1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg-op.h" 24 #include "tcg/tcg-op-gvec.h" 25 #include "qemu/log.h" 26 #include "arm_ldst.h" 27 #include "translate.h" 28 #include "internals.h" 29 #include "qemu/host-utils.h" 30 #include "semihosting/semihost.h" 31 #include "exec/gen-icount.h" 32 #include "exec/helper-proto.h" 33 #include "exec/helper-gen.h" 34 #include "exec/log.h" 35 #include "cpregs.h" 36 #include "translate-a64.h" 37 #include "qemu/atomic128.h" 38 39 static TCGv_i64 cpu_X[32]; 40 static TCGv_i64 cpu_pc; 41 42 /* Load/store exclusive handling */ 43 static TCGv_i64 cpu_exclusive_high; 44 45 static const char *regnames[] = { 46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 50 }; 51 52 enum a64_shift_type { 53 A64_SHIFT_TYPE_LSL = 0, 54 A64_SHIFT_TYPE_LSR = 1, 55 A64_SHIFT_TYPE_ASR = 2, 56 A64_SHIFT_TYPE_ROR = 3 57 }; 58 59 /* 60 * Include the generated decoders. 61 */ 62 63 #include "decode-sme-fa64.c.inc" 64 #include "decode-a64.c.inc" 65 66 /* Table based decoder typedefs - used when the relevant bits for decode 67 * are too awkwardly scattered across the instruction (eg SIMD). 68 */ 69 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 70 71 typedef struct AArch64DecodeTable { 72 uint32_t pattern; 73 uint32_t mask; 74 AArch64DecodeFn *disas_fn; 75 } AArch64DecodeTable; 76 77 /* initialize TCG globals. */ 78 void a64_translate_init(void) 79 { 80 int i; 81 82 cpu_pc = tcg_global_mem_new_i64(cpu_env, 83 offsetof(CPUARMState, pc), 84 "pc"); 85 for (i = 0; i < 32; i++) { 86 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 87 offsetof(CPUARMState, xregs[i]), 88 regnames[i]); 89 } 90 91 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 92 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 93 } 94 95 /* 96 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 97 */ 98 static int get_a64_user_mem_index(DisasContext *s) 99 { 100 /* 101 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 102 * which is the usual mmu_idx for this cpu state. 103 */ 104 ARMMMUIdx useridx = s->mmu_idx; 105 106 if (s->unpriv) { 107 /* 108 * We have pre-computed the condition for AccType_UNPRIV. 109 * Therefore we should never get here with a mmu_idx for 110 * which we do not know the corresponding user mmu_idx. 111 */ 112 switch (useridx) { 113 case ARMMMUIdx_E10_1: 114 case ARMMMUIdx_E10_1_PAN: 115 useridx = ARMMMUIdx_E10_0; 116 break; 117 case ARMMMUIdx_E20_2: 118 case ARMMMUIdx_E20_2_PAN: 119 useridx = ARMMMUIdx_E20_0; 120 break; 121 default: 122 g_assert_not_reached(); 123 } 124 } 125 return arm_to_core_mmu_idx(useridx); 126 } 127 128 static void set_btype_raw(int val) 129 { 130 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 131 offsetof(CPUARMState, btype)); 132 } 133 134 static void set_btype(DisasContext *s, int val) 135 { 136 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 137 tcg_debug_assert(val >= 1 && val <= 3); 138 set_btype_raw(val); 139 s->btype = -1; 140 } 141 142 static void reset_btype(DisasContext *s) 143 { 144 if (s->btype != 0) { 145 set_btype_raw(0); 146 s->btype = 0; 147 } 148 } 149 150 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 151 { 152 assert(s->pc_save != -1); 153 if (tb_cflags(s->base.tb) & CF_PCREL) { 154 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 155 } else { 156 tcg_gen_movi_i64(dest, s->pc_curr + diff); 157 } 158 } 159 160 void gen_a64_update_pc(DisasContext *s, target_long diff) 161 { 162 gen_pc_plus_diff(s, cpu_pc, diff); 163 s->pc_save = s->pc_curr + diff; 164 } 165 166 /* 167 * Handle Top Byte Ignore (TBI) bits. 168 * 169 * If address tagging is enabled via the TCR TBI bits: 170 * + for EL2 and EL3 there is only one TBI bit, and if it is set 171 * then the address is zero-extended, clearing bits [63:56] 172 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 173 * and TBI1 controls addressses with bit 55 == 1. 174 * If the appropriate TBI bit is set for the address then 175 * the address is sign-extended from bit 55 into bits [63:56] 176 * 177 * Here We have concatenated TBI{1,0} into tbi. 178 */ 179 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 180 TCGv_i64 src, int tbi) 181 { 182 if (tbi == 0) { 183 /* Load unmodified address */ 184 tcg_gen_mov_i64(dst, src); 185 } else if (!regime_has_2_ranges(s->mmu_idx)) { 186 /* Force tag byte to all zero */ 187 tcg_gen_extract_i64(dst, src, 0, 56); 188 } else { 189 /* Sign-extend from bit 55. */ 190 tcg_gen_sextract_i64(dst, src, 0, 56); 191 192 switch (tbi) { 193 case 1: 194 /* tbi0 but !tbi1: only use the extension if positive */ 195 tcg_gen_and_i64(dst, dst, src); 196 break; 197 case 2: 198 /* !tbi0 but tbi1: only use the extension if negative */ 199 tcg_gen_or_i64(dst, dst, src); 200 break; 201 case 3: 202 /* tbi0 and tbi1: always use the extension */ 203 break; 204 default: 205 g_assert_not_reached(); 206 } 207 } 208 } 209 210 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 211 { 212 /* 213 * If address tagging is enabled for instructions via the TCR TBI bits, 214 * then loading an address into the PC will clear out any tag. 215 */ 216 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 217 s->pc_save = -1; 218 } 219 220 /* 221 * Handle MTE and/or TBI. 222 * 223 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 224 * for the tag to be present in the FAR_ELx register. But for user-only 225 * mode we do not have a TLB with which to implement this, so we must 226 * remove the top byte now. 227 * 228 * Always return a fresh temporary that we can increment independently 229 * of the write-back address. 230 */ 231 232 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 233 { 234 TCGv_i64 clean = tcg_temp_new_i64(); 235 #ifdef CONFIG_USER_ONLY 236 gen_top_byte_ignore(s, clean, addr, s->tbid); 237 #else 238 tcg_gen_mov_i64(clean, addr); 239 #endif 240 return clean; 241 } 242 243 /* Insert a zero tag into src, with the result at dst. */ 244 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 245 { 246 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 247 } 248 249 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 250 MMUAccessType acc, int log2_size) 251 { 252 gen_helper_probe_access(cpu_env, ptr, 253 tcg_constant_i32(acc), 254 tcg_constant_i32(get_mem_index(s)), 255 tcg_constant_i32(1 << log2_size)); 256 } 257 258 /* 259 * For MTE, check a single logical or atomic access. This probes a single 260 * address, the exact one specified. The size and alignment of the access 261 * is not relevant to MTE, per se, but watchpoints do require the size, 262 * and we want to recognize those before making any other changes to state. 263 */ 264 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 265 bool is_write, bool tag_checked, 266 int log2_size, bool is_unpriv, 267 int core_idx) 268 { 269 if (tag_checked && s->mte_active[is_unpriv]) { 270 TCGv_i64 ret; 271 int desc = 0; 272 273 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 274 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 275 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 276 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 277 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 278 279 ret = tcg_temp_new_i64(); 280 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 281 282 return ret; 283 } 284 return clean_data_tbi(s, addr); 285 } 286 287 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int log2_size) 289 { 290 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 291 false, get_mem_index(s)); 292 } 293 294 /* 295 * For MTE, check multiple logical sequential accesses. 296 */ 297 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 298 bool tag_checked, int size) 299 { 300 if (tag_checked && s->mte_active[0]) { 301 TCGv_i64 ret; 302 int desc = 0; 303 304 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 305 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 306 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 307 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 308 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 309 310 ret = tcg_temp_new_i64(); 311 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 312 313 return ret; 314 } 315 return clean_data_tbi(s, addr); 316 } 317 318 typedef struct DisasCompare64 { 319 TCGCond cond; 320 TCGv_i64 value; 321 } DisasCompare64; 322 323 static void a64_test_cc(DisasCompare64 *c64, int cc) 324 { 325 DisasCompare c32; 326 327 arm_test_cc(&c32, cc); 328 329 /* 330 * Sign-extend the 32-bit value so that the GE/LT comparisons work 331 * properly. The NE/EQ comparisons are also fine with this choice. 332 */ 333 c64->cond = c32.cond; 334 c64->value = tcg_temp_new_i64(); 335 tcg_gen_ext_i32_i64(c64->value, c32.value); 336 } 337 338 static void gen_rebuild_hflags(DisasContext *s) 339 { 340 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 341 } 342 343 static void gen_exception_internal(int excp) 344 { 345 assert(excp_is_internal(excp)); 346 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 347 } 348 349 static void gen_exception_internal_insn(DisasContext *s, int excp) 350 { 351 gen_a64_update_pc(s, 0); 352 gen_exception_internal(excp); 353 s->base.is_jmp = DISAS_NORETURN; 354 } 355 356 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 357 { 358 gen_a64_update_pc(s, 0); 359 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 360 s->base.is_jmp = DISAS_NORETURN; 361 } 362 363 static void gen_step_complete_exception(DisasContext *s) 364 { 365 /* We just completed step of an insn. Move from Active-not-pending 366 * to Active-pending, and then also take the swstep exception. 367 * This corresponds to making the (IMPDEF) choice to prioritize 368 * swstep exceptions over asynchronous exceptions taken to an exception 369 * level where debug is disabled. This choice has the advantage that 370 * we do not need to maintain internal state corresponding to the 371 * ISV/EX syndrome bits between completion of the step and generation 372 * of the exception, and our syndrome information is always correct. 373 */ 374 gen_ss_advance(s); 375 gen_swstep_exception(s, 1, s->is_ldex); 376 s->base.is_jmp = DISAS_NORETURN; 377 } 378 379 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 380 { 381 if (s->ss_active) { 382 return false; 383 } 384 return translator_use_goto_tb(&s->base, dest); 385 } 386 387 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 388 { 389 if (use_goto_tb(s, s->pc_curr + diff)) { 390 /* 391 * For pcrel, the pc must always be up-to-date on entry to 392 * the linked TB, so that it can use simple additions for all 393 * further adjustments. For !pcrel, the linked TB is compiled 394 * to know its full virtual address, so we can delay the 395 * update to pc to the unlinked path. A long chain of links 396 * can thus avoid many updates to the PC. 397 */ 398 if (tb_cflags(s->base.tb) & CF_PCREL) { 399 gen_a64_update_pc(s, diff); 400 tcg_gen_goto_tb(n); 401 } else { 402 tcg_gen_goto_tb(n); 403 gen_a64_update_pc(s, diff); 404 } 405 tcg_gen_exit_tb(s->base.tb, n); 406 s->base.is_jmp = DISAS_NORETURN; 407 } else { 408 gen_a64_update_pc(s, diff); 409 if (s->ss_active) { 410 gen_step_complete_exception(s); 411 } else { 412 tcg_gen_lookup_and_goto_ptr(); 413 s->base.is_jmp = DISAS_NORETURN; 414 } 415 } 416 } 417 418 /* 419 * Register access functions 420 * 421 * These functions are used for directly accessing a register in where 422 * changes to the final register value are likely to be made. If you 423 * need to use a register for temporary calculation (e.g. index type 424 * operations) use the read_* form. 425 * 426 * B1.2.1 Register mappings 427 * 428 * In instruction register encoding 31 can refer to ZR (zero register) or 429 * the SP (stack pointer) depending on context. In QEMU's case we map SP 430 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 431 * This is the point of the _sp forms. 432 */ 433 TCGv_i64 cpu_reg(DisasContext *s, int reg) 434 { 435 if (reg == 31) { 436 TCGv_i64 t = tcg_temp_new_i64(); 437 tcg_gen_movi_i64(t, 0); 438 return t; 439 } else { 440 return cpu_X[reg]; 441 } 442 } 443 444 /* register access for when 31 == SP */ 445 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 446 { 447 return cpu_X[reg]; 448 } 449 450 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 451 * representing the register contents. This TCGv is an auto-freed 452 * temporary so it need not be explicitly freed, and may be modified. 453 */ 454 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 455 { 456 TCGv_i64 v = tcg_temp_new_i64(); 457 if (reg != 31) { 458 if (sf) { 459 tcg_gen_mov_i64(v, cpu_X[reg]); 460 } else { 461 tcg_gen_ext32u_i64(v, cpu_X[reg]); 462 } 463 } else { 464 tcg_gen_movi_i64(v, 0); 465 } 466 return v; 467 } 468 469 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 470 { 471 TCGv_i64 v = tcg_temp_new_i64(); 472 if (sf) { 473 tcg_gen_mov_i64(v, cpu_X[reg]); 474 } else { 475 tcg_gen_ext32u_i64(v, cpu_X[reg]); 476 } 477 return v; 478 } 479 480 /* Return the offset into CPUARMState of a slice (from 481 * the least significant end) of FP register Qn (ie 482 * Dn, Sn, Hn or Bn). 483 * (Note that this is not the same mapping as for A32; see cpu.h) 484 */ 485 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 486 { 487 return vec_reg_offset(s, regno, 0, size); 488 } 489 490 /* Offset of the high half of the 128 bit vector Qn */ 491 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 492 { 493 return vec_reg_offset(s, regno, 1, MO_64); 494 } 495 496 /* Convenience accessors for reading and writing single and double 497 * FP registers. Writing clears the upper parts of the associated 498 * 128 bit vector register, as required by the architecture. 499 * Note that unlike the GP register accessors, the values returned 500 * by the read functions must be manually freed. 501 */ 502 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 503 { 504 TCGv_i64 v = tcg_temp_new_i64(); 505 506 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 507 return v; 508 } 509 510 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 511 { 512 TCGv_i32 v = tcg_temp_new_i32(); 513 514 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 515 return v; 516 } 517 518 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 519 { 520 TCGv_i32 v = tcg_temp_new_i32(); 521 522 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 523 return v; 524 } 525 526 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 527 * If SVE is not enabled, then there are only 128 bits in the vector. 528 */ 529 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 530 { 531 unsigned ofs = fp_reg_offset(s, rd, MO_64); 532 unsigned vsz = vec_full_reg_size(s); 533 534 /* Nop move, with side effect of clearing the tail. */ 535 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 536 } 537 538 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 539 { 540 unsigned ofs = fp_reg_offset(s, reg, MO_64); 541 542 tcg_gen_st_i64(v, cpu_env, ofs); 543 clear_vec_high(s, false, reg); 544 } 545 546 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 547 { 548 TCGv_i64 tmp = tcg_temp_new_i64(); 549 550 tcg_gen_extu_i32_i64(tmp, v); 551 write_fp_dreg(s, reg, tmp); 552 } 553 554 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 555 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 556 GVecGen2Fn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 2-operand + immediate AdvSIMD vector operation using 563 * an expander function. 564 */ 565 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 566 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 567 { 568 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 569 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 570 } 571 572 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 573 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 574 GVecGen3Fn *gvec_fn, int vece) 575 { 576 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 577 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 578 } 579 580 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 581 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 582 int rx, GVecGen4Fn *gvec_fn, int vece) 583 { 584 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 585 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 586 is_q ? 16 : 8, vec_full_reg_size(s)); 587 } 588 589 /* Expand a 2-operand operation using an out-of-line helper. */ 590 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 591 int rn, int data, gen_helper_gvec_2 *fn) 592 { 593 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 594 vec_full_reg_offset(s, rn), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand operation using an out-of-line helper. */ 599 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 600 int rn, int rm, int data, gen_helper_gvec_3 *fn) 601 { 602 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 603 vec_full_reg_offset(s, rn), 604 vec_full_reg_offset(s, rm), 605 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 606 } 607 608 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 609 * an out-of-line helper. 610 */ 611 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 612 int rm, bool is_fp16, int data, 613 gen_helper_gvec_3_ptr *fn) 614 { 615 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 616 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 617 vec_full_reg_offset(s, rn), 618 vec_full_reg_offset(s, rm), fpst, 619 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 620 } 621 622 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 623 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 624 int rm, gen_helper_gvec_3_ptr *fn) 625 { 626 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 627 628 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 629 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), qc_ptr, 632 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 633 } 634 635 /* Expand a 4-operand operation using an out-of-line helper. */ 636 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 637 int rm, int ra, int data, gen_helper_gvec_4 *fn) 638 { 639 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 640 vec_full_reg_offset(s, rn), 641 vec_full_reg_offset(s, rm), 642 vec_full_reg_offset(s, ra), 643 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 644 } 645 646 /* 647 * Expand a 4-operand + fpstatus pointer + simd data value operation using 648 * an out-of-line helper. 649 */ 650 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 651 int rm, int ra, bool is_fp16, int data, 652 gen_helper_gvec_4_ptr *fn) 653 { 654 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 655 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 656 vec_full_reg_offset(s, rn), 657 vec_full_reg_offset(s, rm), 658 vec_full_reg_offset(s, ra), fpst, 659 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 660 } 661 662 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 663 * than the 32 bit equivalent. 664 */ 665 static inline void gen_set_NZ64(TCGv_i64 result) 666 { 667 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 668 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 669 } 670 671 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 672 static inline void gen_logic_CC(int sf, TCGv_i64 result) 673 { 674 if (sf) { 675 gen_set_NZ64(result); 676 } else { 677 tcg_gen_extrl_i64_i32(cpu_ZF, result); 678 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 679 } 680 tcg_gen_movi_i32(cpu_CF, 0); 681 tcg_gen_movi_i32(cpu_VF, 0); 682 } 683 684 /* dest = T0 + T1; compute C, N, V and Z flags */ 685 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 686 { 687 TCGv_i64 result, flag, tmp; 688 result = tcg_temp_new_i64(); 689 flag = tcg_temp_new_i64(); 690 tmp = tcg_temp_new_i64(); 691 692 tcg_gen_movi_i64(tmp, 0); 693 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 694 695 tcg_gen_extrl_i64_i32(cpu_CF, flag); 696 697 gen_set_NZ64(result); 698 699 tcg_gen_xor_i64(flag, result, t0); 700 tcg_gen_xor_i64(tmp, t0, t1); 701 tcg_gen_andc_i64(flag, flag, tmp); 702 tcg_gen_extrh_i64_i32(cpu_VF, flag); 703 704 tcg_gen_mov_i64(dest, result); 705 } 706 707 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 708 { 709 TCGv_i32 t0_32 = tcg_temp_new_i32(); 710 TCGv_i32 t1_32 = tcg_temp_new_i32(); 711 TCGv_i32 tmp = tcg_temp_new_i32(); 712 713 tcg_gen_movi_i32(tmp, 0); 714 tcg_gen_extrl_i64_i32(t0_32, t0); 715 tcg_gen_extrl_i64_i32(t1_32, t1); 716 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 717 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 718 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 719 tcg_gen_xor_i32(tmp, t0_32, t1_32); 720 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 721 tcg_gen_extu_i32_i64(dest, cpu_NF); 722 } 723 724 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 if (sf) { 727 gen_add64_CC(dest, t0, t1); 728 } else { 729 gen_add32_CC(dest, t0, t1); 730 } 731 } 732 733 /* dest = T0 - T1; compute C, N, V and Z flags */ 734 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 735 { 736 /* 64 bit arithmetic */ 737 TCGv_i64 result, flag, tmp; 738 739 result = tcg_temp_new_i64(); 740 flag = tcg_temp_new_i64(); 741 tcg_gen_sub_i64(result, t0, t1); 742 743 gen_set_NZ64(result); 744 745 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 746 tcg_gen_extrl_i64_i32(cpu_CF, flag); 747 748 tcg_gen_xor_i64(flag, result, t0); 749 tmp = tcg_temp_new_i64(); 750 tcg_gen_xor_i64(tmp, t0, t1); 751 tcg_gen_and_i64(flag, flag, tmp); 752 tcg_gen_extrh_i64_i32(cpu_VF, flag); 753 tcg_gen_mov_i64(dest, result); 754 } 755 756 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 757 { 758 /* 32 bit arithmetic */ 759 TCGv_i32 t0_32 = tcg_temp_new_i32(); 760 TCGv_i32 t1_32 = tcg_temp_new_i32(); 761 TCGv_i32 tmp; 762 763 tcg_gen_extrl_i64_i32(t0_32, t0); 764 tcg_gen_extrl_i64_i32(t1_32, t1); 765 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 766 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 767 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 768 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 769 tmp = tcg_temp_new_i32(); 770 tcg_gen_xor_i32(tmp, t0_32, t1_32); 771 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 772 tcg_gen_extu_i32_i64(dest, cpu_NF); 773 } 774 775 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 if (sf) { 778 gen_sub64_CC(dest, t0, t1); 779 } else { 780 gen_sub32_CC(dest, t0, t1); 781 } 782 } 783 784 /* dest = T0 + T1 + CF; do not compute flags. */ 785 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 786 { 787 TCGv_i64 flag = tcg_temp_new_i64(); 788 tcg_gen_extu_i32_i64(flag, cpu_CF); 789 tcg_gen_add_i64(dest, t0, t1); 790 tcg_gen_add_i64(dest, dest, flag); 791 792 if (!sf) { 793 tcg_gen_ext32u_i64(dest, dest); 794 } 795 } 796 797 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 798 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 799 { 800 if (sf) { 801 TCGv_i64 result = tcg_temp_new_i64(); 802 TCGv_i64 cf_64 = tcg_temp_new_i64(); 803 TCGv_i64 vf_64 = tcg_temp_new_i64(); 804 TCGv_i64 tmp = tcg_temp_new_i64(); 805 TCGv_i64 zero = tcg_constant_i64(0); 806 807 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 808 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 809 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 810 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 811 gen_set_NZ64(result); 812 813 tcg_gen_xor_i64(vf_64, result, t0); 814 tcg_gen_xor_i64(tmp, t0, t1); 815 tcg_gen_andc_i64(vf_64, vf_64, tmp); 816 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 817 818 tcg_gen_mov_i64(dest, result); 819 } else { 820 TCGv_i32 t0_32 = tcg_temp_new_i32(); 821 TCGv_i32 t1_32 = tcg_temp_new_i32(); 822 TCGv_i32 tmp = tcg_temp_new_i32(); 823 TCGv_i32 zero = tcg_constant_i32(0); 824 825 tcg_gen_extrl_i64_i32(t0_32, t0); 826 tcg_gen_extrl_i64_i32(t1_32, t1); 827 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 828 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 829 830 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 831 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 832 tcg_gen_xor_i32(tmp, t0_32, t1_32); 833 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 834 tcg_gen_extu_i32_i64(dest, cpu_NF); 835 } 836 } 837 838 /* 839 * Load/Store generators 840 */ 841 842 /* 843 * Store from GPR register to memory. 844 */ 845 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 846 TCGv_i64 tcg_addr, MemOp memop, int memidx, 847 bool iss_valid, 848 unsigned int iss_srt, 849 bool iss_sf, bool iss_ar) 850 { 851 memop = finalize_memop(s, memop); 852 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 853 854 if (iss_valid) { 855 uint32_t syn; 856 857 syn = syn_data_abort_with_iss(0, 858 (memop & MO_SIZE), 859 false, 860 iss_srt, 861 iss_sf, 862 iss_ar, 863 0, 0, 0, 0, 0, false); 864 disas_set_insn_syndrome(s, syn); 865 } 866 } 867 868 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 869 TCGv_i64 tcg_addr, MemOp memop, 870 bool iss_valid, 871 unsigned int iss_srt, 872 bool iss_sf, bool iss_ar) 873 { 874 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 875 iss_valid, iss_srt, iss_sf, iss_ar); 876 } 877 878 /* 879 * Load from memory to GPR register 880 */ 881 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 882 MemOp memop, bool extend, int memidx, 883 bool iss_valid, unsigned int iss_srt, 884 bool iss_sf, bool iss_ar) 885 { 886 memop = finalize_memop(s, memop); 887 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 888 889 if (extend && (memop & MO_SIGN)) { 890 g_assert((memop & MO_SIZE) <= MO_32); 891 tcg_gen_ext32u_i64(dest, dest); 892 } 893 894 if (iss_valid) { 895 uint32_t syn; 896 897 syn = syn_data_abort_with_iss(0, 898 (memop & MO_SIZE), 899 (memop & MO_SIGN) != 0, 900 iss_srt, 901 iss_sf, 902 iss_ar, 903 0, 0, 0, 0, 0, false); 904 disas_set_insn_syndrome(s, syn); 905 } 906 } 907 908 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 909 MemOp memop, bool extend, 910 bool iss_valid, unsigned int iss_srt, 911 bool iss_sf, bool iss_ar) 912 { 913 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 914 iss_valid, iss_srt, iss_sf, iss_ar); 915 } 916 917 /* 918 * Store from FP register to memory 919 */ 920 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 921 { 922 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 923 TCGv_i64 tmplo = tcg_temp_new_i64(); 924 MemOp mop; 925 926 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 927 928 if (size < 4) { 929 mop = finalize_memop(s, size); 930 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 931 } else { 932 bool be = s->be_data == MO_BE; 933 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); 934 TCGv_i64 tmphi = tcg_temp_new_i64(); 935 936 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 937 938 mop = s->be_data | MO_UQ; 939 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 940 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 941 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 942 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr, 943 get_mem_index(s), mop); 944 } 945 } 946 947 /* 948 * Load from memory to FP register 949 */ 950 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 951 { 952 /* This always zero-extends and writes to a full 128 bit wide vector */ 953 TCGv_i64 tmplo = tcg_temp_new_i64(); 954 TCGv_i64 tmphi = NULL; 955 MemOp mop; 956 957 if (size < 4) { 958 mop = finalize_memop(s, size); 959 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 960 } else { 961 bool be = s->be_data == MO_BE; 962 TCGv_i64 tcg_hiaddr; 963 964 tmphi = tcg_temp_new_i64(); 965 tcg_hiaddr = tcg_temp_new_i64(); 966 967 mop = s->be_data | MO_UQ; 968 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 969 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 970 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 971 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr, 972 get_mem_index(s), mop); 973 } 974 975 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 976 977 if (tmphi) { 978 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 979 } 980 clear_vec_high(s, tmphi != NULL, destidx); 981 } 982 983 /* 984 * Vector load/store helpers. 985 * 986 * The principal difference between this and a FP load is that we don't 987 * zero extend as we are filling a partial chunk of the vector register. 988 * These functions don't support 128 bit loads/stores, which would be 989 * normal load/store operations. 990 * 991 * The _i32 versions are useful when operating on 32 bit quantities 992 * (eg for floating point single or using Neon helper functions). 993 */ 994 995 /* Get value of an element within a vector register */ 996 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 997 int element, MemOp memop) 998 { 999 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1000 switch ((unsigned)memop) { 1001 case MO_8: 1002 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1003 break; 1004 case MO_16: 1005 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1006 break; 1007 case MO_32: 1008 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1009 break; 1010 case MO_8|MO_SIGN: 1011 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1012 break; 1013 case MO_16|MO_SIGN: 1014 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1015 break; 1016 case MO_32|MO_SIGN: 1017 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1018 break; 1019 case MO_64: 1020 case MO_64|MO_SIGN: 1021 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1022 break; 1023 default: 1024 g_assert_not_reached(); 1025 } 1026 } 1027 1028 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1029 int element, MemOp memop) 1030 { 1031 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1032 switch (memop) { 1033 case MO_8: 1034 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1035 break; 1036 case MO_16: 1037 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1038 break; 1039 case MO_8|MO_SIGN: 1040 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1041 break; 1042 case MO_16|MO_SIGN: 1043 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1044 break; 1045 case MO_32: 1046 case MO_32|MO_SIGN: 1047 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1048 break; 1049 default: 1050 g_assert_not_reached(); 1051 } 1052 } 1053 1054 /* Set value of an element within a vector register */ 1055 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1056 int element, MemOp memop) 1057 { 1058 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1059 switch (memop) { 1060 case MO_8: 1061 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1062 break; 1063 case MO_16: 1064 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1065 break; 1066 case MO_32: 1067 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1068 break; 1069 case MO_64: 1070 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1071 break; 1072 default: 1073 g_assert_not_reached(); 1074 } 1075 } 1076 1077 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1078 int destidx, int element, MemOp memop) 1079 { 1080 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1081 switch (memop) { 1082 case MO_8: 1083 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1084 break; 1085 case MO_16: 1086 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1087 break; 1088 case MO_32: 1089 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1090 break; 1091 default: 1092 g_assert_not_reached(); 1093 } 1094 } 1095 1096 /* Store from vector register to memory */ 1097 static void do_vec_st(DisasContext *s, int srcidx, int element, 1098 TCGv_i64 tcg_addr, MemOp mop) 1099 { 1100 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1101 1102 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1103 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1104 } 1105 1106 /* Load from memory to vector register */ 1107 static void do_vec_ld(DisasContext *s, int destidx, int element, 1108 TCGv_i64 tcg_addr, MemOp mop) 1109 { 1110 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1111 1112 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1113 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1114 } 1115 1116 /* Check that FP/Neon access is enabled. If it is, return 1117 * true. If not, emit code to generate an appropriate exception, 1118 * and return false; the caller should not emit any code for 1119 * the instruction. Note that this check must happen after all 1120 * unallocated-encoding checks (otherwise the syndrome information 1121 * for the resulting exception will be incorrect). 1122 */ 1123 static bool fp_access_check_only(DisasContext *s) 1124 { 1125 if (s->fp_excp_el) { 1126 assert(!s->fp_access_checked); 1127 s->fp_access_checked = true; 1128 1129 gen_exception_insn_el(s, 0, EXCP_UDEF, 1130 syn_fp_access_trap(1, 0xe, false, 0), 1131 s->fp_excp_el); 1132 return false; 1133 } 1134 s->fp_access_checked = true; 1135 return true; 1136 } 1137 1138 static bool fp_access_check(DisasContext *s) 1139 { 1140 if (!fp_access_check_only(s)) { 1141 return false; 1142 } 1143 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1144 gen_exception_insn(s, 0, EXCP_UDEF, 1145 syn_smetrap(SME_ET_Streaming, false)); 1146 return false; 1147 } 1148 return true; 1149 } 1150 1151 /* 1152 * Check that SVE access is enabled. If it is, return true. 1153 * If not, emit code to generate an appropriate exception and return false. 1154 * This function corresponds to CheckSVEEnabled(). 1155 */ 1156 bool sve_access_check(DisasContext *s) 1157 { 1158 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1159 assert(dc_isar_feature(aa64_sme, s)); 1160 if (!sme_sm_enabled_check(s)) { 1161 goto fail_exit; 1162 } 1163 } else if (s->sve_excp_el) { 1164 gen_exception_insn_el(s, 0, EXCP_UDEF, 1165 syn_sve_access_trap(), s->sve_excp_el); 1166 goto fail_exit; 1167 } 1168 s->sve_access_checked = true; 1169 return fp_access_check(s); 1170 1171 fail_exit: 1172 /* Assert that we only raise one exception per instruction. */ 1173 assert(!s->sve_access_checked); 1174 s->sve_access_checked = true; 1175 return false; 1176 } 1177 1178 /* 1179 * Check that SME access is enabled, raise an exception if not. 1180 * Note that this function corresponds to CheckSMEAccess and is 1181 * only used directly for cpregs. 1182 */ 1183 static bool sme_access_check(DisasContext *s) 1184 { 1185 if (s->sme_excp_el) { 1186 gen_exception_insn_el(s, 0, EXCP_UDEF, 1187 syn_smetrap(SME_ET_AccessTrap, false), 1188 s->sme_excp_el); 1189 return false; 1190 } 1191 return true; 1192 } 1193 1194 /* This function corresponds to CheckSMEEnabled. */ 1195 bool sme_enabled_check(DisasContext *s) 1196 { 1197 /* 1198 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1199 * to be zero when fp_excp_el has priority. This is because we need 1200 * sme_excp_el by itself for cpregs access checks. 1201 */ 1202 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1203 s->fp_access_checked = true; 1204 return sme_access_check(s); 1205 } 1206 return fp_access_check_only(s); 1207 } 1208 1209 /* Common subroutine for CheckSMEAnd*Enabled. */ 1210 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1211 { 1212 if (!sme_enabled_check(s)) { 1213 return false; 1214 } 1215 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1216 gen_exception_insn(s, 0, EXCP_UDEF, 1217 syn_smetrap(SME_ET_NotStreaming, false)); 1218 return false; 1219 } 1220 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1221 gen_exception_insn(s, 0, EXCP_UDEF, 1222 syn_smetrap(SME_ET_InactiveZA, false)); 1223 return false; 1224 } 1225 return true; 1226 } 1227 1228 /* 1229 * This utility function is for doing register extension with an 1230 * optional shift. You will likely want to pass a temporary for the 1231 * destination register. See DecodeRegExtend() in the ARM ARM. 1232 */ 1233 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1234 int option, unsigned int shift) 1235 { 1236 int extsize = extract32(option, 0, 2); 1237 bool is_signed = extract32(option, 2, 1); 1238 1239 if (is_signed) { 1240 switch (extsize) { 1241 case 0: 1242 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1243 break; 1244 case 1: 1245 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1246 break; 1247 case 2: 1248 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1249 break; 1250 case 3: 1251 tcg_gen_mov_i64(tcg_out, tcg_in); 1252 break; 1253 } 1254 } else { 1255 switch (extsize) { 1256 case 0: 1257 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1258 break; 1259 case 1: 1260 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1261 break; 1262 case 2: 1263 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1264 break; 1265 case 3: 1266 tcg_gen_mov_i64(tcg_out, tcg_in); 1267 break; 1268 } 1269 } 1270 1271 if (shift) { 1272 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1273 } 1274 } 1275 1276 static inline void gen_check_sp_alignment(DisasContext *s) 1277 { 1278 /* The AArch64 architecture mandates that (if enabled via PSTATE 1279 * or SCTLR bits) there is a check that SP is 16-aligned on every 1280 * SP-relative load or store (with an exception generated if it is not). 1281 * In line with general QEMU practice regarding misaligned accesses, 1282 * we omit these checks for the sake of guest program performance. 1283 * This function is provided as a hook so we can more easily add these 1284 * checks in future (possibly as a "favour catching guest program bugs 1285 * over speed" user selectable option). 1286 */ 1287 } 1288 1289 /* 1290 * This provides a simple table based table lookup decoder. It is 1291 * intended to be used when the relevant bits for decode are too 1292 * awkwardly placed and switch/if based logic would be confusing and 1293 * deeply nested. Since it's a linear search through the table, tables 1294 * should be kept small. 1295 * 1296 * It returns the first handler where insn & mask == pattern, or 1297 * NULL if there is no match. 1298 * The table is terminated by an empty mask (i.e. 0) 1299 */ 1300 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1301 uint32_t insn) 1302 { 1303 const AArch64DecodeTable *tptr = table; 1304 1305 while (tptr->mask) { 1306 if ((insn & tptr->mask) == tptr->pattern) { 1307 return tptr->disas_fn; 1308 } 1309 tptr++; 1310 } 1311 return NULL; 1312 } 1313 1314 /* 1315 * The instruction disassembly implemented here matches 1316 * the instruction encoding classifications in chapter C4 1317 * of the ARM Architecture Reference Manual (DDI0487B_a); 1318 * classification names and decode diagrams here should generally 1319 * match up with those in the manual. 1320 */ 1321 1322 /* Unconditional branch (immediate) 1323 * 31 30 26 25 0 1324 * +----+-----------+-------------------------------------+ 1325 * | op | 0 0 1 0 1 | imm26 | 1326 * +----+-----------+-------------------------------------+ 1327 */ 1328 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) 1329 { 1330 int64_t diff = sextract32(insn, 0, 26) * 4; 1331 1332 if (insn & (1U << 31)) { 1333 /* BL Branch with link */ 1334 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1335 } 1336 1337 /* B Branch / BL Branch with link */ 1338 reset_btype(s); 1339 gen_goto_tb(s, 0, diff); 1340 } 1341 1342 /* Compare and branch (immediate) 1343 * 31 30 25 24 23 5 4 0 1344 * +----+-------------+----+---------------------+--------+ 1345 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | 1346 * +----+-------------+----+---------------------+--------+ 1347 */ 1348 static void disas_comp_b_imm(DisasContext *s, uint32_t insn) 1349 { 1350 unsigned int sf, op, rt; 1351 int64_t diff; 1352 DisasLabel match; 1353 TCGv_i64 tcg_cmp; 1354 1355 sf = extract32(insn, 31, 1); 1356 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ 1357 rt = extract32(insn, 0, 5); 1358 diff = sextract32(insn, 5, 19) * 4; 1359 1360 tcg_cmp = read_cpu_reg(s, rt, sf); 1361 reset_btype(s); 1362 1363 match = gen_disas_label(s); 1364 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1365 tcg_cmp, 0, match.label); 1366 gen_goto_tb(s, 0, 4); 1367 set_disas_label(s, match); 1368 gen_goto_tb(s, 1, diff); 1369 } 1370 1371 /* Test and branch (immediate) 1372 * 31 30 25 24 23 19 18 5 4 0 1373 * +----+-------------+----+-------+-------------+------+ 1374 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | 1375 * +----+-------------+----+-------+-------------+------+ 1376 */ 1377 static void disas_test_b_imm(DisasContext *s, uint32_t insn) 1378 { 1379 unsigned int bit_pos, op, rt; 1380 int64_t diff; 1381 DisasLabel match; 1382 TCGv_i64 tcg_cmp; 1383 1384 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); 1385 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ 1386 diff = sextract32(insn, 5, 14) * 4; 1387 rt = extract32(insn, 0, 5); 1388 1389 tcg_cmp = tcg_temp_new_i64(); 1390 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); 1391 1392 reset_btype(s); 1393 1394 match = gen_disas_label(s); 1395 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1396 tcg_cmp, 0, match.label); 1397 gen_goto_tb(s, 0, 4); 1398 set_disas_label(s, match); 1399 gen_goto_tb(s, 1, diff); 1400 } 1401 1402 /* Conditional branch (immediate) 1403 * 31 25 24 23 5 4 3 0 1404 * +---------------+----+---------------------+----+------+ 1405 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | 1406 * +---------------+----+---------------------+----+------+ 1407 */ 1408 static void disas_cond_b_imm(DisasContext *s, uint32_t insn) 1409 { 1410 unsigned int cond; 1411 int64_t diff; 1412 1413 if ((insn & (1 << 4)) || (insn & (1 << 24))) { 1414 unallocated_encoding(s); 1415 return; 1416 } 1417 diff = sextract32(insn, 5, 19) * 4; 1418 cond = extract32(insn, 0, 4); 1419 1420 reset_btype(s); 1421 if (cond < 0x0e) { 1422 /* genuinely conditional branches */ 1423 DisasLabel match = gen_disas_label(s); 1424 arm_gen_test_cc(cond, match.label); 1425 gen_goto_tb(s, 0, 4); 1426 set_disas_label(s, match); 1427 gen_goto_tb(s, 1, diff); 1428 } else { 1429 /* 0xe and 0xf are both "always" conditions */ 1430 gen_goto_tb(s, 0, diff); 1431 } 1432 } 1433 1434 /* HINT instruction group, including various allocated HINTs */ 1435 static void handle_hint(DisasContext *s, uint32_t insn, 1436 unsigned int op1, unsigned int op2, unsigned int crm) 1437 { 1438 unsigned int selector = crm << 3 | op2; 1439 1440 if (op1 != 3) { 1441 unallocated_encoding(s); 1442 return; 1443 } 1444 1445 switch (selector) { 1446 case 0b00000: /* NOP */ 1447 break; 1448 case 0b00011: /* WFI */ 1449 s->base.is_jmp = DISAS_WFI; 1450 break; 1451 case 0b00001: /* YIELD */ 1452 /* When running in MTTCG we don't generate jumps to the yield and 1453 * WFE helpers as it won't affect the scheduling of other vCPUs. 1454 * If we wanted to more completely model WFE/SEV so we don't busy 1455 * spin unnecessarily we would need to do something more involved. 1456 */ 1457 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1458 s->base.is_jmp = DISAS_YIELD; 1459 } 1460 break; 1461 case 0b00010: /* WFE */ 1462 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1463 s->base.is_jmp = DISAS_WFE; 1464 } 1465 break; 1466 case 0b00100: /* SEV */ 1467 case 0b00101: /* SEVL */ 1468 case 0b00110: /* DGH */ 1469 /* we treat all as NOP at least for now */ 1470 break; 1471 case 0b00111: /* XPACLRI */ 1472 if (s->pauth_active) { 1473 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1474 } 1475 break; 1476 case 0b01000: /* PACIA1716 */ 1477 if (s->pauth_active) { 1478 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1479 } 1480 break; 1481 case 0b01010: /* PACIB1716 */ 1482 if (s->pauth_active) { 1483 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1484 } 1485 break; 1486 case 0b01100: /* AUTIA1716 */ 1487 if (s->pauth_active) { 1488 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1489 } 1490 break; 1491 case 0b01110: /* AUTIB1716 */ 1492 if (s->pauth_active) { 1493 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1494 } 1495 break; 1496 case 0b10000: /* ESB */ 1497 /* Without RAS, we must implement this as NOP. */ 1498 if (dc_isar_feature(aa64_ras, s)) { 1499 /* 1500 * QEMU does not have a source of physical SErrors, 1501 * so we are only concerned with virtual SErrors. 1502 * The pseudocode in the ARM for this case is 1503 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1504 * AArch64.vESBOperation(); 1505 * Most of the condition can be evaluated at translation time. 1506 * Test for EL2 present, and defer test for SEL2 to runtime. 1507 */ 1508 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1509 gen_helper_vesb(cpu_env); 1510 } 1511 } 1512 break; 1513 case 0b11000: /* PACIAZ */ 1514 if (s->pauth_active) { 1515 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1516 tcg_constant_i64(0)); 1517 } 1518 break; 1519 case 0b11001: /* PACIASP */ 1520 if (s->pauth_active) { 1521 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1522 } 1523 break; 1524 case 0b11010: /* PACIBZ */ 1525 if (s->pauth_active) { 1526 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1527 tcg_constant_i64(0)); 1528 } 1529 break; 1530 case 0b11011: /* PACIBSP */ 1531 if (s->pauth_active) { 1532 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1533 } 1534 break; 1535 case 0b11100: /* AUTIAZ */ 1536 if (s->pauth_active) { 1537 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1538 tcg_constant_i64(0)); 1539 } 1540 break; 1541 case 0b11101: /* AUTIASP */ 1542 if (s->pauth_active) { 1543 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1544 } 1545 break; 1546 case 0b11110: /* AUTIBZ */ 1547 if (s->pauth_active) { 1548 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1549 tcg_constant_i64(0)); 1550 } 1551 break; 1552 case 0b11111: /* AUTIBSP */ 1553 if (s->pauth_active) { 1554 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1555 } 1556 break; 1557 default: 1558 /* default specified as NOP equivalent */ 1559 break; 1560 } 1561 } 1562 1563 static void gen_clrex(DisasContext *s, uint32_t insn) 1564 { 1565 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1566 } 1567 1568 /* CLREX, DSB, DMB, ISB */ 1569 static void handle_sync(DisasContext *s, uint32_t insn, 1570 unsigned int op1, unsigned int op2, unsigned int crm) 1571 { 1572 TCGBar bar; 1573 1574 if (op1 != 3) { 1575 unallocated_encoding(s); 1576 return; 1577 } 1578 1579 switch (op2) { 1580 case 2: /* CLREX */ 1581 gen_clrex(s, insn); 1582 return; 1583 case 4: /* DSB */ 1584 case 5: /* DMB */ 1585 switch (crm & 3) { 1586 case 1: /* MBReqTypes_Reads */ 1587 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1588 break; 1589 case 2: /* MBReqTypes_Writes */ 1590 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1591 break; 1592 default: /* MBReqTypes_All */ 1593 bar = TCG_BAR_SC | TCG_MO_ALL; 1594 break; 1595 } 1596 tcg_gen_mb(bar); 1597 return; 1598 case 6: /* ISB */ 1599 /* We need to break the TB after this insn to execute 1600 * a self-modified code correctly and also to take 1601 * any pending interrupts immediately. 1602 */ 1603 reset_btype(s); 1604 gen_goto_tb(s, 0, 4); 1605 return; 1606 1607 case 7: /* SB */ 1608 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1609 goto do_unallocated; 1610 } 1611 /* 1612 * TODO: There is no speculation barrier opcode for TCG; 1613 * MB and end the TB instead. 1614 */ 1615 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1616 gen_goto_tb(s, 0, 4); 1617 return; 1618 1619 default: 1620 do_unallocated: 1621 unallocated_encoding(s); 1622 return; 1623 } 1624 } 1625 1626 static void gen_xaflag(void) 1627 { 1628 TCGv_i32 z = tcg_temp_new_i32(); 1629 1630 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1631 1632 /* 1633 * (!C & !Z) << 31 1634 * (!(C | Z)) << 31 1635 * ~((C | Z) << 31) 1636 * ~-(C | Z) 1637 * (C | Z) - 1 1638 */ 1639 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1640 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1641 1642 /* !(Z & C) */ 1643 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1644 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1645 1646 /* (!C & Z) << 31 -> -(Z & ~C) */ 1647 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1648 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1649 1650 /* C | Z */ 1651 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1652 } 1653 1654 static void gen_axflag(void) 1655 { 1656 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1657 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1658 1659 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1660 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1661 1662 tcg_gen_movi_i32(cpu_NF, 0); 1663 tcg_gen_movi_i32(cpu_VF, 0); 1664 } 1665 1666 /* MSR (immediate) - move immediate to processor state field */ 1667 static void handle_msr_i(DisasContext *s, uint32_t insn, 1668 unsigned int op1, unsigned int op2, unsigned int crm) 1669 { 1670 int op = op1 << 3 | op2; 1671 1672 /* End the TB by default, chaining is ok. */ 1673 s->base.is_jmp = DISAS_TOO_MANY; 1674 1675 switch (op) { 1676 case 0x00: /* CFINV */ 1677 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1678 goto do_unallocated; 1679 } 1680 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1681 s->base.is_jmp = DISAS_NEXT; 1682 break; 1683 1684 case 0x01: /* XAFlag */ 1685 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1686 goto do_unallocated; 1687 } 1688 gen_xaflag(); 1689 s->base.is_jmp = DISAS_NEXT; 1690 break; 1691 1692 case 0x02: /* AXFlag */ 1693 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1694 goto do_unallocated; 1695 } 1696 gen_axflag(); 1697 s->base.is_jmp = DISAS_NEXT; 1698 break; 1699 1700 case 0x03: /* UAO */ 1701 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1702 goto do_unallocated; 1703 } 1704 if (crm & 1) { 1705 set_pstate_bits(PSTATE_UAO); 1706 } else { 1707 clear_pstate_bits(PSTATE_UAO); 1708 } 1709 gen_rebuild_hflags(s); 1710 break; 1711 1712 case 0x04: /* PAN */ 1713 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1714 goto do_unallocated; 1715 } 1716 if (crm & 1) { 1717 set_pstate_bits(PSTATE_PAN); 1718 } else { 1719 clear_pstate_bits(PSTATE_PAN); 1720 } 1721 gen_rebuild_hflags(s); 1722 break; 1723 1724 case 0x05: /* SPSel */ 1725 if (s->current_el == 0) { 1726 goto do_unallocated; 1727 } 1728 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1729 break; 1730 1731 case 0x19: /* SSBS */ 1732 if (!dc_isar_feature(aa64_ssbs, s)) { 1733 goto do_unallocated; 1734 } 1735 if (crm & 1) { 1736 set_pstate_bits(PSTATE_SSBS); 1737 } else { 1738 clear_pstate_bits(PSTATE_SSBS); 1739 } 1740 /* Don't need to rebuild hflags since SSBS is a nop */ 1741 break; 1742 1743 case 0x1a: /* DIT */ 1744 if (!dc_isar_feature(aa64_dit, s)) { 1745 goto do_unallocated; 1746 } 1747 if (crm & 1) { 1748 set_pstate_bits(PSTATE_DIT); 1749 } else { 1750 clear_pstate_bits(PSTATE_DIT); 1751 } 1752 /* There's no need to rebuild hflags because DIT is a nop */ 1753 break; 1754 1755 case 0x1e: /* DAIFSet */ 1756 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1757 break; 1758 1759 case 0x1f: /* DAIFClear */ 1760 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1761 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1762 s->base.is_jmp = DISAS_UPDATE_EXIT; 1763 break; 1764 1765 case 0x1c: /* TCO */ 1766 if (dc_isar_feature(aa64_mte, s)) { 1767 /* Full MTE is enabled -- set the TCO bit as directed. */ 1768 if (crm & 1) { 1769 set_pstate_bits(PSTATE_TCO); 1770 } else { 1771 clear_pstate_bits(PSTATE_TCO); 1772 } 1773 gen_rebuild_hflags(s); 1774 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1775 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1776 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1777 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1778 s->base.is_jmp = DISAS_NEXT; 1779 } else { 1780 goto do_unallocated; 1781 } 1782 break; 1783 1784 case 0x1b: /* SVCR* */ 1785 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1786 goto do_unallocated; 1787 } 1788 if (sme_access_check(s)) { 1789 int old = s->pstate_sm | (s->pstate_za << 1); 1790 int new = (crm & 1) * 3; 1791 int msk = (crm >> 1) & 3; 1792 1793 if ((old ^ new) & msk) { 1794 /* At least one bit changes. */ 1795 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1796 tcg_constant_i32(msk)); 1797 } else { 1798 s->base.is_jmp = DISAS_NEXT; 1799 } 1800 } 1801 break; 1802 1803 default: 1804 do_unallocated: 1805 unallocated_encoding(s); 1806 return; 1807 } 1808 } 1809 1810 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1811 { 1812 TCGv_i32 tmp = tcg_temp_new_i32(); 1813 TCGv_i32 nzcv = tcg_temp_new_i32(); 1814 1815 /* build bit 31, N */ 1816 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1817 /* build bit 30, Z */ 1818 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1819 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1820 /* build bit 29, C */ 1821 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1822 /* build bit 28, V */ 1823 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1824 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1825 /* generate result */ 1826 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1827 } 1828 1829 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1830 { 1831 TCGv_i32 nzcv = tcg_temp_new_i32(); 1832 1833 /* take NZCV from R[t] */ 1834 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1835 1836 /* bit 31, N */ 1837 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1838 /* bit 30, Z */ 1839 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1840 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1841 /* bit 29, C */ 1842 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1843 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1844 /* bit 28, V */ 1845 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1846 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1847 } 1848 1849 static void gen_sysreg_undef(DisasContext *s, bool isread, 1850 uint8_t op0, uint8_t op1, uint8_t op2, 1851 uint8_t crn, uint8_t crm, uint8_t rt) 1852 { 1853 /* 1854 * Generate code to emit an UNDEF with correct syndrome 1855 * information for a failed system register access. 1856 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1857 * but if FEAT_IDST is implemented then read accesses to registers 1858 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1859 * syndrome. 1860 */ 1861 uint32_t syndrome; 1862 1863 if (isread && dc_isar_feature(aa64_ids, s) && 1864 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 1865 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1866 } else { 1867 syndrome = syn_uncategorized(); 1868 } 1869 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 1870 } 1871 1872 /* MRS - move from system register 1873 * MSR (register) - move to system register 1874 * SYS 1875 * SYSL 1876 * These are all essentially the same insn in 'read' and 'write' 1877 * versions, with varying op0 fields. 1878 */ 1879 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 1880 unsigned int op0, unsigned int op1, unsigned int op2, 1881 unsigned int crn, unsigned int crm, unsigned int rt) 1882 { 1883 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 1884 crn, crm, op0, op1, op2); 1885 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 1886 TCGv_ptr tcg_ri = NULL; 1887 TCGv_i64 tcg_rt; 1888 1889 if (!ri) { 1890 /* Unknown register; this might be a guest error or a QEMU 1891 * unimplemented feature. 1892 */ 1893 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 1894 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 1895 isread ? "read" : "write", op0, op1, crn, crm, op2); 1896 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1897 return; 1898 } 1899 1900 /* Check access permissions */ 1901 if (!cp_access_ok(s->current_el, ri, isread)) { 1902 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1903 return; 1904 } 1905 1906 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 1907 /* Emit code to perform further access permissions checks at 1908 * runtime; this may result in an exception. 1909 */ 1910 uint32_t syndrome; 1911 1912 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1913 gen_a64_update_pc(s, 0); 1914 tcg_ri = tcg_temp_new_ptr(); 1915 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 1916 tcg_constant_i32(key), 1917 tcg_constant_i32(syndrome), 1918 tcg_constant_i32(isread)); 1919 } else if (ri->type & ARM_CP_RAISES_EXC) { 1920 /* 1921 * The readfn or writefn might raise an exception; 1922 * synchronize the CPU state in case it does. 1923 */ 1924 gen_a64_update_pc(s, 0); 1925 } 1926 1927 /* Handle special cases first */ 1928 switch (ri->type & ARM_CP_SPECIAL_MASK) { 1929 case 0: 1930 break; 1931 case ARM_CP_NOP: 1932 return; 1933 case ARM_CP_NZCV: 1934 tcg_rt = cpu_reg(s, rt); 1935 if (isread) { 1936 gen_get_nzcv(tcg_rt); 1937 } else { 1938 gen_set_nzcv(tcg_rt); 1939 } 1940 return; 1941 case ARM_CP_CURRENTEL: 1942 /* Reads as current EL value from pstate, which is 1943 * guaranteed to be constant by the tb flags. 1944 */ 1945 tcg_rt = cpu_reg(s, rt); 1946 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 1947 return; 1948 case ARM_CP_DC_ZVA: 1949 /* Writes clear the aligned block of memory which rt points into. */ 1950 if (s->mte_active[0]) { 1951 int desc = 0; 1952 1953 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 1954 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 1955 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 1956 1957 tcg_rt = tcg_temp_new_i64(); 1958 gen_helper_mte_check_zva(tcg_rt, cpu_env, 1959 tcg_constant_i32(desc), cpu_reg(s, rt)); 1960 } else { 1961 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 1962 } 1963 gen_helper_dc_zva(cpu_env, tcg_rt); 1964 return; 1965 case ARM_CP_DC_GVA: 1966 { 1967 TCGv_i64 clean_addr, tag; 1968 1969 /* 1970 * DC_GVA, like DC_ZVA, requires that we supply the original 1971 * pointer for an invalid page. Probe that address first. 1972 */ 1973 tcg_rt = cpu_reg(s, rt); 1974 clean_addr = clean_data_tbi(s, tcg_rt); 1975 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 1976 1977 if (s->ata) { 1978 /* Extract the tag from the register to match STZGM. */ 1979 tag = tcg_temp_new_i64(); 1980 tcg_gen_shri_i64(tag, tcg_rt, 56); 1981 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1982 } 1983 } 1984 return; 1985 case ARM_CP_DC_GZVA: 1986 { 1987 TCGv_i64 clean_addr, tag; 1988 1989 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 1990 tcg_rt = cpu_reg(s, rt); 1991 clean_addr = clean_data_tbi(s, tcg_rt); 1992 gen_helper_dc_zva(cpu_env, clean_addr); 1993 1994 if (s->ata) { 1995 /* Extract the tag from the register to match STZGM. */ 1996 tag = tcg_temp_new_i64(); 1997 tcg_gen_shri_i64(tag, tcg_rt, 56); 1998 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1999 } 2000 } 2001 return; 2002 default: 2003 g_assert_not_reached(); 2004 } 2005 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2006 return; 2007 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2008 return; 2009 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2010 return; 2011 } 2012 2013 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2014 gen_io_start(); 2015 } 2016 2017 tcg_rt = cpu_reg(s, rt); 2018 2019 if (isread) { 2020 if (ri->type & ARM_CP_CONST) { 2021 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2022 } else if (ri->readfn) { 2023 if (!tcg_ri) { 2024 tcg_ri = gen_lookup_cp_reg(key); 2025 } 2026 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2027 } else { 2028 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2029 } 2030 } else { 2031 if (ri->type & ARM_CP_CONST) { 2032 /* If not forbidden by access permissions, treat as WI */ 2033 return; 2034 } else if (ri->writefn) { 2035 if (!tcg_ri) { 2036 tcg_ri = gen_lookup_cp_reg(key); 2037 } 2038 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2039 } else { 2040 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2041 } 2042 } 2043 2044 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2045 /* I/O operations must end the TB here (whether read or write) */ 2046 s->base.is_jmp = DISAS_UPDATE_EXIT; 2047 } 2048 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2049 /* 2050 * A write to any coprocessor regiser that ends a TB 2051 * must rebuild the hflags for the next TB. 2052 */ 2053 gen_rebuild_hflags(s); 2054 /* 2055 * We default to ending the TB on a coprocessor register write, 2056 * but allow this to be suppressed by the register definition 2057 * (usually only necessary to work around guest bugs). 2058 */ 2059 s->base.is_jmp = DISAS_UPDATE_EXIT; 2060 } 2061 } 2062 2063 /* System 2064 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2065 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2066 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2067 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2068 */ 2069 static void disas_system(DisasContext *s, uint32_t insn) 2070 { 2071 unsigned int l, op0, op1, crn, crm, op2, rt; 2072 l = extract32(insn, 21, 1); 2073 op0 = extract32(insn, 19, 2); 2074 op1 = extract32(insn, 16, 3); 2075 crn = extract32(insn, 12, 4); 2076 crm = extract32(insn, 8, 4); 2077 op2 = extract32(insn, 5, 3); 2078 rt = extract32(insn, 0, 5); 2079 2080 if (op0 == 0) { 2081 if (l || rt != 31) { 2082 unallocated_encoding(s); 2083 return; 2084 } 2085 switch (crn) { 2086 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2087 handle_hint(s, insn, op1, op2, crm); 2088 break; 2089 case 3: /* CLREX, DSB, DMB, ISB */ 2090 handle_sync(s, insn, op1, op2, crm); 2091 break; 2092 case 4: /* MSR (immediate) */ 2093 handle_msr_i(s, insn, op1, op2, crm); 2094 break; 2095 default: 2096 unallocated_encoding(s); 2097 break; 2098 } 2099 return; 2100 } 2101 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2102 } 2103 2104 /* Exception generation 2105 * 2106 * 31 24 23 21 20 5 4 2 1 0 2107 * +-----------------+-----+------------------------+-----+----+ 2108 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2109 * +-----------------------+------------------------+----------+ 2110 */ 2111 static void disas_exc(DisasContext *s, uint32_t insn) 2112 { 2113 int opc = extract32(insn, 21, 3); 2114 int op2_ll = extract32(insn, 0, 5); 2115 int imm16 = extract32(insn, 5, 16); 2116 uint32_t syndrome; 2117 2118 switch (opc) { 2119 case 0: 2120 /* For SVC, HVC and SMC we advance the single-step state 2121 * machine before taking the exception. This is architecturally 2122 * mandated, to ensure that single-stepping a system call 2123 * instruction works properly. 2124 */ 2125 switch (op2_ll) { 2126 case 1: /* SVC */ 2127 syndrome = syn_aa64_svc(imm16); 2128 if (s->fgt_svc) { 2129 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2130 break; 2131 } 2132 gen_ss_advance(s); 2133 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2134 break; 2135 case 2: /* HVC */ 2136 if (s->current_el == 0) { 2137 unallocated_encoding(s); 2138 break; 2139 } 2140 /* The pre HVC helper handles cases when HVC gets trapped 2141 * as an undefined insn by runtime configuration. 2142 */ 2143 gen_a64_update_pc(s, 0); 2144 gen_helper_pre_hvc(cpu_env); 2145 gen_ss_advance(s); 2146 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2147 break; 2148 case 3: /* SMC */ 2149 if (s->current_el == 0) { 2150 unallocated_encoding(s); 2151 break; 2152 } 2153 gen_a64_update_pc(s, 0); 2154 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2155 gen_ss_advance(s); 2156 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2157 break; 2158 default: 2159 unallocated_encoding(s); 2160 break; 2161 } 2162 break; 2163 case 1: 2164 if (op2_ll != 0) { 2165 unallocated_encoding(s); 2166 break; 2167 } 2168 /* BRK */ 2169 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2170 break; 2171 case 2: 2172 if (op2_ll != 0) { 2173 unallocated_encoding(s); 2174 break; 2175 } 2176 /* HLT. This has two purposes. 2177 * Architecturally, it is an external halting debug instruction. 2178 * Since QEMU doesn't implement external debug, we treat this as 2179 * it is required for halting debug disabled: it will UNDEF. 2180 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2181 */ 2182 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2183 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2184 } else { 2185 unallocated_encoding(s); 2186 } 2187 break; 2188 case 5: 2189 if (op2_ll < 1 || op2_ll > 3) { 2190 unallocated_encoding(s); 2191 break; 2192 } 2193 /* DCPS1, DCPS2, DCPS3 */ 2194 unallocated_encoding(s); 2195 break; 2196 default: 2197 unallocated_encoding(s); 2198 break; 2199 } 2200 } 2201 2202 /* Unconditional branch (register) 2203 * 31 25 24 21 20 16 15 10 9 5 4 0 2204 * +---------------+-------+-------+-------+------+-------+ 2205 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | 2206 * +---------------+-------+-------+-------+------+-------+ 2207 */ 2208 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) 2209 { 2210 unsigned int opc, op2, op3, rn, op4; 2211 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */ 2212 TCGv_i64 dst; 2213 TCGv_i64 modifier; 2214 2215 opc = extract32(insn, 21, 4); 2216 op2 = extract32(insn, 16, 5); 2217 op3 = extract32(insn, 10, 6); 2218 rn = extract32(insn, 5, 5); 2219 op4 = extract32(insn, 0, 5); 2220 2221 if (op2 != 0x1f) { 2222 goto do_unallocated; 2223 } 2224 2225 switch (opc) { 2226 case 0: /* BR */ 2227 case 1: /* BLR */ 2228 case 2: /* RET */ 2229 btype_mod = opc; 2230 switch (op3) { 2231 case 0: 2232 /* BR, BLR, RET */ 2233 if (op4 != 0) { 2234 goto do_unallocated; 2235 } 2236 dst = cpu_reg(s, rn); 2237 break; 2238 2239 case 2: 2240 case 3: 2241 if (!dc_isar_feature(aa64_pauth, s)) { 2242 goto do_unallocated; 2243 } 2244 if (opc == 2) { 2245 /* RETAA, RETAB */ 2246 if (rn != 0x1f || op4 != 0x1f) { 2247 goto do_unallocated; 2248 } 2249 rn = 30; 2250 modifier = cpu_X[31]; 2251 } else { 2252 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */ 2253 if (op4 != 0x1f) { 2254 goto do_unallocated; 2255 } 2256 modifier = tcg_constant_i64(0); 2257 } 2258 if (s->pauth_active) { 2259 dst = tcg_temp_new_i64(); 2260 if (op3 == 2) { 2261 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2262 } else { 2263 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2264 } 2265 } else { 2266 dst = cpu_reg(s, rn); 2267 } 2268 break; 2269 2270 default: 2271 goto do_unallocated; 2272 } 2273 /* BLR also needs to load return address */ 2274 if (opc == 1) { 2275 TCGv_i64 lr = cpu_reg(s, 30); 2276 if (dst == lr) { 2277 TCGv_i64 tmp = tcg_temp_new_i64(); 2278 tcg_gen_mov_i64(tmp, dst); 2279 dst = tmp; 2280 } 2281 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2282 } 2283 gen_a64_set_pc(s, dst); 2284 break; 2285 2286 case 8: /* BRAA */ 2287 case 9: /* BLRAA */ 2288 if (!dc_isar_feature(aa64_pauth, s)) { 2289 goto do_unallocated; 2290 } 2291 if ((op3 & ~1) != 2) { 2292 goto do_unallocated; 2293 } 2294 btype_mod = opc & 1; 2295 if (s->pauth_active) { 2296 dst = tcg_temp_new_i64(); 2297 modifier = cpu_reg_sp(s, op4); 2298 if (op3 == 2) { 2299 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2300 } else { 2301 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2302 } 2303 } else { 2304 dst = cpu_reg(s, rn); 2305 } 2306 /* BLRAA also needs to load return address */ 2307 if (opc == 9) { 2308 TCGv_i64 lr = cpu_reg(s, 30); 2309 if (dst == lr) { 2310 TCGv_i64 tmp = tcg_temp_new_i64(); 2311 tcg_gen_mov_i64(tmp, dst); 2312 dst = tmp; 2313 } 2314 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2315 } 2316 gen_a64_set_pc(s, dst); 2317 break; 2318 2319 case 4: /* ERET */ 2320 if (s->current_el == 0) { 2321 goto do_unallocated; 2322 } 2323 switch (op3) { 2324 case 0: /* ERET */ 2325 if (op4 != 0) { 2326 goto do_unallocated; 2327 } 2328 if (s->fgt_eret) { 2329 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2330 return; 2331 } 2332 dst = tcg_temp_new_i64(); 2333 tcg_gen_ld_i64(dst, cpu_env, 2334 offsetof(CPUARMState, elr_el[s->current_el])); 2335 break; 2336 2337 case 2: /* ERETAA */ 2338 case 3: /* ERETAB */ 2339 if (!dc_isar_feature(aa64_pauth, s)) { 2340 goto do_unallocated; 2341 } 2342 if (rn != 0x1f || op4 != 0x1f) { 2343 goto do_unallocated; 2344 } 2345 /* The FGT trap takes precedence over an auth trap. */ 2346 if (s->fgt_eret) { 2347 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2348 return; 2349 } 2350 dst = tcg_temp_new_i64(); 2351 tcg_gen_ld_i64(dst, cpu_env, 2352 offsetof(CPUARMState, elr_el[s->current_el])); 2353 if (s->pauth_active) { 2354 modifier = cpu_X[31]; 2355 if (op3 == 2) { 2356 gen_helper_autia(dst, cpu_env, dst, modifier); 2357 } else { 2358 gen_helper_autib(dst, cpu_env, dst, modifier); 2359 } 2360 } 2361 break; 2362 2363 default: 2364 goto do_unallocated; 2365 } 2366 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 2367 gen_io_start(); 2368 } 2369 2370 gen_helper_exception_return(cpu_env, dst); 2371 /* Must exit loop to check un-masked IRQs */ 2372 s->base.is_jmp = DISAS_EXIT; 2373 return; 2374 2375 case 5: /* DRPS */ 2376 if (op3 != 0 || op4 != 0 || rn != 0x1f) { 2377 goto do_unallocated; 2378 } else { 2379 unallocated_encoding(s); 2380 } 2381 return; 2382 2383 default: 2384 do_unallocated: 2385 unallocated_encoding(s); 2386 return; 2387 } 2388 2389 switch (btype_mod) { 2390 case 0: /* BR */ 2391 if (dc_isar_feature(aa64_bti, s)) { 2392 /* BR to {x16,x17} or !guard -> 1, else 3. */ 2393 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 2394 } 2395 break; 2396 2397 case 1: /* BLR */ 2398 if (dc_isar_feature(aa64_bti, s)) { 2399 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 2400 set_btype(s, 2); 2401 } 2402 break; 2403 2404 default: /* RET or none of the above. */ 2405 /* BTYPE will be set to 0 by normal end-of-insn processing. */ 2406 break; 2407 } 2408 2409 s->base.is_jmp = DISAS_JUMP; 2410 } 2411 2412 /* Branches, exception generating and system instructions */ 2413 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2414 { 2415 switch (extract32(insn, 25, 7)) { 2416 case 0x0a: case 0x0b: 2417 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ 2418 disas_uncond_b_imm(s, insn); 2419 break; 2420 case 0x1a: case 0x5a: /* Compare & branch (immediate) */ 2421 disas_comp_b_imm(s, insn); 2422 break; 2423 case 0x1b: case 0x5b: /* Test & branch (immediate) */ 2424 disas_test_b_imm(s, insn); 2425 break; 2426 case 0x2a: /* Conditional branch (immediate) */ 2427 disas_cond_b_imm(s, insn); 2428 break; 2429 case 0x6a: /* Exception generation / System */ 2430 if (insn & (1 << 24)) { 2431 if (extract32(insn, 22, 2) == 0) { 2432 disas_system(s, insn); 2433 } else { 2434 unallocated_encoding(s); 2435 } 2436 } else { 2437 disas_exc(s, insn); 2438 } 2439 break; 2440 case 0x6b: /* Unconditional branch (register) */ 2441 disas_uncond_b_reg(s, insn); 2442 break; 2443 default: 2444 unallocated_encoding(s); 2445 break; 2446 } 2447 } 2448 2449 /* 2450 * Load/Store exclusive instructions are implemented by remembering 2451 * the value/address loaded, and seeing if these are the same 2452 * when the store is performed. This is not actually the architecturally 2453 * mandated semantics, but it works for typical guest code sequences 2454 * and avoids having to monitor regular stores. 2455 * 2456 * The store exclusive uses the atomic cmpxchg primitives to avoid 2457 * races in multi-threaded linux-user and when MTTCG softmmu is 2458 * enabled. 2459 */ 2460 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2461 TCGv_i64 addr, int size, bool is_pair) 2462 { 2463 int idx = get_mem_index(s); 2464 MemOp memop = s->be_data; 2465 2466 g_assert(size <= 3); 2467 if (is_pair) { 2468 g_assert(size >= 2); 2469 if (size == 2) { 2470 /* The pair must be single-copy atomic for the doubleword. */ 2471 memop |= MO_64 | MO_ALIGN; 2472 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2473 if (s->be_data == MO_LE) { 2474 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2475 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2476 } else { 2477 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2478 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2479 } 2480 } else { 2481 /* The pair must be single-copy atomic for *each* doubleword, not 2482 the entire quadword, however it must be quadword aligned. */ 2483 memop |= MO_64; 2484 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, 2485 memop | MO_ALIGN_16); 2486 2487 TCGv_i64 addr2 = tcg_temp_new_i64(); 2488 tcg_gen_addi_i64(addr2, addr, 8); 2489 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); 2490 2491 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2492 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2493 } 2494 } else { 2495 memop |= size | MO_ALIGN; 2496 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2497 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2498 } 2499 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2500 } 2501 2502 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2503 TCGv_i64 addr, int size, int is_pair) 2504 { 2505 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2506 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2507 * [addr] = {Rt}; 2508 * if (is_pair) { 2509 * [addr + datasize] = {Rt2}; 2510 * } 2511 * {Rd} = 0; 2512 * } else { 2513 * {Rd} = 1; 2514 * } 2515 * env->exclusive_addr = -1; 2516 */ 2517 TCGLabel *fail_label = gen_new_label(); 2518 TCGLabel *done_label = gen_new_label(); 2519 TCGv_i64 tmp; 2520 2521 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2522 2523 tmp = tcg_temp_new_i64(); 2524 if (is_pair) { 2525 if (size == 2) { 2526 if (s->be_data == MO_LE) { 2527 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2528 } else { 2529 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2530 } 2531 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2532 cpu_exclusive_val, tmp, 2533 get_mem_index(s), 2534 MO_64 | MO_ALIGN | s->be_data); 2535 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2536 } else { 2537 TCGv_i128 t16 = tcg_temp_new_i128(); 2538 TCGv_i128 c16 = tcg_temp_new_i128(); 2539 TCGv_i64 a, b; 2540 2541 if (s->be_data == MO_LE) { 2542 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2543 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2544 cpu_exclusive_high); 2545 } else { 2546 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2547 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2548 cpu_exclusive_val); 2549 } 2550 2551 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2552 get_mem_index(s), 2553 MO_128 | MO_ALIGN | s->be_data); 2554 2555 a = tcg_temp_new_i64(); 2556 b = tcg_temp_new_i64(); 2557 if (s->be_data == MO_LE) { 2558 tcg_gen_extr_i128_i64(a, b, t16); 2559 } else { 2560 tcg_gen_extr_i128_i64(b, a, t16); 2561 } 2562 2563 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2564 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2565 tcg_gen_or_i64(tmp, a, b); 2566 2567 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2568 } 2569 } else { 2570 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2571 cpu_reg(s, rt), get_mem_index(s), 2572 size | MO_ALIGN | s->be_data); 2573 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2574 } 2575 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2576 tcg_gen_br(done_label); 2577 2578 gen_set_label(fail_label); 2579 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2580 gen_set_label(done_label); 2581 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2582 } 2583 2584 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2585 int rn, int size) 2586 { 2587 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2588 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2589 int memidx = get_mem_index(s); 2590 TCGv_i64 clean_addr; 2591 2592 if (rn == 31) { 2593 gen_check_sp_alignment(s); 2594 } 2595 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2596 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2597 size | MO_ALIGN | s->be_data); 2598 } 2599 2600 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2601 int rn, int size) 2602 { 2603 TCGv_i64 s1 = cpu_reg(s, rs); 2604 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2605 TCGv_i64 t1 = cpu_reg(s, rt); 2606 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2607 TCGv_i64 clean_addr; 2608 int memidx = get_mem_index(s); 2609 2610 if (rn == 31) { 2611 gen_check_sp_alignment(s); 2612 } 2613 2614 /* This is a single atomic access, despite the "pair". */ 2615 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2616 2617 if (size == 2) { 2618 TCGv_i64 cmp = tcg_temp_new_i64(); 2619 TCGv_i64 val = tcg_temp_new_i64(); 2620 2621 if (s->be_data == MO_LE) { 2622 tcg_gen_concat32_i64(val, t1, t2); 2623 tcg_gen_concat32_i64(cmp, s1, s2); 2624 } else { 2625 tcg_gen_concat32_i64(val, t2, t1); 2626 tcg_gen_concat32_i64(cmp, s2, s1); 2627 } 2628 2629 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2630 MO_64 | MO_ALIGN | s->be_data); 2631 2632 if (s->be_data == MO_LE) { 2633 tcg_gen_extr32_i64(s1, s2, cmp); 2634 } else { 2635 tcg_gen_extr32_i64(s2, s1, cmp); 2636 } 2637 } else { 2638 TCGv_i128 cmp = tcg_temp_new_i128(); 2639 TCGv_i128 val = tcg_temp_new_i128(); 2640 2641 if (s->be_data == MO_LE) { 2642 tcg_gen_concat_i64_i128(val, t1, t2); 2643 tcg_gen_concat_i64_i128(cmp, s1, s2); 2644 } else { 2645 tcg_gen_concat_i64_i128(val, t2, t1); 2646 tcg_gen_concat_i64_i128(cmp, s2, s1); 2647 } 2648 2649 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2650 MO_128 | MO_ALIGN | s->be_data); 2651 2652 if (s->be_data == MO_LE) { 2653 tcg_gen_extr_i128_i64(s1, s2, cmp); 2654 } else { 2655 tcg_gen_extr_i128_i64(s2, s1, cmp); 2656 } 2657 } 2658 } 2659 2660 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2661 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2662 */ 2663 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2664 { 2665 int opc0 = extract32(opc, 0, 1); 2666 int regsize; 2667 2668 if (is_signed) { 2669 regsize = opc0 ? 32 : 64; 2670 } else { 2671 regsize = size == 3 ? 64 : 32; 2672 } 2673 return regsize == 64; 2674 } 2675 2676 /* Load/store exclusive 2677 * 2678 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2679 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2680 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2681 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2682 * 2683 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2684 * L: 0 -> store, 1 -> load 2685 * o2: 0 -> exclusive, 1 -> not 2686 * o1: 0 -> single register, 1 -> register pair 2687 * o0: 1 -> load-acquire/store-release, 0 -> not 2688 */ 2689 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2690 { 2691 int rt = extract32(insn, 0, 5); 2692 int rn = extract32(insn, 5, 5); 2693 int rt2 = extract32(insn, 10, 5); 2694 int rs = extract32(insn, 16, 5); 2695 int is_lasr = extract32(insn, 15, 1); 2696 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2697 int size = extract32(insn, 30, 2); 2698 TCGv_i64 clean_addr; 2699 2700 switch (o2_L_o1_o0) { 2701 case 0x0: /* STXR */ 2702 case 0x1: /* STLXR */ 2703 if (rn == 31) { 2704 gen_check_sp_alignment(s); 2705 } 2706 if (is_lasr) { 2707 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2708 } 2709 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2710 true, rn != 31, size); 2711 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2712 return; 2713 2714 case 0x4: /* LDXR */ 2715 case 0x5: /* LDAXR */ 2716 if (rn == 31) { 2717 gen_check_sp_alignment(s); 2718 } 2719 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2720 false, rn != 31, size); 2721 s->is_ldex = true; 2722 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2723 if (is_lasr) { 2724 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2725 } 2726 return; 2727 2728 case 0x8: /* STLLR */ 2729 if (!dc_isar_feature(aa64_lor, s)) { 2730 break; 2731 } 2732 /* StoreLORelease is the same as Store-Release for QEMU. */ 2733 /* fall through */ 2734 case 0x9: /* STLR */ 2735 /* Generate ISS for non-exclusive accesses including LASR. */ 2736 if (rn == 31) { 2737 gen_check_sp_alignment(s); 2738 } 2739 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2740 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2741 true, rn != 31, size); 2742 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2743 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2744 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2745 return; 2746 2747 case 0xc: /* LDLAR */ 2748 if (!dc_isar_feature(aa64_lor, s)) { 2749 break; 2750 } 2751 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2752 /* fall through */ 2753 case 0xd: /* LDAR */ 2754 /* Generate ISS for non-exclusive accesses including LASR. */ 2755 if (rn == 31) { 2756 gen_check_sp_alignment(s); 2757 } 2758 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2759 false, rn != 31, size); 2760 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2761 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2762 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2763 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2764 return; 2765 2766 case 0x2: case 0x3: /* CASP / STXP */ 2767 if (size & 2) { /* STXP / STLXP */ 2768 if (rn == 31) { 2769 gen_check_sp_alignment(s); 2770 } 2771 if (is_lasr) { 2772 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2773 } 2774 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2775 true, rn != 31, size); 2776 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2777 return; 2778 } 2779 if (rt2 == 31 2780 && ((rt | rs) & 1) == 0 2781 && dc_isar_feature(aa64_atomics, s)) { 2782 /* CASP / CASPL */ 2783 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2784 return; 2785 } 2786 break; 2787 2788 case 0x6: case 0x7: /* CASPA / LDXP */ 2789 if (size & 2) { /* LDXP / LDAXP */ 2790 if (rn == 31) { 2791 gen_check_sp_alignment(s); 2792 } 2793 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2794 false, rn != 31, size); 2795 s->is_ldex = true; 2796 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2797 if (is_lasr) { 2798 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2799 } 2800 return; 2801 } 2802 if (rt2 == 31 2803 && ((rt | rs) & 1) == 0 2804 && dc_isar_feature(aa64_atomics, s)) { 2805 /* CASPA / CASPAL */ 2806 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2807 return; 2808 } 2809 break; 2810 2811 case 0xa: /* CAS */ 2812 case 0xb: /* CASL */ 2813 case 0xe: /* CASA */ 2814 case 0xf: /* CASAL */ 2815 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2816 gen_compare_and_swap(s, rs, rt, rn, size); 2817 return; 2818 } 2819 break; 2820 } 2821 unallocated_encoding(s); 2822 } 2823 2824 /* 2825 * Load register (literal) 2826 * 2827 * 31 30 29 27 26 25 24 23 5 4 0 2828 * +-----+-------+---+-----+-------------------+-------+ 2829 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2830 * +-----+-------+---+-----+-------------------+-------+ 2831 * 2832 * V: 1 -> vector (simd/fp) 2833 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2834 * 10-> 32 bit signed, 11 -> prefetch 2835 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2836 */ 2837 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2838 { 2839 int rt = extract32(insn, 0, 5); 2840 int64_t imm = sextract32(insn, 5, 19) << 2; 2841 bool is_vector = extract32(insn, 26, 1); 2842 int opc = extract32(insn, 30, 2); 2843 bool is_signed = false; 2844 int size = 2; 2845 TCGv_i64 tcg_rt, clean_addr; 2846 2847 if (is_vector) { 2848 if (opc == 3) { 2849 unallocated_encoding(s); 2850 return; 2851 } 2852 size = 2 + opc; 2853 if (!fp_access_check(s)) { 2854 return; 2855 } 2856 } else { 2857 if (opc == 3) { 2858 /* PRFM (literal) : prefetch */ 2859 return; 2860 } 2861 size = 2 + extract32(opc, 0, 1); 2862 is_signed = extract32(opc, 1, 1); 2863 } 2864 2865 tcg_rt = cpu_reg(s, rt); 2866 2867 clean_addr = tcg_temp_new_i64(); 2868 gen_pc_plus_diff(s, clean_addr, imm); 2869 if (is_vector) { 2870 do_fp_ld(s, rt, clean_addr, size); 2871 } else { 2872 /* Only unsigned 32bit loads target 32bit registers. */ 2873 bool iss_sf = opc != 0; 2874 2875 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2876 false, true, rt, iss_sf, false); 2877 } 2878 } 2879 2880 /* 2881 * LDNP (Load Pair - non-temporal hint) 2882 * LDP (Load Pair - non vector) 2883 * LDPSW (Load Pair Signed Word - non vector) 2884 * STNP (Store Pair - non-temporal hint) 2885 * STP (Store Pair - non vector) 2886 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2887 * LDP (Load Pair of SIMD&FP) 2888 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2889 * STP (Store Pair of SIMD&FP) 2890 * 2891 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2892 * +-----+-------+---+---+-------+---+-----------------------------+ 2893 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2894 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2895 * 2896 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2897 * LDPSW/STGP 01 2898 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2899 * V: 0 -> GPR, 1 -> Vector 2900 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2901 * 10 -> signed offset, 11 -> pre-index 2902 * L: 0 -> Store 1 -> Load 2903 * 2904 * Rt, Rt2 = GPR or SIMD registers to be stored 2905 * Rn = general purpose register containing address 2906 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2907 */ 2908 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2909 { 2910 int rt = extract32(insn, 0, 5); 2911 int rn = extract32(insn, 5, 5); 2912 int rt2 = extract32(insn, 10, 5); 2913 uint64_t offset = sextract64(insn, 15, 7); 2914 int index = extract32(insn, 23, 2); 2915 bool is_vector = extract32(insn, 26, 1); 2916 bool is_load = extract32(insn, 22, 1); 2917 int opc = extract32(insn, 30, 2); 2918 2919 bool is_signed = false; 2920 bool postindex = false; 2921 bool wback = false; 2922 bool set_tag = false; 2923 2924 TCGv_i64 clean_addr, dirty_addr; 2925 2926 int size; 2927 2928 if (opc == 3) { 2929 unallocated_encoding(s); 2930 return; 2931 } 2932 2933 if (is_vector) { 2934 size = 2 + opc; 2935 } else if (opc == 1 && !is_load) { 2936 /* STGP */ 2937 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2938 unallocated_encoding(s); 2939 return; 2940 } 2941 size = 3; 2942 set_tag = true; 2943 } else { 2944 size = 2 + extract32(opc, 1, 1); 2945 is_signed = extract32(opc, 0, 1); 2946 if (!is_load && is_signed) { 2947 unallocated_encoding(s); 2948 return; 2949 } 2950 } 2951 2952 switch (index) { 2953 case 1: /* post-index */ 2954 postindex = true; 2955 wback = true; 2956 break; 2957 case 0: 2958 /* signed offset with "non-temporal" hint. Since we don't emulate 2959 * caches we don't care about hints to the cache system about 2960 * data access patterns, and handle this identically to plain 2961 * signed offset. 2962 */ 2963 if (is_signed) { 2964 /* There is no non-temporal-hint version of LDPSW */ 2965 unallocated_encoding(s); 2966 return; 2967 } 2968 postindex = false; 2969 break; 2970 case 2: /* signed offset, rn not updated */ 2971 postindex = false; 2972 break; 2973 case 3: /* pre-index */ 2974 postindex = false; 2975 wback = true; 2976 break; 2977 } 2978 2979 if (is_vector && !fp_access_check(s)) { 2980 return; 2981 } 2982 2983 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2984 2985 if (rn == 31) { 2986 gen_check_sp_alignment(s); 2987 } 2988 2989 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2990 if (!postindex) { 2991 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2992 } 2993 2994 if (set_tag) { 2995 if (!s->ata) { 2996 /* 2997 * TODO: We could rely on the stores below, at least for 2998 * system mode, if we arrange to add MO_ALIGN_16. 2999 */ 3000 gen_helper_stg_stub(cpu_env, dirty_addr); 3001 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3002 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3003 } else { 3004 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3005 } 3006 } 3007 3008 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3009 (wback || rn != 31) && !set_tag, 2 << size); 3010 3011 if (is_vector) { 3012 if (is_load) { 3013 do_fp_ld(s, rt, clean_addr, size); 3014 } else { 3015 do_fp_st(s, rt, clean_addr, size); 3016 } 3017 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3018 if (is_load) { 3019 do_fp_ld(s, rt2, clean_addr, size); 3020 } else { 3021 do_fp_st(s, rt2, clean_addr, size); 3022 } 3023 } else { 3024 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3025 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3026 3027 if (is_load) { 3028 TCGv_i64 tmp = tcg_temp_new_i64(); 3029 3030 /* Do not modify tcg_rt before recognizing any exception 3031 * from the second load. 3032 */ 3033 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 3034 false, false, 0, false, false); 3035 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3036 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 3037 false, false, 0, false, false); 3038 3039 tcg_gen_mov_i64(tcg_rt, tmp); 3040 } else { 3041 do_gpr_st(s, tcg_rt, clean_addr, size, 3042 false, 0, false, false); 3043 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3044 do_gpr_st(s, tcg_rt2, clean_addr, size, 3045 false, 0, false, false); 3046 } 3047 } 3048 3049 if (wback) { 3050 if (postindex) { 3051 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3052 } 3053 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3054 } 3055 } 3056 3057 /* 3058 * Load/store (immediate post-indexed) 3059 * Load/store (immediate pre-indexed) 3060 * Load/store (unscaled immediate) 3061 * 3062 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3063 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3064 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3065 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3066 * 3067 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3068 10 -> unprivileged 3069 * V = 0 -> non-vector 3070 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3071 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3072 */ 3073 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3074 int opc, 3075 int size, 3076 int rt, 3077 bool is_vector) 3078 { 3079 int rn = extract32(insn, 5, 5); 3080 int imm9 = sextract32(insn, 12, 9); 3081 int idx = extract32(insn, 10, 2); 3082 bool is_signed = false; 3083 bool is_store = false; 3084 bool is_extended = false; 3085 bool is_unpriv = (idx == 2); 3086 bool iss_valid; 3087 bool post_index; 3088 bool writeback; 3089 int memidx; 3090 3091 TCGv_i64 clean_addr, dirty_addr; 3092 3093 if (is_vector) { 3094 size |= (opc & 2) << 1; 3095 if (size > 4 || is_unpriv) { 3096 unallocated_encoding(s); 3097 return; 3098 } 3099 is_store = ((opc & 1) == 0); 3100 if (!fp_access_check(s)) { 3101 return; 3102 } 3103 } else { 3104 if (size == 3 && opc == 2) { 3105 /* PRFM - prefetch */ 3106 if (idx != 0) { 3107 unallocated_encoding(s); 3108 return; 3109 } 3110 return; 3111 } 3112 if (opc == 3 && size > 1) { 3113 unallocated_encoding(s); 3114 return; 3115 } 3116 is_store = (opc == 0); 3117 is_signed = extract32(opc, 1, 1); 3118 is_extended = (size < 3) && extract32(opc, 0, 1); 3119 } 3120 3121 switch (idx) { 3122 case 0: 3123 case 2: 3124 post_index = false; 3125 writeback = false; 3126 break; 3127 case 1: 3128 post_index = true; 3129 writeback = true; 3130 break; 3131 case 3: 3132 post_index = false; 3133 writeback = true; 3134 break; 3135 default: 3136 g_assert_not_reached(); 3137 } 3138 3139 iss_valid = !is_vector && !writeback; 3140 3141 if (rn == 31) { 3142 gen_check_sp_alignment(s); 3143 } 3144 3145 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3146 if (!post_index) { 3147 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3148 } 3149 3150 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3151 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3152 writeback || rn != 31, 3153 size, is_unpriv, memidx); 3154 3155 if (is_vector) { 3156 if (is_store) { 3157 do_fp_st(s, rt, clean_addr, size); 3158 } else { 3159 do_fp_ld(s, rt, clean_addr, size); 3160 } 3161 } else { 3162 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3163 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3164 3165 if (is_store) { 3166 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3167 iss_valid, rt, iss_sf, false); 3168 } else { 3169 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3170 is_extended, memidx, 3171 iss_valid, rt, iss_sf, false); 3172 } 3173 } 3174 3175 if (writeback) { 3176 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3177 if (post_index) { 3178 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3179 } 3180 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3181 } 3182 } 3183 3184 /* 3185 * Load/store (register offset) 3186 * 3187 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3188 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3189 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3190 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3191 * 3192 * For non-vector: 3193 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3194 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3195 * For vector: 3196 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3197 * opc<0>: 0 -> store, 1 -> load 3198 * V: 1 -> vector/simd 3199 * opt: extend encoding (see DecodeRegExtend) 3200 * S: if S=1 then scale (essentially index by sizeof(size)) 3201 * Rt: register to transfer into/out of 3202 * Rn: address register or SP for base 3203 * Rm: offset register or ZR for offset 3204 */ 3205 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3206 int opc, 3207 int size, 3208 int rt, 3209 bool is_vector) 3210 { 3211 int rn = extract32(insn, 5, 5); 3212 int shift = extract32(insn, 12, 1); 3213 int rm = extract32(insn, 16, 5); 3214 int opt = extract32(insn, 13, 3); 3215 bool is_signed = false; 3216 bool is_store = false; 3217 bool is_extended = false; 3218 3219 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3220 3221 if (extract32(opt, 1, 1) == 0) { 3222 unallocated_encoding(s); 3223 return; 3224 } 3225 3226 if (is_vector) { 3227 size |= (opc & 2) << 1; 3228 if (size > 4) { 3229 unallocated_encoding(s); 3230 return; 3231 } 3232 is_store = !extract32(opc, 0, 1); 3233 if (!fp_access_check(s)) { 3234 return; 3235 } 3236 } else { 3237 if (size == 3 && opc == 2) { 3238 /* PRFM - prefetch */ 3239 return; 3240 } 3241 if (opc == 3 && size > 1) { 3242 unallocated_encoding(s); 3243 return; 3244 } 3245 is_store = (opc == 0); 3246 is_signed = extract32(opc, 1, 1); 3247 is_extended = (size < 3) && extract32(opc, 0, 1); 3248 } 3249 3250 if (rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3254 3255 tcg_rm = read_cpu_reg(s, rm, 1); 3256 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3257 3258 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3259 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3260 3261 if (is_vector) { 3262 if (is_store) { 3263 do_fp_st(s, rt, clean_addr, size); 3264 } else { 3265 do_fp_ld(s, rt, clean_addr, size); 3266 } 3267 } else { 3268 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3269 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3270 if (is_store) { 3271 do_gpr_st(s, tcg_rt, clean_addr, size, 3272 true, rt, iss_sf, false); 3273 } else { 3274 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3275 is_extended, true, rt, iss_sf, false); 3276 } 3277 } 3278 } 3279 3280 /* 3281 * Load/store (unsigned immediate) 3282 * 3283 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3284 * +----+-------+---+-----+-----+------------+-------+------+ 3285 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3286 * +----+-------+---+-----+-----+------------+-------+------+ 3287 * 3288 * For non-vector: 3289 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3290 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3291 * For vector: 3292 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3293 * opc<0>: 0 -> store, 1 -> load 3294 * Rn: base address register (inc SP) 3295 * Rt: target register 3296 */ 3297 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3298 int opc, 3299 int size, 3300 int rt, 3301 bool is_vector) 3302 { 3303 int rn = extract32(insn, 5, 5); 3304 unsigned int imm12 = extract32(insn, 10, 12); 3305 unsigned int offset; 3306 3307 TCGv_i64 clean_addr, dirty_addr; 3308 3309 bool is_store; 3310 bool is_signed = false; 3311 bool is_extended = false; 3312 3313 if (is_vector) { 3314 size |= (opc & 2) << 1; 3315 if (size > 4) { 3316 unallocated_encoding(s); 3317 return; 3318 } 3319 is_store = !extract32(opc, 0, 1); 3320 if (!fp_access_check(s)) { 3321 return; 3322 } 3323 } else { 3324 if (size == 3 && opc == 2) { 3325 /* PRFM - prefetch */ 3326 return; 3327 } 3328 if (opc == 3 && size > 1) { 3329 unallocated_encoding(s); 3330 return; 3331 } 3332 is_store = (opc == 0); 3333 is_signed = extract32(opc, 1, 1); 3334 is_extended = (size < 3) && extract32(opc, 0, 1); 3335 } 3336 3337 if (rn == 31) { 3338 gen_check_sp_alignment(s); 3339 } 3340 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3341 offset = imm12 << size; 3342 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3343 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3344 3345 if (is_vector) { 3346 if (is_store) { 3347 do_fp_st(s, rt, clean_addr, size); 3348 } else { 3349 do_fp_ld(s, rt, clean_addr, size); 3350 } 3351 } else { 3352 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3353 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3354 if (is_store) { 3355 do_gpr_st(s, tcg_rt, clean_addr, size, 3356 true, rt, iss_sf, false); 3357 } else { 3358 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3359 is_extended, true, rt, iss_sf, false); 3360 } 3361 } 3362 } 3363 3364 /* Atomic memory operations 3365 * 3366 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3367 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3368 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3369 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3370 * 3371 * Rt: the result register 3372 * Rn: base address or SP 3373 * Rs: the source register for the operation 3374 * V: vector flag (always 0 as of v8.3) 3375 * A: acquire flag 3376 * R: release flag 3377 */ 3378 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3379 int size, int rt, bool is_vector) 3380 { 3381 int rs = extract32(insn, 16, 5); 3382 int rn = extract32(insn, 5, 5); 3383 int o3_opc = extract32(insn, 12, 4); 3384 bool r = extract32(insn, 22, 1); 3385 bool a = extract32(insn, 23, 1); 3386 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3387 AtomicThreeOpFn *fn = NULL; 3388 MemOp mop = s->be_data | size | MO_ALIGN; 3389 3390 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3391 unallocated_encoding(s); 3392 return; 3393 } 3394 switch (o3_opc) { 3395 case 000: /* LDADD */ 3396 fn = tcg_gen_atomic_fetch_add_i64; 3397 break; 3398 case 001: /* LDCLR */ 3399 fn = tcg_gen_atomic_fetch_and_i64; 3400 break; 3401 case 002: /* LDEOR */ 3402 fn = tcg_gen_atomic_fetch_xor_i64; 3403 break; 3404 case 003: /* LDSET */ 3405 fn = tcg_gen_atomic_fetch_or_i64; 3406 break; 3407 case 004: /* LDSMAX */ 3408 fn = tcg_gen_atomic_fetch_smax_i64; 3409 mop |= MO_SIGN; 3410 break; 3411 case 005: /* LDSMIN */ 3412 fn = tcg_gen_atomic_fetch_smin_i64; 3413 mop |= MO_SIGN; 3414 break; 3415 case 006: /* LDUMAX */ 3416 fn = tcg_gen_atomic_fetch_umax_i64; 3417 break; 3418 case 007: /* LDUMIN */ 3419 fn = tcg_gen_atomic_fetch_umin_i64; 3420 break; 3421 case 010: /* SWP */ 3422 fn = tcg_gen_atomic_xchg_i64; 3423 break; 3424 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3425 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3426 rs != 31 || a != 1 || r != 0) { 3427 unallocated_encoding(s); 3428 return; 3429 } 3430 break; 3431 default: 3432 unallocated_encoding(s); 3433 return; 3434 } 3435 3436 if (rn == 31) { 3437 gen_check_sp_alignment(s); 3438 } 3439 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3440 3441 if (o3_opc == 014) { 3442 /* 3443 * LDAPR* are a special case because they are a simple load, not a 3444 * fetch-and-do-something op. 3445 * The architectural consistency requirements here are weaker than 3446 * full load-acquire (we only need "load-acquire processor consistent"), 3447 * but we choose to implement them as full LDAQ. 3448 */ 3449 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3450 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3451 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3452 return; 3453 } 3454 3455 tcg_rs = read_cpu_reg(s, rs, true); 3456 tcg_rt = cpu_reg(s, rt); 3457 3458 if (o3_opc == 1) { /* LDCLR */ 3459 tcg_gen_not_i64(tcg_rs, tcg_rs); 3460 } 3461 3462 /* The tcg atomic primitives are all full barriers. Therefore we 3463 * can ignore the Acquire and Release bits of this instruction. 3464 */ 3465 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3466 3467 if ((mop & MO_SIGN) && size != MO_64) { 3468 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3469 } 3470 } 3471 3472 /* 3473 * PAC memory operations 3474 * 3475 * 31 30 27 26 24 22 21 12 11 10 5 0 3476 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3477 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3478 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3479 * 3480 * Rt: the result register 3481 * Rn: base address or SP 3482 * V: vector flag (always 0 as of v8.3) 3483 * M: clear for key DA, set for key DB 3484 * W: pre-indexing flag 3485 * S: sign for imm9. 3486 */ 3487 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3488 int size, int rt, bool is_vector) 3489 { 3490 int rn = extract32(insn, 5, 5); 3491 bool is_wback = extract32(insn, 11, 1); 3492 bool use_key_a = !extract32(insn, 23, 1); 3493 int offset; 3494 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3495 3496 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3497 unallocated_encoding(s); 3498 return; 3499 } 3500 3501 if (rn == 31) { 3502 gen_check_sp_alignment(s); 3503 } 3504 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3505 3506 if (s->pauth_active) { 3507 if (use_key_a) { 3508 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3509 tcg_constant_i64(0)); 3510 } else { 3511 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3512 tcg_constant_i64(0)); 3513 } 3514 } 3515 3516 /* Form the 10-bit signed, scaled offset. */ 3517 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3518 offset = sextract32(offset << size, 0, 10 + size); 3519 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3520 3521 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3522 clean_addr = gen_mte_check1(s, dirty_addr, false, 3523 is_wback || rn != 31, size); 3524 3525 tcg_rt = cpu_reg(s, rt); 3526 do_gpr_ld(s, tcg_rt, clean_addr, size, 3527 /* extend */ false, /* iss_valid */ !is_wback, 3528 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3529 3530 if (is_wback) { 3531 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3532 } 3533 } 3534 3535 /* 3536 * LDAPR/STLR (unscaled immediate) 3537 * 3538 * 31 30 24 22 21 12 10 5 0 3539 * +------+-------------+-----+---+--------+-----+----+-----+ 3540 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3541 * +------+-------------+-----+---+--------+-----+----+-----+ 3542 * 3543 * Rt: source or destination register 3544 * Rn: base register 3545 * imm9: unscaled immediate offset 3546 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3547 * size: size of load/store 3548 */ 3549 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3550 { 3551 int rt = extract32(insn, 0, 5); 3552 int rn = extract32(insn, 5, 5); 3553 int offset = sextract32(insn, 12, 9); 3554 int opc = extract32(insn, 22, 2); 3555 int size = extract32(insn, 30, 2); 3556 TCGv_i64 clean_addr, dirty_addr; 3557 bool is_store = false; 3558 bool extend = false; 3559 bool iss_sf; 3560 MemOp mop; 3561 3562 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3563 unallocated_encoding(s); 3564 return; 3565 } 3566 3567 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3568 mop = size | MO_ALIGN; 3569 3570 switch (opc) { 3571 case 0: /* STLURB */ 3572 is_store = true; 3573 break; 3574 case 1: /* LDAPUR* */ 3575 break; 3576 case 2: /* LDAPURS* 64-bit variant */ 3577 if (size == 3) { 3578 unallocated_encoding(s); 3579 return; 3580 } 3581 mop |= MO_SIGN; 3582 break; 3583 case 3: /* LDAPURS* 32-bit variant */ 3584 if (size > 1) { 3585 unallocated_encoding(s); 3586 return; 3587 } 3588 mop |= MO_SIGN; 3589 extend = true; /* zero-extend 32->64 after signed load */ 3590 break; 3591 default: 3592 g_assert_not_reached(); 3593 } 3594 3595 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3596 3597 if (rn == 31) { 3598 gen_check_sp_alignment(s); 3599 } 3600 3601 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3602 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3603 clean_addr = clean_data_tbi(s, dirty_addr); 3604 3605 if (is_store) { 3606 /* Store-Release semantics */ 3607 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3608 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3609 } else { 3610 /* 3611 * Load-AcquirePC semantics; we implement as the slightly more 3612 * restrictive Load-Acquire. 3613 */ 3614 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3615 extend, true, rt, iss_sf, true); 3616 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3617 } 3618 } 3619 3620 /* Load/store register (all forms) */ 3621 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3622 { 3623 int rt = extract32(insn, 0, 5); 3624 int opc = extract32(insn, 22, 2); 3625 bool is_vector = extract32(insn, 26, 1); 3626 int size = extract32(insn, 30, 2); 3627 3628 switch (extract32(insn, 24, 2)) { 3629 case 0: 3630 if (extract32(insn, 21, 1) == 0) { 3631 /* Load/store register (unscaled immediate) 3632 * Load/store immediate pre/post-indexed 3633 * Load/store register unprivileged 3634 */ 3635 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3636 return; 3637 } 3638 switch (extract32(insn, 10, 2)) { 3639 case 0: 3640 disas_ldst_atomic(s, insn, size, rt, is_vector); 3641 return; 3642 case 2: 3643 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3644 return; 3645 default: 3646 disas_ldst_pac(s, insn, size, rt, is_vector); 3647 return; 3648 } 3649 break; 3650 case 1: 3651 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3652 return; 3653 } 3654 unallocated_encoding(s); 3655 } 3656 3657 /* AdvSIMD load/store multiple structures 3658 * 3659 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3660 * +---+---+---------------+---+-------------+--------+------+------+------+ 3661 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3662 * +---+---+---------------+---+-------------+--------+------+------+------+ 3663 * 3664 * AdvSIMD load/store multiple structures (post-indexed) 3665 * 3666 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3667 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3668 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3669 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3670 * 3671 * Rt: first (or only) SIMD&FP register to be transferred 3672 * Rn: base address or SP 3673 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3674 */ 3675 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3676 { 3677 int rt = extract32(insn, 0, 5); 3678 int rn = extract32(insn, 5, 5); 3679 int rm = extract32(insn, 16, 5); 3680 int size = extract32(insn, 10, 2); 3681 int opcode = extract32(insn, 12, 4); 3682 bool is_store = !extract32(insn, 22, 1); 3683 bool is_postidx = extract32(insn, 23, 1); 3684 bool is_q = extract32(insn, 30, 1); 3685 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3686 MemOp endian, align, mop; 3687 3688 int total; /* total bytes */ 3689 int elements; /* elements per vector */ 3690 int rpt; /* num iterations */ 3691 int selem; /* structure elements */ 3692 int r; 3693 3694 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3695 unallocated_encoding(s); 3696 return; 3697 } 3698 3699 if (!is_postidx && rm != 0) { 3700 unallocated_encoding(s); 3701 return; 3702 } 3703 3704 /* From the shared decode logic */ 3705 switch (opcode) { 3706 case 0x0: 3707 rpt = 1; 3708 selem = 4; 3709 break; 3710 case 0x2: 3711 rpt = 4; 3712 selem = 1; 3713 break; 3714 case 0x4: 3715 rpt = 1; 3716 selem = 3; 3717 break; 3718 case 0x6: 3719 rpt = 3; 3720 selem = 1; 3721 break; 3722 case 0x7: 3723 rpt = 1; 3724 selem = 1; 3725 break; 3726 case 0x8: 3727 rpt = 1; 3728 selem = 2; 3729 break; 3730 case 0xa: 3731 rpt = 2; 3732 selem = 1; 3733 break; 3734 default: 3735 unallocated_encoding(s); 3736 return; 3737 } 3738 3739 if (size == 3 && !is_q && selem != 1) { 3740 /* reserved */ 3741 unallocated_encoding(s); 3742 return; 3743 } 3744 3745 if (!fp_access_check(s)) { 3746 return; 3747 } 3748 3749 if (rn == 31) { 3750 gen_check_sp_alignment(s); 3751 } 3752 3753 /* For our purposes, bytes are always little-endian. */ 3754 endian = s->be_data; 3755 if (size == 0) { 3756 endian = MO_LE; 3757 } 3758 3759 total = rpt * selem * (is_q ? 16 : 8); 3760 tcg_rn = cpu_reg_sp(s, rn); 3761 3762 /* 3763 * Issue the MTE check vs the logical repeat count, before we 3764 * promote consecutive little-endian elements below. 3765 */ 3766 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3767 total); 3768 3769 /* 3770 * Consecutive little-endian elements from a single register 3771 * can be promoted to a larger little-endian operation. 3772 */ 3773 align = MO_ALIGN; 3774 if (selem == 1 && endian == MO_LE) { 3775 align = pow2_align(size); 3776 size = 3; 3777 } 3778 if (!s->align_mem) { 3779 align = 0; 3780 } 3781 mop = endian | size | align; 3782 3783 elements = (is_q ? 16 : 8) >> size; 3784 tcg_ebytes = tcg_constant_i64(1 << size); 3785 for (r = 0; r < rpt; r++) { 3786 int e; 3787 for (e = 0; e < elements; e++) { 3788 int xs; 3789 for (xs = 0; xs < selem; xs++) { 3790 int tt = (rt + r + xs) % 32; 3791 if (is_store) { 3792 do_vec_st(s, tt, e, clean_addr, mop); 3793 } else { 3794 do_vec_ld(s, tt, e, clean_addr, mop); 3795 } 3796 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3797 } 3798 } 3799 } 3800 3801 if (!is_store) { 3802 /* For non-quad operations, setting a slice of the low 3803 * 64 bits of the register clears the high 64 bits (in 3804 * the ARM ARM pseudocode this is implicit in the fact 3805 * that 'rval' is a 64 bit wide variable). 3806 * For quad operations, we might still need to zero the 3807 * high bits of SVE. 3808 */ 3809 for (r = 0; r < rpt * selem; r++) { 3810 int tt = (rt + r) % 32; 3811 clear_vec_high(s, is_q, tt); 3812 } 3813 } 3814 3815 if (is_postidx) { 3816 if (rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3820 } 3821 } 3822 } 3823 3824 /* AdvSIMD load/store single structure 3825 * 3826 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3827 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3828 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3829 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3830 * 3831 * AdvSIMD load/store single structure (post-indexed) 3832 * 3833 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3834 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3835 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3836 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3837 * 3838 * Rt: first (or only) SIMD&FP register to be transferred 3839 * Rn: base address or SP 3840 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3841 * index = encoded in Q:S:size dependent on size 3842 * 3843 * lane_size = encoded in R, opc 3844 * transfer width = encoded in opc, S, size 3845 */ 3846 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3847 { 3848 int rt = extract32(insn, 0, 5); 3849 int rn = extract32(insn, 5, 5); 3850 int rm = extract32(insn, 16, 5); 3851 int size = extract32(insn, 10, 2); 3852 int S = extract32(insn, 12, 1); 3853 int opc = extract32(insn, 13, 3); 3854 int R = extract32(insn, 21, 1); 3855 int is_load = extract32(insn, 22, 1); 3856 int is_postidx = extract32(insn, 23, 1); 3857 int is_q = extract32(insn, 30, 1); 3858 3859 int scale = extract32(opc, 1, 2); 3860 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3861 bool replicate = false; 3862 int index = is_q << 3 | S << 2 | size; 3863 int xs, total; 3864 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3865 MemOp mop; 3866 3867 if (extract32(insn, 31, 1)) { 3868 unallocated_encoding(s); 3869 return; 3870 } 3871 if (!is_postidx && rm != 0) { 3872 unallocated_encoding(s); 3873 return; 3874 } 3875 3876 switch (scale) { 3877 case 3: 3878 if (!is_load || S) { 3879 unallocated_encoding(s); 3880 return; 3881 } 3882 scale = size; 3883 replicate = true; 3884 break; 3885 case 0: 3886 break; 3887 case 1: 3888 if (extract32(size, 0, 1)) { 3889 unallocated_encoding(s); 3890 return; 3891 } 3892 index >>= 1; 3893 break; 3894 case 2: 3895 if (extract32(size, 1, 1)) { 3896 unallocated_encoding(s); 3897 return; 3898 } 3899 if (!extract32(size, 0, 1)) { 3900 index >>= 2; 3901 } else { 3902 if (S) { 3903 unallocated_encoding(s); 3904 return; 3905 } 3906 index >>= 3; 3907 scale = 3; 3908 } 3909 break; 3910 default: 3911 g_assert_not_reached(); 3912 } 3913 3914 if (!fp_access_check(s)) { 3915 return; 3916 } 3917 3918 if (rn == 31) { 3919 gen_check_sp_alignment(s); 3920 } 3921 3922 total = selem << scale; 3923 tcg_rn = cpu_reg_sp(s, rn); 3924 3925 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3926 total); 3927 mop = finalize_memop(s, scale); 3928 3929 tcg_ebytes = tcg_constant_i64(1 << scale); 3930 for (xs = 0; xs < selem; xs++) { 3931 if (replicate) { 3932 /* Load and replicate to all elements */ 3933 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3934 3935 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3936 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3937 (is_q + 1) * 8, vec_full_reg_size(s), 3938 tcg_tmp); 3939 } else { 3940 /* Load/store one element per register */ 3941 if (is_load) { 3942 do_vec_ld(s, rt, index, clean_addr, mop); 3943 } else { 3944 do_vec_st(s, rt, index, clean_addr, mop); 3945 } 3946 } 3947 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3948 rt = (rt + 1) % 32; 3949 } 3950 3951 if (is_postidx) { 3952 if (rm == 31) { 3953 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3954 } else { 3955 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3956 } 3957 } 3958 } 3959 3960 /* 3961 * Load/Store memory tags 3962 * 3963 * 31 30 29 24 22 21 12 10 5 0 3964 * +-----+-------------+-----+---+------+-----+------+------+ 3965 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3966 * +-----+-------------+-----+---+------+-----+------+------+ 3967 */ 3968 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3969 { 3970 int rt = extract32(insn, 0, 5); 3971 int rn = extract32(insn, 5, 5); 3972 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3973 int op2 = extract32(insn, 10, 2); 3974 int op1 = extract32(insn, 22, 2); 3975 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3976 int index = 0; 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 /* We checked insn bits [29:24,21] in the caller. */ 3980 if (extract32(insn, 30, 2) != 3) { 3981 goto do_unallocated; 3982 } 3983 3984 /* 3985 * @index is a tri-state variable which has 3 states: 3986 * < 0 : post-index, writeback 3987 * = 0 : signed offset 3988 * > 0 : pre-index, writeback 3989 */ 3990 switch (op1) { 3991 case 0: 3992 if (op2 != 0) { 3993 /* STG */ 3994 index = op2 - 2; 3995 } else { 3996 /* STZGM */ 3997 if (s->current_el == 0 || offset != 0) { 3998 goto do_unallocated; 3999 } 4000 is_mult = is_zero = true; 4001 } 4002 break; 4003 case 1: 4004 if (op2 != 0) { 4005 /* STZG */ 4006 is_zero = true; 4007 index = op2 - 2; 4008 } else { 4009 /* LDG */ 4010 is_load = true; 4011 } 4012 break; 4013 case 2: 4014 if (op2 != 0) { 4015 /* ST2G */ 4016 is_pair = true; 4017 index = op2 - 2; 4018 } else { 4019 /* STGM */ 4020 if (s->current_el == 0 || offset != 0) { 4021 goto do_unallocated; 4022 } 4023 is_mult = true; 4024 } 4025 break; 4026 case 3: 4027 if (op2 != 0) { 4028 /* STZ2G */ 4029 is_pair = is_zero = true; 4030 index = op2 - 2; 4031 } else { 4032 /* LDGM */ 4033 if (s->current_el == 0 || offset != 0) { 4034 goto do_unallocated; 4035 } 4036 is_mult = is_load = true; 4037 } 4038 break; 4039 4040 default: 4041 do_unallocated: 4042 unallocated_encoding(s); 4043 return; 4044 } 4045 4046 if (is_mult 4047 ? !dc_isar_feature(aa64_mte, s) 4048 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4049 goto do_unallocated; 4050 } 4051 4052 if (rn == 31) { 4053 gen_check_sp_alignment(s); 4054 } 4055 4056 addr = read_cpu_reg_sp(s, rn, true); 4057 if (index >= 0) { 4058 /* pre-index or signed offset */ 4059 tcg_gen_addi_i64(addr, addr, offset); 4060 } 4061 4062 if (is_mult) { 4063 tcg_rt = cpu_reg(s, rt); 4064 4065 if (is_zero) { 4066 int size = 4 << s->dcz_blocksize; 4067 4068 if (s->ata) { 4069 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4070 } 4071 /* 4072 * The non-tags portion of STZGM is mostly like DC_ZVA, 4073 * except the alignment happens before the access. 4074 */ 4075 clean_addr = clean_data_tbi(s, addr); 4076 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4077 gen_helper_dc_zva(cpu_env, clean_addr); 4078 } else if (s->ata) { 4079 if (is_load) { 4080 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4081 } else { 4082 gen_helper_stgm(cpu_env, addr, tcg_rt); 4083 } 4084 } else { 4085 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4086 int size = 4 << GMID_EL1_BS; 4087 4088 clean_addr = clean_data_tbi(s, addr); 4089 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4090 gen_probe_access(s, clean_addr, acc, size); 4091 4092 if (is_load) { 4093 /* The result tags are zeros. */ 4094 tcg_gen_movi_i64(tcg_rt, 0); 4095 } 4096 } 4097 return; 4098 } 4099 4100 if (is_load) { 4101 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4102 tcg_rt = cpu_reg(s, rt); 4103 if (s->ata) { 4104 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4105 } else { 4106 clean_addr = clean_data_tbi(s, addr); 4107 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4108 gen_address_with_allocation_tag0(tcg_rt, addr); 4109 } 4110 } else { 4111 tcg_rt = cpu_reg_sp(s, rt); 4112 if (!s->ata) { 4113 /* 4114 * For STG and ST2G, we need to check alignment and probe memory. 4115 * TODO: For STZG and STZ2G, we could rely on the stores below, 4116 * at least for system mode; user-only won't enforce alignment. 4117 */ 4118 if (is_pair) { 4119 gen_helper_st2g_stub(cpu_env, addr); 4120 } else { 4121 gen_helper_stg_stub(cpu_env, addr); 4122 } 4123 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4124 if (is_pair) { 4125 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4126 } else { 4127 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4128 } 4129 } else { 4130 if (is_pair) { 4131 gen_helper_st2g(cpu_env, addr, tcg_rt); 4132 } else { 4133 gen_helper_stg(cpu_env, addr, tcg_rt); 4134 } 4135 } 4136 } 4137 4138 if (is_zero) { 4139 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4140 TCGv_i64 tcg_zero = tcg_constant_i64(0); 4141 int mem_index = get_mem_index(s); 4142 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE; 4143 4144 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, 4145 MO_UQ | MO_ALIGN_16); 4146 for (i = 8; i < n; i += 8) { 4147 tcg_gen_addi_i64(clean_addr, clean_addr, 8); 4148 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ); 4149 } 4150 } 4151 4152 if (index != 0) { 4153 /* pre-index or post-index */ 4154 if (index < 0) { 4155 /* post-index */ 4156 tcg_gen_addi_i64(addr, addr, offset); 4157 } 4158 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4159 } 4160 } 4161 4162 /* Loads and stores */ 4163 static void disas_ldst(DisasContext *s, uint32_t insn) 4164 { 4165 switch (extract32(insn, 24, 6)) { 4166 case 0x08: /* Load/store exclusive */ 4167 disas_ldst_excl(s, insn); 4168 break; 4169 case 0x18: case 0x1c: /* Load register (literal) */ 4170 disas_ld_lit(s, insn); 4171 break; 4172 case 0x28: case 0x29: 4173 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4174 disas_ldst_pair(s, insn); 4175 break; 4176 case 0x38: case 0x39: 4177 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4178 disas_ldst_reg(s, insn); 4179 break; 4180 case 0x0c: /* AdvSIMD load/store multiple structures */ 4181 disas_ldst_multiple_struct(s, insn); 4182 break; 4183 case 0x0d: /* AdvSIMD load/store single structure */ 4184 disas_ldst_single_struct(s, insn); 4185 break; 4186 case 0x19: 4187 if (extract32(insn, 21, 1) != 0) { 4188 disas_ldst_tag(s, insn); 4189 } else if (extract32(insn, 10, 2) == 0) { 4190 disas_ldst_ldapr_stlr(s, insn); 4191 } else { 4192 unallocated_encoding(s); 4193 } 4194 break; 4195 default: 4196 unallocated_encoding(s); 4197 break; 4198 } 4199 } 4200 4201 /* 4202 * PC-rel. addressing 4203 */ 4204 4205 static bool trans_ADR(DisasContext *s, arg_ri *a) 4206 { 4207 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4208 return true; 4209 } 4210 4211 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4212 { 4213 int64_t offset = (int64_t)a->imm << 12; 4214 4215 /* The page offset is ok for CF_PCREL. */ 4216 offset -= s->pc_curr & 0xfff; 4217 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4218 return true; 4219 } 4220 4221 /* 4222 * Add/subtract (immediate) 4223 * 4224 * 31 30 29 28 23 22 21 10 9 5 4 0 4225 * +--+--+--+-------------+--+-------------+-----+-----+ 4226 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd | 4227 * +--+--+--+-------------+--+-------------+-----+-----+ 4228 * 4229 * sf: 0 -> 32bit, 1 -> 64bit 4230 * op: 0 -> add , 1 -> sub 4231 * S: 1 -> set flags 4232 * sh: 1 -> LSL imm by 12 4233 */ 4234 static void disas_add_sub_imm(DisasContext *s, uint32_t insn) 4235 { 4236 int rd = extract32(insn, 0, 5); 4237 int rn = extract32(insn, 5, 5); 4238 uint64_t imm = extract32(insn, 10, 12); 4239 bool shift = extract32(insn, 22, 1); 4240 bool setflags = extract32(insn, 29, 1); 4241 bool sub_op = extract32(insn, 30, 1); 4242 bool is_64bit = extract32(insn, 31, 1); 4243 4244 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 4245 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd); 4246 TCGv_i64 tcg_result; 4247 4248 if (shift) { 4249 imm <<= 12; 4250 } 4251 4252 tcg_result = tcg_temp_new_i64(); 4253 if (!setflags) { 4254 if (sub_op) { 4255 tcg_gen_subi_i64(tcg_result, tcg_rn, imm); 4256 } else { 4257 tcg_gen_addi_i64(tcg_result, tcg_rn, imm); 4258 } 4259 } else { 4260 TCGv_i64 tcg_imm = tcg_constant_i64(imm); 4261 if (sub_op) { 4262 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4263 } else { 4264 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4265 } 4266 } 4267 4268 if (is_64bit) { 4269 tcg_gen_mov_i64(tcg_rd, tcg_result); 4270 } else { 4271 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4272 } 4273 } 4274 4275 /* 4276 * Add/subtract (immediate, with tags) 4277 * 4278 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0 4279 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4280 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd | 4281 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4282 * 4283 * op: 0 -> add, 1 -> sub 4284 */ 4285 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn) 4286 { 4287 int rd = extract32(insn, 0, 5); 4288 int rn = extract32(insn, 5, 5); 4289 int uimm4 = extract32(insn, 10, 4); 4290 int uimm6 = extract32(insn, 16, 6); 4291 bool sub_op = extract32(insn, 30, 1); 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 /* Test all of sf=1, S=0, o2=0, o3=0. */ 4296 if ((insn & 0xa040c000u) != 0x80000000u || 4297 !dc_isar_feature(aa64_mte_insn_reg, s)) { 4298 unallocated_encoding(s); 4299 return; 4300 } 4301 4302 imm = uimm6 << LOG2_TAG_GRANULE; 4303 if (sub_op) { 4304 imm = -imm; 4305 } 4306 4307 tcg_rn = cpu_reg_sp(s, rn); 4308 tcg_rd = cpu_reg_sp(s, rd); 4309 4310 if (s->ata) { 4311 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4312 tcg_constant_i32(imm), 4313 tcg_constant_i32(uimm4)); 4314 } else { 4315 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4316 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4317 } 4318 } 4319 4320 /* The input should be a value in the bottom e bits (with higher 4321 * bits zero); returns that value replicated into every element 4322 * of size e in a 64 bit integer. 4323 */ 4324 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4325 { 4326 assert(e != 0); 4327 while (e < 64) { 4328 mask |= mask << e; 4329 e *= 2; 4330 } 4331 return mask; 4332 } 4333 4334 /* Return a value with the bottom len bits set (where 0 < len <= 64) */ 4335 static inline uint64_t bitmask64(unsigned int length) 4336 { 4337 assert(length > 0 && length <= 64); 4338 return ~0ULL >> (64 - length); 4339 } 4340 4341 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we 4342 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4343 * value (ie should cause a guest UNDEF exception), and true if they are 4344 * valid, in which case the decoded bit pattern is written to result. 4345 */ 4346 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4347 unsigned int imms, unsigned int immr) 4348 { 4349 uint64_t mask; 4350 unsigned e, levels, s, r; 4351 int len; 4352 4353 assert(immn < 2 && imms < 64 && immr < 64); 4354 4355 /* The bit patterns we create here are 64 bit patterns which 4356 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4357 * 64 bits each. Each element contains the same value: a run 4358 * of between 1 and e-1 non-zero bits, rotated within the 4359 * element by between 0 and e-1 bits. 4360 * 4361 * The element size and run length are encoded into immn (1 bit) 4362 * and imms (6 bits) as follows: 4363 * 64 bit elements: immn = 1, imms = <length of run - 1> 4364 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4365 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4366 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4367 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4368 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4369 * Notice that immn = 0, imms = 11111x is the only combination 4370 * not covered by one of the above options; this is reserved. 4371 * Further, <length of run - 1> all-ones is a reserved pattern. 4372 * 4373 * In all cases the rotation is by immr % e (and immr is 6 bits). 4374 */ 4375 4376 /* First determine the element size */ 4377 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4378 if (len < 1) { 4379 /* This is the immn == 0, imms == 0x11111x case */ 4380 return false; 4381 } 4382 e = 1 << len; 4383 4384 levels = e - 1; 4385 s = imms & levels; 4386 r = immr & levels; 4387 4388 if (s == levels) { 4389 /* <length of run - 1> mustn't be all-ones. */ 4390 return false; 4391 } 4392 4393 /* Create the value of one element: s+1 set bits rotated 4394 * by r within the element (which is e bits wide)... 4395 */ 4396 mask = bitmask64(s + 1); 4397 if (r) { 4398 mask = (mask >> r) | (mask << (e - r)); 4399 mask &= bitmask64(e); 4400 } 4401 /* ...then replicate the element over the whole 64 bit value */ 4402 mask = bitfield_replicate(mask, e); 4403 *result = mask; 4404 return true; 4405 } 4406 4407 /* Logical (immediate) 4408 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4409 * +----+-----+-------------+---+------+------+------+------+ 4410 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd | 4411 * +----+-----+-------------+---+------+------+------+------+ 4412 */ 4413 static void disas_logic_imm(DisasContext *s, uint32_t insn) 4414 { 4415 unsigned int sf, opc, is_n, immr, imms, rn, rd; 4416 TCGv_i64 tcg_rd, tcg_rn; 4417 uint64_t wmask; 4418 bool is_and = false; 4419 4420 sf = extract32(insn, 31, 1); 4421 opc = extract32(insn, 29, 2); 4422 is_n = extract32(insn, 22, 1); 4423 immr = extract32(insn, 16, 6); 4424 imms = extract32(insn, 10, 6); 4425 rn = extract32(insn, 5, 5); 4426 rd = extract32(insn, 0, 5); 4427 4428 if (!sf && is_n) { 4429 unallocated_encoding(s); 4430 return; 4431 } 4432 4433 if (opc == 0x3) { /* ANDS */ 4434 tcg_rd = cpu_reg(s, rd); 4435 } else { 4436 tcg_rd = cpu_reg_sp(s, rd); 4437 } 4438 tcg_rn = cpu_reg(s, rn); 4439 4440 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) { 4441 /* some immediate field values are reserved */ 4442 unallocated_encoding(s); 4443 return; 4444 } 4445 4446 if (!sf) { 4447 wmask &= 0xffffffff; 4448 } 4449 4450 switch (opc) { 4451 case 0x3: /* ANDS */ 4452 case 0x0: /* AND */ 4453 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask); 4454 is_and = true; 4455 break; 4456 case 0x1: /* ORR */ 4457 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask); 4458 break; 4459 case 0x2: /* EOR */ 4460 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask); 4461 break; 4462 default: 4463 assert(FALSE); /* must handle all above */ 4464 break; 4465 } 4466 4467 if (!sf && !is_and) { 4468 /* zero extend final result; we know we can skip this for AND 4469 * since the immediate had the high 32 bits clear. 4470 */ 4471 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4472 } 4473 4474 if (opc == 3) { /* ANDS */ 4475 gen_logic_CC(sf, tcg_rd); 4476 } 4477 } 4478 4479 /* 4480 * Move wide (immediate) 4481 * 4482 * 31 30 29 28 23 22 21 20 5 4 0 4483 * +--+-----+-------------+-----+----------------+------+ 4484 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd | 4485 * +--+-----+-------------+-----+----------------+------+ 4486 * 4487 * sf: 0 -> 32 bit, 1 -> 64 bit 4488 * opc: 00 -> N, 10 -> Z, 11 -> K 4489 * hw: shift/16 (0,16, and sf only 32, 48) 4490 */ 4491 static void disas_movw_imm(DisasContext *s, uint32_t insn) 4492 { 4493 int rd = extract32(insn, 0, 5); 4494 uint64_t imm = extract32(insn, 5, 16); 4495 int sf = extract32(insn, 31, 1); 4496 int opc = extract32(insn, 29, 2); 4497 int pos = extract32(insn, 21, 2) << 4; 4498 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4499 4500 if (!sf && (pos >= 32)) { 4501 unallocated_encoding(s); 4502 return; 4503 } 4504 4505 switch (opc) { 4506 case 0: /* MOVN */ 4507 case 2: /* MOVZ */ 4508 imm <<= pos; 4509 if (opc == 0) { 4510 imm = ~imm; 4511 } 4512 if (!sf) { 4513 imm &= 0xffffffffu; 4514 } 4515 tcg_gen_movi_i64(tcg_rd, imm); 4516 break; 4517 case 3: /* MOVK */ 4518 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16); 4519 if (!sf) { 4520 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4521 } 4522 break; 4523 default: 4524 unallocated_encoding(s); 4525 break; 4526 } 4527 } 4528 4529 /* Bitfield 4530 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4531 * +----+-----+-------------+---+------+------+------+------+ 4532 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd | 4533 * +----+-----+-------------+---+------+------+------+------+ 4534 */ 4535 static void disas_bitfield(DisasContext *s, uint32_t insn) 4536 { 4537 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len; 4538 TCGv_i64 tcg_rd, tcg_tmp; 4539 4540 sf = extract32(insn, 31, 1); 4541 opc = extract32(insn, 29, 2); 4542 n = extract32(insn, 22, 1); 4543 ri = extract32(insn, 16, 6); 4544 si = extract32(insn, 10, 6); 4545 rn = extract32(insn, 5, 5); 4546 rd = extract32(insn, 0, 5); 4547 bitsize = sf ? 64 : 32; 4548 4549 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) { 4550 unallocated_encoding(s); 4551 return; 4552 } 4553 4554 tcg_rd = cpu_reg(s, rd); 4555 4556 /* Suppress the zero-extend for !sf. Since RI and SI are constrained 4557 to be smaller than bitsize, we'll never reference data outside the 4558 low 32-bits anyway. */ 4559 tcg_tmp = read_cpu_reg(s, rn, 1); 4560 4561 /* Recognize simple(r) extractions. */ 4562 if (si >= ri) { 4563 /* Wd<s-r:0> = Wn<s:r> */ 4564 len = (si - ri) + 1; 4565 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */ 4566 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4567 goto done; 4568 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */ 4569 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4570 return; 4571 } 4572 /* opc == 1, BFXIL fall through to deposit */ 4573 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4574 pos = 0; 4575 } else { 4576 /* Handle the ri > si case with a deposit 4577 * Wd<32+s-r,32-r> = Wn<s:0> 4578 */ 4579 len = si + 1; 4580 pos = (bitsize - ri) & (bitsize - 1); 4581 } 4582 4583 if (opc == 0 && len < ri) { 4584 /* SBFM: sign extend the destination field from len to fill 4585 the balance of the word. Let the deposit below insert all 4586 of those sign bits. */ 4587 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4588 len = ri; 4589 } 4590 4591 if (opc == 1) { /* BFM, BFXIL */ 4592 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4593 } else { 4594 /* SBFM or UBFM: We start with zero, and we haven't modified 4595 any bits outside bitsize, therefore the zero-extension 4596 below is unneeded. */ 4597 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4598 return; 4599 } 4600 4601 done: 4602 if (!sf) { /* zero extend final result */ 4603 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4604 } 4605 } 4606 4607 /* Extract 4608 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0 4609 * +----+------+-------------+---+----+------+--------+------+------+ 4610 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd | 4611 * +----+------+-------------+---+----+------+--------+------+------+ 4612 */ 4613 static void disas_extract(DisasContext *s, uint32_t insn) 4614 { 4615 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0; 4616 4617 sf = extract32(insn, 31, 1); 4618 n = extract32(insn, 22, 1); 4619 rm = extract32(insn, 16, 5); 4620 imm = extract32(insn, 10, 6); 4621 rn = extract32(insn, 5, 5); 4622 rd = extract32(insn, 0, 5); 4623 op21 = extract32(insn, 29, 2); 4624 op0 = extract32(insn, 21, 1); 4625 bitsize = sf ? 64 : 32; 4626 4627 if (sf != n || op21 || op0 || imm >= bitsize) { 4628 unallocated_encoding(s); 4629 } else { 4630 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4631 4632 tcg_rd = cpu_reg(s, rd); 4633 4634 if (unlikely(imm == 0)) { 4635 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4636 * so an extract from bit 0 is a special case. 4637 */ 4638 if (sf) { 4639 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm)); 4640 } else { 4641 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm)); 4642 } 4643 } else { 4644 tcg_rm = cpu_reg(s, rm); 4645 tcg_rn = cpu_reg(s, rn); 4646 4647 if (sf) { 4648 /* Specialization to ROR happens in EXTRACT2. */ 4649 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm); 4650 } else { 4651 TCGv_i32 t0 = tcg_temp_new_i32(); 4652 4653 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4654 if (rm == rn) { 4655 tcg_gen_rotri_i32(t0, t0, imm); 4656 } else { 4657 TCGv_i32 t1 = tcg_temp_new_i32(); 4658 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4659 tcg_gen_extract2_i32(t0, t0, t1, imm); 4660 } 4661 tcg_gen_extu_i32_i64(tcg_rd, t0); 4662 } 4663 } 4664 } 4665 } 4666 4667 /* Data processing - immediate */ 4668 static void disas_data_proc_imm(DisasContext *s, uint32_t insn) 4669 { 4670 switch (extract32(insn, 23, 6)) { 4671 case 0x22: /* Add/subtract (immediate) */ 4672 disas_add_sub_imm(s, insn); 4673 break; 4674 case 0x23: /* Add/subtract (immediate, with tags) */ 4675 disas_add_sub_imm_with_tags(s, insn); 4676 break; 4677 case 0x24: /* Logical (immediate) */ 4678 disas_logic_imm(s, insn); 4679 break; 4680 case 0x25: /* Move wide (immediate) */ 4681 disas_movw_imm(s, insn); 4682 break; 4683 case 0x26: /* Bitfield */ 4684 disas_bitfield(s, insn); 4685 break; 4686 case 0x27: /* Extract */ 4687 disas_extract(s, insn); 4688 break; 4689 default: 4690 unallocated_encoding(s); 4691 break; 4692 } 4693 } 4694 4695 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4696 * Note that it is the caller's responsibility to ensure that the 4697 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4698 * mandated semantics for out of range shifts. 4699 */ 4700 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4701 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4702 { 4703 switch (shift_type) { 4704 case A64_SHIFT_TYPE_LSL: 4705 tcg_gen_shl_i64(dst, src, shift_amount); 4706 break; 4707 case A64_SHIFT_TYPE_LSR: 4708 tcg_gen_shr_i64(dst, src, shift_amount); 4709 break; 4710 case A64_SHIFT_TYPE_ASR: 4711 if (!sf) { 4712 tcg_gen_ext32s_i64(dst, src); 4713 } 4714 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4715 break; 4716 case A64_SHIFT_TYPE_ROR: 4717 if (sf) { 4718 tcg_gen_rotr_i64(dst, src, shift_amount); 4719 } else { 4720 TCGv_i32 t0, t1; 4721 t0 = tcg_temp_new_i32(); 4722 t1 = tcg_temp_new_i32(); 4723 tcg_gen_extrl_i64_i32(t0, src); 4724 tcg_gen_extrl_i64_i32(t1, shift_amount); 4725 tcg_gen_rotr_i32(t0, t0, t1); 4726 tcg_gen_extu_i32_i64(dst, t0); 4727 } 4728 break; 4729 default: 4730 assert(FALSE); /* all shift types should be handled */ 4731 break; 4732 } 4733 4734 if (!sf) { /* zero extend final result */ 4735 tcg_gen_ext32u_i64(dst, dst); 4736 } 4737 } 4738 4739 /* Shift a TCGv src by immediate, put result in dst. 4740 * The shift amount must be in range (this should always be true as the 4741 * relevant instructions will UNDEF on bad shift immediates). 4742 */ 4743 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4744 enum a64_shift_type shift_type, unsigned int shift_i) 4745 { 4746 assert(shift_i < (sf ? 64 : 32)); 4747 4748 if (shift_i == 0) { 4749 tcg_gen_mov_i64(dst, src); 4750 } else { 4751 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4752 } 4753 } 4754 4755 /* Logical (shifted register) 4756 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4757 * +----+-----+-----------+-------+---+------+--------+------+------+ 4758 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4759 * +----+-----+-----------+-------+---+------+--------+------+------+ 4760 */ 4761 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4762 { 4763 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4764 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4765 4766 sf = extract32(insn, 31, 1); 4767 opc = extract32(insn, 29, 2); 4768 shift_type = extract32(insn, 22, 2); 4769 invert = extract32(insn, 21, 1); 4770 rm = extract32(insn, 16, 5); 4771 shift_amount = extract32(insn, 10, 6); 4772 rn = extract32(insn, 5, 5); 4773 rd = extract32(insn, 0, 5); 4774 4775 if (!sf && (shift_amount & (1 << 5))) { 4776 unallocated_encoding(s); 4777 return; 4778 } 4779 4780 tcg_rd = cpu_reg(s, rd); 4781 4782 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4783 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4784 * register-register MOV and MVN, so it is worth special casing. 4785 */ 4786 tcg_rm = cpu_reg(s, rm); 4787 if (invert) { 4788 tcg_gen_not_i64(tcg_rd, tcg_rm); 4789 if (!sf) { 4790 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4791 } 4792 } else { 4793 if (sf) { 4794 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4795 } else { 4796 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4797 } 4798 } 4799 return; 4800 } 4801 4802 tcg_rm = read_cpu_reg(s, rm, sf); 4803 4804 if (shift_amount) { 4805 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4806 } 4807 4808 tcg_rn = cpu_reg(s, rn); 4809 4810 switch (opc | (invert << 2)) { 4811 case 0: /* AND */ 4812 case 3: /* ANDS */ 4813 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4814 break; 4815 case 1: /* ORR */ 4816 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4817 break; 4818 case 2: /* EOR */ 4819 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4820 break; 4821 case 4: /* BIC */ 4822 case 7: /* BICS */ 4823 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4824 break; 4825 case 5: /* ORN */ 4826 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4827 break; 4828 case 6: /* EON */ 4829 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4830 break; 4831 default: 4832 assert(FALSE); 4833 break; 4834 } 4835 4836 if (!sf) { 4837 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4838 } 4839 4840 if (opc == 3) { 4841 gen_logic_CC(sf, tcg_rd); 4842 } 4843 } 4844 4845 /* 4846 * Add/subtract (extended register) 4847 * 4848 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4849 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4850 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4851 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4852 * 4853 * sf: 0 -> 32bit, 1 -> 64bit 4854 * op: 0 -> add , 1 -> sub 4855 * S: 1 -> set flags 4856 * opt: 00 4857 * option: extension type (see DecodeRegExtend) 4858 * imm3: optional shift to Rm 4859 * 4860 * Rd = Rn + LSL(extend(Rm), amount) 4861 */ 4862 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4863 { 4864 int rd = extract32(insn, 0, 5); 4865 int rn = extract32(insn, 5, 5); 4866 int imm3 = extract32(insn, 10, 3); 4867 int option = extract32(insn, 13, 3); 4868 int rm = extract32(insn, 16, 5); 4869 int opt = extract32(insn, 22, 2); 4870 bool setflags = extract32(insn, 29, 1); 4871 bool sub_op = extract32(insn, 30, 1); 4872 bool sf = extract32(insn, 31, 1); 4873 4874 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4875 TCGv_i64 tcg_rd; 4876 TCGv_i64 tcg_result; 4877 4878 if (imm3 > 4 || opt != 0) { 4879 unallocated_encoding(s); 4880 return; 4881 } 4882 4883 /* non-flag setting ops may use SP */ 4884 if (!setflags) { 4885 tcg_rd = cpu_reg_sp(s, rd); 4886 } else { 4887 tcg_rd = cpu_reg(s, rd); 4888 } 4889 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4890 4891 tcg_rm = read_cpu_reg(s, rm, sf); 4892 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4893 4894 tcg_result = tcg_temp_new_i64(); 4895 4896 if (!setflags) { 4897 if (sub_op) { 4898 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4899 } else { 4900 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4901 } 4902 } else { 4903 if (sub_op) { 4904 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4905 } else { 4906 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4907 } 4908 } 4909 4910 if (sf) { 4911 tcg_gen_mov_i64(tcg_rd, tcg_result); 4912 } else { 4913 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4914 } 4915 } 4916 4917 /* 4918 * Add/subtract (shifted register) 4919 * 4920 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4921 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4922 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4923 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4924 * 4925 * sf: 0 -> 32bit, 1 -> 64bit 4926 * op: 0 -> add , 1 -> sub 4927 * S: 1 -> set flags 4928 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4929 * imm6: Shift amount to apply to Rm before the add/sub 4930 */ 4931 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4932 { 4933 int rd = extract32(insn, 0, 5); 4934 int rn = extract32(insn, 5, 5); 4935 int imm6 = extract32(insn, 10, 6); 4936 int rm = extract32(insn, 16, 5); 4937 int shift_type = extract32(insn, 22, 2); 4938 bool setflags = extract32(insn, 29, 1); 4939 bool sub_op = extract32(insn, 30, 1); 4940 bool sf = extract32(insn, 31, 1); 4941 4942 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4943 TCGv_i64 tcg_rn, tcg_rm; 4944 TCGv_i64 tcg_result; 4945 4946 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4947 unallocated_encoding(s); 4948 return; 4949 } 4950 4951 tcg_rn = read_cpu_reg(s, rn, sf); 4952 tcg_rm = read_cpu_reg(s, rm, sf); 4953 4954 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4955 4956 tcg_result = tcg_temp_new_i64(); 4957 4958 if (!setflags) { 4959 if (sub_op) { 4960 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4961 } else { 4962 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4963 } 4964 } else { 4965 if (sub_op) { 4966 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4967 } else { 4968 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4969 } 4970 } 4971 4972 if (sf) { 4973 tcg_gen_mov_i64(tcg_rd, tcg_result); 4974 } else { 4975 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4976 } 4977 } 4978 4979 /* Data-processing (3 source) 4980 * 4981 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4982 * +--+------+-----------+------+------+----+------+------+------+ 4983 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4984 * +--+------+-----------+------+------+----+------+------+------+ 4985 */ 4986 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4987 { 4988 int rd = extract32(insn, 0, 5); 4989 int rn = extract32(insn, 5, 5); 4990 int ra = extract32(insn, 10, 5); 4991 int rm = extract32(insn, 16, 5); 4992 int op_id = (extract32(insn, 29, 3) << 4) | 4993 (extract32(insn, 21, 3) << 1) | 4994 extract32(insn, 15, 1); 4995 bool sf = extract32(insn, 31, 1); 4996 bool is_sub = extract32(op_id, 0, 1); 4997 bool is_high = extract32(op_id, 2, 1); 4998 bool is_signed = false; 4999 TCGv_i64 tcg_op1; 5000 TCGv_i64 tcg_op2; 5001 TCGv_i64 tcg_tmp; 5002 5003 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5004 switch (op_id) { 5005 case 0x42: /* SMADDL */ 5006 case 0x43: /* SMSUBL */ 5007 case 0x44: /* SMULH */ 5008 is_signed = true; 5009 break; 5010 case 0x0: /* MADD (32bit) */ 5011 case 0x1: /* MSUB (32bit) */ 5012 case 0x40: /* MADD (64bit) */ 5013 case 0x41: /* MSUB (64bit) */ 5014 case 0x4a: /* UMADDL */ 5015 case 0x4b: /* UMSUBL */ 5016 case 0x4c: /* UMULH */ 5017 break; 5018 default: 5019 unallocated_encoding(s); 5020 return; 5021 } 5022 5023 if (is_high) { 5024 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5025 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5026 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5027 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5028 5029 if (is_signed) { 5030 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5031 } else { 5032 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5033 } 5034 return; 5035 } 5036 5037 tcg_op1 = tcg_temp_new_i64(); 5038 tcg_op2 = tcg_temp_new_i64(); 5039 tcg_tmp = tcg_temp_new_i64(); 5040 5041 if (op_id < 0x42) { 5042 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5043 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5044 } else { 5045 if (is_signed) { 5046 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5047 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5048 } else { 5049 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5050 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5051 } 5052 } 5053 5054 if (ra == 31 && !is_sub) { 5055 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5056 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5057 } else { 5058 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5059 if (is_sub) { 5060 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5061 } else { 5062 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5063 } 5064 } 5065 5066 if (!sf) { 5067 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5068 } 5069 } 5070 5071 /* Add/subtract (with carry) 5072 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5073 * +--+--+--+------------------------+------+-------------+------+-----+ 5074 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5075 * +--+--+--+------------------------+------+-------------+------+-----+ 5076 */ 5077 5078 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5079 { 5080 unsigned int sf, op, setflags, rm, rn, rd; 5081 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5082 5083 sf = extract32(insn, 31, 1); 5084 op = extract32(insn, 30, 1); 5085 setflags = extract32(insn, 29, 1); 5086 rm = extract32(insn, 16, 5); 5087 rn = extract32(insn, 5, 5); 5088 rd = extract32(insn, 0, 5); 5089 5090 tcg_rd = cpu_reg(s, rd); 5091 tcg_rn = cpu_reg(s, rn); 5092 5093 if (op) { 5094 tcg_y = tcg_temp_new_i64(); 5095 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5096 } else { 5097 tcg_y = cpu_reg(s, rm); 5098 } 5099 5100 if (setflags) { 5101 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5102 } else { 5103 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5104 } 5105 } 5106 5107 /* 5108 * Rotate right into flags 5109 * 31 30 29 21 15 10 5 4 0 5110 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5111 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5112 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5113 */ 5114 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5115 { 5116 int mask = extract32(insn, 0, 4); 5117 int o2 = extract32(insn, 4, 1); 5118 int rn = extract32(insn, 5, 5); 5119 int imm6 = extract32(insn, 15, 6); 5120 int sf_op_s = extract32(insn, 29, 3); 5121 TCGv_i64 tcg_rn; 5122 TCGv_i32 nzcv; 5123 5124 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5125 unallocated_encoding(s); 5126 return; 5127 } 5128 5129 tcg_rn = read_cpu_reg(s, rn, 1); 5130 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5131 5132 nzcv = tcg_temp_new_i32(); 5133 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5134 5135 if (mask & 8) { /* N */ 5136 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5137 } 5138 if (mask & 4) { /* Z */ 5139 tcg_gen_not_i32(cpu_ZF, nzcv); 5140 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5141 } 5142 if (mask & 2) { /* C */ 5143 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5144 } 5145 if (mask & 1) { /* V */ 5146 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5147 } 5148 } 5149 5150 /* 5151 * Evaluate into flags 5152 * 31 30 29 21 15 14 10 5 4 0 5153 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5154 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5155 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5156 */ 5157 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5158 { 5159 int o3_mask = extract32(insn, 0, 5); 5160 int rn = extract32(insn, 5, 5); 5161 int o2 = extract32(insn, 15, 6); 5162 int sz = extract32(insn, 14, 1); 5163 int sf_op_s = extract32(insn, 29, 3); 5164 TCGv_i32 tmp; 5165 int shift; 5166 5167 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5168 !dc_isar_feature(aa64_condm_4, s)) { 5169 unallocated_encoding(s); 5170 return; 5171 } 5172 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5173 5174 tmp = tcg_temp_new_i32(); 5175 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5176 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5177 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5178 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5179 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5180 } 5181 5182 /* Conditional compare (immediate / register) 5183 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5184 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5185 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5186 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5187 * [1] y [0] [0] 5188 */ 5189 static void disas_cc(DisasContext *s, uint32_t insn) 5190 { 5191 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5192 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5193 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5194 DisasCompare c; 5195 5196 if (!extract32(insn, 29, 1)) { 5197 unallocated_encoding(s); 5198 return; 5199 } 5200 if (insn & (1 << 10 | 1 << 4)) { 5201 unallocated_encoding(s); 5202 return; 5203 } 5204 sf = extract32(insn, 31, 1); 5205 op = extract32(insn, 30, 1); 5206 is_imm = extract32(insn, 11, 1); 5207 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5208 cond = extract32(insn, 12, 4); 5209 rn = extract32(insn, 5, 5); 5210 nzcv = extract32(insn, 0, 4); 5211 5212 /* Set T0 = !COND. */ 5213 tcg_t0 = tcg_temp_new_i32(); 5214 arm_test_cc(&c, cond); 5215 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5216 5217 /* Load the arguments for the new comparison. */ 5218 if (is_imm) { 5219 tcg_y = tcg_temp_new_i64(); 5220 tcg_gen_movi_i64(tcg_y, y); 5221 } else { 5222 tcg_y = cpu_reg(s, y); 5223 } 5224 tcg_rn = cpu_reg(s, rn); 5225 5226 /* Set the flags for the new comparison. */ 5227 tcg_tmp = tcg_temp_new_i64(); 5228 if (op) { 5229 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5230 } else { 5231 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5232 } 5233 5234 /* If COND was false, force the flags to #nzcv. Compute two masks 5235 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5236 * For tcg hosts that support ANDC, we can make do with just T1. 5237 * In either case, allow the tcg optimizer to delete any unused mask. 5238 */ 5239 tcg_t1 = tcg_temp_new_i32(); 5240 tcg_t2 = tcg_temp_new_i32(); 5241 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5242 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5243 5244 if (nzcv & 8) { /* N */ 5245 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5246 } else { 5247 if (TCG_TARGET_HAS_andc_i32) { 5248 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5249 } else { 5250 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5251 } 5252 } 5253 if (nzcv & 4) { /* Z */ 5254 if (TCG_TARGET_HAS_andc_i32) { 5255 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5256 } else { 5257 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5258 } 5259 } else { 5260 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5261 } 5262 if (nzcv & 2) { /* C */ 5263 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5264 } else { 5265 if (TCG_TARGET_HAS_andc_i32) { 5266 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5267 } else { 5268 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5269 } 5270 } 5271 if (nzcv & 1) { /* V */ 5272 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5273 } else { 5274 if (TCG_TARGET_HAS_andc_i32) { 5275 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5276 } else { 5277 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5278 } 5279 } 5280 } 5281 5282 /* Conditional select 5283 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5284 * +----+----+---+-----------------+------+------+-----+------+------+ 5285 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5286 * +----+----+---+-----------------+------+------+-----+------+------+ 5287 */ 5288 static void disas_cond_select(DisasContext *s, uint32_t insn) 5289 { 5290 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5291 TCGv_i64 tcg_rd, zero; 5292 DisasCompare64 c; 5293 5294 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5295 /* S == 1 or op2<1> == 1 */ 5296 unallocated_encoding(s); 5297 return; 5298 } 5299 sf = extract32(insn, 31, 1); 5300 else_inv = extract32(insn, 30, 1); 5301 rm = extract32(insn, 16, 5); 5302 cond = extract32(insn, 12, 4); 5303 else_inc = extract32(insn, 10, 1); 5304 rn = extract32(insn, 5, 5); 5305 rd = extract32(insn, 0, 5); 5306 5307 tcg_rd = cpu_reg(s, rd); 5308 5309 a64_test_cc(&c, cond); 5310 zero = tcg_constant_i64(0); 5311 5312 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5313 /* CSET & CSETM. */ 5314 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5315 if (else_inv) { 5316 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5317 } 5318 } else { 5319 TCGv_i64 t_true = cpu_reg(s, rn); 5320 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5321 if (else_inv && else_inc) { 5322 tcg_gen_neg_i64(t_false, t_false); 5323 } else if (else_inv) { 5324 tcg_gen_not_i64(t_false, t_false); 5325 } else if (else_inc) { 5326 tcg_gen_addi_i64(t_false, t_false, 1); 5327 } 5328 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5329 } 5330 5331 if (!sf) { 5332 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5333 } 5334 } 5335 5336 static void handle_clz(DisasContext *s, unsigned int sf, 5337 unsigned int rn, unsigned int rd) 5338 { 5339 TCGv_i64 tcg_rd, tcg_rn; 5340 tcg_rd = cpu_reg(s, rd); 5341 tcg_rn = cpu_reg(s, rn); 5342 5343 if (sf) { 5344 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5345 } else { 5346 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5347 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5348 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5349 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5350 } 5351 } 5352 5353 static void handle_cls(DisasContext *s, unsigned int sf, 5354 unsigned int rn, unsigned int rd) 5355 { 5356 TCGv_i64 tcg_rd, tcg_rn; 5357 tcg_rd = cpu_reg(s, rd); 5358 tcg_rn = cpu_reg(s, rn); 5359 5360 if (sf) { 5361 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5362 } else { 5363 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5364 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5365 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5366 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5367 } 5368 } 5369 5370 static void handle_rbit(DisasContext *s, unsigned int sf, 5371 unsigned int rn, unsigned int rd) 5372 { 5373 TCGv_i64 tcg_rd, tcg_rn; 5374 tcg_rd = cpu_reg(s, rd); 5375 tcg_rn = cpu_reg(s, rn); 5376 5377 if (sf) { 5378 gen_helper_rbit64(tcg_rd, tcg_rn); 5379 } else { 5380 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5381 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5382 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5383 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5384 } 5385 } 5386 5387 /* REV with sf==1, opcode==3 ("REV64") */ 5388 static void handle_rev64(DisasContext *s, unsigned int sf, 5389 unsigned int rn, unsigned int rd) 5390 { 5391 if (!sf) { 5392 unallocated_encoding(s); 5393 return; 5394 } 5395 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5396 } 5397 5398 /* REV with sf==0, opcode==2 5399 * REV32 (sf==1, opcode==2) 5400 */ 5401 static void handle_rev32(DisasContext *s, unsigned int sf, 5402 unsigned int rn, unsigned int rd) 5403 { 5404 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5405 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5406 5407 if (sf) { 5408 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5409 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5410 } else { 5411 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5412 } 5413 } 5414 5415 /* REV16 (opcode==1) */ 5416 static void handle_rev16(DisasContext *s, unsigned int sf, 5417 unsigned int rn, unsigned int rd) 5418 { 5419 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5420 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5421 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5422 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5423 5424 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5425 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5426 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5427 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5428 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5429 } 5430 5431 /* Data-processing (1 source) 5432 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5433 * +----+---+---+-----------------+---------+--------+------+------+ 5434 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5435 * +----+---+---+-----------------+---------+--------+------+------+ 5436 */ 5437 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5438 { 5439 unsigned int sf, opcode, opcode2, rn, rd; 5440 TCGv_i64 tcg_rd; 5441 5442 if (extract32(insn, 29, 1)) { 5443 unallocated_encoding(s); 5444 return; 5445 } 5446 5447 sf = extract32(insn, 31, 1); 5448 opcode = extract32(insn, 10, 6); 5449 opcode2 = extract32(insn, 16, 5); 5450 rn = extract32(insn, 5, 5); 5451 rd = extract32(insn, 0, 5); 5452 5453 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5454 5455 switch (MAP(sf, opcode2, opcode)) { 5456 case MAP(0, 0x00, 0x00): /* RBIT */ 5457 case MAP(1, 0x00, 0x00): 5458 handle_rbit(s, sf, rn, rd); 5459 break; 5460 case MAP(0, 0x00, 0x01): /* REV16 */ 5461 case MAP(1, 0x00, 0x01): 5462 handle_rev16(s, sf, rn, rd); 5463 break; 5464 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5465 case MAP(1, 0x00, 0x02): 5466 handle_rev32(s, sf, rn, rd); 5467 break; 5468 case MAP(1, 0x00, 0x03): /* REV64 */ 5469 handle_rev64(s, sf, rn, rd); 5470 break; 5471 case MAP(0, 0x00, 0x04): /* CLZ */ 5472 case MAP(1, 0x00, 0x04): 5473 handle_clz(s, sf, rn, rd); 5474 break; 5475 case MAP(0, 0x00, 0x05): /* CLS */ 5476 case MAP(1, 0x00, 0x05): 5477 handle_cls(s, sf, rn, rd); 5478 break; 5479 case MAP(1, 0x01, 0x00): /* PACIA */ 5480 if (s->pauth_active) { 5481 tcg_rd = cpu_reg(s, rd); 5482 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5483 } else if (!dc_isar_feature(aa64_pauth, s)) { 5484 goto do_unallocated; 5485 } 5486 break; 5487 case MAP(1, 0x01, 0x01): /* PACIB */ 5488 if (s->pauth_active) { 5489 tcg_rd = cpu_reg(s, rd); 5490 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5491 } else if (!dc_isar_feature(aa64_pauth, s)) { 5492 goto do_unallocated; 5493 } 5494 break; 5495 case MAP(1, 0x01, 0x02): /* PACDA */ 5496 if (s->pauth_active) { 5497 tcg_rd = cpu_reg(s, rd); 5498 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5499 } else if (!dc_isar_feature(aa64_pauth, s)) { 5500 goto do_unallocated; 5501 } 5502 break; 5503 case MAP(1, 0x01, 0x03): /* PACDB */ 5504 if (s->pauth_active) { 5505 tcg_rd = cpu_reg(s, rd); 5506 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5507 } else if (!dc_isar_feature(aa64_pauth, s)) { 5508 goto do_unallocated; 5509 } 5510 break; 5511 case MAP(1, 0x01, 0x04): /* AUTIA */ 5512 if (s->pauth_active) { 5513 tcg_rd = cpu_reg(s, rd); 5514 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5515 } else if (!dc_isar_feature(aa64_pauth, s)) { 5516 goto do_unallocated; 5517 } 5518 break; 5519 case MAP(1, 0x01, 0x05): /* AUTIB */ 5520 if (s->pauth_active) { 5521 tcg_rd = cpu_reg(s, rd); 5522 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5523 } else if (!dc_isar_feature(aa64_pauth, s)) { 5524 goto do_unallocated; 5525 } 5526 break; 5527 case MAP(1, 0x01, 0x06): /* AUTDA */ 5528 if (s->pauth_active) { 5529 tcg_rd = cpu_reg(s, rd); 5530 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5531 } else if (!dc_isar_feature(aa64_pauth, s)) { 5532 goto do_unallocated; 5533 } 5534 break; 5535 case MAP(1, 0x01, 0x07): /* AUTDB */ 5536 if (s->pauth_active) { 5537 tcg_rd = cpu_reg(s, rd); 5538 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5539 } else if (!dc_isar_feature(aa64_pauth, s)) { 5540 goto do_unallocated; 5541 } 5542 break; 5543 case MAP(1, 0x01, 0x08): /* PACIZA */ 5544 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5545 goto do_unallocated; 5546 } else if (s->pauth_active) { 5547 tcg_rd = cpu_reg(s, rd); 5548 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5549 } 5550 break; 5551 case MAP(1, 0x01, 0x09): /* PACIZB */ 5552 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5553 goto do_unallocated; 5554 } else if (s->pauth_active) { 5555 tcg_rd = cpu_reg(s, rd); 5556 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5557 } 5558 break; 5559 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5560 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5561 goto do_unallocated; 5562 } else if (s->pauth_active) { 5563 tcg_rd = cpu_reg(s, rd); 5564 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5565 } 5566 break; 5567 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5568 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5569 goto do_unallocated; 5570 } else if (s->pauth_active) { 5571 tcg_rd = cpu_reg(s, rd); 5572 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5573 } 5574 break; 5575 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5576 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5577 goto do_unallocated; 5578 } else if (s->pauth_active) { 5579 tcg_rd = cpu_reg(s, rd); 5580 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5581 } 5582 break; 5583 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5584 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5585 goto do_unallocated; 5586 } else if (s->pauth_active) { 5587 tcg_rd = cpu_reg(s, rd); 5588 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5589 } 5590 break; 5591 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5592 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5593 goto do_unallocated; 5594 } else if (s->pauth_active) { 5595 tcg_rd = cpu_reg(s, rd); 5596 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5597 } 5598 break; 5599 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5600 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5601 goto do_unallocated; 5602 } else if (s->pauth_active) { 5603 tcg_rd = cpu_reg(s, rd); 5604 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5605 } 5606 break; 5607 case MAP(1, 0x01, 0x10): /* XPACI */ 5608 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5609 goto do_unallocated; 5610 } else if (s->pauth_active) { 5611 tcg_rd = cpu_reg(s, rd); 5612 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5613 } 5614 break; 5615 case MAP(1, 0x01, 0x11): /* XPACD */ 5616 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5617 goto do_unallocated; 5618 } else if (s->pauth_active) { 5619 tcg_rd = cpu_reg(s, rd); 5620 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5621 } 5622 break; 5623 default: 5624 do_unallocated: 5625 unallocated_encoding(s); 5626 break; 5627 } 5628 5629 #undef MAP 5630 } 5631 5632 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5633 unsigned int rm, unsigned int rn, unsigned int rd) 5634 { 5635 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5636 tcg_rd = cpu_reg(s, rd); 5637 5638 if (!sf && is_signed) { 5639 tcg_n = tcg_temp_new_i64(); 5640 tcg_m = tcg_temp_new_i64(); 5641 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5642 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5643 } else { 5644 tcg_n = read_cpu_reg(s, rn, sf); 5645 tcg_m = read_cpu_reg(s, rm, sf); 5646 } 5647 5648 if (is_signed) { 5649 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5650 } else { 5651 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5652 } 5653 5654 if (!sf) { /* zero extend final result */ 5655 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5656 } 5657 } 5658 5659 /* LSLV, LSRV, ASRV, RORV */ 5660 static void handle_shift_reg(DisasContext *s, 5661 enum a64_shift_type shift_type, unsigned int sf, 5662 unsigned int rm, unsigned int rn, unsigned int rd) 5663 { 5664 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5665 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5666 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5667 5668 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5669 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5670 } 5671 5672 /* CRC32[BHWX], CRC32C[BHWX] */ 5673 static void handle_crc32(DisasContext *s, 5674 unsigned int sf, unsigned int sz, bool crc32c, 5675 unsigned int rm, unsigned int rn, unsigned int rd) 5676 { 5677 TCGv_i64 tcg_acc, tcg_val; 5678 TCGv_i32 tcg_bytes; 5679 5680 if (!dc_isar_feature(aa64_crc32, s) 5681 || (sf == 1 && sz != 3) 5682 || (sf == 0 && sz == 3)) { 5683 unallocated_encoding(s); 5684 return; 5685 } 5686 5687 if (sz == 3) { 5688 tcg_val = cpu_reg(s, rm); 5689 } else { 5690 uint64_t mask; 5691 switch (sz) { 5692 case 0: 5693 mask = 0xFF; 5694 break; 5695 case 1: 5696 mask = 0xFFFF; 5697 break; 5698 case 2: 5699 mask = 0xFFFFFFFF; 5700 break; 5701 default: 5702 g_assert_not_reached(); 5703 } 5704 tcg_val = tcg_temp_new_i64(); 5705 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5706 } 5707 5708 tcg_acc = cpu_reg(s, rn); 5709 tcg_bytes = tcg_constant_i32(1 << sz); 5710 5711 if (crc32c) { 5712 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5713 } else { 5714 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5715 } 5716 } 5717 5718 /* Data-processing (2 source) 5719 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5720 * +----+---+---+-----------------+------+--------+------+------+ 5721 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5722 * +----+---+---+-----------------+------+--------+------+------+ 5723 */ 5724 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5725 { 5726 unsigned int sf, rm, opcode, rn, rd, setflag; 5727 sf = extract32(insn, 31, 1); 5728 setflag = extract32(insn, 29, 1); 5729 rm = extract32(insn, 16, 5); 5730 opcode = extract32(insn, 10, 6); 5731 rn = extract32(insn, 5, 5); 5732 rd = extract32(insn, 0, 5); 5733 5734 if (setflag && opcode != 0) { 5735 unallocated_encoding(s); 5736 return; 5737 } 5738 5739 switch (opcode) { 5740 case 0: /* SUBP(S) */ 5741 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5742 goto do_unallocated; 5743 } else { 5744 TCGv_i64 tcg_n, tcg_m, tcg_d; 5745 5746 tcg_n = read_cpu_reg_sp(s, rn, true); 5747 tcg_m = read_cpu_reg_sp(s, rm, true); 5748 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5749 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5750 tcg_d = cpu_reg(s, rd); 5751 5752 if (setflag) { 5753 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5754 } else { 5755 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5756 } 5757 } 5758 break; 5759 case 2: /* UDIV */ 5760 handle_div(s, false, sf, rm, rn, rd); 5761 break; 5762 case 3: /* SDIV */ 5763 handle_div(s, true, sf, rm, rn, rd); 5764 break; 5765 case 4: /* IRG */ 5766 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5767 goto do_unallocated; 5768 } 5769 if (s->ata) { 5770 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5771 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5772 } else { 5773 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5774 cpu_reg_sp(s, rn)); 5775 } 5776 break; 5777 case 5: /* GMI */ 5778 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5779 goto do_unallocated; 5780 } else { 5781 TCGv_i64 t = tcg_temp_new_i64(); 5782 5783 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5784 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5785 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5786 } 5787 break; 5788 case 8: /* LSLV */ 5789 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5790 break; 5791 case 9: /* LSRV */ 5792 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5793 break; 5794 case 10: /* ASRV */ 5795 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5796 break; 5797 case 11: /* RORV */ 5798 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5799 break; 5800 case 12: /* PACGA */ 5801 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5802 goto do_unallocated; 5803 } 5804 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5805 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5806 break; 5807 case 16: 5808 case 17: 5809 case 18: 5810 case 19: 5811 case 20: 5812 case 21: 5813 case 22: 5814 case 23: /* CRC32 */ 5815 { 5816 int sz = extract32(opcode, 0, 2); 5817 bool crc32c = extract32(opcode, 2, 1); 5818 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5819 break; 5820 } 5821 default: 5822 do_unallocated: 5823 unallocated_encoding(s); 5824 break; 5825 } 5826 } 5827 5828 /* 5829 * Data processing - register 5830 * 31 30 29 28 25 21 20 16 10 0 5831 * +--+---+--+---+-------+-----+-------+-------+---------+ 5832 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5833 * +--+---+--+---+-------+-----+-------+-------+---------+ 5834 */ 5835 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5836 { 5837 int op0 = extract32(insn, 30, 1); 5838 int op1 = extract32(insn, 28, 1); 5839 int op2 = extract32(insn, 21, 4); 5840 int op3 = extract32(insn, 10, 6); 5841 5842 if (!op1) { 5843 if (op2 & 8) { 5844 if (op2 & 1) { 5845 /* Add/sub (extended register) */ 5846 disas_add_sub_ext_reg(s, insn); 5847 } else { 5848 /* Add/sub (shifted register) */ 5849 disas_add_sub_reg(s, insn); 5850 } 5851 } else { 5852 /* Logical (shifted register) */ 5853 disas_logic_reg(s, insn); 5854 } 5855 return; 5856 } 5857 5858 switch (op2) { 5859 case 0x0: 5860 switch (op3) { 5861 case 0x00: /* Add/subtract (with carry) */ 5862 disas_adc_sbc(s, insn); 5863 break; 5864 5865 case 0x01: /* Rotate right into flags */ 5866 case 0x21: 5867 disas_rotate_right_into_flags(s, insn); 5868 break; 5869 5870 case 0x02: /* Evaluate into flags */ 5871 case 0x12: 5872 case 0x22: 5873 case 0x32: 5874 disas_evaluate_into_flags(s, insn); 5875 break; 5876 5877 default: 5878 goto do_unallocated; 5879 } 5880 break; 5881 5882 case 0x2: /* Conditional compare */ 5883 disas_cc(s, insn); /* both imm and reg forms */ 5884 break; 5885 5886 case 0x4: /* Conditional select */ 5887 disas_cond_select(s, insn); 5888 break; 5889 5890 case 0x6: /* Data-processing */ 5891 if (op0) { /* (1 source) */ 5892 disas_data_proc_1src(s, insn); 5893 } else { /* (2 source) */ 5894 disas_data_proc_2src(s, insn); 5895 } 5896 break; 5897 case 0x8 ... 0xf: /* (3 source) */ 5898 disas_data_proc_3src(s, insn); 5899 break; 5900 5901 default: 5902 do_unallocated: 5903 unallocated_encoding(s); 5904 break; 5905 } 5906 } 5907 5908 static void handle_fp_compare(DisasContext *s, int size, 5909 unsigned int rn, unsigned int rm, 5910 bool cmp_with_zero, bool signal_all_nans) 5911 { 5912 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5913 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5914 5915 if (size == MO_64) { 5916 TCGv_i64 tcg_vn, tcg_vm; 5917 5918 tcg_vn = read_fp_dreg(s, rn); 5919 if (cmp_with_zero) { 5920 tcg_vm = tcg_constant_i64(0); 5921 } else { 5922 tcg_vm = read_fp_dreg(s, rm); 5923 } 5924 if (signal_all_nans) { 5925 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5926 } else { 5927 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5928 } 5929 } else { 5930 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5931 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5932 5933 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5934 if (cmp_with_zero) { 5935 tcg_gen_movi_i32(tcg_vm, 0); 5936 } else { 5937 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5938 } 5939 5940 switch (size) { 5941 case MO_32: 5942 if (signal_all_nans) { 5943 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5944 } else { 5945 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5946 } 5947 break; 5948 case MO_16: 5949 if (signal_all_nans) { 5950 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5951 } else { 5952 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5953 } 5954 break; 5955 default: 5956 g_assert_not_reached(); 5957 } 5958 } 5959 5960 gen_set_nzcv(tcg_flags); 5961 } 5962 5963 /* Floating point compare 5964 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5965 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5966 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5967 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5968 */ 5969 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5970 { 5971 unsigned int mos, type, rm, op, rn, opc, op2r; 5972 int size; 5973 5974 mos = extract32(insn, 29, 3); 5975 type = extract32(insn, 22, 2); 5976 rm = extract32(insn, 16, 5); 5977 op = extract32(insn, 14, 2); 5978 rn = extract32(insn, 5, 5); 5979 opc = extract32(insn, 3, 2); 5980 op2r = extract32(insn, 0, 3); 5981 5982 if (mos || op || op2r) { 5983 unallocated_encoding(s); 5984 return; 5985 } 5986 5987 switch (type) { 5988 case 0: 5989 size = MO_32; 5990 break; 5991 case 1: 5992 size = MO_64; 5993 break; 5994 case 3: 5995 size = MO_16; 5996 if (dc_isar_feature(aa64_fp16, s)) { 5997 break; 5998 } 5999 /* fallthru */ 6000 default: 6001 unallocated_encoding(s); 6002 return; 6003 } 6004 6005 if (!fp_access_check(s)) { 6006 return; 6007 } 6008 6009 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6010 } 6011 6012 /* Floating point conditional compare 6013 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6014 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6015 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6016 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6017 */ 6018 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6019 { 6020 unsigned int mos, type, rm, cond, rn, op, nzcv; 6021 TCGLabel *label_continue = NULL; 6022 int size; 6023 6024 mos = extract32(insn, 29, 3); 6025 type = extract32(insn, 22, 2); 6026 rm = extract32(insn, 16, 5); 6027 cond = extract32(insn, 12, 4); 6028 rn = extract32(insn, 5, 5); 6029 op = extract32(insn, 4, 1); 6030 nzcv = extract32(insn, 0, 4); 6031 6032 if (mos) { 6033 unallocated_encoding(s); 6034 return; 6035 } 6036 6037 switch (type) { 6038 case 0: 6039 size = MO_32; 6040 break; 6041 case 1: 6042 size = MO_64; 6043 break; 6044 case 3: 6045 size = MO_16; 6046 if (dc_isar_feature(aa64_fp16, s)) { 6047 break; 6048 } 6049 /* fallthru */ 6050 default: 6051 unallocated_encoding(s); 6052 return; 6053 } 6054 6055 if (!fp_access_check(s)) { 6056 return; 6057 } 6058 6059 if (cond < 0x0e) { /* not always */ 6060 TCGLabel *label_match = gen_new_label(); 6061 label_continue = gen_new_label(); 6062 arm_gen_test_cc(cond, label_match); 6063 /* nomatch: */ 6064 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6065 tcg_gen_br(label_continue); 6066 gen_set_label(label_match); 6067 } 6068 6069 handle_fp_compare(s, size, rn, rm, false, op); 6070 6071 if (cond < 0x0e) { 6072 gen_set_label(label_continue); 6073 } 6074 } 6075 6076 /* Floating point conditional select 6077 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6078 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6079 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6080 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6081 */ 6082 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6083 { 6084 unsigned int mos, type, rm, cond, rn, rd; 6085 TCGv_i64 t_true, t_false; 6086 DisasCompare64 c; 6087 MemOp sz; 6088 6089 mos = extract32(insn, 29, 3); 6090 type = extract32(insn, 22, 2); 6091 rm = extract32(insn, 16, 5); 6092 cond = extract32(insn, 12, 4); 6093 rn = extract32(insn, 5, 5); 6094 rd = extract32(insn, 0, 5); 6095 6096 if (mos) { 6097 unallocated_encoding(s); 6098 return; 6099 } 6100 6101 switch (type) { 6102 case 0: 6103 sz = MO_32; 6104 break; 6105 case 1: 6106 sz = MO_64; 6107 break; 6108 case 3: 6109 sz = MO_16; 6110 if (dc_isar_feature(aa64_fp16, s)) { 6111 break; 6112 } 6113 /* fallthru */ 6114 default: 6115 unallocated_encoding(s); 6116 return; 6117 } 6118 6119 if (!fp_access_check(s)) { 6120 return; 6121 } 6122 6123 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6124 t_true = tcg_temp_new_i64(); 6125 t_false = tcg_temp_new_i64(); 6126 read_vec_element(s, t_true, rn, 0, sz); 6127 read_vec_element(s, t_false, rm, 0, sz); 6128 6129 a64_test_cc(&c, cond); 6130 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6131 t_true, t_false); 6132 6133 /* Note that sregs & hregs write back zeros to the high bits, 6134 and we've already done the zero-extension. */ 6135 write_fp_dreg(s, rd, t_true); 6136 } 6137 6138 /* Floating-point data-processing (1 source) - half precision */ 6139 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6140 { 6141 TCGv_ptr fpst = NULL; 6142 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6143 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6144 6145 switch (opcode) { 6146 case 0x0: /* FMOV */ 6147 tcg_gen_mov_i32(tcg_res, tcg_op); 6148 break; 6149 case 0x1: /* FABS */ 6150 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6151 break; 6152 case 0x2: /* FNEG */ 6153 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6154 break; 6155 case 0x3: /* FSQRT */ 6156 fpst = fpstatus_ptr(FPST_FPCR_F16); 6157 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6158 break; 6159 case 0x8: /* FRINTN */ 6160 case 0x9: /* FRINTP */ 6161 case 0xa: /* FRINTM */ 6162 case 0xb: /* FRINTZ */ 6163 case 0xc: /* FRINTA */ 6164 { 6165 TCGv_i32 tcg_rmode; 6166 6167 fpst = fpstatus_ptr(FPST_FPCR_F16); 6168 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6169 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6170 gen_restore_rmode(tcg_rmode, fpst); 6171 break; 6172 } 6173 case 0xe: /* FRINTX */ 6174 fpst = fpstatus_ptr(FPST_FPCR_F16); 6175 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6176 break; 6177 case 0xf: /* FRINTI */ 6178 fpst = fpstatus_ptr(FPST_FPCR_F16); 6179 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6180 break; 6181 default: 6182 g_assert_not_reached(); 6183 } 6184 6185 write_fp_sreg(s, rd, tcg_res); 6186 } 6187 6188 /* Floating-point data-processing (1 source) - single precision */ 6189 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6190 { 6191 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6192 TCGv_i32 tcg_op, tcg_res; 6193 TCGv_ptr fpst; 6194 int rmode = -1; 6195 6196 tcg_op = read_fp_sreg(s, rn); 6197 tcg_res = tcg_temp_new_i32(); 6198 6199 switch (opcode) { 6200 case 0x0: /* FMOV */ 6201 tcg_gen_mov_i32(tcg_res, tcg_op); 6202 goto done; 6203 case 0x1: /* FABS */ 6204 gen_helper_vfp_abss(tcg_res, tcg_op); 6205 goto done; 6206 case 0x2: /* FNEG */ 6207 gen_helper_vfp_negs(tcg_res, tcg_op); 6208 goto done; 6209 case 0x3: /* FSQRT */ 6210 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6211 goto done; 6212 case 0x6: /* BFCVT */ 6213 gen_fpst = gen_helper_bfcvt; 6214 break; 6215 case 0x8: /* FRINTN */ 6216 case 0x9: /* FRINTP */ 6217 case 0xa: /* FRINTM */ 6218 case 0xb: /* FRINTZ */ 6219 case 0xc: /* FRINTA */ 6220 rmode = opcode & 7; 6221 gen_fpst = gen_helper_rints; 6222 break; 6223 case 0xe: /* FRINTX */ 6224 gen_fpst = gen_helper_rints_exact; 6225 break; 6226 case 0xf: /* FRINTI */ 6227 gen_fpst = gen_helper_rints; 6228 break; 6229 case 0x10: /* FRINT32Z */ 6230 rmode = FPROUNDING_ZERO; 6231 gen_fpst = gen_helper_frint32_s; 6232 break; 6233 case 0x11: /* FRINT32X */ 6234 gen_fpst = gen_helper_frint32_s; 6235 break; 6236 case 0x12: /* FRINT64Z */ 6237 rmode = FPROUNDING_ZERO; 6238 gen_fpst = gen_helper_frint64_s; 6239 break; 6240 case 0x13: /* FRINT64X */ 6241 gen_fpst = gen_helper_frint64_s; 6242 break; 6243 default: 6244 g_assert_not_reached(); 6245 } 6246 6247 fpst = fpstatus_ptr(FPST_FPCR); 6248 if (rmode >= 0) { 6249 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6250 gen_fpst(tcg_res, tcg_op, fpst); 6251 gen_restore_rmode(tcg_rmode, fpst); 6252 } else { 6253 gen_fpst(tcg_res, tcg_op, fpst); 6254 } 6255 6256 done: 6257 write_fp_sreg(s, rd, tcg_res); 6258 } 6259 6260 /* Floating-point data-processing (1 source) - double precision */ 6261 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6262 { 6263 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6264 TCGv_i64 tcg_op, tcg_res; 6265 TCGv_ptr fpst; 6266 int rmode = -1; 6267 6268 switch (opcode) { 6269 case 0x0: /* FMOV */ 6270 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6271 return; 6272 } 6273 6274 tcg_op = read_fp_dreg(s, rn); 6275 tcg_res = tcg_temp_new_i64(); 6276 6277 switch (opcode) { 6278 case 0x1: /* FABS */ 6279 gen_helper_vfp_absd(tcg_res, tcg_op); 6280 goto done; 6281 case 0x2: /* FNEG */ 6282 gen_helper_vfp_negd(tcg_res, tcg_op); 6283 goto done; 6284 case 0x3: /* FSQRT */ 6285 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6286 goto done; 6287 case 0x8: /* FRINTN */ 6288 case 0x9: /* FRINTP */ 6289 case 0xa: /* FRINTM */ 6290 case 0xb: /* FRINTZ */ 6291 case 0xc: /* FRINTA */ 6292 rmode = opcode & 7; 6293 gen_fpst = gen_helper_rintd; 6294 break; 6295 case 0xe: /* FRINTX */ 6296 gen_fpst = gen_helper_rintd_exact; 6297 break; 6298 case 0xf: /* FRINTI */ 6299 gen_fpst = gen_helper_rintd; 6300 break; 6301 case 0x10: /* FRINT32Z */ 6302 rmode = FPROUNDING_ZERO; 6303 gen_fpst = gen_helper_frint32_d; 6304 break; 6305 case 0x11: /* FRINT32X */ 6306 gen_fpst = gen_helper_frint32_d; 6307 break; 6308 case 0x12: /* FRINT64Z */ 6309 rmode = FPROUNDING_ZERO; 6310 gen_fpst = gen_helper_frint64_d; 6311 break; 6312 case 0x13: /* FRINT64X */ 6313 gen_fpst = gen_helper_frint64_d; 6314 break; 6315 default: 6316 g_assert_not_reached(); 6317 } 6318 6319 fpst = fpstatus_ptr(FPST_FPCR); 6320 if (rmode >= 0) { 6321 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6322 gen_fpst(tcg_res, tcg_op, fpst); 6323 gen_restore_rmode(tcg_rmode, fpst); 6324 } else { 6325 gen_fpst(tcg_res, tcg_op, fpst); 6326 } 6327 6328 done: 6329 write_fp_dreg(s, rd, tcg_res); 6330 } 6331 6332 static void handle_fp_fcvt(DisasContext *s, int opcode, 6333 int rd, int rn, int dtype, int ntype) 6334 { 6335 switch (ntype) { 6336 case 0x0: 6337 { 6338 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6339 if (dtype == 1) { 6340 /* Single to double */ 6341 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6342 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6343 write_fp_dreg(s, rd, tcg_rd); 6344 } else { 6345 /* Single to half */ 6346 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6347 TCGv_i32 ahp = get_ahp_flag(); 6348 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6349 6350 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6351 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6352 write_fp_sreg(s, rd, tcg_rd); 6353 } 6354 break; 6355 } 6356 case 0x1: 6357 { 6358 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6359 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6360 if (dtype == 0) { 6361 /* Double to single */ 6362 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6363 } else { 6364 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6365 TCGv_i32 ahp = get_ahp_flag(); 6366 /* Double to half */ 6367 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6368 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6369 } 6370 write_fp_sreg(s, rd, tcg_rd); 6371 break; 6372 } 6373 case 0x3: 6374 { 6375 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6376 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6377 TCGv_i32 tcg_ahp = get_ahp_flag(); 6378 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6379 if (dtype == 0) { 6380 /* Half to single */ 6381 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6382 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6383 write_fp_sreg(s, rd, tcg_rd); 6384 } else { 6385 /* Half to double */ 6386 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6387 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6388 write_fp_dreg(s, rd, tcg_rd); 6389 } 6390 break; 6391 } 6392 default: 6393 g_assert_not_reached(); 6394 } 6395 } 6396 6397 /* Floating point data-processing (1 source) 6398 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6399 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6400 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6401 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6402 */ 6403 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6404 { 6405 int mos = extract32(insn, 29, 3); 6406 int type = extract32(insn, 22, 2); 6407 int opcode = extract32(insn, 15, 6); 6408 int rn = extract32(insn, 5, 5); 6409 int rd = extract32(insn, 0, 5); 6410 6411 if (mos) { 6412 goto do_unallocated; 6413 } 6414 6415 switch (opcode) { 6416 case 0x4: case 0x5: case 0x7: 6417 { 6418 /* FCVT between half, single and double precision */ 6419 int dtype = extract32(opcode, 0, 2); 6420 if (type == 2 || dtype == type) { 6421 goto do_unallocated; 6422 } 6423 if (!fp_access_check(s)) { 6424 return; 6425 } 6426 6427 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6428 break; 6429 } 6430 6431 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6432 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6433 goto do_unallocated; 6434 } 6435 /* fall through */ 6436 case 0x0 ... 0x3: 6437 case 0x8 ... 0xc: 6438 case 0xe ... 0xf: 6439 /* 32-to-32 and 64-to-64 ops */ 6440 switch (type) { 6441 case 0: 6442 if (!fp_access_check(s)) { 6443 return; 6444 } 6445 handle_fp_1src_single(s, opcode, rd, rn); 6446 break; 6447 case 1: 6448 if (!fp_access_check(s)) { 6449 return; 6450 } 6451 handle_fp_1src_double(s, opcode, rd, rn); 6452 break; 6453 case 3: 6454 if (!dc_isar_feature(aa64_fp16, s)) { 6455 goto do_unallocated; 6456 } 6457 6458 if (!fp_access_check(s)) { 6459 return; 6460 } 6461 handle_fp_1src_half(s, opcode, rd, rn); 6462 break; 6463 default: 6464 goto do_unallocated; 6465 } 6466 break; 6467 6468 case 0x6: 6469 switch (type) { 6470 case 1: /* BFCVT */ 6471 if (!dc_isar_feature(aa64_bf16, s)) { 6472 goto do_unallocated; 6473 } 6474 if (!fp_access_check(s)) { 6475 return; 6476 } 6477 handle_fp_1src_single(s, opcode, rd, rn); 6478 break; 6479 default: 6480 goto do_unallocated; 6481 } 6482 break; 6483 6484 default: 6485 do_unallocated: 6486 unallocated_encoding(s); 6487 break; 6488 } 6489 } 6490 6491 /* Floating-point data-processing (2 source) - single precision */ 6492 static void handle_fp_2src_single(DisasContext *s, int opcode, 6493 int rd, int rn, int rm) 6494 { 6495 TCGv_i32 tcg_op1; 6496 TCGv_i32 tcg_op2; 6497 TCGv_i32 tcg_res; 6498 TCGv_ptr fpst; 6499 6500 tcg_res = tcg_temp_new_i32(); 6501 fpst = fpstatus_ptr(FPST_FPCR); 6502 tcg_op1 = read_fp_sreg(s, rn); 6503 tcg_op2 = read_fp_sreg(s, rm); 6504 6505 switch (opcode) { 6506 case 0x0: /* FMUL */ 6507 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6508 break; 6509 case 0x1: /* FDIV */ 6510 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6511 break; 6512 case 0x2: /* FADD */ 6513 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6514 break; 6515 case 0x3: /* FSUB */ 6516 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6517 break; 6518 case 0x4: /* FMAX */ 6519 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6520 break; 6521 case 0x5: /* FMIN */ 6522 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6523 break; 6524 case 0x6: /* FMAXNM */ 6525 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6526 break; 6527 case 0x7: /* FMINNM */ 6528 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6529 break; 6530 case 0x8: /* FNMUL */ 6531 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6532 gen_helper_vfp_negs(tcg_res, tcg_res); 6533 break; 6534 } 6535 6536 write_fp_sreg(s, rd, tcg_res); 6537 } 6538 6539 /* Floating-point data-processing (2 source) - double precision */ 6540 static void handle_fp_2src_double(DisasContext *s, int opcode, 6541 int rd, int rn, int rm) 6542 { 6543 TCGv_i64 tcg_op1; 6544 TCGv_i64 tcg_op2; 6545 TCGv_i64 tcg_res; 6546 TCGv_ptr fpst; 6547 6548 tcg_res = tcg_temp_new_i64(); 6549 fpst = fpstatus_ptr(FPST_FPCR); 6550 tcg_op1 = read_fp_dreg(s, rn); 6551 tcg_op2 = read_fp_dreg(s, rm); 6552 6553 switch (opcode) { 6554 case 0x0: /* FMUL */ 6555 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6556 break; 6557 case 0x1: /* FDIV */ 6558 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6559 break; 6560 case 0x2: /* FADD */ 6561 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6562 break; 6563 case 0x3: /* FSUB */ 6564 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6565 break; 6566 case 0x4: /* FMAX */ 6567 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6568 break; 6569 case 0x5: /* FMIN */ 6570 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6571 break; 6572 case 0x6: /* FMAXNM */ 6573 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6574 break; 6575 case 0x7: /* FMINNM */ 6576 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6577 break; 6578 case 0x8: /* FNMUL */ 6579 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6580 gen_helper_vfp_negd(tcg_res, tcg_res); 6581 break; 6582 } 6583 6584 write_fp_dreg(s, rd, tcg_res); 6585 } 6586 6587 /* Floating-point data-processing (2 source) - half precision */ 6588 static void handle_fp_2src_half(DisasContext *s, int opcode, 6589 int rd, int rn, int rm) 6590 { 6591 TCGv_i32 tcg_op1; 6592 TCGv_i32 tcg_op2; 6593 TCGv_i32 tcg_res; 6594 TCGv_ptr fpst; 6595 6596 tcg_res = tcg_temp_new_i32(); 6597 fpst = fpstatus_ptr(FPST_FPCR_F16); 6598 tcg_op1 = read_fp_hreg(s, rn); 6599 tcg_op2 = read_fp_hreg(s, rm); 6600 6601 switch (opcode) { 6602 case 0x0: /* FMUL */ 6603 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6604 break; 6605 case 0x1: /* FDIV */ 6606 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6607 break; 6608 case 0x2: /* FADD */ 6609 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6610 break; 6611 case 0x3: /* FSUB */ 6612 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6613 break; 6614 case 0x4: /* FMAX */ 6615 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6616 break; 6617 case 0x5: /* FMIN */ 6618 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6619 break; 6620 case 0x6: /* FMAXNM */ 6621 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6622 break; 6623 case 0x7: /* FMINNM */ 6624 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6625 break; 6626 case 0x8: /* FNMUL */ 6627 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6628 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6629 break; 6630 default: 6631 g_assert_not_reached(); 6632 } 6633 6634 write_fp_sreg(s, rd, tcg_res); 6635 } 6636 6637 /* Floating point data-processing (2 source) 6638 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6639 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6640 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6641 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6642 */ 6643 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6644 { 6645 int mos = extract32(insn, 29, 3); 6646 int type = extract32(insn, 22, 2); 6647 int rd = extract32(insn, 0, 5); 6648 int rn = extract32(insn, 5, 5); 6649 int rm = extract32(insn, 16, 5); 6650 int opcode = extract32(insn, 12, 4); 6651 6652 if (opcode > 8 || mos) { 6653 unallocated_encoding(s); 6654 return; 6655 } 6656 6657 switch (type) { 6658 case 0: 6659 if (!fp_access_check(s)) { 6660 return; 6661 } 6662 handle_fp_2src_single(s, opcode, rd, rn, rm); 6663 break; 6664 case 1: 6665 if (!fp_access_check(s)) { 6666 return; 6667 } 6668 handle_fp_2src_double(s, opcode, rd, rn, rm); 6669 break; 6670 case 3: 6671 if (!dc_isar_feature(aa64_fp16, s)) { 6672 unallocated_encoding(s); 6673 return; 6674 } 6675 if (!fp_access_check(s)) { 6676 return; 6677 } 6678 handle_fp_2src_half(s, opcode, rd, rn, rm); 6679 break; 6680 default: 6681 unallocated_encoding(s); 6682 } 6683 } 6684 6685 /* Floating-point data-processing (3 source) - single precision */ 6686 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6687 int rd, int rn, int rm, int ra) 6688 { 6689 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6690 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6691 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6692 6693 tcg_op1 = read_fp_sreg(s, rn); 6694 tcg_op2 = read_fp_sreg(s, rm); 6695 tcg_op3 = read_fp_sreg(s, ra); 6696 6697 /* These are fused multiply-add, and must be done as one 6698 * floating point operation with no rounding between the 6699 * multiplication and addition steps. 6700 * NB that doing the negations here as separate steps is 6701 * correct : an input NaN should come out with its sign bit 6702 * flipped if it is a negated-input. 6703 */ 6704 if (o1 == true) { 6705 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6706 } 6707 6708 if (o0 != o1) { 6709 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6710 } 6711 6712 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6713 6714 write_fp_sreg(s, rd, tcg_res); 6715 } 6716 6717 /* Floating-point data-processing (3 source) - double precision */ 6718 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6719 int rd, int rn, int rm, int ra) 6720 { 6721 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6722 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6723 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6724 6725 tcg_op1 = read_fp_dreg(s, rn); 6726 tcg_op2 = read_fp_dreg(s, rm); 6727 tcg_op3 = read_fp_dreg(s, ra); 6728 6729 /* These are fused multiply-add, and must be done as one 6730 * floating point operation with no rounding between the 6731 * multiplication and addition steps. 6732 * NB that doing the negations here as separate steps is 6733 * correct : an input NaN should come out with its sign bit 6734 * flipped if it is a negated-input. 6735 */ 6736 if (o1 == true) { 6737 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6738 } 6739 6740 if (o0 != o1) { 6741 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6742 } 6743 6744 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6745 6746 write_fp_dreg(s, rd, tcg_res); 6747 } 6748 6749 /* Floating-point data-processing (3 source) - half precision */ 6750 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6751 int rd, int rn, int rm, int ra) 6752 { 6753 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6754 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6755 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6756 6757 tcg_op1 = read_fp_hreg(s, rn); 6758 tcg_op2 = read_fp_hreg(s, rm); 6759 tcg_op3 = read_fp_hreg(s, ra); 6760 6761 /* These are fused multiply-add, and must be done as one 6762 * floating point operation with no rounding between the 6763 * multiplication and addition steps. 6764 * NB that doing the negations here as separate steps is 6765 * correct : an input NaN should come out with its sign bit 6766 * flipped if it is a negated-input. 6767 */ 6768 if (o1 == true) { 6769 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6770 } 6771 6772 if (o0 != o1) { 6773 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6774 } 6775 6776 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6777 6778 write_fp_sreg(s, rd, tcg_res); 6779 } 6780 6781 /* Floating point data-processing (3 source) 6782 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6783 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6784 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6785 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6786 */ 6787 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6788 { 6789 int mos = extract32(insn, 29, 3); 6790 int type = extract32(insn, 22, 2); 6791 int rd = extract32(insn, 0, 5); 6792 int rn = extract32(insn, 5, 5); 6793 int ra = extract32(insn, 10, 5); 6794 int rm = extract32(insn, 16, 5); 6795 bool o0 = extract32(insn, 15, 1); 6796 bool o1 = extract32(insn, 21, 1); 6797 6798 if (mos) { 6799 unallocated_encoding(s); 6800 return; 6801 } 6802 6803 switch (type) { 6804 case 0: 6805 if (!fp_access_check(s)) { 6806 return; 6807 } 6808 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6809 break; 6810 case 1: 6811 if (!fp_access_check(s)) { 6812 return; 6813 } 6814 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6815 break; 6816 case 3: 6817 if (!dc_isar_feature(aa64_fp16, s)) { 6818 unallocated_encoding(s); 6819 return; 6820 } 6821 if (!fp_access_check(s)) { 6822 return; 6823 } 6824 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6825 break; 6826 default: 6827 unallocated_encoding(s); 6828 } 6829 } 6830 6831 /* Floating point immediate 6832 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6833 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6834 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6835 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6836 */ 6837 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6838 { 6839 int rd = extract32(insn, 0, 5); 6840 int imm5 = extract32(insn, 5, 5); 6841 int imm8 = extract32(insn, 13, 8); 6842 int type = extract32(insn, 22, 2); 6843 int mos = extract32(insn, 29, 3); 6844 uint64_t imm; 6845 MemOp sz; 6846 6847 if (mos || imm5) { 6848 unallocated_encoding(s); 6849 return; 6850 } 6851 6852 switch (type) { 6853 case 0: 6854 sz = MO_32; 6855 break; 6856 case 1: 6857 sz = MO_64; 6858 break; 6859 case 3: 6860 sz = MO_16; 6861 if (dc_isar_feature(aa64_fp16, s)) { 6862 break; 6863 } 6864 /* fallthru */ 6865 default: 6866 unallocated_encoding(s); 6867 return; 6868 } 6869 6870 if (!fp_access_check(s)) { 6871 return; 6872 } 6873 6874 imm = vfp_expand_imm(sz, imm8); 6875 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6876 } 6877 6878 /* Handle floating point <=> fixed point conversions. Note that we can 6879 * also deal with fp <=> integer conversions as a special case (scale == 64) 6880 * OPTME: consider handling that special case specially or at least skipping 6881 * the call to scalbn in the helpers for zero shifts. 6882 */ 6883 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6884 bool itof, int rmode, int scale, int sf, int type) 6885 { 6886 bool is_signed = !(opcode & 1); 6887 TCGv_ptr tcg_fpstatus; 6888 TCGv_i32 tcg_shift, tcg_single; 6889 TCGv_i64 tcg_double; 6890 6891 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6892 6893 tcg_shift = tcg_constant_i32(64 - scale); 6894 6895 if (itof) { 6896 TCGv_i64 tcg_int = cpu_reg(s, rn); 6897 if (!sf) { 6898 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6899 6900 if (is_signed) { 6901 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6902 } else { 6903 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6904 } 6905 6906 tcg_int = tcg_extend; 6907 } 6908 6909 switch (type) { 6910 case 1: /* float64 */ 6911 tcg_double = tcg_temp_new_i64(); 6912 if (is_signed) { 6913 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6914 tcg_shift, tcg_fpstatus); 6915 } else { 6916 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6917 tcg_shift, tcg_fpstatus); 6918 } 6919 write_fp_dreg(s, rd, tcg_double); 6920 break; 6921 6922 case 0: /* float32 */ 6923 tcg_single = tcg_temp_new_i32(); 6924 if (is_signed) { 6925 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6926 tcg_shift, tcg_fpstatus); 6927 } else { 6928 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6929 tcg_shift, tcg_fpstatus); 6930 } 6931 write_fp_sreg(s, rd, tcg_single); 6932 break; 6933 6934 case 3: /* float16 */ 6935 tcg_single = tcg_temp_new_i32(); 6936 if (is_signed) { 6937 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6938 tcg_shift, tcg_fpstatus); 6939 } else { 6940 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6941 tcg_shift, tcg_fpstatus); 6942 } 6943 write_fp_sreg(s, rd, tcg_single); 6944 break; 6945 6946 default: 6947 g_assert_not_reached(); 6948 } 6949 } else { 6950 TCGv_i64 tcg_int = cpu_reg(s, rd); 6951 TCGv_i32 tcg_rmode; 6952 6953 if (extract32(opcode, 2, 1)) { 6954 /* There are too many rounding modes to all fit into rmode, 6955 * so FCVTA[US] is a special case. 6956 */ 6957 rmode = FPROUNDING_TIEAWAY; 6958 } 6959 6960 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6961 6962 switch (type) { 6963 case 1: /* float64 */ 6964 tcg_double = read_fp_dreg(s, rn); 6965 if (is_signed) { 6966 if (!sf) { 6967 gen_helper_vfp_tosld(tcg_int, tcg_double, 6968 tcg_shift, tcg_fpstatus); 6969 } else { 6970 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6971 tcg_shift, tcg_fpstatus); 6972 } 6973 } else { 6974 if (!sf) { 6975 gen_helper_vfp_tould(tcg_int, tcg_double, 6976 tcg_shift, tcg_fpstatus); 6977 } else { 6978 gen_helper_vfp_touqd(tcg_int, tcg_double, 6979 tcg_shift, tcg_fpstatus); 6980 } 6981 } 6982 if (!sf) { 6983 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6984 } 6985 break; 6986 6987 case 0: /* float32 */ 6988 tcg_single = read_fp_sreg(s, rn); 6989 if (sf) { 6990 if (is_signed) { 6991 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6992 tcg_shift, tcg_fpstatus); 6993 } else { 6994 gen_helper_vfp_touqs(tcg_int, tcg_single, 6995 tcg_shift, tcg_fpstatus); 6996 } 6997 } else { 6998 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6999 if (is_signed) { 7000 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7001 tcg_shift, tcg_fpstatus); 7002 } else { 7003 gen_helper_vfp_touls(tcg_dest, tcg_single, 7004 tcg_shift, tcg_fpstatus); 7005 } 7006 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7007 } 7008 break; 7009 7010 case 3: /* float16 */ 7011 tcg_single = read_fp_sreg(s, rn); 7012 if (sf) { 7013 if (is_signed) { 7014 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7015 tcg_shift, tcg_fpstatus); 7016 } else { 7017 gen_helper_vfp_touqh(tcg_int, tcg_single, 7018 tcg_shift, tcg_fpstatus); 7019 } 7020 } else { 7021 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7022 if (is_signed) { 7023 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7024 tcg_shift, tcg_fpstatus); 7025 } else { 7026 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7027 tcg_shift, tcg_fpstatus); 7028 } 7029 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7030 } 7031 break; 7032 7033 default: 7034 g_assert_not_reached(); 7035 } 7036 7037 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7038 } 7039 } 7040 7041 /* Floating point <-> fixed point conversions 7042 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7043 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7044 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7045 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7046 */ 7047 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7048 { 7049 int rd = extract32(insn, 0, 5); 7050 int rn = extract32(insn, 5, 5); 7051 int scale = extract32(insn, 10, 6); 7052 int opcode = extract32(insn, 16, 3); 7053 int rmode = extract32(insn, 19, 2); 7054 int type = extract32(insn, 22, 2); 7055 bool sbit = extract32(insn, 29, 1); 7056 bool sf = extract32(insn, 31, 1); 7057 bool itof; 7058 7059 if (sbit || (!sf && scale < 32)) { 7060 unallocated_encoding(s); 7061 return; 7062 } 7063 7064 switch (type) { 7065 case 0: /* float32 */ 7066 case 1: /* float64 */ 7067 break; 7068 case 3: /* float16 */ 7069 if (dc_isar_feature(aa64_fp16, s)) { 7070 break; 7071 } 7072 /* fallthru */ 7073 default: 7074 unallocated_encoding(s); 7075 return; 7076 } 7077 7078 switch ((rmode << 3) | opcode) { 7079 case 0x2: /* SCVTF */ 7080 case 0x3: /* UCVTF */ 7081 itof = true; 7082 break; 7083 case 0x18: /* FCVTZS */ 7084 case 0x19: /* FCVTZU */ 7085 itof = false; 7086 break; 7087 default: 7088 unallocated_encoding(s); 7089 return; 7090 } 7091 7092 if (!fp_access_check(s)) { 7093 return; 7094 } 7095 7096 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7097 } 7098 7099 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7100 { 7101 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7102 * without conversion. 7103 */ 7104 7105 if (itof) { 7106 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7107 TCGv_i64 tmp; 7108 7109 switch (type) { 7110 case 0: 7111 /* 32 bit */ 7112 tmp = tcg_temp_new_i64(); 7113 tcg_gen_ext32u_i64(tmp, tcg_rn); 7114 write_fp_dreg(s, rd, tmp); 7115 break; 7116 case 1: 7117 /* 64 bit */ 7118 write_fp_dreg(s, rd, tcg_rn); 7119 break; 7120 case 2: 7121 /* 64 bit to top half. */ 7122 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7123 clear_vec_high(s, true, rd); 7124 break; 7125 case 3: 7126 /* 16 bit */ 7127 tmp = tcg_temp_new_i64(); 7128 tcg_gen_ext16u_i64(tmp, tcg_rn); 7129 write_fp_dreg(s, rd, tmp); 7130 break; 7131 default: 7132 g_assert_not_reached(); 7133 } 7134 } else { 7135 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7136 7137 switch (type) { 7138 case 0: 7139 /* 32 bit */ 7140 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7141 break; 7142 case 1: 7143 /* 64 bit */ 7144 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7145 break; 7146 case 2: 7147 /* 64 bits from top half */ 7148 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7149 break; 7150 case 3: 7151 /* 16 bit */ 7152 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7153 break; 7154 default: 7155 g_assert_not_reached(); 7156 } 7157 } 7158 } 7159 7160 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7161 { 7162 TCGv_i64 t = read_fp_dreg(s, rn); 7163 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7164 7165 gen_helper_fjcvtzs(t, t, fpstatus); 7166 7167 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7168 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7169 tcg_gen_movi_i32(cpu_CF, 0); 7170 tcg_gen_movi_i32(cpu_NF, 0); 7171 tcg_gen_movi_i32(cpu_VF, 0); 7172 } 7173 7174 /* Floating point <-> integer conversions 7175 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7176 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7177 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7178 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7179 */ 7180 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7181 { 7182 int rd = extract32(insn, 0, 5); 7183 int rn = extract32(insn, 5, 5); 7184 int opcode = extract32(insn, 16, 3); 7185 int rmode = extract32(insn, 19, 2); 7186 int type = extract32(insn, 22, 2); 7187 bool sbit = extract32(insn, 29, 1); 7188 bool sf = extract32(insn, 31, 1); 7189 bool itof = false; 7190 7191 if (sbit) { 7192 goto do_unallocated; 7193 } 7194 7195 switch (opcode) { 7196 case 2: /* SCVTF */ 7197 case 3: /* UCVTF */ 7198 itof = true; 7199 /* fallthru */ 7200 case 4: /* FCVTAS */ 7201 case 5: /* FCVTAU */ 7202 if (rmode != 0) { 7203 goto do_unallocated; 7204 } 7205 /* fallthru */ 7206 case 0: /* FCVT[NPMZ]S */ 7207 case 1: /* FCVT[NPMZ]U */ 7208 switch (type) { 7209 case 0: /* float32 */ 7210 case 1: /* float64 */ 7211 break; 7212 case 3: /* float16 */ 7213 if (!dc_isar_feature(aa64_fp16, s)) { 7214 goto do_unallocated; 7215 } 7216 break; 7217 default: 7218 goto do_unallocated; 7219 } 7220 if (!fp_access_check(s)) { 7221 return; 7222 } 7223 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7224 break; 7225 7226 default: 7227 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7228 case 0b01100110: /* FMOV half <-> 32-bit int */ 7229 case 0b01100111: 7230 case 0b11100110: /* FMOV half <-> 64-bit int */ 7231 case 0b11100111: 7232 if (!dc_isar_feature(aa64_fp16, s)) { 7233 goto do_unallocated; 7234 } 7235 /* fallthru */ 7236 case 0b00000110: /* FMOV 32-bit */ 7237 case 0b00000111: 7238 case 0b10100110: /* FMOV 64-bit */ 7239 case 0b10100111: 7240 case 0b11001110: /* FMOV top half of 128-bit */ 7241 case 0b11001111: 7242 if (!fp_access_check(s)) { 7243 return; 7244 } 7245 itof = opcode & 1; 7246 handle_fmov(s, rd, rn, type, itof); 7247 break; 7248 7249 case 0b00111110: /* FJCVTZS */ 7250 if (!dc_isar_feature(aa64_jscvt, s)) { 7251 goto do_unallocated; 7252 } else if (fp_access_check(s)) { 7253 handle_fjcvtzs(s, rd, rn); 7254 } 7255 break; 7256 7257 default: 7258 do_unallocated: 7259 unallocated_encoding(s); 7260 return; 7261 } 7262 break; 7263 } 7264 } 7265 7266 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7267 * 31 30 29 28 25 24 0 7268 * +---+---+---+---------+-----------------------------+ 7269 * | | 0 | | 1 1 1 1 | | 7270 * +---+---+---+---------+-----------------------------+ 7271 */ 7272 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7273 { 7274 if (extract32(insn, 24, 1)) { 7275 /* Floating point data-processing (3 source) */ 7276 disas_fp_3src(s, insn); 7277 } else if (extract32(insn, 21, 1) == 0) { 7278 /* Floating point to fixed point conversions */ 7279 disas_fp_fixed_conv(s, insn); 7280 } else { 7281 switch (extract32(insn, 10, 2)) { 7282 case 1: 7283 /* Floating point conditional compare */ 7284 disas_fp_ccomp(s, insn); 7285 break; 7286 case 2: 7287 /* Floating point data-processing (2 source) */ 7288 disas_fp_2src(s, insn); 7289 break; 7290 case 3: 7291 /* Floating point conditional select */ 7292 disas_fp_csel(s, insn); 7293 break; 7294 case 0: 7295 switch (ctz32(extract32(insn, 12, 4))) { 7296 case 0: /* [15:12] == xxx1 */ 7297 /* Floating point immediate */ 7298 disas_fp_imm(s, insn); 7299 break; 7300 case 1: /* [15:12] == xx10 */ 7301 /* Floating point compare */ 7302 disas_fp_compare(s, insn); 7303 break; 7304 case 2: /* [15:12] == x100 */ 7305 /* Floating point data-processing (1 source) */ 7306 disas_fp_1src(s, insn); 7307 break; 7308 case 3: /* [15:12] == 1000 */ 7309 unallocated_encoding(s); 7310 break; 7311 default: /* [15:12] == 0000 */ 7312 /* Floating point <-> integer conversions */ 7313 disas_fp_int_conv(s, insn); 7314 break; 7315 } 7316 break; 7317 } 7318 } 7319 } 7320 7321 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7322 int pos) 7323 { 7324 /* Extract 64 bits from the middle of two concatenated 64 bit 7325 * vector register slices left:right. The extracted bits start 7326 * at 'pos' bits into the right (least significant) side. 7327 * We return the result in tcg_right, and guarantee not to 7328 * trash tcg_left. 7329 */ 7330 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7331 assert(pos > 0 && pos < 64); 7332 7333 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7334 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7335 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7336 } 7337 7338 /* EXT 7339 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7340 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7341 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7342 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7343 */ 7344 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7345 { 7346 int is_q = extract32(insn, 30, 1); 7347 int op2 = extract32(insn, 22, 2); 7348 int imm4 = extract32(insn, 11, 4); 7349 int rm = extract32(insn, 16, 5); 7350 int rn = extract32(insn, 5, 5); 7351 int rd = extract32(insn, 0, 5); 7352 int pos = imm4 << 3; 7353 TCGv_i64 tcg_resl, tcg_resh; 7354 7355 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7356 unallocated_encoding(s); 7357 return; 7358 } 7359 7360 if (!fp_access_check(s)) { 7361 return; 7362 } 7363 7364 tcg_resh = tcg_temp_new_i64(); 7365 tcg_resl = tcg_temp_new_i64(); 7366 7367 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7368 * either extracting 128 bits from a 128:128 concatenation, or 7369 * extracting 64 bits from a 64:64 concatenation. 7370 */ 7371 if (!is_q) { 7372 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7373 if (pos != 0) { 7374 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7375 do_ext64(s, tcg_resh, tcg_resl, pos); 7376 } 7377 } else { 7378 TCGv_i64 tcg_hh; 7379 typedef struct { 7380 int reg; 7381 int elt; 7382 } EltPosns; 7383 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7384 EltPosns *elt = eltposns; 7385 7386 if (pos >= 64) { 7387 elt++; 7388 pos -= 64; 7389 } 7390 7391 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7392 elt++; 7393 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7394 elt++; 7395 if (pos != 0) { 7396 do_ext64(s, tcg_resh, tcg_resl, pos); 7397 tcg_hh = tcg_temp_new_i64(); 7398 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7399 do_ext64(s, tcg_hh, tcg_resh, pos); 7400 } 7401 } 7402 7403 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7404 if (is_q) { 7405 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7406 } 7407 clear_vec_high(s, is_q, rd); 7408 } 7409 7410 /* TBL/TBX 7411 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7412 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7413 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7414 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7415 */ 7416 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7417 { 7418 int op2 = extract32(insn, 22, 2); 7419 int is_q = extract32(insn, 30, 1); 7420 int rm = extract32(insn, 16, 5); 7421 int rn = extract32(insn, 5, 5); 7422 int rd = extract32(insn, 0, 5); 7423 int is_tbx = extract32(insn, 12, 1); 7424 int len = (extract32(insn, 13, 2) + 1) * 16; 7425 7426 if (op2 != 0) { 7427 unallocated_encoding(s); 7428 return; 7429 } 7430 7431 if (!fp_access_check(s)) { 7432 return; 7433 } 7434 7435 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7436 vec_full_reg_offset(s, rm), cpu_env, 7437 is_q ? 16 : 8, vec_full_reg_size(s), 7438 (len << 6) | (is_tbx << 5) | rn, 7439 gen_helper_simd_tblx); 7440 } 7441 7442 /* ZIP/UZP/TRN 7443 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7444 * +---+---+-------------+------+---+------+---+------------------+------+ 7445 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7446 * +---+---+-------------+------+---+------+---+------------------+------+ 7447 */ 7448 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7449 { 7450 int rd = extract32(insn, 0, 5); 7451 int rn = extract32(insn, 5, 5); 7452 int rm = extract32(insn, 16, 5); 7453 int size = extract32(insn, 22, 2); 7454 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7455 * bit 2 indicates 1 vs 2 variant of the insn. 7456 */ 7457 int opcode = extract32(insn, 12, 2); 7458 bool part = extract32(insn, 14, 1); 7459 bool is_q = extract32(insn, 30, 1); 7460 int esize = 8 << size; 7461 int i; 7462 int datasize = is_q ? 128 : 64; 7463 int elements = datasize / esize; 7464 TCGv_i64 tcg_res[2], tcg_ele; 7465 7466 if (opcode == 0 || (size == 3 && !is_q)) { 7467 unallocated_encoding(s); 7468 return; 7469 } 7470 7471 if (!fp_access_check(s)) { 7472 return; 7473 } 7474 7475 tcg_res[0] = tcg_temp_new_i64(); 7476 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7477 tcg_ele = tcg_temp_new_i64(); 7478 7479 for (i = 0; i < elements; i++) { 7480 int o, w; 7481 7482 switch (opcode) { 7483 case 1: /* UZP1/2 */ 7484 { 7485 int midpoint = elements / 2; 7486 if (i < midpoint) { 7487 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7488 } else { 7489 read_vec_element(s, tcg_ele, rm, 7490 2 * (i - midpoint) + part, size); 7491 } 7492 break; 7493 } 7494 case 2: /* TRN1/2 */ 7495 if (i & 1) { 7496 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7497 } else { 7498 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7499 } 7500 break; 7501 case 3: /* ZIP1/2 */ 7502 { 7503 int base = part * elements / 2; 7504 if (i & 1) { 7505 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7506 } else { 7507 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7508 } 7509 break; 7510 } 7511 default: 7512 g_assert_not_reached(); 7513 } 7514 7515 w = (i * esize) / 64; 7516 o = (i * esize) % 64; 7517 if (o == 0) { 7518 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7519 } else { 7520 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7521 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7522 } 7523 } 7524 7525 for (i = 0; i <= is_q; ++i) { 7526 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7527 } 7528 clear_vec_high(s, is_q, rd); 7529 } 7530 7531 /* 7532 * do_reduction_op helper 7533 * 7534 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7535 * important for correct NaN propagation that we do these 7536 * operations in exactly the order specified by the pseudocode. 7537 * 7538 * This is a recursive function, TCG temps should be freed by the 7539 * calling function once it is done with the values. 7540 */ 7541 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7542 int esize, int size, int vmap, TCGv_ptr fpst) 7543 { 7544 if (esize == size) { 7545 int element; 7546 MemOp msize = esize == 16 ? MO_16 : MO_32; 7547 TCGv_i32 tcg_elem; 7548 7549 /* We should have one register left here */ 7550 assert(ctpop8(vmap) == 1); 7551 element = ctz32(vmap); 7552 assert(element < 8); 7553 7554 tcg_elem = tcg_temp_new_i32(); 7555 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7556 return tcg_elem; 7557 } else { 7558 int bits = size / 2; 7559 int shift = ctpop8(vmap) / 2; 7560 int vmap_lo = (vmap >> shift) & vmap; 7561 int vmap_hi = (vmap & ~vmap_lo); 7562 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7563 7564 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7565 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7566 tcg_res = tcg_temp_new_i32(); 7567 7568 switch (fpopcode) { 7569 case 0x0c: /* fmaxnmv half-precision */ 7570 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7571 break; 7572 case 0x0f: /* fmaxv half-precision */ 7573 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7574 break; 7575 case 0x1c: /* fminnmv half-precision */ 7576 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7577 break; 7578 case 0x1f: /* fminv half-precision */ 7579 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7580 break; 7581 case 0x2c: /* fmaxnmv */ 7582 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7583 break; 7584 case 0x2f: /* fmaxv */ 7585 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7586 break; 7587 case 0x3c: /* fminnmv */ 7588 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7589 break; 7590 case 0x3f: /* fminv */ 7591 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7592 break; 7593 default: 7594 g_assert_not_reached(); 7595 } 7596 return tcg_res; 7597 } 7598 } 7599 7600 /* AdvSIMD across lanes 7601 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7602 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7603 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7604 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7605 */ 7606 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7607 { 7608 int rd = extract32(insn, 0, 5); 7609 int rn = extract32(insn, 5, 5); 7610 int size = extract32(insn, 22, 2); 7611 int opcode = extract32(insn, 12, 5); 7612 bool is_q = extract32(insn, 30, 1); 7613 bool is_u = extract32(insn, 29, 1); 7614 bool is_fp = false; 7615 bool is_min = false; 7616 int esize; 7617 int elements; 7618 int i; 7619 TCGv_i64 tcg_res, tcg_elt; 7620 7621 switch (opcode) { 7622 case 0x1b: /* ADDV */ 7623 if (is_u) { 7624 unallocated_encoding(s); 7625 return; 7626 } 7627 /* fall through */ 7628 case 0x3: /* SADDLV, UADDLV */ 7629 case 0xa: /* SMAXV, UMAXV */ 7630 case 0x1a: /* SMINV, UMINV */ 7631 if (size == 3 || (size == 2 && !is_q)) { 7632 unallocated_encoding(s); 7633 return; 7634 } 7635 break; 7636 case 0xc: /* FMAXNMV, FMINNMV */ 7637 case 0xf: /* FMAXV, FMINV */ 7638 /* Bit 1 of size field encodes min vs max and the actual size 7639 * depends on the encoding of the U bit. If not set (and FP16 7640 * enabled) then we do half-precision float instead of single 7641 * precision. 7642 */ 7643 is_min = extract32(size, 1, 1); 7644 is_fp = true; 7645 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7646 size = 1; 7647 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7648 unallocated_encoding(s); 7649 return; 7650 } else { 7651 size = 2; 7652 } 7653 break; 7654 default: 7655 unallocated_encoding(s); 7656 return; 7657 } 7658 7659 if (!fp_access_check(s)) { 7660 return; 7661 } 7662 7663 esize = 8 << size; 7664 elements = (is_q ? 128 : 64) / esize; 7665 7666 tcg_res = tcg_temp_new_i64(); 7667 tcg_elt = tcg_temp_new_i64(); 7668 7669 /* These instructions operate across all lanes of a vector 7670 * to produce a single result. We can guarantee that a 64 7671 * bit intermediate is sufficient: 7672 * + for [US]ADDLV the maximum element size is 32 bits, and 7673 * the result type is 64 bits 7674 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7675 * same as the element size, which is 32 bits at most 7676 * For the integer operations we can choose to work at 64 7677 * or 32 bits and truncate at the end; for simplicity 7678 * we use 64 bits always. The floating point 7679 * ops do require 32 bit intermediates, though. 7680 */ 7681 if (!is_fp) { 7682 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7683 7684 for (i = 1; i < elements; i++) { 7685 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7686 7687 switch (opcode) { 7688 case 0x03: /* SADDLV / UADDLV */ 7689 case 0x1b: /* ADDV */ 7690 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7691 break; 7692 case 0x0a: /* SMAXV / UMAXV */ 7693 if (is_u) { 7694 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7695 } else { 7696 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7697 } 7698 break; 7699 case 0x1a: /* SMINV / UMINV */ 7700 if (is_u) { 7701 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7702 } else { 7703 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7704 } 7705 break; 7706 default: 7707 g_assert_not_reached(); 7708 } 7709 7710 } 7711 } else { 7712 /* Floating point vector reduction ops which work across 32 7713 * bit (single) or 16 bit (half-precision) intermediates. 7714 * Note that correct NaN propagation requires that we do these 7715 * operations in exactly the order specified by the pseudocode. 7716 */ 7717 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7718 int fpopcode = opcode | is_min << 4 | is_u << 5; 7719 int vmap = (1 << elements) - 1; 7720 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7721 (is_q ? 128 : 64), vmap, fpst); 7722 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7723 } 7724 7725 /* Now truncate the result to the width required for the final output */ 7726 if (opcode == 0x03) { 7727 /* SADDLV, UADDLV: result is 2*esize */ 7728 size++; 7729 } 7730 7731 switch (size) { 7732 case 0: 7733 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7734 break; 7735 case 1: 7736 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7737 break; 7738 case 2: 7739 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7740 break; 7741 case 3: 7742 break; 7743 default: 7744 g_assert_not_reached(); 7745 } 7746 7747 write_fp_dreg(s, rd, tcg_res); 7748 } 7749 7750 /* DUP (Element, Vector) 7751 * 7752 * 31 30 29 21 20 16 15 10 9 5 4 0 7753 * +---+---+-------------------+--------+-------------+------+------+ 7754 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7755 * +---+---+-------------------+--------+-------------+------+------+ 7756 * 7757 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7758 */ 7759 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7760 int imm5) 7761 { 7762 int size = ctz32(imm5); 7763 int index; 7764 7765 if (size > 3 || (size == 3 && !is_q)) { 7766 unallocated_encoding(s); 7767 return; 7768 } 7769 7770 if (!fp_access_check(s)) { 7771 return; 7772 } 7773 7774 index = imm5 >> (size + 1); 7775 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7776 vec_reg_offset(s, rn, index, size), 7777 is_q ? 16 : 8, vec_full_reg_size(s)); 7778 } 7779 7780 /* DUP (element, scalar) 7781 * 31 21 20 16 15 10 9 5 4 0 7782 * +-----------------------+--------+-------------+------+------+ 7783 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7784 * +-----------------------+--------+-------------+------+------+ 7785 */ 7786 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7787 int imm5) 7788 { 7789 int size = ctz32(imm5); 7790 int index; 7791 TCGv_i64 tmp; 7792 7793 if (size > 3) { 7794 unallocated_encoding(s); 7795 return; 7796 } 7797 7798 if (!fp_access_check(s)) { 7799 return; 7800 } 7801 7802 index = imm5 >> (size + 1); 7803 7804 /* This instruction just extracts the specified element and 7805 * zero-extends it into the bottom of the destination register. 7806 */ 7807 tmp = tcg_temp_new_i64(); 7808 read_vec_element(s, tmp, rn, index, size); 7809 write_fp_dreg(s, rd, tmp); 7810 } 7811 7812 /* DUP (General) 7813 * 7814 * 31 30 29 21 20 16 15 10 9 5 4 0 7815 * +---+---+-------------------+--------+-------------+------+------+ 7816 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7817 * +---+---+-------------------+--------+-------------+------+------+ 7818 * 7819 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7820 */ 7821 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7822 int imm5) 7823 { 7824 int size = ctz32(imm5); 7825 uint32_t dofs, oprsz, maxsz; 7826 7827 if (size > 3 || ((size == 3) && !is_q)) { 7828 unallocated_encoding(s); 7829 return; 7830 } 7831 7832 if (!fp_access_check(s)) { 7833 return; 7834 } 7835 7836 dofs = vec_full_reg_offset(s, rd); 7837 oprsz = is_q ? 16 : 8; 7838 maxsz = vec_full_reg_size(s); 7839 7840 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7841 } 7842 7843 /* INS (Element) 7844 * 7845 * 31 21 20 16 15 14 11 10 9 5 4 0 7846 * +-----------------------+--------+------------+---+------+------+ 7847 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7848 * +-----------------------+--------+------------+---+------+------+ 7849 * 7850 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7851 * index: encoded in imm5<4:size+1> 7852 */ 7853 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7854 int imm4, int imm5) 7855 { 7856 int size = ctz32(imm5); 7857 int src_index, dst_index; 7858 TCGv_i64 tmp; 7859 7860 if (size > 3) { 7861 unallocated_encoding(s); 7862 return; 7863 } 7864 7865 if (!fp_access_check(s)) { 7866 return; 7867 } 7868 7869 dst_index = extract32(imm5, 1+size, 5); 7870 src_index = extract32(imm4, size, 4); 7871 7872 tmp = tcg_temp_new_i64(); 7873 7874 read_vec_element(s, tmp, rn, src_index, size); 7875 write_vec_element(s, tmp, rd, dst_index, size); 7876 7877 /* INS is considered a 128-bit write for SVE. */ 7878 clear_vec_high(s, true, rd); 7879 } 7880 7881 7882 /* INS (General) 7883 * 7884 * 31 21 20 16 15 10 9 5 4 0 7885 * +-----------------------+--------+-------------+------+------+ 7886 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7887 * +-----------------------+--------+-------------+------+------+ 7888 * 7889 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7890 * index: encoded in imm5<4:size+1> 7891 */ 7892 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7893 { 7894 int size = ctz32(imm5); 7895 int idx; 7896 7897 if (size > 3) { 7898 unallocated_encoding(s); 7899 return; 7900 } 7901 7902 if (!fp_access_check(s)) { 7903 return; 7904 } 7905 7906 idx = extract32(imm5, 1 + size, 4 - size); 7907 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7908 7909 /* INS is considered a 128-bit write for SVE. */ 7910 clear_vec_high(s, true, rd); 7911 } 7912 7913 /* 7914 * UMOV (General) 7915 * SMOV (General) 7916 * 7917 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7918 * +---+---+-------------------+--------+-------------+------+------+ 7919 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7920 * +---+---+-------------------+--------+-------------+------+------+ 7921 * 7922 * U: unsigned when set 7923 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7924 */ 7925 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7926 int rn, int rd, int imm5) 7927 { 7928 int size = ctz32(imm5); 7929 int element; 7930 TCGv_i64 tcg_rd; 7931 7932 /* Check for UnallocatedEncodings */ 7933 if (is_signed) { 7934 if (size > 2 || (size == 2 && !is_q)) { 7935 unallocated_encoding(s); 7936 return; 7937 } 7938 } else { 7939 if (size > 3 7940 || (size < 3 && is_q) 7941 || (size == 3 && !is_q)) { 7942 unallocated_encoding(s); 7943 return; 7944 } 7945 } 7946 7947 if (!fp_access_check(s)) { 7948 return; 7949 } 7950 7951 element = extract32(imm5, 1+size, 4); 7952 7953 tcg_rd = cpu_reg(s, rd); 7954 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7955 if (is_signed && !is_q) { 7956 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7957 } 7958 } 7959 7960 /* AdvSIMD copy 7961 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7962 * +---+---+----+-----------------+------+---+------+---+------+------+ 7963 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7964 * +---+---+----+-----------------+------+---+------+---+------+------+ 7965 */ 7966 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7967 { 7968 int rd = extract32(insn, 0, 5); 7969 int rn = extract32(insn, 5, 5); 7970 int imm4 = extract32(insn, 11, 4); 7971 int op = extract32(insn, 29, 1); 7972 int is_q = extract32(insn, 30, 1); 7973 int imm5 = extract32(insn, 16, 5); 7974 7975 if (op) { 7976 if (is_q) { 7977 /* INS (element) */ 7978 handle_simd_inse(s, rd, rn, imm4, imm5); 7979 } else { 7980 unallocated_encoding(s); 7981 } 7982 } else { 7983 switch (imm4) { 7984 case 0: 7985 /* DUP (element - vector) */ 7986 handle_simd_dupe(s, is_q, rd, rn, imm5); 7987 break; 7988 case 1: 7989 /* DUP (general) */ 7990 handle_simd_dupg(s, is_q, rd, rn, imm5); 7991 break; 7992 case 3: 7993 if (is_q) { 7994 /* INS (general) */ 7995 handle_simd_insg(s, rd, rn, imm5); 7996 } else { 7997 unallocated_encoding(s); 7998 } 7999 break; 8000 case 5: 8001 case 7: 8002 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 8003 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 8004 break; 8005 default: 8006 unallocated_encoding(s); 8007 break; 8008 } 8009 } 8010 } 8011 8012 /* AdvSIMD modified immediate 8013 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8014 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8015 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8016 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8017 * 8018 * There are a number of operations that can be carried out here: 8019 * MOVI - move (shifted) imm into register 8020 * MVNI - move inverted (shifted) imm into register 8021 * ORR - bitwise OR of (shifted) imm with register 8022 * BIC - bitwise clear of (shifted) imm with register 8023 * With ARMv8.2 we also have: 8024 * FMOV half-precision 8025 */ 8026 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8027 { 8028 int rd = extract32(insn, 0, 5); 8029 int cmode = extract32(insn, 12, 4); 8030 int o2 = extract32(insn, 11, 1); 8031 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8032 bool is_neg = extract32(insn, 29, 1); 8033 bool is_q = extract32(insn, 30, 1); 8034 uint64_t imm = 0; 8035 8036 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8037 /* Check for FMOV (vector, immediate) - half-precision */ 8038 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8039 unallocated_encoding(s); 8040 return; 8041 } 8042 } 8043 8044 if (!fp_access_check(s)) { 8045 return; 8046 } 8047 8048 if (cmode == 15 && o2 && !is_neg) { 8049 /* FMOV (vector, immediate) - half-precision */ 8050 imm = vfp_expand_imm(MO_16, abcdefgh); 8051 /* now duplicate across the lanes */ 8052 imm = dup_const(MO_16, imm); 8053 } else { 8054 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8055 } 8056 8057 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8058 /* MOVI or MVNI, with MVNI negation handled above. */ 8059 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8060 vec_full_reg_size(s), imm); 8061 } else { 8062 /* ORR or BIC, with BIC negation to AND handled above. */ 8063 if (is_neg) { 8064 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8065 } else { 8066 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8067 } 8068 } 8069 } 8070 8071 /* AdvSIMD scalar copy 8072 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8073 * +-----+----+-----------------+------+---+------+---+------+------+ 8074 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8075 * +-----+----+-----------------+------+---+------+---+------+------+ 8076 */ 8077 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8078 { 8079 int rd = extract32(insn, 0, 5); 8080 int rn = extract32(insn, 5, 5); 8081 int imm4 = extract32(insn, 11, 4); 8082 int imm5 = extract32(insn, 16, 5); 8083 int op = extract32(insn, 29, 1); 8084 8085 if (op != 0 || imm4 != 0) { 8086 unallocated_encoding(s); 8087 return; 8088 } 8089 8090 /* DUP (element, scalar) */ 8091 handle_simd_dupes(s, rd, rn, imm5); 8092 } 8093 8094 /* AdvSIMD scalar pairwise 8095 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8096 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8097 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8098 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8099 */ 8100 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8101 { 8102 int u = extract32(insn, 29, 1); 8103 int size = extract32(insn, 22, 2); 8104 int opcode = extract32(insn, 12, 5); 8105 int rn = extract32(insn, 5, 5); 8106 int rd = extract32(insn, 0, 5); 8107 TCGv_ptr fpst; 8108 8109 /* For some ops (the FP ones), size[1] is part of the encoding. 8110 * For ADDP strictly it is not but size[1] is always 1 for valid 8111 * encodings. 8112 */ 8113 opcode |= (extract32(size, 1, 1) << 5); 8114 8115 switch (opcode) { 8116 case 0x3b: /* ADDP */ 8117 if (u || size != 3) { 8118 unallocated_encoding(s); 8119 return; 8120 } 8121 if (!fp_access_check(s)) { 8122 return; 8123 } 8124 8125 fpst = NULL; 8126 break; 8127 case 0xc: /* FMAXNMP */ 8128 case 0xd: /* FADDP */ 8129 case 0xf: /* FMAXP */ 8130 case 0x2c: /* FMINNMP */ 8131 case 0x2f: /* FMINP */ 8132 /* FP op, size[0] is 32 or 64 bit*/ 8133 if (!u) { 8134 if (!dc_isar_feature(aa64_fp16, s)) { 8135 unallocated_encoding(s); 8136 return; 8137 } else { 8138 size = MO_16; 8139 } 8140 } else { 8141 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8142 } 8143 8144 if (!fp_access_check(s)) { 8145 return; 8146 } 8147 8148 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8149 break; 8150 default: 8151 unallocated_encoding(s); 8152 return; 8153 } 8154 8155 if (size == MO_64) { 8156 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8157 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8158 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8159 8160 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8161 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8162 8163 switch (opcode) { 8164 case 0x3b: /* ADDP */ 8165 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8166 break; 8167 case 0xc: /* FMAXNMP */ 8168 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8169 break; 8170 case 0xd: /* FADDP */ 8171 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8172 break; 8173 case 0xf: /* FMAXP */ 8174 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8175 break; 8176 case 0x2c: /* FMINNMP */ 8177 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8178 break; 8179 case 0x2f: /* FMINP */ 8180 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8181 break; 8182 default: 8183 g_assert_not_reached(); 8184 } 8185 8186 write_fp_dreg(s, rd, tcg_res); 8187 } else { 8188 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8189 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8190 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8191 8192 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8193 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8194 8195 if (size == MO_16) { 8196 switch (opcode) { 8197 case 0xc: /* FMAXNMP */ 8198 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8199 break; 8200 case 0xd: /* FADDP */ 8201 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8202 break; 8203 case 0xf: /* FMAXP */ 8204 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8205 break; 8206 case 0x2c: /* FMINNMP */ 8207 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8208 break; 8209 case 0x2f: /* FMINP */ 8210 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8211 break; 8212 default: 8213 g_assert_not_reached(); 8214 } 8215 } else { 8216 switch (opcode) { 8217 case 0xc: /* FMAXNMP */ 8218 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8219 break; 8220 case 0xd: /* FADDP */ 8221 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8222 break; 8223 case 0xf: /* FMAXP */ 8224 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8225 break; 8226 case 0x2c: /* FMINNMP */ 8227 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8228 break; 8229 case 0x2f: /* FMINP */ 8230 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8231 break; 8232 default: 8233 g_assert_not_reached(); 8234 } 8235 } 8236 8237 write_fp_sreg(s, rd, tcg_res); 8238 } 8239 } 8240 8241 /* 8242 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8243 * 8244 * This code is handles the common shifting code and is used by both 8245 * the vector and scalar code. 8246 */ 8247 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8248 TCGv_i64 tcg_rnd, bool accumulate, 8249 bool is_u, int size, int shift) 8250 { 8251 bool extended_result = false; 8252 bool round = tcg_rnd != NULL; 8253 int ext_lshift = 0; 8254 TCGv_i64 tcg_src_hi; 8255 8256 if (round && size == 3) { 8257 extended_result = true; 8258 ext_lshift = 64 - shift; 8259 tcg_src_hi = tcg_temp_new_i64(); 8260 } else if (shift == 64) { 8261 if (!accumulate && is_u) { 8262 /* result is zero */ 8263 tcg_gen_movi_i64(tcg_res, 0); 8264 return; 8265 } 8266 } 8267 8268 /* Deal with the rounding step */ 8269 if (round) { 8270 if (extended_result) { 8271 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8272 if (!is_u) { 8273 /* take care of sign extending tcg_res */ 8274 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8275 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8276 tcg_src, tcg_src_hi, 8277 tcg_rnd, tcg_zero); 8278 } else { 8279 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8280 tcg_src, tcg_zero, 8281 tcg_rnd, tcg_zero); 8282 } 8283 } else { 8284 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8285 } 8286 } 8287 8288 /* Now do the shift right */ 8289 if (round && extended_result) { 8290 /* extended case, >64 bit precision required */ 8291 if (ext_lshift == 0) { 8292 /* special case, only high bits matter */ 8293 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8294 } else { 8295 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8296 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8297 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8298 } 8299 } else { 8300 if (is_u) { 8301 if (shift == 64) { 8302 /* essentially shifting in 64 zeros */ 8303 tcg_gen_movi_i64(tcg_src, 0); 8304 } else { 8305 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8306 } 8307 } else { 8308 if (shift == 64) { 8309 /* effectively extending the sign-bit */ 8310 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8311 } else { 8312 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8313 } 8314 } 8315 } 8316 8317 if (accumulate) { 8318 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8319 } else { 8320 tcg_gen_mov_i64(tcg_res, tcg_src); 8321 } 8322 } 8323 8324 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8325 static void handle_scalar_simd_shri(DisasContext *s, 8326 bool is_u, int immh, int immb, 8327 int opcode, int rn, int rd) 8328 { 8329 const int size = 3; 8330 int immhb = immh << 3 | immb; 8331 int shift = 2 * (8 << size) - immhb; 8332 bool accumulate = false; 8333 bool round = false; 8334 bool insert = false; 8335 TCGv_i64 tcg_rn; 8336 TCGv_i64 tcg_rd; 8337 TCGv_i64 tcg_round; 8338 8339 if (!extract32(immh, 3, 1)) { 8340 unallocated_encoding(s); 8341 return; 8342 } 8343 8344 if (!fp_access_check(s)) { 8345 return; 8346 } 8347 8348 switch (opcode) { 8349 case 0x02: /* SSRA / USRA (accumulate) */ 8350 accumulate = true; 8351 break; 8352 case 0x04: /* SRSHR / URSHR (rounding) */ 8353 round = true; 8354 break; 8355 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8356 accumulate = round = true; 8357 break; 8358 case 0x08: /* SRI */ 8359 insert = true; 8360 break; 8361 } 8362 8363 if (round) { 8364 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8365 } else { 8366 tcg_round = NULL; 8367 } 8368 8369 tcg_rn = read_fp_dreg(s, rn); 8370 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8371 8372 if (insert) { 8373 /* shift count same as element size is valid but does nothing; 8374 * special case to avoid potential shift by 64. 8375 */ 8376 int esize = 8 << size; 8377 if (shift != esize) { 8378 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8379 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8380 } 8381 } else { 8382 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8383 accumulate, is_u, size, shift); 8384 } 8385 8386 write_fp_dreg(s, rd, tcg_rd); 8387 } 8388 8389 /* SHL/SLI - Scalar shift left */ 8390 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8391 int immh, int immb, int opcode, 8392 int rn, int rd) 8393 { 8394 int size = 32 - clz32(immh) - 1; 8395 int immhb = immh << 3 | immb; 8396 int shift = immhb - (8 << size); 8397 TCGv_i64 tcg_rn; 8398 TCGv_i64 tcg_rd; 8399 8400 if (!extract32(immh, 3, 1)) { 8401 unallocated_encoding(s); 8402 return; 8403 } 8404 8405 if (!fp_access_check(s)) { 8406 return; 8407 } 8408 8409 tcg_rn = read_fp_dreg(s, rn); 8410 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8411 8412 if (insert) { 8413 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8414 } else { 8415 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8416 } 8417 8418 write_fp_dreg(s, rd, tcg_rd); 8419 } 8420 8421 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8422 * (signed/unsigned) narrowing */ 8423 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8424 bool is_u_shift, bool is_u_narrow, 8425 int immh, int immb, int opcode, 8426 int rn, int rd) 8427 { 8428 int immhb = immh << 3 | immb; 8429 int size = 32 - clz32(immh) - 1; 8430 int esize = 8 << size; 8431 int shift = (2 * esize) - immhb; 8432 int elements = is_scalar ? 1 : (64 / esize); 8433 bool round = extract32(opcode, 0, 1); 8434 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8435 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8436 TCGv_i32 tcg_rd_narrowed; 8437 TCGv_i64 tcg_final; 8438 8439 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8440 { gen_helper_neon_narrow_sat_s8, 8441 gen_helper_neon_unarrow_sat8 }, 8442 { gen_helper_neon_narrow_sat_s16, 8443 gen_helper_neon_unarrow_sat16 }, 8444 { gen_helper_neon_narrow_sat_s32, 8445 gen_helper_neon_unarrow_sat32 }, 8446 { NULL, NULL }, 8447 }; 8448 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8449 gen_helper_neon_narrow_sat_u8, 8450 gen_helper_neon_narrow_sat_u16, 8451 gen_helper_neon_narrow_sat_u32, 8452 NULL 8453 }; 8454 NeonGenNarrowEnvFn *narrowfn; 8455 8456 int i; 8457 8458 assert(size < 4); 8459 8460 if (extract32(immh, 3, 1)) { 8461 unallocated_encoding(s); 8462 return; 8463 } 8464 8465 if (!fp_access_check(s)) { 8466 return; 8467 } 8468 8469 if (is_u_shift) { 8470 narrowfn = unsigned_narrow_fns[size]; 8471 } else { 8472 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8473 } 8474 8475 tcg_rn = tcg_temp_new_i64(); 8476 tcg_rd = tcg_temp_new_i64(); 8477 tcg_rd_narrowed = tcg_temp_new_i32(); 8478 tcg_final = tcg_temp_new_i64(); 8479 8480 if (round) { 8481 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8482 } else { 8483 tcg_round = NULL; 8484 } 8485 8486 for (i = 0; i < elements; i++) { 8487 read_vec_element(s, tcg_rn, rn, i, ldop); 8488 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8489 false, is_u_shift, size+1, shift); 8490 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8491 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8492 if (i == 0) { 8493 tcg_gen_mov_i64(tcg_final, tcg_rd); 8494 } else { 8495 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8496 } 8497 } 8498 8499 if (!is_q) { 8500 write_vec_element(s, tcg_final, rd, 0, MO_64); 8501 } else { 8502 write_vec_element(s, tcg_final, rd, 1, MO_64); 8503 } 8504 clear_vec_high(s, is_q, rd); 8505 } 8506 8507 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8508 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8509 bool src_unsigned, bool dst_unsigned, 8510 int immh, int immb, int rn, int rd) 8511 { 8512 int immhb = immh << 3 | immb; 8513 int size = 32 - clz32(immh) - 1; 8514 int shift = immhb - (8 << size); 8515 int pass; 8516 8517 assert(immh != 0); 8518 assert(!(scalar && is_q)); 8519 8520 if (!scalar) { 8521 if (!is_q && extract32(immh, 3, 1)) { 8522 unallocated_encoding(s); 8523 return; 8524 } 8525 8526 /* Since we use the variable-shift helpers we must 8527 * replicate the shift count into each element of 8528 * the tcg_shift value. 8529 */ 8530 switch (size) { 8531 case 0: 8532 shift |= shift << 8; 8533 /* fall through */ 8534 case 1: 8535 shift |= shift << 16; 8536 break; 8537 case 2: 8538 case 3: 8539 break; 8540 default: 8541 g_assert_not_reached(); 8542 } 8543 } 8544 8545 if (!fp_access_check(s)) { 8546 return; 8547 } 8548 8549 if (size == 3) { 8550 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8551 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8552 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8553 { NULL, gen_helper_neon_qshl_u64 }, 8554 }; 8555 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8556 int maxpass = is_q ? 2 : 1; 8557 8558 for (pass = 0; pass < maxpass; pass++) { 8559 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8560 8561 read_vec_element(s, tcg_op, rn, pass, MO_64); 8562 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8563 write_vec_element(s, tcg_op, rd, pass, MO_64); 8564 } 8565 clear_vec_high(s, is_q, rd); 8566 } else { 8567 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8568 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8569 { 8570 { gen_helper_neon_qshl_s8, 8571 gen_helper_neon_qshl_s16, 8572 gen_helper_neon_qshl_s32 }, 8573 { gen_helper_neon_qshlu_s8, 8574 gen_helper_neon_qshlu_s16, 8575 gen_helper_neon_qshlu_s32 } 8576 }, { 8577 { NULL, NULL, NULL }, 8578 { gen_helper_neon_qshl_u8, 8579 gen_helper_neon_qshl_u16, 8580 gen_helper_neon_qshl_u32 } 8581 } 8582 }; 8583 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8584 MemOp memop = scalar ? size : MO_32; 8585 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8586 8587 for (pass = 0; pass < maxpass; pass++) { 8588 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8589 8590 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8591 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8592 if (scalar) { 8593 switch (size) { 8594 case 0: 8595 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8596 break; 8597 case 1: 8598 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8599 break; 8600 case 2: 8601 break; 8602 default: 8603 g_assert_not_reached(); 8604 } 8605 write_fp_sreg(s, rd, tcg_op); 8606 } else { 8607 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8608 } 8609 } 8610 8611 if (!scalar) { 8612 clear_vec_high(s, is_q, rd); 8613 } 8614 } 8615 } 8616 8617 /* Common vector code for handling integer to FP conversion */ 8618 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8619 int elements, int is_signed, 8620 int fracbits, int size) 8621 { 8622 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8623 TCGv_i32 tcg_shift = NULL; 8624 8625 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8626 int pass; 8627 8628 if (fracbits || size == MO_64) { 8629 tcg_shift = tcg_constant_i32(fracbits); 8630 } 8631 8632 if (size == MO_64) { 8633 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8634 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8635 8636 for (pass = 0; pass < elements; pass++) { 8637 read_vec_element(s, tcg_int64, rn, pass, mop); 8638 8639 if (is_signed) { 8640 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8641 tcg_shift, tcg_fpst); 8642 } else { 8643 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8644 tcg_shift, tcg_fpst); 8645 } 8646 if (elements == 1) { 8647 write_fp_dreg(s, rd, tcg_double); 8648 } else { 8649 write_vec_element(s, tcg_double, rd, pass, MO_64); 8650 } 8651 } 8652 } else { 8653 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8654 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8655 8656 for (pass = 0; pass < elements; pass++) { 8657 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8658 8659 switch (size) { 8660 case MO_32: 8661 if (fracbits) { 8662 if (is_signed) { 8663 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8664 tcg_shift, tcg_fpst); 8665 } else { 8666 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8667 tcg_shift, tcg_fpst); 8668 } 8669 } else { 8670 if (is_signed) { 8671 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8672 } else { 8673 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8674 } 8675 } 8676 break; 8677 case MO_16: 8678 if (fracbits) { 8679 if (is_signed) { 8680 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8681 tcg_shift, tcg_fpst); 8682 } else { 8683 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8684 tcg_shift, tcg_fpst); 8685 } 8686 } else { 8687 if (is_signed) { 8688 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8689 } else { 8690 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8691 } 8692 } 8693 break; 8694 default: 8695 g_assert_not_reached(); 8696 } 8697 8698 if (elements == 1) { 8699 write_fp_sreg(s, rd, tcg_float); 8700 } else { 8701 write_vec_element_i32(s, tcg_float, rd, pass, size); 8702 } 8703 } 8704 } 8705 8706 clear_vec_high(s, elements << size == 16, rd); 8707 } 8708 8709 /* UCVTF/SCVTF - Integer to FP conversion */ 8710 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8711 bool is_q, bool is_u, 8712 int immh, int immb, int opcode, 8713 int rn, int rd) 8714 { 8715 int size, elements, fracbits; 8716 int immhb = immh << 3 | immb; 8717 8718 if (immh & 8) { 8719 size = MO_64; 8720 if (!is_scalar && !is_q) { 8721 unallocated_encoding(s); 8722 return; 8723 } 8724 } else if (immh & 4) { 8725 size = MO_32; 8726 } else if (immh & 2) { 8727 size = MO_16; 8728 if (!dc_isar_feature(aa64_fp16, s)) { 8729 unallocated_encoding(s); 8730 return; 8731 } 8732 } else { 8733 /* immh == 0 would be a failure of the decode logic */ 8734 g_assert(immh == 1); 8735 unallocated_encoding(s); 8736 return; 8737 } 8738 8739 if (is_scalar) { 8740 elements = 1; 8741 } else { 8742 elements = (8 << is_q) >> size; 8743 } 8744 fracbits = (16 << size) - immhb; 8745 8746 if (!fp_access_check(s)) { 8747 return; 8748 } 8749 8750 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8751 } 8752 8753 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8754 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8755 bool is_q, bool is_u, 8756 int immh, int immb, int rn, int rd) 8757 { 8758 int immhb = immh << 3 | immb; 8759 int pass, size, fracbits; 8760 TCGv_ptr tcg_fpstatus; 8761 TCGv_i32 tcg_rmode, tcg_shift; 8762 8763 if (immh & 0x8) { 8764 size = MO_64; 8765 if (!is_scalar && !is_q) { 8766 unallocated_encoding(s); 8767 return; 8768 } 8769 } else if (immh & 0x4) { 8770 size = MO_32; 8771 } else if (immh & 0x2) { 8772 size = MO_16; 8773 if (!dc_isar_feature(aa64_fp16, s)) { 8774 unallocated_encoding(s); 8775 return; 8776 } 8777 } else { 8778 /* Should have split out AdvSIMD modified immediate earlier. */ 8779 assert(immh == 1); 8780 unallocated_encoding(s); 8781 return; 8782 } 8783 8784 if (!fp_access_check(s)) { 8785 return; 8786 } 8787 8788 assert(!(is_scalar && is_q)); 8789 8790 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8791 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8792 fracbits = (16 << size) - immhb; 8793 tcg_shift = tcg_constant_i32(fracbits); 8794 8795 if (size == MO_64) { 8796 int maxpass = is_scalar ? 1 : 2; 8797 8798 for (pass = 0; pass < maxpass; pass++) { 8799 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8800 8801 read_vec_element(s, tcg_op, rn, pass, MO_64); 8802 if (is_u) { 8803 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8804 } else { 8805 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8806 } 8807 write_vec_element(s, tcg_op, rd, pass, MO_64); 8808 } 8809 clear_vec_high(s, is_q, rd); 8810 } else { 8811 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8812 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8813 8814 switch (size) { 8815 case MO_16: 8816 if (is_u) { 8817 fn = gen_helper_vfp_touhh; 8818 } else { 8819 fn = gen_helper_vfp_toshh; 8820 } 8821 break; 8822 case MO_32: 8823 if (is_u) { 8824 fn = gen_helper_vfp_touls; 8825 } else { 8826 fn = gen_helper_vfp_tosls; 8827 } 8828 break; 8829 default: 8830 g_assert_not_reached(); 8831 } 8832 8833 for (pass = 0; pass < maxpass; pass++) { 8834 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8835 8836 read_vec_element_i32(s, tcg_op, rn, pass, size); 8837 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8838 if (is_scalar) { 8839 write_fp_sreg(s, rd, tcg_op); 8840 } else { 8841 write_vec_element_i32(s, tcg_op, rd, pass, size); 8842 } 8843 } 8844 if (!is_scalar) { 8845 clear_vec_high(s, is_q, rd); 8846 } 8847 } 8848 8849 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8850 } 8851 8852 /* AdvSIMD scalar shift by immediate 8853 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8854 * +-----+---+-------------+------+------+--------+---+------+------+ 8855 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8856 * +-----+---+-------------+------+------+--------+---+------+------+ 8857 * 8858 * This is the scalar version so it works on a fixed sized registers 8859 */ 8860 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8861 { 8862 int rd = extract32(insn, 0, 5); 8863 int rn = extract32(insn, 5, 5); 8864 int opcode = extract32(insn, 11, 5); 8865 int immb = extract32(insn, 16, 3); 8866 int immh = extract32(insn, 19, 4); 8867 bool is_u = extract32(insn, 29, 1); 8868 8869 if (immh == 0) { 8870 unallocated_encoding(s); 8871 return; 8872 } 8873 8874 switch (opcode) { 8875 case 0x08: /* SRI */ 8876 if (!is_u) { 8877 unallocated_encoding(s); 8878 return; 8879 } 8880 /* fall through */ 8881 case 0x00: /* SSHR / USHR */ 8882 case 0x02: /* SSRA / USRA */ 8883 case 0x04: /* SRSHR / URSHR */ 8884 case 0x06: /* SRSRA / URSRA */ 8885 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8886 break; 8887 case 0x0a: /* SHL / SLI */ 8888 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8889 break; 8890 case 0x1c: /* SCVTF, UCVTF */ 8891 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8892 opcode, rn, rd); 8893 break; 8894 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8895 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8896 if (!is_u) { 8897 unallocated_encoding(s); 8898 return; 8899 } 8900 handle_vec_simd_sqshrn(s, true, false, false, true, 8901 immh, immb, opcode, rn, rd); 8902 break; 8903 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8904 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8905 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8906 immh, immb, opcode, rn, rd); 8907 break; 8908 case 0xc: /* SQSHLU */ 8909 if (!is_u) { 8910 unallocated_encoding(s); 8911 return; 8912 } 8913 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8914 break; 8915 case 0xe: /* SQSHL, UQSHL */ 8916 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8917 break; 8918 case 0x1f: /* FCVTZS, FCVTZU */ 8919 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8920 break; 8921 default: 8922 unallocated_encoding(s); 8923 break; 8924 } 8925 } 8926 8927 /* AdvSIMD scalar three different 8928 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8929 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8930 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8931 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8932 */ 8933 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8934 { 8935 bool is_u = extract32(insn, 29, 1); 8936 int size = extract32(insn, 22, 2); 8937 int opcode = extract32(insn, 12, 4); 8938 int rm = extract32(insn, 16, 5); 8939 int rn = extract32(insn, 5, 5); 8940 int rd = extract32(insn, 0, 5); 8941 8942 if (is_u) { 8943 unallocated_encoding(s); 8944 return; 8945 } 8946 8947 switch (opcode) { 8948 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8949 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8950 case 0xd: /* SQDMULL, SQDMULL2 */ 8951 if (size == 0 || size == 3) { 8952 unallocated_encoding(s); 8953 return; 8954 } 8955 break; 8956 default: 8957 unallocated_encoding(s); 8958 return; 8959 } 8960 8961 if (!fp_access_check(s)) { 8962 return; 8963 } 8964 8965 if (size == 2) { 8966 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8967 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8968 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8969 8970 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8971 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8972 8973 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8974 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8975 8976 switch (opcode) { 8977 case 0xd: /* SQDMULL, SQDMULL2 */ 8978 break; 8979 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8980 tcg_gen_neg_i64(tcg_res, tcg_res); 8981 /* fall through */ 8982 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8983 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8984 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8985 tcg_res, tcg_op1); 8986 break; 8987 default: 8988 g_assert_not_reached(); 8989 } 8990 8991 write_fp_dreg(s, rd, tcg_res); 8992 } else { 8993 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8994 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8995 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8996 8997 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8998 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8999 9000 switch (opcode) { 9001 case 0xd: /* SQDMULL, SQDMULL2 */ 9002 break; 9003 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9004 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9005 /* fall through */ 9006 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9007 { 9008 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9009 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9010 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 9011 tcg_res, tcg_op3); 9012 break; 9013 } 9014 default: 9015 g_assert_not_reached(); 9016 } 9017 9018 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9019 write_fp_dreg(s, rd, tcg_res); 9020 } 9021 } 9022 9023 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9024 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9025 { 9026 /* Handle 64x64->64 opcodes which are shared between the scalar 9027 * and vector 3-same groups. We cover every opcode where size == 3 9028 * is valid in either the three-reg-same (integer, not pairwise) 9029 * or scalar-three-reg-same groups. 9030 */ 9031 TCGCond cond; 9032 9033 switch (opcode) { 9034 case 0x1: /* SQADD */ 9035 if (u) { 9036 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9037 } else { 9038 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9039 } 9040 break; 9041 case 0x5: /* SQSUB */ 9042 if (u) { 9043 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9044 } else { 9045 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9046 } 9047 break; 9048 case 0x6: /* CMGT, CMHI */ 9049 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9050 * We implement this using setcond (test) and then negating. 9051 */ 9052 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9053 do_cmop: 9054 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9055 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9056 break; 9057 case 0x7: /* CMGE, CMHS */ 9058 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9059 goto do_cmop; 9060 case 0x11: /* CMTST, CMEQ */ 9061 if (u) { 9062 cond = TCG_COND_EQ; 9063 goto do_cmop; 9064 } 9065 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9066 break; 9067 case 0x8: /* SSHL, USHL */ 9068 if (u) { 9069 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9070 } else { 9071 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9072 } 9073 break; 9074 case 0x9: /* SQSHL, UQSHL */ 9075 if (u) { 9076 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9077 } else { 9078 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9079 } 9080 break; 9081 case 0xa: /* SRSHL, URSHL */ 9082 if (u) { 9083 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9084 } else { 9085 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9086 } 9087 break; 9088 case 0xb: /* SQRSHL, UQRSHL */ 9089 if (u) { 9090 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9091 } else { 9092 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9093 } 9094 break; 9095 case 0x10: /* ADD, SUB */ 9096 if (u) { 9097 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9098 } else { 9099 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9100 } 9101 break; 9102 default: 9103 g_assert_not_reached(); 9104 } 9105 } 9106 9107 /* Handle the 3-same-operands float operations; shared by the scalar 9108 * and vector encodings. The caller must filter out any encodings 9109 * not allocated for the encoding it is dealing with. 9110 */ 9111 static void handle_3same_float(DisasContext *s, int size, int elements, 9112 int fpopcode, int rd, int rn, int rm) 9113 { 9114 int pass; 9115 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9116 9117 for (pass = 0; pass < elements; pass++) { 9118 if (size) { 9119 /* Double */ 9120 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9121 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9122 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9123 9124 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9125 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9126 9127 switch (fpopcode) { 9128 case 0x39: /* FMLS */ 9129 /* As usual for ARM, separate negation for fused multiply-add */ 9130 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9131 /* fall through */ 9132 case 0x19: /* FMLA */ 9133 read_vec_element(s, tcg_res, rd, pass, MO_64); 9134 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9135 tcg_res, fpst); 9136 break; 9137 case 0x18: /* FMAXNM */ 9138 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9139 break; 9140 case 0x1a: /* FADD */ 9141 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9142 break; 9143 case 0x1b: /* FMULX */ 9144 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9145 break; 9146 case 0x1c: /* FCMEQ */ 9147 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9148 break; 9149 case 0x1e: /* FMAX */ 9150 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9151 break; 9152 case 0x1f: /* FRECPS */ 9153 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9154 break; 9155 case 0x38: /* FMINNM */ 9156 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9157 break; 9158 case 0x3a: /* FSUB */ 9159 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9160 break; 9161 case 0x3e: /* FMIN */ 9162 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9163 break; 9164 case 0x3f: /* FRSQRTS */ 9165 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9166 break; 9167 case 0x5b: /* FMUL */ 9168 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9169 break; 9170 case 0x5c: /* FCMGE */ 9171 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9172 break; 9173 case 0x5d: /* FACGE */ 9174 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9175 break; 9176 case 0x5f: /* FDIV */ 9177 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9178 break; 9179 case 0x7a: /* FABD */ 9180 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9181 gen_helper_vfp_absd(tcg_res, tcg_res); 9182 break; 9183 case 0x7c: /* FCMGT */ 9184 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9185 break; 9186 case 0x7d: /* FACGT */ 9187 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9188 break; 9189 default: 9190 g_assert_not_reached(); 9191 } 9192 9193 write_vec_element(s, tcg_res, rd, pass, MO_64); 9194 } else { 9195 /* Single */ 9196 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9197 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9198 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9199 9200 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9201 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9202 9203 switch (fpopcode) { 9204 case 0x39: /* FMLS */ 9205 /* As usual for ARM, separate negation for fused multiply-add */ 9206 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9207 /* fall through */ 9208 case 0x19: /* FMLA */ 9209 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9210 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9211 tcg_res, fpst); 9212 break; 9213 case 0x1a: /* FADD */ 9214 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9215 break; 9216 case 0x1b: /* FMULX */ 9217 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9218 break; 9219 case 0x1c: /* FCMEQ */ 9220 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9221 break; 9222 case 0x1e: /* FMAX */ 9223 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9224 break; 9225 case 0x1f: /* FRECPS */ 9226 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9227 break; 9228 case 0x18: /* FMAXNM */ 9229 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9230 break; 9231 case 0x38: /* FMINNM */ 9232 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9233 break; 9234 case 0x3a: /* FSUB */ 9235 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9236 break; 9237 case 0x3e: /* FMIN */ 9238 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9239 break; 9240 case 0x3f: /* FRSQRTS */ 9241 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9242 break; 9243 case 0x5b: /* FMUL */ 9244 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9245 break; 9246 case 0x5c: /* FCMGE */ 9247 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9248 break; 9249 case 0x5d: /* FACGE */ 9250 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9251 break; 9252 case 0x5f: /* FDIV */ 9253 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9254 break; 9255 case 0x7a: /* FABD */ 9256 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9257 gen_helper_vfp_abss(tcg_res, tcg_res); 9258 break; 9259 case 0x7c: /* FCMGT */ 9260 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9261 break; 9262 case 0x7d: /* FACGT */ 9263 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9264 break; 9265 default: 9266 g_assert_not_reached(); 9267 } 9268 9269 if (elements == 1) { 9270 /* scalar single so clear high part */ 9271 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9272 9273 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9274 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9275 } else { 9276 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9277 } 9278 } 9279 } 9280 9281 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9282 } 9283 9284 /* AdvSIMD scalar three same 9285 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9286 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9287 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9288 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9289 */ 9290 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9291 { 9292 int rd = extract32(insn, 0, 5); 9293 int rn = extract32(insn, 5, 5); 9294 int opcode = extract32(insn, 11, 5); 9295 int rm = extract32(insn, 16, 5); 9296 int size = extract32(insn, 22, 2); 9297 bool u = extract32(insn, 29, 1); 9298 TCGv_i64 tcg_rd; 9299 9300 if (opcode >= 0x18) { 9301 /* Floating point: U, size[1] and opcode indicate operation */ 9302 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9303 switch (fpopcode) { 9304 case 0x1b: /* FMULX */ 9305 case 0x1f: /* FRECPS */ 9306 case 0x3f: /* FRSQRTS */ 9307 case 0x5d: /* FACGE */ 9308 case 0x7d: /* FACGT */ 9309 case 0x1c: /* FCMEQ */ 9310 case 0x5c: /* FCMGE */ 9311 case 0x7c: /* FCMGT */ 9312 case 0x7a: /* FABD */ 9313 break; 9314 default: 9315 unallocated_encoding(s); 9316 return; 9317 } 9318 9319 if (!fp_access_check(s)) { 9320 return; 9321 } 9322 9323 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9324 return; 9325 } 9326 9327 switch (opcode) { 9328 case 0x1: /* SQADD, UQADD */ 9329 case 0x5: /* SQSUB, UQSUB */ 9330 case 0x9: /* SQSHL, UQSHL */ 9331 case 0xb: /* SQRSHL, UQRSHL */ 9332 break; 9333 case 0x8: /* SSHL, USHL */ 9334 case 0xa: /* SRSHL, URSHL */ 9335 case 0x6: /* CMGT, CMHI */ 9336 case 0x7: /* CMGE, CMHS */ 9337 case 0x11: /* CMTST, CMEQ */ 9338 case 0x10: /* ADD, SUB (vector) */ 9339 if (size != 3) { 9340 unallocated_encoding(s); 9341 return; 9342 } 9343 break; 9344 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9345 if (size != 1 && size != 2) { 9346 unallocated_encoding(s); 9347 return; 9348 } 9349 break; 9350 default: 9351 unallocated_encoding(s); 9352 return; 9353 } 9354 9355 if (!fp_access_check(s)) { 9356 return; 9357 } 9358 9359 tcg_rd = tcg_temp_new_i64(); 9360 9361 if (size == 3) { 9362 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9363 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9364 9365 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9366 } else { 9367 /* Do a single operation on the lowest element in the vector. 9368 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9369 * no side effects for all these operations. 9370 * OPTME: special-purpose helpers would avoid doing some 9371 * unnecessary work in the helper for the 8 and 16 bit cases. 9372 */ 9373 NeonGenTwoOpEnvFn *genenvfn; 9374 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9375 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9376 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9377 9378 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9379 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9380 9381 switch (opcode) { 9382 case 0x1: /* SQADD, UQADD */ 9383 { 9384 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9385 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9386 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9387 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9388 }; 9389 genenvfn = fns[size][u]; 9390 break; 9391 } 9392 case 0x5: /* SQSUB, UQSUB */ 9393 { 9394 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9395 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9396 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9397 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9398 }; 9399 genenvfn = fns[size][u]; 9400 break; 9401 } 9402 case 0x9: /* SQSHL, UQSHL */ 9403 { 9404 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9405 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9406 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9407 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9408 }; 9409 genenvfn = fns[size][u]; 9410 break; 9411 } 9412 case 0xb: /* SQRSHL, UQRSHL */ 9413 { 9414 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9415 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9416 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9417 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9418 }; 9419 genenvfn = fns[size][u]; 9420 break; 9421 } 9422 case 0x16: /* SQDMULH, SQRDMULH */ 9423 { 9424 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9425 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9426 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9427 }; 9428 assert(size == 1 || size == 2); 9429 genenvfn = fns[size - 1][u]; 9430 break; 9431 } 9432 default: 9433 g_assert_not_reached(); 9434 } 9435 9436 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9437 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9438 } 9439 9440 write_fp_dreg(s, rd, tcg_rd); 9441 } 9442 9443 /* AdvSIMD scalar three same FP16 9444 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9445 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9446 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9447 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9448 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9449 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9450 */ 9451 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9452 uint32_t insn) 9453 { 9454 int rd = extract32(insn, 0, 5); 9455 int rn = extract32(insn, 5, 5); 9456 int opcode = extract32(insn, 11, 3); 9457 int rm = extract32(insn, 16, 5); 9458 bool u = extract32(insn, 29, 1); 9459 bool a = extract32(insn, 23, 1); 9460 int fpopcode = opcode | (a << 3) | (u << 4); 9461 TCGv_ptr fpst; 9462 TCGv_i32 tcg_op1; 9463 TCGv_i32 tcg_op2; 9464 TCGv_i32 tcg_res; 9465 9466 switch (fpopcode) { 9467 case 0x03: /* FMULX */ 9468 case 0x04: /* FCMEQ (reg) */ 9469 case 0x07: /* FRECPS */ 9470 case 0x0f: /* FRSQRTS */ 9471 case 0x14: /* FCMGE (reg) */ 9472 case 0x15: /* FACGE */ 9473 case 0x1a: /* FABD */ 9474 case 0x1c: /* FCMGT (reg) */ 9475 case 0x1d: /* FACGT */ 9476 break; 9477 default: 9478 unallocated_encoding(s); 9479 return; 9480 } 9481 9482 if (!dc_isar_feature(aa64_fp16, s)) { 9483 unallocated_encoding(s); 9484 } 9485 9486 if (!fp_access_check(s)) { 9487 return; 9488 } 9489 9490 fpst = fpstatus_ptr(FPST_FPCR_F16); 9491 9492 tcg_op1 = read_fp_hreg(s, rn); 9493 tcg_op2 = read_fp_hreg(s, rm); 9494 tcg_res = tcg_temp_new_i32(); 9495 9496 switch (fpopcode) { 9497 case 0x03: /* FMULX */ 9498 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9499 break; 9500 case 0x04: /* FCMEQ (reg) */ 9501 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9502 break; 9503 case 0x07: /* FRECPS */ 9504 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9505 break; 9506 case 0x0f: /* FRSQRTS */ 9507 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9508 break; 9509 case 0x14: /* FCMGE (reg) */ 9510 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9511 break; 9512 case 0x15: /* FACGE */ 9513 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9514 break; 9515 case 0x1a: /* FABD */ 9516 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9517 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9518 break; 9519 case 0x1c: /* FCMGT (reg) */ 9520 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9521 break; 9522 case 0x1d: /* FACGT */ 9523 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9524 break; 9525 default: 9526 g_assert_not_reached(); 9527 } 9528 9529 write_fp_sreg(s, rd, tcg_res); 9530 } 9531 9532 /* AdvSIMD scalar three same extra 9533 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9534 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9535 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9536 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9537 */ 9538 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9539 uint32_t insn) 9540 { 9541 int rd = extract32(insn, 0, 5); 9542 int rn = extract32(insn, 5, 5); 9543 int opcode = extract32(insn, 11, 4); 9544 int rm = extract32(insn, 16, 5); 9545 int size = extract32(insn, 22, 2); 9546 bool u = extract32(insn, 29, 1); 9547 TCGv_i32 ele1, ele2, ele3; 9548 TCGv_i64 res; 9549 bool feature; 9550 9551 switch (u * 16 + opcode) { 9552 case 0x10: /* SQRDMLAH (vector) */ 9553 case 0x11: /* SQRDMLSH (vector) */ 9554 if (size != 1 && size != 2) { 9555 unallocated_encoding(s); 9556 return; 9557 } 9558 feature = dc_isar_feature(aa64_rdm, s); 9559 break; 9560 default: 9561 unallocated_encoding(s); 9562 return; 9563 } 9564 if (!feature) { 9565 unallocated_encoding(s); 9566 return; 9567 } 9568 if (!fp_access_check(s)) { 9569 return; 9570 } 9571 9572 /* Do a single operation on the lowest element in the vector. 9573 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9574 * with no side effects for all these operations. 9575 * OPTME: special-purpose helpers would avoid doing some 9576 * unnecessary work in the helper for the 16 bit cases. 9577 */ 9578 ele1 = tcg_temp_new_i32(); 9579 ele2 = tcg_temp_new_i32(); 9580 ele3 = tcg_temp_new_i32(); 9581 9582 read_vec_element_i32(s, ele1, rn, 0, size); 9583 read_vec_element_i32(s, ele2, rm, 0, size); 9584 read_vec_element_i32(s, ele3, rd, 0, size); 9585 9586 switch (opcode) { 9587 case 0x0: /* SQRDMLAH */ 9588 if (size == 1) { 9589 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9590 } else { 9591 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9592 } 9593 break; 9594 case 0x1: /* SQRDMLSH */ 9595 if (size == 1) { 9596 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9597 } else { 9598 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9599 } 9600 break; 9601 default: 9602 g_assert_not_reached(); 9603 } 9604 9605 res = tcg_temp_new_i64(); 9606 tcg_gen_extu_i32_i64(res, ele3); 9607 write_fp_dreg(s, rd, res); 9608 } 9609 9610 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9611 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9612 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9613 { 9614 /* Handle 64->64 opcodes which are shared between the scalar and 9615 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9616 * is valid in either group and also the double-precision fp ops. 9617 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9618 * requires them. 9619 */ 9620 TCGCond cond; 9621 9622 switch (opcode) { 9623 case 0x4: /* CLS, CLZ */ 9624 if (u) { 9625 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9626 } else { 9627 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9628 } 9629 break; 9630 case 0x5: /* NOT */ 9631 /* This opcode is shared with CNT and RBIT but we have earlier 9632 * enforced that size == 3 if and only if this is the NOT insn. 9633 */ 9634 tcg_gen_not_i64(tcg_rd, tcg_rn); 9635 break; 9636 case 0x7: /* SQABS, SQNEG */ 9637 if (u) { 9638 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9639 } else { 9640 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9641 } 9642 break; 9643 case 0xa: /* CMLT */ 9644 /* 64 bit integer comparison against zero, result is 9645 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9646 * subtracting 1. 9647 */ 9648 cond = TCG_COND_LT; 9649 do_cmop: 9650 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9651 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9652 break; 9653 case 0x8: /* CMGT, CMGE */ 9654 cond = u ? TCG_COND_GE : TCG_COND_GT; 9655 goto do_cmop; 9656 case 0x9: /* CMEQ, CMLE */ 9657 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9658 goto do_cmop; 9659 case 0xb: /* ABS, NEG */ 9660 if (u) { 9661 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9662 } else { 9663 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9664 } 9665 break; 9666 case 0x2f: /* FABS */ 9667 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9668 break; 9669 case 0x6f: /* FNEG */ 9670 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9671 break; 9672 case 0x7f: /* FSQRT */ 9673 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9674 break; 9675 case 0x1a: /* FCVTNS */ 9676 case 0x1b: /* FCVTMS */ 9677 case 0x1c: /* FCVTAS */ 9678 case 0x3a: /* FCVTPS */ 9679 case 0x3b: /* FCVTZS */ 9680 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9681 break; 9682 case 0x5a: /* FCVTNU */ 9683 case 0x5b: /* FCVTMU */ 9684 case 0x5c: /* FCVTAU */ 9685 case 0x7a: /* FCVTPU */ 9686 case 0x7b: /* FCVTZU */ 9687 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9688 break; 9689 case 0x18: /* FRINTN */ 9690 case 0x19: /* FRINTM */ 9691 case 0x38: /* FRINTP */ 9692 case 0x39: /* FRINTZ */ 9693 case 0x58: /* FRINTA */ 9694 case 0x79: /* FRINTI */ 9695 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9696 break; 9697 case 0x59: /* FRINTX */ 9698 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9699 break; 9700 case 0x1e: /* FRINT32Z */ 9701 case 0x5e: /* FRINT32X */ 9702 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9703 break; 9704 case 0x1f: /* FRINT64Z */ 9705 case 0x5f: /* FRINT64X */ 9706 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9707 break; 9708 default: 9709 g_assert_not_reached(); 9710 } 9711 } 9712 9713 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9714 bool is_scalar, bool is_u, bool is_q, 9715 int size, int rn, int rd) 9716 { 9717 bool is_double = (size == MO_64); 9718 TCGv_ptr fpst; 9719 9720 if (!fp_access_check(s)) { 9721 return; 9722 } 9723 9724 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9725 9726 if (is_double) { 9727 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9728 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9729 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9730 NeonGenTwoDoubleOpFn *genfn; 9731 bool swap = false; 9732 int pass; 9733 9734 switch (opcode) { 9735 case 0x2e: /* FCMLT (zero) */ 9736 swap = true; 9737 /* fallthrough */ 9738 case 0x2c: /* FCMGT (zero) */ 9739 genfn = gen_helper_neon_cgt_f64; 9740 break; 9741 case 0x2d: /* FCMEQ (zero) */ 9742 genfn = gen_helper_neon_ceq_f64; 9743 break; 9744 case 0x6d: /* FCMLE (zero) */ 9745 swap = true; 9746 /* fall through */ 9747 case 0x6c: /* FCMGE (zero) */ 9748 genfn = gen_helper_neon_cge_f64; 9749 break; 9750 default: 9751 g_assert_not_reached(); 9752 } 9753 9754 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9755 read_vec_element(s, tcg_op, rn, pass, MO_64); 9756 if (swap) { 9757 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9758 } else { 9759 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9760 } 9761 write_vec_element(s, tcg_res, rd, pass, MO_64); 9762 } 9763 9764 clear_vec_high(s, !is_scalar, rd); 9765 } else { 9766 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9767 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9768 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9769 NeonGenTwoSingleOpFn *genfn; 9770 bool swap = false; 9771 int pass, maxpasses; 9772 9773 if (size == MO_16) { 9774 switch (opcode) { 9775 case 0x2e: /* FCMLT (zero) */ 9776 swap = true; 9777 /* fall through */ 9778 case 0x2c: /* FCMGT (zero) */ 9779 genfn = gen_helper_advsimd_cgt_f16; 9780 break; 9781 case 0x2d: /* FCMEQ (zero) */ 9782 genfn = gen_helper_advsimd_ceq_f16; 9783 break; 9784 case 0x6d: /* FCMLE (zero) */ 9785 swap = true; 9786 /* fall through */ 9787 case 0x6c: /* FCMGE (zero) */ 9788 genfn = gen_helper_advsimd_cge_f16; 9789 break; 9790 default: 9791 g_assert_not_reached(); 9792 } 9793 } else { 9794 switch (opcode) { 9795 case 0x2e: /* FCMLT (zero) */ 9796 swap = true; 9797 /* fall through */ 9798 case 0x2c: /* FCMGT (zero) */ 9799 genfn = gen_helper_neon_cgt_f32; 9800 break; 9801 case 0x2d: /* FCMEQ (zero) */ 9802 genfn = gen_helper_neon_ceq_f32; 9803 break; 9804 case 0x6d: /* FCMLE (zero) */ 9805 swap = true; 9806 /* fall through */ 9807 case 0x6c: /* FCMGE (zero) */ 9808 genfn = gen_helper_neon_cge_f32; 9809 break; 9810 default: 9811 g_assert_not_reached(); 9812 } 9813 } 9814 9815 if (is_scalar) { 9816 maxpasses = 1; 9817 } else { 9818 int vector_size = 8 << is_q; 9819 maxpasses = vector_size >> size; 9820 } 9821 9822 for (pass = 0; pass < maxpasses; pass++) { 9823 read_vec_element_i32(s, tcg_op, rn, pass, size); 9824 if (swap) { 9825 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9826 } else { 9827 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9828 } 9829 if (is_scalar) { 9830 write_fp_sreg(s, rd, tcg_res); 9831 } else { 9832 write_vec_element_i32(s, tcg_res, rd, pass, size); 9833 } 9834 } 9835 9836 if (!is_scalar) { 9837 clear_vec_high(s, is_q, rd); 9838 } 9839 } 9840 } 9841 9842 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9843 bool is_scalar, bool is_u, bool is_q, 9844 int size, int rn, int rd) 9845 { 9846 bool is_double = (size == 3); 9847 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9848 9849 if (is_double) { 9850 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9851 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9852 int pass; 9853 9854 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9855 read_vec_element(s, tcg_op, rn, pass, MO_64); 9856 switch (opcode) { 9857 case 0x3d: /* FRECPE */ 9858 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9859 break; 9860 case 0x3f: /* FRECPX */ 9861 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9862 break; 9863 case 0x7d: /* FRSQRTE */ 9864 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9865 break; 9866 default: 9867 g_assert_not_reached(); 9868 } 9869 write_vec_element(s, tcg_res, rd, pass, MO_64); 9870 } 9871 clear_vec_high(s, !is_scalar, rd); 9872 } else { 9873 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9874 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9875 int pass, maxpasses; 9876 9877 if (is_scalar) { 9878 maxpasses = 1; 9879 } else { 9880 maxpasses = is_q ? 4 : 2; 9881 } 9882 9883 for (pass = 0; pass < maxpasses; pass++) { 9884 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9885 9886 switch (opcode) { 9887 case 0x3c: /* URECPE */ 9888 gen_helper_recpe_u32(tcg_res, tcg_op); 9889 break; 9890 case 0x3d: /* FRECPE */ 9891 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9892 break; 9893 case 0x3f: /* FRECPX */ 9894 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9895 break; 9896 case 0x7d: /* FRSQRTE */ 9897 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9898 break; 9899 default: 9900 g_assert_not_reached(); 9901 } 9902 9903 if (is_scalar) { 9904 write_fp_sreg(s, rd, tcg_res); 9905 } else { 9906 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9907 } 9908 } 9909 if (!is_scalar) { 9910 clear_vec_high(s, is_q, rd); 9911 } 9912 } 9913 } 9914 9915 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9916 int opcode, bool u, bool is_q, 9917 int size, int rn, int rd) 9918 { 9919 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9920 * in the source becomes a size element in the destination). 9921 */ 9922 int pass; 9923 TCGv_i32 tcg_res[2]; 9924 int destelt = is_q ? 2 : 0; 9925 int passes = scalar ? 1 : 2; 9926 9927 if (scalar) { 9928 tcg_res[1] = tcg_constant_i32(0); 9929 } 9930 9931 for (pass = 0; pass < passes; pass++) { 9932 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9933 NeonGenNarrowFn *genfn = NULL; 9934 NeonGenNarrowEnvFn *genenvfn = NULL; 9935 9936 if (scalar) { 9937 read_vec_element(s, tcg_op, rn, pass, size + 1); 9938 } else { 9939 read_vec_element(s, tcg_op, rn, pass, MO_64); 9940 } 9941 tcg_res[pass] = tcg_temp_new_i32(); 9942 9943 switch (opcode) { 9944 case 0x12: /* XTN, SQXTUN */ 9945 { 9946 static NeonGenNarrowFn * const xtnfns[3] = { 9947 gen_helper_neon_narrow_u8, 9948 gen_helper_neon_narrow_u16, 9949 tcg_gen_extrl_i64_i32, 9950 }; 9951 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9952 gen_helper_neon_unarrow_sat8, 9953 gen_helper_neon_unarrow_sat16, 9954 gen_helper_neon_unarrow_sat32, 9955 }; 9956 if (u) { 9957 genenvfn = sqxtunfns[size]; 9958 } else { 9959 genfn = xtnfns[size]; 9960 } 9961 break; 9962 } 9963 case 0x14: /* SQXTN, UQXTN */ 9964 { 9965 static NeonGenNarrowEnvFn * const fns[3][2] = { 9966 { gen_helper_neon_narrow_sat_s8, 9967 gen_helper_neon_narrow_sat_u8 }, 9968 { gen_helper_neon_narrow_sat_s16, 9969 gen_helper_neon_narrow_sat_u16 }, 9970 { gen_helper_neon_narrow_sat_s32, 9971 gen_helper_neon_narrow_sat_u32 }, 9972 }; 9973 genenvfn = fns[size][u]; 9974 break; 9975 } 9976 case 0x16: /* FCVTN, FCVTN2 */ 9977 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9978 if (size == 2) { 9979 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9980 } else { 9981 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9982 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9983 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9984 TCGv_i32 ahp = get_ahp_flag(); 9985 9986 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9987 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9988 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9989 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9990 } 9991 break; 9992 case 0x36: /* BFCVTN, BFCVTN2 */ 9993 { 9994 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9995 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9996 } 9997 break; 9998 case 0x56: /* FCVTXN, FCVTXN2 */ 9999 /* 64 bit to 32 bit float conversion 10000 * with von Neumann rounding (round to odd) 10001 */ 10002 assert(size == 2); 10003 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 10004 break; 10005 default: 10006 g_assert_not_reached(); 10007 } 10008 10009 if (genfn) { 10010 genfn(tcg_res[pass], tcg_op); 10011 } else if (genenvfn) { 10012 genenvfn(tcg_res[pass], cpu_env, tcg_op); 10013 } 10014 } 10015 10016 for (pass = 0; pass < 2; pass++) { 10017 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10018 } 10019 clear_vec_high(s, is_q, rd); 10020 } 10021 10022 /* Remaining saturating accumulating ops */ 10023 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10024 bool is_q, int size, int rn, int rd) 10025 { 10026 bool is_double = (size == 3); 10027 10028 if (is_double) { 10029 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10030 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10031 int pass; 10032 10033 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10034 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10035 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10036 10037 if (is_u) { /* USQADD */ 10038 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10039 } else { /* SUQADD */ 10040 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10041 } 10042 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10043 } 10044 clear_vec_high(s, !is_scalar, rd); 10045 } else { 10046 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10047 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10048 int pass, maxpasses; 10049 10050 if (is_scalar) { 10051 maxpasses = 1; 10052 } else { 10053 maxpasses = is_q ? 4 : 2; 10054 } 10055 10056 for (pass = 0; pass < maxpasses; pass++) { 10057 if (is_scalar) { 10058 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10059 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10060 } else { 10061 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10062 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10063 } 10064 10065 if (is_u) { /* USQADD */ 10066 switch (size) { 10067 case 0: 10068 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10069 break; 10070 case 1: 10071 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10072 break; 10073 case 2: 10074 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10075 break; 10076 default: 10077 g_assert_not_reached(); 10078 } 10079 } else { /* SUQADD */ 10080 switch (size) { 10081 case 0: 10082 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10083 break; 10084 case 1: 10085 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10086 break; 10087 case 2: 10088 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10089 break; 10090 default: 10091 g_assert_not_reached(); 10092 } 10093 } 10094 10095 if (is_scalar) { 10096 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10097 } 10098 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10099 } 10100 clear_vec_high(s, is_q, rd); 10101 } 10102 } 10103 10104 /* AdvSIMD scalar two reg misc 10105 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10106 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10107 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10108 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10109 */ 10110 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10111 { 10112 int rd = extract32(insn, 0, 5); 10113 int rn = extract32(insn, 5, 5); 10114 int opcode = extract32(insn, 12, 5); 10115 int size = extract32(insn, 22, 2); 10116 bool u = extract32(insn, 29, 1); 10117 bool is_fcvt = false; 10118 int rmode; 10119 TCGv_i32 tcg_rmode; 10120 TCGv_ptr tcg_fpstatus; 10121 10122 switch (opcode) { 10123 case 0x3: /* USQADD / SUQADD*/ 10124 if (!fp_access_check(s)) { 10125 return; 10126 } 10127 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10128 return; 10129 case 0x7: /* SQABS / SQNEG */ 10130 break; 10131 case 0xa: /* CMLT */ 10132 if (u) { 10133 unallocated_encoding(s); 10134 return; 10135 } 10136 /* fall through */ 10137 case 0x8: /* CMGT, CMGE */ 10138 case 0x9: /* CMEQ, CMLE */ 10139 case 0xb: /* ABS, NEG */ 10140 if (size != 3) { 10141 unallocated_encoding(s); 10142 return; 10143 } 10144 break; 10145 case 0x12: /* SQXTUN */ 10146 if (!u) { 10147 unallocated_encoding(s); 10148 return; 10149 } 10150 /* fall through */ 10151 case 0x14: /* SQXTN, UQXTN */ 10152 if (size == 3) { 10153 unallocated_encoding(s); 10154 return; 10155 } 10156 if (!fp_access_check(s)) { 10157 return; 10158 } 10159 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10160 return; 10161 case 0xc ... 0xf: 10162 case 0x16 ... 0x1d: 10163 case 0x1f: 10164 /* Floating point: U, size[1] and opcode indicate operation; 10165 * size[0] indicates single or double precision. 10166 */ 10167 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10168 size = extract32(size, 0, 1) ? 3 : 2; 10169 switch (opcode) { 10170 case 0x2c: /* FCMGT (zero) */ 10171 case 0x2d: /* FCMEQ (zero) */ 10172 case 0x2e: /* FCMLT (zero) */ 10173 case 0x6c: /* FCMGE (zero) */ 10174 case 0x6d: /* FCMLE (zero) */ 10175 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10176 return; 10177 case 0x1d: /* SCVTF */ 10178 case 0x5d: /* UCVTF */ 10179 { 10180 bool is_signed = (opcode == 0x1d); 10181 if (!fp_access_check(s)) { 10182 return; 10183 } 10184 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10185 return; 10186 } 10187 case 0x3d: /* FRECPE */ 10188 case 0x3f: /* FRECPX */ 10189 case 0x7d: /* FRSQRTE */ 10190 if (!fp_access_check(s)) { 10191 return; 10192 } 10193 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10194 return; 10195 case 0x1a: /* FCVTNS */ 10196 case 0x1b: /* FCVTMS */ 10197 case 0x3a: /* FCVTPS */ 10198 case 0x3b: /* FCVTZS */ 10199 case 0x5a: /* FCVTNU */ 10200 case 0x5b: /* FCVTMU */ 10201 case 0x7a: /* FCVTPU */ 10202 case 0x7b: /* FCVTZU */ 10203 is_fcvt = true; 10204 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10205 break; 10206 case 0x1c: /* FCVTAS */ 10207 case 0x5c: /* FCVTAU */ 10208 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10209 is_fcvt = true; 10210 rmode = FPROUNDING_TIEAWAY; 10211 break; 10212 case 0x56: /* FCVTXN, FCVTXN2 */ 10213 if (size == 2) { 10214 unallocated_encoding(s); 10215 return; 10216 } 10217 if (!fp_access_check(s)) { 10218 return; 10219 } 10220 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10221 return; 10222 default: 10223 unallocated_encoding(s); 10224 return; 10225 } 10226 break; 10227 default: 10228 unallocated_encoding(s); 10229 return; 10230 } 10231 10232 if (!fp_access_check(s)) { 10233 return; 10234 } 10235 10236 if (is_fcvt) { 10237 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10238 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10239 } else { 10240 tcg_fpstatus = NULL; 10241 tcg_rmode = NULL; 10242 } 10243 10244 if (size == 3) { 10245 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10246 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10247 10248 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10249 write_fp_dreg(s, rd, tcg_rd); 10250 } else { 10251 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10252 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10253 10254 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10255 10256 switch (opcode) { 10257 case 0x7: /* SQABS, SQNEG */ 10258 { 10259 NeonGenOneOpEnvFn *genfn; 10260 static NeonGenOneOpEnvFn * const fns[3][2] = { 10261 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10262 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10263 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10264 }; 10265 genfn = fns[size][u]; 10266 genfn(tcg_rd, cpu_env, tcg_rn); 10267 break; 10268 } 10269 case 0x1a: /* FCVTNS */ 10270 case 0x1b: /* FCVTMS */ 10271 case 0x1c: /* FCVTAS */ 10272 case 0x3a: /* FCVTPS */ 10273 case 0x3b: /* FCVTZS */ 10274 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10275 tcg_fpstatus); 10276 break; 10277 case 0x5a: /* FCVTNU */ 10278 case 0x5b: /* FCVTMU */ 10279 case 0x5c: /* FCVTAU */ 10280 case 0x7a: /* FCVTPU */ 10281 case 0x7b: /* FCVTZU */ 10282 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10283 tcg_fpstatus); 10284 break; 10285 default: 10286 g_assert_not_reached(); 10287 } 10288 10289 write_fp_sreg(s, rd, tcg_rd); 10290 } 10291 10292 if (is_fcvt) { 10293 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10294 } 10295 } 10296 10297 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10298 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10299 int immh, int immb, int opcode, int rn, int rd) 10300 { 10301 int size = 32 - clz32(immh) - 1; 10302 int immhb = immh << 3 | immb; 10303 int shift = 2 * (8 << size) - immhb; 10304 GVecGen2iFn *gvec_fn; 10305 10306 if (extract32(immh, 3, 1) && !is_q) { 10307 unallocated_encoding(s); 10308 return; 10309 } 10310 tcg_debug_assert(size <= 3); 10311 10312 if (!fp_access_check(s)) { 10313 return; 10314 } 10315 10316 switch (opcode) { 10317 case 0x02: /* SSRA / USRA (accumulate) */ 10318 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10319 break; 10320 10321 case 0x08: /* SRI */ 10322 gvec_fn = gen_gvec_sri; 10323 break; 10324 10325 case 0x00: /* SSHR / USHR */ 10326 if (is_u) { 10327 if (shift == 8 << size) { 10328 /* Shift count the same size as element size produces zero. */ 10329 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10330 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10331 return; 10332 } 10333 gvec_fn = tcg_gen_gvec_shri; 10334 } else { 10335 /* Shift count the same size as element size produces all sign. */ 10336 if (shift == 8 << size) { 10337 shift -= 1; 10338 } 10339 gvec_fn = tcg_gen_gvec_sari; 10340 } 10341 break; 10342 10343 case 0x04: /* SRSHR / URSHR (rounding) */ 10344 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10345 break; 10346 10347 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10348 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10349 break; 10350 10351 default: 10352 g_assert_not_reached(); 10353 } 10354 10355 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10356 } 10357 10358 /* SHL/SLI - Vector shift left */ 10359 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10360 int immh, int immb, int opcode, int rn, int rd) 10361 { 10362 int size = 32 - clz32(immh) - 1; 10363 int immhb = immh << 3 | immb; 10364 int shift = immhb - (8 << size); 10365 10366 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10367 assert(size >= 0 && size <= 3); 10368 10369 if (extract32(immh, 3, 1) && !is_q) { 10370 unallocated_encoding(s); 10371 return; 10372 } 10373 10374 if (!fp_access_check(s)) { 10375 return; 10376 } 10377 10378 if (insert) { 10379 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10380 } else { 10381 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10382 } 10383 } 10384 10385 /* USHLL/SHLL - Vector shift left with widening */ 10386 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10387 int immh, int immb, int opcode, int rn, int rd) 10388 { 10389 int size = 32 - clz32(immh) - 1; 10390 int immhb = immh << 3 | immb; 10391 int shift = immhb - (8 << size); 10392 int dsize = 64; 10393 int esize = 8 << size; 10394 int elements = dsize/esize; 10395 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10396 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10397 int i; 10398 10399 if (size >= 3) { 10400 unallocated_encoding(s); 10401 return; 10402 } 10403 10404 if (!fp_access_check(s)) { 10405 return; 10406 } 10407 10408 /* For the LL variants the store is larger than the load, 10409 * so if rd == rn we would overwrite parts of our input. 10410 * So load everything right now and use shifts in the main loop. 10411 */ 10412 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10413 10414 for (i = 0; i < elements; i++) { 10415 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10416 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10417 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10418 write_vec_element(s, tcg_rd, rd, i, size + 1); 10419 } 10420 } 10421 10422 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10423 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10424 int immh, int immb, int opcode, int rn, int rd) 10425 { 10426 int immhb = immh << 3 | immb; 10427 int size = 32 - clz32(immh) - 1; 10428 int dsize = 64; 10429 int esize = 8 << size; 10430 int elements = dsize/esize; 10431 int shift = (2 * esize) - immhb; 10432 bool round = extract32(opcode, 0, 1); 10433 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10434 TCGv_i64 tcg_round; 10435 int i; 10436 10437 if (extract32(immh, 3, 1)) { 10438 unallocated_encoding(s); 10439 return; 10440 } 10441 10442 if (!fp_access_check(s)) { 10443 return; 10444 } 10445 10446 tcg_rn = tcg_temp_new_i64(); 10447 tcg_rd = tcg_temp_new_i64(); 10448 tcg_final = tcg_temp_new_i64(); 10449 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10450 10451 if (round) { 10452 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10453 } else { 10454 tcg_round = NULL; 10455 } 10456 10457 for (i = 0; i < elements; i++) { 10458 read_vec_element(s, tcg_rn, rn, i, size+1); 10459 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10460 false, true, size+1, shift); 10461 10462 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10463 } 10464 10465 if (!is_q) { 10466 write_vec_element(s, tcg_final, rd, 0, MO_64); 10467 } else { 10468 write_vec_element(s, tcg_final, rd, 1, MO_64); 10469 } 10470 10471 clear_vec_high(s, is_q, rd); 10472 } 10473 10474 10475 /* AdvSIMD shift by immediate 10476 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10477 * +---+---+---+-------------+------+------+--------+---+------+------+ 10478 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10479 * +---+---+---+-------------+------+------+--------+---+------+------+ 10480 */ 10481 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10482 { 10483 int rd = extract32(insn, 0, 5); 10484 int rn = extract32(insn, 5, 5); 10485 int opcode = extract32(insn, 11, 5); 10486 int immb = extract32(insn, 16, 3); 10487 int immh = extract32(insn, 19, 4); 10488 bool is_u = extract32(insn, 29, 1); 10489 bool is_q = extract32(insn, 30, 1); 10490 10491 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10492 assert(immh != 0); 10493 10494 switch (opcode) { 10495 case 0x08: /* SRI */ 10496 if (!is_u) { 10497 unallocated_encoding(s); 10498 return; 10499 } 10500 /* fall through */ 10501 case 0x00: /* SSHR / USHR */ 10502 case 0x02: /* SSRA / USRA (accumulate) */ 10503 case 0x04: /* SRSHR / URSHR (rounding) */ 10504 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10505 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10506 break; 10507 case 0x0a: /* SHL / SLI */ 10508 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10509 break; 10510 case 0x10: /* SHRN */ 10511 case 0x11: /* RSHRN / SQRSHRUN */ 10512 if (is_u) { 10513 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10514 opcode, rn, rd); 10515 } else { 10516 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10517 } 10518 break; 10519 case 0x12: /* SQSHRN / UQSHRN */ 10520 case 0x13: /* SQRSHRN / UQRSHRN */ 10521 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10522 opcode, rn, rd); 10523 break; 10524 case 0x14: /* SSHLL / USHLL */ 10525 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10526 break; 10527 case 0x1c: /* SCVTF / UCVTF */ 10528 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10529 opcode, rn, rd); 10530 break; 10531 case 0xc: /* SQSHLU */ 10532 if (!is_u) { 10533 unallocated_encoding(s); 10534 return; 10535 } 10536 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10537 break; 10538 case 0xe: /* SQSHL, UQSHL */ 10539 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10540 break; 10541 case 0x1f: /* FCVTZS/ FCVTZU */ 10542 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10543 return; 10544 default: 10545 unallocated_encoding(s); 10546 return; 10547 } 10548 } 10549 10550 /* Generate code to do a "long" addition or subtraction, ie one done in 10551 * TCGv_i64 on vector lanes twice the width specified by size. 10552 */ 10553 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10554 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10555 { 10556 static NeonGenTwo64OpFn * const fns[3][2] = { 10557 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10558 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10559 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10560 }; 10561 NeonGenTwo64OpFn *genfn; 10562 assert(size < 3); 10563 10564 genfn = fns[size][is_sub]; 10565 genfn(tcg_res, tcg_op1, tcg_op2); 10566 } 10567 10568 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10569 int opcode, int rd, int rn, int rm) 10570 { 10571 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10572 TCGv_i64 tcg_res[2]; 10573 int pass, accop; 10574 10575 tcg_res[0] = tcg_temp_new_i64(); 10576 tcg_res[1] = tcg_temp_new_i64(); 10577 10578 /* Does this op do an adding accumulate, a subtracting accumulate, 10579 * or no accumulate at all? 10580 */ 10581 switch (opcode) { 10582 case 5: 10583 case 8: 10584 case 9: 10585 accop = 1; 10586 break; 10587 case 10: 10588 case 11: 10589 accop = -1; 10590 break; 10591 default: 10592 accop = 0; 10593 break; 10594 } 10595 10596 if (accop != 0) { 10597 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10598 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10599 } 10600 10601 /* size == 2 means two 32x32->64 operations; this is worth special 10602 * casing because we can generally handle it inline. 10603 */ 10604 if (size == 2) { 10605 for (pass = 0; pass < 2; pass++) { 10606 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10607 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10608 TCGv_i64 tcg_passres; 10609 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10610 10611 int elt = pass + is_q * 2; 10612 10613 read_vec_element(s, tcg_op1, rn, elt, memop); 10614 read_vec_element(s, tcg_op2, rm, elt, memop); 10615 10616 if (accop == 0) { 10617 tcg_passres = tcg_res[pass]; 10618 } else { 10619 tcg_passres = tcg_temp_new_i64(); 10620 } 10621 10622 switch (opcode) { 10623 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10624 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10625 break; 10626 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10627 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10628 break; 10629 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10630 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10631 { 10632 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10633 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10634 10635 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10636 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10637 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10638 tcg_passres, 10639 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10640 break; 10641 } 10642 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10643 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10644 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10645 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10646 break; 10647 case 9: /* SQDMLAL, SQDMLAL2 */ 10648 case 11: /* SQDMLSL, SQDMLSL2 */ 10649 case 13: /* SQDMULL, SQDMULL2 */ 10650 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10651 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10652 tcg_passres, tcg_passres); 10653 break; 10654 default: 10655 g_assert_not_reached(); 10656 } 10657 10658 if (opcode == 9 || opcode == 11) { 10659 /* saturating accumulate ops */ 10660 if (accop < 0) { 10661 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10662 } 10663 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10664 tcg_res[pass], tcg_passres); 10665 } else if (accop > 0) { 10666 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10667 } else if (accop < 0) { 10668 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10669 } 10670 } 10671 } else { 10672 /* size 0 or 1, generally helper functions */ 10673 for (pass = 0; pass < 2; pass++) { 10674 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10675 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10676 TCGv_i64 tcg_passres; 10677 int elt = pass + is_q * 2; 10678 10679 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10680 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10681 10682 if (accop == 0) { 10683 tcg_passres = tcg_res[pass]; 10684 } else { 10685 tcg_passres = tcg_temp_new_i64(); 10686 } 10687 10688 switch (opcode) { 10689 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10690 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10691 { 10692 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10693 static NeonGenWidenFn * const widenfns[2][2] = { 10694 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10695 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10696 }; 10697 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10698 10699 widenfn(tcg_op2_64, tcg_op2); 10700 widenfn(tcg_passres, tcg_op1); 10701 gen_neon_addl(size, (opcode == 2), tcg_passres, 10702 tcg_passres, tcg_op2_64); 10703 break; 10704 } 10705 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10706 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10707 if (size == 0) { 10708 if (is_u) { 10709 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10710 } else { 10711 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10712 } 10713 } else { 10714 if (is_u) { 10715 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10716 } else { 10717 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10718 } 10719 } 10720 break; 10721 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10722 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10723 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10724 if (size == 0) { 10725 if (is_u) { 10726 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10727 } else { 10728 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10729 } 10730 } else { 10731 if (is_u) { 10732 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10733 } else { 10734 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10735 } 10736 } 10737 break; 10738 case 9: /* SQDMLAL, SQDMLAL2 */ 10739 case 11: /* SQDMLSL, SQDMLSL2 */ 10740 case 13: /* SQDMULL, SQDMULL2 */ 10741 assert(size == 1); 10742 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10743 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10744 tcg_passres, tcg_passres); 10745 break; 10746 default: 10747 g_assert_not_reached(); 10748 } 10749 10750 if (accop != 0) { 10751 if (opcode == 9 || opcode == 11) { 10752 /* saturating accumulate ops */ 10753 if (accop < 0) { 10754 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10755 } 10756 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10757 tcg_res[pass], 10758 tcg_passres); 10759 } else { 10760 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10761 tcg_res[pass], tcg_passres); 10762 } 10763 } 10764 } 10765 } 10766 10767 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10768 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10769 } 10770 10771 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10772 int opcode, int rd, int rn, int rm) 10773 { 10774 TCGv_i64 tcg_res[2]; 10775 int part = is_q ? 2 : 0; 10776 int pass; 10777 10778 for (pass = 0; pass < 2; pass++) { 10779 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10780 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10781 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10782 static NeonGenWidenFn * const widenfns[3][2] = { 10783 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10784 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10785 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10786 }; 10787 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10788 10789 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10790 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10791 widenfn(tcg_op2_wide, tcg_op2); 10792 tcg_res[pass] = tcg_temp_new_i64(); 10793 gen_neon_addl(size, (opcode == 3), 10794 tcg_res[pass], tcg_op1, tcg_op2_wide); 10795 } 10796 10797 for (pass = 0; pass < 2; pass++) { 10798 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10799 } 10800 } 10801 10802 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10803 { 10804 tcg_gen_addi_i64(in, in, 1U << 31); 10805 tcg_gen_extrh_i64_i32(res, in); 10806 } 10807 10808 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10809 int opcode, int rd, int rn, int rm) 10810 { 10811 TCGv_i32 tcg_res[2]; 10812 int part = is_q ? 2 : 0; 10813 int pass; 10814 10815 for (pass = 0; pass < 2; pass++) { 10816 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10817 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10818 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10819 static NeonGenNarrowFn * const narrowfns[3][2] = { 10820 { gen_helper_neon_narrow_high_u8, 10821 gen_helper_neon_narrow_round_high_u8 }, 10822 { gen_helper_neon_narrow_high_u16, 10823 gen_helper_neon_narrow_round_high_u16 }, 10824 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10825 }; 10826 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10827 10828 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10829 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10830 10831 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10832 10833 tcg_res[pass] = tcg_temp_new_i32(); 10834 gennarrow(tcg_res[pass], tcg_wideres); 10835 } 10836 10837 for (pass = 0; pass < 2; pass++) { 10838 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10839 } 10840 clear_vec_high(s, is_q, rd); 10841 } 10842 10843 /* AdvSIMD three different 10844 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10845 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10846 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10847 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10848 */ 10849 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10850 { 10851 /* Instructions in this group fall into three basic classes 10852 * (in each case with the operation working on each element in 10853 * the input vectors): 10854 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10855 * 128 bit input) 10856 * (2) wide 64 x 128 -> 128 10857 * (3) narrowing 128 x 128 -> 64 10858 * Here we do initial decode, catch unallocated cases and 10859 * dispatch to separate functions for each class. 10860 */ 10861 int is_q = extract32(insn, 30, 1); 10862 int is_u = extract32(insn, 29, 1); 10863 int size = extract32(insn, 22, 2); 10864 int opcode = extract32(insn, 12, 4); 10865 int rm = extract32(insn, 16, 5); 10866 int rn = extract32(insn, 5, 5); 10867 int rd = extract32(insn, 0, 5); 10868 10869 switch (opcode) { 10870 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10871 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10872 /* 64 x 128 -> 128 */ 10873 if (size == 3) { 10874 unallocated_encoding(s); 10875 return; 10876 } 10877 if (!fp_access_check(s)) { 10878 return; 10879 } 10880 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10881 break; 10882 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10883 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10884 /* 128 x 128 -> 64 */ 10885 if (size == 3) { 10886 unallocated_encoding(s); 10887 return; 10888 } 10889 if (!fp_access_check(s)) { 10890 return; 10891 } 10892 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10893 break; 10894 case 14: /* PMULL, PMULL2 */ 10895 if (is_u) { 10896 unallocated_encoding(s); 10897 return; 10898 } 10899 switch (size) { 10900 case 0: /* PMULL.P8 */ 10901 if (!fp_access_check(s)) { 10902 return; 10903 } 10904 /* The Q field specifies lo/hi half input for this insn. */ 10905 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10906 gen_helper_neon_pmull_h); 10907 break; 10908 10909 case 3: /* PMULL.P64 */ 10910 if (!dc_isar_feature(aa64_pmull, s)) { 10911 unallocated_encoding(s); 10912 return; 10913 } 10914 if (!fp_access_check(s)) { 10915 return; 10916 } 10917 /* The Q field specifies lo/hi half input for this insn. */ 10918 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10919 gen_helper_gvec_pmull_q); 10920 break; 10921 10922 default: 10923 unallocated_encoding(s); 10924 break; 10925 } 10926 return; 10927 case 9: /* SQDMLAL, SQDMLAL2 */ 10928 case 11: /* SQDMLSL, SQDMLSL2 */ 10929 case 13: /* SQDMULL, SQDMULL2 */ 10930 if (is_u || size == 0) { 10931 unallocated_encoding(s); 10932 return; 10933 } 10934 /* fall through */ 10935 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10936 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10937 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10938 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10939 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10940 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10941 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10942 /* 64 x 64 -> 128 */ 10943 if (size == 3) { 10944 unallocated_encoding(s); 10945 return; 10946 } 10947 if (!fp_access_check(s)) { 10948 return; 10949 } 10950 10951 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10952 break; 10953 default: 10954 /* opcode 15 not allocated */ 10955 unallocated_encoding(s); 10956 break; 10957 } 10958 } 10959 10960 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10961 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10962 { 10963 int rd = extract32(insn, 0, 5); 10964 int rn = extract32(insn, 5, 5); 10965 int rm = extract32(insn, 16, 5); 10966 int size = extract32(insn, 22, 2); 10967 bool is_u = extract32(insn, 29, 1); 10968 bool is_q = extract32(insn, 30, 1); 10969 10970 if (!fp_access_check(s)) { 10971 return; 10972 } 10973 10974 switch (size + 4 * is_u) { 10975 case 0: /* AND */ 10976 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10977 return; 10978 case 1: /* BIC */ 10979 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10980 return; 10981 case 2: /* ORR */ 10982 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10983 return; 10984 case 3: /* ORN */ 10985 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10986 return; 10987 case 4: /* EOR */ 10988 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10989 return; 10990 10991 case 5: /* BSL bitwise select */ 10992 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10993 return; 10994 case 6: /* BIT, bitwise insert if true */ 10995 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10996 return; 10997 case 7: /* BIF, bitwise insert if false */ 10998 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10999 return; 11000 11001 default: 11002 g_assert_not_reached(); 11003 } 11004 } 11005 11006 /* Pairwise op subgroup of C3.6.16. 11007 * 11008 * This is called directly or via the handle_3same_float for float pairwise 11009 * operations where the opcode and size are calculated differently. 11010 */ 11011 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11012 int size, int rn, int rm, int rd) 11013 { 11014 TCGv_ptr fpst; 11015 int pass; 11016 11017 /* Floating point operations need fpst */ 11018 if (opcode >= 0x58) { 11019 fpst = fpstatus_ptr(FPST_FPCR); 11020 } else { 11021 fpst = NULL; 11022 } 11023 11024 if (!fp_access_check(s)) { 11025 return; 11026 } 11027 11028 /* These operations work on the concatenated rm:rn, with each pair of 11029 * adjacent elements being operated on to produce an element in the result. 11030 */ 11031 if (size == 3) { 11032 TCGv_i64 tcg_res[2]; 11033 11034 for (pass = 0; pass < 2; pass++) { 11035 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11036 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11037 int passreg = (pass == 0) ? rn : rm; 11038 11039 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11040 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11041 tcg_res[pass] = tcg_temp_new_i64(); 11042 11043 switch (opcode) { 11044 case 0x17: /* ADDP */ 11045 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11046 break; 11047 case 0x58: /* FMAXNMP */ 11048 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11049 break; 11050 case 0x5a: /* FADDP */ 11051 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11052 break; 11053 case 0x5e: /* FMAXP */ 11054 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11055 break; 11056 case 0x78: /* FMINNMP */ 11057 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11058 break; 11059 case 0x7e: /* FMINP */ 11060 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11061 break; 11062 default: 11063 g_assert_not_reached(); 11064 } 11065 } 11066 11067 for (pass = 0; pass < 2; pass++) { 11068 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11069 } 11070 } else { 11071 int maxpass = is_q ? 4 : 2; 11072 TCGv_i32 tcg_res[4]; 11073 11074 for (pass = 0; pass < maxpass; pass++) { 11075 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11076 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11077 NeonGenTwoOpFn *genfn = NULL; 11078 int passreg = pass < (maxpass / 2) ? rn : rm; 11079 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11080 11081 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11082 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11083 tcg_res[pass] = tcg_temp_new_i32(); 11084 11085 switch (opcode) { 11086 case 0x17: /* ADDP */ 11087 { 11088 static NeonGenTwoOpFn * const fns[3] = { 11089 gen_helper_neon_padd_u8, 11090 gen_helper_neon_padd_u16, 11091 tcg_gen_add_i32, 11092 }; 11093 genfn = fns[size]; 11094 break; 11095 } 11096 case 0x14: /* SMAXP, UMAXP */ 11097 { 11098 static NeonGenTwoOpFn * const fns[3][2] = { 11099 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11100 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11101 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11102 }; 11103 genfn = fns[size][u]; 11104 break; 11105 } 11106 case 0x15: /* SMINP, UMINP */ 11107 { 11108 static NeonGenTwoOpFn * const fns[3][2] = { 11109 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11110 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11111 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11112 }; 11113 genfn = fns[size][u]; 11114 break; 11115 } 11116 /* The FP operations are all on single floats (32 bit) */ 11117 case 0x58: /* FMAXNMP */ 11118 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11119 break; 11120 case 0x5a: /* FADDP */ 11121 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11122 break; 11123 case 0x5e: /* FMAXP */ 11124 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11125 break; 11126 case 0x78: /* FMINNMP */ 11127 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11128 break; 11129 case 0x7e: /* FMINP */ 11130 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11131 break; 11132 default: 11133 g_assert_not_reached(); 11134 } 11135 11136 /* FP ops called directly, otherwise call now */ 11137 if (genfn) { 11138 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11139 } 11140 } 11141 11142 for (pass = 0; pass < maxpass; pass++) { 11143 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11144 } 11145 clear_vec_high(s, is_q, rd); 11146 } 11147 } 11148 11149 /* Floating point op subgroup of C3.6.16. */ 11150 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11151 { 11152 /* For floating point ops, the U, size[1] and opcode bits 11153 * together indicate the operation. size[0] indicates single 11154 * or double. 11155 */ 11156 int fpopcode = extract32(insn, 11, 5) 11157 | (extract32(insn, 23, 1) << 5) 11158 | (extract32(insn, 29, 1) << 6); 11159 int is_q = extract32(insn, 30, 1); 11160 int size = extract32(insn, 22, 1); 11161 int rm = extract32(insn, 16, 5); 11162 int rn = extract32(insn, 5, 5); 11163 int rd = extract32(insn, 0, 5); 11164 11165 int datasize = is_q ? 128 : 64; 11166 int esize = 32 << size; 11167 int elements = datasize / esize; 11168 11169 if (size == 1 && !is_q) { 11170 unallocated_encoding(s); 11171 return; 11172 } 11173 11174 switch (fpopcode) { 11175 case 0x58: /* FMAXNMP */ 11176 case 0x5a: /* FADDP */ 11177 case 0x5e: /* FMAXP */ 11178 case 0x78: /* FMINNMP */ 11179 case 0x7e: /* FMINP */ 11180 if (size && !is_q) { 11181 unallocated_encoding(s); 11182 return; 11183 } 11184 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11185 rn, rm, rd); 11186 return; 11187 case 0x1b: /* FMULX */ 11188 case 0x1f: /* FRECPS */ 11189 case 0x3f: /* FRSQRTS */ 11190 case 0x5d: /* FACGE */ 11191 case 0x7d: /* FACGT */ 11192 case 0x19: /* FMLA */ 11193 case 0x39: /* FMLS */ 11194 case 0x18: /* FMAXNM */ 11195 case 0x1a: /* FADD */ 11196 case 0x1c: /* FCMEQ */ 11197 case 0x1e: /* FMAX */ 11198 case 0x38: /* FMINNM */ 11199 case 0x3a: /* FSUB */ 11200 case 0x3e: /* FMIN */ 11201 case 0x5b: /* FMUL */ 11202 case 0x5c: /* FCMGE */ 11203 case 0x5f: /* FDIV */ 11204 case 0x7a: /* FABD */ 11205 case 0x7c: /* FCMGT */ 11206 if (!fp_access_check(s)) { 11207 return; 11208 } 11209 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11210 return; 11211 11212 case 0x1d: /* FMLAL */ 11213 case 0x3d: /* FMLSL */ 11214 case 0x59: /* FMLAL2 */ 11215 case 0x79: /* FMLSL2 */ 11216 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11217 unallocated_encoding(s); 11218 return; 11219 } 11220 if (fp_access_check(s)) { 11221 int is_s = extract32(insn, 23, 1); 11222 int is_2 = extract32(insn, 29, 1); 11223 int data = (is_2 << 1) | is_s; 11224 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11225 vec_full_reg_offset(s, rn), 11226 vec_full_reg_offset(s, rm), cpu_env, 11227 is_q ? 16 : 8, vec_full_reg_size(s), 11228 data, gen_helper_gvec_fmlal_a64); 11229 } 11230 return; 11231 11232 default: 11233 unallocated_encoding(s); 11234 return; 11235 } 11236 } 11237 11238 /* Integer op subgroup of C3.6.16. */ 11239 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11240 { 11241 int is_q = extract32(insn, 30, 1); 11242 int u = extract32(insn, 29, 1); 11243 int size = extract32(insn, 22, 2); 11244 int opcode = extract32(insn, 11, 5); 11245 int rm = extract32(insn, 16, 5); 11246 int rn = extract32(insn, 5, 5); 11247 int rd = extract32(insn, 0, 5); 11248 int pass; 11249 TCGCond cond; 11250 11251 switch (opcode) { 11252 case 0x13: /* MUL, PMUL */ 11253 if (u && size != 0) { 11254 unallocated_encoding(s); 11255 return; 11256 } 11257 /* fall through */ 11258 case 0x0: /* SHADD, UHADD */ 11259 case 0x2: /* SRHADD, URHADD */ 11260 case 0x4: /* SHSUB, UHSUB */ 11261 case 0xc: /* SMAX, UMAX */ 11262 case 0xd: /* SMIN, UMIN */ 11263 case 0xe: /* SABD, UABD */ 11264 case 0xf: /* SABA, UABA */ 11265 case 0x12: /* MLA, MLS */ 11266 if (size == 3) { 11267 unallocated_encoding(s); 11268 return; 11269 } 11270 break; 11271 case 0x16: /* SQDMULH, SQRDMULH */ 11272 if (size == 0 || size == 3) { 11273 unallocated_encoding(s); 11274 return; 11275 } 11276 break; 11277 default: 11278 if (size == 3 && !is_q) { 11279 unallocated_encoding(s); 11280 return; 11281 } 11282 break; 11283 } 11284 11285 if (!fp_access_check(s)) { 11286 return; 11287 } 11288 11289 switch (opcode) { 11290 case 0x01: /* SQADD, UQADD */ 11291 if (u) { 11292 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11293 } else { 11294 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11295 } 11296 return; 11297 case 0x05: /* SQSUB, UQSUB */ 11298 if (u) { 11299 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11300 } else { 11301 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11302 } 11303 return; 11304 case 0x08: /* SSHL, USHL */ 11305 if (u) { 11306 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11307 } else { 11308 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11309 } 11310 return; 11311 case 0x0c: /* SMAX, UMAX */ 11312 if (u) { 11313 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11314 } else { 11315 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11316 } 11317 return; 11318 case 0x0d: /* SMIN, UMIN */ 11319 if (u) { 11320 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11321 } else { 11322 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11323 } 11324 return; 11325 case 0xe: /* SABD, UABD */ 11326 if (u) { 11327 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11328 } else { 11329 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11330 } 11331 return; 11332 case 0xf: /* SABA, UABA */ 11333 if (u) { 11334 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11335 } else { 11336 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11337 } 11338 return; 11339 case 0x10: /* ADD, SUB */ 11340 if (u) { 11341 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11342 } else { 11343 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11344 } 11345 return; 11346 case 0x13: /* MUL, PMUL */ 11347 if (!u) { /* MUL */ 11348 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11349 } else { /* PMUL */ 11350 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11351 } 11352 return; 11353 case 0x12: /* MLA, MLS */ 11354 if (u) { 11355 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11356 } else { 11357 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11358 } 11359 return; 11360 case 0x16: /* SQDMULH, SQRDMULH */ 11361 { 11362 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11363 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11364 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11365 }; 11366 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11367 } 11368 return; 11369 case 0x11: 11370 if (!u) { /* CMTST */ 11371 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11372 return; 11373 } 11374 /* else CMEQ */ 11375 cond = TCG_COND_EQ; 11376 goto do_gvec_cmp; 11377 case 0x06: /* CMGT, CMHI */ 11378 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11379 goto do_gvec_cmp; 11380 case 0x07: /* CMGE, CMHS */ 11381 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11382 do_gvec_cmp: 11383 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11384 vec_full_reg_offset(s, rn), 11385 vec_full_reg_offset(s, rm), 11386 is_q ? 16 : 8, vec_full_reg_size(s)); 11387 return; 11388 } 11389 11390 if (size == 3) { 11391 assert(is_q); 11392 for (pass = 0; pass < 2; pass++) { 11393 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11394 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11395 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11396 11397 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11398 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11399 11400 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11401 11402 write_vec_element(s, tcg_res, rd, pass, MO_64); 11403 } 11404 } else { 11405 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11406 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11407 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11408 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11409 NeonGenTwoOpFn *genfn = NULL; 11410 NeonGenTwoOpEnvFn *genenvfn = NULL; 11411 11412 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11413 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11414 11415 switch (opcode) { 11416 case 0x0: /* SHADD, UHADD */ 11417 { 11418 static NeonGenTwoOpFn * const fns[3][2] = { 11419 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11420 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11421 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11422 }; 11423 genfn = fns[size][u]; 11424 break; 11425 } 11426 case 0x2: /* SRHADD, URHADD */ 11427 { 11428 static NeonGenTwoOpFn * const fns[3][2] = { 11429 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11430 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11431 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11432 }; 11433 genfn = fns[size][u]; 11434 break; 11435 } 11436 case 0x4: /* SHSUB, UHSUB */ 11437 { 11438 static NeonGenTwoOpFn * const fns[3][2] = { 11439 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11440 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11441 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11442 }; 11443 genfn = fns[size][u]; 11444 break; 11445 } 11446 case 0x9: /* SQSHL, UQSHL */ 11447 { 11448 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11449 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11450 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11451 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11452 }; 11453 genenvfn = fns[size][u]; 11454 break; 11455 } 11456 case 0xa: /* SRSHL, URSHL */ 11457 { 11458 static NeonGenTwoOpFn * const fns[3][2] = { 11459 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11460 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11461 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11462 }; 11463 genfn = fns[size][u]; 11464 break; 11465 } 11466 case 0xb: /* SQRSHL, UQRSHL */ 11467 { 11468 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11469 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11470 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11471 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11472 }; 11473 genenvfn = fns[size][u]; 11474 break; 11475 } 11476 default: 11477 g_assert_not_reached(); 11478 } 11479 11480 if (genenvfn) { 11481 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11482 } else { 11483 genfn(tcg_res, tcg_op1, tcg_op2); 11484 } 11485 11486 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11487 } 11488 } 11489 clear_vec_high(s, is_q, rd); 11490 } 11491 11492 /* AdvSIMD three same 11493 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11494 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11495 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11496 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11497 */ 11498 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11499 { 11500 int opcode = extract32(insn, 11, 5); 11501 11502 switch (opcode) { 11503 case 0x3: /* logic ops */ 11504 disas_simd_3same_logic(s, insn); 11505 break; 11506 case 0x17: /* ADDP */ 11507 case 0x14: /* SMAXP, UMAXP */ 11508 case 0x15: /* SMINP, UMINP */ 11509 { 11510 /* Pairwise operations */ 11511 int is_q = extract32(insn, 30, 1); 11512 int u = extract32(insn, 29, 1); 11513 int size = extract32(insn, 22, 2); 11514 int rm = extract32(insn, 16, 5); 11515 int rn = extract32(insn, 5, 5); 11516 int rd = extract32(insn, 0, 5); 11517 if (opcode == 0x17) { 11518 if (u || (size == 3 && !is_q)) { 11519 unallocated_encoding(s); 11520 return; 11521 } 11522 } else { 11523 if (size == 3) { 11524 unallocated_encoding(s); 11525 return; 11526 } 11527 } 11528 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11529 break; 11530 } 11531 case 0x18 ... 0x31: 11532 /* floating point ops, sz[1] and U are part of opcode */ 11533 disas_simd_3same_float(s, insn); 11534 break; 11535 default: 11536 disas_simd_3same_int(s, insn); 11537 break; 11538 } 11539 } 11540 11541 /* 11542 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11543 * 11544 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11545 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11546 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11547 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11548 * 11549 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11550 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11551 * 11552 */ 11553 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11554 { 11555 int opcode = extract32(insn, 11, 3); 11556 int u = extract32(insn, 29, 1); 11557 int a = extract32(insn, 23, 1); 11558 int is_q = extract32(insn, 30, 1); 11559 int rm = extract32(insn, 16, 5); 11560 int rn = extract32(insn, 5, 5); 11561 int rd = extract32(insn, 0, 5); 11562 /* 11563 * For these floating point ops, the U, a and opcode bits 11564 * together indicate the operation. 11565 */ 11566 int fpopcode = opcode | (a << 3) | (u << 4); 11567 int datasize = is_q ? 128 : 64; 11568 int elements = datasize / 16; 11569 bool pairwise; 11570 TCGv_ptr fpst; 11571 int pass; 11572 11573 switch (fpopcode) { 11574 case 0x0: /* FMAXNM */ 11575 case 0x1: /* FMLA */ 11576 case 0x2: /* FADD */ 11577 case 0x3: /* FMULX */ 11578 case 0x4: /* FCMEQ */ 11579 case 0x6: /* FMAX */ 11580 case 0x7: /* FRECPS */ 11581 case 0x8: /* FMINNM */ 11582 case 0x9: /* FMLS */ 11583 case 0xa: /* FSUB */ 11584 case 0xe: /* FMIN */ 11585 case 0xf: /* FRSQRTS */ 11586 case 0x13: /* FMUL */ 11587 case 0x14: /* FCMGE */ 11588 case 0x15: /* FACGE */ 11589 case 0x17: /* FDIV */ 11590 case 0x1a: /* FABD */ 11591 case 0x1c: /* FCMGT */ 11592 case 0x1d: /* FACGT */ 11593 pairwise = false; 11594 break; 11595 case 0x10: /* FMAXNMP */ 11596 case 0x12: /* FADDP */ 11597 case 0x16: /* FMAXP */ 11598 case 0x18: /* FMINNMP */ 11599 case 0x1e: /* FMINP */ 11600 pairwise = true; 11601 break; 11602 default: 11603 unallocated_encoding(s); 11604 return; 11605 } 11606 11607 if (!dc_isar_feature(aa64_fp16, s)) { 11608 unallocated_encoding(s); 11609 return; 11610 } 11611 11612 if (!fp_access_check(s)) { 11613 return; 11614 } 11615 11616 fpst = fpstatus_ptr(FPST_FPCR_F16); 11617 11618 if (pairwise) { 11619 int maxpass = is_q ? 8 : 4; 11620 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11621 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11622 TCGv_i32 tcg_res[8]; 11623 11624 for (pass = 0; pass < maxpass; pass++) { 11625 int passreg = pass < (maxpass / 2) ? rn : rm; 11626 int passelt = (pass << 1) & (maxpass - 1); 11627 11628 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11629 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11630 tcg_res[pass] = tcg_temp_new_i32(); 11631 11632 switch (fpopcode) { 11633 case 0x10: /* FMAXNMP */ 11634 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11635 fpst); 11636 break; 11637 case 0x12: /* FADDP */ 11638 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11639 break; 11640 case 0x16: /* FMAXP */ 11641 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11642 break; 11643 case 0x18: /* FMINNMP */ 11644 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11645 fpst); 11646 break; 11647 case 0x1e: /* FMINP */ 11648 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11649 break; 11650 default: 11651 g_assert_not_reached(); 11652 } 11653 } 11654 11655 for (pass = 0; pass < maxpass; pass++) { 11656 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11657 } 11658 } else { 11659 for (pass = 0; pass < elements; pass++) { 11660 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11661 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11662 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11663 11664 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11665 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11666 11667 switch (fpopcode) { 11668 case 0x0: /* FMAXNM */ 11669 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11670 break; 11671 case 0x1: /* FMLA */ 11672 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11673 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11674 fpst); 11675 break; 11676 case 0x2: /* FADD */ 11677 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11678 break; 11679 case 0x3: /* FMULX */ 11680 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11681 break; 11682 case 0x4: /* FCMEQ */ 11683 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11684 break; 11685 case 0x6: /* FMAX */ 11686 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11687 break; 11688 case 0x7: /* FRECPS */ 11689 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11690 break; 11691 case 0x8: /* FMINNM */ 11692 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11693 break; 11694 case 0x9: /* FMLS */ 11695 /* As usual for ARM, separate negation for fused multiply-add */ 11696 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11697 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11698 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11699 fpst); 11700 break; 11701 case 0xa: /* FSUB */ 11702 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11703 break; 11704 case 0xe: /* FMIN */ 11705 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11706 break; 11707 case 0xf: /* FRSQRTS */ 11708 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11709 break; 11710 case 0x13: /* FMUL */ 11711 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11712 break; 11713 case 0x14: /* FCMGE */ 11714 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11715 break; 11716 case 0x15: /* FACGE */ 11717 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11718 break; 11719 case 0x17: /* FDIV */ 11720 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11721 break; 11722 case 0x1a: /* FABD */ 11723 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11724 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11725 break; 11726 case 0x1c: /* FCMGT */ 11727 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11728 break; 11729 case 0x1d: /* FACGT */ 11730 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11731 break; 11732 default: 11733 g_assert_not_reached(); 11734 } 11735 11736 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11737 } 11738 } 11739 11740 clear_vec_high(s, is_q, rd); 11741 } 11742 11743 /* AdvSIMD three same extra 11744 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11745 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11746 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11747 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11748 */ 11749 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11750 { 11751 int rd = extract32(insn, 0, 5); 11752 int rn = extract32(insn, 5, 5); 11753 int opcode = extract32(insn, 11, 4); 11754 int rm = extract32(insn, 16, 5); 11755 int size = extract32(insn, 22, 2); 11756 bool u = extract32(insn, 29, 1); 11757 bool is_q = extract32(insn, 30, 1); 11758 bool feature; 11759 int rot; 11760 11761 switch (u * 16 + opcode) { 11762 case 0x10: /* SQRDMLAH (vector) */ 11763 case 0x11: /* SQRDMLSH (vector) */ 11764 if (size != 1 && size != 2) { 11765 unallocated_encoding(s); 11766 return; 11767 } 11768 feature = dc_isar_feature(aa64_rdm, s); 11769 break; 11770 case 0x02: /* SDOT (vector) */ 11771 case 0x12: /* UDOT (vector) */ 11772 if (size != MO_32) { 11773 unallocated_encoding(s); 11774 return; 11775 } 11776 feature = dc_isar_feature(aa64_dp, s); 11777 break; 11778 case 0x03: /* USDOT */ 11779 if (size != MO_32) { 11780 unallocated_encoding(s); 11781 return; 11782 } 11783 feature = dc_isar_feature(aa64_i8mm, s); 11784 break; 11785 case 0x04: /* SMMLA */ 11786 case 0x14: /* UMMLA */ 11787 case 0x05: /* USMMLA */ 11788 if (!is_q || size != MO_32) { 11789 unallocated_encoding(s); 11790 return; 11791 } 11792 feature = dc_isar_feature(aa64_i8mm, s); 11793 break; 11794 case 0x18: /* FCMLA, #0 */ 11795 case 0x19: /* FCMLA, #90 */ 11796 case 0x1a: /* FCMLA, #180 */ 11797 case 0x1b: /* FCMLA, #270 */ 11798 case 0x1c: /* FCADD, #90 */ 11799 case 0x1e: /* FCADD, #270 */ 11800 if (size == 0 11801 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11802 || (size == 3 && !is_q)) { 11803 unallocated_encoding(s); 11804 return; 11805 } 11806 feature = dc_isar_feature(aa64_fcma, s); 11807 break; 11808 case 0x1d: /* BFMMLA */ 11809 if (size != MO_16 || !is_q) { 11810 unallocated_encoding(s); 11811 return; 11812 } 11813 feature = dc_isar_feature(aa64_bf16, s); 11814 break; 11815 case 0x1f: 11816 switch (size) { 11817 case 1: /* BFDOT */ 11818 case 3: /* BFMLAL{B,T} */ 11819 feature = dc_isar_feature(aa64_bf16, s); 11820 break; 11821 default: 11822 unallocated_encoding(s); 11823 return; 11824 } 11825 break; 11826 default: 11827 unallocated_encoding(s); 11828 return; 11829 } 11830 if (!feature) { 11831 unallocated_encoding(s); 11832 return; 11833 } 11834 if (!fp_access_check(s)) { 11835 return; 11836 } 11837 11838 switch (opcode) { 11839 case 0x0: /* SQRDMLAH (vector) */ 11840 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11841 return; 11842 11843 case 0x1: /* SQRDMLSH (vector) */ 11844 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11845 return; 11846 11847 case 0x2: /* SDOT / UDOT */ 11848 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11849 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11850 return; 11851 11852 case 0x3: /* USDOT */ 11853 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11854 return; 11855 11856 case 0x04: /* SMMLA, UMMLA */ 11857 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11858 u ? gen_helper_gvec_ummla_b 11859 : gen_helper_gvec_smmla_b); 11860 return; 11861 case 0x05: /* USMMLA */ 11862 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11863 return; 11864 11865 case 0x8: /* FCMLA, #0 */ 11866 case 0x9: /* FCMLA, #90 */ 11867 case 0xa: /* FCMLA, #180 */ 11868 case 0xb: /* FCMLA, #270 */ 11869 rot = extract32(opcode, 0, 2); 11870 switch (size) { 11871 case 1: 11872 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11873 gen_helper_gvec_fcmlah); 11874 break; 11875 case 2: 11876 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11877 gen_helper_gvec_fcmlas); 11878 break; 11879 case 3: 11880 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11881 gen_helper_gvec_fcmlad); 11882 break; 11883 default: 11884 g_assert_not_reached(); 11885 } 11886 return; 11887 11888 case 0xc: /* FCADD, #90 */ 11889 case 0xe: /* FCADD, #270 */ 11890 rot = extract32(opcode, 1, 1); 11891 switch (size) { 11892 case 1: 11893 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11894 gen_helper_gvec_fcaddh); 11895 break; 11896 case 2: 11897 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11898 gen_helper_gvec_fcadds); 11899 break; 11900 case 3: 11901 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11902 gen_helper_gvec_fcaddd); 11903 break; 11904 default: 11905 g_assert_not_reached(); 11906 } 11907 return; 11908 11909 case 0xd: /* BFMMLA */ 11910 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11911 return; 11912 case 0xf: 11913 switch (size) { 11914 case 1: /* BFDOT */ 11915 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11916 break; 11917 case 3: /* BFMLAL{B,T} */ 11918 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11919 gen_helper_gvec_bfmlal); 11920 break; 11921 default: 11922 g_assert_not_reached(); 11923 } 11924 return; 11925 11926 default: 11927 g_assert_not_reached(); 11928 } 11929 } 11930 11931 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11932 int size, int rn, int rd) 11933 { 11934 /* Handle 2-reg-misc ops which are widening (so each size element 11935 * in the source becomes a 2*size element in the destination. 11936 * The only instruction like this is FCVTL. 11937 */ 11938 int pass; 11939 11940 if (size == 3) { 11941 /* 32 -> 64 bit fp conversion */ 11942 TCGv_i64 tcg_res[2]; 11943 int srcelt = is_q ? 2 : 0; 11944 11945 for (pass = 0; pass < 2; pass++) { 11946 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11947 tcg_res[pass] = tcg_temp_new_i64(); 11948 11949 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11950 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11951 } 11952 for (pass = 0; pass < 2; pass++) { 11953 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11954 } 11955 } else { 11956 /* 16 -> 32 bit fp conversion */ 11957 int srcelt = is_q ? 4 : 0; 11958 TCGv_i32 tcg_res[4]; 11959 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11960 TCGv_i32 ahp = get_ahp_flag(); 11961 11962 for (pass = 0; pass < 4; pass++) { 11963 tcg_res[pass] = tcg_temp_new_i32(); 11964 11965 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11966 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11967 fpst, ahp); 11968 } 11969 for (pass = 0; pass < 4; pass++) { 11970 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11971 } 11972 } 11973 } 11974 11975 static void handle_rev(DisasContext *s, int opcode, bool u, 11976 bool is_q, int size, int rn, int rd) 11977 { 11978 int op = (opcode << 1) | u; 11979 int opsz = op + size; 11980 int grp_size = 3 - opsz; 11981 int dsize = is_q ? 128 : 64; 11982 int i; 11983 11984 if (opsz >= 3) { 11985 unallocated_encoding(s); 11986 return; 11987 } 11988 11989 if (!fp_access_check(s)) { 11990 return; 11991 } 11992 11993 if (size == 0) { 11994 /* Special case bytes, use bswap op on each group of elements */ 11995 int groups = dsize / (8 << grp_size); 11996 11997 for (i = 0; i < groups; i++) { 11998 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11999 12000 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12001 switch (grp_size) { 12002 case MO_16: 12003 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12004 break; 12005 case MO_32: 12006 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12007 break; 12008 case MO_64: 12009 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12010 break; 12011 default: 12012 g_assert_not_reached(); 12013 } 12014 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12015 } 12016 clear_vec_high(s, is_q, rd); 12017 } else { 12018 int revmask = (1 << grp_size) - 1; 12019 int esize = 8 << size; 12020 int elements = dsize / esize; 12021 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12022 TCGv_i64 tcg_rd[2]; 12023 12024 for (i = 0; i < 2; i++) { 12025 tcg_rd[i] = tcg_temp_new_i64(); 12026 tcg_gen_movi_i64(tcg_rd[i], 0); 12027 } 12028 12029 for (i = 0; i < elements; i++) { 12030 int e_rev = (i & 0xf) ^ revmask; 12031 int w = (e_rev * esize) / 64; 12032 int o = (e_rev * esize) % 64; 12033 12034 read_vec_element(s, tcg_rn, rn, i, size); 12035 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12036 } 12037 12038 for (i = 0; i < 2; i++) { 12039 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12040 } 12041 clear_vec_high(s, true, rd); 12042 } 12043 } 12044 12045 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12046 bool is_q, int size, int rn, int rd) 12047 { 12048 /* Implement the pairwise operations from 2-misc: 12049 * SADDLP, UADDLP, SADALP, UADALP. 12050 * These all add pairs of elements in the input to produce a 12051 * double-width result element in the output (possibly accumulating). 12052 */ 12053 bool accum = (opcode == 0x6); 12054 int maxpass = is_q ? 2 : 1; 12055 int pass; 12056 TCGv_i64 tcg_res[2]; 12057 12058 if (size == 2) { 12059 /* 32 + 32 -> 64 op */ 12060 MemOp memop = size + (u ? 0 : MO_SIGN); 12061 12062 for (pass = 0; pass < maxpass; pass++) { 12063 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12064 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12065 12066 tcg_res[pass] = tcg_temp_new_i64(); 12067 12068 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12069 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12070 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12071 if (accum) { 12072 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12073 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12074 } 12075 } 12076 } else { 12077 for (pass = 0; pass < maxpass; pass++) { 12078 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12079 NeonGenOne64OpFn *genfn; 12080 static NeonGenOne64OpFn * const fns[2][2] = { 12081 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12082 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12083 }; 12084 12085 genfn = fns[size][u]; 12086 12087 tcg_res[pass] = tcg_temp_new_i64(); 12088 12089 read_vec_element(s, tcg_op, rn, pass, MO_64); 12090 genfn(tcg_res[pass], tcg_op); 12091 12092 if (accum) { 12093 read_vec_element(s, tcg_op, rd, pass, MO_64); 12094 if (size == 0) { 12095 gen_helper_neon_addl_u16(tcg_res[pass], 12096 tcg_res[pass], tcg_op); 12097 } else { 12098 gen_helper_neon_addl_u32(tcg_res[pass], 12099 tcg_res[pass], tcg_op); 12100 } 12101 } 12102 } 12103 } 12104 if (!is_q) { 12105 tcg_res[1] = tcg_constant_i64(0); 12106 } 12107 for (pass = 0; pass < 2; pass++) { 12108 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12109 } 12110 } 12111 12112 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12113 { 12114 /* Implement SHLL and SHLL2 */ 12115 int pass; 12116 int part = is_q ? 2 : 0; 12117 TCGv_i64 tcg_res[2]; 12118 12119 for (pass = 0; pass < 2; pass++) { 12120 static NeonGenWidenFn * const widenfns[3] = { 12121 gen_helper_neon_widen_u8, 12122 gen_helper_neon_widen_u16, 12123 tcg_gen_extu_i32_i64, 12124 }; 12125 NeonGenWidenFn *widenfn = widenfns[size]; 12126 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12127 12128 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12129 tcg_res[pass] = tcg_temp_new_i64(); 12130 widenfn(tcg_res[pass], tcg_op); 12131 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12132 } 12133 12134 for (pass = 0; pass < 2; pass++) { 12135 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12136 } 12137 } 12138 12139 /* AdvSIMD two reg misc 12140 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12141 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12142 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12143 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12144 */ 12145 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12146 { 12147 int size = extract32(insn, 22, 2); 12148 int opcode = extract32(insn, 12, 5); 12149 bool u = extract32(insn, 29, 1); 12150 bool is_q = extract32(insn, 30, 1); 12151 int rn = extract32(insn, 5, 5); 12152 int rd = extract32(insn, 0, 5); 12153 bool need_fpstatus = false; 12154 int rmode = -1; 12155 TCGv_i32 tcg_rmode; 12156 TCGv_ptr tcg_fpstatus; 12157 12158 switch (opcode) { 12159 case 0x0: /* REV64, REV32 */ 12160 case 0x1: /* REV16 */ 12161 handle_rev(s, opcode, u, is_q, size, rn, rd); 12162 return; 12163 case 0x5: /* CNT, NOT, RBIT */ 12164 if (u && size == 0) { 12165 /* NOT */ 12166 break; 12167 } else if (u && size == 1) { 12168 /* RBIT */ 12169 break; 12170 } else if (!u && size == 0) { 12171 /* CNT */ 12172 break; 12173 } 12174 unallocated_encoding(s); 12175 return; 12176 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12177 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12178 if (size == 3) { 12179 unallocated_encoding(s); 12180 return; 12181 } 12182 if (!fp_access_check(s)) { 12183 return; 12184 } 12185 12186 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12187 return; 12188 case 0x4: /* CLS, CLZ */ 12189 if (size == 3) { 12190 unallocated_encoding(s); 12191 return; 12192 } 12193 break; 12194 case 0x2: /* SADDLP, UADDLP */ 12195 case 0x6: /* SADALP, UADALP */ 12196 if (size == 3) { 12197 unallocated_encoding(s); 12198 return; 12199 } 12200 if (!fp_access_check(s)) { 12201 return; 12202 } 12203 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12204 return; 12205 case 0x13: /* SHLL, SHLL2 */ 12206 if (u == 0 || size == 3) { 12207 unallocated_encoding(s); 12208 return; 12209 } 12210 if (!fp_access_check(s)) { 12211 return; 12212 } 12213 handle_shll(s, is_q, size, rn, rd); 12214 return; 12215 case 0xa: /* CMLT */ 12216 if (u == 1) { 12217 unallocated_encoding(s); 12218 return; 12219 } 12220 /* fall through */ 12221 case 0x8: /* CMGT, CMGE */ 12222 case 0x9: /* CMEQ, CMLE */ 12223 case 0xb: /* ABS, NEG */ 12224 if (size == 3 && !is_q) { 12225 unallocated_encoding(s); 12226 return; 12227 } 12228 break; 12229 case 0x3: /* SUQADD, USQADD */ 12230 if (size == 3 && !is_q) { 12231 unallocated_encoding(s); 12232 return; 12233 } 12234 if (!fp_access_check(s)) { 12235 return; 12236 } 12237 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12238 return; 12239 case 0x7: /* SQABS, SQNEG */ 12240 if (size == 3 && !is_q) { 12241 unallocated_encoding(s); 12242 return; 12243 } 12244 break; 12245 case 0xc ... 0xf: 12246 case 0x16 ... 0x1f: 12247 { 12248 /* Floating point: U, size[1] and opcode indicate operation; 12249 * size[0] indicates single or double precision. 12250 */ 12251 int is_double = extract32(size, 0, 1); 12252 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12253 size = is_double ? 3 : 2; 12254 switch (opcode) { 12255 case 0x2f: /* FABS */ 12256 case 0x6f: /* FNEG */ 12257 if (size == 3 && !is_q) { 12258 unallocated_encoding(s); 12259 return; 12260 } 12261 break; 12262 case 0x1d: /* SCVTF */ 12263 case 0x5d: /* UCVTF */ 12264 { 12265 bool is_signed = (opcode == 0x1d) ? true : false; 12266 int elements = is_double ? 2 : is_q ? 4 : 2; 12267 if (is_double && !is_q) { 12268 unallocated_encoding(s); 12269 return; 12270 } 12271 if (!fp_access_check(s)) { 12272 return; 12273 } 12274 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12275 return; 12276 } 12277 case 0x2c: /* FCMGT (zero) */ 12278 case 0x2d: /* FCMEQ (zero) */ 12279 case 0x2e: /* FCMLT (zero) */ 12280 case 0x6c: /* FCMGE (zero) */ 12281 case 0x6d: /* FCMLE (zero) */ 12282 if (size == 3 && !is_q) { 12283 unallocated_encoding(s); 12284 return; 12285 } 12286 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12287 return; 12288 case 0x7f: /* FSQRT */ 12289 if (size == 3 && !is_q) { 12290 unallocated_encoding(s); 12291 return; 12292 } 12293 break; 12294 case 0x1a: /* FCVTNS */ 12295 case 0x1b: /* FCVTMS */ 12296 case 0x3a: /* FCVTPS */ 12297 case 0x3b: /* FCVTZS */ 12298 case 0x5a: /* FCVTNU */ 12299 case 0x5b: /* FCVTMU */ 12300 case 0x7a: /* FCVTPU */ 12301 case 0x7b: /* FCVTZU */ 12302 need_fpstatus = true; 12303 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12304 if (size == 3 && !is_q) { 12305 unallocated_encoding(s); 12306 return; 12307 } 12308 break; 12309 case 0x5c: /* FCVTAU */ 12310 case 0x1c: /* FCVTAS */ 12311 need_fpstatus = true; 12312 rmode = FPROUNDING_TIEAWAY; 12313 if (size == 3 && !is_q) { 12314 unallocated_encoding(s); 12315 return; 12316 } 12317 break; 12318 case 0x3c: /* URECPE */ 12319 if (size == 3) { 12320 unallocated_encoding(s); 12321 return; 12322 } 12323 /* fall through */ 12324 case 0x3d: /* FRECPE */ 12325 case 0x7d: /* FRSQRTE */ 12326 if (size == 3 && !is_q) { 12327 unallocated_encoding(s); 12328 return; 12329 } 12330 if (!fp_access_check(s)) { 12331 return; 12332 } 12333 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12334 return; 12335 case 0x56: /* FCVTXN, FCVTXN2 */ 12336 if (size == 2) { 12337 unallocated_encoding(s); 12338 return; 12339 } 12340 /* fall through */ 12341 case 0x16: /* FCVTN, FCVTN2 */ 12342 /* handle_2misc_narrow does a 2*size -> size operation, but these 12343 * instructions encode the source size rather than dest size. 12344 */ 12345 if (!fp_access_check(s)) { 12346 return; 12347 } 12348 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12349 return; 12350 case 0x36: /* BFCVTN, BFCVTN2 */ 12351 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12352 unallocated_encoding(s); 12353 return; 12354 } 12355 if (!fp_access_check(s)) { 12356 return; 12357 } 12358 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12359 return; 12360 case 0x17: /* FCVTL, FCVTL2 */ 12361 if (!fp_access_check(s)) { 12362 return; 12363 } 12364 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12365 return; 12366 case 0x18: /* FRINTN */ 12367 case 0x19: /* FRINTM */ 12368 case 0x38: /* FRINTP */ 12369 case 0x39: /* FRINTZ */ 12370 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12371 /* fall through */ 12372 case 0x59: /* FRINTX */ 12373 case 0x79: /* FRINTI */ 12374 need_fpstatus = true; 12375 if (size == 3 && !is_q) { 12376 unallocated_encoding(s); 12377 return; 12378 } 12379 break; 12380 case 0x58: /* FRINTA */ 12381 rmode = FPROUNDING_TIEAWAY; 12382 need_fpstatus = true; 12383 if (size == 3 && !is_q) { 12384 unallocated_encoding(s); 12385 return; 12386 } 12387 break; 12388 case 0x7c: /* URSQRTE */ 12389 if (size == 3) { 12390 unallocated_encoding(s); 12391 return; 12392 } 12393 break; 12394 case 0x1e: /* FRINT32Z */ 12395 case 0x1f: /* FRINT64Z */ 12396 rmode = FPROUNDING_ZERO; 12397 /* fall through */ 12398 case 0x5e: /* FRINT32X */ 12399 case 0x5f: /* FRINT64X */ 12400 need_fpstatus = true; 12401 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12402 unallocated_encoding(s); 12403 return; 12404 } 12405 break; 12406 default: 12407 unallocated_encoding(s); 12408 return; 12409 } 12410 break; 12411 } 12412 default: 12413 unallocated_encoding(s); 12414 return; 12415 } 12416 12417 if (!fp_access_check(s)) { 12418 return; 12419 } 12420 12421 if (need_fpstatus || rmode >= 0) { 12422 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12423 } else { 12424 tcg_fpstatus = NULL; 12425 } 12426 if (rmode >= 0) { 12427 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12428 } else { 12429 tcg_rmode = NULL; 12430 } 12431 12432 switch (opcode) { 12433 case 0x5: 12434 if (u && size == 0) { /* NOT */ 12435 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12436 return; 12437 } 12438 break; 12439 case 0x8: /* CMGT, CMGE */ 12440 if (u) { 12441 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12442 } else { 12443 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12444 } 12445 return; 12446 case 0x9: /* CMEQ, CMLE */ 12447 if (u) { 12448 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12449 } else { 12450 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12451 } 12452 return; 12453 case 0xa: /* CMLT */ 12454 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12455 return; 12456 case 0xb: 12457 if (u) { /* ABS, NEG */ 12458 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12459 } else { 12460 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12461 } 12462 return; 12463 } 12464 12465 if (size == 3) { 12466 /* All 64-bit element operations can be shared with scalar 2misc */ 12467 int pass; 12468 12469 /* Coverity claims (size == 3 && !is_q) has been eliminated 12470 * from all paths leading to here. 12471 */ 12472 tcg_debug_assert(is_q); 12473 for (pass = 0; pass < 2; pass++) { 12474 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12475 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12476 12477 read_vec_element(s, tcg_op, rn, pass, MO_64); 12478 12479 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12480 tcg_rmode, tcg_fpstatus); 12481 12482 write_vec_element(s, tcg_res, rd, pass, MO_64); 12483 } 12484 } else { 12485 int pass; 12486 12487 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12488 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12489 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12490 12491 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12492 12493 if (size == 2) { 12494 /* Special cases for 32 bit elements */ 12495 switch (opcode) { 12496 case 0x4: /* CLS */ 12497 if (u) { 12498 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12499 } else { 12500 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12501 } 12502 break; 12503 case 0x7: /* SQABS, SQNEG */ 12504 if (u) { 12505 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12506 } else { 12507 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12508 } 12509 break; 12510 case 0x2f: /* FABS */ 12511 gen_helper_vfp_abss(tcg_res, tcg_op); 12512 break; 12513 case 0x6f: /* FNEG */ 12514 gen_helper_vfp_negs(tcg_res, tcg_op); 12515 break; 12516 case 0x7f: /* FSQRT */ 12517 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12518 break; 12519 case 0x1a: /* FCVTNS */ 12520 case 0x1b: /* FCVTMS */ 12521 case 0x1c: /* FCVTAS */ 12522 case 0x3a: /* FCVTPS */ 12523 case 0x3b: /* FCVTZS */ 12524 gen_helper_vfp_tosls(tcg_res, tcg_op, 12525 tcg_constant_i32(0), tcg_fpstatus); 12526 break; 12527 case 0x5a: /* FCVTNU */ 12528 case 0x5b: /* FCVTMU */ 12529 case 0x5c: /* FCVTAU */ 12530 case 0x7a: /* FCVTPU */ 12531 case 0x7b: /* FCVTZU */ 12532 gen_helper_vfp_touls(tcg_res, tcg_op, 12533 tcg_constant_i32(0), tcg_fpstatus); 12534 break; 12535 case 0x18: /* FRINTN */ 12536 case 0x19: /* FRINTM */ 12537 case 0x38: /* FRINTP */ 12538 case 0x39: /* FRINTZ */ 12539 case 0x58: /* FRINTA */ 12540 case 0x79: /* FRINTI */ 12541 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12542 break; 12543 case 0x59: /* FRINTX */ 12544 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12545 break; 12546 case 0x7c: /* URSQRTE */ 12547 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12548 break; 12549 case 0x1e: /* FRINT32Z */ 12550 case 0x5e: /* FRINT32X */ 12551 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12552 break; 12553 case 0x1f: /* FRINT64Z */ 12554 case 0x5f: /* FRINT64X */ 12555 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12556 break; 12557 default: 12558 g_assert_not_reached(); 12559 } 12560 } else { 12561 /* Use helpers for 8 and 16 bit elements */ 12562 switch (opcode) { 12563 case 0x5: /* CNT, RBIT */ 12564 /* For these two insns size is part of the opcode specifier 12565 * (handled earlier); they always operate on byte elements. 12566 */ 12567 if (u) { 12568 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12569 } else { 12570 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12571 } 12572 break; 12573 case 0x7: /* SQABS, SQNEG */ 12574 { 12575 NeonGenOneOpEnvFn *genfn; 12576 static NeonGenOneOpEnvFn * const fns[2][2] = { 12577 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12578 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12579 }; 12580 genfn = fns[size][u]; 12581 genfn(tcg_res, cpu_env, tcg_op); 12582 break; 12583 } 12584 case 0x4: /* CLS, CLZ */ 12585 if (u) { 12586 if (size == 0) { 12587 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12588 } else { 12589 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12590 } 12591 } else { 12592 if (size == 0) { 12593 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12594 } else { 12595 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12596 } 12597 } 12598 break; 12599 default: 12600 g_assert_not_reached(); 12601 } 12602 } 12603 12604 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12605 } 12606 } 12607 clear_vec_high(s, is_q, rd); 12608 12609 if (tcg_rmode) { 12610 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12611 } 12612 } 12613 12614 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12615 * 12616 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12617 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12618 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12619 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12620 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12621 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12622 * 12623 * This actually covers two groups where scalar access is governed by 12624 * bit 28. A bunch of the instructions (float to integral) only exist 12625 * in the vector form and are un-allocated for the scalar decode. Also 12626 * in the scalar decode Q is always 1. 12627 */ 12628 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12629 { 12630 int fpop, opcode, a, u; 12631 int rn, rd; 12632 bool is_q; 12633 bool is_scalar; 12634 bool only_in_vector = false; 12635 12636 int pass; 12637 TCGv_i32 tcg_rmode = NULL; 12638 TCGv_ptr tcg_fpstatus = NULL; 12639 bool need_fpst = true; 12640 int rmode = -1; 12641 12642 if (!dc_isar_feature(aa64_fp16, s)) { 12643 unallocated_encoding(s); 12644 return; 12645 } 12646 12647 rd = extract32(insn, 0, 5); 12648 rn = extract32(insn, 5, 5); 12649 12650 a = extract32(insn, 23, 1); 12651 u = extract32(insn, 29, 1); 12652 is_scalar = extract32(insn, 28, 1); 12653 is_q = extract32(insn, 30, 1); 12654 12655 opcode = extract32(insn, 12, 5); 12656 fpop = deposit32(opcode, 5, 1, a); 12657 fpop = deposit32(fpop, 6, 1, u); 12658 12659 switch (fpop) { 12660 case 0x1d: /* SCVTF */ 12661 case 0x5d: /* UCVTF */ 12662 { 12663 int elements; 12664 12665 if (is_scalar) { 12666 elements = 1; 12667 } else { 12668 elements = (is_q ? 8 : 4); 12669 } 12670 12671 if (!fp_access_check(s)) { 12672 return; 12673 } 12674 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12675 return; 12676 } 12677 break; 12678 case 0x2c: /* FCMGT (zero) */ 12679 case 0x2d: /* FCMEQ (zero) */ 12680 case 0x2e: /* FCMLT (zero) */ 12681 case 0x6c: /* FCMGE (zero) */ 12682 case 0x6d: /* FCMLE (zero) */ 12683 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12684 return; 12685 case 0x3d: /* FRECPE */ 12686 case 0x3f: /* FRECPX */ 12687 break; 12688 case 0x18: /* FRINTN */ 12689 only_in_vector = true; 12690 rmode = FPROUNDING_TIEEVEN; 12691 break; 12692 case 0x19: /* FRINTM */ 12693 only_in_vector = true; 12694 rmode = FPROUNDING_NEGINF; 12695 break; 12696 case 0x38: /* FRINTP */ 12697 only_in_vector = true; 12698 rmode = FPROUNDING_POSINF; 12699 break; 12700 case 0x39: /* FRINTZ */ 12701 only_in_vector = true; 12702 rmode = FPROUNDING_ZERO; 12703 break; 12704 case 0x58: /* FRINTA */ 12705 only_in_vector = true; 12706 rmode = FPROUNDING_TIEAWAY; 12707 break; 12708 case 0x59: /* FRINTX */ 12709 case 0x79: /* FRINTI */ 12710 only_in_vector = true; 12711 /* current rounding mode */ 12712 break; 12713 case 0x1a: /* FCVTNS */ 12714 rmode = FPROUNDING_TIEEVEN; 12715 break; 12716 case 0x1b: /* FCVTMS */ 12717 rmode = FPROUNDING_NEGINF; 12718 break; 12719 case 0x1c: /* FCVTAS */ 12720 rmode = FPROUNDING_TIEAWAY; 12721 break; 12722 case 0x3a: /* FCVTPS */ 12723 rmode = FPROUNDING_POSINF; 12724 break; 12725 case 0x3b: /* FCVTZS */ 12726 rmode = FPROUNDING_ZERO; 12727 break; 12728 case 0x5a: /* FCVTNU */ 12729 rmode = FPROUNDING_TIEEVEN; 12730 break; 12731 case 0x5b: /* FCVTMU */ 12732 rmode = FPROUNDING_NEGINF; 12733 break; 12734 case 0x5c: /* FCVTAU */ 12735 rmode = FPROUNDING_TIEAWAY; 12736 break; 12737 case 0x7a: /* FCVTPU */ 12738 rmode = FPROUNDING_POSINF; 12739 break; 12740 case 0x7b: /* FCVTZU */ 12741 rmode = FPROUNDING_ZERO; 12742 break; 12743 case 0x2f: /* FABS */ 12744 case 0x6f: /* FNEG */ 12745 need_fpst = false; 12746 break; 12747 case 0x7d: /* FRSQRTE */ 12748 case 0x7f: /* FSQRT (vector) */ 12749 break; 12750 default: 12751 unallocated_encoding(s); 12752 return; 12753 } 12754 12755 12756 /* Check additional constraints for the scalar encoding */ 12757 if (is_scalar) { 12758 if (!is_q) { 12759 unallocated_encoding(s); 12760 return; 12761 } 12762 /* FRINTxx is only in the vector form */ 12763 if (only_in_vector) { 12764 unallocated_encoding(s); 12765 return; 12766 } 12767 } 12768 12769 if (!fp_access_check(s)) { 12770 return; 12771 } 12772 12773 if (rmode >= 0 || need_fpst) { 12774 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12775 } 12776 12777 if (rmode >= 0) { 12778 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12779 } 12780 12781 if (is_scalar) { 12782 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12783 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12784 12785 switch (fpop) { 12786 case 0x1a: /* FCVTNS */ 12787 case 0x1b: /* FCVTMS */ 12788 case 0x1c: /* FCVTAS */ 12789 case 0x3a: /* FCVTPS */ 12790 case 0x3b: /* FCVTZS */ 12791 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12792 break; 12793 case 0x3d: /* FRECPE */ 12794 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12795 break; 12796 case 0x3f: /* FRECPX */ 12797 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12798 break; 12799 case 0x5a: /* FCVTNU */ 12800 case 0x5b: /* FCVTMU */ 12801 case 0x5c: /* FCVTAU */ 12802 case 0x7a: /* FCVTPU */ 12803 case 0x7b: /* FCVTZU */ 12804 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12805 break; 12806 case 0x6f: /* FNEG */ 12807 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12808 break; 12809 case 0x7d: /* FRSQRTE */ 12810 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12811 break; 12812 default: 12813 g_assert_not_reached(); 12814 } 12815 12816 /* limit any sign extension going on */ 12817 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12818 write_fp_sreg(s, rd, tcg_res); 12819 } else { 12820 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12821 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12822 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12823 12824 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12825 12826 switch (fpop) { 12827 case 0x1a: /* FCVTNS */ 12828 case 0x1b: /* FCVTMS */ 12829 case 0x1c: /* FCVTAS */ 12830 case 0x3a: /* FCVTPS */ 12831 case 0x3b: /* FCVTZS */ 12832 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12833 break; 12834 case 0x3d: /* FRECPE */ 12835 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12836 break; 12837 case 0x5a: /* FCVTNU */ 12838 case 0x5b: /* FCVTMU */ 12839 case 0x5c: /* FCVTAU */ 12840 case 0x7a: /* FCVTPU */ 12841 case 0x7b: /* FCVTZU */ 12842 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12843 break; 12844 case 0x18: /* FRINTN */ 12845 case 0x19: /* FRINTM */ 12846 case 0x38: /* FRINTP */ 12847 case 0x39: /* FRINTZ */ 12848 case 0x58: /* FRINTA */ 12849 case 0x79: /* FRINTI */ 12850 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12851 break; 12852 case 0x59: /* FRINTX */ 12853 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12854 break; 12855 case 0x2f: /* FABS */ 12856 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12857 break; 12858 case 0x6f: /* FNEG */ 12859 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12860 break; 12861 case 0x7d: /* FRSQRTE */ 12862 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12863 break; 12864 case 0x7f: /* FSQRT */ 12865 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12866 break; 12867 default: 12868 g_assert_not_reached(); 12869 } 12870 12871 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12872 } 12873 12874 clear_vec_high(s, is_q, rd); 12875 } 12876 12877 if (tcg_rmode) { 12878 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12879 } 12880 } 12881 12882 /* AdvSIMD scalar x indexed element 12883 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12884 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12885 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12886 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12887 * AdvSIMD vector x indexed element 12888 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12889 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12890 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12891 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12892 */ 12893 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12894 { 12895 /* This encoding has two kinds of instruction: 12896 * normal, where we perform elt x idxelt => elt for each 12897 * element in the vector 12898 * long, where we perform elt x idxelt and generate a result of 12899 * double the width of the input element 12900 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12901 */ 12902 bool is_scalar = extract32(insn, 28, 1); 12903 bool is_q = extract32(insn, 30, 1); 12904 bool u = extract32(insn, 29, 1); 12905 int size = extract32(insn, 22, 2); 12906 int l = extract32(insn, 21, 1); 12907 int m = extract32(insn, 20, 1); 12908 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12909 int rm = extract32(insn, 16, 4); 12910 int opcode = extract32(insn, 12, 4); 12911 int h = extract32(insn, 11, 1); 12912 int rn = extract32(insn, 5, 5); 12913 int rd = extract32(insn, 0, 5); 12914 bool is_long = false; 12915 int is_fp = 0; 12916 bool is_fp16 = false; 12917 int index; 12918 TCGv_ptr fpst; 12919 12920 switch (16 * u + opcode) { 12921 case 0x08: /* MUL */ 12922 case 0x10: /* MLA */ 12923 case 0x14: /* MLS */ 12924 if (is_scalar) { 12925 unallocated_encoding(s); 12926 return; 12927 } 12928 break; 12929 case 0x02: /* SMLAL, SMLAL2 */ 12930 case 0x12: /* UMLAL, UMLAL2 */ 12931 case 0x06: /* SMLSL, SMLSL2 */ 12932 case 0x16: /* UMLSL, UMLSL2 */ 12933 case 0x0a: /* SMULL, SMULL2 */ 12934 case 0x1a: /* UMULL, UMULL2 */ 12935 if (is_scalar) { 12936 unallocated_encoding(s); 12937 return; 12938 } 12939 is_long = true; 12940 break; 12941 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12942 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12943 case 0x0b: /* SQDMULL, SQDMULL2 */ 12944 is_long = true; 12945 break; 12946 case 0x0c: /* SQDMULH */ 12947 case 0x0d: /* SQRDMULH */ 12948 break; 12949 case 0x01: /* FMLA */ 12950 case 0x05: /* FMLS */ 12951 case 0x09: /* FMUL */ 12952 case 0x19: /* FMULX */ 12953 is_fp = 1; 12954 break; 12955 case 0x1d: /* SQRDMLAH */ 12956 case 0x1f: /* SQRDMLSH */ 12957 if (!dc_isar_feature(aa64_rdm, s)) { 12958 unallocated_encoding(s); 12959 return; 12960 } 12961 break; 12962 case 0x0e: /* SDOT */ 12963 case 0x1e: /* UDOT */ 12964 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12965 unallocated_encoding(s); 12966 return; 12967 } 12968 break; 12969 case 0x0f: 12970 switch (size) { 12971 case 0: /* SUDOT */ 12972 case 2: /* USDOT */ 12973 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12974 unallocated_encoding(s); 12975 return; 12976 } 12977 size = MO_32; 12978 break; 12979 case 1: /* BFDOT */ 12980 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12981 unallocated_encoding(s); 12982 return; 12983 } 12984 size = MO_32; 12985 break; 12986 case 3: /* BFMLAL{B,T} */ 12987 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12988 unallocated_encoding(s); 12989 return; 12990 } 12991 /* can't set is_fp without other incorrect size checks */ 12992 size = MO_16; 12993 break; 12994 default: 12995 unallocated_encoding(s); 12996 return; 12997 } 12998 break; 12999 case 0x11: /* FCMLA #0 */ 13000 case 0x13: /* FCMLA #90 */ 13001 case 0x15: /* FCMLA #180 */ 13002 case 0x17: /* FCMLA #270 */ 13003 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13004 unallocated_encoding(s); 13005 return; 13006 } 13007 is_fp = 2; 13008 break; 13009 case 0x00: /* FMLAL */ 13010 case 0x04: /* FMLSL */ 13011 case 0x18: /* FMLAL2 */ 13012 case 0x1c: /* FMLSL2 */ 13013 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13014 unallocated_encoding(s); 13015 return; 13016 } 13017 size = MO_16; 13018 /* is_fp, but we pass cpu_env not fp_status. */ 13019 break; 13020 default: 13021 unallocated_encoding(s); 13022 return; 13023 } 13024 13025 switch (is_fp) { 13026 case 1: /* normal fp */ 13027 /* convert insn encoded size to MemOp size */ 13028 switch (size) { 13029 case 0: /* half-precision */ 13030 size = MO_16; 13031 is_fp16 = true; 13032 break; 13033 case MO_32: /* single precision */ 13034 case MO_64: /* double precision */ 13035 break; 13036 default: 13037 unallocated_encoding(s); 13038 return; 13039 } 13040 break; 13041 13042 case 2: /* complex fp */ 13043 /* Each indexable element is a complex pair. */ 13044 size += 1; 13045 switch (size) { 13046 case MO_32: 13047 if (h && !is_q) { 13048 unallocated_encoding(s); 13049 return; 13050 } 13051 is_fp16 = true; 13052 break; 13053 case MO_64: 13054 break; 13055 default: 13056 unallocated_encoding(s); 13057 return; 13058 } 13059 break; 13060 13061 default: /* integer */ 13062 switch (size) { 13063 case MO_8: 13064 case MO_64: 13065 unallocated_encoding(s); 13066 return; 13067 } 13068 break; 13069 } 13070 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13071 unallocated_encoding(s); 13072 return; 13073 } 13074 13075 /* Given MemOp size, adjust register and indexing. */ 13076 switch (size) { 13077 case MO_16: 13078 index = h << 2 | l << 1 | m; 13079 break; 13080 case MO_32: 13081 index = h << 1 | l; 13082 rm |= m << 4; 13083 break; 13084 case MO_64: 13085 if (l || !is_q) { 13086 unallocated_encoding(s); 13087 return; 13088 } 13089 index = h; 13090 rm |= m << 4; 13091 break; 13092 default: 13093 g_assert_not_reached(); 13094 } 13095 13096 if (!fp_access_check(s)) { 13097 return; 13098 } 13099 13100 if (is_fp) { 13101 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13102 } else { 13103 fpst = NULL; 13104 } 13105 13106 switch (16 * u + opcode) { 13107 case 0x0e: /* SDOT */ 13108 case 0x1e: /* UDOT */ 13109 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13110 u ? gen_helper_gvec_udot_idx_b 13111 : gen_helper_gvec_sdot_idx_b); 13112 return; 13113 case 0x0f: 13114 switch (extract32(insn, 22, 2)) { 13115 case 0: /* SUDOT */ 13116 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13117 gen_helper_gvec_sudot_idx_b); 13118 return; 13119 case 1: /* BFDOT */ 13120 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13121 gen_helper_gvec_bfdot_idx); 13122 return; 13123 case 2: /* USDOT */ 13124 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13125 gen_helper_gvec_usdot_idx_b); 13126 return; 13127 case 3: /* BFMLAL{B,T} */ 13128 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13129 gen_helper_gvec_bfmlal_idx); 13130 return; 13131 } 13132 g_assert_not_reached(); 13133 case 0x11: /* FCMLA #0 */ 13134 case 0x13: /* FCMLA #90 */ 13135 case 0x15: /* FCMLA #180 */ 13136 case 0x17: /* FCMLA #270 */ 13137 { 13138 int rot = extract32(insn, 13, 2); 13139 int data = (index << 2) | rot; 13140 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13141 vec_full_reg_offset(s, rn), 13142 vec_full_reg_offset(s, rm), 13143 vec_full_reg_offset(s, rd), fpst, 13144 is_q ? 16 : 8, vec_full_reg_size(s), data, 13145 size == MO_64 13146 ? gen_helper_gvec_fcmlas_idx 13147 : gen_helper_gvec_fcmlah_idx); 13148 } 13149 return; 13150 13151 case 0x00: /* FMLAL */ 13152 case 0x04: /* FMLSL */ 13153 case 0x18: /* FMLAL2 */ 13154 case 0x1c: /* FMLSL2 */ 13155 { 13156 int is_s = extract32(opcode, 2, 1); 13157 int is_2 = u; 13158 int data = (index << 2) | (is_2 << 1) | is_s; 13159 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13160 vec_full_reg_offset(s, rn), 13161 vec_full_reg_offset(s, rm), cpu_env, 13162 is_q ? 16 : 8, vec_full_reg_size(s), 13163 data, gen_helper_gvec_fmlal_idx_a64); 13164 } 13165 return; 13166 13167 case 0x08: /* MUL */ 13168 if (!is_long && !is_scalar) { 13169 static gen_helper_gvec_3 * const fns[3] = { 13170 gen_helper_gvec_mul_idx_h, 13171 gen_helper_gvec_mul_idx_s, 13172 gen_helper_gvec_mul_idx_d, 13173 }; 13174 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13175 vec_full_reg_offset(s, rn), 13176 vec_full_reg_offset(s, rm), 13177 is_q ? 16 : 8, vec_full_reg_size(s), 13178 index, fns[size - 1]); 13179 return; 13180 } 13181 break; 13182 13183 case 0x10: /* MLA */ 13184 if (!is_long && !is_scalar) { 13185 static gen_helper_gvec_4 * const fns[3] = { 13186 gen_helper_gvec_mla_idx_h, 13187 gen_helper_gvec_mla_idx_s, 13188 gen_helper_gvec_mla_idx_d, 13189 }; 13190 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13191 vec_full_reg_offset(s, rn), 13192 vec_full_reg_offset(s, rm), 13193 vec_full_reg_offset(s, rd), 13194 is_q ? 16 : 8, vec_full_reg_size(s), 13195 index, fns[size - 1]); 13196 return; 13197 } 13198 break; 13199 13200 case 0x14: /* MLS */ 13201 if (!is_long && !is_scalar) { 13202 static gen_helper_gvec_4 * const fns[3] = { 13203 gen_helper_gvec_mls_idx_h, 13204 gen_helper_gvec_mls_idx_s, 13205 gen_helper_gvec_mls_idx_d, 13206 }; 13207 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13208 vec_full_reg_offset(s, rn), 13209 vec_full_reg_offset(s, rm), 13210 vec_full_reg_offset(s, rd), 13211 is_q ? 16 : 8, vec_full_reg_size(s), 13212 index, fns[size - 1]); 13213 return; 13214 } 13215 break; 13216 } 13217 13218 if (size == 3) { 13219 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13220 int pass; 13221 13222 assert(is_fp && is_q && !is_long); 13223 13224 read_vec_element(s, tcg_idx, rm, index, MO_64); 13225 13226 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13227 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13228 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13229 13230 read_vec_element(s, tcg_op, rn, pass, MO_64); 13231 13232 switch (16 * u + opcode) { 13233 case 0x05: /* FMLS */ 13234 /* As usual for ARM, separate negation for fused multiply-add */ 13235 gen_helper_vfp_negd(tcg_op, tcg_op); 13236 /* fall through */ 13237 case 0x01: /* FMLA */ 13238 read_vec_element(s, tcg_res, rd, pass, MO_64); 13239 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13240 break; 13241 case 0x09: /* FMUL */ 13242 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13243 break; 13244 case 0x19: /* FMULX */ 13245 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13246 break; 13247 default: 13248 g_assert_not_reached(); 13249 } 13250 13251 write_vec_element(s, tcg_res, rd, pass, MO_64); 13252 } 13253 13254 clear_vec_high(s, !is_scalar, rd); 13255 } else if (!is_long) { 13256 /* 32 bit floating point, or 16 or 32 bit integer. 13257 * For the 16 bit scalar case we use the usual Neon helpers and 13258 * rely on the fact that 0 op 0 == 0 with no side effects. 13259 */ 13260 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13261 int pass, maxpasses; 13262 13263 if (is_scalar) { 13264 maxpasses = 1; 13265 } else { 13266 maxpasses = is_q ? 4 : 2; 13267 } 13268 13269 read_vec_element_i32(s, tcg_idx, rm, index, size); 13270 13271 if (size == 1 && !is_scalar) { 13272 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13273 * the index into both halves of the 32 bit tcg_idx and then use 13274 * the usual Neon helpers. 13275 */ 13276 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13277 } 13278 13279 for (pass = 0; pass < maxpasses; pass++) { 13280 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13281 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13282 13283 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13284 13285 switch (16 * u + opcode) { 13286 case 0x08: /* MUL */ 13287 case 0x10: /* MLA */ 13288 case 0x14: /* MLS */ 13289 { 13290 static NeonGenTwoOpFn * const fns[2][2] = { 13291 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13292 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13293 }; 13294 NeonGenTwoOpFn *genfn; 13295 bool is_sub = opcode == 0x4; 13296 13297 if (size == 1) { 13298 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13299 } else { 13300 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13301 } 13302 if (opcode == 0x8) { 13303 break; 13304 } 13305 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13306 genfn = fns[size - 1][is_sub]; 13307 genfn(tcg_res, tcg_op, tcg_res); 13308 break; 13309 } 13310 case 0x05: /* FMLS */ 13311 case 0x01: /* FMLA */ 13312 read_vec_element_i32(s, tcg_res, rd, pass, 13313 is_scalar ? size : MO_32); 13314 switch (size) { 13315 case 1: 13316 if (opcode == 0x5) { 13317 /* As usual for ARM, separate negation for fused 13318 * multiply-add */ 13319 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13320 } 13321 if (is_scalar) { 13322 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13323 tcg_res, fpst); 13324 } else { 13325 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13326 tcg_res, fpst); 13327 } 13328 break; 13329 case 2: 13330 if (opcode == 0x5) { 13331 /* As usual for ARM, separate negation for 13332 * fused multiply-add */ 13333 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13334 } 13335 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13336 tcg_res, fpst); 13337 break; 13338 default: 13339 g_assert_not_reached(); 13340 } 13341 break; 13342 case 0x09: /* FMUL */ 13343 switch (size) { 13344 case 1: 13345 if (is_scalar) { 13346 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13347 tcg_idx, fpst); 13348 } else { 13349 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13350 tcg_idx, fpst); 13351 } 13352 break; 13353 case 2: 13354 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13355 break; 13356 default: 13357 g_assert_not_reached(); 13358 } 13359 break; 13360 case 0x19: /* FMULX */ 13361 switch (size) { 13362 case 1: 13363 if (is_scalar) { 13364 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13365 tcg_idx, fpst); 13366 } else { 13367 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13368 tcg_idx, fpst); 13369 } 13370 break; 13371 case 2: 13372 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13373 break; 13374 default: 13375 g_assert_not_reached(); 13376 } 13377 break; 13378 case 0x0c: /* SQDMULH */ 13379 if (size == 1) { 13380 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13381 tcg_op, tcg_idx); 13382 } else { 13383 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13384 tcg_op, tcg_idx); 13385 } 13386 break; 13387 case 0x0d: /* SQRDMULH */ 13388 if (size == 1) { 13389 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13390 tcg_op, tcg_idx); 13391 } else { 13392 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13393 tcg_op, tcg_idx); 13394 } 13395 break; 13396 case 0x1d: /* SQRDMLAH */ 13397 read_vec_element_i32(s, tcg_res, rd, pass, 13398 is_scalar ? size : MO_32); 13399 if (size == 1) { 13400 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13401 tcg_op, tcg_idx, tcg_res); 13402 } else { 13403 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13404 tcg_op, tcg_idx, tcg_res); 13405 } 13406 break; 13407 case 0x1f: /* SQRDMLSH */ 13408 read_vec_element_i32(s, tcg_res, rd, pass, 13409 is_scalar ? size : MO_32); 13410 if (size == 1) { 13411 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13412 tcg_op, tcg_idx, tcg_res); 13413 } else { 13414 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13415 tcg_op, tcg_idx, tcg_res); 13416 } 13417 break; 13418 default: 13419 g_assert_not_reached(); 13420 } 13421 13422 if (is_scalar) { 13423 write_fp_sreg(s, rd, tcg_res); 13424 } else { 13425 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13426 } 13427 } 13428 13429 clear_vec_high(s, is_q, rd); 13430 } else { 13431 /* long ops: 16x16->32 or 32x32->64 */ 13432 TCGv_i64 tcg_res[2]; 13433 int pass; 13434 bool satop = extract32(opcode, 0, 1); 13435 MemOp memop = MO_32; 13436 13437 if (satop || !u) { 13438 memop |= MO_SIGN; 13439 } 13440 13441 if (size == 2) { 13442 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13443 13444 read_vec_element(s, tcg_idx, rm, index, memop); 13445 13446 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13447 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13448 TCGv_i64 tcg_passres; 13449 int passelt; 13450 13451 if (is_scalar) { 13452 passelt = 0; 13453 } else { 13454 passelt = pass + (is_q * 2); 13455 } 13456 13457 read_vec_element(s, tcg_op, rn, passelt, memop); 13458 13459 tcg_res[pass] = tcg_temp_new_i64(); 13460 13461 if (opcode == 0xa || opcode == 0xb) { 13462 /* Non-accumulating ops */ 13463 tcg_passres = tcg_res[pass]; 13464 } else { 13465 tcg_passres = tcg_temp_new_i64(); 13466 } 13467 13468 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13469 13470 if (satop) { 13471 /* saturating, doubling */ 13472 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13473 tcg_passres, tcg_passres); 13474 } 13475 13476 if (opcode == 0xa || opcode == 0xb) { 13477 continue; 13478 } 13479 13480 /* Accumulating op: handle accumulate step */ 13481 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13482 13483 switch (opcode) { 13484 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13485 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13486 break; 13487 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13488 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13489 break; 13490 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13491 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13492 /* fall through */ 13493 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13494 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13495 tcg_res[pass], 13496 tcg_passres); 13497 break; 13498 default: 13499 g_assert_not_reached(); 13500 } 13501 } 13502 13503 clear_vec_high(s, !is_scalar, rd); 13504 } else { 13505 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13506 13507 assert(size == 1); 13508 read_vec_element_i32(s, tcg_idx, rm, index, size); 13509 13510 if (!is_scalar) { 13511 /* The simplest way to handle the 16x16 indexed ops is to 13512 * duplicate the index into both halves of the 32 bit tcg_idx 13513 * and then use the usual Neon helpers. 13514 */ 13515 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13516 } 13517 13518 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13519 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13520 TCGv_i64 tcg_passres; 13521 13522 if (is_scalar) { 13523 read_vec_element_i32(s, tcg_op, rn, pass, size); 13524 } else { 13525 read_vec_element_i32(s, tcg_op, rn, 13526 pass + (is_q * 2), MO_32); 13527 } 13528 13529 tcg_res[pass] = tcg_temp_new_i64(); 13530 13531 if (opcode == 0xa || opcode == 0xb) { 13532 /* Non-accumulating ops */ 13533 tcg_passres = tcg_res[pass]; 13534 } else { 13535 tcg_passres = tcg_temp_new_i64(); 13536 } 13537 13538 if (memop & MO_SIGN) { 13539 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13540 } else { 13541 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13542 } 13543 if (satop) { 13544 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13545 tcg_passres, tcg_passres); 13546 } 13547 13548 if (opcode == 0xa || opcode == 0xb) { 13549 continue; 13550 } 13551 13552 /* Accumulating op: handle accumulate step */ 13553 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13554 13555 switch (opcode) { 13556 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13557 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13558 tcg_passres); 13559 break; 13560 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13561 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13562 tcg_passres); 13563 break; 13564 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13565 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13566 /* fall through */ 13567 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13568 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13569 tcg_res[pass], 13570 tcg_passres); 13571 break; 13572 default: 13573 g_assert_not_reached(); 13574 } 13575 } 13576 13577 if (is_scalar) { 13578 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13579 } 13580 } 13581 13582 if (is_scalar) { 13583 tcg_res[1] = tcg_constant_i64(0); 13584 } 13585 13586 for (pass = 0; pass < 2; pass++) { 13587 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13588 } 13589 } 13590 } 13591 13592 /* Crypto AES 13593 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13594 * +-----------------+------+-----------+--------+-----+------+------+ 13595 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13596 * +-----------------+------+-----------+--------+-----+------+------+ 13597 */ 13598 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13599 { 13600 int size = extract32(insn, 22, 2); 13601 int opcode = extract32(insn, 12, 5); 13602 int rn = extract32(insn, 5, 5); 13603 int rd = extract32(insn, 0, 5); 13604 int decrypt; 13605 gen_helper_gvec_2 *genfn2 = NULL; 13606 gen_helper_gvec_3 *genfn3 = NULL; 13607 13608 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13609 unallocated_encoding(s); 13610 return; 13611 } 13612 13613 switch (opcode) { 13614 case 0x4: /* AESE */ 13615 decrypt = 0; 13616 genfn3 = gen_helper_crypto_aese; 13617 break; 13618 case 0x6: /* AESMC */ 13619 decrypt = 0; 13620 genfn2 = gen_helper_crypto_aesmc; 13621 break; 13622 case 0x5: /* AESD */ 13623 decrypt = 1; 13624 genfn3 = gen_helper_crypto_aese; 13625 break; 13626 case 0x7: /* AESIMC */ 13627 decrypt = 1; 13628 genfn2 = gen_helper_crypto_aesmc; 13629 break; 13630 default: 13631 unallocated_encoding(s); 13632 return; 13633 } 13634 13635 if (!fp_access_check(s)) { 13636 return; 13637 } 13638 if (genfn2) { 13639 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13640 } else { 13641 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13642 } 13643 } 13644 13645 /* Crypto three-reg SHA 13646 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13647 * +-----------------+------+---+------+---+--------+-----+------+------+ 13648 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13649 * +-----------------+------+---+------+---+--------+-----+------+------+ 13650 */ 13651 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13652 { 13653 int size = extract32(insn, 22, 2); 13654 int opcode = extract32(insn, 12, 3); 13655 int rm = extract32(insn, 16, 5); 13656 int rn = extract32(insn, 5, 5); 13657 int rd = extract32(insn, 0, 5); 13658 gen_helper_gvec_3 *genfn; 13659 bool feature; 13660 13661 if (size != 0) { 13662 unallocated_encoding(s); 13663 return; 13664 } 13665 13666 switch (opcode) { 13667 case 0: /* SHA1C */ 13668 genfn = gen_helper_crypto_sha1c; 13669 feature = dc_isar_feature(aa64_sha1, s); 13670 break; 13671 case 1: /* SHA1P */ 13672 genfn = gen_helper_crypto_sha1p; 13673 feature = dc_isar_feature(aa64_sha1, s); 13674 break; 13675 case 2: /* SHA1M */ 13676 genfn = gen_helper_crypto_sha1m; 13677 feature = dc_isar_feature(aa64_sha1, s); 13678 break; 13679 case 3: /* SHA1SU0 */ 13680 genfn = gen_helper_crypto_sha1su0; 13681 feature = dc_isar_feature(aa64_sha1, s); 13682 break; 13683 case 4: /* SHA256H */ 13684 genfn = gen_helper_crypto_sha256h; 13685 feature = dc_isar_feature(aa64_sha256, s); 13686 break; 13687 case 5: /* SHA256H2 */ 13688 genfn = gen_helper_crypto_sha256h2; 13689 feature = dc_isar_feature(aa64_sha256, s); 13690 break; 13691 case 6: /* SHA256SU1 */ 13692 genfn = gen_helper_crypto_sha256su1; 13693 feature = dc_isar_feature(aa64_sha256, s); 13694 break; 13695 default: 13696 unallocated_encoding(s); 13697 return; 13698 } 13699 13700 if (!feature) { 13701 unallocated_encoding(s); 13702 return; 13703 } 13704 13705 if (!fp_access_check(s)) { 13706 return; 13707 } 13708 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13709 } 13710 13711 /* Crypto two-reg SHA 13712 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13713 * +-----------------+------+-----------+--------+-----+------+------+ 13714 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13715 * +-----------------+------+-----------+--------+-----+------+------+ 13716 */ 13717 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13718 { 13719 int size = extract32(insn, 22, 2); 13720 int opcode = extract32(insn, 12, 5); 13721 int rn = extract32(insn, 5, 5); 13722 int rd = extract32(insn, 0, 5); 13723 gen_helper_gvec_2 *genfn; 13724 bool feature; 13725 13726 if (size != 0) { 13727 unallocated_encoding(s); 13728 return; 13729 } 13730 13731 switch (opcode) { 13732 case 0: /* SHA1H */ 13733 feature = dc_isar_feature(aa64_sha1, s); 13734 genfn = gen_helper_crypto_sha1h; 13735 break; 13736 case 1: /* SHA1SU1 */ 13737 feature = dc_isar_feature(aa64_sha1, s); 13738 genfn = gen_helper_crypto_sha1su1; 13739 break; 13740 case 2: /* SHA256SU0 */ 13741 feature = dc_isar_feature(aa64_sha256, s); 13742 genfn = gen_helper_crypto_sha256su0; 13743 break; 13744 default: 13745 unallocated_encoding(s); 13746 return; 13747 } 13748 13749 if (!feature) { 13750 unallocated_encoding(s); 13751 return; 13752 } 13753 13754 if (!fp_access_check(s)) { 13755 return; 13756 } 13757 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13758 } 13759 13760 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13761 { 13762 tcg_gen_rotli_i64(d, m, 1); 13763 tcg_gen_xor_i64(d, d, n); 13764 } 13765 13766 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13767 { 13768 tcg_gen_rotli_vec(vece, d, m, 1); 13769 tcg_gen_xor_vec(vece, d, d, n); 13770 } 13771 13772 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13773 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13774 { 13775 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13776 static const GVecGen3 op = { 13777 .fni8 = gen_rax1_i64, 13778 .fniv = gen_rax1_vec, 13779 .opt_opc = vecop_list, 13780 .fno = gen_helper_crypto_rax1, 13781 .vece = MO_64, 13782 }; 13783 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13784 } 13785 13786 /* Crypto three-reg SHA512 13787 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13788 * +-----------------------+------+---+---+-----+--------+------+------+ 13789 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13790 * +-----------------------+------+---+---+-----+--------+------+------+ 13791 */ 13792 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13793 { 13794 int opcode = extract32(insn, 10, 2); 13795 int o = extract32(insn, 14, 1); 13796 int rm = extract32(insn, 16, 5); 13797 int rn = extract32(insn, 5, 5); 13798 int rd = extract32(insn, 0, 5); 13799 bool feature; 13800 gen_helper_gvec_3 *oolfn = NULL; 13801 GVecGen3Fn *gvecfn = NULL; 13802 13803 if (o == 0) { 13804 switch (opcode) { 13805 case 0: /* SHA512H */ 13806 feature = dc_isar_feature(aa64_sha512, s); 13807 oolfn = gen_helper_crypto_sha512h; 13808 break; 13809 case 1: /* SHA512H2 */ 13810 feature = dc_isar_feature(aa64_sha512, s); 13811 oolfn = gen_helper_crypto_sha512h2; 13812 break; 13813 case 2: /* SHA512SU1 */ 13814 feature = dc_isar_feature(aa64_sha512, s); 13815 oolfn = gen_helper_crypto_sha512su1; 13816 break; 13817 case 3: /* RAX1 */ 13818 feature = dc_isar_feature(aa64_sha3, s); 13819 gvecfn = gen_gvec_rax1; 13820 break; 13821 default: 13822 g_assert_not_reached(); 13823 } 13824 } else { 13825 switch (opcode) { 13826 case 0: /* SM3PARTW1 */ 13827 feature = dc_isar_feature(aa64_sm3, s); 13828 oolfn = gen_helper_crypto_sm3partw1; 13829 break; 13830 case 1: /* SM3PARTW2 */ 13831 feature = dc_isar_feature(aa64_sm3, s); 13832 oolfn = gen_helper_crypto_sm3partw2; 13833 break; 13834 case 2: /* SM4EKEY */ 13835 feature = dc_isar_feature(aa64_sm4, s); 13836 oolfn = gen_helper_crypto_sm4ekey; 13837 break; 13838 default: 13839 unallocated_encoding(s); 13840 return; 13841 } 13842 } 13843 13844 if (!feature) { 13845 unallocated_encoding(s); 13846 return; 13847 } 13848 13849 if (!fp_access_check(s)) { 13850 return; 13851 } 13852 13853 if (oolfn) { 13854 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13855 } else { 13856 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13857 } 13858 } 13859 13860 /* Crypto two-reg SHA512 13861 * 31 12 11 10 9 5 4 0 13862 * +-----------------------------------------+--------+------+------+ 13863 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13864 * +-----------------------------------------+--------+------+------+ 13865 */ 13866 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13867 { 13868 int opcode = extract32(insn, 10, 2); 13869 int rn = extract32(insn, 5, 5); 13870 int rd = extract32(insn, 0, 5); 13871 bool feature; 13872 13873 switch (opcode) { 13874 case 0: /* SHA512SU0 */ 13875 feature = dc_isar_feature(aa64_sha512, s); 13876 break; 13877 case 1: /* SM4E */ 13878 feature = dc_isar_feature(aa64_sm4, s); 13879 break; 13880 default: 13881 unallocated_encoding(s); 13882 return; 13883 } 13884 13885 if (!feature) { 13886 unallocated_encoding(s); 13887 return; 13888 } 13889 13890 if (!fp_access_check(s)) { 13891 return; 13892 } 13893 13894 switch (opcode) { 13895 case 0: /* SHA512SU0 */ 13896 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13897 break; 13898 case 1: /* SM4E */ 13899 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13900 break; 13901 default: 13902 g_assert_not_reached(); 13903 } 13904 } 13905 13906 /* Crypto four-register 13907 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13908 * +-------------------+-----+------+---+------+------+------+ 13909 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13910 * +-------------------+-----+------+---+------+------+------+ 13911 */ 13912 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13913 { 13914 int op0 = extract32(insn, 21, 2); 13915 int rm = extract32(insn, 16, 5); 13916 int ra = extract32(insn, 10, 5); 13917 int rn = extract32(insn, 5, 5); 13918 int rd = extract32(insn, 0, 5); 13919 bool feature; 13920 13921 switch (op0) { 13922 case 0: /* EOR3 */ 13923 case 1: /* BCAX */ 13924 feature = dc_isar_feature(aa64_sha3, s); 13925 break; 13926 case 2: /* SM3SS1 */ 13927 feature = dc_isar_feature(aa64_sm3, s); 13928 break; 13929 default: 13930 unallocated_encoding(s); 13931 return; 13932 } 13933 13934 if (!feature) { 13935 unallocated_encoding(s); 13936 return; 13937 } 13938 13939 if (!fp_access_check(s)) { 13940 return; 13941 } 13942 13943 if (op0 < 2) { 13944 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13945 int pass; 13946 13947 tcg_op1 = tcg_temp_new_i64(); 13948 tcg_op2 = tcg_temp_new_i64(); 13949 tcg_op3 = tcg_temp_new_i64(); 13950 tcg_res[0] = tcg_temp_new_i64(); 13951 tcg_res[1] = tcg_temp_new_i64(); 13952 13953 for (pass = 0; pass < 2; pass++) { 13954 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13955 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13956 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13957 13958 if (op0 == 0) { 13959 /* EOR3 */ 13960 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13961 } else { 13962 /* BCAX */ 13963 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13964 } 13965 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13966 } 13967 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13968 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13969 } else { 13970 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13971 13972 tcg_op1 = tcg_temp_new_i32(); 13973 tcg_op2 = tcg_temp_new_i32(); 13974 tcg_op3 = tcg_temp_new_i32(); 13975 tcg_res = tcg_temp_new_i32(); 13976 tcg_zero = tcg_constant_i32(0); 13977 13978 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13979 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13980 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13981 13982 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13983 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13984 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13985 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13986 13987 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13988 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13989 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13990 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13991 } 13992 } 13993 13994 /* Crypto XAR 13995 * 31 21 20 16 15 10 9 5 4 0 13996 * +-----------------------+------+--------+------+------+ 13997 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13998 * +-----------------------+------+--------+------+------+ 13999 */ 14000 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 14001 { 14002 int rm = extract32(insn, 16, 5); 14003 int imm6 = extract32(insn, 10, 6); 14004 int rn = extract32(insn, 5, 5); 14005 int rd = extract32(insn, 0, 5); 14006 14007 if (!dc_isar_feature(aa64_sha3, s)) { 14008 unallocated_encoding(s); 14009 return; 14010 } 14011 14012 if (!fp_access_check(s)) { 14013 return; 14014 } 14015 14016 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 14017 vec_full_reg_offset(s, rn), 14018 vec_full_reg_offset(s, rm), imm6, 16, 14019 vec_full_reg_size(s)); 14020 } 14021 14022 /* Crypto three-reg imm2 14023 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14024 * +-----------------------+------+-----+------+--------+------+------+ 14025 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14026 * +-----------------------+------+-----+------+--------+------+------+ 14027 */ 14028 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14029 { 14030 static gen_helper_gvec_3 * const fns[4] = { 14031 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14032 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14033 }; 14034 int opcode = extract32(insn, 10, 2); 14035 int imm2 = extract32(insn, 12, 2); 14036 int rm = extract32(insn, 16, 5); 14037 int rn = extract32(insn, 5, 5); 14038 int rd = extract32(insn, 0, 5); 14039 14040 if (!dc_isar_feature(aa64_sm3, s)) { 14041 unallocated_encoding(s); 14042 return; 14043 } 14044 14045 if (!fp_access_check(s)) { 14046 return; 14047 } 14048 14049 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14050 } 14051 14052 /* C3.6 Data processing - SIMD, inc Crypto 14053 * 14054 * As the decode gets a little complex we are using a table based 14055 * approach for this part of the decode. 14056 */ 14057 static const AArch64DecodeTable data_proc_simd[] = { 14058 /* pattern , mask , fn */ 14059 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14060 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14061 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14062 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14063 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14064 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14065 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14066 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14067 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14068 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14069 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14070 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14071 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14072 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14073 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14074 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14075 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14076 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14077 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14078 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14079 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14080 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14081 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14082 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14083 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14084 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14085 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14086 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14087 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14088 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14089 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14090 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14091 { 0x00000000, 0x00000000, NULL } 14092 }; 14093 14094 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14095 { 14096 /* Note that this is called with all non-FP cases from 14097 * table C3-6 so it must UNDEF for entries not specifically 14098 * allocated to instructions in that table. 14099 */ 14100 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14101 if (fn) { 14102 fn(s, insn); 14103 } else { 14104 unallocated_encoding(s); 14105 } 14106 } 14107 14108 /* C3.6 Data processing - SIMD and floating point */ 14109 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14110 { 14111 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14112 disas_data_proc_fp(s, insn); 14113 } else { 14114 /* SIMD, including crypto */ 14115 disas_data_proc_simd(s, insn); 14116 } 14117 } 14118 14119 static bool trans_OK(DisasContext *s, arg_OK *a) 14120 { 14121 return true; 14122 } 14123 14124 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14125 { 14126 s->is_nonstreaming = true; 14127 return true; 14128 } 14129 14130 /** 14131 * is_guarded_page: 14132 * @env: The cpu environment 14133 * @s: The DisasContext 14134 * 14135 * Return true if the page is guarded. 14136 */ 14137 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14138 { 14139 uint64_t addr = s->base.pc_first; 14140 #ifdef CONFIG_USER_ONLY 14141 return page_get_flags(addr) & PAGE_BTI; 14142 #else 14143 CPUTLBEntryFull *full; 14144 void *host; 14145 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14146 int flags; 14147 14148 /* 14149 * We test this immediately after reading an insn, which means 14150 * that the TLB entry must be present and valid, and thus this 14151 * access will never raise an exception. 14152 */ 14153 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14154 false, &host, &full, 0); 14155 assert(!(flags & TLB_INVALID_MASK)); 14156 14157 return full->guarded; 14158 #endif 14159 } 14160 14161 /** 14162 * btype_destination_ok: 14163 * @insn: The instruction at the branch destination 14164 * @bt: SCTLR_ELx.BT 14165 * @btype: PSTATE.BTYPE, and is non-zero 14166 * 14167 * On a guarded page, there are a limited number of insns 14168 * that may be present at the branch target: 14169 * - branch target identifiers, 14170 * - paciasp, pacibsp, 14171 * - BRK insn 14172 * - HLT insn 14173 * Anything else causes a Branch Target Exception. 14174 * 14175 * Return true if the branch is compatible, false to raise BTITRAP. 14176 */ 14177 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14178 { 14179 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14180 /* HINT space */ 14181 switch (extract32(insn, 5, 7)) { 14182 case 0b011001: /* PACIASP */ 14183 case 0b011011: /* PACIBSP */ 14184 /* 14185 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14186 * with btype == 3. Otherwise all btype are ok. 14187 */ 14188 return !bt || btype != 3; 14189 case 0b100000: /* BTI */ 14190 /* Not compatible with any btype. */ 14191 return false; 14192 case 0b100010: /* BTI c */ 14193 /* Not compatible with btype == 3 */ 14194 return btype != 3; 14195 case 0b100100: /* BTI j */ 14196 /* Not compatible with btype == 2 */ 14197 return btype != 2; 14198 case 0b100110: /* BTI jc */ 14199 /* Compatible with any btype. */ 14200 return true; 14201 } 14202 } else { 14203 switch (insn & 0xffe0001fu) { 14204 case 0xd4200000u: /* BRK */ 14205 case 0xd4400000u: /* HLT */ 14206 /* Give priority to the breakpoint exception. */ 14207 return true; 14208 } 14209 } 14210 return false; 14211 } 14212 14213 /* C3.1 A64 instruction index by encoding */ 14214 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14215 { 14216 switch (extract32(insn, 25, 4)) { 14217 case 0x8: case 0x9: /* Data processing - immediate */ 14218 disas_data_proc_imm(s, insn); 14219 break; 14220 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14221 disas_b_exc_sys(s, insn); 14222 break; 14223 case 0x4: 14224 case 0x6: 14225 case 0xc: 14226 case 0xe: /* Loads and stores */ 14227 disas_ldst(s, insn); 14228 break; 14229 case 0x5: 14230 case 0xd: /* Data processing - register */ 14231 disas_data_proc_reg(s, insn); 14232 break; 14233 case 0x7: 14234 case 0xf: /* Data processing - SIMD and floating point */ 14235 disas_data_proc_simd_fp(s, insn); 14236 break; 14237 default: 14238 unallocated_encoding(s); 14239 break; 14240 } 14241 } 14242 14243 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14244 CPUState *cpu) 14245 { 14246 DisasContext *dc = container_of(dcbase, DisasContext, base); 14247 CPUARMState *env = cpu->env_ptr; 14248 ARMCPU *arm_cpu = env_archcpu(env); 14249 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14250 int bound, core_mmu_idx; 14251 14252 dc->isar = &arm_cpu->isar; 14253 dc->condjmp = 0; 14254 dc->pc_save = dc->base.pc_first; 14255 dc->aarch64 = true; 14256 dc->thumb = false; 14257 dc->sctlr_b = 0; 14258 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14259 dc->condexec_mask = 0; 14260 dc->condexec_cond = 0; 14261 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14262 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14263 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14264 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14265 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14266 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14267 #if !defined(CONFIG_USER_ONLY) 14268 dc->user = (dc->current_el == 0); 14269 #endif 14270 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14271 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14272 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14273 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14274 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14275 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14276 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14277 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14278 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14279 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14280 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14281 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14282 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14283 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14284 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14285 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14286 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14287 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14288 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14289 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14290 dc->vec_len = 0; 14291 dc->vec_stride = 0; 14292 dc->cp_regs = arm_cpu->cp_regs; 14293 dc->features = env->features; 14294 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14295 14296 #ifdef CONFIG_USER_ONLY 14297 /* In sve_probe_page, we assume TBI is enabled. */ 14298 tcg_debug_assert(dc->tbid & 1); 14299 #endif 14300 14301 /* Single step state. The code-generation logic here is: 14302 * SS_ACTIVE == 0: 14303 * generate code with no special handling for single-stepping (except 14304 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14305 * this happens anyway because those changes are all system register or 14306 * PSTATE writes). 14307 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14308 * emit code for one insn 14309 * emit code to clear PSTATE.SS 14310 * emit code to generate software step exception for completed step 14311 * end TB (as usual for having generated an exception) 14312 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14313 * emit code to generate a software step exception 14314 * end the TB 14315 */ 14316 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14317 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14318 dc->is_ldex = false; 14319 14320 /* Bound the number of insns to execute to those left on the page. */ 14321 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14322 14323 /* If architectural single step active, limit to 1. */ 14324 if (dc->ss_active) { 14325 bound = 1; 14326 } 14327 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14328 } 14329 14330 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14331 { 14332 } 14333 14334 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14335 { 14336 DisasContext *dc = container_of(dcbase, DisasContext, base); 14337 target_ulong pc_arg = dc->base.pc_next; 14338 14339 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14340 pc_arg &= ~TARGET_PAGE_MASK; 14341 } 14342 tcg_gen_insn_start(pc_arg, 0, 0); 14343 dc->insn_start = tcg_last_op(); 14344 } 14345 14346 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14347 { 14348 DisasContext *s = container_of(dcbase, DisasContext, base); 14349 CPUARMState *env = cpu->env_ptr; 14350 uint64_t pc = s->base.pc_next; 14351 uint32_t insn; 14352 14353 /* Singlestep exceptions have the highest priority. */ 14354 if (s->ss_active && !s->pstate_ss) { 14355 /* Singlestep state is Active-pending. 14356 * If we're in this state at the start of a TB then either 14357 * a) we just took an exception to an EL which is being debugged 14358 * and this is the first insn in the exception handler 14359 * b) debug exceptions were masked and we just unmasked them 14360 * without changing EL (eg by clearing PSTATE.D) 14361 * In either case we're going to take a swstep exception in the 14362 * "did not step an insn" case, and so the syndrome ISV and EX 14363 * bits should be zero. 14364 */ 14365 assert(s->base.num_insns == 1); 14366 gen_swstep_exception(s, 0, 0); 14367 s->base.is_jmp = DISAS_NORETURN; 14368 s->base.pc_next = pc + 4; 14369 return; 14370 } 14371 14372 if (pc & 3) { 14373 /* 14374 * PC alignment fault. This has priority over the instruction abort 14375 * that we would receive from a translation fault via arm_ldl_code. 14376 * This should only be possible after an indirect branch, at the 14377 * start of the TB. 14378 */ 14379 assert(s->base.num_insns == 1); 14380 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14381 s->base.is_jmp = DISAS_NORETURN; 14382 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14383 return; 14384 } 14385 14386 s->pc_curr = pc; 14387 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14388 s->insn = insn; 14389 s->base.pc_next = pc + 4; 14390 14391 s->fp_access_checked = false; 14392 s->sve_access_checked = false; 14393 14394 if (s->pstate_il) { 14395 /* 14396 * Illegal execution state. This has priority over BTI 14397 * exceptions, but comes after instruction abort exceptions. 14398 */ 14399 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14400 return; 14401 } 14402 14403 if (dc_isar_feature(aa64_bti, s)) { 14404 if (s->base.num_insns == 1) { 14405 /* 14406 * At the first insn of the TB, compute s->guarded_page. 14407 * We delayed computing this until successfully reading 14408 * the first insn of the TB, above. This (mostly) ensures 14409 * that the softmmu tlb entry has been populated, and the 14410 * page table GP bit is available. 14411 * 14412 * Note that we need to compute this even if btype == 0, 14413 * because this value is used for BR instructions later 14414 * where ENV is not available. 14415 */ 14416 s->guarded_page = is_guarded_page(env, s); 14417 14418 /* First insn can have btype set to non-zero. */ 14419 tcg_debug_assert(s->btype >= 0); 14420 14421 /* 14422 * Note that the Branch Target Exception has fairly high 14423 * priority -- below debugging exceptions but above most 14424 * everything else. This allows us to handle this now 14425 * instead of waiting until the insn is otherwise decoded. 14426 */ 14427 if (s->btype != 0 14428 && s->guarded_page 14429 && !btype_destination_ok(insn, s->bt, s->btype)) { 14430 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14431 return; 14432 } 14433 } else { 14434 /* Not the first insn: btype must be 0. */ 14435 tcg_debug_assert(s->btype == 0); 14436 } 14437 } 14438 14439 s->is_nonstreaming = false; 14440 if (s->sme_trap_nonstreaming) { 14441 disas_sme_fa64(s, insn); 14442 } 14443 14444 if (!disas_a64(s, insn) && 14445 !disas_sme(s, insn) && 14446 !disas_sve(s, insn)) { 14447 disas_a64_legacy(s, insn); 14448 } 14449 14450 /* 14451 * After execution of most insns, btype is reset to 0. 14452 * Note that we set btype == -1 when the insn sets btype. 14453 */ 14454 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14455 reset_btype(s); 14456 } 14457 } 14458 14459 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14460 { 14461 DisasContext *dc = container_of(dcbase, DisasContext, base); 14462 14463 if (unlikely(dc->ss_active)) { 14464 /* Note that this means single stepping WFI doesn't halt the CPU. 14465 * For conditional branch insns this is harmless unreachable code as 14466 * gen_goto_tb() has already handled emitting the debug exception 14467 * (and thus a tb-jump is not possible when singlestepping). 14468 */ 14469 switch (dc->base.is_jmp) { 14470 default: 14471 gen_a64_update_pc(dc, 4); 14472 /* fall through */ 14473 case DISAS_EXIT: 14474 case DISAS_JUMP: 14475 gen_step_complete_exception(dc); 14476 break; 14477 case DISAS_NORETURN: 14478 break; 14479 } 14480 } else { 14481 switch (dc->base.is_jmp) { 14482 case DISAS_NEXT: 14483 case DISAS_TOO_MANY: 14484 gen_goto_tb(dc, 1, 4); 14485 break; 14486 default: 14487 case DISAS_UPDATE_EXIT: 14488 gen_a64_update_pc(dc, 4); 14489 /* fall through */ 14490 case DISAS_EXIT: 14491 tcg_gen_exit_tb(NULL, 0); 14492 break; 14493 case DISAS_UPDATE_NOCHAIN: 14494 gen_a64_update_pc(dc, 4); 14495 /* fall through */ 14496 case DISAS_JUMP: 14497 tcg_gen_lookup_and_goto_ptr(); 14498 break; 14499 case DISAS_NORETURN: 14500 case DISAS_SWI: 14501 break; 14502 case DISAS_WFE: 14503 gen_a64_update_pc(dc, 4); 14504 gen_helper_wfe(cpu_env); 14505 break; 14506 case DISAS_YIELD: 14507 gen_a64_update_pc(dc, 4); 14508 gen_helper_yield(cpu_env); 14509 break; 14510 case DISAS_WFI: 14511 /* 14512 * This is a special case because we don't want to just halt 14513 * the CPU if trying to debug across a WFI. 14514 */ 14515 gen_a64_update_pc(dc, 4); 14516 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14517 /* 14518 * The helper doesn't necessarily throw an exception, but we 14519 * must go back to the main loop to check for interrupts anyway. 14520 */ 14521 tcg_gen_exit_tb(NULL, 0); 14522 break; 14523 } 14524 } 14525 } 14526 14527 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14528 CPUState *cpu, FILE *logfile) 14529 { 14530 DisasContext *dc = container_of(dcbase, DisasContext, base); 14531 14532 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14533 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14534 } 14535 14536 const TranslatorOps aarch64_translator_ops = { 14537 .init_disas_context = aarch64_tr_init_disas_context, 14538 .tb_start = aarch64_tr_tb_start, 14539 .insn_start = aarch64_tr_insn_start, 14540 .translate_insn = aarch64_tr_translate_insn, 14541 .tb_stop = aarch64_tr_tb_stop, 14542 .disas_log = aarch64_tr_disas_log, 14543 }; 14544