
10730                 } else {
10731                     if (is_u) {
10732                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10733                     } else {
10734                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10735                     }
10736                 }
10737                 break;
10738             case 9: /* SQDMLAL, SQDMLAL2 */
10739             case 11: /* SQDMLSL, SQDMLSL2 */
10740             case 13: /* SQDMULL, SQDMULL2 */
10741                 assert(size == 1);
10742                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10743                 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10744                                                   tcg_passres, tcg_passres);
10745                 break;
10746             default:
10747                 g_assert_not_reached();
10748             }
10749 
10750             if (accop != 0) {
10751                 if (opcode == 9 || opcode == 11) {
10752                     /* saturating accumulate ops */
10753                     if (accop < 0) {
10754                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10755                     }
10756                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10757                                                       tcg_res[pass],
10758                                                       tcg_passres);
10759                 } else {
10760                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10761                                   tcg_res[pass], tcg_passres);
10762                 }
10763             }
10764         }
10765     }
10766 
10767     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10768     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10769 }
10770 
10771 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10772                             int opcode, int rd, int rn, int rm)
10773 {
10774     TCGv_i64 tcg_res[2];
10775     int part = is_q ? 2 : 0;
10776     int pass;
10777 
10778     for (pass = 0; pass < 2; pass++) {
10779         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10780         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10781         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10782         static NeonGenWidenFn * const widenfns[3][2] = {
10783             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10784             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10785             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10786         };
10787         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10788 
10789         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10790         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10791         widenfn(tcg_op2_wide, tcg_op2);
10792         tcg_res[pass] = tcg_temp_new_i64();
10793         gen_neon_addl(size, (opcode == 3),
10794                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10795     }
10796 
10797     for (pass = 0; pass < 2; pass++) {
10798         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10799     }
10800 }
10801 
10802 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10803 {
10804     tcg_gen_addi_i64(in, in, 1U << 31);
10805     tcg_gen_extrh_i64_i32(res, in);
10806 }
10807 
10808 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10809                                  int opcode, int rd, int rn, int rm)
10810 {
10811     TCGv_i32 tcg_res[2];
10812     int part = is_q ? 2 : 0;
10813     int pass;
10814 
10815     for (pass = 0; pass < 2; pass++) {
10816         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10817         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10818         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10819         static NeonGenNarrowFn * const narrowfns[3][2] = {
10820             { gen_helper_neon_narrow_high_u8,
10821               gen_helper_neon_narrow_round_high_u8 },
10822             { gen_helper_neon_narrow_high_u16,
10823               gen_helper_neon_narrow_round_high_u16 },
10824             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10825         };
10826         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10827 
10828         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10829         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10830 
10831         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10832 
10833         tcg_res[pass] = tcg_temp_new_i32();
10834         gennarrow(tcg_res[pass], tcg_wideres);
10835     }
10836 
10837     for (pass = 0; pass < 2; pass++) {
10838         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10839     }
10840     clear_vec_high(s, is_q, rd);
10841 }
10842 
10843 /* AdvSIMD three different
10844  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10845  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10846  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10847  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10848  */
10849 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10850 {
10851     /* Instructions in this group fall into three basic classes
10852      * (in each case with the operation working on each element in
10853      * the input vectors):
10854      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10855      *     128 bit input)
10856      * (2) wide 64 x 128 -> 128
10857      * (3) narrowing 128 x 128 -> 64
10858      * Here we do initial decode, catch unallocated cases and
10859      * dispatch to separate functions for each class.
10860      */
10861     int is_q = extract32(insn, 30, 1);
10862     int is_u = extract32(insn, 29, 1);
10863     int size = extract32(insn, 22, 2);
10864     int opcode = extract32(insn, 12, 4);
10865     int rm = extract32(insn, 16, 5);
10866     int rn = extract32(insn, 5, 5);
10867     int rd = extract32(insn, 0, 5);
10868 
10869     switch (opcode) {
10870     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10871     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10872         /* 64 x 128 -> 128 */
10873         if (size == 3) {
10874             unallocated_encoding(s);
10875             return;
10876         }
10877         if (!fp_access_check(s)) {
10878             return;
10879         }
10880         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10881         break;
10882     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10883     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10884         /* 128 x 128 -> 64 */
10885         if (size == 3) {
10886             unallocated_encoding(s);
10887             return;
10888         }
10889         if (!fp_access_check(s)) {
10890             return;
10891         }
10892         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10893         break;
10894     case 14: /* PMULL, PMULL2 */
10895         if (is_u) {
10896             unallocated_encoding(s);
10897             return;
10898         }
10899         switch (size) {
10900         case 0: /* PMULL.P8 */
10901             if (!fp_access_check(s)) {
10902                 return;
10903             }
10904             /* The Q field specifies lo/hi half input for this insn.  */
10905             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10906                              gen_helper_neon_pmull_h);
10907             break;
10908 
10909         case 3: /* PMULL.P64 */
10910             if (!dc_isar_feature(aa64_pmull, s)) {
10911                 unallocated_encoding(s);
10912                 return;
10913             }
10914             if (!fp_access_check(s)) {
10915                 return;
10916             }
10917             /* The Q field specifies lo/hi half input for this insn.  */
10918             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10919                              gen_helper_gvec_pmull_q);
10920             break;
10921 
10922         default:
10923             unallocated_encoding(s);
10924             break;
10925         }
10926         return;
10927     case 9: /* SQDMLAL, SQDMLAL2 */
10928     case 11: /* SQDMLSL, SQDMLSL2 */
10929     case 13: /* SQDMULL, SQDMULL2 */
10930         if (is_u || size == 0) {
10931             unallocated_encoding(s);
10932             return;
10933         }
10934         /* fall through */
10935     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10936     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10937     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10938     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10939     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10940     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10941     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10942         /* 64 x 64 -> 128 */
10943         if (size == 3) {
10944             unallocated_encoding(s);
10945             return;
10946         }
10947         if (!fp_access_check(s)) {
10948             return;
10949         }
10950 
10951         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10952         break;
10953     default:
10954         /* opcode 15 not allocated */
10955         unallocated_encoding(s);
10956         break;
10957     }
10958 }
10959 
10960 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10961 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10962 {
10963     int rd = extract32(insn, 0, 5);
10964     int rn = extract32(insn, 5, 5);
10965     int rm = extract32(insn, 16, 5);
10966     int size = extract32(insn, 22, 2);
10967     bool is_u = extract32(insn, 29, 1);
10968     bool is_q = extract32(insn, 30, 1);
10969 
10970     if (!fp_access_check(s)) {
10971         return;
10972     }
10973 
10974     switch (size + 4 * is_u) {
10975     case 0: /* AND */
10976         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10977         return;
10978     case 1: /* BIC */
10979         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10980         return;
10981     case 2: /* ORR */
10982         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10983         return;
10984     case 3: /* ORN */
10985         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10986         return;
10987     case 4: /* EOR */
10988         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10989         return;
10990 
10991     case 5: /* BSL bitwise select */
10992         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10993         return;
10994     case 6: /* BIT, bitwise insert if true */
10995         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10996         return;
10997     case 7: /* BIF, bitwise insert if false */
10998         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10999         return;
11000 
11001     default:
11002         g_assert_not_reached();
11003     }
11004 }
11005 
11006 /* Pairwise op subgroup of C3.6.16.
11007  *
11008  * This is called directly or via the handle_3same_float for float pairwise
11009  * operations where the opcode and size are calculated differently.
11010  */
11011 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11012                                    int size, int rn, int rm, int rd)
11013 {
11014     TCGv_ptr fpst;
11015     int pass;
11016 
11017     /* Floating point operations need fpst */
11018     if (opcode >= 0x58) {
11019         fpst = fpstatus_ptr(FPST_FPCR);
11020     } else {
11021         fpst = NULL;
11022     }
11023 
11024     if (!fp_access_check(s)) {
11025         return;
11026     }
11027 
11028     /* These operations work on the concatenated rm:rn, with each pair of
11029      * adjacent elements being operated on to produce an element in the result.
11030      */
11031     if (size == 3) {
11032         TCGv_i64 tcg_res[2];
11033 
11034         for (pass = 0; pass < 2; pass++) {
11035             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11036             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11037             int passreg = (pass == 0) ? rn : rm;
11038 
11039             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11040             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11041             tcg_res[pass] = tcg_temp_new_i64();
11042 
11043             switch (opcode) {
11044             case 0x17: /* ADDP */
11045                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11046                 break;
11047             case 0x58: /* FMAXNMP */
11048                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11049                 break;
11050             case 0x5a: /* FADDP */
11051                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11052                 break;
11053             case 0x5e: /* FMAXP */
11054                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11055                 break;
11056             case 0x78: /* FMINNMP */
11057                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11058                 break;
11059             case 0x7e: /* FMINP */
11060                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11061                 break;
11062             default:
11063                 g_assert_not_reached();
11064             }
11065         }
11066 
11067         for (pass = 0; pass < 2; pass++) {
11068             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11069         }
11070     } else {
11071         int maxpass = is_q ? 4 : 2;
11072         TCGv_i32 tcg_res[4];
11073 
11074         for (pass = 0; pass < maxpass; pass++) {
11075             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11076             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11077             NeonGenTwoOpFn *genfn = NULL;
11078             int passreg = pass < (maxpass / 2) ? rn : rm;
11079             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11080 
11081             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11082             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11083             tcg_res[pass] = tcg_temp_new_i32();
11084 
11085             switch (opcode) {
11086             case 0x17: /* ADDP */
11087             {
11088                 static NeonGenTwoOpFn * const fns[3] = {
11089                     gen_helper_neon_padd_u8,
11090                     gen_helper_neon_padd_u16,
11091                     tcg_gen_add_i32,
11092                 };
11093                 genfn = fns[size];
11094                 break;
11095             }
11096             case 0x14: /* SMAXP, UMAXP */
11097             {
11098                 static NeonGenTwoOpFn * const fns[3][2] = {
11099                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11100                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11101                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11102                 };
11103                 genfn = fns[size][u];
11104                 break;
11105             }
11106             case 0x15: /* SMINP, UMINP */
11107             {
11108                 static NeonGenTwoOpFn * const fns[3][2] = {
11109                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11110                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11111                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11112                 };
11113                 genfn = fns[size][u];
11114                 break;
11115             }
11116             /* The FP operations are all on single floats (32 bit) */
11117             case 0x58: /* FMAXNMP */
11118                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11119                 break;
11120             case 0x5a: /* FADDP */
11121                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11122                 break;
11123             case 0x5e: /* FMAXP */
11124                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11125                 break;
11126             case 0x78: /* FMINNMP */
11127                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11128                 break;
11129             case 0x7e: /* FMINP */
11130                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11131                 break;
11132             default:
11133                 g_assert_not_reached();
11134             }
11135 
11136             /* FP ops called directly, otherwise call now */
11137             if (genfn) {
11138                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11139             }
11140         }
11141 
11142         for (pass = 0; pass < maxpass; pass++) {
11143             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11144         }
11145         clear_vec_high(s, is_q, rd);
11146     }
11147 }
11148 
11149 /* Floating point op subgroup of C3.6.16. */
11150 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11151 {
11152     /* For floating point ops, the U, size[1] and opcode bits
11153      * together indicate the operation. size[0] indicates single
11154      * or double.
11155      */
11156     int fpopcode = extract32(insn, 11, 5)
11157         | (extract32(insn, 23, 1) << 5)
11158         | (extract32(insn, 29, 1) << 6);
11159     int is_q = extract32(insn, 30, 1);
11160     int size = extract32(insn, 22, 1);
11161     int rm = extract32(insn, 16, 5);
11162     int rn = extract32(insn, 5, 5);
11163     int rd = extract32(insn, 0, 5);
11164 
11165     int datasize = is_q ? 128 : 64;
11166     int esize = 32 << size;
11167     int elements = datasize / esize;
11168 
11169     if (size == 1 && !is_q) {
11170         unallocated_encoding(s);
11171         return;
11172     }
11173 
11174     switch (fpopcode) {
11175     case 0x58: /* FMAXNMP */
11176     case 0x5a: /* FADDP */
11177     case 0x5e: /* FMAXP */
11178     case 0x78: /* FMINNMP */
11179     case 0x7e: /* FMINP */
11180         if (size && !is_q) {
11181             unallocated_encoding(s);
11182             return;
11183         }
11184         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11185                                rn, rm, rd);
11186         return;
11187     case 0x1b: /* FMULX */
11188     case 0x1f: /* FRECPS */
11189     case 0x3f: /* FRSQRTS */
11190     case 0x5d: /* FACGE */
11191     case 0x7d: /* FACGT */
11192     case 0x19: /* FMLA */
11193     case 0x39: /* FMLS */
11194     case 0x18: /* FMAXNM */
11195     case 0x1a: /* FADD */
11196     case 0x1c: /* FCMEQ */
11197     case 0x1e: /* FMAX */
11198     case 0x38: /* FMINNM */
11199     case 0x3a: /* FSUB */
11200     case 0x3e: /* FMIN */
11201     case 0x5b: /* FMUL */
11202     case 0x5c: /* FCMGE */
11203     case 0x5f: /* FDIV */
11204     case 0x7a: /* FABD */
11205     case 0x7c: /* FCMGT */
11206         if (!fp_access_check(s)) {
11207             return;
11208         }
11209         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11210         return;
11211 
11212     case 0x1d: /* FMLAL  */
11213     case 0x3d: /* FMLSL  */
11214     case 0x59: /* FMLAL2 */
11215     case 0x79: /* FMLSL2 */
11216         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11217             unallocated_encoding(s);
11218             return;
11219         }
11220         if (fp_access_check(s)) {
11221             int is_s = extract32(insn, 23, 1);
11222             int is_2 = extract32(insn, 29, 1);
11223             int data = (is_2 << 1) | is_s;
11224             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11225                                vec_full_reg_offset(s, rn),
11226                                vec_full_reg_offset(s, rm), cpu_env,
11227                                is_q ? 16 : 8, vec_full_reg_size(s),
11228                                data, gen_helper_gvec_fmlal_a64);
11229         }
11230         return;
11231 
11232     default:
11233         unallocated_encoding(s);
11234         return;
11235     }
11236 }
11237 
11238 /* Integer op subgroup of C3.6.16. */
11239 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11240 {
11241     int is_q = extract32(insn, 30, 1);
11242     int u = extract32(insn, 29, 1);
11243     int size = extract32(insn, 22, 2);
11244     int opcode = extract32(insn, 11, 5);
11245     int rm = extract32(insn, 16, 5);
11246     int rn = extract32(insn, 5, 5);
11247     int rd = extract32(insn, 0, 5);
11248     int pass;
11249     TCGCond cond;
11250 
11251     switch (opcode) {
11252     case 0x13: /* MUL, PMUL */
11253         if (u && size != 0) {
11254             unallocated_encoding(s);
11255             return;
11256         }
11257         /* fall through */
11258     case 0x0: /* SHADD, UHADD */
11259     case 0x2: /* SRHADD, URHADD */
11260     case 0x4: /* SHSUB, UHSUB */
11261     case 0xc: /* SMAX, UMAX */
11262     case 0xd: /* SMIN, UMIN */
11263     case 0xe: /* SABD, UABD */
11264     case 0xf: /* SABA, UABA */
11265     case 0x12: /* MLA, MLS */
11266         if (size == 3) {
11267             unallocated_encoding(s);
11268             return;
11269         }
11270         break;
11271     case 0x16: /* SQDMULH, SQRDMULH */
11272         if (size == 0 || size == 3) {
11273             unallocated_encoding(s);
11274             return;
11275         }
11276         break;
11277     default:
11278         if (size == 3 && !is_q) {
11279             unallocated_encoding(s);
11280             return;
11281         }
11282         break;
11283     }
11284 
11285     if (!fp_access_check(s)) {
11286         return;
11287     }
11288 
11289     switch (opcode) {
11290     case 0x01: /* SQADD, UQADD */
11291         if (u) {
11292             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11293         } else {
11294             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11295         }
11296         return;
11297     case 0x05: /* SQSUB, UQSUB */
11298         if (u) {
11299             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11300         } else {
11301             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11302         }
11303         return;
11304     case 0x08: /* SSHL, USHL */
11305         if (u) {
11306             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11307         } else {
11308             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11309         }
11310         return;
11311     case 0x0c: /* SMAX, UMAX */
11312         if (u) {
11313             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11314         } else {
11315             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11316         }
11317         return;
11318     case 0x0d: /* SMIN, UMIN */
11319         if (u) {
11320             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11321         } else {
11322             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11323         }
11324         return;
11325     case 0xe: /* SABD, UABD */
11326         if (u) {
11327             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11328         } else {
11329             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11330         }
11331         return;
11332     case 0xf: /* SABA, UABA */
11333         if (u) {
11334             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11335         } else {
11336             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11337         }
11338         return;
11339     case 0x10: /* ADD, SUB */
11340         if (u) {
11341             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11342         } else {
11343             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11344         }
11345         return;
11346     case 0x13: /* MUL, PMUL */
11347         if (!u) { /* MUL */
11348             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11349         } else {  /* PMUL */
11350             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11351         }
11352         return;
11353     case 0x12: /* MLA, MLS */
11354         if (u) {
11355             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11356         } else {
11357             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11358         }
11359         return;
11360     case 0x16: /* SQDMULH, SQRDMULH */
11361         {
11362             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11363                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11364                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11365             };
11366             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11367         }
11368         return;
11369     case 0x11:
11370         if (!u) { /* CMTST */
11371             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11372             return;
11373         }
11374         /* else CMEQ */
11375         cond = TCG_COND_EQ;
11376         goto do_gvec_cmp;
11377     case 0x06: /* CMGT, CMHI */
11378         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11379         goto do_gvec_cmp;
11380     case 0x07: /* CMGE, CMHS */
11381         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11382     do_gvec_cmp:
11383         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11384                          vec_full_reg_offset(s, rn),
11385                          vec_full_reg_offset(s, rm),
11386                          is_q ? 16 : 8, vec_full_reg_size(s));
11387         return;
11388     }
11389 
11390     if (size == 3) {
11391         assert(is_q);
11392         for (pass = 0; pass < 2; pass++) {
11393             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11394             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11395             TCGv_i64 tcg_res = tcg_temp_new_i64();
11396 
11397             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11398             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11399 
11400             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11401 
11402             write_vec_element(s, tcg_res, rd, pass, MO_64);
11403         }
11404     } else {
11405         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11406             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11407             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11408             TCGv_i32 tcg_res = tcg_temp_new_i32();
11409             NeonGenTwoOpFn *genfn = NULL;
11410             NeonGenTwoOpEnvFn *genenvfn = NULL;
11411 
11412             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11413             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11414 
11415             switch (opcode) {
11416             case 0x0: /* SHADD, UHADD */
11417             {
11418                 static NeonGenTwoOpFn * const fns[3][2] = {
11419                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11420                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11421                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11422                 };
11423                 genfn = fns[size][u];
11424                 break;
11425             }
11426             case 0x2: /* SRHADD, URHADD */
11427             {
11428                 static NeonGenTwoOpFn * const fns[3][2] = {
11429                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11430                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11431                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11432                 };
11433                 genfn = fns[size][u];
11434                 break;
11435             }
11436             case 0x4: /* SHSUB, UHSUB */
11437             {
11438                 static NeonGenTwoOpFn * const fns[3][2] = {
11439                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11440                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11441                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11442                 };
11443                 genfn = fns[size][u];
11444                 break;
11445             }
11446             case 0x9: /* SQSHL, UQSHL */
11447             {
11448                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11449                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11450                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11451                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11452                 };
11453                 genenvfn = fns[size][u];
11454                 break;
11455             }
11456             case 0xa: /* SRSHL, URSHL */
11457             {
11458                 static NeonGenTwoOpFn * const fns[3][2] = {
11459                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11460                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11461                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11462                 };
11463                 genfn = fns[size][u];
11464                 break;
11465             }
11466             case 0xb: /* SQRSHL, UQRSHL */
11467             {
11468                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11469                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11470                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11471                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11472                 };
11473                 genenvfn = fns[size][u];
11474                 break;
11475             }
11476             default:
11477                 g_assert_not_reached();
11478             }
11479 
11480             if (genenvfn) {
11481                 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11482             } else {
11483                 genfn(tcg_res, tcg_op1, tcg_op2);
11484             }
11485 
11486             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11487         }
11488     }
11489     clear_vec_high(s, is_q, rd);
11490 }
11491 
11492 /* AdvSIMD three same
11493  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11494  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11495  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11496  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11497  */
11498 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11499 {
11500     int opcode = extract32(insn, 11, 5);
11501 
11502     switch (opcode) {
11503     case 0x3: /* logic ops */
11504         disas_simd_3same_logic(s, insn);
11505         break;
11506     case 0x17: /* ADDP */
11507     case 0x14: /* SMAXP, UMAXP */
11508     case 0x15: /* SMINP, UMINP */
11509     {
11510         /* Pairwise operations */
11511         int is_q = extract32(insn, 30, 1);
11512         int u = extract32(insn, 29, 1);
11513         int size = extract32(insn, 22, 2);
11514         int rm = extract32(insn, 16, 5);
11515         int rn = extract32(insn, 5, 5);
11516         int rd = extract32(insn, 0, 5);
11517         if (opcode == 0x17) {
11518             if (u || (size == 3 && !is_q)) {
11519                 unallocated_encoding(s);
11520                 return;
11521             }
11522         } else {
11523             if (size == 3) {
11524                 unallocated_encoding(s);
11525                 return;
11526             }
11527         }
11528         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11529         break;
11530     }
11531     case 0x18 ... 0x31:
11532         /* floating point ops, sz[1] and U are part of opcode */
11533         disas_simd_3same_float(s, insn);
11534         break;
11535     default:
11536         disas_simd_3same_int(s, insn);
11537         break;
11538     }
11539 }
11540 
11541 /*
11542  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11543  *
11544  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11545  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11546  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11547  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11548  *
11549  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11550  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11551  *
11552  */
11553 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11554 {
11555     int opcode = extract32(insn, 11, 3);
11556     int u = extract32(insn, 29, 1);
11557     int a = extract32(insn, 23, 1);
11558     int is_q = extract32(insn, 30, 1);
11559     int rm = extract32(insn, 16, 5);
11560     int rn = extract32(insn, 5, 5);
11561     int rd = extract32(insn, 0, 5);
11562     /*
11563      * For these floating point ops, the U, a and opcode bits
11564      * together indicate the operation.
11565      */
11566     int fpopcode = opcode | (a << 3) | (u << 4);
11567     int datasize = is_q ? 128 : 64;
11568     int elements = datasize / 16;
11569     bool pairwise;
11570     TCGv_ptr fpst;
11571     int pass;
11572 
11573     switch (fpopcode) {
11574     case 0x0: /* FMAXNM */
11575     case 0x1: /* FMLA */
11576     case 0x2: /* FADD */
11577     case 0x3: /* FMULX */
11578     case 0x4: /* FCMEQ */
11579     case 0x6: /* FMAX */
11580     case 0x7: /* FRECPS */
11581     case 0x8: /* FMINNM */
11582     case 0x9: /* FMLS */
11583     case 0xa: /* FSUB */
11584     case 0xe: /* FMIN */
11585     case 0xf: /* FRSQRTS */
11586     case 0x13: /* FMUL */
11587     case 0x14: /* FCMGE */
11588     case 0x15: /* FACGE */
11589     case 0x17: /* FDIV */
11590     case 0x1a: /* FABD */
11591     case 0x1c: /* FCMGT */
11592     case 0x1d: /* FACGT */
11593         pairwise = false;
11594         break;
11595     case 0x10: /* FMAXNMP */
11596     case 0x12: /* FADDP */
11597     case 0x16: /* FMAXP */
11598     case 0x18: /* FMINNMP */
11599     case 0x1e: /* FMINP */
11600         pairwise = true;
11601         break;
11602     default:
11603         unallocated_encoding(s);
11604         return;
11605     }
11606 
11607     if (!dc_isar_feature(aa64_fp16, s)) {
11608         unallocated_encoding(s);
11609         return;
11610     }
11611 
11612     if (!fp_access_check(s)) {
11613         return;
11614     }
11615 
11616     fpst = fpstatus_ptr(FPST_FPCR_F16);
11617 
11618     if (pairwise) {
11619         int maxpass = is_q ? 8 : 4;
11620         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11621         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11622         TCGv_i32 tcg_res[8];
11623 
11624         for (pass = 0; pass < maxpass; pass++) {
11625             int passreg = pass < (maxpass / 2) ? rn : rm;
11626             int passelt = (pass << 1) & (maxpass - 1);
11627 
11628             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11629             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11630             tcg_res[pass] = tcg_temp_new_i32();
11631 
11632             switch (fpopcode) {
11633             case 0x10: /* FMAXNMP */
11634                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11635                                            fpst);
11636                 break;
11637             case 0x12: /* FADDP */
11638                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11639                 break;
11640             case 0x16: /* FMAXP */
11641                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11642                 break;
11643             case 0x18: /* FMINNMP */
11644                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11645                                            fpst);
11646                 break;
11647             case 0x1e: /* FMINP */
11648                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11649                 break;
11650             default:
11651                 g_assert_not_reached();
11652             }
11653         }
11654 
11655         for (pass = 0; pass < maxpass; pass++) {
11656             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11657         }
11658     } else {
11659         for (pass = 0; pass < elements; pass++) {
11660             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11661             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11662             TCGv_i32 tcg_res = tcg_temp_new_i32();
11663 
11664             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11665             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11666 
11667             switch (fpopcode) {
11668             case 0x0: /* FMAXNM */
11669                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11670                 break;
11671             case 0x1: /* FMLA */
11672                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11673                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11674                                            fpst);
11675                 break;
11676             case 0x2: /* FADD */
11677                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11678                 break;
11679             case 0x3: /* FMULX */
11680                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11681                 break;
11682             case 0x4: /* FCMEQ */
11683                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11684                 break;
11685             case 0x6: /* FMAX */
11686                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11687                 break;
11688             case 0x7: /* FRECPS */
11689                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11690                 break;
11691             case 0x8: /* FMINNM */
11692                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11693                 break;
11694             case 0x9: /* FMLS */
11695                 /* As usual for ARM, separate negation for fused multiply-add */
11696                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11697                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11698                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11699                                            fpst);
11700                 break;
11701             case 0xa: /* FSUB */
11702                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11703                 break;
11704             case 0xe: /* FMIN */
11705                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11706                 break;
11707             case 0xf: /* FRSQRTS */
11708                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11709                 break;
11710             case 0x13: /* FMUL */
11711                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11712                 break;
11713             case 0x14: /* FCMGE */
11714                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11715                 break;
11716             case 0x15: /* FACGE */
11717                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11718                 break;
11719             case 0x17: /* FDIV */
11720                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11721                 break;
11722             case 0x1a: /* FABD */
11723                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11724                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11725                 break;
11726             case 0x1c: /* FCMGT */
11727                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11728                 break;
11729             case 0x1d: /* FACGT */
11730                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11731                 break;
11732             default:
11733                 g_assert_not_reached();
11734             }
11735 
11736             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11737         }
11738     }
11739 
11740     clear_vec_high(s, is_q, rd);
11741 }
11742 
11743 /* AdvSIMD three same extra
11744  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11745  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11746  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11747  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11748  */
11749 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11750 {
11751     int rd = extract32(insn, 0, 5);
11752     int rn = extract32(insn, 5, 5);
11753     int opcode = extract32(insn, 11, 4);
11754     int rm = extract32(insn, 16, 5);
11755     int size = extract32(insn, 22, 2);
11756     bool u = extract32(insn, 29, 1);
11757     bool is_q = extract32(insn, 30, 1);
11758     bool feature;
11759     int rot;
11760 
11761     switch (u * 16 + opcode) {
11762     case 0x10: /* SQRDMLAH (vector) */
11763     case 0x11: /* SQRDMLSH (vector) */
11764         if (size != 1 && size != 2) {
11765             unallocated_encoding(s);
11766             return;
11767         }
11768         feature = dc_isar_feature(aa64_rdm, s);
11769         break;
11770     case 0x02: /* SDOT (vector) */
11771     case 0x12: /* UDOT (vector) */
11772         if (size != MO_32) {
11773             unallocated_encoding(s);
11774             return;
11775         }
11776         feature = dc_isar_feature(aa64_dp, s);
11777         break;
11778     case 0x03: /* USDOT */
11779         if (size != MO_32) {
11780             unallocated_encoding(s);
11781             return;
11782         }
11783         feature = dc_isar_feature(aa64_i8mm, s);
11784         break;
11785     case 0x04: /* SMMLA */
11786     case 0x14: /* UMMLA */
11787     case 0x05: /* USMMLA */
11788         if (!is_q || size != MO_32) {
11789             unallocated_encoding(s);
11790             return;
11791         }
11792         feature = dc_isar_feature(aa64_i8mm, s);
11793         break;
11794     case 0x18: /* FCMLA, #0 */
11795     case 0x19: /* FCMLA, #90 */
11796     case 0x1a: /* FCMLA, #180 */
11797     case 0x1b: /* FCMLA, #270 */
11798     case 0x1c: /* FCADD, #90 */
11799     case 0x1e: /* FCADD, #270 */
11800         if (size == 0
11801             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11802             || (size == 3 && !is_q)) {
11803             unallocated_encoding(s);
11804             return;
11805         }
11806         feature = dc_isar_feature(aa64_fcma, s);
11807         break;
11808     case 0x1d: /* BFMMLA */
11809         if (size != MO_16 || !is_q) {
11810             unallocated_encoding(s);
11811             return;
11812         }
11813         feature = dc_isar_feature(aa64_bf16, s);
11814         break;
11815     case 0x1f:
11816         switch (size) {
11817         case 1: /* BFDOT */
11818         case 3: /* BFMLAL{B,T} */
11819             feature = dc_isar_feature(aa64_bf16, s);
11820             break;
11821         default:
11822             unallocated_encoding(s);
11823             return;
11824         }
11825         break;
11826     default:
11827         unallocated_encoding(s);
11828         return;
11829     }
11830     if (!feature) {
11831         unallocated_encoding(s);
11832         return;
11833     }
11834     if (!fp_access_check(s)) {
11835         return;
11836     }
11837 
11838     switch (opcode) {
11839     case 0x0: /* SQRDMLAH (vector) */
11840         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11841         return;
11842 
11843     case 0x1: /* SQRDMLSH (vector) */
11844         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11845         return;
11846 
11847     case 0x2: /* SDOT / UDOT */
11848         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11849                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11850         return;
11851 
11852     case 0x3: /* USDOT */
11853         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11854         return;
11855 
11856     case 0x04: /* SMMLA, UMMLA */
11857         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11858                          u ? gen_helper_gvec_ummla_b
11859                          : gen_helper_gvec_smmla_b);
11860         return;
11861     case 0x05: /* USMMLA */
11862         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11863         return;
11864 
11865     case 0x8: /* FCMLA, #0 */
11866     case 0x9: /* FCMLA, #90 */
11867     case 0xa: /* FCMLA, #180 */
11868     case 0xb: /* FCMLA, #270 */
11869         rot = extract32(opcode, 0, 2);
11870         switch (size) {
11871         case 1:
11872             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11873                               gen_helper_gvec_fcmlah);
11874             break;
11875         case 2:
11876             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11877                               gen_helper_gvec_fcmlas);
11878             break;
11879         case 3:
11880             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11881                               gen_helper_gvec_fcmlad);
11882             break;
11883         default:
11884             g_assert_not_reached();
11885         }
11886         return;
11887 
11888     case 0xc: /* FCADD, #90 */
11889     case 0xe: /* FCADD, #270 */
11890         rot = extract32(opcode, 1, 1);
11891         switch (size) {
11892         case 1:
11893             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11894                               gen_helper_gvec_fcaddh);
11895             break;
11896         case 2:
11897             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11898                               gen_helper_gvec_fcadds);
11899             break;
11900         case 3:
11901             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11902                               gen_helper_gvec_fcaddd);
11903             break;
11904         default:
11905             g_assert_not_reached();
11906         }
11907         return;
11908 
11909     case 0xd: /* BFMMLA */
11910         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11911         return;
11912     case 0xf:
11913         switch (size) {
11914         case 1: /* BFDOT */
11915             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11916             break;
11917         case 3: /* BFMLAL{B,T} */
11918             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11919                               gen_helper_gvec_bfmlal);
11920             break;
11921         default:
11922             g_assert_not_reached();
11923         }
11924         return;
11925 
11926     default:
11927         g_assert_not_reached();
11928     }
11929 }
11930 
11931 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11932                                   int size, int rn, int rd)
11933 {
11934     /* Handle 2-reg-misc ops which are widening (so each size element
11935      * in the source becomes a 2*size element in the destination.
11936      * The only instruction like this is FCVTL.
11937      */
11938     int pass;
11939 
11940     if (size == 3) {
11941         /* 32 -> 64 bit fp conversion */
11942         TCGv_i64 tcg_res[2];
11943         int srcelt = is_q ? 2 : 0;
11944 
11945         for (pass = 0; pass < 2; pass++) {
11946             TCGv_i32 tcg_op = tcg_temp_new_i32();
11947             tcg_res[pass] = tcg_temp_new_i64();
11948 
11949             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11950             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11951         }
11952         for (pass = 0; pass < 2; pass++) {
11953             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11954         }
11955     } else {
11956         /* 16 -> 32 bit fp conversion */
11957         int srcelt = is_q ? 4 : 0;
11958         TCGv_i32 tcg_res[4];
11959         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11960         TCGv_i32 ahp = get_ahp_flag();
11961 
11962         for (pass = 0; pass < 4; pass++) {
11963             tcg_res[pass] = tcg_temp_new_i32();
11964 
11965             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11966             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11967                                            fpst, ahp);
11968         }
11969         for (pass = 0; pass < 4; pass++) {
11970             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11971         }
11972     }
11973 }
11974 
11975 static void handle_rev(DisasContext *s, int opcode, bool u,
11976                        bool is_q, int size, int rn, int rd)
11977 {
11978     int op = (opcode << 1) | u;
11979     int opsz = op + size;
11980     int grp_size = 3 - opsz;
11981     int dsize = is_q ? 128 : 64;
11982     int i;
11983 
11984     if (opsz >= 3) {
11985         unallocated_encoding(s);
11986         return;
11987     }
11988 
11989     if (!fp_access_check(s)) {
11990         return;
11991     }
11992 
11993     if (size == 0) {
11994         /* Special case bytes, use bswap op on each group of elements */
11995         int groups = dsize / (8 << grp_size);
11996 
11997         for (i = 0; i < groups; i++) {
11998             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11999 
12000             read_vec_element(s, tcg_tmp, rn, i, grp_size);
12001             switch (grp_size) {
12002             case MO_16:
12003                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12004                 break;
12005             case MO_32:
12006                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12007                 break;
12008             case MO_64:
12009                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12010                 break;
12011             default:
12012                 g_assert_not_reached();
12013             }
12014             write_vec_element(s, tcg_tmp, rd, i, grp_size);
12015         }
12016         clear_vec_high(s, is_q, rd);
12017     } else {
12018         int revmask = (1 << grp_size) - 1;
12019         int esize = 8 << size;
12020         int elements = dsize / esize;
12021         TCGv_i64 tcg_rn = tcg_temp_new_i64();
12022         TCGv_i64 tcg_rd[2];
12023 
12024         for (i = 0; i < 2; i++) {
12025             tcg_rd[i] = tcg_temp_new_i64();
12026             tcg_gen_movi_i64(tcg_rd[i], 0);
12027         }
12028 
12029         for (i = 0; i < elements; i++) {
12030             int e_rev = (i & 0xf) ^ revmask;
12031             int w = (e_rev * esize) / 64;
12032             int o = (e_rev * esize) % 64;
12033 
12034             read_vec_element(s, tcg_rn, rn, i, size);
12035             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
12036         }
12037 
12038         for (i = 0; i < 2; i++) {
12039             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
12040         }
12041         clear_vec_high(s, true, rd);
12042     }
12043 }
12044 
12045 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12046                                   bool is_q, int size, int rn, int rd)
12047 {
12048     /* Implement the pairwise operations from 2-misc:
12049      * SADDLP, UADDLP, SADALP, UADALP.
12050      * These all add pairs of elements in the input to produce a
12051      * double-width result element in the output (possibly accumulating).
12052      */
12053     bool accum = (opcode == 0x6);
12054     int maxpass = is_q ? 2 : 1;
12055     int pass;
12056     TCGv_i64 tcg_res[2];
12057 
12058     if (size == 2) {
12059         /* 32 + 32 -> 64 op */
12060         MemOp memop = size + (u ? 0 : MO_SIGN);
12061 
12062         for (pass = 0; pass < maxpass; pass++) {
12063             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12064             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12065 
12066             tcg_res[pass] = tcg_temp_new_i64();
12067 
12068             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12069             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12070             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12071             if (accum) {
12072                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12073                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12074             }
12075         }
12076     } else {
12077         for (pass = 0; pass < maxpass; pass++) {
12078             TCGv_i64 tcg_op = tcg_temp_new_i64();
12079             NeonGenOne64OpFn *genfn;
12080             static NeonGenOne64OpFn * const fns[2][2] = {
12081                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12082                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12083             };
12084 
12085             genfn = fns[size][u];
12086 
12087             tcg_res[pass] = tcg_temp_new_i64();
12088 
12089             read_vec_element(s, tcg_op, rn, pass, MO_64);
12090             genfn(tcg_res[pass], tcg_op);
12091 
12092             if (accum) {
12093                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12094                 if (size == 0) {
12095                     gen_helper_neon_addl_u16(tcg_res[pass],
12096                                              tcg_res[pass], tcg_op);
12097                 } else {
12098                     gen_helper_neon_addl_u32(tcg_res[pass],
12099                                              tcg_res[pass], tcg_op);
12100                 }
12101             }
12102         }
12103     }
12104     if (!is_q) {
12105         tcg_res[1] = tcg_constant_i64(0);
12106     }
12107     for (pass = 0; pass < 2; pass++) {
12108         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12109     }
12110 }
12111 
12112 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12113 {
12114     /* Implement SHLL and SHLL2 */
12115     int pass;
12116     int part = is_q ? 2 : 0;
12117     TCGv_i64 tcg_res[2];
12118 
12119     for (pass = 0; pass < 2; pass++) {
12120         static NeonGenWidenFn * const widenfns[3] = {
12121             gen_helper_neon_widen_u8,
12122             gen_helper_neon_widen_u16,
12123             tcg_gen_extu_i32_i64,
12124         };
12125         NeonGenWidenFn *widenfn = widenfns[size];
12126         TCGv_i32 tcg_op = tcg_temp_new_i32();
12127 
12128         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12129         tcg_res[pass] = tcg_temp_new_i64();
12130         widenfn(tcg_res[pass], tcg_op);
12131         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12132     }
12133 
12134     for (pass = 0; pass < 2; pass++) {
12135         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12136     }
12137 }
12138 
12139 /* AdvSIMD two reg misc
12140  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12141  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12142  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12143  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12144  */
12145 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12146 {
12147     int size = extract32(insn, 22, 2);
12148     int opcode = extract32(insn, 12, 5);
12149     bool u = extract32(insn, 29, 1);
12150     bool is_q = extract32(insn, 30, 1);
12151     int rn = extract32(insn, 5, 5);
12152     int rd = extract32(insn, 0, 5);
12153     bool need_fpstatus = false;
12154     int rmode = -1;
12155     TCGv_i32 tcg_rmode;
12156     TCGv_ptr tcg_fpstatus;
12157 
12158     switch (opcode) {
12159     case 0x0: /* REV64, REV32 */
12160     case 0x1: /* REV16 */
12161         handle_rev(s, opcode, u, is_q, size, rn, rd);
12162         return;
12163     case 0x5: /* CNT, NOT, RBIT */
12164         if (u && size == 0) {
12165             /* NOT */
12166             break;
12167         } else if (u && size == 1) {
12168             /* RBIT */
12169             break;
12170         } else if (!u && size == 0) {
12171             /* CNT */
12172             break;
12173         }
12174         unallocated_encoding(s);
12175         return;
12176     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12177     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12178         if (size == 3) {
12179             unallocated_encoding(s);
12180             return;
12181         }
12182         if (!fp_access_check(s)) {
12183             return;
12184         }
12185 
12186         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12187         return;
12188     case 0x4: /* CLS, CLZ */
12189         if (size == 3) {
12190             unallocated_encoding(s);
12191             return;
12192         }
12193         break;
12194     case 0x2: /* SADDLP, UADDLP */
12195     case 0x6: /* SADALP, UADALP */
12196         if (size == 3) {
12197             unallocated_encoding(s);
12198             return;
12199         }
12200         if (!fp_access_check(s)) {
12201             return;
12202         }
12203         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12204         return;
12205     case 0x13: /* SHLL, SHLL2 */
12206         if (u == 0 || size == 3) {
12207             unallocated_encoding(s);
12208             return;
12209         }
12210         if (!fp_access_check(s)) {
12211             return;
12212         }
12213         handle_shll(s, is_q, size, rn, rd);
12214         return;
12215     case 0xa: /* CMLT */
12216         if (u == 1) {
12217             unallocated_encoding(s);
12218             return;
12219         }
12220         /* fall through */
12221     case 0x8: /* CMGT, CMGE */
12222     case 0x9: /* CMEQ, CMLE */
12223     case 0xb: /* ABS, NEG */
12224         if (size == 3 && !is_q) {
12225             unallocated_encoding(s);
12226             return;
12227         }
12228         break;
12229     case 0x3: /* SUQADD, USQADD */
12230         if (size == 3 && !is_q) {
12231             unallocated_encoding(s);
12232             return;
12233         }
12234         if (!fp_access_check(s)) {
12235             return;
12236         }
12237         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12238         return;
12239     case 0x7: /* SQABS, SQNEG */
12240         if (size == 3 && !is_q) {
12241             unallocated_encoding(s);
12242             return;
12243         }
12244         break;
12245     case 0xc ... 0xf:
12246     case 0x16 ... 0x1f:
12247     {
12248         /* Floating point: U, size[1] and opcode indicate operation;
12249          * size[0] indicates single or double precision.
12250          */
12251         int is_double = extract32(size, 0, 1);
12252         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12253         size = is_double ? 3 : 2;
12254         switch (opcode) {
12255         case 0x2f: /* FABS */
12256         case 0x6f: /* FNEG */
12257             if (size == 3 && !is_q) {
12258                 unallocated_encoding(s);
12259                 return;
12260             }
12261             break;
12262         case 0x1d: /* SCVTF */
12263         case 0x5d: /* UCVTF */
12264         {
12265             bool is_signed = (opcode == 0x1d) ? true : false;
12266             int elements = is_double ? 2 : is_q ? 4 : 2;
12267             if (is_double && !is_q) {
12268                 unallocated_encoding(s);
12269                 return;
12270             }
12271             if (!fp_access_check(s)) {
12272                 return;
12273             }
12274             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12275             return;
12276         }
12277         case 0x2c: /* FCMGT (zero) */
12278         case 0x2d: /* FCMEQ (zero) */
12279         case 0x2e: /* FCMLT (zero) */
12280         case 0x6c: /* FCMGE (zero) */
12281         case 0x6d: /* FCMLE (zero) */
12282             if (size == 3 && !is_q) {
12283                 unallocated_encoding(s);
12284                 return;
12285             }
12286             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12287             return;
12288         case 0x7f: /* FSQRT */
12289             if (size == 3 && !is_q) {
12290                 unallocated_encoding(s);
12291                 return;
12292             }
12293             break;
12294         case 0x1a: /* FCVTNS */
12295         case 0x1b: /* FCVTMS */
12296         case 0x3a: /* FCVTPS */
12297         case 0x3b: /* FCVTZS */
12298         case 0x5a: /* FCVTNU */
12299         case 0x5b: /* FCVTMU */
12300         case 0x7a: /* FCVTPU */
12301         case 0x7b: /* FCVTZU */
12302             need_fpstatus = true;
12303             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12304             if (size == 3 && !is_q) {
12305                 unallocated_encoding(s);
12306                 return;
12307             }
12308             break;
12309         case 0x5c: /* FCVTAU */
12310         case 0x1c: /* FCVTAS */
12311             need_fpstatus = true;
12312             rmode = FPROUNDING_TIEAWAY;
12313             if (size == 3 && !is_q) {
12314                 unallocated_encoding(s);
12315                 return;
12316             }
12317             break;
12318         case 0x3c: /* URECPE */
12319             if (size == 3) {
12320                 unallocated_encoding(s);
12321                 return;
12322             }
12323             /* fall through */
12324         case 0x3d: /* FRECPE */
12325         case 0x7d: /* FRSQRTE */
12326             if (size == 3 && !is_q) {
12327                 unallocated_encoding(s);
12328                 return;
12329             }
12330             if (!fp_access_check(s)) {
12331                 return;
12332             }
12333             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12334             return;
12335         case 0x56: /* FCVTXN, FCVTXN2 */
12336             if (size == 2) {
12337                 unallocated_encoding(s);
12338                 return;
12339             }
12340             /* fall through */
12341         case 0x16: /* FCVTN, FCVTN2 */
12342             /* handle_2misc_narrow does a 2*size -> size operation, but these
12343              * instructions encode the source size rather than dest size.
12344              */
12345             if (!fp_access_check(s)) {
12346                 return;
12347             }
12348             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12349             return;
12350         case 0x36: /* BFCVTN, BFCVTN2 */
12351             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12352                 unallocated_encoding(s);
12353                 return;
12354             }
12355             if (!fp_access_check(s)) {
12356                 return;
12357             }
12358             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12359             return;
12360         case 0x17: /* FCVTL, FCVTL2 */
12361             if (!fp_access_check(s)) {
12362                 return;
12363             }
12364             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12365             return;
12366         case 0x18: /* FRINTN */
12367         case 0x19: /* FRINTM */
12368         case 0x38: /* FRINTP */
12369         case 0x39: /* FRINTZ */
12370             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12371             /* fall through */
12372         case 0x59: /* FRINTX */
12373         case 0x79: /* FRINTI */
12374             need_fpstatus = true;
12375             if (size == 3 && !is_q) {
12376                 unallocated_encoding(s);
12377                 return;
12378             }
12379             break;
12380         case 0x58: /* FRINTA */
12381             rmode = FPROUNDING_TIEAWAY;
12382             need_fpstatus = true;
12383             if (size == 3 && !is_q) {
12384                 unallocated_encoding(s);
12385                 return;
12386             }
12387             break;
12388         case 0x7c: /* URSQRTE */
12389             if (size == 3) {
12390                 unallocated_encoding(s);
12391                 return;
12392             }
12393             break;
12394         case 0x1e: /* FRINT32Z */
12395         case 0x1f: /* FRINT64Z */
12396             rmode = FPROUNDING_ZERO;
12397             /* fall through */
12398         case 0x5e: /* FRINT32X */
12399         case 0x5f: /* FRINT64X */
12400             need_fpstatus = true;
12401             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12402                 unallocated_encoding(s);
12403                 return;
12404             }
12405             break;
12406         default:
12407             unallocated_encoding(s);
12408             return;
12409         }
12410         break;
12411     }
12412     default:
12413         unallocated_encoding(s);
12414         return;
12415     }
12416 
12417     if (!fp_access_check(s)) {
12418         return;
12419     }
12420 
12421     if (need_fpstatus || rmode >= 0) {
12422         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12423     } else {
12424         tcg_fpstatus = NULL;
12425     }
12426     if (rmode >= 0) {
12427         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12428     } else {
12429         tcg_rmode = NULL;
12430     }
12431 
12432     switch (opcode) {
12433     case 0x5:
12434         if (u && size == 0) { /* NOT */
12435             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12436             return;
12437         }
12438         break;
12439     case 0x8: /* CMGT, CMGE */
12440         if (u) {
12441             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12442         } else {
12443             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12444         }
12445         return;
12446     case 0x9: /* CMEQ, CMLE */
12447         if (u) {
12448             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12449         } else {
12450             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12451         }
12452         return;
12453     case 0xa: /* CMLT */
12454         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12455         return;
12456     case 0xb:
12457         if (u) { /* ABS, NEG */
12458             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12459         } else {
12460             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12461         }
12462         return;
12463     }
12464 
12465     if (size == 3) {
12466         /* All 64-bit element operations can be shared with scalar 2misc */
12467         int pass;
12468 
12469         /* Coverity claims (size == 3 && !is_q) has been eliminated
12470          * from all paths leading to here.
12471          */
12472         tcg_debug_assert(is_q);
12473         for (pass = 0; pass < 2; pass++) {
12474             TCGv_i64 tcg_op = tcg_temp_new_i64();
12475             TCGv_i64 tcg_res = tcg_temp_new_i64();
12476 
12477             read_vec_element(s, tcg_op, rn, pass, MO_64);
12478 
12479             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12480                             tcg_rmode, tcg_fpstatus);
12481 
12482             write_vec_element(s, tcg_res, rd, pass, MO_64);
12483         }
12484     } else {
12485         int pass;
12486 
12487         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12488             TCGv_i32 tcg_op = tcg_temp_new_i32();
12489             TCGv_i32 tcg_res = tcg_temp_new_i32();
12490 
12491             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12492 
12493             if (size == 2) {
12494                 /* Special cases for 32 bit elements */
12495                 switch (opcode) {
12496                 case 0x4: /* CLS */
12497                     if (u) {
12498                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12499                     } else {
12500                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12501                     }
12502                     break;
12503                 case 0x7: /* SQABS, SQNEG */
12504                     if (u) {
12505                         gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12506                     } else {
12507                         gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12508                     }
12509                     break;
12510                 case 0x2f: /* FABS */
12511                     gen_helper_vfp_abss(tcg_res, tcg_op);
12512                     break;
12513                 case 0x6f: /* FNEG */
12514                     gen_helper_vfp_negs(tcg_res, tcg_op);
12515                     break;
12516                 case 0x7f: /* FSQRT */
12517                     gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12518                     break;
12519                 case 0x1a: /* FCVTNS */
12520                 case 0x1b: /* FCVTMS */
12521                 case 0x1c: /* FCVTAS */
12522                 case 0x3a: /* FCVTPS */
12523                 case 0x3b: /* FCVTZS */
12524                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12525                                          tcg_constant_i32(0), tcg_fpstatus);
12526                     break;
12527                 case 0x5a: /* FCVTNU */
12528                 case 0x5b: /* FCVTMU */
12529                 case 0x5c: /* FCVTAU */
12530                 case 0x7a: /* FCVTPU */
12531                 case 0x7b: /* FCVTZU */
12532                     gen_helper_vfp_touls(tcg_res, tcg_op,
12533                                          tcg_constant_i32(0), tcg_fpstatus);
12534                     break;
12535                 case 0x18: /* FRINTN */
12536                 case 0x19: /* FRINTM */
12537                 case 0x38: /* FRINTP */
12538                 case 0x39: /* FRINTZ */
12539                 case 0x58: /* FRINTA */
12540                 case 0x79: /* FRINTI */
12541                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12542                     break;
12543                 case 0x59: /* FRINTX */
12544                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12545                     break;
12546                 case 0x7c: /* URSQRTE */
12547                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12548                     break;
12549                 case 0x1e: /* FRINT32Z */
12550                 case 0x5e: /* FRINT32X */
12551                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12552                     break;
12553                 case 0x1f: /* FRINT64Z */
12554                 case 0x5f: /* FRINT64X */
12555                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12556                     break;
12557                 default:
12558                     g_assert_not_reached();
12559                 }
12560             } else {
12561                 /* Use helpers for 8 and 16 bit elements */
12562                 switch (opcode) {
12563                 case 0x5: /* CNT, RBIT */
12564                     /* For these two insns size is part of the opcode specifier
12565                      * (handled earlier); they always operate on byte elements.
12566                      */
12567                     if (u) {
12568                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12569                     } else {
12570                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12571                     }
12572                     break;
12573                 case 0x7: /* SQABS, SQNEG */
12574                 {
12575                     NeonGenOneOpEnvFn *genfn;
12576                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12577                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12578                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12579                     };
12580                     genfn = fns[size][u];
12581                     genfn(tcg_res, cpu_env, tcg_op);
12582                     break;
12583                 }
12584                 case 0x4: /* CLS, CLZ */
12585                     if (u) {
12586                         if (size == 0) {
12587                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12588                         } else {
12589                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12590                         }
12591                     } else {
12592                         if (size == 0) {
12593                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12594                         } else {
12595                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12596                         }
12597                     }
12598                     break;
12599                 default:
12600                     g_assert_not_reached();
12601                 }
12602             }
12603 
12604             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12605         }
12606     }
12607     clear_vec_high(s, is_q, rd);
12608 
12609     if (tcg_rmode) {
12610         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12611     }
12612 }
12613 
12614 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12615  *
12616  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12617  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12618  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12619  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12620  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12621  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12622  *
12623  * This actually covers two groups where scalar access is governed by
12624  * bit 28. A bunch of the instructions (float to integral) only exist
12625  * in the vector form and are un-allocated for the scalar decode. Also
12626  * in the scalar decode Q is always 1.
12627  */
12628 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12629 {
12630     int fpop, opcode, a, u;
12631     int rn, rd;
12632     bool is_q;
12633     bool is_scalar;
12634     bool only_in_vector = false;
12635 
12636     int pass;
12637     TCGv_i32 tcg_rmode = NULL;
12638     TCGv_ptr tcg_fpstatus = NULL;
12639     bool need_fpst = true;
12640     int rmode = -1;
12641 
12642     if (!dc_isar_feature(aa64_fp16, s)) {
12643         unallocated_encoding(s);
12644         return;
12645     }
12646 
12647     rd = extract32(insn, 0, 5);
12648     rn = extract32(insn, 5, 5);
12649 
12650     a = extract32(insn, 23, 1);
12651     u = extract32(insn, 29, 1);
12652     is_scalar = extract32(insn, 28, 1);
12653     is_q = extract32(insn, 30, 1);
12654 
12655     opcode = extract32(insn, 12, 5);
12656     fpop = deposit32(opcode, 5, 1, a);
12657     fpop = deposit32(fpop, 6, 1, u);
12658 
12659     switch (fpop) {
12660     case 0x1d: /* SCVTF */
12661     case 0x5d: /* UCVTF */
12662     {
12663         int elements;
12664 
12665         if (is_scalar) {
12666             elements = 1;
12667         } else {
12668             elements = (is_q ? 8 : 4);
12669         }
12670 
12671         if (!fp_access_check(s)) {
12672             return;
12673         }
12674         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12675         return;
12676     }
12677     break;
12678     case 0x2c: /* FCMGT (zero) */
12679     case 0x2d: /* FCMEQ (zero) */
12680     case 0x2e: /* FCMLT (zero) */
12681     case 0x6c: /* FCMGE (zero) */
12682     case 0x6d: /* FCMLE (zero) */
12683         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12684         return;
12685     case 0x3d: /* FRECPE */
12686     case 0x3f: /* FRECPX */
12687         break;
12688     case 0x18: /* FRINTN */
12689         only_in_vector = true;
12690         rmode = FPROUNDING_TIEEVEN;
12691         break;
12692     case 0x19: /* FRINTM */
12693         only_in_vector = true;
12694         rmode = FPROUNDING_NEGINF;
12695         break;
12696     case 0x38: /* FRINTP */
12697         only_in_vector = true;
12698         rmode = FPROUNDING_POSINF;
12699         break;
12700     case 0x39: /* FRINTZ */
12701         only_in_vector = true;
12702         rmode = FPROUNDING_ZERO;
12703         break;
12704     case 0x58: /* FRINTA */
12705         only_in_vector = true;
12706         rmode = FPROUNDING_TIEAWAY;
12707         break;
12708     case 0x59: /* FRINTX */
12709     case 0x79: /* FRINTI */
12710         only_in_vector = true;
12711         /* current rounding mode */
12712         break;
12713     case 0x1a: /* FCVTNS */
12714         rmode = FPROUNDING_TIEEVEN;
12715         break;
12716     case 0x1b: /* FCVTMS */
12717         rmode = FPROUNDING_NEGINF;
12718         break;
12719     case 0x1c: /* FCVTAS */
12720         rmode = FPROUNDING_TIEAWAY;
12721         break;
12722     case 0x3a: /* FCVTPS */
12723         rmode = FPROUNDING_POSINF;
12724         break;
12725     case 0x3b: /* FCVTZS */
12726         rmode = FPROUNDING_ZERO;
12727         break;
12728     case 0x5a: /* FCVTNU */
12729         rmode = FPROUNDING_TIEEVEN;
12730         break;
12731     case 0x5b: /* FCVTMU */
12732         rmode = FPROUNDING_NEGINF;
12733         break;
12734     case 0x5c: /* FCVTAU */
12735         rmode = FPROUNDING_TIEAWAY;
12736         break;
12737     case 0x7a: /* FCVTPU */
12738         rmode = FPROUNDING_POSINF;
12739         break;
12740     case 0x7b: /* FCVTZU */
12741         rmode = FPROUNDING_ZERO;
12742         break;
12743     case 0x2f: /* FABS */
12744     case 0x6f: /* FNEG */
12745         need_fpst = false;
12746         break;
12747     case 0x7d: /* FRSQRTE */
12748     case 0x7f: /* FSQRT (vector) */
12749         break;
12750     default:
12751         unallocated_encoding(s);
12752         return;
12753     }
12754 
12755 
12756     /* Check additional constraints for the scalar encoding */
12757     if (is_scalar) {
12758         if (!is_q) {
12759             unallocated_encoding(s);
12760             return;
12761         }
12762         /* FRINTxx is only in the vector form */
12763         if (only_in_vector) {
12764             unallocated_encoding(s);
12765             return;
12766         }
12767     }
12768 
12769     if (!fp_access_check(s)) {
12770         return;
12771     }
12772 
12773     if (rmode >= 0 || need_fpst) {
12774         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12775     }
12776 
12777     if (rmode >= 0) {
12778         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12779     }
12780 
12781     if (is_scalar) {
12782         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12783         TCGv_i32 tcg_res = tcg_temp_new_i32();
12784 
12785         switch (fpop) {
12786         case 0x1a: /* FCVTNS */
12787         case 0x1b: /* FCVTMS */
12788         case 0x1c: /* FCVTAS */
12789         case 0x3a: /* FCVTPS */
12790         case 0x3b: /* FCVTZS */
12791             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12792             break;
12793         case 0x3d: /* FRECPE */
12794             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12795             break;
12796         case 0x3f: /* FRECPX */
12797             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12798             break;
12799         case 0x5a: /* FCVTNU */
12800         case 0x5b: /* FCVTMU */
12801         case 0x5c: /* FCVTAU */
12802         case 0x7a: /* FCVTPU */
12803         case 0x7b: /* FCVTZU */
12804             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12805             break;
12806         case 0x6f: /* FNEG */
12807             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12808             break;
12809         case 0x7d: /* FRSQRTE */
12810             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12811             break;
12812         default:
12813             g_assert_not_reached();
12814         }
12815 
12816         /* limit any sign extension going on */
12817         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12818         write_fp_sreg(s, rd, tcg_res);
12819     } else {
12820         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12821             TCGv_i32 tcg_op = tcg_temp_new_i32();
12822             TCGv_i32 tcg_res = tcg_temp_new_i32();
12823 
12824             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12825 
12826             switch (fpop) {
12827             case 0x1a: /* FCVTNS */
12828             case 0x1b: /* FCVTMS */
12829             case 0x1c: /* FCVTAS */
12830             case 0x3a: /* FCVTPS */
12831             case 0x3b: /* FCVTZS */
12832                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12833                 break;
12834             case 0x3d: /* FRECPE */
12835                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12836                 break;
12837             case 0x5a: /* FCVTNU */
12838             case 0x5b: /* FCVTMU */
12839             case 0x5c: /* FCVTAU */
12840             case 0x7a: /* FCVTPU */
12841             case 0x7b: /* FCVTZU */
12842                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12843                 break;
12844             case 0x18: /* FRINTN */
12845             case 0x19: /* FRINTM */
12846             case 0x38: /* FRINTP */
12847             case 0x39: /* FRINTZ */
12848             case 0x58: /* FRINTA */
12849             case 0x79: /* FRINTI */
12850                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12851                 break;
12852             case 0x59: /* FRINTX */
12853                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12854                 break;
12855             case 0x2f: /* FABS */
12856                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12857                 break;
12858             case 0x6f: /* FNEG */
12859                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12860                 break;
12861             case 0x7d: /* FRSQRTE */
12862                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12863                 break;
12864             case 0x7f: /* FSQRT */
12865                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12866                 break;
12867             default:
12868                 g_assert_not_reached();
12869             }
12870 
12871             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12872         }
12873 
12874         clear_vec_high(s, is_q, rd);
12875     }
12876 
12877     if (tcg_rmode) {
12878         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12879     }
12880 }
12881 
12882 /* AdvSIMD scalar x indexed element
12883  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12884  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12885  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12886  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12887  * AdvSIMD vector x indexed element
12888  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12889  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12890  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12891  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12892  */
12893 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12894 {
12895     /* This encoding has two kinds of instruction:
12896      *  normal, where we perform elt x idxelt => elt for each
12897      *     element in the vector
12898      *  long, where we perform elt x idxelt and generate a result of
12899      *     double the width of the input element
12900      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12901      */
12902     bool is_scalar = extract32(insn, 28, 1);
12903     bool is_q = extract32(insn, 30, 1);
12904     bool u = extract32(insn, 29, 1);
12905     int size = extract32(insn, 22, 2);
12906     int l = extract32(insn, 21, 1);
12907     int m = extract32(insn, 20, 1);
12908     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12909     int rm = extract32(insn, 16, 4);
12910     int opcode = extract32(insn, 12, 4);
12911     int h = extract32(insn, 11, 1);
12912     int rn = extract32(insn, 5, 5);
12913     int rd = extract32(insn, 0, 5);
12914     bool is_long = false;
12915     int is_fp = 0;
12916     bool is_fp16 = false;
12917     int index;
12918     TCGv_ptr fpst;
12919 
12920     switch (16 * u + opcode) {
12921     case 0x08: /* MUL */
12922     case 0x10: /* MLA */
12923     case 0x14: /* MLS */
12924         if (is_scalar) {
12925             unallocated_encoding(s);
12926             return;
12927         }
12928         break;
12929     case 0x02: /* SMLAL, SMLAL2 */
12930     case 0x12: /* UMLAL, UMLAL2 */
12931     case 0x06: /* SMLSL, SMLSL2 */
12932     case 0x16: /* UMLSL, UMLSL2 */
12933     case 0x0a: /* SMULL, SMULL2 */
12934     case 0x1a: /* UMULL, UMULL2 */
12935         if (is_scalar) {
12936             unallocated_encoding(s);
12937             return;
12938         }
12939         is_long = true;
12940         break;
12941     case 0x03: /* SQDMLAL, SQDMLAL2 */
12942     case 0x07: /* SQDMLSL, SQDMLSL2 */
12943     case 0x0b: /* SQDMULL, SQDMULL2 */
12944         is_long = true;
12945         break;
12946     case 0x0c: /* SQDMULH */
12947     case 0x0d: /* SQRDMULH */
12948         break;
12949     case 0x01: /* FMLA */
12950     case 0x05: /* FMLS */
12951     case 0x09: /* FMUL */
12952     case 0x19: /* FMULX */
12953         is_fp = 1;
12954         break;
12955     case 0x1d: /* SQRDMLAH */
12956     case 0x1f: /* SQRDMLSH */
12957         if (!dc_isar_feature(aa64_rdm, s)) {
12958             unallocated_encoding(s);
12959             return;
12960         }
12961         break;
12962     case 0x0e: /* SDOT */
12963     case 0x1e: /* UDOT */
12964         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12965             unallocated_encoding(s);
12966             return;
12967         }
12968         break;
12969     case 0x0f:
12970         switch (size) {
12971         case 0: /* SUDOT */
12972         case 2: /* USDOT */
12973             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12974                 unallocated_encoding(s);
12975                 return;
12976             }
12977             size = MO_32;
12978             break;
12979         case 1: /* BFDOT */
12980             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12981                 unallocated_encoding(s);
12982                 return;
12983             }
12984             size = MO_32;
12985             break;
12986         case 3: /* BFMLAL{B,T} */
12987             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12988                 unallocated_encoding(s);
12989                 return;
12990             }
12991             /* can't set is_fp without other incorrect size checks */
12992             size = MO_16;
12993             break;
12994         default:
12995             unallocated_encoding(s);
12996             return;
12997         }
12998         break;
12999     case 0x11: /* FCMLA #0 */
13000     case 0x13: /* FCMLA #90 */
13001     case 0x15: /* FCMLA #180 */
13002     case 0x17: /* FCMLA #270 */
13003         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13004             unallocated_encoding(s);
13005             return;
13006         }
13007         is_fp = 2;
13008         break;
13009     case 0x00: /* FMLAL */
13010     case 0x04: /* FMLSL */
13011     case 0x18: /* FMLAL2 */
13012     case 0x1c: /* FMLSL2 */
13013         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13014             unallocated_encoding(s);
13015             return;
13016         }
13017         size = MO_16;
13018         /* is_fp, but we pass cpu_env not fp_status.  */
13019         break;
13020     default:
13021         unallocated_encoding(s);
13022         return;
13023     }
13024 
13025     switch (is_fp) {
13026     case 1: /* normal fp */
13027         /* convert insn encoded size to MemOp size */
13028         switch (size) {
13029         case 0: /* half-precision */
13030             size = MO_16;
13031             is_fp16 = true;
13032             break;
13033         case MO_32: /* single precision */
13034         case MO_64: /* double precision */
13035             break;
13036         default:
13037             unallocated_encoding(s);
13038             return;
13039         }
13040         break;
13041 
13042     case 2: /* complex fp */
13043         /* Each indexable element is a complex pair.  */
13044         size += 1;
13045         switch (size) {
13046         case MO_32:
13047             if (h && !is_q) {
13048                 unallocated_encoding(s);
13049                 return;
13050             }
13051             is_fp16 = true;
13052             break;
13053         case MO_64:
13054             break;
13055         default:
13056             unallocated_encoding(s);
13057             return;
13058         }
13059         break;
13060 
13061     default: /* integer */
13062         switch (size) {
13063         case MO_8:
13064         case MO_64:
13065             unallocated_encoding(s);
13066             return;
13067         }
13068         break;
13069     }
13070     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13071         unallocated_encoding(s);
13072         return;
13073     }
13074 
13075     /* Given MemOp size, adjust register and indexing.  */
13076     switch (size) {
13077     case MO_16:
13078         index = h << 2 | l << 1 | m;
13079         break;
13080     case MO_32:
13081         index = h << 1 | l;
13082         rm |= m << 4;
13083         break;
13084     case MO_64:
13085         if (l || !is_q) {
13086             unallocated_encoding(s);
13087             return;
13088         }
13089         index = h;
13090         rm |= m << 4;
13091         break;
13092     default:
13093         g_assert_not_reached();
13094     }
13095 
13096     if (!fp_access_check(s)) {
13097         return;
13098     }
13099 
13100     if (is_fp) {
13101         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13102     } else {
13103         fpst = NULL;
13104     }
13105 
13106     switch (16 * u + opcode) {
13107     case 0x0e: /* SDOT */
13108     case 0x1e: /* UDOT */
13109         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13110                          u ? gen_helper_gvec_udot_idx_b
13111                          : gen_helper_gvec_sdot_idx_b);
13112         return;
13113     case 0x0f:
13114         switch (extract32(insn, 22, 2)) {
13115         case 0: /* SUDOT */
13116             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13117                              gen_helper_gvec_sudot_idx_b);
13118             return;
13119         case 1: /* BFDOT */
13120             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13121                              gen_helper_gvec_bfdot_idx);
13122             return;
13123         case 2: /* USDOT */
13124             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13125                              gen_helper_gvec_usdot_idx_b);
13126             return;
13127         case 3: /* BFMLAL{B,T} */
13128             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13129                               gen_helper_gvec_bfmlal_idx);
13130             return;
13131         }
13132         g_assert_not_reached();
13133     case 0x11: /* FCMLA #0 */
13134     case 0x13: /* FCMLA #90 */
13135     case 0x15: /* FCMLA #180 */
13136     case 0x17: /* FCMLA #270 */
13137         {
13138             int rot = extract32(insn, 13, 2);
13139             int data = (index << 2) | rot;
13140             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13141                                vec_full_reg_offset(s, rn),
13142                                vec_full_reg_offset(s, rm),
13143                                vec_full_reg_offset(s, rd), fpst,
13144                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13145                                size == MO_64
13146                                ? gen_helper_gvec_fcmlas_idx
13147                                : gen_helper_gvec_fcmlah_idx);
13148         }
13149         return;
13150 
13151     case 0x00: /* FMLAL */
13152     case 0x04: /* FMLSL */
13153     case 0x18: /* FMLAL2 */
13154     case 0x1c: /* FMLSL2 */
13155         {
13156             int is_s = extract32(opcode, 2, 1);
13157             int is_2 = u;
13158             int data = (index << 2) | (is_2 << 1) | is_s;
13159             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13160                                vec_full_reg_offset(s, rn),
13161                                vec_full_reg_offset(s, rm), cpu_env,
13162                                is_q ? 16 : 8, vec_full_reg_size(s),
13163                                data, gen_helper_gvec_fmlal_idx_a64);
13164         }
13165         return;
13166 
13167     case 0x08: /* MUL */
13168         if (!is_long && !is_scalar) {
13169             static gen_helper_gvec_3 * const fns[3] = {
13170                 gen_helper_gvec_mul_idx_h,
13171                 gen_helper_gvec_mul_idx_s,
13172                 gen_helper_gvec_mul_idx_d,
13173             };
13174             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13175                                vec_full_reg_offset(s, rn),
13176                                vec_full_reg_offset(s, rm),
13177                                is_q ? 16 : 8, vec_full_reg_size(s),
13178                                index, fns[size - 1]);
13179             return;
13180         }
13181         break;
13182 
13183     case 0x10: /* MLA */
13184         if (!is_long && !is_scalar) {
13185             static gen_helper_gvec_4 * const fns[3] = {
13186                 gen_helper_gvec_mla_idx_h,
13187                 gen_helper_gvec_mla_idx_s,
13188                 gen_helper_gvec_mla_idx_d,
13189             };
13190             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13191                                vec_full_reg_offset(s, rn),
13192                                vec_full_reg_offset(s, rm),
13193                                vec_full_reg_offset(s, rd),
13194                                is_q ? 16 : 8, vec_full_reg_size(s),
13195                                index, fns[size - 1]);
13196             return;
13197         }
13198         break;
13199 
13200     case 0x14: /* MLS */
13201         if (!is_long && !is_scalar) {
13202             static gen_helper_gvec_4 * const fns[3] = {
13203                 gen_helper_gvec_mls_idx_h,
13204                 gen_helper_gvec_mls_idx_s,
13205                 gen_helper_gvec_mls_idx_d,
13206             };
13207             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13208                                vec_full_reg_offset(s, rn),
13209                                vec_full_reg_offset(s, rm),
13210                                vec_full_reg_offset(s, rd),
13211                                is_q ? 16 : 8, vec_full_reg_size(s),
13212                                index, fns[size - 1]);
13213             return;
13214         }
13215         break;
13216     }
13217 
13218     if (size == 3) {
13219         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13220         int pass;
13221 
13222         assert(is_fp && is_q && !is_long);
13223 
13224         read_vec_element(s, tcg_idx, rm, index, MO_64);
13225 
13226         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13227             TCGv_i64 tcg_op = tcg_temp_new_i64();
13228             TCGv_i64 tcg_res = tcg_temp_new_i64();
13229 
13230             read_vec_element(s, tcg_op, rn, pass, MO_64);
13231 
13232             switch (16 * u + opcode) {
13233             case 0x05: /* FMLS */
13234                 /* As usual for ARM, separate negation for fused multiply-add */
13235                 gen_helper_vfp_negd(tcg_op, tcg_op);
13236                 /* fall through */
13237             case 0x01: /* FMLA */
13238                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13239                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13240                 break;
13241             case 0x09: /* FMUL */
13242                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13243                 break;
13244             case 0x19: /* FMULX */
13245                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13246                 break;
13247             default:
13248                 g_assert_not_reached();
13249             }
13250 
13251             write_vec_element(s, tcg_res, rd, pass, MO_64);
13252         }
13253 
13254         clear_vec_high(s, !is_scalar, rd);
13255     } else if (!is_long) {
13256         /* 32 bit floating point, or 16 or 32 bit integer.
13257          * For the 16 bit scalar case we use the usual Neon helpers and
13258          * rely on the fact that 0 op 0 == 0 with no side effects.
13259          */
13260         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13261         int pass, maxpasses;
13262 
13263         if (is_scalar) {
13264             maxpasses = 1;
13265         } else {
13266             maxpasses = is_q ? 4 : 2;
13267         }
13268 
13269         read_vec_element_i32(s, tcg_idx, rm, index, size);
13270 
13271         if (size == 1 && !is_scalar) {
13272             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13273              * the index into both halves of the 32 bit tcg_idx and then use
13274              * the usual Neon helpers.
13275              */
13276             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13277         }
13278 
13279         for (pass = 0; pass < maxpasses; pass++) {
13280             TCGv_i32 tcg_op = tcg_temp_new_i32();
13281             TCGv_i32 tcg_res = tcg_temp_new_i32();
13282 
13283             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13284 
13285             switch (16 * u + opcode) {
13286             case 0x08: /* MUL */
13287             case 0x10: /* MLA */
13288             case 0x14: /* MLS */
13289             {
13290                 static NeonGenTwoOpFn * const fns[2][2] = {
13291                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13292                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13293                 };
13294                 NeonGenTwoOpFn *genfn;
13295                 bool is_sub = opcode == 0x4;
13296 
13297                 if (size == 1) {
13298                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13299                 } else {
13300                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13301                 }
13302                 if (opcode == 0x8) {
13303                     break;
13304                 }
13305                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13306                 genfn = fns[size - 1][is_sub];
13307                 genfn(tcg_res, tcg_op, tcg_res);
13308                 break;
13309             }
13310             case 0x05: /* FMLS */
13311             case 0x01: /* FMLA */
13312                 read_vec_element_i32(s, tcg_res, rd, pass,
13313                                      is_scalar ? size : MO_32);
13314                 switch (size) {
13315                 case 1:
13316                     if (opcode == 0x5) {
13317                         /* As usual for ARM, separate negation for fused
13318                          * multiply-add */
13319                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13320                     }
13321                     if (is_scalar) {
13322                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13323                                                    tcg_res, fpst);
13324                     } else {
13325                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13326                                                     tcg_res, fpst);
13327                     }
13328                     break;
13329                 case 2:
13330                     if (opcode == 0x5) {
13331                         /* As usual for ARM, separate negation for
13332                          * fused multiply-add */
13333                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13334                     }
13335                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13336                                            tcg_res, fpst);
13337                     break;
13338                 default:
13339                     g_assert_not_reached();
13340                 }
13341                 break;
13342             case 0x09: /* FMUL */
13343                 switch (size) {
13344                 case 1:
13345                     if (is_scalar) {
13346                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13347                                                 tcg_idx, fpst);
13348                     } else {
13349                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13350                                                  tcg_idx, fpst);
13351                     }
13352                     break;
13353                 case 2:
13354                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13355                     break;
13356                 default:
13357                     g_assert_not_reached();
13358                 }
13359                 break;
13360             case 0x19: /* FMULX */
13361                 switch (size) {
13362                 case 1:
13363                     if (is_scalar) {
13364                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13365                                                  tcg_idx, fpst);
13366                     } else {
13367                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13368                                                   tcg_idx, fpst);
13369                     }
13370                     break;
13371                 case 2:
13372                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13373                     break;
13374                 default:
13375                     g_assert_not_reached();
13376                 }
13377                 break;
13378             case 0x0c: /* SQDMULH */
13379                 if (size == 1) {
13380                     gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13381                                                tcg_op, tcg_idx);
13382                 } else {
13383                     gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13384                                                tcg_op, tcg_idx);
13385                 }
13386                 break;
13387             case 0x0d: /* SQRDMULH */
13388                 if (size == 1) {
13389                     gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13390                                                 tcg_op, tcg_idx);
13391                 } else {
13392                     gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13393                                                 tcg_op, tcg_idx);
13394                 }
13395                 break;
13396             case 0x1d: /* SQRDMLAH */
13397                 read_vec_element_i32(s, tcg_res, rd, pass,
13398                                      is_scalar ? size : MO_32);
13399                 if (size == 1) {
13400                     gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13401                                                 tcg_op, tcg_idx, tcg_res);
13402                 } else {
13403                     gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13404                                                 tcg_op, tcg_idx, tcg_res);
13405                 }
13406                 break;
13407             case 0x1f: /* SQRDMLSH */
13408                 read_vec_element_i32(s, tcg_res, rd, pass,
13409                                      is_scalar ? size : MO_32);
13410                 if (size == 1) {
13411                     gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13412                                                 tcg_op, tcg_idx, tcg_res);
13413                 } else {
13414                     gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13415                                                 tcg_op, tcg_idx, tcg_res);
13416                 }
13417                 break;
13418             default:
13419                 g_assert_not_reached();
13420             }
13421 
13422             if (is_scalar) {
13423                 write_fp_sreg(s, rd, tcg_res);
13424             } else {
13425                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13426             }
13427         }
13428 
13429         clear_vec_high(s, is_q, rd);
13430     } else {
13431         /* long ops: 16x16->32 or 32x32->64 */
13432         TCGv_i64 tcg_res[2];
13433         int pass;
13434         bool satop = extract32(opcode, 0, 1);
13435         MemOp memop = MO_32;
13436 
13437         if (satop || !u) {
13438             memop |= MO_SIGN;
13439         }
13440 
13441         if (size == 2) {
13442             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13443 
13444             read_vec_element(s, tcg_idx, rm, index, memop);
13445 
13446             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13447                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13448                 TCGv_i64 tcg_passres;
13449                 int passelt;
13450 
13451                 if (is_scalar) {
13452                     passelt = 0;
13453                 } else {
13454                     passelt = pass + (is_q * 2);
13455                 }
13456 
13457                 read_vec_element(s, tcg_op, rn, passelt, memop);
13458 
13459                 tcg_res[pass] = tcg_temp_new_i64();
13460 
13461                 if (opcode == 0xa || opcode == 0xb) {
13462                     /* Non-accumulating ops */
13463                     tcg_passres = tcg_res[pass];
13464                 } else {
13465                     tcg_passres = tcg_temp_new_i64();
13466                 }
13467 
13468                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13469 
13470                 if (satop) {
13471                     /* saturating, doubling */
13472                     gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13473                                                       tcg_passres, tcg_passres);
13474                 }
13475 
13476                 if (opcode == 0xa || opcode == 0xb) {
13477                     continue;
13478                 }
13479 
13480                 /* Accumulating op: handle accumulate step */
13481                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13482 
13483                 switch (opcode) {
13484                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13485                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13486                     break;
13487                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13488                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13489                     break;
13490                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13491                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13492                     /* fall through */
13493                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13494                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13495                                                       tcg_res[pass],
13496                                                       tcg_passres);
13497                     break;
13498                 default:
13499                     g_assert_not_reached();
13500                 }
13501             }
13502 
13503             clear_vec_high(s, !is_scalar, rd);
13504         } else {
13505             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13506 
13507             assert(size == 1);
13508             read_vec_element_i32(s, tcg_idx, rm, index, size);
13509 
13510             if (!is_scalar) {
13511                 /* The simplest way to handle the 16x16 indexed ops is to
13512                  * duplicate the index into both halves of the 32 bit tcg_idx
13513                  * and then use the usual Neon helpers.
13514                  */
13515                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13516             }
13517 
13518             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13519                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13520                 TCGv_i64 tcg_passres;
13521 
13522                 if (is_scalar) {
13523                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13524                 } else {
13525                     read_vec_element_i32(s, tcg_op, rn,
13526                                          pass + (is_q * 2), MO_32);
13527                 }
13528 
13529                 tcg_res[pass] = tcg_temp_new_i64();
13530 
13531                 if (opcode == 0xa || opcode == 0xb) {
13532                     /* Non-accumulating ops */
13533                     tcg_passres = tcg_res[pass];
13534                 } else {
13535                     tcg_passres = tcg_temp_new_i64();
13536                 }
13537 
13538                 if (memop & MO_SIGN) {
13539                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13540                 } else {
13541                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13542                 }
13543                 if (satop) {
13544                     gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13545                                                       tcg_passres, tcg_passres);
13546                 }
13547 
13548                 if (opcode == 0xa || opcode == 0xb) {
13549                     continue;
13550                 }
13551 
13552                 /* Accumulating op: handle accumulate step */
13553                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13554 
13555                 switch (opcode) {
13556                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13557                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13558                                              tcg_passres);
13559                     break;
13560                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13561                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13562                                              tcg_passres);
13563                     break;
13564                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13565                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13566                     /* fall through */
13567                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13568                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13569                                                       tcg_res[pass],
13570                                                       tcg_passres);
13571                     break;
13572                 default:
13573                     g_assert_not_reached();
13574                 }
13575             }
13576 
13577             if (is_scalar) {
13578                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13579             }
13580         }
13581 
13582         if (is_scalar) {
13583             tcg_res[1] = tcg_constant_i64(0);
13584         }
13585 
13586         for (pass = 0; pass < 2; pass++) {
13587             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13588         }
13589     }
13590 }
13591 
13592 /* Crypto AES
13593  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13594  * +-----------------+------+-----------+--------+-----+------+------+
13595  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13596  * +-----------------+------+-----------+--------+-----+------+------+
13597  */
13598 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13599 {
13600     int size = extract32(insn, 22, 2);
13601     int opcode = extract32(insn, 12, 5);
13602     int rn = extract32(insn, 5, 5);
13603     int rd = extract32(insn, 0, 5);
13604     int decrypt;
13605     gen_helper_gvec_2 *genfn2 = NULL;
13606     gen_helper_gvec_3 *genfn3 = NULL;
13607 
13608     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13609         unallocated_encoding(s);
13610         return;
13611     }
13612 
13613     switch (opcode) {
13614     case 0x4: /* AESE */
13615         decrypt = 0;
13616         genfn3 = gen_helper_crypto_aese;
13617         break;
13618     case 0x6: /* AESMC */
13619         decrypt = 0;
13620         genfn2 = gen_helper_crypto_aesmc;
13621         break;
13622     case 0x5: /* AESD */
13623         decrypt = 1;
13624         genfn3 = gen_helper_crypto_aese;
13625         break;
13626     case 0x7: /* AESIMC */
13627         decrypt = 1;
13628         genfn2 = gen_helper_crypto_aesmc;
13629         break;
13630     default:
13631         unallocated_encoding(s);
13632         return;
13633     }
13634 
13635     if (!fp_access_check(s)) {
13636         return;
13637     }
13638     if (genfn2) {
13639         gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13640     } else {
13641         gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13642     }
13643 }
13644 
13645 /* Crypto three-reg SHA
13646  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13647  * +-----------------+------+---+------+---+--------+-----+------+------+
13648  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13649  * +-----------------+------+---+------+---+--------+-----+------+------+
13650  */
13651 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13652 {
13653     int size = extract32(insn, 22, 2);
13654     int opcode = extract32(insn, 12, 3);
13655     int rm = extract32(insn, 16, 5);
13656     int rn = extract32(insn, 5, 5);
13657     int rd = extract32(insn, 0, 5);
13658     gen_helper_gvec_3 *genfn;
13659     bool feature;
13660 
13661     if (size != 0) {
13662         unallocated_encoding(s);
13663         return;
13664     }
13665 
13666     switch (opcode) {
13667     case 0: /* SHA1C */
13668         genfn = gen_helper_crypto_sha1c;
13669         feature = dc_isar_feature(aa64_sha1, s);
13670         break;
13671     case 1: /* SHA1P */
13672         genfn = gen_helper_crypto_sha1p;
13673         feature = dc_isar_feature(aa64_sha1, s);
13674         break;
13675     case 2: /* SHA1M */
13676         genfn = gen_helper_crypto_sha1m;
13677         feature = dc_isar_feature(aa64_sha1, s);
13678         break;
13679     case 3: /* SHA1SU0 */
13680         genfn = gen_helper_crypto_sha1su0;
13681         feature = dc_isar_feature(aa64_sha1, s);
13682         break;
13683     case 4: /* SHA256H */
13684         genfn = gen_helper_crypto_sha256h;
13685         feature = dc_isar_feature(aa64_sha256, s);
13686         break;
13687     case 5: /* SHA256H2 */
13688         genfn = gen_helper_crypto_sha256h2;
13689         feature = dc_isar_feature(aa64_sha256, s);
13690         break;
13691     case 6: /* SHA256SU1 */
13692         genfn = gen_helper_crypto_sha256su1;
13693         feature = dc_isar_feature(aa64_sha256, s);
13694         break;
13695     default:
13696         unallocated_encoding(s);
13697         return;
13698     }
13699 
13700     if (!feature) {
13701         unallocated_encoding(s);
13702         return;
13703     }
13704 
13705     if (!fp_access_check(s)) {
13706         return;
13707     }
13708     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13709 }
13710 
13711 /* Crypto two-reg SHA
13712  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13713  * +-----------------+------+-----------+--------+-----+------+------+
13714  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13715  * +-----------------+------+-----------+--------+-----+------+------+
13716  */
13717 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13718 {
13719     int size = extract32(insn, 22, 2);
13720     int opcode = extract32(insn, 12, 5);
13721     int rn = extract32(insn, 5, 5);
13722     int rd = extract32(insn, 0, 5);
13723     gen_helper_gvec_2 *genfn;
13724     bool feature;
13725 
13726     if (size != 0) {
13727         unallocated_encoding(s);
13728         return;
13729     }
13730 
13731     switch (opcode) {
13732     case 0: /* SHA1H */
13733         feature = dc_isar_feature(aa64_sha1, s);
13734         genfn = gen_helper_crypto_sha1h;
13735         break;
13736     case 1: /* SHA1SU1 */
13737         feature = dc_isar_feature(aa64_sha1, s);
13738         genfn = gen_helper_crypto_sha1su1;
13739         break;
13740     case 2: /* SHA256SU0 */
13741         feature = dc_isar_feature(aa64_sha256, s);
13742         genfn = gen_helper_crypto_sha256su0;
13743         break;
13744     default:
13745         unallocated_encoding(s);
13746         return;
13747     }
13748 
13749     if (!feature) {
13750         unallocated_encoding(s);
13751         return;
13752     }
13753 
13754     if (!fp_access_check(s)) {
13755         return;
13756     }
13757     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13758 }
13759 
13760 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13761 {
13762     tcg_gen_rotli_i64(d, m, 1);
13763     tcg_gen_xor_i64(d, d, n);
13764 }
13765 
13766 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13767 {
13768     tcg_gen_rotli_vec(vece, d, m, 1);
13769     tcg_gen_xor_vec(vece, d, d, n);
13770 }
13771 
13772 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13773                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13774 {
13775     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13776     static const GVecGen3 op = {
13777         .fni8 = gen_rax1_i64,
13778         .fniv = gen_rax1_vec,
13779         .opt_opc = vecop_list,
13780         .fno = gen_helper_crypto_rax1,
13781         .vece = MO_64,
13782     };
13783     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13784 }
13785 
13786 /* Crypto three-reg SHA512
13787  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13788  * +-----------------------+------+---+---+-----+--------+------+------+
13789  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13790  * +-----------------------+------+---+---+-----+--------+------+------+
13791  */
13792 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13793 {
13794     int opcode = extract32(insn, 10, 2);
13795     int o =  extract32(insn, 14, 1);
13796     int rm = extract32(insn, 16, 5);
13797     int rn = extract32(insn, 5, 5);
13798     int rd = extract32(insn, 0, 5);
13799     bool feature;
13800     gen_helper_gvec_3 *oolfn = NULL;
13801     GVecGen3Fn *gvecfn = NULL;
13802 
13803     if (o == 0) {
13804         switch (opcode) {
13805         case 0: /* SHA512H */
13806             feature = dc_isar_feature(aa64_sha512, s);
13807             oolfn = gen_helper_crypto_sha512h;
13808             break;
13809         case 1: /* SHA512H2 */
13810             feature = dc_isar_feature(aa64_sha512, s);
13811             oolfn = gen_helper_crypto_sha512h2;
13812             break;
13813         case 2: /* SHA512SU1 */
13814             feature = dc_isar_feature(aa64_sha512, s);
13815             oolfn = gen_helper_crypto_sha512su1;
13816             break;
13817         case 3: /* RAX1 */
13818             feature = dc_isar_feature(aa64_sha3, s);
13819             gvecfn = gen_gvec_rax1;
13820             break;
13821         default:
13822             g_assert_not_reached();
13823         }
13824     } else {
13825         switch (opcode) {
13826         case 0: /* SM3PARTW1 */
13827             feature = dc_isar_feature(aa64_sm3, s);
13828             oolfn = gen_helper_crypto_sm3partw1;
13829             break;
13830         case 1: /* SM3PARTW2 */
13831             feature = dc_isar_feature(aa64_sm3, s);
13832             oolfn = gen_helper_crypto_sm3partw2;
13833             break;
13834         case 2: /* SM4EKEY */
13835             feature = dc_isar_feature(aa64_sm4, s);
13836             oolfn = gen_helper_crypto_sm4ekey;
13837             break;
13838         default:
13839             unallocated_encoding(s);
13840             return;
13841         }
13842     }
13843 
13844     if (!feature) {
13845         unallocated_encoding(s);
13846         return;
13847     }
13848 
13849     if (!fp_access_check(s)) {
13850         return;
13851     }
13852 
13853     if (oolfn) {
13854         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13855     } else {
13856         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13857     }
13858 }
13859 
13860 /* Crypto two-reg SHA512
13861  *  31                                     12  11  10  9    5 4    0
13862  * +-----------------------------------------+--------+------+------+
13863  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13864  * +-----------------------------------------+--------+------+------+
13865  */
13866 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13867 {
13868     int opcode = extract32(insn, 10, 2);
13869     int rn = extract32(insn, 5, 5);
13870     int rd = extract32(insn, 0, 5);
13871     bool feature;
13872 
13873     switch (opcode) {
13874     case 0: /* SHA512SU0 */
13875         feature = dc_isar_feature(aa64_sha512, s);
13876         break;
13877     case 1: /* SM4E */
13878         feature = dc_isar_feature(aa64_sm4, s);
13879         break;
13880     default:
13881         unallocated_encoding(s);
13882         return;
13883     }
13884 
13885     if (!feature) {
13886         unallocated_encoding(s);
13887         return;
13888     }
13889 
13890     if (!fp_access_check(s)) {
13891         return;
13892     }
13893 
13894     switch (opcode) {
13895     case 0: /* SHA512SU0 */
13896         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13897         break;
13898     case 1: /* SM4E */
13899         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13900         break;
13901     default:
13902         g_assert_not_reached();
13903     }
13904 }
13905 
13906 /* Crypto four-register
13907  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13908  * +-------------------+-----+------+---+------+------+------+
13909  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13910  * +-------------------+-----+------+---+------+------+------+
13911  */
13912 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13913 {
13914     int op0 = extract32(insn, 21, 2);
13915     int rm = extract32(insn, 16, 5);
13916     int ra = extract32(insn, 10, 5);
13917     int rn = extract32(insn, 5, 5);
13918     int rd = extract32(insn, 0, 5);
13919     bool feature;
13920 
13921     switch (op0) {
13922     case 0: /* EOR3 */
13923     case 1: /* BCAX */
13924         feature = dc_isar_feature(aa64_sha3, s);
13925         break;
13926     case 2: /* SM3SS1 */
13927         feature = dc_isar_feature(aa64_sm3, s);
13928         break;
13929     default:
13930         unallocated_encoding(s);
13931         return;
13932     }
13933 
13934     if (!feature) {
13935         unallocated_encoding(s);
13936         return;
13937     }
13938 
13939     if (!fp_access_check(s)) {
13940         return;
13941     }
13942 
13943     if (op0 < 2) {
13944         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13945         int pass;
13946 
13947         tcg_op1 = tcg_temp_new_i64();
13948         tcg_op2 = tcg_temp_new_i64();
13949         tcg_op3 = tcg_temp_new_i64();
13950         tcg_res[0] = tcg_temp_new_i64();
13951         tcg_res[1] = tcg_temp_new_i64();
13952 
13953         for (pass = 0; pass < 2; pass++) {
13954             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13955             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13956             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13957 
13958             if (op0 == 0) {
13959                 /* EOR3 */
13960                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13961             } else {
13962                 /* BCAX */
13963                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13964             }
13965             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13966         }
13967         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13968         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13969     } else {
13970         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13971 
13972         tcg_op1 = tcg_temp_new_i32();
13973         tcg_op2 = tcg_temp_new_i32();
13974         tcg_op3 = tcg_temp_new_i32();
13975         tcg_res = tcg_temp_new_i32();
13976         tcg_zero = tcg_constant_i32(0);
13977 
13978         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13979         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13980         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13981 
13982         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13983         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13984         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13985         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13986 
13987         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13988         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13989         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13990         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13991     }
13992 }
13993 
13994 /* Crypto XAR
13995  *  31                   21 20  16 15    10 9    5 4    0
13996  * +-----------------------+------+--------+------+------+
13997  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13998  * +-----------------------+------+--------+------+------+
13999  */
14000 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14001 {
14002     int rm = extract32(insn, 16, 5);
14003     int imm6 = extract32(insn, 10, 6);
14004     int rn = extract32(insn, 5, 5);
14005     int rd = extract32(insn, 0, 5);
14006 
14007     if (!dc_isar_feature(aa64_sha3, s)) {
14008         unallocated_encoding(s);
14009         return;
14010     }
14011 
14012     if (!fp_access_check(s)) {
14013         return;
14014     }
14015 
14016     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
14017                  vec_full_reg_offset(s, rn),
14018                  vec_full_reg_offset(s, rm), imm6, 16,
14019                  vec_full_reg_size(s));
14020 }
14021 
14022 /* Crypto three-reg imm2
14023  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
14024  * +-----------------------+------+-----+------+--------+------+------+
14025  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
14026  * +-----------------------+------+-----+------+--------+------+------+
14027  */
14028 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14029 {
14030     static gen_helper_gvec_3 * const fns[4] = {
14031         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14032         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14033     };
14034     int opcode = extract32(insn, 10, 2);
14035     int imm2 = extract32(insn, 12, 2);
14036     int rm = extract32(insn, 16, 5);
14037     int rn = extract32(insn, 5, 5);
14038     int rd = extract32(insn, 0, 5);
14039 
14040     if (!dc_isar_feature(aa64_sm3, s)) {
14041         unallocated_encoding(s);
14042         return;
14043     }
14044 
14045     if (!fp_access_check(s)) {
14046         return;
14047     }
14048 
14049     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14050 }
14051 
14052 /* C3.6 Data processing - SIMD, inc Crypto
14053  *
14054  * As the decode gets a little complex we are using a table based
14055  * approach for this part of the decode.
14056  */
14057 static const AArch64DecodeTable data_proc_simd[] = {
14058     /* pattern  ,  mask     ,  fn                        */
14059     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14060     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14061     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14062     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14063     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14064     { 0x0e000400, 0x9fe08400, disas_simd_copy },
14065     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14066     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14067     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14068     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14069     { 0x0e000000, 0xbf208c00, disas_simd_tb },
14070     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14071     { 0x2e000000, 0xbf208400, disas_simd_ext },
14072     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14073     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14074     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14075     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14076     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14077     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14078     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14079     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14080     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14081     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14082     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14083     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14084     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14085     { 0xce000000, 0xff808000, disas_crypto_four_reg },
14086     { 0xce800000, 0xffe00000, disas_crypto_xar },
14087     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14088     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14089     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14090     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14091     { 0x00000000, 0x00000000, NULL }
14092 };
14093 
14094 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14095 {
14096     /* Note that this is called with all non-FP cases from
14097      * table C3-6 so it must UNDEF for entries not specifically
14098      * allocated to instructions in that table.
14099      */
14100     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14101     if (fn) {
14102         fn(s, insn);
14103     } else {
14104         unallocated_encoding(s);
14105     }
14106 }
14107 
14108 /* C3.6 Data processing - SIMD and floating point */
14109 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14110 {
14111     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14112         disas_data_proc_fp(s, insn);
14113     } else {
14114         /* SIMD, including crypto */
14115         disas_data_proc_simd(s, insn);
14116     }
14117 }
14118 
14119 static bool trans_OK(DisasContext *s, arg_OK *a)
14120 {
14121     return true;
14122 }
14123 
14124 static bool trans_FAIL(DisasContext *s, arg_OK *a)
14125 {
14126     s->is_nonstreaming = true;
14127     return true;
14128 }
14129 
14130 /**
14131  * is_guarded_page:
14132  * @env: The cpu environment
14133  * @s: The DisasContext
14134  *
14135  * Return true if the page is guarded.
14136  */
14137 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14138 {
14139     uint64_t addr = s->base.pc_first;
14140 #ifdef CONFIG_USER_ONLY
14141     return page_get_flags(addr) & PAGE_BTI;
14142 #else
14143     CPUTLBEntryFull *full;
14144     void *host;
14145     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14146     int flags;
14147 
14148     /*
14149      * We test this immediately after reading an insn, which means
14150      * that the TLB entry must be present and valid, and thus this
14151      * access will never raise an exception.
14152      */
14153     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
14154                               false, &host, &full, 0);
14155     assert(!(flags & TLB_INVALID_MASK));
14156 
14157     return full->guarded;
14158 #endif
14159 }
14160 
14161 /**
14162  * btype_destination_ok:
14163  * @insn: The instruction at the branch destination
14164  * @bt: SCTLR_ELx.BT
14165  * @btype: PSTATE.BTYPE, and is non-zero
14166  *
14167  * On a guarded page, there are a limited number of insns
14168  * that may be present at the branch target:
14169  *   - branch target identifiers,
14170  *   - paciasp, pacibsp,
14171  *   - BRK insn
14172  *   - HLT insn
14173  * Anything else causes a Branch Target Exception.
14174  *
14175  * Return true if the branch is compatible, false to raise BTITRAP.
14176  */
14177 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14178 {
14179     if ((insn & 0xfffff01fu) == 0xd503201fu) {
14180         /* HINT space */
14181         switch (extract32(insn, 5, 7)) {
14182         case 0b011001: /* PACIASP */
14183         case 0b011011: /* PACIBSP */
14184             /*
14185              * If SCTLR_ELx.BT, then PACI*SP are not compatible
14186              * with btype == 3.  Otherwise all btype are ok.
14187              */
14188             return !bt || btype != 3;
14189         case 0b100000: /* BTI */
14190             /* Not compatible with any btype.  */
14191             return false;
14192         case 0b100010: /* BTI c */
14193             /* Not compatible with btype == 3 */
14194             return btype != 3;
14195         case 0b100100: /* BTI j */
14196             /* Not compatible with btype == 2 */
14197             return btype != 2;
14198         case 0b100110: /* BTI jc */
14199             /* Compatible with any btype.  */
14200             return true;
14201         }
14202     } else {
14203         switch (insn & 0xffe0001fu) {
14204         case 0xd4200000u: /* BRK */
14205         case 0xd4400000u: /* HLT */
14206             /* Give priority to the breakpoint exception.  */
14207             return true;
14208         }
14209     }
14210     return false;
14211 }
14212 
14213 /* C3.1 A64 instruction index by encoding */
14214 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14215 {
14216     switch (extract32(insn, 25, 4)) {
14217     case 0x8: case 0x9: /* Data processing - immediate */
14218         disas_data_proc_imm(s, insn);
14219         break;
14220     case 0xa: case 0xb: /* Branch, exception generation and system insns */
14221         disas_b_exc_sys(s, insn);
14222         break;
14223     case 0x4:
14224     case 0x6:
14225     case 0xc:
14226     case 0xe:      /* Loads and stores */
14227         disas_ldst(s, insn);
14228         break;
14229     case 0x5:
14230     case 0xd:      /* Data processing - register */
14231         disas_data_proc_reg(s, insn);
14232         break;
14233     case 0x7:
14234     case 0xf:      /* Data processing - SIMD and floating point */
14235         disas_data_proc_simd_fp(s, insn);
14236         break;
14237     default:
14238         unallocated_encoding(s);
14239         break;
14240     }
14241 }
14242 
14243 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14244                                           CPUState *cpu)
14245 {
14246     DisasContext *dc = container_of(dcbase, DisasContext, base);
14247     CPUARMState *env = cpu->env_ptr;
14248     ARMCPU *arm_cpu = env_archcpu(env);
14249     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14250     int bound, core_mmu_idx;
14251 
14252     dc->isar = &arm_cpu->isar;
14253     dc->condjmp = 0;
14254     dc->pc_save = dc->base.pc_first;
14255     dc->aarch64 = true;
14256     dc->thumb = false;
14257     dc->sctlr_b = 0;
14258     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14259     dc->condexec_mask = 0;
14260     dc->condexec_cond = 0;
14261     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14262     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14263     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14264     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14265     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14266     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14267 #if !defined(CONFIG_USER_ONLY)
14268     dc->user = (dc->current_el == 0);
14269 #endif
14270     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14271     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14272     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14273     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14274     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14275     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14276     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14277     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14278     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14279     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14280     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14281     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14282     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14283     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14284     dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14285     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14286     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14287     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14288     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14289     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14290     dc->vec_len = 0;
14291     dc->vec_stride = 0;
14292     dc->cp_regs = arm_cpu->cp_regs;
14293     dc->features = env->features;
14294     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14295 
14296 #ifdef CONFIG_USER_ONLY
14297     /* In sve_probe_page, we assume TBI is enabled. */
14298     tcg_debug_assert(dc->tbid & 1);
14299 #endif
14300 
14301     /* Single step state. The code-generation logic here is:
14302      *  SS_ACTIVE == 0:
14303      *   generate code with no special handling for single-stepping (except
14304      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14305      *   this happens anyway because those changes are all system register or
14306      *   PSTATE writes).
14307      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14308      *   emit code for one insn
14309      *   emit code to clear PSTATE.SS
14310      *   emit code to generate software step exception for completed step
14311      *   end TB (as usual for having generated an exception)
14312      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14313      *   emit code to generate a software step exception
14314      *   end the TB
14315      */
14316     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14317     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14318     dc->is_ldex = false;
14319 
14320     /* Bound the number of insns to execute to those left on the page.  */
14321     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14322 
14323     /* If architectural single step active, limit to 1.  */
14324     if (dc->ss_active) {
14325         bound = 1;
14326     }
14327     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14328 }
14329 
14330 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14331 {
14332 }
14333 
14334 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14335 {
14336     DisasContext *dc = container_of(dcbase, DisasContext, base);
14337     target_ulong pc_arg = dc->base.pc_next;
14338 
14339     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14340         pc_arg &= ~TARGET_PAGE_MASK;
14341     }
14342     tcg_gen_insn_start(pc_arg, 0, 0);
14343     dc->insn_start = tcg_last_op();
14344 }
14345 
14346 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14347 {
14348     DisasContext *s = container_of(dcbase, DisasContext, base);
14349     CPUARMState *env = cpu->env_ptr;
14350     uint64_t pc = s->base.pc_next;
14351     uint32_t insn;
14352 
14353     /* Singlestep exceptions have the highest priority. */
14354     if (s->ss_active && !s->pstate_ss) {
14355         /* Singlestep state is Active-pending.
14356          * If we're in this state at the start of a TB then either
14357          *  a) we just took an exception to an EL which is being debugged
14358          *     and this is the first insn in the exception handler
14359          *  b) debug exceptions were masked and we just unmasked them
14360          *     without changing EL (eg by clearing PSTATE.D)
14361          * In either case we're going to take a swstep exception in the
14362          * "did not step an insn" case, and so the syndrome ISV and EX
14363          * bits should be zero.
14364          */
14365         assert(s->base.num_insns == 1);
14366         gen_swstep_exception(s, 0, 0);
14367         s->base.is_jmp = DISAS_NORETURN;
14368         s->base.pc_next = pc + 4;
14369         return;
14370     }
14371 
14372     if (pc & 3) {
14373         /*
14374          * PC alignment fault.  This has priority over the instruction abort
14375          * that we would receive from a translation fault via arm_ldl_code.
14376          * This should only be possible after an indirect branch, at the
14377          * start of the TB.
14378          */
14379         assert(s->base.num_insns == 1);
14380         gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14381         s->base.is_jmp = DISAS_NORETURN;
14382         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14383         return;
14384     }
14385 
14386     s->pc_curr = pc;
14387     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14388     s->insn = insn;
14389     s->base.pc_next = pc + 4;
14390 
14391     s->fp_access_checked = false;
14392     s->sve_access_checked = false;
14393 
14394     if (s->pstate_il) {
14395         /*
14396          * Illegal execution state. This has priority over BTI
14397          * exceptions, but comes after instruction abort exceptions.
14398          */
14399         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14400         return;
14401     }
14402 
14403     if (dc_isar_feature(aa64_bti, s)) {
14404         if (s->base.num_insns == 1) {
14405             /*
14406              * At the first insn of the TB, compute s->guarded_page.
14407              * We delayed computing this until successfully reading
14408              * the first insn of the TB, above.  This (mostly) ensures
14409              * that the softmmu tlb entry has been populated, and the
14410              * page table GP bit is available.
14411              *
14412              * Note that we need to compute this even if btype == 0,
14413              * because this value is used for BR instructions later
14414              * where ENV is not available.
14415              */
14416             s->guarded_page = is_guarded_page(env, s);
14417 
14418             /* First insn can have btype set to non-zero.  */
14419             tcg_debug_assert(s->btype >= 0);
14420 
14421             /*
14422              * Note that the Branch Target Exception has fairly high
14423              * priority -- below debugging exceptions but above most
14424              * everything else.  This allows us to handle this now
14425              * instead of waiting until the insn is otherwise decoded.
14426              */
14427             if (s->btype != 0
14428                 && s->guarded_page
14429                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14430                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14431                 return;
14432             }
14433         } else {
14434             /* Not the first insn: btype must be 0.  */
14435             tcg_debug_assert(s->btype == 0);
14436         }
14437     }
14438 
14439     s->is_nonstreaming = false;
14440     if (s->sme_trap_nonstreaming) {
14441         disas_sme_fa64(s, insn);
14442     }
14443 
14444     if (!disas_a64(s, insn) &&
14445         !disas_sme(s, insn) &&
14446         !disas_sve(s, insn)) {
14447         disas_a64_legacy(s, insn);
14448     }
14449 
14450     /*
14451      * After execution of most insns, btype is reset to 0.
14452      * Note that we set btype == -1 when the insn sets btype.
14453      */
14454     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14455         reset_btype(s);
14456     }
14457 }
14458 
14459 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14460 {
14461     DisasContext *dc = container_of(dcbase, DisasContext, base);
14462 
14463     if (unlikely(dc->ss_active)) {
14464         /* Note that this means single stepping WFI doesn't halt the CPU.
14465          * For conditional branch insns this is harmless unreachable code as
14466          * gen_goto_tb() has already handled emitting the debug exception
14467          * (and thus a tb-jump is not possible when singlestepping).
14468          */
14469         switch (dc->base.is_jmp) {
14470         default:
14471             gen_a64_update_pc(dc, 4);
14472             /* fall through */
14473         case DISAS_EXIT:
14474         case DISAS_JUMP:
14475             gen_step_complete_exception(dc);
14476             break;
14477         case DISAS_NORETURN:
14478             break;
14479         }
14480     } else {
14481         switch (dc->base.is_jmp) {
14482         case DISAS_NEXT:
14483         case DISAS_TOO_MANY:
14484             gen_goto_tb(dc, 1, 4);
14485             break;
14486         default:
14487         case DISAS_UPDATE_EXIT:
14488             gen_a64_update_pc(dc, 4);
14489             /* fall through */
14490         case DISAS_EXIT:
14491             tcg_gen_exit_tb(NULL, 0);
14492             break;
14493         case DISAS_UPDATE_NOCHAIN:
14494             gen_a64_update_pc(dc, 4);
14495             /* fall through */
14496         case DISAS_JUMP:
14497             tcg_gen_lookup_and_goto_ptr();
14498             break;
14499         case DISAS_NORETURN:
14500         case DISAS_SWI:
14501             break;
14502         case DISAS_WFE:
14503             gen_a64_update_pc(dc, 4);
14504             gen_helper_wfe(cpu_env);
14505             break;
14506         case DISAS_YIELD:
14507             gen_a64_update_pc(dc, 4);
14508             gen_helper_yield(cpu_env);
14509             break;
14510         case DISAS_WFI:
14511             /*
14512              * This is a special case because we don't want to just halt
14513              * the CPU if trying to debug across a WFI.
14514              */
14515             gen_a64_update_pc(dc, 4);
14516             gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14517             /*
14518              * The helper doesn't necessarily throw an exception, but we
14519              * must go back to the main loop to check for interrupts anyway.
14520              */
14521             tcg_gen_exit_tb(NULL, 0);
14522             break;
14523         }
14524     }
14525 }
14526 
14527 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14528                                  CPUState *cpu, FILE *logfile)
14529 {
14530     DisasContext *dc = container_of(dcbase, DisasContext, base);
14531 
14532     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14533     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14534 }
14535 
14536 const TranslatorOps aarch64_translator_ops = {
14537     .init_disas_context = aarch64_tr_init_disas_context,
14538     .tb_start           = aarch64_tr_tb_start,
14539     .insn_start         = aarch64_tr_insn_start,
14540     .translate_insn     = aarch64_tr_translate_insn,
14541     .tb_stop            = aarch64_tr_tb_stop,
14542     .disas_log          = aarch64_tr_disas_log,
14543 };
14544