xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 30a1690f)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand + fpstatus pointer + simd data value operation using
740  * an out-of-line helper.
741  */
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743                               int rm, int ra, bool is_fp16, int data,
744                               gen_helper_gvec_4_ptr *fn)
745 {
746     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748                        vec_full_reg_offset(s, rn),
749                        vec_full_reg_offset(s, rm),
750                        vec_full_reg_offset(s, ra), fpst,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755  * than the 32 bit equivalent.
756  */
757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762 
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766     if (sf) {
767         gen_set_NZ64(result);
768     } else {
769         tcg_gen_extrl_i64_i32(cpu_ZF, result);
770         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771     }
772     tcg_gen_movi_i32(cpu_CF, 0);
773     tcg_gen_movi_i32(cpu_VF, 0);
774 }
775 
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779     TCGv_i64 result, flag, tmp;
780     result = tcg_temp_new_i64();
781     flag = tcg_temp_new_i64();
782     tmp = tcg_temp_new_i64();
783 
784     tcg_gen_movi_i64(tmp, 0);
785     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 
787     tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 
789     gen_set_NZ64(result);
790 
791     tcg_gen_xor_i64(flag, result, t0);
792     tcg_gen_xor_i64(tmp, t0, t1);
793     tcg_gen_andc_i64(flag, flag, tmp);
794     tcg_gen_extrh_i64_i32(cpu_VF, flag);
795 
796     tcg_gen_mov_i64(dest, result);
797 }
798 
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     TCGv_i32 t0_32 = tcg_temp_new_i32();
802     TCGv_i32 t1_32 = tcg_temp_new_i32();
803     TCGv_i32 tmp = tcg_temp_new_i32();
804 
805     tcg_gen_movi_i32(tmp, 0);
806     tcg_gen_extrl_i64_i32(t0_32, t0);
807     tcg_gen_extrl_i64_i32(t1_32, t1);
808     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811     tcg_gen_xor_i32(tmp, t0_32, t1_32);
812     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813     tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815 
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818     if (sf) {
819         gen_add64_CC(dest, t0, t1);
820     } else {
821         gen_add32_CC(dest, t0, t1);
822     }
823 }
824 
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828     /* 64 bit arithmetic */
829     TCGv_i64 result, flag, tmp;
830 
831     result = tcg_temp_new_i64();
832     flag = tcg_temp_new_i64();
833     tcg_gen_sub_i64(result, t0, t1);
834 
835     gen_set_NZ64(result);
836 
837     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838     tcg_gen_extrl_i64_i32(cpu_CF, flag);
839 
840     tcg_gen_xor_i64(flag, result, t0);
841     tmp = tcg_temp_new_i64();
842     tcg_gen_xor_i64(tmp, t0, t1);
843     tcg_gen_and_i64(flag, flag, tmp);
844     tcg_gen_extrh_i64_i32(cpu_VF, flag);
845     tcg_gen_mov_i64(dest, result);
846 }
847 
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850     /* 32 bit arithmetic */
851     TCGv_i32 t0_32 = tcg_temp_new_i32();
852     TCGv_i32 t1_32 = tcg_temp_new_i32();
853     TCGv_i32 tmp;
854 
855     tcg_gen_extrl_i64_i32(t0_32, t0);
856     tcg_gen_extrl_i64_i32(t1_32, t1);
857     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861     tmp = tcg_temp_new_i32();
862     tcg_gen_xor_i32(tmp, t0_32, t1_32);
863     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864     tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866 
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869     if (sf) {
870         gen_sub64_CC(dest, t0, t1);
871     } else {
872         gen_sub32_CC(dest, t0, t1);
873     }
874 }
875 
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879     TCGv_i64 flag = tcg_temp_new_i64();
880     tcg_gen_extu_i32_i64(flag, cpu_CF);
881     tcg_gen_add_i64(dest, t0, t1);
882     tcg_gen_add_i64(dest, dest, flag);
883 
884     if (!sf) {
885         tcg_gen_ext32u_i64(dest, dest);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     if (sf) {
893         TCGv_i64 result = tcg_temp_new_i64();
894         TCGv_i64 cf_64 = tcg_temp_new_i64();
895         TCGv_i64 vf_64 = tcg_temp_new_i64();
896         TCGv_i64 tmp = tcg_temp_new_i64();
897         TCGv_i64 zero = tcg_constant_i64(0);
898 
899         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903         gen_set_NZ64(result);
904 
905         tcg_gen_xor_i64(vf_64, result, t0);
906         tcg_gen_xor_i64(tmp, t0, t1);
907         tcg_gen_andc_i64(vf_64, vf_64, tmp);
908         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909 
910         tcg_gen_mov_i64(dest, result);
911     } else {
912         TCGv_i32 t0_32 = tcg_temp_new_i32();
913         TCGv_i32 t1_32 = tcg_temp_new_i32();
914         TCGv_i32 tmp = tcg_temp_new_i32();
915         TCGv_i32 zero = tcg_constant_i32(0);
916 
917         tcg_gen_extrl_i64_i32(t0_32, t0);
918         tcg_gen_extrl_i64_i32(t1_32, t1);
919         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921 
922         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924         tcg_gen_xor_i32(tmp, t0_32, t1_32);
925         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926         tcg_gen_extu_i32_i64(dest, cpu_NF);
927     }
928 }
929 
930 /*
931  * Load/Store generators
932  */
933 
934 /*
935  * Store from GPR register to memory.
936  */
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
939                              bool iss_valid,
940                              unsigned int iss_srt,
941                              bool iss_sf, bool iss_ar)
942 {
943     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944 
945     if (iss_valid) {
946         uint32_t syn;
947 
948         syn = syn_data_abort_with_iss(0,
949                                       (memop & MO_SIZE),
950                                       false,
951                                       iss_srt,
952                                       iss_sf,
953                                       iss_ar,
954                                       0, 0, 0, 0, 0, false);
955         disas_set_insn_syndrome(s, syn);
956     }
957 }
958 
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960                       TCGv_i64 tcg_addr, MemOp memop,
961                       bool iss_valid,
962                       unsigned int iss_srt,
963                       bool iss_sf, bool iss_ar)
964 {
965     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966                      iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968 
969 /*
970  * Load from memory to GPR register
971  */
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973                              MemOp memop, bool extend, int memidx,
974                              bool iss_valid, unsigned int iss_srt,
975                              bool iss_sf, bool iss_ar)
976 {
977     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978 
979     if (extend && (memop & MO_SIGN)) {
980         g_assert((memop & MO_SIZE) <= MO_32);
981         tcg_gen_ext32u_i64(dest, dest);
982     }
983 
984     if (iss_valid) {
985         uint32_t syn;
986 
987         syn = syn_data_abort_with_iss(0,
988                                       (memop & MO_SIZE),
989                                       (memop & MO_SIGN) != 0,
990                                       iss_srt,
991                                       iss_sf,
992                                       iss_ar,
993                                       0, 0, 0, 0, 0, false);
994         disas_set_insn_syndrome(s, syn);
995     }
996 }
997 
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999                       MemOp memop, bool extend,
1000                       bool iss_valid, unsigned int iss_srt,
1001                       bool iss_sf, bool iss_ar)
1002 {
1003     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004                      iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006 
1007 /*
1008  * Store from FP register to memory
1009  */
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013     TCGv_i64 tmplo = tcg_temp_new_i64();
1014 
1015     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016 
1017     if ((mop & MO_SIZE) < MO_128) {
1018         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019     } else {
1020         TCGv_i64 tmphi = tcg_temp_new_i64();
1021         TCGv_i128 t16 = tcg_temp_new_i128();
1022 
1023         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025 
1026         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027     }
1028 }
1029 
1030 /*
1031  * Load from memory to FP register
1032  */
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035     /* This always zero-extends and writes to a full 128 bit wide vector */
1036     TCGv_i64 tmplo = tcg_temp_new_i64();
1037     TCGv_i64 tmphi = NULL;
1038 
1039     if ((mop & MO_SIZE) < MO_128) {
1040         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041     } else {
1042         TCGv_i128 t16 = tcg_temp_new_i128();
1043 
1044         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045 
1046         tmphi = tcg_temp_new_i64();
1047         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048     }
1049 
1050     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051 
1052     if (tmphi) {
1053         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054     }
1055     clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057 
1058 /*
1059  * Vector load/store helpers.
1060  *
1061  * The principal difference between this and a FP load is that we don't
1062  * zero extend as we are filling a partial chunk of the vector register.
1063  * These functions don't support 128 bit loads/stores, which would be
1064  * normal load/store operations.
1065  *
1066  * The _i32 versions are useful when operating on 32 bit quantities
1067  * (eg for floating point single or using Neon helper functions).
1068  */
1069 
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072                              int element, MemOp memop)
1073 {
1074     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075     switch ((unsigned)memop) {
1076     case MO_8:
1077         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078         break;
1079     case MO_16:
1080         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081         break;
1082     case MO_32:
1083         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084         break;
1085     case MO_8|MO_SIGN:
1086         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087         break;
1088     case MO_16|MO_SIGN:
1089         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090         break;
1091     case MO_32|MO_SIGN:
1092         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093         break;
1094     case MO_64:
1095     case MO_64|MO_SIGN:
1096         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104                                  int element, MemOp memop)
1105 {
1106     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107     switch (memop) {
1108     case MO_8:
1109         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110         break;
1111     case MO_16:
1112         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113         break;
1114     case MO_8|MO_SIGN:
1115         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116         break;
1117     case MO_16|MO_SIGN:
1118         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119         break;
1120     case MO_32:
1121     case MO_32|MO_SIGN:
1122         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127 }
1128 
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131                               int element, MemOp memop)
1132 {
1133     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134     switch (memop) {
1135     case MO_8:
1136         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137         break;
1138     case MO_16:
1139         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140         break;
1141     case MO_32:
1142         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143         break;
1144     case MO_64:
1145         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146         break;
1147     default:
1148         g_assert_not_reached();
1149     }
1150 }
1151 
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153                                   int destidx, int element, MemOp memop)
1154 {
1155     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156     switch (memop) {
1157     case MO_8:
1158         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_16:
1161         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162         break;
1163     case MO_32:
1164         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169 }
1170 
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173                       TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176 
1177     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180 
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183                       TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186 
1187     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190 
1191 /* Check that FP/Neon access is enabled. If it is, return
1192  * true. If not, emit code to generate an appropriate exception,
1193  * and return false; the caller should not emit any code for
1194  * the instruction. Note that this check must happen after all
1195  * unallocated-encoding checks (otherwise the syndrome information
1196  * for the resulting exception will be incorrect).
1197  */
1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200     if (s->fp_excp_el) {
1201         assert(!s->fp_access_checked);
1202         s->fp_access_checked = true;
1203 
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_fp_access_trap(1, 0xe, false, 0),
1206                               s->fp_excp_el);
1207         return false;
1208     }
1209     s->fp_access_checked = true;
1210     return true;
1211 }
1212 
1213 static bool fp_access_check(DisasContext *s)
1214 {
1215     if (!fp_access_check_only(s)) {
1216         return false;
1217     }
1218     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219         gen_exception_insn(s, 0, EXCP_UDEF,
1220                            syn_smetrap(SME_ET_Streaming, false));
1221         return false;
1222     }
1223     return true;
1224 }
1225 
1226 /*
1227  * Check that SVE access is enabled.  If it is, return true.
1228  * If not, emit code to generate an appropriate exception and return false.
1229  * This function corresponds to CheckSVEEnabled().
1230  */
1231 bool sve_access_check(DisasContext *s)
1232 {
1233     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234         assert(dc_isar_feature(aa64_sme, s));
1235         if (!sme_sm_enabled_check(s)) {
1236             goto fail_exit;
1237         }
1238     } else if (s->sve_excp_el) {
1239         gen_exception_insn_el(s, 0, EXCP_UDEF,
1240                               syn_sve_access_trap(), s->sve_excp_el);
1241         goto fail_exit;
1242     }
1243     s->sve_access_checked = true;
1244     return fp_access_check(s);
1245 
1246  fail_exit:
1247     /* Assert that we only raise one exception per instruction. */
1248     assert(!s->sve_access_checked);
1249     s->sve_access_checked = true;
1250     return false;
1251 }
1252 
1253 /*
1254  * Check that SME access is enabled, raise an exception if not.
1255  * Note that this function corresponds to CheckSMEAccess and is
1256  * only used directly for cpregs.
1257  */
1258 static bool sme_access_check(DisasContext *s)
1259 {
1260     if (s->sme_excp_el) {
1261         gen_exception_insn_el(s, 0, EXCP_UDEF,
1262                               syn_smetrap(SME_ET_AccessTrap, false),
1263                               s->sme_excp_el);
1264         return false;
1265     }
1266     return true;
1267 }
1268 
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272     /*
1273      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274      * to be zero when fp_excp_el has priority.  This is because we need
1275      * sme_excp_el by itself for cpregs access checks.
1276      */
1277     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278         s->fp_access_checked = true;
1279         return sme_access_check(s);
1280     }
1281     return fp_access_check_only(s);
1282 }
1283 
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287     if (!sme_enabled_check(s)) {
1288         return false;
1289     }
1290     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291         gen_exception_insn(s, 0, EXCP_UDEF,
1292                            syn_smetrap(SME_ET_NotStreaming, false));
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_InactiveZA, false));
1298         return false;
1299     }
1300     return true;
1301 }
1302 
1303 /*
1304  * Expanders for AdvSIMD translation functions.
1305  */
1306 
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308                             gen_helper_gvec_2 *fn)
1309 {
1310     if (!a->q && a->esz == MO_64) {
1311         return false;
1312     }
1313     if (fp_access_check(s)) {
1314         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315     }
1316     return true;
1317 }
1318 
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320                             gen_helper_gvec_3 *fn)
1321 {
1322     if (!a->q && a->esz == MO_64) {
1323         return false;
1324     }
1325     if (fp_access_check(s)) {
1326         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327     }
1328     return true;
1329 }
1330 
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333     if (!a->q && a->esz == MO_64) {
1334         return false;
1335     }
1336     if (fp_access_check(s)) {
1337         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338     }
1339     return true;
1340 }
1341 
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344     if (a->esz == MO_64) {
1345         return false;
1346     }
1347     if (fp_access_check(s)) {
1348         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349     }
1350     return true;
1351 }
1352 
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355     if (a->esz == MO_8) {
1356         return false;
1357     }
1358     return do_gvec_fn3_no64(s, a, fn);
1359 }
1360 
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363     if (!a->q && a->esz == MO_64) {
1364         return false;
1365     }
1366     if (fp_access_check(s)) {
1367         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368     }
1369     return true;
1370 }
1371 
1372 /*
1373  * This utility function is for doing register extension with an
1374  * optional shift. You will likely want to pass a temporary for the
1375  * destination register. See DecodeRegExtend() in the ARM ARM.
1376  */
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378                               int option, unsigned int shift)
1379 {
1380     int extsize = extract32(option, 0, 2);
1381     bool is_signed = extract32(option, 2, 1);
1382 
1383     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386 
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389     /* The AArch64 architecture mandates that (if enabled via PSTATE
1390      * or SCTLR bits) there is a check that SP is 16-aligned on every
1391      * SP-relative load or store (with an exception generated if it is not).
1392      * In line with general QEMU practice regarding misaligned accesses,
1393      * we omit these checks for the sake of guest program performance.
1394      * This function is provided as a hook so we can more easily add these
1395      * checks in future (possibly as a "favour catching guest program bugs
1396      * over speed" user selectable option).
1397      */
1398 }
1399 
1400 /*
1401  * This provides a simple table based table lookup decoder. It is
1402  * intended to be used when the relevant bits for decode are too
1403  * awkwardly placed and switch/if based logic would be confusing and
1404  * deeply nested. Since it's a linear search through the table, tables
1405  * should be kept small.
1406  *
1407  * It returns the first handler where insn & mask == pattern, or
1408  * NULL if there is no match.
1409  * The table is terminated by an empty mask (i.e. 0)
1410  */
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412                                                uint32_t insn)
1413 {
1414     const AArch64DecodeTable *tptr = table;
1415 
1416     while (tptr->mask) {
1417         if ((insn & tptr->mask) == tptr->pattern) {
1418             return tptr->disas_fn;
1419         }
1420         tptr++;
1421     }
1422     return NULL;
1423 }
1424 
1425 /*
1426  * The instruction disassembly implemented here matches
1427  * the instruction encoding classifications in chapter C4
1428  * of the ARM Architecture Reference Manual (DDI0487B_a);
1429  * classification names and decode diagrams here should generally
1430  * match up with those in the manual.
1431  */
1432 
1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435     reset_btype(s);
1436     gen_goto_tb(s, 0, a->imm);
1437     return true;
1438 }
1439 
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443     reset_btype(s);
1444     gen_goto_tb(s, 0, a->imm);
1445     return true;
1446 }
1447 
1448 
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451     DisasLabel match;
1452     TCGv_i64 tcg_cmp;
1453 
1454     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455     reset_btype(s);
1456 
1457     match = gen_disas_label(s);
1458     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459                         tcg_cmp, 0, match.label);
1460     gen_goto_tb(s, 0, 4);
1461     set_disas_label(s, match);
1462     gen_goto_tb(s, 1, a->imm);
1463     return true;
1464 }
1465 
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = tcg_temp_new_i64();
1472     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473 
1474     reset_btype(s);
1475 
1476     match = gen_disas_label(s);
1477     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478                         tcg_cmp, 0, match.label);
1479     gen_goto_tb(s, 0, 4);
1480     set_disas_label(s, match);
1481     gen_goto_tb(s, 1, a->imm);
1482     return true;
1483 }
1484 
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487     /* BC.cond is only present with FEAT_HBC */
1488     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489         return false;
1490     }
1491     reset_btype(s);
1492     if (a->cond < 0x0e) {
1493         /* genuinely conditional branches */
1494         DisasLabel match = gen_disas_label(s);
1495         arm_gen_test_cc(a->cond, match.label);
1496         gen_goto_tb(s, 0, 4);
1497         set_disas_label(s, match);
1498         gen_goto_tb(s, 1, a->imm);
1499     } else {
1500         /* 0xe and 0xf are both "always" conditions */
1501         gen_goto_tb(s, 0, a->imm);
1502     }
1503     return true;
1504 }
1505 
1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508     if (dc_isar_feature(aa64_bti, s)) {
1509         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1510         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1511     }
1512 }
1513 
1514 static void set_btype_for_blr(DisasContext *s)
1515 {
1516     if (dc_isar_feature(aa64_bti, s)) {
1517         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1518         set_btype(s, 2);
1519     }
1520 }
1521 
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1523 {
1524     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525     set_btype_for_br(s, a->rn);
1526     s->base.is_jmp = DISAS_JUMP;
1527     return true;
1528 }
1529 
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1531 {
1532     TCGv_i64 dst = cpu_reg(s, a->rn);
1533     TCGv_i64 lr = cpu_reg(s, 30);
1534     if (dst == lr) {
1535         TCGv_i64 tmp = tcg_temp_new_i64();
1536         tcg_gen_mov_i64(tmp, dst);
1537         dst = tmp;
1538     }
1539     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540     gen_a64_set_pc(s, dst);
1541     set_btype_for_blr(s);
1542     s->base.is_jmp = DISAS_JUMP;
1543     return true;
1544 }
1545 
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1547 {
1548     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549     s->base.is_jmp = DISAS_JUMP;
1550     return true;
1551 }
1552 
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554                                    TCGv_i64 modifier, bool use_key_a)
1555 {
1556     TCGv_i64 truedst;
1557     /*
1558      * Return the branch target for a BRAA/RETA/etc, which is either
1559      * just the destination dst, or that value with the pauth check
1560      * done and the code removed from the high bits.
1561      */
1562     if (!s->pauth_active) {
1563         return dst;
1564     }
1565 
1566     truedst = tcg_temp_new_i64();
1567     if (use_key_a) {
1568         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569     } else {
1570         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1571     }
1572     return truedst;
1573 }
1574 
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1576 {
1577     TCGv_i64 dst;
1578 
1579     if (!dc_isar_feature(aa64_pauth, s)) {
1580         return false;
1581     }
1582 
1583     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584     gen_a64_set_pc(s, dst);
1585     set_btype_for_br(s, a->rn);
1586     s->base.is_jmp = DISAS_JUMP;
1587     return true;
1588 }
1589 
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1591 {
1592     TCGv_i64 dst, lr;
1593 
1594     if (!dc_isar_feature(aa64_pauth, s)) {
1595         return false;
1596     }
1597 
1598     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599     lr = cpu_reg(s, 30);
1600     if (dst == lr) {
1601         TCGv_i64 tmp = tcg_temp_new_i64();
1602         tcg_gen_mov_i64(tmp, dst);
1603         dst = tmp;
1604     }
1605     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606     gen_a64_set_pc(s, dst);
1607     set_btype_for_blr(s);
1608     s->base.is_jmp = DISAS_JUMP;
1609     return true;
1610 }
1611 
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1613 {
1614     TCGv_i64 dst;
1615 
1616     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617     gen_a64_set_pc(s, dst);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (!dc_isar_feature(aa64_pauth, s)) {
1627         return false;
1628     }
1629     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_br(s, a->rn);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1637 {
1638     TCGv_i64 dst, lr;
1639 
1640     if (!dc_isar_feature(aa64_pauth, s)) {
1641         return false;
1642     }
1643     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644     lr = cpu_reg(s, 30);
1645     if (dst == lr) {
1646         TCGv_i64 tmp = tcg_temp_new_i64();
1647         tcg_gen_mov_i64(tmp, dst);
1648         dst = tmp;
1649     }
1650     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651     gen_a64_set_pc(s, dst);
1652     set_btype_for_blr(s);
1653     s->base.is_jmp = DISAS_JUMP;
1654     return true;
1655 }
1656 
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1658 {
1659     TCGv_i64 dst;
1660 
1661     if (s->current_el == 0) {
1662         return false;
1663     }
1664     if (s->trap_eret) {
1665         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666         return true;
1667     }
1668     dst = tcg_temp_new_i64();
1669     tcg_gen_ld_i64(dst, tcg_env,
1670                    offsetof(CPUARMState, elr_el[s->current_el]));
1671 
1672     translator_io_start(&s->base);
1673 
1674     gen_helper_exception_return(tcg_env, dst);
1675     /* Must exit loop to check un-masked IRQs */
1676     s->base.is_jmp = DISAS_EXIT;
1677     return true;
1678 }
1679 
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1681 {
1682     TCGv_i64 dst;
1683 
1684     if (!dc_isar_feature(aa64_pauth, s)) {
1685         return false;
1686     }
1687     if (s->current_el == 0) {
1688         return false;
1689     }
1690     /* The FGT trap takes precedence over an auth trap. */
1691     if (s->trap_eret) {
1692         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693         return true;
1694     }
1695     dst = tcg_temp_new_i64();
1696     tcg_gen_ld_i64(dst, tcg_env,
1697                    offsetof(CPUARMState, elr_el[s->current_el]));
1698 
1699     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1700 
1701     translator_io_start(&s->base);
1702 
1703     gen_helper_exception_return(tcg_env, dst);
1704     /* Must exit loop to check un-masked IRQs */
1705     s->base.is_jmp = DISAS_EXIT;
1706     return true;
1707 }
1708 
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1710 {
1711     return true;
1712 }
1713 
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1715 {
1716     /*
1717      * When running in MTTCG we don't generate jumps to the yield and
1718      * WFE helpers as it won't affect the scheduling of other vCPUs.
1719      * If we wanted to more completely model WFE/SEV so we don't busy
1720      * spin unnecessarily we would need to do something more involved.
1721      */
1722     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723         s->base.is_jmp = DISAS_YIELD;
1724     }
1725     return true;
1726 }
1727 
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1729 {
1730     s->base.is_jmp = DISAS_WFI;
1731     return true;
1732 }
1733 
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1735 {
1736     /*
1737      * When running in MTTCG we don't generate jumps to the yield and
1738      * WFE helpers as it won't affect the scheduling of other vCPUs.
1739      * If we wanted to more completely model WFE/SEV so we don't busy
1740      * spin unnecessarily we would need to do something more involved.
1741      */
1742     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743         s->base.is_jmp = DISAS_WFE;
1744     }
1745     return true;
1746 }
1747 
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1749 {
1750     if (!dc_isar_feature(aa64_wfxt, s)) {
1751         return false;
1752     }
1753 
1754     /*
1755      * Because we need to pass the register value to the helper,
1756      * it's easier to emit the code now, unlike trans_WFI which
1757      * defers it to aarch64_tr_tb_stop(). That means we need to
1758      * check ss_active so that single-stepping a WFIT doesn't halt.
1759      */
1760     if (s->ss_active) {
1761         /* Act like a NOP under architectural singlestep */
1762         return true;
1763     }
1764 
1765     gen_a64_update_pc(s, 4);
1766     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767     /* Go back to the main loop to check for interrupts */
1768     s->base.is_jmp = DISAS_EXIT;
1769     return true;
1770 }
1771 
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * We rely here on our WFE implementation being a NOP, so we
1780      * don't need to do anything different to handle the WFET timeout
1781      * from what trans_WFE does.
1782      */
1783     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784         s->base.is_jmp = DISAS_WFE;
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1830 {
1831     /* Without RAS, we must implement this as NOP. */
1832     if (dc_isar_feature(aa64_ras, s)) {
1833         /*
1834          * QEMU does not have a source of physical SErrors,
1835          * so we are only concerned with virtual SErrors.
1836          * The pseudocode in the ARM for this case is
1837          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838          *      AArch64.vESBOperation();
1839          * Most of the condition can be evaluated at translation time.
1840          * Test for EL2 present, and defer test for SEL2 to runtime.
1841          */
1842         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843             gen_helper_vesb(tcg_env);
1844         }
1845     }
1846     return true;
1847 }
1848 
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1850 {
1851     if (s->pauth_active) {
1852         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1853     }
1854     return true;
1855 }
1856 
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1858 {
1859     if (s->pauth_active) {
1860         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1861     }
1862     return true;
1863 }
1864 
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1866 {
1867     if (s->pauth_active) {
1868         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1869     }
1870     return true;
1871 }
1872 
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1877     }
1878     return true;
1879 }
1880 
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1885     }
1886     return true;
1887 }
1888 
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1893     }
1894     return true;
1895 }
1896 
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1901     }
1902     return true;
1903 }
1904 
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1909     }
1910     return true;
1911 }
1912 
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1914 {
1915     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916     return true;
1917 }
1918 
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1920 {
1921     /* We handle DSB and DMB the same way */
1922     TCGBar bar;
1923 
1924     switch (a->types) {
1925     case 1: /* MBReqTypes_Reads */
1926         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927         break;
1928     case 2: /* MBReqTypes_Writes */
1929         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930         break;
1931     default: /* MBReqTypes_All */
1932         bar = TCG_BAR_SC | TCG_MO_ALL;
1933         break;
1934     }
1935     tcg_gen_mb(bar);
1936     return true;
1937 }
1938 
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1940 {
1941     /*
1942      * We need to break the TB after this insn to execute
1943      * self-modifying code correctly and also to take
1944      * any pending interrupts immediately.
1945      */
1946     reset_btype(s);
1947     gen_goto_tb(s, 0, 4);
1948     return true;
1949 }
1950 
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1952 {
1953     if (!dc_isar_feature(aa64_sb, s)) {
1954         return false;
1955     }
1956     /*
1957      * TODO: There is no speculation barrier opcode for TCG;
1958      * MB and end the TB instead.
1959      */
1960     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961     gen_goto_tb(s, 0, 4);
1962     return true;
1963 }
1964 
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1966 {
1967     if (!dc_isar_feature(aa64_condm_4, s)) {
1968         return false;
1969     }
1970     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971     return true;
1972 }
1973 
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1975 {
1976     TCGv_i32 z;
1977 
1978     if (!dc_isar_feature(aa64_condm_5, s)) {
1979         return false;
1980     }
1981 
1982     z = tcg_temp_new_i32();
1983 
1984     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1985 
1986     /*
1987      * (!C & !Z) << 31
1988      * (!(C | Z)) << 31
1989      * ~((C | Z) << 31)
1990      * ~-(C | Z)
1991      * (C | Z) - 1
1992      */
1993     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1995 
1996     /* !(Z & C) */
1997     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1999 
2000     /* (!C & Z) << 31 -> -(Z & ~C) */
2001     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2003 
2004     /* C | Z */
2005     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2006 
2007     return true;
2008 }
2009 
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2011 {
2012     if (!dc_isar_feature(aa64_condm_5, s)) {
2013         return false;
2014     }
2015 
2016     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2017     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2018 
2019     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2021 
2022     tcg_gen_movi_i32(cpu_NF, 0);
2023     tcg_gen_movi_i32(cpu_VF, 0);
2024 
2025     return true;
2026 }
2027 
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2029 {
2030     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031         return false;
2032     }
2033     if (a->imm & 1) {
2034         set_pstate_bits(PSTATE_UAO);
2035     } else {
2036         clear_pstate_bits(PSTATE_UAO);
2037     }
2038     gen_rebuild_hflags(s);
2039     s->base.is_jmp = DISAS_TOO_MANY;
2040     return true;
2041 }
2042 
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2044 {
2045     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046         return false;
2047     }
2048     if (a->imm & 1) {
2049         set_pstate_bits(PSTATE_PAN);
2050     } else {
2051         clear_pstate_bits(PSTATE_PAN);
2052     }
2053     gen_rebuild_hflags(s);
2054     s->base.is_jmp = DISAS_TOO_MANY;
2055     return true;
2056 }
2057 
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2059 {
2060     if (s->current_el == 0) {
2061         return false;
2062     }
2063     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064     s->base.is_jmp = DISAS_TOO_MANY;
2065     return true;
2066 }
2067 
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2069 {
2070     if (!dc_isar_feature(aa64_ssbs, s)) {
2071         return false;
2072     }
2073     if (a->imm & 1) {
2074         set_pstate_bits(PSTATE_SSBS);
2075     } else {
2076         clear_pstate_bits(PSTATE_SSBS);
2077     }
2078     /* Don't need to rebuild hflags since SSBS is a nop */
2079     s->base.is_jmp = DISAS_TOO_MANY;
2080     return true;
2081 }
2082 
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2084 {
2085     if (!dc_isar_feature(aa64_dit, s)) {
2086         return false;
2087     }
2088     if (a->imm & 1) {
2089         set_pstate_bits(PSTATE_DIT);
2090     } else {
2091         clear_pstate_bits(PSTATE_DIT);
2092     }
2093     /* There's no need to rebuild hflags because DIT is a nop */
2094     s->base.is_jmp = DISAS_TOO_MANY;
2095     return true;
2096 }
2097 
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2099 {
2100     if (dc_isar_feature(aa64_mte, s)) {
2101         /* Full MTE is enabled -- set the TCO bit as directed. */
2102         if (a->imm & 1) {
2103             set_pstate_bits(PSTATE_TCO);
2104         } else {
2105             clear_pstate_bits(PSTATE_TCO);
2106         }
2107         gen_rebuild_hflags(s);
2108         /* Many factors, including TCO, go into MTE_ACTIVE. */
2109         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110         return true;
2111     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2113         return true;
2114     } else {
2115         /* Insn not present */
2116         return false;
2117     }
2118 }
2119 
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2121 {
2122     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123     s->base.is_jmp = DISAS_TOO_MANY;
2124     return true;
2125 }
2126 
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2128 {
2129     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130     /* Exit the cpu loop to re-evaluate pending IRQs. */
2131     s->base.is_jmp = DISAS_UPDATE_EXIT;
2132     return true;
2133 }
2134 
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2136 {
2137     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138         return false;
2139     }
2140 
2141     if (a->imm == 0) {
2142         clear_pstate_bits(PSTATE_ALLINT);
2143     } else if (s->current_el > 1) {
2144         set_pstate_bits(PSTATE_ALLINT);
2145     } else {
2146         gen_helper_msr_set_allint_el1(tcg_env);
2147     }
2148 
2149     /* Exit the cpu loop to re-evaluate pending IRQs. */
2150     s->base.is_jmp = DISAS_UPDATE_EXIT;
2151     return true;
2152 }
2153 
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2155 {
2156     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157         return false;
2158     }
2159     if (sme_access_check(s)) {
2160         int old = s->pstate_sm | (s->pstate_za << 1);
2161         int new = a->imm * 3;
2162 
2163         if ((old ^ new) & a->mask) {
2164             /* At least one bit changes. */
2165             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166                                 tcg_constant_i32(a->mask));
2167             s->base.is_jmp = DISAS_TOO_MANY;
2168         }
2169     }
2170     return true;
2171 }
2172 
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2174 {
2175     TCGv_i32 tmp = tcg_temp_new_i32();
2176     TCGv_i32 nzcv = tcg_temp_new_i32();
2177 
2178     /* build bit 31, N */
2179     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180     /* build bit 30, Z */
2181     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183     /* build bit 29, C */
2184     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185     /* build bit 28, V */
2186     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188     /* generate result */
2189     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2190 }
2191 
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2193 {
2194     TCGv_i32 nzcv = tcg_temp_new_i32();
2195 
2196     /* take NZCV from R[t] */
2197     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2198 
2199     /* bit 31, N */
2200     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201     /* bit 30, Z */
2202     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204     /* bit 29, C */
2205     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207     /* bit 28, V */
2208     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2210 }
2211 
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213                              uint8_t op0, uint8_t op1, uint8_t op2,
2214                              uint8_t crn, uint8_t crm, uint8_t rt)
2215 {
2216     /*
2217      * Generate code to emit an UNDEF with correct syndrome
2218      * information for a failed system register access.
2219      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220      * but if FEAT_IDST is implemented then read accesses to registers
2221      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222      * syndrome.
2223      */
2224     uint32_t syndrome;
2225 
2226     if (isread && dc_isar_feature(aa64_ids, s) &&
2227         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229     } else {
2230         syndrome = syn_uncategorized();
2231     }
2232     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2233 }
2234 
2235 /* MRS - move from system register
2236  * MSR (register) - move to system register
2237  * SYS
2238  * SYSL
2239  * These are all essentially the same insn in 'read' and 'write'
2240  * versions, with varying op0 fields.
2241  */
2242 static void handle_sys(DisasContext *s, bool isread,
2243                        unsigned int op0, unsigned int op1, unsigned int op2,
2244                        unsigned int crn, unsigned int crm, unsigned int rt)
2245 {
2246     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247                                       crn, crm, op0, op1, op2);
2248     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249     bool need_exit_tb = false;
2250     bool nv_trap_to_el2 = false;
2251     bool nv_redirect_reg = false;
2252     bool skip_fp_access_checks = false;
2253     bool nv2_mem_redirect = false;
2254     TCGv_ptr tcg_ri = NULL;
2255     TCGv_i64 tcg_rt;
2256     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2257 
2258     if (crn == 11 || crn == 15) {
2259         /*
2260          * Check for TIDCP trap, which must take precedence over
2261          * the UNDEF for "no such register" etc.
2262          */
2263         switch (s->current_el) {
2264         case 0:
2265             if (dc_isar_feature(aa64_tidcp1, s)) {
2266                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2267             }
2268             break;
2269         case 1:
2270             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271             break;
2272         }
2273     }
2274 
2275     if (!ri) {
2276         /* Unknown register; this might be a guest error or a QEMU
2277          * unimplemented feature.
2278          */
2279         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2282         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283         return;
2284     }
2285 
2286     if (s->nv2 && ri->nv2_redirect_offset) {
2287         /*
2288          * Some registers always redirect to memory; some only do so if
2289          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290          * pairs which share an offset; see the table in R_CSRPQ).
2291          */
2292         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293             nv2_mem_redirect = s->nv1;
2294         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295             nv2_mem_redirect = !s->nv1;
2296         } else {
2297             nv2_mem_redirect = true;
2298         }
2299     }
2300 
2301     /* Check access permissions */
2302     if (!cp_access_ok(s->current_el, ri, isread)) {
2303         /*
2304          * FEAT_NV/NV2 handling does not do the usual FP access checks
2305          * for registers only accessible at EL2 (though it *does* do them
2306          * for registers accessible at EL1).
2307          */
2308         skip_fp_access_checks = true;
2309         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2310             /*
2311              * This is one of the few EL2 registers which should redirect
2312              * to the equivalent EL1 register. We do that after running
2313              * the EL2 register's accessfn.
2314              */
2315             nv_redirect_reg = true;
2316             assert(!nv2_mem_redirect);
2317         } else if (nv2_mem_redirect) {
2318             /*
2319              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320              * UNDEF to EL1.
2321              */
2322         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2323             /*
2324              * This register / instruction exists and is an EL2 register, so
2325              * we must trap to EL2 if accessed in nested virtualization EL1
2326              * instead of UNDEFing. We'll do that after the usual access checks.
2327              * (This makes a difference only for a couple of registers like
2328              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330              * an accessfn which does nothing when called from EL1, because
2331              * the trap-to-EL3 controls which would apply to that register
2332              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2333              */
2334             nv_trap_to_el2 = true;
2335         } else {
2336             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337             return;
2338         }
2339     }
2340 
2341     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342         /* Emit code to perform further access permissions checks at
2343          * runtime; this may result in an exception.
2344          */
2345         gen_a64_update_pc(s, 0);
2346         tcg_ri = tcg_temp_new_ptr();
2347         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348                                        tcg_constant_i32(key),
2349                                        tcg_constant_i32(syndrome),
2350                                        tcg_constant_i32(isread));
2351     } else if (ri->type & ARM_CP_RAISES_EXC) {
2352         /*
2353          * The readfn or writefn might raise an exception;
2354          * synchronize the CPU state in case it does.
2355          */
2356         gen_a64_update_pc(s, 0);
2357     }
2358 
2359     if (!skip_fp_access_checks) {
2360         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361             return;
2362         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363             return;
2364         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365             return;
2366         }
2367     }
2368 
2369     if (nv_trap_to_el2) {
2370         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371         return;
2372     }
2373 
2374     if (nv_redirect_reg) {
2375         /*
2376          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377          * Conveniently in all cases the encoding of the EL1 register is
2378          * identical to the EL2 register except that opc1 is 0.
2379          * Get the reginfo for the EL1 register to use for the actual access.
2380          * We don't use the EL1 register's access function, and
2381          * fine-grained-traps on EL1 also do not apply here.
2382          */
2383         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384                                  crn, crm, op0, 0, op2);
2385         ri = get_arm_cp_reginfo(s->cp_regs, key);
2386         assert(ri);
2387         assert(cp_access_ok(s->current_el, ri, isread));
2388         /*
2389          * We might not have done an update_pc earlier, so check we don't
2390          * need it. We could support this in future if necessary.
2391          */
2392         assert(!(ri->type & ARM_CP_RAISES_EXC));
2393     }
2394 
2395     if (nv2_mem_redirect) {
2396         /*
2397          * This system register is being redirected into an EL2 memory access.
2398          * This means it is not an IO operation, doesn't change hflags,
2399          * and need not end the TB, because it has no side effects.
2400          *
2401          * The access is 64-bit single copy atomic, guaranteed aligned because
2402          * of the definition of VCNR_EL2. Its endianness depends on
2403          * SCTLR_EL2.EE, not on the data endianness of EL1.
2404          * It is done under either the EL2 translation regime or the EL2&0
2405          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406          * PSTATE.PAN is 0.
2407          */
2408         TCGv_i64 ptr = tcg_temp_new_i64();
2409         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411         int memidx = arm_to_core_mmu_idx(armmemidx);
2412         uint32_t syn;
2413 
2414         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2415 
2416         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417         tcg_gen_addi_i64(ptr, ptr,
2418                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419         tcg_rt = cpu_reg(s, rt);
2420 
2421         syn = syn_data_abort_vncr(0, !isread, 0);
2422         disas_set_insn_syndrome(s, syn);
2423         if (isread) {
2424             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425         } else {
2426             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2427         }
2428         return;
2429     }
2430 
2431     /* Handle special cases first */
2432     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433     case 0:
2434         break;
2435     case ARM_CP_NOP:
2436         return;
2437     case ARM_CP_NZCV:
2438         tcg_rt = cpu_reg(s, rt);
2439         if (isread) {
2440             gen_get_nzcv(tcg_rt);
2441         } else {
2442             gen_set_nzcv(tcg_rt);
2443         }
2444         return;
2445     case ARM_CP_CURRENTEL:
2446     {
2447         /*
2448          * Reads as current EL value from pstate, which is
2449          * guaranteed to be constant by the tb flags.
2450          * For nested virt we should report EL2.
2451          */
2452         int el = s->nv ? 2 : s->current_el;
2453         tcg_rt = cpu_reg(s, rt);
2454         tcg_gen_movi_i64(tcg_rt, el << 2);
2455         return;
2456     }
2457     case ARM_CP_DC_ZVA:
2458         /* Writes clear the aligned block of memory which rt points into. */
2459         if (s->mte_active[0]) {
2460             int desc = 0;
2461 
2462             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2465 
2466             tcg_rt = tcg_temp_new_i64();
2467             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2469         } else {
2470             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2471         }
2472         gen_helper_dc_zva(tcg_env, tcg_rt);
2473         return;
2474     case ARM_CP_DC_GVA:
2475         {
2476             TCGv_i64 clean_addr, tag;
2477 
2478             /*
2479              * DC_GVA, like DC_ZVA, requires that we supply the original
2480              * pointer for an invalid page.  Probe that address first.
2481              */
2482             tcg_rt = cpu_reg(s, rt);
2483             clean_addr = clean_data_tbi(s, tcg_rt);
2484             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2485 
2486             if (s->ata[0]) {
2487                 /* Extract the tag from the register to match STZGM.  */
2488                 tag = tcg_temp_new_i64();
2489                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2491             }
2492         }
2493         return;
2494     case ARM_CP_DC_GZVA:
2495         {
2496             TCGv_i64 clean_addr, tag;
2497 
2498             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499             tcg_rt = cpu_reg(s, rt);
2500             clean_addr = clean_data_tbi(s, tcg_rt);
2501             gen_helper_dc_zva(tcg_env, clean_addr);
2502 
2503             if (s->ata[0]) {
2504                 /* Extract the tag from the register to match STZGM.  */
2505                 tag = tcg_temp_new_i64();
2506                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2508             }
2509         }
2510         return;
2511     default:
2512         g_assert_not_reached();
2513     }
2514 
2515     if (ri->type & ARM_CP_IO) {
2516         /* I/O operations must end the TB here (whether read or write) */
2517         need_exit_tb = translator_io_start(&s->base);
2518     }
2519 
2520     tcg_rt = cpu_reg(s, rt);
2521 
2522     if (isread) {
2523         if (ri->type & ARM_CP_CONST) {
2524             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525         } else if (ri->readfn) {
2526             if (!tcg_ri) {
2527                 tcg_ri = gen_lookup_cp_reg(key);
2528             }
2529             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530         } else {
2531             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2532         }
2533     } else {
2534         if (ri->type & ARM_CP_CONST) {
2535             /* If not forbidden by access permissions, treat as WI */
2536             return;
2537         } else if (ri->writefn) {
2538             if (!tcg_ri) {
2539                 tcg_ri = gen_lookup_cp_reg(key);
2540             }
2541             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542         } else {
2543             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2544         }
2545     }
2546 
2547     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2548         /*
2549          * A write to any coprocessor register that ends a TB
2550          * must rebuild the hflags for the next TB.
2551          */
2552         gen_rebuild_hflags(s);
2553         /*
2554          * We default to ending the TB on a coprocessor register write,
2555          * but allow this to be suppressed by the register definition
2556          * (usually only necessary to work around guest bugs).
2557          */
2558         need_exit_tb = true;
2559     }
2560     if (need_exit_tb) {
2561         s->base.is_jmp = DISAS_UPDATE_EXIT;
2562     }
2563 }
2564 
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2566 {
2567     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568     return true;
2569 }
2570 
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2572 {
2573     /*
2574      * For SVC, HVC and SMC we advance the single-step state
2575      * machine before taking the exception. This is architecturally
2576      * mandated, to ensure that single-stepping a system call
2577      * instruction works properly.
2578      */
2579     uint32_t syndrome = syn_aa64_svc(a->imm);
2580     if (s->fgt_svc) {
2581         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582         return true;
2583     }
2584     gen_ss_advance(s);
2585     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586     return true;
2587 }
2588 
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2590 {
2591     int target_el = s->current_el == 3 ? 3 : 2;
2592 
2593     if (s->current_el == 0) {
2594         unallocated_encoding(s);
2595         return true;
2596     }
2597     /*
2598      * The pre HVC helper handles cases when HVC gets trapped
2599      * as an undefined insn by runtime configuration.
2600      */
2601     gen_a64_update_pc(s, 0);
2602     gen_helper_pre_hvc(tcg_env);
2603     /* Architecture requires ss advance before we do the actual work */
2604     gen_ss_advance(s);
2605     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606     return true;
2607 }
2608 
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2610 {
2611     if (s->current_el == 0) {
2612         unallocated_encoding(s);
2613         return true;
2614     }
2615     gen_a64_update_pc(s, 0);
2616     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617     /* Architecture requires ss advance before we do the actual work */
2618     gen_ss_advance(s);
2619     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620     return true;
2621 }
2622 
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2624 {
2625     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626     return true;
2627 }
2628 
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2630 {
2631     /*
2632      * HLT. This has two purposes.
2633      * Architecturally, it is an external halting debug instruction.
2634      * Since QEMU doesn't implement external debug, we treat this as
2635      * it is required for halting debug disabled: it will UNDEF.
2636      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2637      */
2638     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640     } else {
2641         unallocated_encoding(s);
2642     }
2643     return true;
2644 }
2645 
2646 /*
2647  * Load/Store exclusive instructions are implemented by remembering
2648  * the value/address loaded, and seeing if these are the same
2649  * when the store is performed. This is not actually the architecturally
2650  * mandated semantics, but it works for typical guest code sequences
2651  * and avoids having to monitor regular stores.
2652  *
2653  * The store exclusive uses the atomic cmpxchg primitives to avoid
2654  * races in multi-threaded linux-user and when MTTCG softmmu is
2655  * enabled.
2656  */
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658                                int size, bool is_pair)
2659 {
2660     int idx = get_mem_index(s);
2661     TCGv_i64 dirty_addr, clean_addr;
2662     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2663 
2664     s->is_ldex = true;
2665     dirty_addr = cpu_reg_sp(s, rn);
2666     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2667 
2668     g_assert(size <= 3);
2669     if (is_pair) {
2670         g_assert(size >= 2);
2671         if (size == 2) {
2672             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673             if (s->be_data == MO_LE) {
2674                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676             } else {
2677                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2679             }
2680         } else {
2681             TCGv_i128 t16 = tcg_temp_new_i128();
2682 
2683             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2684 
2685             if (s->be_data == MO_LE) {
2686                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687                                       cpu_exclusive_high, t16);
2688             } else {
2689                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690                                       cpu_exclusive_val, t16);
2691             }
2692             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2694         }
2695     } else {
2696         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2698     }
2699     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2700 }
2701 
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703                                 int rn, int size, int is_pair)
2704 {
2705     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707      *     [addr] = {Rt};
2708      *     if (is_pair) {
2709      *         [addr + datasize] = {Rt2};
2710      *     }
2711      *     {Rd} = 0;
2712      * } else {
2713      *     {Rd} = 1;
2714      * }
2715      * env->exclusive_addr = -1;
2716      */
2717     TCGLabel *fail_label = gen_new_label();
2718     TCGLabel *done_label = gen_new_label();
2719     TCGv_i64 tmp, clean_addr;
2720     MemOp memop;
2721 
2722     /*
2723      * FIXME: We are out of spec here.  We have recorded only the address
2724      * from load_exclusive, not the entire range, and we assume that the
2725      * size of the access on both sides match.  The architecture allows the
2726      * store to be smaller than the load, so long as the stored bytes are
2727      * within the range recorded by the load.
2728      */
2729 
2730     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2733 
2734     /*
2735      * The write, and any associated faults, only happen if the virtual
2736      * and physical addresses pass the exclusive monitor check.  These
2737      * faults are exceedingly unlikely, because normally the guest uses
2738      * the exact same address register for the load_exclusive, and we
2739      * would have recognized these faults there.
2740      *
2741      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742      * unaligned 4-byte write within the range of an aligned 8-byte load.
2743      * With LSE2, the store would need to cross a 16-byte boundary when the
2744      * load did not, which would mean the store is outside the range
2745      * recorded for the monitor, which would have failed a corrected monitor
2746      * check above.  For now, we assume no size change and retain the
2747      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2748      *
2749      * It is possible to trigger an MTE fault, by performing the load with
2750      * a virtual address with a valid tag and performing the store with the
2751      * same virtual address and a different invalid tag.
2752      */
2753     memop = size + is_pair;
2754     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755         memop |= MO_ALIGN;
2756     }
2757     memop = finalize_memop(s, memop);
2758     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2759 
2760     tmp = tcg_temp_new_i64();
2761     if (is_pair) {
2762         if (size == 2) {
2763             if (s->be_data == MO_LE) {
2764                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765             } else {
2766                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2767             }
2768             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769                                        cpu_exclusive_val, tmp,
2770                                        get_mem_index(s), memop);
2771             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772         } else {
2773             TCGv_i128 t16 = tcg_temp_new_i128();
2774             TCGv_i128 c16 = tcg_temp_new_i128();
2775             TCGv_i64 a, b;
2776 
2777             if (s->be_data == MO_LE) {
2778                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780                                         cpu_exclusive_high);
2781             } else {
2782                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784                                         cpu_exclusive_val);
2785             }
2786 
2787             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788                                         get_mem_index(s), memop);
2789 
2790             a = tcg_temp_new_i64();
2791             b = tcg_temp_new_i64();
2792             if (s->be_data == MO_LE) {
2793                 tcg_gen_extr_i128_i64(a, b, t16);
2794             } else {
2795                 tcg_gen_extr_i128_i64(b, a, t16);
2796             }
2797 
2798             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800             tcg_gen_or_i64(tmp, a, b);
2801 
2802             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2803         }
2804     } else {
2805         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806                                    cpu_reg(s, rt), get_mem_index(s), memop);
2807         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2808     }
2809     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810     tcg_gen_br(done_label);
2811 
2812     gen_set_label(fail_label);
2813     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814     gen_set_label(done_label);
2815     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2816 }
2817 
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819                                  int rn, int size)
2820 {
2821     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823     int memidx = get_mem_index(s);
2824     TCGv_i64 clean_addr;
2825     MemOp memop;
2826 
2827     if (rn == 31) {
2828         gen_check_sp_alignment(s);
2829     }
2830     memop = check_atomic_align(s, rn, size);
2831     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833                                memidx, memop);
2834 }
2835 
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837                                       int rn, int size)
2838 {
2839     TCGv_i64 s1 = cpu_reg(s, rs);
2840     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841     TCGv_i64 t1 = cpu_reg(s, rt);
2842     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843     TCGv_i64 clean_addr;
2844     int memidx = get_mem_index(s);
2845     MemOp memop;
2846 
2847     if (rn == 31) {
2848         gen_check_sp_alignment(s);
2849     }
2850 
2851     /* This is a single atomic access, despite the "pair". */
2852     memop = check_atomic_align(s, rn, size + 1);
2853     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2854 
2855     if (size == 2) {
2856         TCGv_i64 cmp = tcg_temp_new_i64();
2857         TCGv_i64 val = tcg_temp_new_i64();
2858 
2859         if (s->be_data == MO_LE) {
2860             tcg_gen_concat32_i64(val, t1, t2);
2861             tcg_gen_concat32_i64(cmp, s1, s2);
2862         } else {
2863             tcg_gen_concat32_i64(val, t2, t1);
2864             tcg_gen_concat32_i64(cmp, s2, s1);
2865         }
2866 
2867         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2868 
2869         if (s->be_data == MO_LE) {
2870             tcg_gen_extr32_i64(s1, s2, cmp);
2871         } else {
2872             tcg_gen_extr32_i64(s2, s1, cmp);
2873         }
2874     } else {
2875         TCGv_i128 cmp = tcg_temp_new_i128();
2876         TCGv_i128 val = tcg_temp_new_i128();
2877 
2878         if (s->be_data == MO_LE) {
2879             tcg_gen_concat_i64_i128(val, t1, t2);
2880             tcg_gen_concat_i64_i128(cmp, s1, s2);
2881         } else {
2882             tcg_gen_concat_i64_i128(val, t2, t1);
2883             tcg_gen_concat_i64_i128(cmp, s2, s1);
2884         }
2885 
2886         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2887 
2888         if (s->be_data == MO_LE) {
2889             tcg_gen_extr_i128_i64(s1, s2, cmp);
2890         } else {
2891             tcg_gen_extr_i128_i64(s2, s1, cmp);
2892         }
2893     }
2894 }
2895 
2896 /*
2897  * Compute the ISS.SF bit for syndrome information if an exception
2898  * is taken on a load or store. This indicates whether the instruction
2899  * is accessing a 32-bit or 64-bit register. This logic is derived
2900  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2901  */
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2903 {
2904 
2905     if (sign) {
2906         /*
2907          * Signed loads are 64 bit results if we are not going to
2908          * do a zero-extend from 32 to 64 after the load.
2909          * (For a store, sign and ext are always false.)
2910          */
2911         return !ext;
2912     } else {
2913         /* Unsigned loads/stores work at the specified size */
2914         return size == MO_64;
2915     }
2916 }
2917 
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2919 {
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     if (a->lasr) {
2924         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2925     }
2926     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927     return true;
2928 }
2929 
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2931 {
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936     if (a->lasr) {
2937         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2938     }
2939     return true;
2940 }
2941 
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2943 {
2944     TCGv_i64 clean_addr;
2945     MemOp memop;
2946     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2947 
2948     /*
2949      * StoreLORelease is the same as Store-Release for QEMU, but
2950      * needs the feature-test.
2951      */
2952     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953         return false;
2954     }
2955     /* Generate ISS for non-exclusive accesses including LASR.  */
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962                                 true, a->rn != 31, memop);
2963     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964               iss_sf, a->lasr);
2965     return true;
2966 }
2967 
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2969 {
2970     TCGv_i64 clean_addr;
2971     MemOp memop;
2972     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2973 
2974     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2975     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976         return false;
2977     }
2978     /* Generate ISS for non-exclusive accesses including LASR.  */
2979     if (a->rn == 31) {
2980         gen_check_sp_alignment(s);
2981     }
2982     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984                                 false, a->rn != 31, memop);
2985     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986               a->rt, iss_sf, a->lasr);
2987     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988     return true;
2989 }
2990 
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2992 {
2993     if (a->rn == 31) {
2994         gen_check_sp_alignment(s);
2995     }
2996     if (a->lasr) {
2997         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2998     }
2999     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000     return true;
3001 }
3002 
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3004 {
3005     if (a->rn == 31) {
3006         gen_check_sp_alignment(s);
3007     }
3008     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009     if (a->lasr) {
3010         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3011     }
3012     return true;
3013 }
3014 
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3016 {
3017     if (!dc_isar_feature(aa64_atomics, s)) {
3018         return false;
3019     }
3020     if (((a->rt | a->rs) & 1) != 0) {
3021         return false;
3022     }
3023 
3024     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025     return true;
3026 }
3027 
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3029 {
3030     if (!dc_isar_feature(aa64_atomics, s)) {
3031         return false;
3032     }
3033     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034     return true;
3035 }
3036 
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3038 {
3039     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041     TCGv_i64 clean_addr = tcg_temp_new_i64();
3042     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3043 
3044     gen_pc_plus_diff(s, clean_addr, a->imm);
3045     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046               false, true, a->rt, iss_sf, false);
3047     return true;
3048 }
3049 
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3051 {
3052     /* Load register (literal), vector version */
3053     TCGv_i64 clean_addr;
3054     MemOp memop;
3055 
3056     if (!fp_access_check(s)) {
3057         return true;
3058     }
3059     memop = finalize_memop_asimd(s, a->sz);
3060     clean_addr = tcg_temp_new_i64();
3061     gen_pc_plus_diff(s, clean_addr, a->imm);
3062     do_fp_ld(s, a->rt, clean_addr, memop);
3063     return true;
3064 }
3065 
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068                                  uint64_t offset, bool is_store, MemOp mop)
3069 {
3070     if (a->rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075     if (!a->p) {
3076         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3077     }
3078 
3079     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3081 }
3082 
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084                                   TCGv_i64 dirty_addr, uint64_t offset)
3085 {
3086     if (a->w) {
3087         if (a->p) {
3088             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3089         }
3090         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3091     }
3092 }
3093 
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103     /*
3104      * We built mop above for the single logical access -- rebuild it
3105      * now for the paired operation.
3106      *
3107      * With LSE2, non-sign-extending pairs are treated atomically if
3108      * aligned, and if unaligned one of the pair will be completely
3109      * within a 16-byte block and that element will be atomic.
3110      * Otherwise each element is separately atomic.
3111      * In all cases, issue one operation with the correct atomicity.
3112      */
3113     mop = a->sz + 1;
3114     if (s->align_mem) {
3115         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3116     }
3117     mop = finalize_memop_pair(s, mop);
3118     if (a->sz == 2) {
3119         TCGv_i64 tmp = tcg_temp_new_i64();
3120 
3121         if (s->be_data == MO_LE) {
3122             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123         } else {
3124             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3125         }
3126         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127     } else {
3128         TCGv_i128 tmp = tcg_temp_new_i128();
3129 
3130         if (s->be_data == MO_LE) {
3131             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132         } else {
3133             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3134         }
3135         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3136     }
3137     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138     return true;
3139 }
3140 
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3142 {
3143     uint64_t offset = a->imm << a->sz;
3144     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145     MemOp mop = finalize_memop(s, a->sz);
3146 
3147     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148     tcg_rt = cpu_reg(s, a->rt);
3149     tcg_rt2 = cpu_reg(s, a->rt2);
3150 
3151     /*
3152      * We built mop above for the single logical access -- rebuild it
3153      * now for the paired operation.
3154      *
3155      * With LSE2, non-sign-extending pairs are treated atomically if
3156      * aligned, and if unaligned one of the pair will be completely
3157      * within a 16-byte block and that element will be atomic.
3158      * Otherwise each element is separately atomic.
3159      * In all cases, issue one operation with the correct atomicity.
3160      *
3161      * This treats sign-extending loads like zero-extending loads,
3162      * since that reuses the most code below.
3163      */
3164     mop = a->sz + 1;
3165     if (s->align_mem) {
3166         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3167     }
3168     mop = finalize_memop_pair(s, mop);
3169     if (a->sz == 2) {
3170         int o2 = s->be_data == MO_LE ? 32 : 0;
3171         int o1 = o2 ^ 32;
3172 
3173         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174         if (a->sign) {
3175             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177         } else {
3178             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3180         }
3181     } else {
3182         TCGv_i128 tmp = tcg_temp_new_i128();
3183 
3184         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185         if (s->be_data == MO_LE) {
3186             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187         } else {
3188             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3189         }
3190     }
3191     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192     return true;
3193 }
3194 
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3196 {
3197     uint64_t offset = a->imm << a->sz;
3198     TCGv_i64 clean_addr, dirty_addr;
3199     MemOp mop;
3200 
3201     if (!fp_access_check(s)) {
3202         return true;
3203     }
3204 
3205     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206     mop = finalize_memop_asimd(s, a->sz);
3207     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208     do_fp_st(s, a->rt, clean_addr, mop);
3209     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210     do_fp_st(s, a->rt2, clean_addr, mop);
3211     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212     return true;
3213 }
3214 
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3216 {
3217     uint64_t offset = a->imm << a->sz;
3218     TCGv_i64 clean_addr, dirty_addr;
3219     MemOp mop;
3220 
3221     if (!fp_access_check(s)) {
3222         return true;
3223     }
3224 
3225     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226     mop = finalize_memop_asimd(s, a->sz);
3227     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228     do_fp_ld(s, a->rt, clean_addr, mop);
3229     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230     do_fp_ld(s, a->rt2, clean_addr, mop);
3231     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232     return true;
3233 }
3234 
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3236 {
3237     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239     MemOp mop;
3240     TCGv_i128 tmp;
3241 
3242     /* STGP only comes in one size. */
3243     tcg_debug_assert(a->sz == MO_64);
3244 
3245     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246         return false;
3247     }
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252 
3253     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254     if (!a->p) {
3255         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3256     }
3257 
3258     clean_addr = clean_data_tbi(s, dirty_addr);
3259     tcg_rt = cpu_reg(s, a->rt);
3260     tcg_rt2 = cpu_reg(s, a->rt2);
3261 
3262     /*
3263      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264      * and one tag operation.  We implement it as one single aligned 16-byte
3265      * memory operation for convenience.  Note that the alignment ensures
3266      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3267      */
3268     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3269 
3270     tmp = tcg_temp_new_i128();
3271     if (s->be_data == MO_LE) {
3272         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273     } else {
3274         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3275     }
3276     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3277 
3278     /* Perform the tag store, if tag access enabled. */
3279     if (s->ata[0]) {
3280         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282         } else {
3283             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3284         }
3285     }
3286 
3287     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288     return true;
3289 }
3290 
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293                                  uint64_t offset, bool is_store, MemOp mop)
3294 {
3295     int memidx;
3296 
3297     if (a->rn == 31) {
3298         gen_check_sp_alignment(s);
3299     }
3300 
3301     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302     if (!a->p) {
3303         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3304     }
3305     memidx = get_a64_user_mem_index(s, a->unpriv);
3306     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307                                         a->w || a->rn != 31,
3308                                         mop, a->unpriv, memidx);
3309 }
3310 
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312                                   TCGv_i64 dirty_addr, uint64_t offset)
3313 {
3314     if (a->w) {
3315         if (a->p) {
3316             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317         }
3318         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3319     }
3320 }
3321 
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     bool iss_sf, iss_valid = !a->w;
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     int memidx = get_a64_user_mem_index(s, a->unpriv);
3327     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3328 
3329     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3330 
3331     tcg_rt = cpu_reg(s, a->rt);
3332     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3333 
3334     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335                      iss_valid, a->rt, iss_sf, false);
3336     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337     return true;
3338 }
3339 
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3341 {
3342     bool iss_sf, iss_valid = !a->w;
3343     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344     int memidx = get_a64_user_mem_index(s, a->unpriv);
3345     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3346 
3347     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3348 
3349     tcg_rt = cpu_reg(s, a->rt);
3350     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3351 
3352     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355     return true;
3356 }
3357 
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3359 {
3360     TCGv_i64 clean_addr, dirty_addr;
3361     MemOp mop;
3362 
3363     if (!fp_access_check(s)) {
3364         return true;
3365     }
3366     mop = finalize_memop_asimd(s, a->sz);
3367     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368     do_fp_st(s, a->rt, clean_addr, mop);
3369     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370     return true;
3371 }
3372 
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3374 {
3375     TCGv_i64 clean_addr, dirty_addr;
3376     MemOp mop;
3377 
3378     if (!fp_access_check(s)) {
3379         return true;
3380     }
3381     mop = finalize_memop_asimd(s, a->sz);
3382     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383     do_fp_ld(s, a->rt, clean_addr, mop);
3384     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385     return true;
3386 }
3387 
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390                              bool is_store, MemOp memop)
3391 {
3392     TCGv_i64 tcg_rm;
3393 
3394     if (a->rn == 31) {
3395         gen_check_sp_alignment(s);
3396     }
3397     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398 
3399     tcg_rm = read_cpu_reg(s, a->rm, 1);
3400     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3401 
3402     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3404 }
3405 
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3407 {
3408     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410     MemOp memop;
3411 
3412     if (extract32(a->opt, 1, 1) == 0) {
3413         return false;
3414     }
3415 
3416     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418     tcg_rt = cpu_reg(s, a->rt);
3419     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420               a->ext, true, a->rt, iss_sf, false);
3421     return true;
3422 }
3423 
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428     MemOp memop;
3429 
3430     if (extract32(a->opt, 1, 1) == 0) {
3431         return false;
3432     }
3433 
3434     memop = finalize_memop(s, a->sz);
3435     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436     tcg_rt = cpu_reg(s, a->rt);
3437     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438     return true;
3439 }
3440 
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3442 {
3443     TCGv_i64 clean_addr, dirty_addr;
3444     MemOp memop;
3445 
3446     if (extract32(a->opt, 1, 1) == 0) {
3447         return false;
3448     }
3449 
3450     if (!fp_access_check(s)) {
3451         return true;
3452     }
3453 
3454     memop = finalize_memop_asimd(s, a->sz);
3455     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456     do_fp_ld(s, a->rt, clean_addr, memop);
3457     return true;
3458 }
3459 
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3461 {
3462     TCGv_i64 clean_addr, dirty_addr;
3463     MemOp memop;
3464 
3465     if (extract32(a->opt, 1, 1) == 0) {
3466         return false;
3467     }
3468 
3469     if (!fp_access_check(s)) {
3470         return true;
3471     }
3472 
3473     memop = finalize_memop_asimd(s, a->sz);
3474     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475     do_fp_st(s, a->rt, clean_addr, memop);
3476     return true;
3477 }
3478 
3479 
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481                          int sign, bool invert)
3482 {
3483     MemOp mop = a->sz | sign;
3484     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3485 
3486     if (a->rn == 31) {
3487         gen_check_sp_alignment(s);
3488     }
3489     mop = check_atomic_align(s, a->rn, mop);
3490     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491                                 a->rn != 31, mop);
3492     tcg_rs = read_cpu_reg(s, a->rs, true);
3493     tcg_rt = cpu_reg(s, a->rt);
3494     if (invert) {
3495         tcg_gen_not_i64(tcg_rs, tcg_rs);
3496     }
3497     /*
3498      * The tcg atomic primitives are all full barriers.  Therefore we
3499      * can ignore the Acquire and Release bits of this instruction.
3500      */
3501     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3502 
3503     if (mop & MO_SIGN) {
3504         switch (a->sz) {
3505         case MO_8:
3506             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_16:
3509             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510             break;
3511         case MO_32:
3512             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513             break;
3514         case MO_64:
3515             break;
3516         default:
3517             g_assert_not_reached();
3518         }
3519     }
3520     return true;
3521 }
3522 
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3532 
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3534 {
3535     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536     TCGv_i64 clean_addr;
3537     MemOp mop;
3538 
3539     if (!dc_isar_feature(aa64_atomics, s) ||
3540         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541         return false;
3542     }
3543     if (a->rn == 31) {
3544         gen_check_sp_alignment(s);
3545     }
3546     mop = check_ordered_align(s, a->rn, 0, false, a->sz);
3547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548                                 a->rn != 31, mop);
3549     /*
3550      * LDAPR* are a special case because they are a simple load, not a
3551      * fetch-and-do-something op.
3552      * The architectural consistency requirements here are weaker than
3553      * full load-acquire (we only need "load-acquire processor consistent"),
3554      * but we choose to implement them as full LDAQ.
3555      */
3556     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557               true, a->rt, iss_sf, true);
3558     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559     return true;
3560 }
3561 
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3563 {
3564     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565     MemOp memop;
3566 
3567     /* Load with pointer authentication */
3568     if (!dc_isar_feature(aa64_pauth, s)) {
3569         return false;
3570     }
3571 
3572     if (a->rn == 31) {
3573         gen_check_sp_alignment(s);
3574     }
3575     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3576 
3577     if (s->pauth_active) {
3578         if (!a->m) {
3579             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580                                       tcg_constant_i64(0));
3581         } else {
3582             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583                                       tcg_constant_i64(0));
3584         }
3585     }
3586 
3587     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3588 
3589     memop = finalize_memop(s, MO_64);
3590 
3591     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3592     clean_addr = gen_mte_check1(s, dirty_addr, false,
3593                                 a->w || a->rn != 31, memop);
3594 
3595     tcg_rt = cpu_reg(s, a->rt);
3596     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597               /* extend */ false, /* iss_valid */ !a->w,
3598               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3599 
3600     if (a->w) {
3601         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3602     }
3603     return true;
3604 }
3605 
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3607 {
3608     TCGv_i64 clean_addr, dirty_addr;
3609     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3611 
3612     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613         return false;
3614     }
3615 
3616     if (a->rn == 31) {
3617         gen_check_sp_alignment(s);
3618     }
3619 
3620     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623     clean_addr = clean_data_tbi(s, dirty_addr);
3624 
3625     /*
3626      * Load-AcquirePC semantics; we implement as the slightly more
3627      * restrictive Load-Acquire.
3628      */
3629     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630               a->rt, iss_sf, true);
3631     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632     return true;
3633 }
3634 
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3636 {
3637     TCGv_i64 clean_addr, dirty_addr;
3638     MemOp mop = a->sz;
3639     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3640 
3641     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642         return false;
3643     }
3644 
3645     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654     clean_addr = clean_data_tbi(s, dirty_addr);
3655 
3656     /* Store-Release semantics */
3657     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659     return true;
3660 }
3661 
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3663 {
3664     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665     MemOp endian, align, mop;
3666 
3667     int total;    /* total bytes */
3668     int elements; /* elements per vector */
3669     int r;
3670     int size = a->sz;
3671 
3672     if (!a->p && a->rm != 0) {
3673         /* For non-postindexed accesses the Rm field must be 0 */
3674         return false;
3675     }
3676     if (size == 3 && !a->q && a->selem != 1) {
3677         return false;
3678     }
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     if (a->rn == 31) {
3684         gen_check_sp_alignment(s);
3685     }
3686 
3687     /* For our purposes, bytes are always little-endian.  */
3688     endian = s->be_data;
3689     if (size == 0) {
3690         endian = MO_LE;
3691     }
3692 
3693     total = a->rpt * a->selem * (a->q ? 16 : 8);
3694     tcg_rn = cpu_reg_sp(s, a->rn);
3695 
3696     /*
3697      * Issue the MTE check vs the logical repeat count, before we
3698      * promote consecutive little-endian elements below.
3699      */
3700     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701                                 finalize_memop_asimd(s, size));
3702 
3703     /*
3704      * Consecutive little-endian elements from a single register
3705      * can be promoted to a larger little-endian operation.
3706      */
3707     align = MO_ALIGN;
3708     if (a->selem == 1 && endian == MO_LE) {
3709         align = pow2_align(size);
3710         size = 3;
3711     }
3712     if (!s->align_mem) {
3713         align = 0;
3714     }
3715     mop = endian | size | align;
3716 
3717     elements = (a->q ? 16 : 8) >> size;
3718     tcg_ebytes = tcg_constant_i64(1 << size);
3719     for (r = 0; r < a->rpt; r++) {
3720         int e;
3721         for (e = 0; e < elements; e++) {
3722             int xs;
3723             for (xs = 0; xs < a->selem; xs++) {
3724                 int tt = (a->rt + r + xs) % 32;
3725                 do_vec_ld(s, tt, e, clean_addr, mop);
3726                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3727             }
3728         }
3729     }
3730 
3731     /*
3732      * For non-quad operations, setting a slice of the low 64 bits of
3733      * the register clears the high 64 bits (in the ARM ARM pseudocode
3734      * this is implicit in the fact that 'rval' is a 64 bit wide
3735      * variable).  For quad operations, we might still need to zero
3736      * the high bits of SVE.
3737      */
3738     for (r = 0; r < a->rpt * a->selem; r++) {
3739         int tt = (a->rt + r) % 32;
3740         clear_vec_high(s, a->q, tt);
3741     }
3742 
3743     if (a->p) {
3744         if (a->rm == 31) {
3745             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746         } else {
3747             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748         }
3749     }
3750     return true;
3751 }
3752 
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3754 {
3755     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756     MemOp endian, align, mop;
3757 
3758     int total;    /* total bytes */
3759     int elements; /* elements per vector */
3760     int r;
3761     int size = a->sz;
3762 
3763     if (!a->p && a->rm != 0) {
3764         /* For non-postindexed accesses the Rm field must be 0 */
3765         return false;
3766     }
3767     if (size == 3 && !a->q && a->selem != 1) {
3768         return false;
3769     }
3770     if (!fp_access_check(s)) {
3771         return true;
3772     }
3773 
3774     if (a->rn == 31) {
3775         gen_check_sp_alignment(s);
3776     }
3777 
3778     /* For our purposes, bytes are always little-endian.  */
3779     endian = s->be_data;
3780     if (size == 0) {
3781         endian = MO_LE;
3782     }
3783 
3784     total = a->rpt * a->selem * (a->q ? 16 : 8);
3785     tcg_rn = cpu_reg_sp(s, a->rn);
3786 
3787     /*
3788      * Issue the MTE check vs the logical repeat count, before we
3789      * promote consecutive little-endian elements below.
3790      */
3791     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792                                 finalize_memop_asimd(s, size));
3793 
3794     /*
3795      * Consecutive little-endian elements from a single register
3796      * can be promoted to a larger little-endian operation.
3797      */
3798     align = MO_ALIGN;
3799     if (a->selem == 1 && endian == MO_LE) {
3800         align = pow2_align(size);
3801         size = 3;
3802     }
3803     if (!s->align_mem) {
3804         align = 0;
3805     }
3806     mop = endian | size | align;
3807 
3808     elements = (a->q ? 16 : 8) >> size;
3809     tcg_ebytes = tcg_constant_i64(1 << size);
3810     for (r = 0; r < a->rpt; r++) {
3811         int e;
3812         for (e = 0; e < elements; e++) {
3813             int xs;
3814             for (xs = 0; xs < a->selem; xs++) {
3815                 int tt = (a->rt + r + xs) % 32;
3816                 do_vec_st(s, tt, e, clean_addr, mop);
3817                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3818             }
3819         }
3820     }
3821 
3822     if (a->p) {
3823         if (a->rm == 31) {
3824             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825         } else {
3826             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3827         }
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3833 {
3834     int xs, total, rt;
3835     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836     MemOp mop;
3837 
3838     if (!a->p && a->rm != 0) {
3839         return false;
3840     }
3841     if (!fp_access_check(s)) {
3842         return true;
3843     }
3844 
3845     if (a->rn == 31) {
3846         gen_check_sp_alignment(s);
3847     }
3848 
3849     total = a->selem << a->scale;
3850     tcg_rn = cpu_reg_sp(s, a->rn);
3851 
3852     mop = finalize_memop_asimd(s, a->scale);
3853     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854                                 total, mop);
3855 
3856     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858         do_vec_st(s, rt, a->index, clean_addr, mop);
3859         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3860     }
3861 
3862     if (a->p) {
3863         if (a->rm == 31) {
3864             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865         } else {
3866             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3867         }
3868     }
3869     return true;
3870 }
3871 
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3873 {
3874     int xs, total, rt;
3875     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876     MemOp mop;
3877 
3878     if (!a->p && a->rm != 0) {
3879         return false;
3880     }
3881     if (!fp_access_check(s)) {
3882         return true;
3883     }
3884 
3885     if (a->rn == 31) {
3886         gen_check_sp_alignment(s);
3887     }
3888 
3889     total = a->selem << a->scale;
3890     tcg_rn = cpu_reg_sp(s, a->rn);
3891 
3892     mop = finalize_memop_asimd(s, a->scale);
3893     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894                                 total, mop);
3895 
3896     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898         do_vec_ld(s, rt, a->index, clean_addr, mop);
3899         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3900     }
3901 
3902     if (a->p) {
3903         if (a->rm == 31) {
3904             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905         } else {
3906             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3907         }
3908     }
3909     return true;
3910 }
3911 
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3913 {
3914     int xs, total, rt;
3915     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916     MemOp mop;
3917 
3918     if (!a->p && a->rm != 0) {
3919         return false;
3920     }
3921     if (!fp_access_check(s)) {
3922         return true;
3923     }
3924 
3925     if (a->rn == 31) {
3926         gen_check_sp_alignment(s);
3927     }
3928 
3929     total = a->selem << a->scale;
3930     tcg_rn = cpu_reg_sp(s, a->rn);
3931 
3932     mop = finalize_memop_asimd(s, a->scale);
3933     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934                                 total, mop);
3935 
3936     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938         /* Load and replicate to all elements */
3939         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3940 
3941         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3945     }
3946 
3947     if (a->p) {
3948         if (a->rm == 31) {
3949             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950         } else {
3951             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3952         }
3953     }
3954     return true;
3955 }
3956 
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3958 {
3959     TCGv_i64 addr, clean_addr, tcg_rt;
3960     int size = 4 << s->dcz_blocksize;
3961 
3962     if (!dc_isar_feature(aa64_mte, s)) {
3963         return false;
3964     }
3965     if (s->current_el == 0) {
3966         return false;
3967     }
3968 
3969     if (a->rn == 31) {
3970         gen_check_sp_alignment(s);
3971     }
3972 
3973     addr = read_cpu_reg_sp(s, a->rn, true);
3974     tcg_gen_addi_i64(addr, addr, a->imm);
3975     tcg_rt = cpu_reg(s, a->rt);
3976 
3977     if (s->ata[0]) {
3978         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3979     }
3980     /*
3981      * The non-tags portion of STZGM is mostly like DC_ZVA,
3982      * except the alignment happens before the access.
3983      */
3984     clean_addr = clean_data_tbi(s, addr);
3985     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986     gen_helper_dc_zva(tcg_env, clean_addr);
3987     return true;
3988 }
3989 
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3991 {
3992     TCGv_i64 addr, clean_addr, tcg_rt;
3993 
3994     if (!dc_isar_feature(aa64_mte, s)) {
3995         return false;
3996     }
3997     if (s->current_el == 0) {
3998         return false;
3999     }
4000 
4001     if (a->rn == 31) {
4002         gen_check_sp_alignment(s);
4003     }
4004 
4005     addr = read_cpu_reg_sp(s, a->rn, true);
4006     tcg_gen_addi_i64(addr, addr, a->imm);
4007     tcg_rt = cpu_reg(s, a->rt);
4008 
4009     if (s->ata[0]) {
4010         gen_helper_stgm(tcg_env, addr, tcg_rt);
4011     } else {
4012         MMUAccessType acc = MMU_DATA_STORE;
4013         int size = 4 << s->gm_blocksize;
4014 
4015         clean_addr = clean_data_tbi(s, addr);
4016         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017         gen_probe_access(s, clean_addr, acc, size);
4018     }
4019     return true;
4020 }
4021 
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4023 {
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     if (!dc_isar_feature(aa64_mte, s)) {
4027         return false;
4028     }
4029     if (s->current_el == 0) {
4030         return false;
4031     }
4032 
4033     if (a->rn == 31) {
4034         gen_check_sp_alignment(s);
4035     }
4036 
4037     addr = read_cpu_reg_sp(s, a->rn, true);
4038     tcg_gen_addi_i64(addr, addr, a->imm);
4039     tcg_rt = cpu_reg(s, a->rt);
4040 
4041     if (s->ata[0]) {
4042         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043     } else {
4044         MMUAccessType acc = MMU_DATA_LOAD;
4045         int size = 4 << s->gm_blocksize;
4046 
4047         clean_addr = clean_data_tbi(s, addr);
4048         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049         gen_probe_access(s, clean_addr, acc, size);
4050         /* The result tags are zeros.  */
4051         tcg_gen_movi_i64(tcg_rt, 0);
4052     }
4053     return true;
4054 }
4055 
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4057 {
4058     TCGv_i64 addr, clean_addr, tcg_rt;
4059 
4060     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061         return false;
4062     }
4063 
4064     if (a->rn == 31) {
4065         gen_check_sp_alignment(s);
4066     }
4067 
4068     addr = read_cpu_reg_sp(s, a->rn, true);
4069     if (!a->p) {
4070         /* pre-index or signed offset */
4071         tcg_gen_addi_i64(addr, addr, a->imm);
4072     }
4073 
4074     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075     tcg_rt = cpu_reg(s, a->rt);
4076     if (s->ata[0]) {
4077         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078     } else {
4079         /*
4080          * Tag access disabled: we must check for aborts on the load
4081          * load from [rn+offset], and then insert a 0 tag into rt.
4082          */
4083         clean_addr = clean_data_tbi(s, addr);
4084         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4086     }
4087 
4088     if (a->w) {
4089         /* pre-index or post-index */
4090         if (a->p) {
4091             /* post-index */
4092             tcg_gen_addi_i64(addr, addr, a->imm);
4093         }
4094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4095     }
4096     return true;
4097 }
4098 
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4100 {
4101     TCGv_i64 addr, tcg_rt;
4102 
4103     if (a->rn == 31) {
4104         gen_check_sp_alignment(s);
4105     }
4106 
4107     addr = read_cpu_reg_sp(s, a->rn, true);
4108     if (!a->p) {
4109         /* pre-index or signed offset */
4110         tcg_gen_addi_i64(addr, addr, a->imm);
4111     }
4112     tcg_rt = cpu_reg_sp(s, a->rt);
4113     if (!s->ata[0]) {
4114         /*
4115          * For STG and ST2G, we need to check alignment and probe memory.
4116          * TODO: For STZG and STZ2G, we could rely on the stores below,
4117          * at least for system mode; user-only won't enforce alignment.
4118          */
4119         if (is_pair) {
4120             gen_helper_st2g_stub(tcg_env, addr);
4121         } else {
4122             gen_helper_stg_stub(tcg_env, addr);
4123         }
4124     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125         if (is_pair) {
4126             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127         } else {
4128             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4129         }
4130     } else {
4131         if (is_pair) {
4132             gen_helper_st2g(tcg_env, addr, tcg_rt);
4133         } else {
4134             gen_helper_stg(tcg_env, addr, tcg_rt);
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 zero64 = tcg_constant_i64(0);
4141         TCGv_i128 zero128 = tcg_temp_new_i128();
4142         int mem_index = get_mem_index(s);
4143         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4144 
4145         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4146 
4147         /* This is 1 or 2 atomic 16-byte operations. */
4148         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149         if (is_pair) {
4150             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4152         }
4153     }
4154 
4155     if (a->w) {
4156         /* pre-index or post-index */
4157         if (a->p) {
4158             /* post-index */
4159             tcg_gen_addi_i64(addr, addr, a->imm);
4160         }
4161         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4162     }
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4170 
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4172 
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174                    bool is_setg, SetFn fn)
4175 {
4176     int memidx;
4177     uint32_t syndrome, desc = 0;
4178 
4179     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182 
4183     /*
4184      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185      * us to pull this check before the CheckMOPSEnabled() test
4186      * (which we do in the helper function)
4187      */
4188     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189         a->rd == 31 || a->rn == 31) {
4190         return false;
4191     }
4192 
4193     memidx = get_a64_user_mem_index(s, a->unpriv);
4194 
4195     /*
4196      * We pass option_a == true, matching our implementation;
4197      * we pass wrong_option == false: helper function may set that bit.
4198      */
4199     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4201 
4202     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203         /* We may need to do MTE tag checking, so assemble the descriptor */
4204         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4208     }
4209     /* The helper function always needs the memidx even with MTE disabled */
4210     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4211 
4212     /*
4213      * The helper needs the register numbers, but since they're in
4214      * the syndrome anyway, we let it extract them from there rather
4215      * than passing in an extra three integer arguments.
4216      */
4217     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218     return true;
4219 }
4220 
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4227 
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4229 
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4231 {
4232     int rmemidx, wmemidx;
4233     uint32_t syndrome, rdesc = 0, wdesc = 0;
4234     bool wunpriv = extract32(a->options, 0, 1);
4235     bool runpriv = extract32(a->options, 1, 1);
4236 
4237     /*
4238      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239      * us to pull this check before the CheckMOPSEnabled() test
4240      * (which we do in the helper function)
4241      */
4242     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244         return false;
4245     }
4246 
4247     rmemidx = get_a64_user_mem_index(s, runpriv);
4248     wmemidx = get_a64_user_mem_index(s, wunpriv);
4249 
4250     /*
4251      * We pass option_a == true, matching our implementation;
4252      * we pass wrong_option == false: helper function may set that bit.
4253      */
4254     syndrome = syn_mop(false, false, a->options, is_epilogue,
4255                        false, true, a->rd, a->rs, a->rn);
4256 
4257     /* If we need to do MTE tag checking, assemble the descriptors */
4258     if (s->mte_active[runpriv]) {
4259         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4261     }
4262     if (s->mte_active[wunpriv]) {
4263         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4266     }
4267     /* The helper function needs these parts of the descriptor regardless */
4268     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4270 
4271     /*
4272      * The helper needs the register numbers, but since they're in
4273      * the syndrome anyway, we let it extract them from there rather
4274      * than passing in an extra three integer arguments.
4275      */
4276     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277        tcg_constant_i32(rdesc));
4278     return true;
4279 }
4280 
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4287 
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4289 
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4292 {
4293     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4296 
4297     fn(tcg_rd, tcg_rn, tcg_imm);
4298     if (!a->sf) {
4299         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4300     }
4301     return true;
4302 }
4303 
4304 /*
4305  * PC-rel. addressing
4306  */
4307 
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4309 {
4310     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311     return true;
4312 }
4313 
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4315 {
4316     int64_t offset = (int64_t)a->imm << 12;
4317 
4318     /* The page offset is ok for CF_PCREL. */
4319     offset -= s->pc_curr & 0xfff;
4320     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321     return true;
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate)
4326  */
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4331 
4332 /*
4333  * Add/subtract (immediate, with tags)
4334  */
4335 
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337                                       bool sub_op)
4338 {
4339     TCGv_i64 tcg_rn, tcg_rd;
4340     int imm;
4341 
4342     imm = a->uimm6 << LOG2_TAG_GRANULE;
4343     if (sub_op) {
4344         imm = -imm;
4345     }
4346 
4347     tcg_rn = cpu_reg_sp(s, a->rn);
4348     tcg_rd = cpu_reg_sp(s, a->rd);
4349 
4350     if (s->ata[0]) {
4351         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352                            tcg_constant_i32(imm),
4353                            tcg_constant_i32(a->uimm4));
4354     } else {
4355         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4357     }
4358     return true;
4359 }
4360 
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4363 
4364 /* The input should be a value in the bottom e bits (with higher
4365  * bits zero); returns that value replicated into every element
4366  * of size e in a 64 bit integer.
4367  */
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4369 {
4370     assert(e != 0);
4371     while (e < 64) {
4372         mask |= mask << e;
4373         e *= 2;
4374     }
4375     return mask;
4376 }
4377 
4378 /*
4379  * Logical (immediate)
4380  */
4381 
4382 /*
4383  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385  * value (ie should cause a guest UNDEF exception), and true if they are
4386  * valid, in which case the decoded bit pattern is written to result.
4387  */
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389                             unsigned int imms, unsigned int immr)
4390 {
4391     uint64_t mask;
4392     unsigned e, levels, s, r;
4393     int len;
4394 
4395     assert(immn < 2 && imms < 64 && immr < 64);
4396 
4397     /* The bit patterns we create here are 64 bit patterns which
4398      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399      * 64 bits each. Each element contains the same value: a run
4400      * of between 1 and e-1 non-zero bits, rotated within the
4401      * element by between 0 and e-1 bits.
4402      *
4403      * The element size and run length are encoded into immn (1 bit)
4404      * and imms (6 bits) as follows:
4405      * 64 bit elements: immn = 1, imms = <length of run - 1>
4406      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411      * Notice that immn = 0, imms = 11111x is the only combination
4412      * not covered by one of the above options; this is reserved.
4413      * Further, <length of run - 1> all-ones is a reserved pattern.
4414      *
4415      * In all cases the rotation is by immr % e (and immr is 6 bits).
4416      */
4417 
4418     /* First determine the element size */
4419     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420     if (len < 1) {
4421         /* This is the immn == 0, imms == 0x11111x case */
4422         return false;
4423     }
4424     e = 1 << len;
4425 
4426     levels = e - 1;
4427     s = imms & levels;
4428     r = immr & levels;
4429 
4430     if (s == levels) {
4431         /* <length of run - 1> mustn't be all-ones. */
4432         return false;
4433     }
4434 
4435     /* Create the value of one element: s+1 set bits rotated
4436      * by r within the element (which is e bits wide)...
4437      */
4438     mask = MAKE_64BIT_MASK(0, s + 1);
4439     if (r) {
4440         mask = (mask >> r) | (mask << (e - r));
4441         mask &= MAKE_64BIT_MASK(0, e);
4442     }
4443     /* ...then replicate the element over the whole 64 bit value */
4444     mask = bitfield_replicate(mask, e);
4445     *result = mask;
4446     return true;
4447 }
4448 
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4451 {
4452     TCGv_i64 tcg_rd, tcg_rn;
4453     uint64_t imm;
4454 
4455     /* Some immediate field values are reserved. */
4456     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457                                 extract32(a->dbm, 0, 6),
4458                                 extract32(a->dbm, 6, 6))) {
4459         return false;
4460     }
4461     if (!a->sf) {
4462         imm &= 0xffffffffull;
4463     }
4464 
4465     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466     tcg_rn = cpu_reg(s, a->rn);
4467 
4468     fn(tcg_rd, tcg_rn, imm);
4469     if (set_cc) {
4470         gen_logic_CC(a->sf, tcg_rd);
4471     }
4472     if (!a->sf) {
4473         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4474     }
4475     return true;
4476 }
4477 
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4482 
4483 /*
4484  * Move wide (immediate)
4485  */
4486 
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4488 {
4489     int pos = a->hw << 4;
4490     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491     return true;
4492 }
4493 
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4495 {
4496     int pos = a->hw << 4;
4497     uint64_t imm = a->imm;
4498 
4499     imm = ~(imm << pos);
4500     if (!a->sf) {
4501         imm = (uint32_t)imm;
4502     }
4503     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504     return true;
4505 }
4506 
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4508 {
4509     int pos = a->hw << 4;
4510     TCGv_i64 tcg_rd, tcg_im;
4511 
4512     tcg_rd = cpu_reg(s, a->rd);
4513     tcg_im = tcg_constant_i64(a->imm);
4514     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * Bitfield
4523  */
4524 
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4526 {
4527     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529     unsigned int bitsize = a->sf ? 64 : 32;
4530     unsigned int ri = a->immr;
4531     unsigned int si = a->imms;
4532     unsigned int pos, len;
4533 
4534     if (si >= ri) {
4535         /* Wd<s-r:0> = Wn<s:r> */
4536         len = (si - ri) + 1;
4537         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538         if (!a->sf) {
4539             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540         }
4541     } else {
4542         /* Wd<32+s-r,32-r> = Wn<s:0> */
4543         len = si + 1;
4544         pos = (bitsize - ri) & (bitsize - 1);
4545 
4546         if (len < ri) {
4547             /*
4548              * Sign extend the destination field from len to fill the
4549              * balance of the word.  Let the deposit below insert all
4550              * of those sign bits.
4551              */
4552             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553             len = ri;
4554         }
4555 
4556         /*
4557          * We start with zero, and we haven't modified any bits outside
4558          * bitsize, therefore no final zero-extension is unneeded for !sf.
4559          */
4560         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4561     }
4562     return true;
4563 }
4564 
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4566 {
4567     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569     unsigned int bitsize = a->sf ? 64 : 32;
4570     unsigned int ri = a->immr;
4571     unsigned int si = a->imms;
4572     unsigned int pos, len;
4573 
4574     tcg_rd = cpu_reg(s, a->rd);
4575     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 
4577     if (si >= ri) {
4578         /* Wd<s-r:0> = Wn<s:r> */
4579         len = (si - ri) + 1;
4580         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581     } else {
4582         /* Wd<32+s-r,32-r> = Wn<s:0> */
4583         len = si + 1;
4584         pos = (bitsize - ri) & (bitsize - 1);
4585         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4586     }
4587     return true;
4588 }
4589 
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4591 {
4592     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594     unsigned int bitsize = a->sf ? 64 : 32;
4595     unsigned int ri = a->immr;
4596     unsigned int si = a->imms;
4597     unsigned int pos, len;
4598 
4599     tcg_rd = cpu_reg(s, a->rd);
4600     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 
4602     if (si >= ri) {
4603         /* Wd<s-r:0> = Wn<s:r> */
4604         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605         len = (si - ri) + 1;
4606         pos = 0;
4607     } else {
4608         /* Wd<32+s-r,32-r> = Wn<s:0> */
4609         len = si + 1;
4610         pos = (bitsize - ri) & (bitsize - 1);
4611     }
4612 
4613     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614     if (!a->sf) {
4615         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4616     }
4617     return true;
4618 }
4619 
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4621 {
4622     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4623 
4624     tcg_rd = cpu_reg(s, a->rd);
4625 
4626     if (unlikely(a->imm == 0)) {
4627         /*
4628          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629          * so an extract from bit 0 is a special case.
4630          */
4631         if (a->sf) {
4632             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633         } else {
4634             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4635         }
4636     } else {
4637         tcg_rm = cpu_reg(s, a->rm);
4638         tcg_rn = cpu_reg(s, a->rn);
4639 
4640         if (a->sf) {
4641             /* Specialization to ROR happens in EXTRACT2.  */
4642             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643         } else {
4644             TCGv_i32 t0 = tcg_temp_new_i32();
4645 
4646             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647             if (a->rm == a->rn) {
4648                 tcg_gen_rotri_i32(t0, t0, a->imm);
4649             } else {
4650                 TCGv_i32 t1 = tcg_temp_new_i32();
4651                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4653             }
4654             tcg_gen_extu_i32_i64(tcg_rd, t0);
4655         }
4656     }
4657     return true;
4658 }
4659 
4660 /*
4661  * Cryptographic AES, SHA, SHA512
4662  */
4663 
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4668 
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4673 
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4677 
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4681 
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4689 
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4692 
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4695 
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4697 {
4698     if (!dc_isar_feature(aa64_sm3, s)) {
4699         return false;
4700     }
4701     if (fp_access_check(s)) {
4702         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705         TCGv_i32 tcg_res = tcg_temp_new_i32();
4706         unsigned vsz, dofs;
4707 
4708         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4711 
4712         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4716 
4717         /* Clear the whole register first, then store bits [127:96]. */
4718         vsz = vec_full_reg_size(s);
4719         dofs = vec_full_reg_offset(s, a->rd);
4720         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4722     }
4723     return true;
4724 }
4725 
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4727 {
4728     if (fp_access_check(s)) {
4729         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4730     }
4731     return true;
4732 }
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4737 
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4739 {
4740     if (!dc_isar_feature(aa64_sha3, s)) {
4741         return false;
4742     }
4743     if (fp_access_check(s)) {
4744         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745                      vec_full_reg_offset(s, a->rn),
4746                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4747                      vec_full_reg_size(s));
4748     }
4749     return true;
4750 }
4751 
4752 /*
4753  * Advanced SIMD copy
4754  */
4755 
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4757 {
4758     unsigned esz = ctz32(imm);
4759     if (esz <= MO_64) {
4760         *pesz = esz;
4761         *pidx = imm >> (esz + 1);
4762         return true;
4763     }
4764     return false;
4765 }
4766 
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4768 {
4769     MemOp esz;
4770     unsigned idx;
4771 
4772     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773         return false;
4774     }
4775     if (fp_access_check(s)) {
4776         /*
4777          * This instruction just extracts the specified element and
4778          * zero-extends it into the bottom of the destination register.
4779          */
4780         TCGv_i64 tmp = tcg_temp_new_i64();
4781         read_vec_element(s, tmp, a->rn, idx, esz);
4782         write_fp_dreg(s, a->rd, tmp);
4783     }
4784     return true;
4785 }
4786 
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4788 {
4789     MemOp esz;
4790     unsigned idx;
4791 
4792     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793         return false;
4794     }
4795     if (esz == MO_64 && !a->q) {
4796         return false;
4797     }
4798     if (fp_access_check(s)) {
4799         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800                              vec_reg_offset(s, a->rn, idx, esz),
4801                              a->q ? 16 : 8, vec_full_reg_size(s));
4802     }
4803     return true;
4804 }
4805 
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4807 {
4808     MemOp esz;
4809     unsigned idx;
4810 
4811     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812         return false;
4813     }
4814     if (esz == MO_64 && !a->q) {
4815         return false;
4816     }
4817     if (fp_access_check(s)) {
4818         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819                              a->q ? 16 : 8, vec_full_reg_size(s),
4820                              cpu_reg(s, a->rn));
4821     }
4822     return true;
4823 }
4824 
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4826 {
4827     MemOp esz;
4828     unsigned idx;
4829 
4830     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831         return false;
4832     }
4833     if (is_signed) {
4834         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835             return false;
4836         }
4837     } else {
4838         if (esz == MO_64 ? !a->q : a->q) {
4839             return false;
4840         }
4841     }
4842     if (fp_access_check(s)) {
4843         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845         if (is_signed && !a->q) {
4846             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847         }
4848     }
4849     return true;
4850 }
4851 
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4854 
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4856 {
4857     MemOp esz;
4858     unsigned idx;
4859 
4860     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861         return false;
4862     }
4863     if (fp_access_check(s)) {
4864         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865         clear_vec_high(s, true, a->rd);
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4871 {
4872     MemOp esz;
4873     unsigned didx, sidx;
4874 
4875     if (!decode_esz_idx(a->di, &esz, &didx)) {
4876         return false;
4877     }
4878     sidx = a->si >> esz;
4879     if (fp_access_check(s)) {
4880         TCGv_i64 tmp = tcg_temp_new_i64();
4881 
4882         read_vec_element(s, tmp, a->rn, sidx, esz);
4883         write_vec_element(s, tmp, a->rd, didx, esz);
4884 
4885         /* INS is considered a 128-bit write for SVE. */
4886         clear_vec_high(s, true, a->rd);
4887     }
4888     return true;
4889 }
4890 
4891 /*
4892  * Advanced SIMD three same
4893  */
4894 
4895 typedef struct FPScalar {
4896     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4900 
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4902 {
4903     switch (a->esz) {
4904     case MO_64:
4905         if (fp_access_check(s)) {
4906             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909             write_fp_dreg(s, a->rd, t0);
4910         }
4911         break;
4912     case MO_32:
4913         if (fp_access_check(s)) {
4914             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917             write_fp_sreg(s, a->rd, t0);
4918         }
4919         break;
4920     case MO_16:
4921         if (!dc_isar_feature(aa64_fp16, s)) {
4922             return false;
4923         }
4924         if (fp_access_check(s)) {
4925             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928             write_fp_sreg(s, a->rd, t0);
4929         }
4930         break;
4931     default:
4932         return false;
4933     }
4934     return true;
4935 }
4936 
4937 static const FPScalar f_scalar_fadd = {
4938     gen_helper_vfp_addh,
4939     gen_helper_vfp_adds,
4940     gen_helper_vfp_addd,
4941 };
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4943 
4944 static const FPScalar f_scalar_fsub = {
4945     gen_helper_vfp_subh,
4946     gen_helper_vfp_subs,
4947     gen_helper_vfp_subd,
4948 };
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4950 
4951 static const FPScalar f_scalar_fdiv = {
4952     gen_helper_vfp_divh,
4953     gen_helper_vfp_divs,
4954     gen_helper_vfp_divd,
4955 };
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4957 
4958 static const FPScalar f_scalar_fmul = {
4959     gen_helper_vfp_mulh,
4960     gen_helper_vfp_muls,
4961     gen_helper_vfp_muld,
4962 };
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4964 
4965 static const FPScalar f_scalar_fmax = {
4966     gen_helper_advsimd_maxh,
4967     gen_helper_vfp_maxs,
4968     gen_helper_vfp_maxd,
4969 };
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4971 
4972 static const FPScalar f_scalar_fmin = {
4973     gen_helper_advsimd_minh,
4974     gen_helper_vfp_mins,
4975     gen_helper_vfp_mind,
4976 };
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4978 
4979 static const FPScalar f_scalar_fmaxnm = {
4980     gen_helper_advsimd_maxnumh,
4981     gen_helper_vfp_maxnums,
4982     gen_helper_vfp_maxnumd,
4983 };
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4985 
4986 static const FPScalar f_scalar_fminnm = {
4987     gen_helper_advsimd_minnumh,
4988     gen_helper_vfp_minnums,
4989     gen_helper_vfp_minnumd,
4990 };
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4992 
4993 static const FPScalar f_scalar_fmulx = {
4994     gen_helper_advsimd_mulxh,
4995     gen_helper_vfp_mulxs,
4996     gen_helper_vfp_mulxd,
4997 };
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4999 
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5001 {
5002     gen_helper_vfp_mulh(d, n, m, s);
5003     gen_vfp_negh(d, d);
5004 }
5005 
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5007 {
5008     gen_helper_vfp_muls(d, n, m, s);
5009     gen_vfp_negs(d, d);
5010 }
5011 
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5013 {
5014     gen_helper_vfp_muld(d, n, m, s);
5015     gen_vfp_negd(d, d);
5016 }
5017 
5018 static const FPScalar f_scalar_fnmul = {
5019     gen_fnmul_h,
5020     gen_fnmul_s,
5021     gen_fnmul_d,
5022 };
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5024 
5025 static const FPScalar f_scalar_fcmeq = {
5026     gen_helper_advsimd_ceq_f16,
5027     gen_helper_neon_ceq_f32,
5028     gen_helper_neon_ceq_f64,
5029 };
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5031 
5032 static const FPScalar f_scalar_fcmge = {
5033     gen_helper_advsimd_cge_f16,
5034     gen_helper_neon_cge_f32,
5035     gen_helper_neon_cge_f64,
5036 };
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5038 
5039 static const FPScalar f_scalar_fcmgt = {
5040     gen_helper_advsimd_cgt_f16,
5041     gen_helper_neon_cgt_f32,
5042     gen_helper_neon_cgt_f64,
5043 };
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5045 
5046 static const FPScalar f_scalar_facge = {
5047     gen_helper_advsimd_acge_f16,
5048     gen_helper_neon_acge_f32,
5049     gen_helper_neon_acge_f64,
5050 };
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5052 
5053 static const FPScalar f_scalar_facgt = {
5054     gen_helper_advsimd_acgt_f16,
5055     gen_helper_neon_acgt_f32,
5056     gen_helper_neon_acgt_f64,
5057 };
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5059 
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5061 {
5062     gen_helper_vfp_subh(d, n, m, s);
5063     gen_vfp_absh(d, d);
5064 }
5065 
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5067 {
5068     gen_helper_vfp_subs(d, n, m, s);
5069     gen_vfp_abss(d, d);
5070 }
5071 
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5073 {
5074     gen_helper_vfp_subd(d, n, m, s);
5075     gen_vfp_absd(d, d);
5076 }
5077 
5078 static const FPScalar f_scalar_fabd = {
5079     gen_fabd_h,
5080     gen_fabd_s,
5081     gen_fabd_d,
5082 };
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5084 
5085 static const FPScalar f_scalar_frecps = {
5086     gen_helper_recpsf_f16,
5087     gen_helper_recpsf_f32,
5088     gen_helper_recpsf_f64,
5089 };
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5091 
5092 static const FPScalar f_scalar_frsqrts = {
5093     gen_helper_rsqrtsf_f16,
5094     gen_helper_rsqrtsf_f32,
5095     gen_helper_rsqrtsf_f64,
5096 };
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5098 
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100                 MemOp sgn_n, MemOp sgn_m,
5101                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5103 {
5104     TCGv_i64 t0, t1, t2, qc;
5105     MemOp esz = a->esz;
5106 
5107     if (!fp_access_check(s)) {
5108         return true;
5109     }
5110 
5111     t0 = tcg_temp_new_i64();
5112     t1 = tcg_temp_new_i64();
5113     t2 = tcg_temp_new_i64();
5114     qc = tcg_temp_new_i64();
5115     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5118 
5119     if (esz == MO_64) {
5120         gen_d(t0, qc, t1, t2);
5121     } else {
5122         gen_bhs(t0, qc, t1, t2, esz);
5123         tcg_gen_ext_i64(t0, t0, esz);
5124     }
5125 
5126     write_fp_dreg(s, a->rd, t0);
5127     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128     return true;
5129 }
5130 
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5137 
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5140 {
5141     if (fp_access_check(s)) {
5142         TCGv_i64 t0 = tcg_temp_new_i64();
5143         TCGv_i64 t1 = tcg_temp_new_i64();
5144 
5145         read_vec_element(s, t0, a->rn, 0, MO_64);
5146         read_vec_element(s, t1, a->rm, 0, MO_64);
5147         fn(t0, t0, t1);
5148         write_fp_dreg(s, a->rd, t0);
5149     }
5150     return true;
5151 }
5152 
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5159 
5160 typedef struct ENVScalar2 {
5161     NeonGenTwoOpEnvFn *gen_bhs[3];
5162     NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5164 
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5166 {
5167     if (!fp_access_check(s)) {
5168         return true;
5169     }
5170     if (a->esz == MO_64) {
5171         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173         f->gen_d(t0, tcg_env, t0, t1);
5174         write_fp_dreg(s, a->rd, t0);
5175     } else {
5176         TCGv_i32 t0 = tcg_temp_new_i32();
5177         TCGv_i32 t1 = tcg_temp_new_i32();
5178 
5179         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182         write_fp_sreg(s, a->rd, t0);
5183     }
5184     return true;
5185 }
5186 
5187 static const ENVScalar2 f_scalar_sqshl = {
5188     { gen_helper_neon_qshl_s8,
5189       gen_helper_neon_qshl_s16,
5190       gen_helper_neon_qshl_s32 },
5191     gen_helper_neon_qshl_s64,
5192 };
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5194 
5195 static const ENVScalar2 f_scalar_uqshl = {
5196     { gen_helper_neon_qshl_u8,
5197       gen_helper_neon_qshl_u16,
5198       gen_helper_neon_qshl_u32 },
5199     gen_helper_neon_qshl_u64,
5200 };
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5202 
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204     { gen_helper_neon_qrshl_s8,
5205       gen_helper_neon_qrshl_s16,
5206       gen_helper_neon_qrshl_s32 },
5207     gen_helper_neon_qrshl_s64,
5208 };
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5210 
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212     { gen_helper_neon_qrshl_u8,
5213       gen_helper_neon_qrshl_u16,
5214       gen_helper_neon_qrshl_u32 },
5215     gen_helper_neon_qrshl_u64,
5216 };
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5218 
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220                               const ENVScalar2 *f)
5221 {
5222     if (a->esz == MO_16 || a->esz == MO_32) {
5223         return do_env_scalar2(s, a, f);
5224     }
5225     return false;
5226 }
5227 
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5230 };
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5232 
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5235 };
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5237 
5238 typedef struct ENVScalar3 {
5239     NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5241 
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243                               const ENVScalar3 *f)
5244 {
5245     TCGv_i32 t0, t1, t2;
5246 
5247     if (a->esz != MO_16 && a->esz != MO_32) {
5248         return false;
5249     }
5250     if (!fp_access_check(s)) {
5251         return true;
5252     }
5253 
5254     t0 = tcg_temp_new_i32();
5255     t1 = tcg_temp_new_i32();
5256     t2 = tcg_temp_new_i32();
5257     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261     write_fp_sreg(s, a->rd, t0);
5262     return true;
5263 }
5264 
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5267 };
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5269 
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5272 };
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5274 
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5276 {
5277     if (fp_access_check(s)) {
5278         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281         write_fp_dreg(s, a->rd, t0);
5282     }
5283     return true;
5284 }
5285 
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5292 
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5294                           gen_helper_gvec_3_ptr * const fns[3])
5295 {
5296     MemOp esz = a->esz;
5297 
5298     switch (esz) {
5299     case MO_64:
5300         if (!a->q) {
5301             return false;
5302         }
5303         break;
5304     case MO_32:
5305         break;
5306     case MO_16:
5307         if (!dc_isar_feature(aa64_fp16, s)) {
5308             return false;
5309         }
5310         break;
5311     default:
5312         return false;
5313     }
5314     if (fp_access_check(s)) {
5315         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316                           esz == MO_16, data, fns[esz - 1]);
5317     }
5318     return true;
5319 }
5320 
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322     gen_helper_gvec_fadd_h,
5323     gen_helper_gvec_fadd_s,
5324     gen_helper_gvec_fadd_d,
5325 };
5326 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5327 
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329     gen_helper_gvec_fsub_h,
5330     gen_helper_gvec_fsub_s,
5331     gen_helper_gvec_fsub_d,
5332 };
5333 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5334 
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336     gen_helper_gvec_fdiv_h,
5337     gen_helper_gvec_fdiv_s,
5338     gen_helper_gvec_fdiv_d,
5339 };
5340 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5341 
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343     gen_helper_gvec_fmul_h,
5344     gen_helper_gvec_fmul_s,
5345     gen_helper_gvec_fmul_d,
5346 };
5347 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5348 
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350     gen_helper_gvec_fmax_h,
5351     gen_helper_gvec_fmax_s,
5352     gen_helper_gvec_fmax_d,
5353 };
5354 TRANS(FMAX_v, do_fp3_vector, a, 0, f_vector_fmax)
5355 
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357     gen_helper_gvec_fmin_h,
5358     gen_helper_gvec_fmin_s,
5359     gen_helper_gvec_fmin_d,
5360 };
5361 TRANS(FMIN_v, do_fp3_vector, a, 0, f_vector_fmin)
5362 
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364     gen_helper_gvec_fmaxnum_h,
5365     gen_helper_gvec_fmaxnum_s,
5366     gen_helper_gvec_fmaxnum_d,
5367 };
5368 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5369 
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371     gen_helper_gvec_fminnum_h,
5372     gen_helper_gvec_fminnum_s,
5373     gen_helper_gvec_fminnum_d,
5374 };
5375 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5376 
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378     gen_helper_gvec_fmulx_h,
5379     gen_helper_gvec_fmulx_s,
5380     gen_helper_gvec_fmulx_d,
5381 };
5382 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5383 
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385     gen_helper_gvec_vfma_h,
5386     gen_helper_gvec_vfma_s,
5387     gen_helper_gvec_vfma_d,
5388 };
5389 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5390 
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392     gen_helper_gvec_vfms_h,
5393     gen_helper_gvec_vfms_s,
5394     gen_helper_gvec_vfms_d,
5395 };
5396 TRANS(FMLS_v, do_fp3_vector, a, 0, f_vector_fmls)
5397 
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399     gen_helper_gvec_fceq_h,
5400     gen_helper_gvec_fceq_s,
5401     gen_helper_gvec_fceq_d,
5402 };
5403 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5404 
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406     gen_helper_gvec_fcge_h,
5407     gen_helper_gvec_fcge_s,
5408     gen_helper_gvec_fcge_d,
5409 };
5410 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5411 
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413     gen_helper_gvec_fcgt_h,
5414     gen_helper_gvec_fcgt_s,
5415     gen_helper_gvec_fcgt_d,
5416 };
5417 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5418 
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420     gen_helper_gvec_facge_h,
5421     gen_helper_gvec_facge_s,
5422     gen_helper_gvec_facge_d,
5423 };
5424 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5425 
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427     gen_helper_gvec_facgt_h,
5428     gen_helper_gvec_facgt_s,
5429     gen_helper_gvec_facgt_d,
5430 };
5431 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5432 
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434     gen_helper_gvec_fabd_h,
5435     gen_helper_gvec_fabd_s,
5436     gen_helper_gvec_fabd_d,
5437 };
5438 TRANS(FABD_v, do_fp3_vector, a, 0, f_vector_fabd)
5439 
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441     gen_helper_gvec_recps_h,
5442     gen_helper_gvec_recps_s,
5443     gen_helper_gvec_recps_d,
5444 };
5445 TRANS(FRECPS_v, do_fp3_vector, a, 0, f_vector_frecps)
5446 
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448     gen_helper_gvec_rsqrts_h,
5449     gen_helper_gvec_rsqrts_s,
5450     gen_helper_gvec_rsqrts_d,
5451 };
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, 0, f_vector_frsqrts)
5453 
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455     gen_helper_gvec_faddp_h,
5456     gen_helper_gvec_faddp_s,
5457     gen_helper_gvec_faddp_d,
5458 };
5459 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5460 
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462     gen_helper_gvec_fmaxp_h,
5463     gen_helper_gvec_fmaxp_s,
5464     gen_helper_gvec_fmaxp_d,
5465 };
5466 TRANS(FMAXP_v, do_fp3_vector, a, 0, f_vector_fmaxp)
5467 
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469     gen_helper_gvec_fminp_h,
5470     gen_helper_gvec_fminp_s,
5471     gen_helper_gvec_fminp_d,
5472 };
5473 TRANS(FMINP_v, do_fp3_vector, a, 0, f_vector_fminp)
5474 
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476     gen_helper_gvec_fmaxnump_h,
5477     gen_helper_gvec_fmaxnump_s,
5478     gen_helper_gvec_fmaxnump_d,
5479 };
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5481 
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483     gen_helper_gvec_fminnump_h,
5484     gen_helper_gvec_fminnump_s,
5485     gen_helper_gvec_fminnump_d,
5486 };
5487 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5488 
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5490 {
5491     if (fp_access_check(s)) {
5492         int data = (is_2 << 1) | is_s;
5493         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494                            vec_full_reg_offset(s, a->rn),
5495                            vec_full_reg_offset(s, a->rm), tcg_env,
5496                            a->q ? 16 : 8, vec_full_reg_size(s),
5497                            data, gen_helper_gvec_fmlal_a64);
5498     }
5499     return true;
5500 }
5501 
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5506 
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5512 
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5518 
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5520 {
5521     if (fp_access_check(s)) {
5522         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5523     }
5524     return true;
5525 }
5526 
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5530 
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5537 
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5546 
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5567 
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5569 {
5570     if (a->esz == MO_64 && !a->q) {
5571         return false;
5572     }
5573     if (fp_access_check(s)) {
5574         tcg_gen_gvec_cmp(cond, a->esz,
5575                          vec_full_reg_offset(s, a->rd),
5576                          vec_full_reg_offset(s, a->rn),
5577                          vec_full_reg_offset(s, a->rm),
5578                          a->q ? 16 : 8, vec_full_reg_size(s));
5579     }
5580     return true;
5581 }
5582 
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5589 
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5594 
5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5596                           gen_helper_gvec_4 *fn)
5597 {
5598     if (fp_access_check(s)) {
5599         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5600     }
5601     return true;
5602 }
5603 
5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot)
5608 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfmmla)
5609 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
5610 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
5611 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
5612 
5613 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
5614 {
5615     if (!dc_isar_feature(aa64_bf16, s)) {
5616         return false;
5617     }
5618     if (fp_access_check(s)) {
5619         /* Q bit selects BFMLALB vs BFMLALT. */
5620         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q,
5621                           gen_helper_gvec_bfmlal);
5622     }
5623     return true;
5624 }
5625 
5626 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
5627     gen_helper_gvec_fcaddh,
5628     gen_helper_gvec_fcadds,
5629     gen_helper_gvec_fcaddd,
5630 };
5631 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0, f_vector_fcadd)
5632 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1, f_vector_fcadd)
5633 
5634 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a)
5635 {
5636     gen_helper_gvec_4_ptr *fn;
5637 
5638     if (!dc_isar_feature(aa64_fcma, s)) {
5639         return false;
5640     }
5641     switch (a->esz) {
5642     case MO_64:
5643         if (!a->q) {
5644             return false;
5645         }
5646         fn = gen_helper_gvec_fcmlad;
5647         break;
5648     case MO_32:
5649         fn = gen_helper_gvec_fcmlas;
5650         break;
5651     case MO_16:
5652         if (!dc_isar_feature(aa64_fp16, s)) {
5653             return false;
5654         }
5655         fn = gen_helper_gvec_fcmlah;
5656         break;
5657     default:
5658         return false;
5659     }
5660     if (fp_access_check(s)) {
5661         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5662                           a->esz == MO_16, a->rot, fn);
5663     }
5664     return true;
5665 }
5666 
5667 /*
5668  * Widening vector x vector/indexed.
5669  *
5670  * These read from the top or bottom half of a 128-bit vector.
5671  * After widening, optionally accumulate with a 128-bit vector.
5672  * Implement these inline, as the number of elements are limited
5673  * and the related SVE and SME operations on larger vectors use
5674  * even/odd elements instead of top/bottom half.
5675  *
5676  * If idx >= 0, operand 2 is indexed, otherwise vector.
5677  * If acc, operand 0 is loaded with rd.
5678  */
5679 
5680 /* For low half, iterating up. */
5681 static bool do_3op_widening(DisasContext *s, MemOp memop, int top,
5682                             int rd, int rn, int rm, int idx,
5683                             NeonGenTwo64OpFn *fn, bool acc)
5684 {
5685     TCGv_i64 tcg_op0 = tcg_temp_new_i64();
5686     TCGv_i64 tcg_op1 = tcg_temp_new_i64();
5687     TCGv_i64 tcg_op2 = tcg_temp_new_i64();
5688     MemOp esz = memop & MO_SIZE;
5689     int half = 8 >> esz;
5690     int top_swap, top_half;
5691 
5692     /* There are no 64x64->128 bit operations. */
5693     if (esz >= MO_64) {
5694         return false;
5695     }
5696     if (!fp_access_check(s)) {
5697         return true;
5698     }
5699 
5700     if (idx >= 0) {
5701         read_vec_element(s, tcg_op2, rm, idx, memop);
5702     }
5703 
5704     /*
5705      * For top half inputs, iterate forward; backward for bottom half.
5706      * This means the store to the destination will not occur until
5707      * overlapping input inputs are consumed.
5708      * Use top_swap to conditionally invert the forward iteration index.
5709      */
5710     top_swap = top ? 0 : half - 1;
5711     top_half = top ? half : 0;
5712 
5713     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5714         int elt = elt_fwd ^ top_swap;
5715 
5716         read_vec_element(s, tcg_op1, rn, elt + top_half, memop);
5717         if (idx < 0) {
5718             read_vec_element(s, tcg_op2, rm, elt + top_half, memop);
5719         }
5720         if (acc) {
5721             read_vec_element(s, tcg_op0, rd, elt, memop + 1);
5722         }
5723         fn(tcg_op0, tcg_op1, tcg_op2);
5724         write_vec_element(s, tcg_op0, rd, elt, esz + 1);
5725     }
5726     clear_vec_high(s, 1, rd);
5727     return true;
5728 }
5729 
5730 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5731 {
5732     TCGv_i64 t = tcg_temp_new_i64();
5733     tcg_gen_mul_i64(t, n, m);
5734     tcg_gen_add_i64(d, d, t);
5735 }
5736 
5737 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5738 {
5739     TCGv_i64 t = tcg_temp_new_i64();
5740     tcg_gen_mul_i64(t, n, m);
5741     tcg_gen_sub_i64(d, d, t);
5742 }
5743 
5744 TRANS(SMULL_v, do_3op_widening,
5745       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5746       tcg_gen_mul_i64, false)
5747 TRANS(UMULL_v, do_3op_widening,
5748       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5749       tcg_gen_mul_i64, false)
5750 TRANS(SMLAL_v, do_3op_widening,
5751       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5752       gen_muladd_i64, true)
5753 TRANS(UMLAL_v, do_3op_widening,
5754       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5755       gen_muladd_i64, true)
5756 TRANS(SMLSL_v, do_3op_widening,
5757       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5758       gen_mulsub_i64, true)
5759 TRANS(UMLSL_v, do_3op_widening,
5760       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5761       gen_mulsub_i64, true)
5762 
5763 TRANS(SMULL_vi, do_3op_widening,
5764       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5765       tcg_gen_mul_i64, false)
5766 TRANS(UMULL_vi, do_3op_widening,
5767       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5768       tcg_gen_mul_i64, false)
5769 TRANS(SMLAL_vi, do_3op_widening,
5770       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5771       gen_muladd_i64, true)
5772 TRANS(UMLAL_vi, do_3op_widening,
5773       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5774       gen_muladd_i64, true)
5775 TRANS(SMLSL_vi, do_3op_widening,
5776       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5777       gen_mulsub_i64, true)
5778 TRANS(UMLSL_vi, do_3op_widening,
5779       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5780       gen_mulsub_i64, true)
5781 
5782 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5783 {
5784     TCGv_i64 t1 = tcg_temp_new_i64();
5785     TCGv_i64 t2 = tcg_temp_new_i64();
5786 
5787     tcg_gen_sub_i64(t1, n, m);
5788     tcg_gen_sub_i64(t2, m, n);
5789     tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2);
5790 }
5791 
5792 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5793 {
5794     TCGv_i64 t1 = tcg_temp_new_i64();
5795     TCGv_i64 t2 = tcg_temp_new_i64();
5796 
5797     tcg_gen_sub_i64(t1, n, m);
5798     tcg_gen_sub_i64(t2, m, n);
5799     tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2);
5800 }
5801 
5802 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5803 {
5804     TCGv_i64 t = tcg_temp_new_i64();
5805     gen_sabd_i64(t, n, m);
5806     tcg_gen_add_i64(d, d, t);
5807 }
5808 
5809 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5810 {
5811     TCGv_i64 t = tcg_temp_new_i64();
5812     gen_uabd_i64(t, n, m);
5813     tcg_gen_add_i64(d, d, t);
5814 }
5815 
5816 TRANS(SADDL_v, do_3op_widening,
5817       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5818       tcg_gen_add_i64, false)
5819 TRANS(UADDL_v, do_3op_widening,
5820       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5821       tcg_gen_add_i64, false)
5822 TRANS(SSUBL_v, do_3op_widening,
5823       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5824       tcg_gen_sub_i64, false)
5825 TRANS(USUBL_v, do_3op_widening,
5826       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5827       tcg_gen_sub_i64, false)
5828 TRANS(SABDL_v, do_3op_widening,
5829       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5830       gen_sabd_i64, false)
5831 TRANS(UABDL_v, do_3op_widening,
5832       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5833       gen_uabd_i64, false)
5834 TRANS(SABAL_v, do_3op_widening,
5835       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5836       gen_saba_i64, true)
5837 TRANS(UABAL_v, do_3op_widening,
5838       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5839       gen_uaba_i64, true)
5840 
5841 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5842 {
5843     tcg_gen_mul_i64(d, n, m);
5844     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d);
5845 }
5846 
5847 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5848 {
5849     tcg_gen_mul_i64(d, n, m);
5850     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d);
5851 }
5852 
5853 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5854 {
5855     TCGv_i64 t = tcg_temp_new_i64();
5856 
5857     tcg_gen_mul_i64(t, n, m);
5858     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
5859     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
5860 }
5861 
5862 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5863 {
5864     TCGv_i64 t = tcg_temp_new_i64();
5865 
5866     tcg_gen_mul_i64(t, n, m);
5867     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
5868     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
5869 }
5870 
5871 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5872 {
5873     TCGv_i64 t = tcg_temp_new_i64();
5874 
5875     tcg_gen_mul_i64(t, n, m);
5876     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
5877     tcg_gen_neg_i64(t, t);
5878     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
5879 }
5880 
5881 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5882 {
5883     TCGv_i64 t = tcg_temp_new_i64();
5884 
5885     tcg_gen_mul_i64(t, n, m);
5886     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
5887     tcg_gen_neg_i64(t, t);
5888     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
5889 }
5890 
5891 TRANS(SQDMULL_v, do_3op_widening,
5892       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5893       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
5894 TRANS(SQDMLAL_v, do_3op_widening,
5895       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5896       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
5897 TRANS(SQDMLSL_v, do_3op_widening,
5898       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5899       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
5900 
5901 TRANS(SQDMULL_vi, do_3op_widening,
5902       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5903       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
5904 TRANS(SQDMLAL_vi, do_3op_widening,
5905       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5906       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
5907 TRANS(SQDMLSL_vi, do_3op_widening,
5908       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5909       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
5910 
5911 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a,
5912                            MemOp sign, bool sub)
5913 {
5914     TCGv_i64 tcg_op0, tcg_op1;
5915     MemOp esz = a->esz;
5916     int half = 8 >> esz;
5917     bool top = a->q;
5918     int top_swap = top ? 0 : half - 1;
5919     int top_half = top ? half : 0;
5920 
5921     /* There are no 64x64->128 bit operations. */
5922     if (esz >= MO_64) {
5923         return false;
5924     }
5925     if (!fp_access_check(s)) {
5926         return true;
5927     }
5928     tcg_op0 = tcg_temp_new_i64();
5929     tcg_op1 = tcg_temp_new_i64();
5930 
5931     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5932         int elt = elt_fwd ^ top_swap;
5933 
5934         read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign);
5935         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
5936         if (sub) {
5937             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
5938         } else {
5939             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
5940         }
5941         write_vec_element(s, tcg_op0, a->rd, elt, esz + 1);
5942     }
5943     clear_vec_high(s, 1, a->rd);
5944     return true;
5945 }
5946 
5947 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false)
5948 TRANS(UADDW, do_addsub_wide, a, 0, false)
5949 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true)
5950 TRANS(USUBW, do_addsub_wide, a, 0, true)
5951 
5952 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a,
5953                                  bool sub, bool round)
5954 {
5955     TCGv_i64 tcg_op0, tcg_op1;
5956     MemOp esz = a->esz;
5957     int half = 8 >> esz;
5958     bool top = a->q;
5959     int ebits = 8 << esz;
5960     uint64_t rbit = 1ull << (ebits - 1);
5961     int top_swap, top_half;
5962 
5963     /* There are no 128x128->64 bit operations. */
5964     if (esz >= MO_64) {
5965         return false;
5966     }
5967     if (!fp_access_check(s)) {
5968         return true;
5969     }
5970     tcg_op0 = tcg_temp_new_i64();
5971     tcg_op1 = tcg_temp_new_i64();
5972 
5973     /*
5974      * For top half inputs, iterate backward; forward for bottom half.
5975      * This means the store to the destination will not occur until
5976      * overlapping input inputs are consumed.
5977      */
5978     top_swap = top ? half - 1 : 0;
5979     top_half = top ? half : 0;
5980 
5981     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5982         int elt = elt_fwd ^ top_swap;
5983 
5984         read_vec_element(s, tcg_op1, a->rm, elt, esz + 1);
5985         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
5986         if (sub) {
5987             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
5988         } else {
5989             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
5990         }
5991         if (round) {
5992             tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit);
5993         }
5994         tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits);
5995         write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz);
5996     }
5997     clear_vec_high(s, top, a->rd);
5998     return true;
5999 }
6000 
6001 TRANS(ADDHN, do_addsub_highnarrow, a, false, false)
6002 TRANS(SUBHN, do_addsub_highnarrow, a, true, false)
6003 TRANS(RADDHN, do_addsub_highnarrow, a, false, true)
6004 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true)
6005 
6006 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn)
6007 {
6008     if (fp_access_check(s)) {
6009         /* The Q field specifies lo/hi half input for these insns.  */
6010         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn);
6011     }
6012     return true;
6013 }
6014 
6015 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h)
6016 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q)
6017 
6018 /*
6019  * Advanced SIMD scalar/vector x indexed element
6020  */
6021 
6022 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
6023 {
6024     switch (a->esz) {
6025     case MO_64:
6026         if (fp_access_check(s)) {
6027             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
6028             TCGv_i64 t1 = tcg_temp_new_i64();
6029 
6030             read_vec_element(s, t1, a->rm, a->idx, MO_64);
6031             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6032             write_fp_dreg(s, a->rd, t0);
6033         }
6034         break;
6035     case MO_32:
6036         if (fp_access_check(s)) {
6037             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
6038             TCGv_i32 t1 = tcg_temp_new_i32();
6039 
6040             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
6041             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6042             write_fp_sreg(s, a->rd, t0);
6043         }
6044         break;
6045     case MO_16:
6046         if (!dc_isar_feature(aa64_fp16, s)) {
6047             return false;
6048         }
6049         if (fp_access_check(s)) {
6050             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
6051             TCGv_i32 t1 = tcg_temp_new_i32();
6052 
6053             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
6054             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6055             write_fp_sreg(s, a->rd, t0);
6056         }
6057         break;
6058     default:
6059         g_assert_not_reached();
6060     }
6061     return true;
6062 }
6063 
6064 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
6065 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
6066 
6067 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
6068 {
6069     switch (a->esz) {
6070     case MO_64:
6071         if (fp_access_check(s)) {
6072             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
6073             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
6074             TCGv_i64 t2 = tcg_temp_new_i64();
6075 
6076             read_vec_element(s, t2, a->rm, a->idx, MO_64);
6077             if (neg) {
6078                 gen_vfp_negd(t1, t1);
6079             }
6080             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
6081             write_fp_dreg(s, a->rd, t0);
6082         }
6083         break;
6084     case MO_32:
6085         if (fp_access_check(s)) {
6086             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
6087             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
6088             TCGv_i32 t2 = tcg_temp_new_i32();
6089 
6090             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
6091             if (neg) {
6092                 gen_vfp_negs(t1, t1);
6093             }
6094             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
6095             write_fp_sreg(s, a->rd, t0);
6096         }
6097         break;
6098     case MO_16:
6099         if (!dc_isar_feature(aa64_fp16, s)) {
6100             return false;
6101         }
6102         if (fp_access_check(s)) {
6103             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
6104             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
6105             TCGv_i32 t2 = tcg_temp_new_i32();
6106 
6107             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
6108             if (neg) {
6109                 gen_vfp_negh(t1, t1);
6110             }
6111             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
6112                                        fpstatus_ptr(FPST_FPCR_F16));
6113             write_fp_sreg(s, a->rd, t0);
6114         }
6115         break;
6116     default:
6117         g_assert_not_reached();
6118     }
6119     return true;
6120 }
6121 
6122 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
6123 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
6124 
6125 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
6126                                   const ENVScalar2 *f)
6127 {
6128     if (a->esz < MO_16 || a->esz > MO_32) {
6129         return false;
6130     }
6131     if (fp_access_check(s)) {
6132         TCGv_i32 t0 = tcg_temp_new_i32();
6133         TCGv_i32 t1 = tcg_temp_new_i32();
6134 
6135         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6136         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6137         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
6138         write_fp_sreg(s, a->rd, t0);
6139     }
6140     return true;
6141 }
6142 
6143 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
6144 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
6145 
6146 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
6147                                   const ENVScalar3 *f)
6148 {
6149     if (a->esz < MO_16 || a->esz > MO_32) {
6150         return false;
6151     }
6152     if (fp_access_check(s)) {
6153         TCGv_i32 t0 = tcg_temp_new_i32();
6154         TCGv_i32 t1 = tcg_temp_new_i32();
6155         TCGv_i32 t2 = tcg_temp_new_i32();
6156 
6157         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6158         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6159         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
6160         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
6161         write_fp_sreg(s, a->rd, t0);
6162     }
6163     return true;
6164 }
6165 
6166 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
6167 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
6168 
6169 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a,
6170                                           NeonGenTwo64OpFn *fn, bool acc)
6171 {
6172     if (fp_access_check(s)) {
6173         TCGv_i64 t0 = tcg_temp_new_i64();
6174         TCGv_i64 t1 = tcg_temp_new_i64();
6175         TCGv_i64 t2 = tcg_temp_new_i64();
6176         unsigned vsz, dofs;
6177 
6178         if (acc) {
6179             read_vec_element(s, t0, a->rd, 0, a->esz + 1);
6180         }
6181         read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN);
6182         read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN);
6183         fn(t0, t1, t2);
6184 
6185         /* Clear the whole register first, then store scalar. */
6186         vsz = vec_full_reg_size(s);
6187         dofs = vec_full_reg_offset(s, a->rd);
6188         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
6189         write_vec_element(s, t0, a->rd, 0, a->esz + 1);
6190     }
6191     return true;
6192 }
6193 
6194 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a,
6195       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6196 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a,
6197       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6198 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a,
6199       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6200 
6201 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6202                               gen_helper_gvec_3_ptr * const fns[3])
6203 {
6204     MemOp esz = a->esz;
6205 
6206     switch (esz) {
6207     case MO_64:
6208         if (!a->q) {
6209             return false;
6210         }
6211         break;
6212     case MO_32:
6213         break;
6214     case MO_16:
6215         if (!dc_isar_feature(aa64_fp16, s)) {
6216             return false;
6217         }
6218         break;
6219     default:
6220         g_assert_not_reached();
6221     }
6222     if (fp_access_check(s)) {
6223         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
6224                           esz == MO_16, a->idx, fns[esz - 1]);
6225     }
6226     return true;
6227 }
6228 
6229 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
6230     gen_helper_gvec_fmul_idx_h,
6231     gen_helper_gvec_fmul_idx_s,
6232     gen_helper_gvec_fmul_idx_d,
6233 };
6234 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
6235 
6236 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
6237     gen_helper_gvec_fmulx_idx_h,
6238     gen_helper_gvec_fmulx_idx_s,
6239     gen_helper_gvec_fmulx_idx_d,
6240 };
6241 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
6242 
6243 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
6244 {
6245     static gen_helper_gvec_4_ptr * const fns[3] = {
6246         gen_helper_gvec_fmla_idx_h,
6247         gen_helper_gvec_fmla_idx_s,
6248         gen_helper_gvec_fmla_idx_d,
6249     };
6250     MemOp esz = a->esz;
6251 
6252     switch (esz) {
6253     case MO_64:
6254         if (!a->q) {
6255             return false;
6256         }
6257         break;
6258     case MO_32:
6259         break;
6260     case MO_16:
6261         if (!dc_isar_feature(aa64_fp16, s)) {
6262             return false;
6263         }
6264         break;
6265     default:
6266         g_assert_not_reached();
6267     }
6268     if (fp_access_check(s)) {
6269         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6270                           esz == MO_16, (a->idx << 1) | neg,
6271                           fns[esz - 1]);
6272     }
6273     return true;
6274 }
6275 
6276 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
6277 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
6278 
6279 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
6280 {
6281     if (fp_access_check(s)) {
6282         int data = (a->idx << 2) | (is_2 << 1) | is_s;
6283         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
6284                            vec_full_reg_offset(s, a->rn),
6285                            vec_full_reg_offset(s, a->rm), tcg_env,
6286                            a->q ? 16 : 8, vec_full_reg_size(s),
6287                            data, gen_helper_gvec_fmlal_idx_a64);
6288     }
6289     return true;
6290 }
6291 
6292 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
6293 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
6294 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
6295 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
6296 
6297 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6298                                gen_helper_gvec_3 * const fns[2])
6299 {
6300     assert(a->esz == MO_16 || a->esz == MO_32);
6301     if (fp_access_check(s)) {
6302         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
6303     }
6304     return true;
6305 }
6306 
6307 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
6308     gen_helper_gvec_mul_idx_h,
6309     gen_helper_gvec_mul_idx_s,
6310 };
6311 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
6312 
6313 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
6314 {
6315     static gen_helper_gvec_4 * const fns[2][2] = {
6316         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
6317         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
6318     };
6319 
6320     assert(a->esz == MO_16 || a->esz == MO_32);
6321     if (fp_access_check(s)) {
6322         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
6323                          a->idx, fns[a->esz - 1][sub]);
6324     }
6325     return true;
6326 }
6327 
6328 TRANS(MLA_vi, do_mla_vector_idx, a, false)
6329 TRANS(MLS_vi, do_mla_vector_idx, a, true)
6330 
6331 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
6332                                   gen_helper_gvec_4 * const fns[2])
6333 {
6334     assert(a->esz == MO_16 || a->esz == MO_32);
6335     if (fp_access_check(s)) {
6336         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
6337                            vec_full_reg_offset(s, a->rn),
6338                            vec_full_reg_offset(s, a->rm),
6339                            offsetof(CPUARMState, vfp.qc),
6340                            a->q ? 16 : 8, vec_full_reg_size(s),
6341                            a->idx, fns[a->esz - 1]);
6342     }
6343     return true;
6344 }
6345 
6346 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
6347     gen_helper_neon_sqdmulh_idx_h,
6348     gen_helper_neon_sqdmulh_idx_s,
6349 };
6350 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
6351 
6352 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
6353     gen_helper_neon_sqrdmulh_idx_h,
6354     gen_helper_neon_sqrdmulh_idx_s,
6355 };
6356 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
6357 
6358 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
6359     gen_helper_neon_sqrdmlah_idx_h,
6360     gen_helper_neon_sqrdmlah_idx_s,
6361 };
6362 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6363            f_vector_idx_sqrdmlah)
6364 
6365 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
6366     gen_helper_neon_sqrdmlsh_idx_h,
6367     gen_helper_neon_sqrdmlsh_idx_s,
6368 };
6369 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6370            f_vector_idx_sqrdmlsh)
6371 
6372 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
6373                               gen_helper_gvec_4 *fn)
6374 {
6375     if (fp_access_check(s)) {
6376         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6377     }
6378     return true;
6379 }
6380 
6381 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
6382 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
6383 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6384            gen_helper_gvec_sudot_idx_b)
6385 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6386            gen_helper_gvec_usdot_idx_b)
6387 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a,
6388            gen_helper_gvec_bfdot_idx)
6389 
6390 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
6391 {
6392     if (!dc_isar_feature(aa64_bf16, s)) {
6393         return false;
6394     }
6395     if (fp_access_check(s)) {
6396         /* Q bit selects BFMLALB vs BFMLALT. */
6397         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0,
6398                           (a->idx << 1) | a->q,
6399                           gen_helper_gvec_bfmlal_idx);
6400     }
6401     return true;
6402 }
6403 
6404 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a)
6405 {
6406     gen_helper_gvec_4_ptr *fn;
6407 
6408     if (!dc_isar_feature(aa64_fcma, s)) {
6409         return false;
6410     }
6411     switch (a->esz) {
6412     case MO_16:
6413         if (!dc_isar_feature(aa64_fp16, s)) {
6414             return false;
6415         }
6416         fn = gen_helper_gvec_fcmlah_idx;
6417         break;
6418     case MO_32:
6419         fn = gen_helper_gvec_fcmlas_idx;
6420         break;
6421     default:
6422         g_assert_not_reached();
6423     }
6424     if (fp_access_check(s)) {
6425         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6426                           a->esz == MO_16, (a->idx << 2) | a->rot, fn);
6427     }
6428     return true;
6429 }
6430 
6431 /*
6432  * Advanced SIMD scalar pairwise
6433  */
6434 
6435 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
6436 {
6437     switch (a->esz) {
6438     case MO_64:
6439         if (fp_access_check(s)) {
6440             TCGv_i64 t0 = tcg_temp_new_i64();
6441             TCGv_i64 t1 = tcg_temp_new_i64();
6442 
6443             read_vec_element(s, t0, a->rn, 0, MO_64);
6444             read_vec_element(s, t1, a->rn, 1, MO_64);
6445             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6446             write_fp_dreg(s, a->rd, t0);
6447         }
6448         break;
6449     case MO_32:
6450         if (fp_access_check(s)) {
6451             TCGv_i32 t0 = tcg_temp_new_i32();
6452             TCGv_i32 t1 = tcg_temp_new_i32();
6453 
6454             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6455             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6456             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6457             write_fp_sreg(s, a->rd, t0);
6458         }
6459         break;
6460     case MO_16:
6461         if (!dc_isar_feature(aa64_fp16, s)) {
6462             return false;
6463         }
6464         if (fp_access_check(s)) {
6465             TCGv_i32 t0 = tcg_temp_new_i32();
6466             TCGv_i32 t1 = tcg_temp_new_i32();
6467 
6468             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6469             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6470             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6471             write_fp_sreg(s, a->rd, t0);
6472         }
6473         break;
6474     default:
6475         g_assert_not_reached();
6476     }
6477     return true;
6478 }
6479 
6480 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6481 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6482 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6483 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6484 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6485 
6486 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6487 {
6488     if (fp_access_check(s)) {
6489         TCGv_i64 t0 = tcg_temp_new_i64();
6490         TCGv_i64 t1 = tcg_temp_new_i64();
6491 
6492         read_vec_element(s, t0, a->rn, 0, MO_64);
6493         read_vec_element(s, t1, a->rn, 1, MO_64);
6494         tcg_gen_add_i64(t0, t0, t1);
6495         write_fp_dreg(s, a->rd, t0);
6496     }
6497     return true;
6498 }
6499 
6500 /*
6501  * Floating-point conditional select
6502  */
6503 
6504 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6505 {
6506     TCGv_i64 t_true, t_false;
6507     DisasCompare64 c;
6508 
6509     switch (a->esz) {
6510     case MO_32:
6511     case MO_64:
6512         break;
6513     case MO_16:
6514         if (!dc_isar_feature(aa64_fp16, s)) {
6515             return false;
6516         }
6517         break;
6518     default:
6519         return false;
6520     }
6521 
6522     if (!fp_access_check(s)) {
6523         return true;
6524     }
6525 
6526     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6527     t_true = tcg_temp_new_i64();
6528     t_false = tcg_temp_new_i64();
6529     read_vec_element(s, t_true, a->rn, 0, a->esz);
6530     read_vec_element(s, t_false, a->rm, 0, a->esz);
6531 
6532     a64_test_cc(&c, a->cond);
6533     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6534                         t_true, t_false);
6535 
6536     /*
6537      * Note that sregs & hregs write back zeros to the high bits,
6538      * and we've already done the zero-extension.
6539      */
6540     write_fp_dreg(s, a->rd, t_true);
6541     return true;
6542 }
6543 
6544 /*
6545  * Floating-point data-processing (3 source)
6546  */
6547 
6548 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6549 {
6550     TCGv_ptr fpst;
6551 
6552     /*
6553      * These are fused multiply-add.  Note that doing the negations here
6554      * as separate steps is correct: an input NaN should come out with
6555      * its sign bit flipped if it is a negated-input.
6556      */
6557     switch (a->esz) {
6558     case MO_64:
6559         if (fp_access_check(s)) {
6560             TCGv_i64 tn = read_fp_dreg(s, a->rn);
6561             TCGv_i64 tm = read_fp_dreg(s, a->rm);
6562             TCGv_i64 ta = read_fp_dreg(s, a->ra);
6563 
6564             if (neg_a) {
6565                 gen_vfp_negd(ta, ta);
6566             }
6567             if (neg_n) {
6568                 gen_vfp_negd(tn, tn);
6569             }
6570             fpst = fpstatus_ptr(FPST_FPCR);
6571             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6572             write_fp_dreg(s, a->rd, ta);
6573         }
6574         break;
6575 
6576     case MO_32:
6577         if (fp_access_check(s)) {
6578             TCGv_i32 tn = read_fp_sreg(s, a->rn);
6579             TCGv_i32 tm = read_fp_sreg(s, a->rm);
6580             TCGv_i32 ta = read_fp_sreg(s, a->ra);
6581 
6582             if (neg_a) {
6583                 gen_vfp_negs(ta, ta);
6584             }
6585             if (neg_n) {
6586                 gen_vfp_negs(tn, tn);
6587             }
6588             fpst = fpstatus_ptr(FPST_FPCR);
6589             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6590             write_fp_sreg(s, a->rd, ta);
6591         }
6592         break;
6593 
6594     case MO_16:
6595         if (!dc_isar_feature(aa64_fp16, s)) {
6596             return false;
6597         }
6598         if (fp_access_check(s)) {
6599             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6600             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6601             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6602 
6603             if (neg_a) {
6604                 gen_vfp_negh(ta, ta);
6605             }
6606             if (neg_n) {
6607                 gen_vfp_negh(tn, tn);
6608             }
6609             fpst = fpstatus_ptr(FPST_FPCR_F16);
6610             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6611             write_fp_sreg(s, a->rd, ta);
6612         }
6613         break;
6614 
6615     default:
6616         return false;
6617     }
6618     return true;
6619 }
6620 
6621 TRANS(FMADD, do_fmadd, a, false, false)
6622 TRANS(FNMADD, do_fmadd, a, true, true)
6623 TRANS(FMSUB, do_fmadd, a, false, true)
6624 TRANS(FNMSUB, do_fmadd, a, true, false)
6625 
6626 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6627  * Note that it is the caller's responsibility to ensure that the
6628  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6629  * mandated semantics for out of range shifts.
6630  */
6631 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6632                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6633 {
6634     switch (shift_type) {
6635     case A64_SHIFT_TYPE_LSL:
6636         tcg_gen_shl_i64(dst, src, shift_amount);
6637         break;
6638     case A64_SHIFT_TYPE_LSR:
6639         tcg_gen_shr_i64(dst, src, shift_amount);
6640         break;
6641     case A64_SHIFT_TYPE_ASR:
6642         if (!sf) {
6643             tcg_gen_ext32s_i64(dst, src);
6644         }
6645         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6646         break;
6647     case A64_SHIFT_TYPE_ROR:
6648         if (sf) {
6649             tcg_gen_rotr_i64(dst, src, shift_amount);
6650         } else {
6651             TCGv_i32 t0, t1;
6652             t0 = tcg_temp_new_i32();
6653             t1 = tcg_temp_new_i32();
6654             tcg_gen_extrl_i64_i32(t0, src);
6655             tcg_gen_extrl_i64_i32(t1, shift_amount);
6656             tcg_gen_rotr_i32(t0, t0, t1);
6657             tcg_gen_extu_i32_i64(dst, t0);
6658         }
6659         break;
6660     default:
6661         assert(FALSE); /* all shift types should be handled */
6662         break;
6663     }
6664 
6665     if (!sf) { /* zero extend final result */
6666         tcg_gen_ext32u_i64(dst, dst);
6667     }
6668 }
6669 
6670 /* Shift a TCGv src by immediate, put result in dst.
6671  * The shift amount must be in range (this should always be true as the
6672  * relevant instructions will UNDEF on bad shift immediates).
6673  */
6674 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6675                           enum a64_shift_type shift_type, unsigned int shift_i)
6676 {
6677     assert(shift_i < (sf ? 64 : 32));
6678 
6679     if (shift_i == 0) {
6680         tcg_gen_mov_i64(dst, src);
6681     } else {
6682         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6683     }
6684 }
6685 
6686 /* Logical (shifted register)
6687  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
6688  * +----+-----+-----------+-------+---+------+--------+------+------+
6689  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
6690  * +----+-----+-----------+-------+---+------+--------+------+------+
6691  */
6692 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6693 {
6694     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6695     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6696 
6697     sf = extract32(insn, 31, 1);
6698     opc = extract32(insn, 29, 2);
6699     shift_type = extract32(insn, 22, 2);
6700     invert = extract32(insn, 21, 1);
6701     rm = extract32(insn, 16, 5);
6702     shift_amount = extract32(insn, 10, 6);
6703     rn = extract32(insn, 5, 5);
6704     rd = extract32(insn, 0, 5);
6705 
6706     if (!sf && (shift_amount & (1 << 5))) {
6707         unallocated_encoding(s);
6708         return;
6709     }
6710 
6711     tcg_rd = cpu_reg(s, rd);
6712 
6713     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6714         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6715          * register-register MOV and MVN, so it is worth special casing.
6716          */
6717         tcg_rm = cpu_reg(s, rm);
6718         if (invert) {
6719             tcg_gen_not_i64(tcg_rd, tcg_rm);
6720             if (!sf) {
6721                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6722             }
6723         } else {
6724             if (sf) {
6725                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6726             } else {
6727                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6728             }
6729         }
6730         return;
6731     }
6732 
6733     tcg_rm = read_cpu_reg(s, rm, sf);
6734 
6735     if (shift_amount) {
6736         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6737     }
6738 
6739     tcg_rn = cpu_reg(s, rn);
6740 
6741     switch (opc | (invert << 2)) {
6742     case 0: /* AND */
6743     case 3: /* ANDS */
6744         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6745         break;
6746     case 1: /* ORR */
6747         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6748         break;
6749     case 2: /* EOR */
6750         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6751         break;
6752     case 4: /* BIC */
6753     case 7: /* BICS */
6754         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6755         break;
6756     case 5: /* ORN */
6757         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6758         break;
6759     case 6: /* EON */
6760         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6761         break;
6762     default:
6763         assert(FALSE);
6764         break;
6765     }
6766 
6767     if (!sf) {
6768         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6769     }
6770 
6771     if (opc == 3) {
6772         gen_logic_CC(sf, tcg_rd);
6773     }
6774 }
6775 
6776 /*
6777  * Add/subtract (extended register)
6778  *
6779  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
6780  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6781  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
6782  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6783  *
6784  *  sf: 0 -> 32bit, 1 -> 64bit
6785  *  op: 0 -> add  , 1 -> sub
6786  *   S: 1 -> set flags
6787  * opt: 00
6788  * option: extension type (see DecodeRegExtend)
6789  * imm3: optional shift to Rm
6790  *
6791  * Rd = Rn + LSL(extend(Rm), amount)
6792  */
6793 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6794 {
6795     int rd = extract32(insn, 0, 5);
6796     int rn = extract32(insn, 5, 5);
6797     int imm3 = extract32(insn, 10, 3);
6798     int option = extract32(insn, 13, 3);
6799     int rm = extract32(insn, 16, 5);
6800     int opt = extract32(insn, 22, 2);
6801     bool setflags = extract32(insn, 29, 1);
6802     bool sub_op = extract32(insn, 30, 1);
6803     bool sf = extract32(insn, 31, 1);
6804 
6805     TCGv_i64 tcg_rm, tcg_rn; /* temps */
6806     TCGv_i64 tcg_rd;
6807     TCGv_i64 tcg_result;
6808 
6809     if (imm3 > 4 || opt != 0) {
6810         unallocated_encoding(s);
6811         return;
6812     }
6813 
6814     /* non-flag setting ops may use SP */
6815     if (!setflags) {
6816         tcg_rd = cpu_reg_sp(s, rd);
6817     } else {
6818         tcg_rd = cpu_reg(s, rd);
6819     }
6820     tcg_rn = read_cpu_reg_sp(s, rn, sf);
6821 
6822     tcg_rm = read_cpu_reg(s, rm, sf);
6823     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6824 
6825     tcg_result = tcg_temp_new_i64();
6826 
6827     if (!setflags) {
6828         if (sub_op) {
6829             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6830         } else {
6831             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6832         }
6833     } else {
6834         if (sub_op) {
6835             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6836         } else {
6837             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6838         }
6839     }
6840 
6841     if (sf) {
6842         tcg_gen_mov_i64(tcg_rd, tcg_result);
6843     } else {
6844         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6845     }
6846 }
6847 
6848 /*
6849  * Add/subtract (shifted register)
6850  *
6851  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
6852  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6853  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
6854  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6855  *
6856  *    sf: 0 -> 32bit, 1 -> 64bit
6857  *    op: 0 -> add  , 1 -> sub
6858  *     S: 1 -> set flags
6859  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6860  *  imm6: Shift amount to apply to Rm before the add/sub
6861  */
6862 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6863 {
6864     int rd = extract32(insn, 0, 5);
6865     int rn = extract32(insn, 5, 5);
6866     int imm6 = extract32(insn, 10, 6);
6867     int rm = extract32(insn, 16, 5);
6868     int shift_type = extract32(insn, 22, 2);
6869     bool setflags = extract32(insn, 29, 1);
6870     bool sub_op = extract32(insn, 30, 1);
6871     bool sf = extract32(insn, 31, 1);
6872 
6873     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6874     TCGv_i64 tcg_rn, tcg_rm;
6875     TCGv_i64 tcg_result;
6876 
6877     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6878         unallocated_encoding(s);
6879         return;
6880     }
6881 
6882     tcg_rn = read_cpu_reg(s, rn, sf);
6883     tcg_rm = read_cpu_reg(s, rm, sf);
6884 
6885     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6886 
6887     tcg_result = tcg_temp_new_i64();
6888 
6889     if (!setflags) {
6890         if (sub_op) {
6891             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6892         } else {
6893             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6894         }
6895     } else {
6896         if (sub_op) {
6897             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6898         } else {
6899             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6900         }
6901     }
6902 
6903     if (sf) {
6904         tcg_gen_mov_i64(tcg_rd, tcg_result);
6905     } else {
6906         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6907     }
6908 }
6909 
6910 /* Data-processing (3 source)
6911  *
6912  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
6913  *  +--+------+-----------+------+------+----+------+------+------+
6914  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6915  *  +--+------+-----------+------+------+----+------+------+------+
6916  */
6917 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6918 {
6919     int rd = extract32(insn, 0, 5);
6920     int rn = extract32(insn, 5, 5);
6921     int ra = extract32(insn, 10, 5);
6922     int rm = extract32(insn, 16, 5);
6923     int op_id = (extract32(insn, 29, 3) << 4) |
6924         (extract32(insn, 21, 3) << 1) |
6925         extract32(insn, 15, 1);
6926     bool sf = extract32(insn, 31, 1);
6927     bool is_sub = extract32(op_id, 0, 1);
6928     bool is_high = extract32(op_id, 2, 1);
6929     bool is_signed = false;
6930     TCGv_i64 tcg_op1;
6931     TCGv_i64 tcg_op2;
6932     TCGv_i64 tcg_tmp;
6933 
6934     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6935     switch (op_id) {
6936     case 0x42: /* SMADDL */
6937     case 0x43: /* SMSUBL */
6938     case 0x44: /* SMULH */
6939         is_signed = true;
6940         break;
6941     case 0x0: /* MADD (32bit) */
6942     case 0x1: /* MSUB (32bit) */
6943     case 0x40: /* MADD (64bit) */
6944     case 0x41: /* MSUB (64bit) */
6945     case 0x4a: /* UMADDL */
6946     case 0x4b: /* UMSUBL */
6947     case 0x4c: /* UMULH */
6948         break;
6949     default:
6950         unallocated_encoding(s);
6951         return;
6952     }
6953 
6954     if (is_high) {
6955         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6956         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6957         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6958         TCGv_i64 tcg_rm = cpu_reg(s, rm);
6959 
6960         if (is_signed) {
6961             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6962         } else {
6963             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6964         }
6965         return;
6966     }
6967 
6968     tcg_op1 = tcg_temp_new_i64();
6969     tcg_op2 = tcg_temp_new_i64();
6970     tcg_tmp = tcg_temp_new_i64();
6971 
6972     if (op_id < 0x42) {
6973         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6974         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6975     } else {
6976         if (is_signed) {
6977             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6978             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6979         } else {
6980             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6981             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6982         }
6983     }
6984 
6985     if (ra == 31 && !is_sub) {
6986         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6987         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6988     } else {
6989         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6990         if (is_sub) {
6991             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6992         } else {
6993             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6994         }
6995     }
6996 
6997     if (!sf) {
6998         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6999     }
7000 }
7001 
7002 /* Add/subtract (with carry)
7003  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
7004  * +--+--+--+------------------------+------+-------------+------+-----+
7005  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
7006  * +--+--+--+------------------------+------+-------------+------+-----+
7007  */
7008 
7009 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
7010 {
7011     unsigned int sf, op, setflags, rm, rn, rd;
7012     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
7013 
7014     sf = extract32(insn, 31, 1);
7015     op = extract32(insn, 30, 1);
7016     setflags = extract32(insn, 29, 1);
7017     rm = extract32(insn, 16, 5);
7018     rn = extract32(insn, 5, 5);
7019     rd = extract32(insn, 0, 5);
7020 
7021     tcg_rd = cpu_reg(s, rd);
7022     tcg_rn = cpu_reg(s, rn);
7023 
7024     if (op) {
7025         tcg_y = tcg_temp_new_i64();
7026         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
7027     } else {
7028         tcg_y = cpu_reg(s, rm);
7029     }
7030 
7031     if (setflags) {
7032         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
7033     } else {
7034         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
7035     }
7036 }
7037 
7038 /*
7039  * Rotate right into flags
7040  *  31 30 29                21       15          10      5  4      0
7041  * +--+--+--+-----------------+--------+-----------+------+--+------+
7042  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
7043  * +--+--+--+-----------------+--------+-----------+------+--+------+
7044  */
7045 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
7046 {
7047     int mask = extract32(insn, 0, 4);
7048     int o2 = extract32(insn, 4, 1);
7049     int rn = extract32(insn, 5, 5);
7050     int imm6 = extract32(insn, 15, 6);
7051     int sf_op_s = extract32(insn, 29, 3);
7052     TCGv_i64 tcg_rn;
7053     TCGv_i32 nzcv;
7054 
7055     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
7056         unallocated_encoding(s);
7057         return;
7058     }
7059 
7060     tcg_rn = read_cpu_reg(s, rn, 1);
7061     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
7062 
7063     nzcv = tcg_temp_new_i32();
7064     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
7065 
7066     if (mask & 8) { /* N */
7067         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
7068     }
7069     if (mask & 4) { /* Z */
7070         tcg_gen_not_i32(cpu_ZF, nzcv);
7071         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
7072     }
7073     if (mask & 2) { /* C */
7074         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
7075     }
7076     if (mask & 1) { /* V */
7077         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
7078     }
7079 }
7080 
7081 /*
7082  * Evaluate into flags
7083  *  31 30 29                21        15   14        10      5  4      0
7084  * +--+--+--+-----------------+---------+----+---------+------+--+------+
7085  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
7086  * +--+--+--+-----------------+---------+----+---------+------+--+------+
7087  */
7088 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
7089 {
7090     int o3_mask = extract32(insn, 0, 5);
7091     int rn = extract32(insn, 5, 5);
7092     int o2 = extract32(insn, 15, 6);
7093     int sz = extract32(insn, 14, 1);
7094     int sf_op_s = extract32(insn, 29, 3);
7095     TCGv_i32 tmp;
7096     int shift;
7097 
7098     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
7099         !dc_isar_feature(aa64_condm_4, s)) {
7100         unallocated_encoding(s);
7101         return;
7102     }
7103     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
7104 
7105     tmp = tcg_temp_new_i32();
7106     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
7107     tcg_gen_shli_i32(cpu_NF, tmp, shift);
7108     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
7109     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
7110     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
7111 }
7112 
7113 /* Conditional compare (immediate / register)
7114  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
7115  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
7116  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
7117  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
7118  *        [1]                             y                [0]       [0]
7119  */
7120 static void disas_cc(DisasContext *s, uint32_t insn)
7121 {
7122     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
7123     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
7124     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
7125     DisasCompare c;
7126 
7127     if (!extract32(insn, 29, 1)) {
7128         unallocated_encoding(s);
7129         return;
7130     }
7131     if (insn & (1 << 10 | 1 << 4)) {
7132         unallocated_encoding(s);
7133         return;
7134     }
7135     sf = extract32(insn, 31, 1);
7136     op = extract32(insn, 30, 1);
7137     is_imm = extract32(insn, 11, 1);
7138     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
7139     cond = extract32(insn, 12, 4);
7140     rn = extract32(insn, 5, 5);
7141     nzcv = extract32(insn, 0, 4);
7142 
7143     /* Set T0 = !COND.  */
7144     tcg_t0 = tcg_temp_new_i32();
7145     arm_test_cc(&c, cond);
7146     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
7147 
7148     /* Load the arguments for the new comparison.  */
7149     if (is_imm) {
7150         tcg_y = tcg_temp_new_i64();
7151         tcg_gen_movi_i64(tcg_y, y);
7152     } else {
7153         tcg_y = cpu_reg(s, y);
7154     }
7155     tcg_rn = cpu_reg(s, rn);
7156 
7157     /* Set the flags for the new comparison.  */
7158     tcg_tmp = tcg_temp_new_i64();
7159     if (op) {
7160         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
7161     } else {
7162         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
7163     }
7164 
7165     /* If COND was false, force the flags to #nzcv.  Compute two masks
7166      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
7167      * For tcg hosts that support ANDC, we can make do with just T1.
7168      * In either case, allow the tcg optimizer to delete any unused mask.
7169      */
7170     tcg_t1 = tcg_temp_new_i32();
7171     tcg_t2 = tcg_temp_new_i32();
7172     tcg_gen_neg_i32(tcg_t1, tcg_t0);
7173     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
7174 
7175     if (nzcv & 8) { /* N */
7176         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
7177     } else {
7178         if (TCG_TARGET_HAS_andc_i32) {
7179             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
7180         } else {
7181             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
7182         }
7183     }
7184     if (nzcv & 4) { /* Z */
7185         if (TCG_TARGET_HAS_andc_i32) {
7186             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
7187         } else {
7188             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
7189         }
7190     } else {
7191         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
7192     }
7193     if (nzcv & 2) { /* C */
7194         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
7195     } else {
7196         if (TCG_TARGET_HAS_andc_i32) {
7197             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
7198         } else {
7199             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
7200         }
7201     }
7202     if (nzcv & 1) { /* V */
7203         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
7204     } else {
7205         if (TCG_TARGET_HAS_andc_i32) {
7206             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
7207         } else {
7208             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
7209         }
7210     }
7211 }
7212 
7213 /* Conditional select
7214  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
7215  * +----+----+---+-----------------+------+------+-----+------+------+
7216  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
7217  * +----+----+---+-----------------+------+------+-----+------+------+
7218  */
7219 static void disas_cond_select(DisasContext *s, uint32_t insn)
7220 {
7221     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
7222     TCGv_i64 tcg_rd, zero;
7223     DisasCompare64 c;
7224 
7225     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
7226         /* S == 1 or op2<1> == 1 */
7227         unallocated_encoding(s);
7228         return;
7229     }
7230     sf = extract32(insn, 31, 1);
7231     else_inv = extract32(insn, 30, 1);
7232     rm = extract32(insn, 16, 5);
7233     cond = extract32(insn, 12, 4);
7234     else_inc = extract32(insn, 10, 1);
7235     rn = extract32(insn, 5, 5);
7236     rd = extract32(insn, 0, 5);
7237 
7238     tcg_rd = cpu_reg(s, rd);
7239 
7240     a64_test_cc(&c, cond);
7241     zero = tcg_constant_i64(0);
7242 
7243     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
7244         /* CSET & CSETM.  */
7245         if (else_inv) {
7246             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
7247                                    tcg_rd, c.value, zero);
7248         } else {
7249             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
7250                                 tcg_rd, c.value, zero);
7251         }
7252     } else {
7253         TCGv_i64 t_true = cpu_reg(s, rn);
7254         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
7255         if (else_inv && else_inc) {
7256             tcg_gen_neg_i64(t_false, t_false);
7257         } else if (else_inv) {
7258             tcg_gen_not_i64(t_false, t_false);
7259         } else if (else_inc) {
7260             tcg_gen_addi_i64(t_false, t_false, 1);
7261         }
7262         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
7263     }
7264 
7265     if (!sf) {
7266         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7267     }
7268 }
7269 
7270 static void handle_clz(DisasContext *s, unsigned int sf,
7271                        unsigned int rn, unsigned int rd)
7272 {
7273     TCGv_i64 tcg_rd, tcg_rn;
7274     tcg_rd = cpu_reg(s, rd);
7275     tcg_rn = cpu_reg(s, rn);
7276 
7277     if (sf) {
7278         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
7279     } else {
7280         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
7281         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
7282         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
7283         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
7284     }
7285 }
7286 
7287 static void handle_cls(DisasContext *s, unsigned int sf,
7288                        unsigned int rn, unsigned int rd)
7289 {
7290     TCGv_i64 tcg_rd, tcg_rn;
7291     tcg_rd = cpu_reg(s, rd);
7292     tcg_rn = cpu_reg(s, rn);
7293 
7294     if (sf) {
7295         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
7296     } else {
7297         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
7298         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
7299         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
7300         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
7301     }
7302 }
7303 
7304 static void handle_rbit(DisasContext *s, unsigned int sf,
7305                         unsigned int rn, unsigned int rd)
7306 {
7307     TCGv_i64 tcg_rd, tcg_rn;
7308     tcg_rd = cpu_reg(s, rd);
7309     tcg_rn = cpu_reg(s, rn);
7310 
7311     if (sf) {
7312         gen_helper_rbit64(tcg_rd, tcg_rn);
7313     } else {
7314         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
7315         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
7316         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
7317         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
7318     }
7319 }
7320 
7321 /* REV with sf==1, opcode==3 ("REV64") */
7322 static void handle_rev64(DisasContext *s, unsigned int sf,
7323                          unsigned int rn, unsigned int rd)
7324 {
7325     if (!sf) {
7326         unallocated_encoding(s);
7327         return;
7328     }
7329     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
7330 }
7331 
7332 /* REV with sf==0, opcode==2
7333  * REV32 (sf==1, opcode==2)
7334  */
7335 static void handle_rev32(DisasContext *s, unsigned int sf,
7336                          unsigned int rn, unsigned int rd)
7337 {
7338     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7339     TCGv_i64 tcg_rn = cpu_reg(s, rn);
7340 
7341     if (sf) {
7342         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
7343         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
7344     } else {
7345         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
7346     }
7347 }
7348 
7349 /* REV16 (opcode==1) */
7350 static void handle_rev16(DisasContext *s, unsigned int sf,
7351                          unsigned int rn, unsigned int rd)
7352 {
7353     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7354     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7355     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7356     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
7357 
7358     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
7359     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
7360     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
7361     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
7362     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
7363 }
7364 
7365 /* Data-processing (1 source)
7366  *   31  30  29  28             21 20     16 15    10 9    5 4    0
7367  * +----+---+---+-----------------+---------+--------+------+------+
7368  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
7369  * +----+---+---+-----------------+---------+--------+------+------+
7370  */
7371 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
7372 {
7373     unsigned int sf, opcode, opcode2, rn, rd;
7374     TCGv_i64 tcg_rd;
7375 
7376     if (extract32(insn, 29, 1)) {
7377         unallocated_encoding(s);
7378         return;
7379     }
7380 
7381     sf = extract32(insn, 31, 1);
7382     opcode = extract32(insn, 10, 6);
7383     opcode2 = extract32(insn, 16, 5);
7384     rn = extract32(insn, 5, 5);
7385     rd = extract32(insn, 0, 5);
7386 
7387 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
7388 
7389     switch (MAP(sf, opcode2, opcode)) {
7390     case MAP(0, 0x00, 0x00): /* RBIT */
7391     case MAP(1, 0x00, 0x00):
7392         handle_rbit(s, sf, rn, rd);
7393         break;
7394     case MAP(0, 0x00, 0x01): /* REV16 */
7395     case MAP(1, 0x00, 0x01):
7396         handle_rev16(s, sf, rn, rd);
7397         break;
7398     case MAP(0, 0x00, 0x02): /* REV/REV32 */
7399     case MAP(1, 0x00, 0x02):
7400         handle_rev32(s, sf, rn, rd);
7401         break;
7402     case MAP(1, 0x00, 0x03): /* REV64 */
7403         handle_rev64(s, sf, rn, rd);
7404         break;
7405     case MAP(0, 0x00, 0x04): /* CLZ */
7406     case MAP(1, 0x00, 0x04):
7407         handle_clz(s, sf, rn, rd);
7408         break;
7409     case MAP(0, 0x00, 0x05): /* CLS */
7410     case MAP(1, 0x00, 0x05):
7411         handle_cls(s, sf, rn, rd);
7412         break;
7413     case MAP(1, 0x01, 0x00): /* PACIA */
7414         if (s->pauth_active) {
7415             tcg_rd = cpu_reg(s, rd);
7416             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7417         } else if (!dc_isar_feature(aa64_pauth, s)) {
7418             goto do_unallocated;
7419         }
7420         break;
7421     case MAP(1, 0x01, 0x01): /* PACIB */
7422         if (s->pauth_active) {
7423             tcg_rd = cpu_reg(s, rd);
7424             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7425         } else if (!dc_isar_feature(aa64_pauth, s)) {
7426             goto do_unallocated;
7427         }
7428         break;
7429     case MAP(1, 0x01, 0x02): /* PACDA */
7430         if (s->pauth_active) {
7431             tcg_rd = cpu_reg(s, rd);
7432             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7433         } else if (!dc_isar_feature(aa64_pauth, s)) {
7434             goto do_unallocated;
7435         }
7436         break;
7437     case MAP(1, 0x01, 0x03): /* PACDB */
7438         if (s->pauth_active) {
7439             tcg_rd = cpu_reg(s, rd);
7440             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7441         } else if (!dc_isar_feature(aa64_pauth, s)) {
7442             goto do_unallocated;
7443         }
7444         break;
7445     case MAP(1, 0x01, 0x04): /* AUTIA */
7446         if (s->pauth_active) {
7447             tcg_rd = cpu_reg(s, rd);
7448             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7449         } else if (!dc_isar_feature(aa64_pauth, s)) {
7450             goto do_unallocated;
7451         }
7452         break;
7453     case MAP(1, 0x01, 0x05): /* AUTIB */
7454         if (s->pauth_active) {
7455             tcg_rd = cpu_reg(s, rd);
7456             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7457         } else if (!dc_isar_feature(aa64_pauth, s)) {
7458             goto do_unallocated;
7459         }
7460         break;
7461     case MAP(1, 0x01, 0x06): /* AUTDA */
7462         if (s->pauth_active) {
7463             tcg_rd = cpu_reg(s, rd);
7464             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7465         } else if (!dc_isar_feature(aa64_pauth, s)) {
7466             goto do_unallocated;
7467         }
7468         break;
7469     case MAP(1, 0x01, 0x07): /* AUTDB */
7470         if (s->pauth_active) {
7471             tcg_rd = cpu_reg(s, rd);
7472             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7473         } else if (!dc_isar_feature(aa64_pauth, s)) {
7474             goto do_unallocated;
7475         }
7476         break;
7477     case MAP(1, 0x01, 0x08): /* PACIZA */
7478         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7479             goto do_unallocated;
7480         } else if (s->pauth_active) {
7481             tcg_rd = cpu_reg(s, rd);
7482             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7483         }
7484         break;
7485     case MAP(1, 0x01, 0x09): /* PACIZB */
7486         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7487             goto do_unallocated;
7488         } else if (s->pauth_active) {
7489             tcg_rd = cpu_reg(s, rd);
7490             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7491         }
7492         break;
7493     case MAP(1, 0x01, 0x0a): /* PACDZA */
7494         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7495             goto do_unallocated;
7496         } else if (s->pauth_active) {
7497             tcg_rd = cpu_reg(s, rd);
7498             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7499         }
7500         break;
7501     case MAP(1, 0x01, 0x0b): /* PACDZB */
7502         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7503             goto do_unallocated;
7504         } else if (s->pauth_active) {
7505             tcg_rd = cpu_reg(s, rd);
7506             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7507         }
7508         break;
7509     case MAP(1, 0x01, 0x0c): /* AUTIZA */
7510         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7511             goto do_unallocated;
7512         } else if (s->pauth_active) {
7513             tcg_rd = cpu_reg(s, rd);
7514             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7515         }
7516         break;
7517     case MAP(1, 0x01, 0x0d): /* AUTIZB */
7518         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7519             goto do_unallocated;
7520         } else if (s->pauth_active) {
7521             tcg_rd = cpu_reg(s, rd);
7522             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7523         }
7524         break;
7525     case MAP(1, 0x01, 0x0e): /* AUTDZA */
7526         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7527             goto do_unallocated;
7528         } else if (s->pauth_active) {
7529             tcg_rd = cpu_reg(s, rd);
7530             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7531         }
7532         break;
7533     case MAP(1, 0x01, 0x0f): /* AUTDZB */
7534         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7535             goto do_unallocated;
7536         } else if (s->pauth_active) {
7537             tcg_rd = cpu_reg(s, rd);
7538             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7539         }
7540         break;
7541     case MAP(1, 0x01, 0x10): /* XPACI */
7542         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7543             goto do_unallocated;
7544         } else if (s->pauth_active) {
7545             tcg_rd = cpu_reg(s, rd);
7546             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7547         }
7548         break;
7549     case MAP(1, 0x01, 0x11): /* XPACD */
7550         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7551             goto do_unallocated;
7552         } else if (s->pauth_active) {
7553             tcg_rd = cpu_reg(s, rd);
7554             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7555         }
7556         break;
7557     default:
7558     do_unallocated:
7559         unallocated_encoding(s);
7560         break;
7561     }
7562 
7563 #undef MAP
7564 }
7565 
7566 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7567                        unsigned int rm, unsigned int rn, unsigned int rd)
7568 {
7569     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7570     tcg_rd = cpu_reg(s, rd);
7571 
7572     if (!sf && is_signed) {
7573         tcg_n = tcg_temp_new_i64();
7574         tcg_m = tcg_temp_new_i64();
7575         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7576         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7577     } else {
7578         tcg_n = read_cpu_reg(s, rn, sf);
7579         tcg_m = read_cpu_reg(s, rm, sf);
7580     }
7581 
7582     if (is_signed) {
7583         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7584     } else {
7585         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7586     }
7587 
7588     if (!sf) { /* zero extend final result */
7589         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7590     }
7591 }
7592 
7593 /* LSLV, LSRV, ASRV, RORV */
7594 static void handle_shift_reg(DisasContext *s,
7595                              enum a64_shift_type shift_type, unsigned int sf,
7596                              unsigned int rm, unsigned int rn, unsigned int rd)
7597 {
7598     TCGv_i64 tcg_shift = tcg_temp_new_i64();
7599     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7600     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7601 
7602     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7603     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7604 }
7605 
7606 /* CRC32[BHWX], CRC32C[BHWX] */
7607 static void handle_crc32(DisasContext *s,
7608                          unsigned int sf, unsigned int sz, bool crc32c,
7609                          unsigned int rm, unsigned int rn, unsigned int rd)
7610 {
7611     TCGv_i64 tcg_acc, tcg_val;
7612     TCGv_i32 tcg_bytes;
7613 
7614     if (!dc_isar_feature(aa64_crc32, s)
7615         || (sf == 1 && sz != 3)
7616         || (sf == 0 && sz == 3)) {
7617         unallocated_encoding(s);
7618         return;
7619     }
7620 
7621     if (sz == 3) {
7622         tcg_val = cpu_reg(s, rm);
7623     } else {
7624         uint64_t mask;
7625         switch (sz) {
7626         case 0:
7627             mask = 0xFF;
7628             break;
7629         case 1:
7630             mask = 0xFFFF;
7631             break;
7632         case 2:
7633             mask = 0xFFFFFFFF;
7634             break;
7635         default:
7636             g_assert_not_reached();
7637         }
7638         tcg_val = tcg_temp_new_i64();
7639         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7640     }
7641 
7642     tcg_acc = cpu_reg(s, rn);
7643     tcg_bytes = tcg_constant_i32(1 << sz);
7644 
7645     if (crc32c) {
7646         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7647     } else {
7648         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7649     }
7650 }
7651 
7652 /* Data-processing (2 source)
7653  *   31   30  29 28             21 20  16 15    10 9    5 4    0
7654  * +----+---+---+-----------------+------+--------+------+------+
7655  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
7656  * +----+---+---+-----------------+------+--------+------+------+
7657  */
7658 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7659 {
7660     unsigned int sf, rm, opcode, rn, rd, setflag;
7661     sf = extract32(insn, 31, 1);
7662     setflag = extract32(insn, 29, 1);
7663     rm = extract32(insn, 16, 5);
7664     opcode = extract32(insn, 10, 6);
7665     rn = extract32(insn, 5, 5);
7666     rd = extract32(insn, 0, 5);
7667 
7668     if (setflag && opcode != 0) {
7669         unallocated_encoding(s);
7670         return;
7671     }
7672 
7673     switch (opcode) {
7674     case 0: /* SUBP(S) */
7675         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7676             goto do_unallocated;
7677         } else {
7678             TCGv_i64 tcg_n, tcg_m, tcg_d;
7679 
7680             tcg_n = read_cpu_reg_sp(s, rn, true);
7681             tcg_m = read_cpu_reg_sp(s, rm, true);
7682             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7683             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7684             tcg_d = cpu_reg(s, rd);
7685 
7686             if (setflag) {
7687                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7688             } else {
7689                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7690             }
7691         }
7692         break;
7693     case 2: /* UDIV */
7694         handle_div(s, false, sf, rm, rn, rd);
7695         break;
7696     case 3: /* SDIV */
7697         handle_div(s, true, sf, rm, rn, rd);
7698         break;
7699     case 4: /* IRG */
7700         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7701             goto do_unallocated;
7702         }
7703         if (s->ata[0]) {
7704             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7705                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
7706         } else {
7707             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7708                                              cpu_reg_sp(s, rn));
7709         }
7710         break;
7711     case 5: /* GMI */
7712         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7713             goto do_unallocated;
7714         } else {
7715             TCGv_i64 t = tcg_temp_new_i64();
7716 
7717             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7718             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7719             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7720         }
7721         break;
7722     case 8: /* LSLV */
7723         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7724         break;
7725     case 9: /* LSRV */
7726         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7727         break;
7728     case 10: /* ASRV */
7729         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7730         break;
7731     case 11: /* RORV */
7732         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7733         break;
7734     case 12: /* PACGA */
7735         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7736             goto do_unallocated;
7737         }
7738         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7739                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
7740         break;
7741     case 16:
7742     case 17:
7743     case 18:
7744     case 19:
7745     case 20:
7746     case 21:
7747     case 22:
7748     case 23: /* CRC32 */
7749     {
7750         int sz = extract32(opcode, 0, 2);
7751         bool crc32c = extract32(opcode, 2, 1);
7752         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7753         break;
7754     }
7755     default:
7756     do_unallocated:
7757         unallocated_encoding(s);
7758         break;
7759     }
7760 }
7761 
7762 /*
7763  * Data processing - register
7764  *  31  30 29  28      25    21  20  16      10         0
7765  * +--+---+--+---+-------+-----+-------+-------+---------+
7766  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
7767  * +--+---+--+---+-------+-----+-------+-------+---------+
7768  */
7769 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7770 {
7771     int op0 = extract32(insn, 30, 1);
7772     int op1 = extract32(insn, 28, 1);
7773     int op2 = extract32(insn, 21, 4);
7774     int op3 = extract32(insn, 10, 6);
7775 
7776     if (!op1) {
7777         if (op2 & 8) {
7778             if (op2 & 1) {
7779                 /* Add/sub (extended register) */
7780                 disas_add_sub_ext_reg(s, insn);
7781             } else {
7782                 /* Add/sub (shifted register) */
7783                 disas_add_sub_reg(s, insn);
7784             }
7785         } else {
7786             /* Logical (shifted register) */
7787             disas_logic_reg(s, insn);
7788         }
7789         return;
7790     }
7791 
7792     switch (op2) {
7793     case 0x0:
7794         switch (op3) {
7795         case 0x00: /* Add/subtract (with carry) */
7796             disas_adc_sbc(s, insn);
7797             break;
7798 
7799         case 0x01: /* Rotate right into flags */
7800         case 0x21:
7801             disas_rotate_right_into_flags(s, insn);
7802             break;
7803 
7804         case 0x02: /* Evaluate into flags */
7805         case 0x12:
7806         case 0x22:
7807         case 0x32:
7808             disas_evaluate_into_flags(s, insn);
7809             break;
7810 
7811         default:
7812             goto do_unallocated;
7813         }
7814         break;
7815 
7816     case 0x2: /* Conditional compare */
7817         disas_cc(s, insn); /* both imm and reg forms */
7818         break;
7819 
7820     case 0x4: /* Conditional select */
7821         disas_cond_select(s, insn);
7822         break;
7823 
7824     case 0x6: /* Data-processing */
7825         if (op0) {    /* (1 source) */
7826             disas_data_proc_1src(s, insn);
7827         } else {      /* (2 source) */
7828             disas_data_proc_2src(s, insn);
7829         }
7830         break;
7831     case 0x8 ... 0xf: /* (3 source) */
7832         disas_data_proc_3src(s, insn);
7833         break;
7834 
7835     default:
7836     do_unallocated:
7837         unallocated_encoding(s);
7838         break;
7839     }
7840 }
7841 
7842 static void handle_fp_compare(DisasContext *s, int size,
7843                               unsigned int rn, unsigned int rm,
7844                               bool cmp_with_zero, bool signal_all_nans)
7845 {
7846     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7847     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7848 
7849     if (size == MO_64) {
7850         TCGv_i64 tcg_vn, tcg_vm;
7851 
7852         tcg_vn = read_fp_dreg(s, rn);
7853         if (cmp_with_zero) {
7854             tcg_vm = tcg_constant_i64(0);
7855         } else {
7856             tcg_vm = read_fp_dreg(s, rm);
7857         }
7858         if (signal_all_nans) {
7859             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7860         } else {
7861             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7862         }
7863     } else {
7864         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7865         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7866 
7867         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7868         if (cmp_with_zero) {
7869             tcg_gen_movi_i32(tcg_vm, 0);
7870         } else {
7871             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7872         }
7873 
7874         switch (size) {
7875         case MO_32:
7876             if (signal_all_nans) {
7877                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7878             } else {
7879                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7880             }
7881             break;
7882         case MO_16:
7883             if (signal_all_nans) {
7884                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7885             } else {
7886                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7887             }
7888             break;
7889         default:
7890             g_assert_not_reached();
7891         }
7892     }
7893 
7894     gen_set_nzcv(tcg_flags);
7895 }
7896 
7897 /* Floating point compare
7898  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
7899  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7900  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
7901  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7902  */
7903 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7904 {
7905     unsigned int mos, type, rm, op, rn, opc, op2r;
7906     int size;
7907 
7908     mos = extract32(insn, 29, 3);
7909     type = extract32(insn, 22, 2);
7910     rm = extract32(insn, 16, 5);
7911     op = extract32(insn, 14, 2);
7912     rn = extract32(insn, 5, 5);
7913     opc = extract32(insn, 3, 2);
7914     op2r = extract32(insn, 0, 3);
7915 
7916     if (mos || op || op2r) {
7917         unallocated_encoding(s);
7918         return;
7919     }
7920 
7921     switch (type) {
7922     case 0:
7923         size = MO_32;
7924         break;
7925     case 1:
7926         size = MO_64;
7927         break;
7928     case 3:
7929         size = MO_16;
7930         if (dc_isar_feature(aa64_fp16, s)) {
7931             break;
7932         }
7933         /* fallthru */
7934     default:
7935         unallocated_encoding(s);
7936         return;
7937     }
7938 
7939     if (!fp_access_check(s)) {
7940         return;
7941     }
7942 
7943     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7944 }
7945 
7946 /* Floating point conditional compare
7947  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
7948  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7949  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
7950  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7951  */
7952 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7953 {
7954     unsigned int mos, type, rm, cond, rn, op, nzcv;
7955     TCGLabel *label_continue = NULL;
7956     int size;
7957 
7958     mos = extract32(insn, 29, 3);
7959     type = extract32(insn, 22, 2);
7960     rm = extract32(insn, 16, 5);
7961     cond = extract32(insn, 12, 4);
7962     rn = extract32(insn, 5, 5);
7963     op = extract32(insn, 4, 1);
7964     nzcv = extract32(insn, 0, 4);
7965 
7966     if (mos) {
7967         unallocated_encoding(s);
7968         return;
7969     }
7970 
7971     switch (type) {
7972     case 0:
7973         size = MO_32;
7974         break;
7975     case 1:
7976         size = MO_64;
7977         break;
7978     case 3:
7979         size = MO_16;
7980         if (dc_isar_feature(aa64_fp16, s)) {
7981             break;
7982         }
7983         /* fallthru */
7984     default:
7985         unallocated_encoding(s);
7986         return;
7987     }
7988 
7989     if (!fp_access_check(s)) {
7990         return;
7991     }
7992 
7993     if (cond < 0x0e) { /* not always */
7994         TCGLabel *label_match = gen_new_label();
7995         label_continue = gen_new_label();
7996         arm_gen_test_cc(cond, label_match);
7997         /* nomatch: */
7998         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7999         tcg_gen_br(label_continue);
8000         gen_set_label(label_match);
8001     }
8002 
8003     handle_fp_compare(s, size, rn, rm, false, op);
8004 
8005     if (cond < 0x0e) {
8006         gen_set_label(label_continue);
8007     }
8008 }
8009 
8010 /* Floating-point data-processing (1 source) - half precision */
8011 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
8012 {
8013     TCGv_ptr fpst = NULL;
8014     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
8015     TCGv_i32 tcg_res = tcg_temp_new_i32();
8016 
8017     switch (opcode) {
8018     case 0x0: /* FMOV */
8019         tcg_gen_mov_i32(tcg_res, tcg_op);
8020         break;
8021     case 0x1: /* FABS */
8022         gen_vfp_absh(tcg_res, tcg_op);
8023         break;
8024     case 0x2: /* FNEG */
8025         gen_vfp_negh(tcg_res, tcg_op);
8026         break;
8027     case 0x3: /* FSQRT */
8028         fpst = fpstatus_ptr(FPST_FPCR_F16);
8029         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
8030         break;
8031     case 0x8: /* FRINTN */
8032     case 0x9: /* FRINTP */
8033     case 0xa: /* FRINTM */
8034     case 0xb: /* FRINTZ */
8035     case 0xc: /* FRINTA */
8036     {
8037         TCGv_i32 tcg_rmode;
8038 
8039         fpst = fpstatus_ptr(FPST_FPCR_F16);
8040         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
8041         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
8042         gen_restore_rmode(tcg_rmode, fpst);
8043         break;
8044     }
8045     case 0xe: /* FRINTX */
8046         fpst = fpstatus_ptr(FPST_FPCR_F16);
8047         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
8048         break;
8049     case 0xf: /* FRINTI */
8050         fpst = fpstatus_ptr(FPST_FPCR_F16);
8051         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
8052         break;
8053     default:
8054         g_assert_not_reached();
8055     }
8056 
8057     write_fp_sreg(s, rd, tcg_res);
8058 }
8059 
8060 /* Floating-point data-processing (1 source) - single precision */
8061 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
8062 {
8063     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
8064     TCGv_i32 tcg_op, tcg_res;
8065     TCGv_ptr fpst;
8066     int rmode = -1;
8067 
8068     tcg_op = read_fp_sreg(s, rn);
8069     tcg_res = tcg_temp_new_i32();
8070 
8071     switch (opcode) {
8072     case 0x0: /* FMOV */
8073         tcg_gen_mov_i32(tcg_res, tcg_op);
8074         goto done;
8075     case 0x1: /* FABS */
8076         gen_vfp_abss(tcg_res, tcg_op);
8077         goto done;
8078     case 0x2: /* FNEG */
8079         gen_vfp_negs(tcg_res, tcg_op);
8080         goto done;
8081     case 0x3: /* FSQRT */
8082         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
8083         goto done;
8084     case 0x6: /* BFCVT */
8085         gen_fpst = gen_helper_bfcvt;
8086         break;
8087     case 0x8: /* FRINTN */
8088     case 0x9: /* FRINTP */
8089     case 0xa: /* FRINTM */
8090     case 0xb: /* FRINTZ */
8091     case 0xc: /* FRINTA */
8092         rmode = opcode & 7;
8093         gen_fpst = gen_helper_rints;
8094         break;
8095     case 0xe: /* FRINTX */
8096         gen_fpst = gen_helper_rints_exact;
8097         break;
8098     case 0xf: /* FRINTI */
8099         gen_fpst = gen_helper_rints;
8100         break;
8101     case 0x10: /* FRINT32Z */
8102         rmode = FPROUNDING_ZERO;
8103         gen_fpst = gen_helper_frint32_s;
8104         break;
8105     case 0x11: /* FRINT32X */
8106         gen_fpst = gen_helper_frint32_s;
8107         break;
8108     case 0x12: /* FRINT64Z */
8109         rmode = FPROUNDING_ZERO;
8110         gen_fpst = gen_helper_frint64_s;
8111         break;
8112     case 0x13: /* FRINT64X */
8113         gen_fpst = gen_helper_frint64_s;
8114         break;
8115     default:
8116         g_assert_not_reached();
8117     }
8118 
8119     fpst = fpstatus_ptr(FPST_FPCR);
8120     if (rmode >= 0) {
8121         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
8122         gen_fpst(tcg_res, tcg_op, fpst);
8123         gen_restore_rmode(tcg_rmode, fpst);
8124     } else {
8125         gen_fpst(tcg_res, tcg_op, fpst);
8126     }
8127 
8128  done:
8129     write_fp_sreg(s, rd, tcg_res);
8130 }
8131 
8132 /* Floating-point data-processing (1 source) - double precision */
8133 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
8134 {
8135     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
8136     TCGv_i64 tcg_op, tcg_res;
8137     TCGv_ptr fpst;
8138     int rmode = -1;
8139 
8140     switch (opcode) {
8141     case 0x0: /* FMOV */
8142         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
8143         return;
8144     }
8145 
8146     tcg_op = read_fp_dreg(s, rn);
8147     tcg_res = tcg_temp_new_i64();
8148 
8149     switch (opcode) {
8150     case 0x1: /* FABS */
8151         gen_vfp_absd(tcg_res, tcg_op);
8152         goto done;
8153     case 0x2: /* FNEG */
8154         gen_vfp_negd(tcg_res, tcg_op);
8155         goto done;
8156     case 0x3: /* FSQRT */
8157         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
8158         goto done;
8159     case 0x8: /* FRINTN */
8160     case 0x9: /* FRINTP */
8161     case 0xa: /* FRINTM */
8162     case 0xb: /* FRINTZ */
8163     case 0xc: /* FRINTA */
8164         rmode = opcode & 7;
8165         gen_fpst = gen_helper_rintd;
8166         break;
8167     case 0xe: /* FRINTX */
8168         gen_fpst = gen_helper_rintd_exact;
8169         break;
8170     case 0xf: /* FRINTI */
8171         gen_fpst = gen_helper_rintd;
8172         break;
8173     case 0x10: /* FRINT32Z */
8174         rmode = FPROUNDING_ZERO;
8175         gen_fpst = gen_helper_frint32_d;
8176         break;
8177     case 0x11: /* FRINT32X */
8178         gen_fpst = gen_helper_frint32_d;
8179         break;
8180     case 0x12: /* FRINT64Z */
8181         rmode = FPROUNDING_ZERO;
8182         gen_fpst = gen_helper_frint64_d;
8183         break;
8184     case 0x13: /* FRINT64X */
8185         gen_fpst = gen_helper_frint64_d;
8186         break;
8187     default:
8188         g_assert_not_reached();
8189     }
8190 
8191     fpst = fpstatus_ptr(FPST_FPCR);
8192     if (rmode >= 0) {
8193         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
8194         gen_fpst(tcg_res, tcg_op, fpst);
8195         gen_restore_rmode(tcg_rmode, fpst);
8196     } else {
8197         gen_fpst(tcg_res, tcg_op, fpst);
8198     }
8199 
8200  done:
8201     write_fp_dreg(s, rd, tcg_res);
8202 }
8203 
8204 static void handle_fp_fcvt(DisasContext *s, int opcode,
8205                            int rd, int rn, int dtype, int ntype)
8206 {
8207     switch (ntype) {
8208     case 0x0:
8209     {
8210         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
8211         if (dtype == 1) {
8212             /* Single to double */
8213             TCGv_i64 tcg_rd = tcg_temp_new_i64();
8214             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
8215             write_fp_dreg(s, rd, tcg_rd);
8216         } else {
8217             /* Single to half */
8218             TCGv_i32 tcg_rd = tcg_temp_new_i32();
8219             TCGv_i32 ahp = get_ahp_flag();
8220             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8221 
8222             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8223             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
8224             write_fp_sreg(s, rd, tcg_rd);
8225         }
8226         break;
8227     }
8228     case 0x1:
8229     {
8230         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8231         TCGv_i32 tcg_rd = tcg_temp_new_i32();
8232         if (dtype == 0) {
8233             /* Double to single */
8234             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
8235         } else {
8236             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8237             TCGv_i32 ahp = get_ahp_flag();
8238             /* Double to half */
8239             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8240             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
8241         }
8242         write_fp_sreg(s, rd, tcg_rd);
8243         break;
8244     }
8245     case 0x3:
8246     {
8247         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
8248         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
8249         TCGv_i32 tcg_ahp = get_ahp_flag();
8250         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
8251         if (dtype == 0) {
8252             /* Half to single */
8253             TCGv_i32 tcg_rd = tcg_temp_new_i32();
8254             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
8255             write_fp_sreg(s, rd, tcg_rd);
8256         } else {
8257             /* Half to double */
8258             TCGv_i64 tcg_rd = tcg_temp_new_i64();
8259             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
8260             write_fp_dreg(s, rd, tcg_rd);
8261         }
8262         break;
8263     }
8264     default:
8265         g_assert_not_reached();
8266     }
8267 }
8268 
8269 /* Floating point data-processing (1 source)
8270  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
8271  * +---+---+---+-----------+------+---+--------+-----------+------+------+
8272  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
8273  * +---+---+---+-----------+------+---+--------+-----------+------+------+
8274  */
8275 static void disas_fp_1src(DisasContext *s, uint32_t insn)
8276 {
8277     int mos = extract32(insn, 29, 3);
8278     int type = extract32(insn, 22, 2);
8279     int opcode = extract32(insn, 15, 6);
8280     int rn = extract32(insn, 5, 5);
8281     int rd = extract32(insn, 0, 5);
8282 
8283     if (mos) {
8284         goto do_unallocated;
8285     }
8286 
8287     switch (opcode) {
8288     case 0x4: case 0x5: case 0x7:
8289     {
8290         /* FCVT between half, single and double precision */
8291         int dtype = extract32(opcode, 0, 2);
8292         if (type == 2 || dtype == type) {
8293             goto do_unallocated;
8294         }
8295         if (!fp_access_check(s)) {
8296             return;
8297         }
8298 
8299         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
8300         break;
8301     }
8302 
8303     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
8304         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
8305             goto do_unallocated;
8306         }
8307         /* fall through */
8308     case 0x0 ... 0x3:
8309     case 0x8 ... 0xc:
8310     case 0xe ... 0xf:
8311         /* 32-to-32 and 64-to-64 ops */
8312         switch (type) {
8313         case 0:
8314             if (!fp_access_check(s)) {
8315                 return;
8316             }
8317             handle_fp_1src_single(s, opcode, rd, rn);
8318             break;
8319         case 1:
8320             if (!fp_access_check(s)) {
8321                 return;
8322             }
8323             handle_fp_1src_double(s, opcode, rd, rn);
8324             break;
8325         case 3:
8326             if (!dc_isar_feature(aa64_fp16, s)) {
8327                 goto do_unallocated;
8328             }
8329 
8330             if (!fp_access_check(s)) {
8331                 return;
8332             }
8333             handle_fp_1src_half(s, opcode, rd, rn);
8334             break;
8335         default:
8336             goto do_unallocated;
8337         }
8338         break;
8339 
8340     case 0x6:
8341         switch (type) {
8342         case 1: /* BFCVT */
8343             if (!dc_isar_feature(aa64_bf16, s)) {
8344                 goto do_unallocated;
8345             }
8346             if (!fp_access_check(s)) {
8347                 return;
8348             }
8349             handle_fp_1src_single(s, opcode, rd, rn);
8350             break;
8351         default:
8352             goto do_unallocated;
8353         }
8354         break;
8355 
8356     default:
8357     do_unallocated:
8358         unallocated_encoding(s);
8359         break;
8360     }
8361 }
8362 
8363 /* Floating point immediate
8364  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
8365  * +---+---+---+-----------+------+---+------------+-------+------+------+
8366  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
8367  * +---+---+---+-----------+------+---+------------+-------+------+------+
8368  */
8369 static void disas_fp_imm(DisasContext *s, uint32_t insn)
8370 {
8371     int rd = extract32(insn, 0, 5);
8372     int imm5 = extract32(insn, 5, 5);
8373     int imm8 = extract32(insn, 13, 8);
8374     int type = extract32(insn, 22, 2);
8375     int mos = extract32(insn, 29, 3);
8376     uint64_t imm;
8377     MemOp sz;
8378 
8379     if (mos || imm5) {
8380         unallocated_encoding(s);
8381         return;
8382     }
8383 
8384     switch (type) {
8385     case 0:
8386         sz = MO_32;
8387         break;
8388     case 1:
8389         sz = MO_64;
8390         break;
8391     case 3:
8392         sz = MO_16;
8393         if (dc_isar_feature(aa64_fp16, s)) {
8394             break;
8395         }
8396         /* fallthru */
8397     default:
8398         unallocated_encoding(s);
8399         return;
8400     }
8401 
8402     if (!fp_access_check(s)) {
8403         return;
8404     }
8405 
8406     imm = vfp_expand_imm(sz, imm8);
8407     write_fp_dreg(s, rd, tcg_constant_i64(imm));
8408 }
8409 
8410 /* Handle floating point <=> fixed point conversions. Note that we can
8411  * also deal with fp <=> integer conversions as a special case (scale == 64)
8412  * OPTME: consider handling that special case specially or at least skipping
8413  * the call to scalbn in the helpers for zero shifts.
8414  */
8415 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
8416                            bool itof, int rmode, int scale, int sf, int type)
8417 {
8418     bool is_signed = !(opcode & 1);
8419     TCGv_ptr tcg_fpstatus;
8420     TCGv_i32 tcg_shift, tcg_single;
8421     TCGv_i64 tcg_double;
8422 
8423     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
8424 
8425     tcg_shift = tcg_constant_i32(64 - scale);
8426 
8427     if (itof) {
8428         TCGv_i64 tcg_int = cpu_reg(s, rn);
8429         if (!sf) {
8430             TCGv_i64 tcg_extend = tcg_temp_new_i64();
8431 
8432             if (is_signed) {
8433                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
8434             } else {
8435                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
8436             }
8437 
8438             tcg_int = tcg_extend;
8439         }
8440 
8441         switch (type) {
8442         case 1: /* float64 */
8443             tcg_double = tcg_temp_new_i64();
8444             if (is_signed) {
8445                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
8446                                      tcg_shift, tcg_fpstatus);
8447             } else {
8448                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
8449                                      tcg_shift, tcg_fpstatus);
8450             }
8451             write_fp_dreg(s, rd, tcg_double);
8452             break;
8453 
8454         case 0: /* float32 */
8455             tcg_single = tcg_temp_new_i32();
8456             if (is_signed) {
8457                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
8458                                      tcg_shift, tcg_fpstatus);
8459             } else {
8460                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
8461                                      tcg_shift, tcg_fpstatus);
8462             }
8463             write_fp_sreg(s, rd, tcg_single);
8464             break;
8465 
8466         case 3: /* float16 */
8467             tcg_single = tcg_temp_new_i32();
8468             if (is_signed) {
8469                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
8470                                      tcg_shift, tcg_fpstatus);
8471             } else {
8472                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
8473                                      tcg_shift, tcg_fpstatus);
8474             }
8475             write_fp_sreg(s, rd, tcg_single);
8476             break;
8477 
8478         default:
8479             g_assert_not_reached();
8480         }
8481     } else {
8482         TCGv_i64 tcg_int = cpu_reg(s, rd);
8483         TCGv_i32 tcg_rmode;
8484 
8485         if (extract32(opcode, 2, 1)) {
8486             /* There are too many rounding modes to all fit into rmode,
8487              * so FCVTA[US] is a special case.
8488              */
8489             rmode = FPROUNDING_TIEAWAY;
8490         }
8491 
8492         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8493 
8494         switch (type) {
8495         case 1: /* float64 */
8496             tcg_double = read_fp_dreg(s, rn);
8497             if (is_signed) {
8498                 if (!sf) {
8499                     gen_helper_vfp_tosld(tcg_int, tcg_double,
8500                                          tcg_shift, tcg_fpstatus);
8501                 } else {
8502                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
8503                                          tcg_shift, tcg_fpstatus);
8504                 }
8505             } else {
8506                 if (!sf) {
8507                     gen_helper_vfp_tould(tcg_int, tcg_double,
8508                                          tcg_shift, tcg_fpstatus);
8509                 } else {
8510                     gen_helper_vfp_touqd(tcg_int, tcg_double,
8511                                          tcg_shift, tcg_fpstatus);
8512                 }
8513             }
8514             if (!sf) {
8515                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8516             }
8517             break;
8518 
8519         case 0: /* float32 */
8520             tcg_single = read_fp_sreg(s, rn);
8521             if (sf) {
8522                 if (is_signed) {
8523                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
8524                                          tcg_shift, tcg_fpstatus);
8525                 } else {
8526                     gen_helper_vfp_touqs(tcg_int, tcg_single,
8527                                          tcg_shift, tcg_fpstatus);
8528                 }
8529             } else {
8530                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8531                 if (is_signed) {
8532                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
8533                                          tcg_shift, tcg_fpstatus);
8534                 } else {
8535                     gen_helper_vfp_touls(tcg_dest, tcg_single,
8536                                          tcg_shift, tcg_fpstatus);
8537                 }
8538                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8539             }
8540             break;
8541 
8542         case 3: /* float16 */
8543             tcg_single = read_fp_sreg(s, rn);
8544             if (sf) {
8545                 if (is_signed) {
8546                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
8547                                          tcg_shift, tcg_fpstatus);
8548                 } else {
8549                     gen_helper_vfp_touqh(tcg_int, tcg_single,
8550                                          tcg_shift, tcg_fpstatus);
8551                 }
8552             } else {
8553                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8554                 if (is_signed) {
8555                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
8556                                          tcg_shift, tcg_fpstatus);
8557                 } else {
8558                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
8559                                          tcg_shift, tcg_fpstatus);
8560                 }
8561                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8562             }
8563             break;
8564 
8565         default:
8566             g_assert_not_reached();
8567         }
8568 
8569         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8570     }
8571 }
8572 
8573 /* Floating point <-> fixed point conversions
8574  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
8575  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8576  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
8577  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8578  */
8579 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8580 {
8581     int rd = extract32(insn, 0, 5);
8582     int rn = extract32(insn, 5, 5);
8583     int scale = extract32(insn, 10, 6);
8584     int opcode = extract32(insn, 16, 3);
8585     int rmode = extract32(insn, 19, 2);
8586     int type = extract32(insn, 22, 2);
8587     bool sbit = extract32(insn, 29, 1);
8588     bool sf = extract32(insn, 31, 1);
8589     bool itof;
8590 
8591     if (sbit || (!sf && scale < 32)) {
8592         unallocated_encoding(s);
8593         return;
8594     }
8595 
8596     switch (type) {
8597     case 0: /* float32 */
8598     case 1: /* float64 */
8599         break;
8600     case 3: /* float16 */
8601         if (dc_isar_feature(aa64_fp16, s)) {
8602             break;
8603         }
8604         /* fallthru */
8605     default:
8606         unallocated_encoding(s);
8607         return;
8608     }
8609 
8610     switch ((rmode << 3) | opcode) {
8611     case 0x2: /* SCVTF */
8612     case 0x3: /* UCVTF */
8613         itof = true;
8614         break;
8615     case 0x18: /* FCVTZS */
8616     case 0x19: /* FCVTZU */
8617         itof = false;
8618         break;
8619     default:
8620         unallocated_encoding(s);
8621         return;
8622     }
8623 
8624     if (!fp_access_check(s)) {
8625         return;
8626     }
8627 
8628     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8629 }
8630 
8631 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8632 {
8633     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8634      * without conversion.
8635      */
8636 
8637     if (itof) {
8638         TCGv_i64 tcg_rn = cpu_reg(s, rn);
8639         TCGv_i64 tmp;
8640 
8641         switch (type) {
8642         case 0:
8643             /* 32 bit */
8644             tmp = tcg_temp_new_i64();
8645             tcg_gen_ext32u_i64(tmp, tcg_rn);
8646             write_fp_dreg(s, rd, tmp);
8647             break;
8648         case 1:
8649             /* 64 bit */
8650             write_fp_dreg(s, rd, tcg_rn);
8651             break;
8652         case 2:
8653             /* 64 bit to top half. */
8654             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8655             clear_vec_high(s, true, rd);
8656             break;
8657         case 3:
8658             /* 16 bit */
8659             tmp = tcg_temp_new_i64();
8660             tcg_gen_ext16u_i64(tmp, tcg_rn);
8661             write_fp_dreg(s, rd, tmp);
8662             break;
8663         default:
8664             g_assert_not_reached();
8665         }
8666     } else {
8667         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8668 
8669         switch (type) {
8670         case 0:
8671             /* 32 bit */
8672             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8673             break;
8674         case 1:
8675             /* 64 bit */
8676             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8677             break;
8678         case 2:
8679             /* 64 bits from top half */
8680             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8681             break;
8682         case 3:
8683             /* 16 bit */
8684             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8685             break;
8686         default:
8687             g_assert_not_reached();
8688         }
8689     }
8690 }
8691 
8692 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8693 {
8694     TCGv_i64 t = read_fp_dreg(s, rn);
8695     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8696 
8697     gen_helper_fjcvtzs(t, t, fpstatus);
8698 
8699     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8700     tcg_gen_extrh_i64_i32(cpu_ZF, t);
8701     tcg_gen_movi_i32(cpu_CF, 0);
8702     tcg_gen_movi_i32(cpu_NF, 0);
8703     tcg_gen_movi_i32(cpu_VF, 0);
8704 }
8705 
8706 /* Floating point <-> integer conversions
8707  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
8708  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8709  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8710  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8711  */
8712 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8713 {
8714     int rd = extract32(insn, 0, 5);
8715     int rn = extract32(insn, 5, 5);
8716     int opcode = extract32(insn, 16, 3);
8717     int rmode = extract32(insn, 19, 2);
8718     int type = extract32(insn, 22, 2);
8719     bool sbit = extract32(insn, 29, 1);
8720     bool sf = extract32(insn, 31, 1);
8721     bool itof = false;
8722 
8723     if (sbit) {
8724         goto do_unallocated;
8725     }
8726 
8727     switch (opcode) {
8728     case 2: /* SCVTF */
8729     case 3: /* UCVTF */
8730         itof = true;
8731         /* fallthru */
8732     case 4: /* FCVTAS */
8733     case 5: /* FCVTAU */
8734         if (rmode != 0) {
8735             goto do_unallocated;
8736         }
8737         /* fallthru */
8738     case 0: /* FCVT[NPMZ]S */
8739     case 1: /* FCVT[NPMZ]U */
8740         switch (type) {
8741         case 0: /* float32 */
8742         case 1: /* float64 */
8743             break;
8744         case 3: /* float16 */
8745             if (!dc_isar_feature(aa64_fp16, s)) {
8746                 goto do_unallocated;
8747             }
8748             break;
8749         default:
8750             goto do_unallocated;
8751         }
8752         if (!fp_access_check(s)) {
8753             return;
8754         }
8755         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8756         break;
8757 
8758     default:
8759         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8760         case 0b01100110: /* FMOV half <-> 32-bit int */
8761         case 0b01100111:
8762         case 0b11100110: /* FMOV half <-> 64-bit int */
8763         case 0b11100111:
8764             if (!dc_isar_feature(aa64_fp16, s)) {
8765                 goto do_unallocated;
8766             }
8767             /* fallthru */
8768         case 0b00000110: /* FMOV 32-bit */
8769         case 0b00000111:
8770         case 0b10100110: /* FMOV 64-bit */
8771         case 0b10100111:
8772         case 0b11001110: /* FMOV top half of 128-bit */
8773         case 0b11001111:
8774             if (!fp_access_check(s)) {
8775                 return;
8776             }
8777             itof = opcode & 1;
8778             handle_fmov(s, rd, rn, type, itof);
8779             break;
8780 
8781         case 0b00111110: /* FJCVTZS */
8782             if (!dc_isar_feature(aa64_jscvt, s)) {
8783                 goto do_unallocated;
8784             } else if (fp_access_check(s)) {
8785                 handle_fjcvtzs(s, rd, rn);
8786             }
8787             break;
8788 
8789         default:
8790         do_unallocated:
8791             unallocated_encoding(s);
8792             return;
8793         }
8794         break;
8795     }
8796 }
8797 
8798 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8799  *   31  30  29 28     25 24                          0
8800  * +---+---+---+---------+-----------------------------+
8801  * |   | 0 |   | 1 1 1 1 |                             |
8802  * +---+---+---+---------+-----------------------------+
8803  */
8804 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8805 {
8806     if (extract32(insn, 24, 1)) {
8807         unallocated_encoding(s); /* in decodetree */
8808     } else if (extract32(insn, 21, 1) == 0) {
8809         /* Floating point to fixed point conversions */
8810         disas_fp_fixed_conv(s, insn);
8811     } else {
8812         switch (extract32(insn, 10, 2)) {
8813         case 1:
8814             /* Floating point conditional compare */
8815             disas_fp_ccomp(s, insn);
8816             break;
8817         case 2:
8818             /* Floating point data-processing (2 source) */
8819             unallocated_encoding(s); /* in decodetree */
8820             break;
8821         case 3:
8822             /* Floating point conditional select */
8823             unallocated_encoding(s); /* in decodetree */
8824             break;
8825         case 0:
8826             switch (ctz32(extract32(insn, 12, 4))) {
8827             case 0: /* [15:12] == xxx1 */
8828                 /* Floating point immediate */
8829                 disas_fp_imm(s, insn);
8830                 break;
8831             case 1: /* [15:12] == xx10 */
8832                 /* Floating point compare */
8833                 disas_fp_compare(s, insn);
8834                 break;
8835             case 2: /* [15:12] == x100 */
8836                 /* Floating point data-processing (1 source) */
8837                 disas_fp_1src(s, insn);
8838                 break;
8839             case 3: /* [15:12] == 1000 */
8840                 unallocated_encoding(s);
8841                 break;
8842             default: /* [15:12] == 0000 */
8843                 /* Floating point <-> integer conversions */
8844                 disas_fp_int_conv(s, insn);
8845                 break;
8846             }
8847             break;
8848         }
8849     }
8850 }
8851 
8852 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8853                      int pos)
8854 {
8855     /* Extract 64 bits from the middle of two concatenated 64 bit
8856      * vector register slices left:right. The extracted bits start
8857      * at 'pos' bits into the right (least significant) side.
8858      * We return the result in tcg_right, and guarantee not to
8859      * trash tcg_left.
8860      */
8861     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8862     assert(pos > 0 && pos < 64);
8863 
8864     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8865     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8866     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8867 }
8868 
8869 /* EXT
8870  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8871  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8872  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8873  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8874  */
8875 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8876 {
8877     int is_q = extract32(insn, 30, 1);
8878     int op2 = extract32(insn, 22, 2);
8879     int imm4 = extract32(insn, 11, 4);
8880     int rm = extract32(insn, 16, 5);
8881     int rn = extract32(insn, 5, 5);
8882     int rd = extract32(insn, 0, 5);
8883     int pos = imm4 << 3;
8884     TCGv_i64 tcg_resl, tcg_resh;
8885 
8886     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8887         unallocated_encoding(s);
8888         return;
8889     }
8890 
8891     if (!fp_access_check(s)) {
8892         return;
8893     }
8894 
8895     tcg_resh = tcg_temp_new_i64();
8896     tcg_resl = tcg_temp_new_i64();
8897 
8898     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8899      * either extracting 128 bits from a 128:128 concatenation, or
8900      * extracting 64 bits from a 64:64 concatenation.
8901      */
8902     if (!is_q) {
8903         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8904         if (pos != 0) {
8905             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8906             do_ext64(s, tcg_resh, tcg_resl, pos);
8907         }
8908     } else {
8909         TCGv_i64 tcg_hh;
8910         typedef struct {
8911             int reg;
8912             int elt;
8913         } EltPosns;
8914         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8915         EltPosns *elt = eltposns;
8916 
8917         if (pos >= 64) {
8918             elt++;
8919             pos -= 64;
8920         }
8921 
8922         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8923         elt++;
8924         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8925         elt++;
8926         if (pos != 0) {
8927             do_ext64(s, tcg_resh, tcg_resl, pos);
8928             tcg_hh = tcg_temp_new_i64();
8929             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8930             do_ext64(s, tcg_hh, tcg_resh, pos);
8931         }
8932     }
8933 
8934     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8935     if (is_q) {
8936         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8937     }
8938     clear_vec_high(s, is_q, rd);
8939 }
8940 
8941 /* TBL/TBX
8942  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8943  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8944  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8945  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8946  */
8947 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8948 {
8949     int op2 = extract32(insn, 22, 2);
8950     int is_q = extract32(insn, 30, 1);
8951     int rm = extract32(insn, 16, 5);
8952     int rn = extract32(insn, 5, 5);
8953     int rd = extract32(insn, 0, 5);
8954     int is_tbx = extract32(insn, 12, 1);
8955     int len = (extract32(insn, 13, 2) + 1) * 16;
8956 
8957     if (op2 != 0) {
8958         unallocated_encoding(s);
8959         return;
8960     }
8961 
8962     if (!fp_access_check(s)) {
8963         return;
8964     }
8965 
8966     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8967                        vec_full_reg_offset(s, rm), tcg_env,
8968                        is_q ? 16 : 8, vec_full_reg_size(s),
8969                        (len << 6) | (is_tbx << 5) | rn,
8970                        gen_helper_simd_tblx);
8971 }
8972 
8973 /* ZIP/UZP/TRN
8974  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8975  * +---+---+-------------+------+---+------+---+------------------+------+
8976  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8977  * +---+---+-------------+------+---+------+---+------------------+------+
8978  */
8979 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8980 {
8981     int rd = extract32(insn, 0, 5);
8982     int rn = extract32(insn, 5, 5);
8983     int rm = extract32(insn, 16, 5);
8984     int size = extract32(insn, 22, 2);
8985     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8986      * bit 2 indicates 1 vs 2 variant of the insn.
8987      */
8988     int opcode = extract32(insn, 12, 2);
8989     bool part = extract32(insn, 14, 1);
8990     bool is_q = extract32(insn, 30, 1);
8991     int esize = 8 << size;
8992     int i;
8993     int datasize = is_q ? 128 : 64;
8994     int elements = datasize / esize;
8995     TCGv_i64 tcg_res[2], tcg_ele;
8996 
8997     if (opcode == 0 || (size == 3 && !is_q)) {
8998         unallocated_encoding(s);
8999         return;
9000     }
9001 
9002     if (!fp_access_check(s)) {
9003         return;
9004     }
9005 
9006     tcg_res[0] = tcg_temp_new_i64();
9007     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
9008     tcg_ele = tcg_temp_new_i64();
9009 
9010     for (i = 0; i < elements; i++) {
9011         int o, w;
9012 
9013         switch (opcode) {
9014         case 1: /* UZP1/2 */
9015         {
9016             int midpoint = elements / 2;
9017             if (i < midpoint) {
9018                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
9019             } else {
9020                 read_vec_element(s, tcg_ele, rm,
9021                                  2 * (i - midpoint) + part, size);
9022             }
9023             break;
9024         }
9025         case 2: /* TRN1/2 */
9026             if (i & 1) {
9027                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
9028             } else {
9029                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
9030             }
9031             break;
9032         case 3: /* ZIP1/2 */
9033         {
9034             int base = part * elements / 2;
9035             if (i & 1) {
9036                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
9037             } else {
9038                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
9039             }
9040             break;
9041         }
9042         default:
9043             g_assert_not_reached();
9044         }
9045 
9046         w = (i * esize) / 64;
9047         o = (i * esize) % 64;
9048         if (o == 0) {
9049             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
9050         } else {
9051             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
9052             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
9053         }
9054     }
9055 
9056     for (i = 0; i <= is_q; ++i) {
9057         write_vec_element(s, tcg_res[i], rd, i, MO_64);
9058     }
9059     clear_vec_high(s, is_q, rd);
9060 }
9061 
9062 /*
9063  * do_reduction_op helper
9064  *
9065  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
9066  * important for correct NaN propagation that we do these
9067  * operations in exactly the order specified by the pseudocode.
9068  *
9069  * This is a recursive function, TCG temps should be freed by the
9070  * calling function once it is done with the values.
9071  */
9072 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
9073                                 int esize, int size, int vmap, TCGv_ptr fpst)
9074 {
9075     if (esize == size) {
9076         int element;
9077         MemOp msize = esize == 16 ? MO_16 : MO_32;
9078         TCGv_i32 tcg_elem;
9079 
9080         /* We should have one register left here */
9081         assert(ctpop8(vmap) == 1);
9082         element = ctz32(vmap);
9083         assert(element < 8);
9084 
9085         tcg_elem = tcg_temp_new_i32();
9086         read_vec_element_i32(s, tcg_elem, rn, element, msize);
9087         return tcg_elem;
9088     } else {
9089         int bits = size / 2;
9090         int shift = ctpop8(vmap) / 2;
9091         int vmap_lo = (vmap >> shift) & vmap;
9092         int vmap_hi = (vmap & ~vmap_lo);
9093         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
9094 
9095         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
9096         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
9097         tcg_res = tcg_temp_new_i32();
9098 
9099         switch (fpopcode) {
9100         case 0x0c: /* fmaxnmv half-precision */
9101             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
9102             break;
9103         case 0x0f: /* fmaxv half-precision */
9104             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
9105             break;
9106         case 0x1c: /* fminnmv half-precision */
9107             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
9108             break;
9109         case 0x1f: /* fminv half-precision */
9110             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
9111             break;
9112         case 0x2c: /* fmaxnmv */
9113             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
9114             break;
9115         case 0x2f: /* fmaxv */
9116             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
9117             break;
9118         case 0x3c: /* fminnmv */
9119             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
9120             break;
9121         case 0x3f: /* fminv */
9122             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
9123             break;
9124         default:
9125             g_assert_not_reached();
9126         }
9127         return tcg_res;
9128     }
9129 }
9130 
9131 /* AdvSIMD across lanes
9132  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9133  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9134  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
9135  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9136  */
9137 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
9138 {
9139     int rd = extract32(insn, 0, 5);
9140     int rn = extract32(insn, 5, 5);
9141     int size = extract32(insn, 22, 2);
9142     int opcode = extract32(insn, 12, 5);
9143     bool is_q = extract32(insn, 30, 1);
9144     bool is_u = extract32(insn, 29, 1);
9145     bool is_fp = false;
9146     bool is_min = false;
9147     int esize;
9148     int elements;
9149     int i;
9150     TCGv_i64 tcg_res, tcg_elt;
9151 
9152     switch (opcode) {
9153     case 0x1b: /* ADDV */
9154         if (is_u) {
9155             unallocated_encoding(s);
9156             return;
9157         }
9158         /* fall through */
9159     case 0x3: /* SADDLV, UADDLV */
9160     case 0xa: /* SMAXV, UMAXV */
9161     case 0x1a: /* SMINV, UMINV */
9162         if (size == 3 || (size == 2 && !is_q)) {
9163             unallocated_encoding(s);
9164             return;
9165         }
9166         break;
9167     case 0xc: /* FMAXNMV, FMINNMV */
9168     case 0xf: /* FMAXV, FMINV */
9169         /* Bit 1 of size field encodes min vs max and the actual size
9170          * depends on the encoding of the U bit. If not set (and FP16
9171          * enabled) then we do half-precision float instead of single
9172          * precision.
9173          */
9174         is_min = extract32(size, 1, 1);
9175         is_fp = true;
9176         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
9177             size = 1;
9178         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
9179             unallocated_encoding(s);
9180             return;
9181         } else {
9182             size = 2;
9183         }
9184         break;
9185     default:
9186         unallocated_encoding(s);
9187         return;
9188     }
9189 
9190     if (!fp_access_check(s)) {
9191         return;
9192     }
9193 
9194     esize = 8 << size;
9195     elements = (is_q ? 128 : 64) / esize;
9196 
9197     tcg_res = tcg_temp_new_i64();
9198     tcg_elt = tcg_temp_new_i64();
9199 
9200     /* These instructions operate across all lanes of a vector
9201      * to produce a single result. We can guarantee that a 64
9202      * bit intermediate is sufficient:
9203      *  + for [US]ADDLV the maximum element size is 32 bits, and
9204      *    the result type is 64 bits
9205      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
9206      *    same as the element size, which is 32 bits at most
9207      * For the integer operations we can choose to work at 64
9208      * or 32 bits and truncate at the end; for simplicity
9209      * we use 64 bits always. The floating point
9210      * ops do require 32 bit intermediates, though.
9211      */
9212     if (!is_fp) {
9213         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
9214 
9215         for (i = 1; i < elements; i++) {
9216             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
9217 
9218             switch (opcode) {
9219             case 0x03: /* SADDLV / UADDLV */
9220             case 0x1b: /* ADDV */
9221                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
9222                 break;
9223             case 0x0a: /* SMAXV / UMAXV */
9224                 if (is_u) {
9225                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
9226                 } else {
9227                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
9228                 }
9229                 break;
9230             case 0x1a: /* SMINV / UMINV */
9231                 if (is_u) {
9232                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
9233                 } else {
9234                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
9235                 }
9236                 break;
9237             default:
9238                 g_assert_not_reached();
9239             }
9240 
9241         }
9242     } else {
9243         /* Floating point vector reduction ops which work across 32
9244          * bit (single) or 16 bit (half-precision) intermediates.
9245          * Note that correct NaN propagation requires that we do these
9246          * operations in exactly the order specified by the pseudocode.
9247          */
9248         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9249         int fpopcode = opcode | is_min << 4 | is_u << 5;
9250         int vmap = (1 << elements) - 1;
9251         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
9252                                              (is_q ? 128 : 64), vmap, fpst);
9253         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
9254     }
9255 
9256     /* Now truncate the result to the width required for the final output */
9257     if (opcode == 0x03) {
9258         /* SADDLV, UADDLV: result is 2*esize */
9259         size++;
9260     }
9261 
9262     switch (size) {
9263     case 0:
9264         tcg_gen_ext8u_i64(tcg_res, tcg_res);
9265         break;
9266     case 1:
9267         tcg_gen_ext16u_i64(tcg_res, tcg_res);
9268         break;
9269     case 2:
9270         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9271         break;
9272     case 3:
9273         break;
9274     default:
9275         g_assert_not_reached();
9276     }
9277 
9278     write_fp_dreg(s, rd, tcg_res);
9279 }
9280 
9281 /* AdvSIMD modified immediate
9282  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
9283  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
9284  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
9285  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
9286  *
9287  * There are a number of operations that can be carried out here:
9288  *   MOVI - move (shifted) imm into register
9289  *   MVNI - move inverted (shifted) imm into register
9290  *   ORR  - bitwise OR of (shifted) imm with register
9291  *   BIC  - bitwise clear of (shifted) imm with register
9292  * With ARMv8.2 we also have:
9293  *   FMOV half-precision
9294  */
9295 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
9296 {
9297     int rd = extract32(insn, 0, 5);
9298     int cmode = extract32(insn, 12, 4);
9299     int o2 = extract32(insn, 11, 1);
9300     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
9301     bool is_neg = extract32(insn, 29, 1);
9302     bool is_q = extract32(insn, 30, 1);
9303     uint64_t imm = 0;
9304 
9305     if (o2) {
9306         if (cmode != 0xf || is_neg) {
9307             unallocated_encoding(s);
9308             return;
9309         }
9310         /* FMOV (vector, immediate) - half-precision */
9311         if (!dc_isar_feature(aa64_fp16, s)) {
9312             unallocated_encoding(s);
9313             return;
9314         }
9315         imm = vfp_expand_imm(MO_16, abcdefgh);
9316         /* now duplicate across the lanes */
9317         imm = dup_const(MO_16, imm);
9318     } else {
9319         if (cmode == 0xf && is_neg && !is_q) {
9320             unallocated_encoding(s);
9321             return;
9322         }
9323         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
9324     }
9325 
9326     if (!fp_access_check(s)) {
9327         return;
9328     }
9329 
9330     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
9331         /* MOVI or MVNI, with MVNI negation handled above.  */
9332         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
9333                              vec_full_reg_size(s), imm);
9334     } else {
9335         /* ORR or BIC, with BIC negation to AND handled above.  */
9336         if (is_neg) {
9337             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
9338         } else {
9339             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
9340         }
9341     }
9342 }
9343 
9344 /*
9345  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
9346  *
9347  * This code is handles the common shifting code and is used by both
9348  * the vector and scalar code.
9349  */
9350 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
9351                                     TCGv_i64 tcg_rnd, bool accumulate,
9352                                     bool is_u, int size, int shift)
9353 {
9354     bool extended_result = false;
9355     bool round = tcg_rnd != NULL;
9356     int ext_lshift = 0;
9357     TCGv_i64 tcg_src_hi;
9358 
9359     if (round && size == 3) {
9360         extended_result = true;
9361         ext_lshift = 64 - shift;
9362         tcg_src_hi = tcg_temp_new_i64();
9363     } else if (shift == 64) {
9364         if (!accumulate && is_u) {
9365             /* result is zero */
9366             tcg_gen_movi_i64(tcg_res, 0);
9367             return;
9368         }
9369     }
9370 
9371     /* Deal with the rounding step */
9372     if (round) {
9373         if (extended_result) {
9374             TCGv_i64 tcg_zero = tcg_constant_i64(0);
9375             if (!is_u) {
9376                 /* take care of sign extending tcg_res */
9377                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
9378                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
9379                                  tcg_src, tcg_src_hi,
9380                                  tcg_rnd, tcg_zero);
9381             } else {
9382                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
9383                                  tcg_src, tcg_zero,
9384                                  tcg_rnd, tcg_zero);
9385             }
9386         } else {
9387             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
9388         }
9389     }
9390 
9391     /* Now do the shift right */
9392     if (round && extended_result) {
9393         /* extended case, >64 bit precision required */
9394         if (ext_lshift == 0) {
9395             /* special case, only high bits matter */
9396             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
9397         } else {
9398             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
9399             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
9400             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
9401         }
9402     } else {
9403         if (is_u) {
9404             if (shift == 64) {
9405                 /* essentially shifting in 64 zeros */
9406                 tcg_gen_movi_i64(tcg_src, 0);
9407             } else {
9408                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
9409             }
9410         } else {
9411             if (shift == 64) {
9412                 /* effectively extending the sign-bit */
9413                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
9414             } else {
9415                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
9416             }
9417         }
9418     }
9419 
9420     if (accumulate) {
9421         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
9422     } else {
9423         tcg_gen_mov_i64(tcg_res, tcg_src);
9424     }
9425 }
9426 
9427 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
9428 static void handle_scalar_simd_shri(DisasContext *s,
9429                                     bool is_u, int immh, int immb,
9430                                     int opcode, int rn, int rd)
9431 {
9432     const int size = 3;
9433     int immhb = immh << 3 | immb;
9434     int shift = 2 * (8 << size) - immhb;
9435     bool accumulate = false;
9436     bool round = false;
9437     bool insert = false;
9438     TCGv_i64 tcg_rn;
9439     TCGv_i64 tcg_rd;
9440     TCGv_i64 tcg_round;
9441 
9442     if (!extract32(immh, 3, 1)) {
9443         unallocated_encoding(s);
9444         return;
9445     }
9446 
9447     if (!fp_access_check(s)) {
9448         return;
9449     }
9450 
9451     switch (opcode) {
9452     case 0x02: /* SSRA / USRA (accumulate) */
9453         accumulate = true;
9454         break;
9455     case 0x04: /* SRSHR / URSHR (rounding) */
9456         round = true;
9457         break;
9458     case 0x06: /* SRSRA / URSRA (accum + rounding) */
9459         accumulate = round = true;
9460         break;
9461     case 0x08: /* SRI */
9462         insert = true;
9463         break;
9464     }
9465 
9466     if (round) {
9467         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9468     } else {
9469         tcg_round = NULL;
9470     }
9471 
9472     tcg_rn = read_fp_dreg(s, rn);
9473     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9474 
9475     if (insert) {
9476         /* shift count same as element size is valid but does nothing;
9477          * special case to avoid potential shift by 64.
9478          */
9479         int esize = 8 << size;
9480         if (shift != esize) {
9481             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
9482             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
9483         }
9484     } else {
9485         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9486                                 accumulate, is_u, size, shift);
9487     }
9488 
9489     write_fp_dreg(s, rd, tcg_rd);
9490 }
9491 
9492 /* SHL/SLI - Scalar shift left */
9493 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9494                                     int immh, int immb, int opcode,
9495                                     int rn, int rd)
9496 {
9497     int size = 32 - clz32(immh) - 1;
9498     int immhb = immh << 3 | immb;
9499     int shift = immhb - (8 << size);
9500     TCGv_i64 tcg_rn;
9501     TCGv_i64 tcg_rd;
9502 
9503     if (!extract32(immh, 3, 1)) {
9504         unallocated_encoding(s);
9505         return;
9506     }
9507 
9508     if (!fp_access_check(s)) {
9509         return;
9510     }
9511 
9512     tcg_rn = read_fp_dreg(s, rn);
9513     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9514 
9515     if (insert) {
9516         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9517     } else {
9518         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9519     }
9520 
9521     write_fp_dreg(s, rd, tcg_rd);
9522 }
9523 
9524 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9525  * (signed/unsigned) narrowing */
9526 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9527                                    bool is_u_shift, bool is_u_narrow,
9528                                    int immh, int immb, int opcode,
9529                                    int rn, int rd)
9530 {
9531     int immhb = immh << 3 | immb;
9532     int size = 32 - clz32(immh) - 1;
9533     int esize = 8 << size;
9534     int shift = (2 * esize) - immhb;
9535     int elements = is_scalar ? 1 : (64 / esize);
9536     bool round = extract32(opcode, 0, 1);
9537     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9538     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9539     TCGv_i32 tcg_rd_narrowed;
9540     TCGv_i64 tcg_final;
9541 
9542     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9543         { gen_helper_neon_narrow_sat_s8,
9544           gen_helper_neon_unarrow_sat8 },
9545         { gen_helper_neon_narrow_sat_s16,
9546           gen_helper_neon_unarrow_sat16 },
9547         { gen_helper_neon_narrow_sat_s32,
9548           gen_helper_neon_unarrow_sat32 },
9549         { NULL, NULL },
9550     };
9551     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9552         gen_helper_neon_narrow_sat_u8,
9553         gen_helper_neon_narrow_sat_u16,
9554         gen_helper_neon_narrow_sat_u32,
9555         NULL
9556     };
9557     NeonGenNarrowEnvFn *narrowfn;
9558 
9559     int i;
9560 
9561     assert(size < 4);
9562 
9563     if (extract32(immh, 3, 1)) {
9564         unallocated_encoding(s);
9565         return;
9566     }
9567 
9568     if (!fp_access_check(s)) {
9569         return;
9570     }
9571 
9572     if (is_u_shift) {
9573         narrowfn = unsigned_narrow_fns[size];
9574     } else {
9575         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9576     }
9577 
9578     tcg_rn = tcg_temp_new_i64();
9579     tcg_rd = tcg_temp_new_i64();
9580     tcg_rd_narrowed = tcg_temp_new_i32();
9581     tcg_final = tcg_temp_new_i64();
9582 
9583     if (round) {
9584         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9585     } else {
9586         tcg_round = NULL;
9587     }
9588 
9589     for (i = 0; i < elements; i++) {
9590         read_vec_element(s, tcg_rn, rn, i, ldop);
9591         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9592                                 false, is_u_shift, size+1, shift);
9593         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9594         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9595         if (i == 0) {
9596             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9597         } else {
9598             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9599         }
9600     }
9601 
9602     if (!is_q) {
9603         write_vec_element(s, tcg_final, rd, 0, MO_64);
9604     } else {
9605         write_vec_element(s, tcg_final, rd, 1, MO_64);
9606     }
9607     clear_vec_high(s, is_q, rd);
9608 }
9609 
9610 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9611 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9612                              bool src_unsigned, bool dst_unsigned,
9613                              int immh, int immb, int rn, int rd)
9614 {
9615     int immhb = immh << 3 | immb;
9616     int size = 32 - clz32(immh) - 1;
9617     int shift = immhb - (8 << size);
9618     int pass;
9619 
9620     assert(immh != 0);
9621     assert(!(scalar && is_q));
9622 
9623     if (!scalar) {
9624         if (!is_q && extract32(immh, 3, 1)) {
9625             unallocated_encoding(s);
9626             return;
9627         }
9628 
9629         /* Since we use the variable-shift helpers we must
9630          * replicate the shift count into each element of
9631          * the tcg_shift value.
9632          */
9633         switch (size) {
9634         case 0:
9635             shift |= shift << 8;
9636             /* fall through */
9637         case 1:
9638             shift |= shift << 16;
9639             break;
9640         case 2:
9641         case 3:
9642             break;
9643         default:
9644             g_assert_not_reached();
9645         }
9646     }
9647 
9648     if (!fp_access_check(s)) {
9649         return;
9650     }
9651 
9652     if (size == 3) {
9653         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9654         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9655             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9656             { NULL, gen_helper_neon_qshl_u64 },
9657         };
9658         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9659         int maxpass = is_q ? 2 : 1;
9660 
9661         for (pass = 0; pass < maxpass; pass++) {
9662             TCGv_i64 tcg_op = tcg_temp_new_i64();
9663 
9664             read_vec_element(s, tcg_op, rn, pass, MO_64);
9665             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9666             write_vec_element(s, tcg_op, rd, pass, MO_64);
9667         }
9668         clear_vec_high(s, is_q, rd);
9669     } else {
9670         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9671         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9672             {
9673                 { gen_helper_neon_qshl_s8,
9674                   gen_helper_neon_qshl_s16,
9675                   gen_helper_neon_qshl_s32 },
9676                 { gen_helper_neon_qshlu_s8,
9677                   gen_helper_neon_qshlu_s16,
9678                   gen_helper_neon_qshlu_s32 }
9679             }, {
9680                 { NULL, NULL, NULL },
9681                 { gen_helper_neon_qshl_u8,
9682                   gen_helper_neon_qshl_u16,
9683                   gen_helper_neon_qshl_u32 }
9684             }
9685         };
9686         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9687         MemOp memop = scalar ? size : MO_32;
9688         int maxpass = scalar ? 1 : is_q ? 4 : 2;
9689 
9690         for (pass = 0; pass < maxpass; pass++) {
9691             TCGv_i32 tcg_op = tcg_temp_new_i32();
9692 
9693             read_vec_element_i32(s, tcg_op, rn, pass, memop);
9694             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9695             if (scalar) {
9696                 switch (size) {
9697                 case 0:
9698                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
9699                     break;
9700                 case 1:
9701                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9702                     break;
9703                 case 2:
9704                     break;
9705                 default:
9706                     g_assert_not_reached();
9707                 }
9708                 write_fp_sreg(s, rd, tcg_op);
9709             } else {
9710                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9711             }
9712         }
9713 
9714         if (!scalar) {
9715             clear_vec_high(s, is_q, rd);
9716         }
9717     }
9718 }
9719 
9720 /* Common vector code for handling integer to FP conversion */
9721 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9722                                    int elements, int is_signed,
9723                                    int fracbits, int size)
9724 {
9725     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9726     TCGv_i32 tcg_shift = NULL;
9727 
9728     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9729     int pass;
9730 
9731     if (fracbits || size == MO_64) {
9732         tcg_shift = tcg_constant_i32(fracbits);
9733     }
9734 
9735     if (size == MO_64) {
9736         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9737         TCGv_i64 tcg_double = tcg_temp_new_i64();
9738 
9739         for (pass = 0; pass < elements; pass++) {
9740             read_vec_element(s, tcg_int64, rn, pass, mop);
9741 
9742             if (is_signed) {
9743                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9744                                      tcg_shift, tcg_fpst);
9745             } else {
9746                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9747                                      tcg_shift, tcg_fpst);
9748             }
9749             if (elements == 1) {
9750                 write_fp_dreg(s, rd, tcg_double);
9751             } else {
9752                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9753             }
9754         }
9755     } else {
9756         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9757         TCGv_i32 tcg_float = tcg_temp_new_i32();
9758 
9759         for (pass = 0; pass < elements; pass++) {
9760             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9761 
9762             switch (size) {
9763             case MO_32:
9764                 if (fracbits) {
9765                     if (is_signed) {
9766                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9767                                              tcg_shift, tcg_fpst);
9768                     } else {
9769                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9770                                              tcg_shift, tcg_fpst);
9771                     }
9772                 } else {
9773                     if (is_signed) {
9774                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9775                     } else {
9776                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9777                     }
9778                 }
9779                 break;
9780             case MO_16:
9781                 if (fracbits) {
9782                     if (is_signed) {
9783                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9784                                              tcg_shift, tcg_fpst);
9785                     } else {
9786                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9787                                              tcg_shift, tcg_fpst);
9788                     }
9789                 } else {
9790                     if (is_signed) {
9791                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9792                     } else {
9793                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9794                     }
9795                 }
9796                 break;
9797             default:
9798                 g_assert_not_reached();
9799             }
9800 
9801             if (elements == 1) {
9802                 write_fp_sreg(s, rd, tcg_float);
9803             } else {
9804                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9805             }
9806         }
9807     }
9808 
9809     clear_vec_high(s, elements << size == 16, rd);
9810 }
9811 
9812 /* UCVTF/SCVTF - Integer to FP conversion */
9813 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9814                                          bool is_q, bool is_u,
9815                                          int immh, int immb, int opcode,
9816                                          int rn, int rd)
9817 {
9818     int size, elements, fracbits;
9819     int immhb = immh << 3 | immb;
9820 
9821     if (immh & 8) {
9822         size = MO_64;
9823         if (!is_scalar && !is_q) {
9824             unallocated_encoding(s);
9825             return;
9826         }
9827     } else if (immh & 4) {
9828         size = MO_32;
9829     } else if (immh & 2) {
9830         size = MO_16;
9831         if (!dc_isar_feature(aa64_fp16, s)) {
9832             unallocated_encoding(s);
9833             return;
9834         }
9835     } else {
9836         /* immh == 0 would be a failure of the decode logic */
9837         g_assert(immh == 1);
9838         unallocated_encoding(s);
9839         return;
9840     }
9841 
9842     if (is_scalar) {
9843         elements = 1;
9844     } else {
9845         elements = (8 << is_q) >> size;
9846     }
9847     fracbits = (16 << size) - immhb;
9848 
9849     if (!fp_access_check(s)) {
9850         return;
9851     }
9852 
9853     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9854 }
9855 
9856 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9857 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9858                                          bool is_q, bool is_u,
9859                                          int immh, int immb, int rn, int rd)
9860 {
9861     int immhb = immh << 3 | immb;
9862     int pass, size, fracbits;
9863     TCGv_ptr tcg_fpstatus;
9864     TCGv_i32 tcg_rmode, tcg_shift;
9865 
9866     if (immh & 0x8) {
9867         size = MO_64;
9868         if (!is_scalar && !is_q) {
9869             unallocated_encoding(s);
9870             return;
9871         }
9872     } else if (immh & 0x4) {
9873         size = MO_32;
9874     } else if (immh & 0x2) {
9875         size = MO_16;
9876         if (!dc_isar_feature(aa64_fp16, s)) {
9877             unallocated_encoding(s);
9878             return;
9879         }
9880     } else {
9881         /* Should have split out AdvSIMD modified immediate earlier.  */
9882         assert(immh == 1);
9883         unallocated_encoding(s);
9884         return;
9885     }
9886 
9887     if (!fp_access_check(s)) {
9888         return;
9889     }
9890 
9891     assert(!(is_scalar && is_q));
9892 
9893     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9894     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9895     fracbits = (16 << size) - immhb;
9896     tcg_shift = tcg_constant_i32(fracbits);
9897 
9898     if (size == MO_64) {
9899         int maxpass = is_scalar ? 1 : 2;
9900 
9901         for (pass = 0; pass < maxpass; pass++) {
9902             TCGv_i64 tcg_op = tcg_temp_new_i64();
9903 
9904             read_vec_element(s, tcg_op, rn, pass, MO_64);
9905             if (is_u) {
9906                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9907             } else {
9908                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9909             }
9910             write_vec_element(s, tcg_op, rd, pass, MO_64);
9911         }
9912         clear_vec_high(s, is_q, rd);
9913     } else {
9914         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9915         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9916 
9917         switch (size) {
9918         case MO_16:
9919             if (is_u) {
9920                 fn = gen_helper_vfp_touhh;
9921             } else {
9922                 fn = gen_helper_vfp_toshh;
9923             }
9924             break;
9925         case MO_32:
9926             if (is_u) {
9927                 fn = gen_helper_vfp_touls;
9928             } else {
9929                 fn = gen_helper_vfp_tosls;
9930             }
9931             break;
9932         default:
9933             g_assert_not_reached();
9934         }
9935 
9936         for (pass = 0; pass < maxpass; pass++) {
9937             TCGv_i32 tcg_op = tcg_temp_new_i32();
9938 
9939             read_vec_element_i32(s, tcg_op, rn, pass, size);
9940             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9941             if (is_scalar) {
9942                 if (size == MO_16 && !is_u) {
9943                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9944                 }
9945                 write_fp_sreg(s, rd, tcg_op);
9946             } else {
9947                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9948             }
9949         }
9950         if (!is_scalar) {
9951             clear_vec_high(s, is_q, rd);
9952         }
9953     }
9954 
9955     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9956 }
9957 
9958 /* AdvSIMD scalar shift by immediate
9959  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9960  * +-----+---+-------------+------+------+--------+---+------+------+
9961  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9962  * +-----+---+-------------+------+------+--------+---+------+------+
9963  *
9964  * This is the scalar version so it works on a fixed sized registers
9965  */
9966 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9967 {
9968     int rd = extract32(insn, 0, 5);
9969     int rn = extract32(insn, 5, 5);
9970     int opcode = extract32(insn, 11, 5);
9971     int immb = extract32(insn, 16, 3);
9972     int immh = extract32(insn, 19, 4);
9973     bool is_u = extract32(insn, 29, 1);
9974 
9975     if (immh == 0) {
9976         unallocated_encoding(s);
9977         return;
9978     }
9979 
9980     switch (opcode) {
9981     case 0x08: /* SRI */
9982         if (!is_u) {
9983             unallocated_encoding(s);
9984             return;
9985         }
9986         /* fall through */
9987     case 0x00: /* SSHR / USHR */
9988     case 0x02: /* SSRA / USRA */
9989     case 0x04: /* SRSHR / URSHR */
9990     case 0x06: /* SRSRA / URSRA */
9991         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9992         break;
9993     case 0x0a: /* SHL / SLI */
9994         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9995         break;
9996     case 0x1c: /* SCVTF, UCVTF */
9997         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9998                                      opcode, rn, rd);
9999         break;
10000     case 0x10: /* SQSHRUN, SQSHRUN2 */
10001     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
10002         if (!is_u) {
10003             unallocated_encoding(s);
10004             return;
10005         }
10006         handle_vec_simd_sqshrn(s, true, false, false, true,
10007                                immh, immb, opcode, rn, rd);
10008         break;
10009     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
10010     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
10011         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
10012                                immh, immb, opcode, rn, rd);
10013         break;
10014     case 0xc: /* SQSHLU */
10015         if (!is_u) {
10016             unallocated_encoding(s);
10017             return;
10018         }
10019         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
10020         break;
10021     case 0xe: /* SQSHL, UQSHL */
10022         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
10023         break;
10024     case 0x1f: /* FCVTZS, FCVTZU */
10025         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
10026         break;
10027     default:
10028         unallocated_encoding(s);
10029         break;
10030     }
10031 }
10032 
10033 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
10034                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
10035                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
10036 {
10037     /* Handle 64->64 opcodes which are shared between the scalar and
10038      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
10039      * is valid in either group and also the double-precision fp ops.
10040      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
10041      * requires them.
10042      */
10043     TCGCond cond;
10044 
10045     switch (opcode) {
10046     case 0x4: /* CLS, CLZ */
10047         if (u) {
10048             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
10049         } else {
10050             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
10051         }
10052         break;
10053     case 0x5: /* NOT */
10054         /* This opcode is shared with CNT and RBIT but we have earlier
10055          * enforced that size == 3 if and only if this is the NOT insn.
10056          */
10057         tcg_gen_not_i64(tcg_rd, tcg_rn);
10058         break;
10059     case 0x7: /* SQABS, SQNEG */
10060         if (u) {
10061             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
10062         } else {
10063             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
10064         }
10065         break;
10066     case 0xa: /* CMLT */
10067         cond = TCG_COND_LT;
10068     do_cmop:
10069         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
10070         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
10071         break;
10072     case 0x8: /* CMGT, CMGE */
10073         cond = u ? TCG_COND_GE : TCG_COND_GT;
10074         goto do_cmop;
10075     case 0x9: /* CMEQ, CMLE */
10076         cond = u ? TCG_COND_LE : TCG_COND_EQ;
10077         goto do_cmop;
10078     case 0xb: /* ABS, NEG */
10079         if (u) {
10080             tcg_gen_neg_i64(tcg_rd, tcg_rn);
10081         } else {
10082             tcg_gen_abs_i64(tcg_rd, tcg_rn);
10083         }
10084         break;
10085     case 0x2f: /* FABS */
10086         gen_vfp_absd(tcg_rd, tcg_rn);
10087         break;
10088     case 0x6f: /* FNEG */
10089         gen_vfp_negd(tcg_rd, tcg_rn);
10090         break;
10091     case 0x7f: /* FSQRT */
10092         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
10093         break;
10094     case 0x1a: /* FCVTNS */
10095     case 0x1b: /* FCVTMS */
10096     case 0x1c: /* FCVTAS */
10097     case 0x3a: /* FCVTPS */
10098     case 0x3b: /* FCVTZS */
10099         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10100         break;
10101     case 0x5a: /* FCVTNU */
10102     case 0x5b: /* FCVTMU */
10103     case 0x5c: /* FCVTAU */
10104     case 0x7a: /* FCVTPU */
10105     case 0x7b: /* FCVTZU */
10106         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10107         break;
10108     case 0x18: /* FRINTN */
10109     case 0x19: /* FRINTM */
10110     case 0x38: /* FRINTP */
10111     case 0x39: /* FRINTZ */
10112     case 0x58: /* FRINTA */
10113     case 0x79: /* FRINTI */
10114         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
10115         break;
10116     case 0x59: /* FRINTX */
10117         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
10118         break;
10119     case 0x1e: /* FRINT32Z */
10120     case 0x5e: /* FRINT32X */
10121         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
10122         break;
10123     case 0x1f: /* FRINT64Z */
10124     case 0x5f: /* FRINT64X */
10125         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
10126         break;
10127     default:
10128         g_assert_not_reached();
10129     }
10130 }
10131 
10132 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
10133                                    bool is_scalar, bool is_u, bool is_q,
10134                                    int size, int rn, int rd)
10135 {
10136     bool is_double = (size == MO_64);
10137     TCGv_ptr fpst;
10138 
10139     if (!fp_access_check(s)) {
10140         return;
10141     }
10142 
10143     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
10144 
10145     if (is_double) {
10146         TCGv_i64 tcg_op = tcg_temp_new_i64();
10147         TCGv_i64 tcg_zero = tcg_constant_i64(0);
10148         TCGv_i64 tcg_res = tcg_temp_new_i64();
10149         NeonGenTwoDoubleOpFn *genfn;
10150         bool swap = false;
10151         int pass;
10152 
10153         switch (opcode) {
10154         case 0x2e: /* FCMLT (zero) */
10155             swap = true;
10156             /* fallthrough */
10157         case 0x2c: /* FCMGT (zero) */
10158             genfn = gen_helper_neon_cgt_f64;
10159             break;
10160         case 0x2d: /* FCMEQ (zero) */
10161             genfn = gen_helper_neon_ceq_f64;
10162             break;
10163         case 0x6d: /* FCMLE (zero) */
10164             swap = true;
10165             /* fall through */
10166         case 0x6c: /* FCMGE (zero) */
10167             genfn = gen_helper_neon_cge_f64;
10168             break;
10169         default:
10170             g_assert_not_reached();
10171         }
10172 
10173         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10174             read_vec_element(s, tcg_op, rn, pass, MO_64);
10175             if (swap) {
10176                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10177             } else {
10178                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10179             }
10180             write_vec_element(s, tcg_res, rd, pass, MO_64);
10181         }
10182 
10183         clear_vec_high(s, !is_scalar, rd);
10184     } else {
10185         TCGv_i32 tcg_op = tcg_temp_new_i32();
10186         TCGv_i32 tcg_zero = tcg_constant_i32(0);
10187         TCGv_i32 tcg_res = tcg_temp_new_i32();
10188         NeonGenTwoSingleOpFn *genfn;
10189         bool swap = false;
10190         int pass, maxpasses;
10191 
10192         if (size == MO_16) {
10193             switch (opcode) {
10194             case 0x2e: /* FCMLT (zero) */
10195                 swap = true;
10196                 /* fall through */
10197             case 0x2c: /* FCMGT (zero) */
10198                 genfn = gen_helper_advsimd_cgt_f16;
10199                 break;
10200             case 0x2d: /* FCMEQ (zero) */
10201                 genfn = gen_helper_advsimd_ceq_f16;
10202                 break;
10203             case 0x6d: /* FCMLE (zero) */
10204                 swap = true;
10205                 /* fall through */
10206             case 0x6c: /* FCMGE (zero) */
10207                 genfn = gen_helper_advsimd_cge_f16;
10208                 break;
10209             default:
10210                 g_assert_not_reached();
10211             }
10212         } else {
10213             switch (opcode) {
10214             case 0x2e: /* FCMLT (zero) */
10215                 swap = true;
10216                 /* fall through */
10217             case 0x2c: /* FCMGT (zero) */
10218                 genfn = gen_helper_neon_cgt_f32;
10219                 break;
10220             case 0x2d: /* FCMEQ (zero) */
10221                 genfn = gen_helper_neon_ceq_f32;
10222                 break;
10223             case 0x6d: /* FCMLE (zero) */
10224                 swap = true;
10225                 /* fall through */
10226             case 0x6c: /* FCMGE (zero) */
10227                 genfn = gen_helper_neon_cge_f32;
10228                 break;
10229             default:
10230                 g_assert_not_reached();
10231             }
10232         }
10233 
10234         if (is_scalar) {
10235             maxpasses = 1;
10236         } else {
10237             int vector_size = 8 << is_q;
10238             maxpasses = vector_size >> size;
10239         }
10240 
10241         for (pass = 0; pass < maxpasses; pass++) {
10242             read_vec_element_i32(s, tcg_op, rn, pass, size);
10243             if (swap) {
10244                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10245             } else {
10246                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10247             }
10248             if (is_scalar) {
10249                 write_fp_sreg(s, rd, tcg_res);
10250             } else {
10251                 write_vec_element_i32(s, tcg_res, rd, pass, size);
10252             }
10253         }
10254 
10255         if (!is_scalar) {
10256             clear_vec_high(s, is_q, rd);
10257         }
10258     }
10259 }
10260 
10261 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10262                                     bool is_scalar, bool is_u, bool is_q,
10263                                     int size, int rn, int rd)
10264 {
10265     bool is_double = (size == 3);
10266     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10267 
10268     if (is_double) {
10269         TCGv_i64 tcg_op = tcg_temp_new_i64();
10270         TCGv_i64 tcg_res = tcg_temp_new_i64();
10271         int pass;
10272 
10273         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10274             read_vec_element(s, tcg_op, rn, pass, MO_64);
10275             switch (opcode) {
10276             case 0x3d: /* FRECPE */
10277                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10278                 break;
10279             case 0x3f: /* FRECPX */
10280                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10281                 break;
10282             case 0x7d: /* FRSQRTE */
10283                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10284                 break;
10285             default:
10286                 g_assert_not_reached();
10287             }
10288             write_vec_element(s, tcg_res, rd, pass, MO_64);
10289         }
10290         clear_vec_high(s, !is_scalar, rd);
10291     } else {
10292         TCGv_i32 tcg_op = tcg_temp_new_i32();
10293         TCGv_i32 tcg_res = tcg_temp_new_i32();
10294         int pass, maxpasses;
10295 
10296         if (is_scalar) {
10297             maxpasses = 1;
10298         } else {
10299             maxpasses = is_q ? 4 : 2;
10300         }
10301 
10302         for (pass = 0; pass < maxpasses; pass++) {
10303             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10304 
10305             switch (opcode) {
10306             case 0x3c: /* URECPE */
10307                 gen_helper_recpe_u32(tcg_res, tcg_op);
10308                 break;
10309             case 0x3d: /* FRECPE */
10310                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10311                 break;
10312             case 0x3f: /* FRECPX */
10313                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10314                 break;
10315             case 0x7d: /* FRSQRTE */
10316                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10317                 break;
10318             default:
10319                 g_assert_not_reached();
10320             }
10321 
10322             if (is_scalar) {
10323                 write_fp_sreg(s, rd, tcg_res);
10324             } else {
10325                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10326             }
10327         }
10328         if (!is_scalar) {
10329             clear_vec_high(s, is_q, rd);
10330         }
10331     }
10332 }
10333 
10334 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10335                                 int opcode, bool u, bool is_q,
10336                                 int size, int rn, int rd)
10337 {
10338     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10339      * in the source becomes a size element in the destination).
10340      */
10341     int pass;
10342     TCGv_i32 tcg_res[2];
10343     int destelt = is_q ? 2 : 0;
10344     int passes = scalar ? 1 : 2;
10345 
10346     if (scalar) {
10347         tcg_res[1] = tcg_constant_i32(0);
10348     }
10349 
10350     for (pass = 0; pass < passes; pass++) {
10351         TCGv_i64 tcg_op = tcg_temp_new_i64();
10352         NeonGenNarrowFn *genfn = NULL;
10353         NeonGenNarrowEnvFn *genenvfn = NULL;
10354 
10355         if (scalar) {
10356             read_vec_element(s, tcg_op, rn, pass, size + 1);
10357         } else {
10358             read_vec_element(s, tcg_op, rn, pass, MO_64);
10359         }
10360         tcg_res[pass] = tcg_temp_new_i32();
10361 
10362         switch (opcode) {
10363         case 0x12: /* XTN, SQXTUN */
10364         {
10365             static NeonGenNarrowFn * const xtnfns[3] = {
10366                 gen_helper_neon_narrow_u8,
10367                 gen_helper_neon_narrow_u16,
10368                 tcg_gen_extrl_i64_i32,
10369             };
10370             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10371                 gen_helper_neon_unarrow_sat8,
10372                 gen_helper_neon_unarrow_sat16,
10373                 gen_helper_neon_unarrow_sat32,
10374             };
10375             if (u) {
10376                 genenvfn = sqxtunfns[size];
10377             } else {
10378                 genfn = xtnfns[size];
10379             }
10380             break;
10381         }
10382         case 0x14: /* SQXTN, UQXTN */
10383         {
10384             static NeonGenNarrowEnvFn * const fns[3][2] = {
10385                 { gen_helper_neon_narrow_sat_s8,
10386                   gen_helper_neon_narrow_sat_u8 },
10387                 { gen_helper_neon_narrow_sat_s16,
10388                   gen_helper_neon_narrow_sat_u16 },
10389                 { gen_helper_neon_narrow_sat_s32,
10390                   gen_helper_neon_narrow_sat_u32 },
10391             };
10392             genenvfn = fns[size][u];
10393             break;
10394         }
10395         case 0x16: /* FCVTN, FCVTN2 */
10396             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10397             if (size == 2) {
10398                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10399             } else {
10400                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10401                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10402                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10403                 TCGv_i32 ahp = get_ahp_flag();
10404 
10405                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10406                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10407                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10408                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10409             }
10410             break;
10411         case 0x36: /* BFCVTN, BFCVTN2 */
10412             {
10413                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10414                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10415             }
10416             break;
10417         case 0x56:  /* FCVTXN, FCVTXN2 */
10418             /* 64 bit to 32 bit float conversion
10419              * with von Neumann rounding (round to odd)
10420              */
10421             assert(size == 2);
10422             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10423             break;
10424         default:
10425             g_assert_not_reached();
10426         }
10427 
10428         if (genfn) {
10429             genfn(tcg_res[pass], tcg_op);
10430         } else if (genenvfn) {
10431             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10432         }
10433     }
10434 
10435     for (pass = 0; pass < 2; pass++) {
10436         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10437     }
10438     clear_vec_high(s, is_q, rd);
10439 }
10440 
10441 /* AdvSIMD scalar two reg misc
10442  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10443  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10444  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10445  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10446  */
10447 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10448 {
10449     int rd = extract32(insn, 0, 5);
10450     int rn = extract32(insn, 5, 5);
10451     int opcode = extract32(insn, 12, 5);
10452     int size = extract32(insn, 22, 2);
10453     bool u = extract32(insn, 29, 1);
10454     bool is_fcvt = false;
10455     int rmode;
10456     TCGv_i32 tcg_rmode;
10457     TCGv_ptr tcg_fpstatus;
10458 
10459     switch (opcode) {
10460     case 0x7: /* SQABS / SQNEG */
10461         break;
10462     case 0xa: /* CMLT */
10463         if (u) {
10464             unallocated_encoding(s);
10465             return;
10466         }
10467         /* fall through */
10468     case 0x8: /* CMGT, CMGE */
10469     case 0x9: /* CMEQ, CMLE */
10470     case 0xb: /* ABS, NEG */
10471         if (size != 3) {
10472             unallocated_encoding(s);
10473             return;
10474         }
10475         break;
10476     case 0x12: /* SQXTUN */
10477         if (!u) {
10478             unallocated_encoding(s);
10479             return;
10480         }
10481         /* fall through */
10482     case 0x14: /* SQXTN, UQXTN */
10483         if (size == 3) {
10484             unallocated_encoding(s);
10485             return;
10486         }
10487         if (!fp_access_check(s)) {
10488             return;
10489         }
10490         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10491         return;
10492     case 0xc ... 0xf:
10493     case 0x16 ... 0x1d:
10494     case 0x1f:
10495         /* Floating point: U, size[1] and opcode indicate operation;
10496          * size[0] indicates single or double precision.
10497          */
10498         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10499         size = extract32(size, 0, 1) ? 3 : 2;
10500         switch (opcode) {
10501         case 0x2c: /* FCMGT (zero) */
10502         case 0x2d: /* FCMEQ (zero) */
10503         case 0x2e: /* FCMLT (zero) */
10504         case 0x6c: /* FCMGE (zero) */
10505         case 0x6d: /* FCMLE (zero) */
10506             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10507             return;
10508         case 0x1d: /* SCVTF */
10509         case 0x5d: /* UCVTF */
10510         {
10511             bool is_signed = (opcode == 0x1d);
10512             if (!fp_access_check(s)) {
10513                 return;
10514             }
10515             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10516             return;
10517         }
10518         case 0x3d: /* FRECPE */
10519         case 0x3f: /* FRECPX */
10520         case 0x7d: /* FRSQRTE */
10521             if (!fp_access_check(s)) {
10522                 return;
10523             }
10524             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10525             return;
10526         case 0x1a: /* FCVTNS */
10527         case 0x1b: /* FCVTMS */
10528         case 0x3a: /* FCVTPS */
10529         case 0x3b: /* FCVTZS */
10530         case 0x5a: /* FCVTNU */
10531         case 0x5b: /* FCVTMU */
10532         case 0x7a: /* FCVTPU */
10533         case 0x7b: /* FCVTZU */
10534             is_fcvt = true;
10535             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10536             break;
10537         case 0x1c: /* FCVTAS */
10538         case 0x5c: /* FCVTAU */
10539             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10540             is_fcvt = true;
10541             rmode = FPROUNDING_TIEAWAY;
10542             break;
10543         case 0x56: /* FCVTXN, FCVTXN2 */
10544             if (size == 2) {
10545                 unallocated_encoding(s);
10546                 return;
10547             }
10548             if (!fp_access_check(s)) {
10549                 return;
10550             }
10551             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10552             return;
10553         default:
10554             unallocated_encoding(s);
10555             return;
10556         }
10557         break;
10558     default:
10559     case 0x3: /* USQADD / SUQADD */
10560         unallocated_encoding(s);
10561         return;
10562     }
10563 
10564     if (!fp_access_check(s)) {
10565         return;
10566     }
10567 
10568     if (is_fcvt) {
10569         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10570         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10571     } else {
10572         tcg_fpstatus = NULL;
10573         tcg_rmode = NULL;
10574     }
10575 
10576     if (size == 3) {
10577         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10578         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10579 
10580         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10581         write_fp_dreg(s, rd, tcg_rd);
10582     } else {
10583         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10584         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10585 
10586         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10587 
10588         switch (opcode) {
10589         case 0x7: /* SQABS, SQNEG */
10590         {
10591             NeonGenOneOpEnvFn *genfn;
10592             static NeonGenOneOpEnvFn * const fns[3][2] = {
10593                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10594                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10595                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10596             };
10597             genfn = fns[size][u];
10598             genfn(tcg_rd, tcg_env, tcg_rn);
10599             break;
10600         }
10601         case 0x1a: /* FCVTNS */
10602         case 0x1b: /* FCVTMS */
10603         case 0x1c: /* FCVTAS */
10604         case 0x3a: /* FCVTPS */
10605         case 0x3b: /* FCVTZS */
10606             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10607                                  tcg_fpstatus);
10608             break;
10609         case 0x5a: /* FCVTNU */
10610         case 0x5b: /* FCVTMU */
10611         case 0x5c: /* FCVTAU */
10612         case 0x7a: /* FCVTPU */
10613         case 0x7b: /* FCVTZU */
10614             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10615                                  tcg_fpstatus);
10616             break;
10617         default:
10618             g_assert_not_reached();
10619         }
10620 
10621         write_fp_sreg(s, rd, tcg_rd);
10622     }
10623 
10624     if (is_fcvt) {
10625         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10626     }
10627 }
10628 
10629 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10630 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10631                                  int immh, int immb, int opcode, int rn, int rd)
10632 {
10633     int size = 32 - clz32(immh) - 1;
10634     int immhb = immh << 3 | immb;
10635     int shift = 2 * (8 << size) - immhb;
10636     GVecGen2iFn *gvec_fn;
10637 
10638     if (extract32(immh, 3, 1) && !is_q) {
10639         unallocated_encoding(s);
10640         return;
10641     }
10642     tcg_debug_assert(size <= 3);
10643 
10644     if (!fp_access_check(s)) {
10645         return;
10646     }
10647 
10648     switch (opcode) {
10649     case 0x02: /* SSRA / USRA (accumulate) */
10650         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10651         break;
10652 
10653     case 0x08: /* SRI */
10654         gvec_fn = gen_gvec_sri;
10655         break;
10656 
10657     case 0x00: /* SSHR / USHR */
10658         if (is_u) {
10659             if (shift == 8 << size) {
10660                 /* Shift count the same size as element size produces zero.  */
10661                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10662                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10663                 return;
10664             }
10665             gvec_fn = tcg_gen_gvec_shri;
10666         } else {
10667             /* Shift count the same size as element size produces all sign.  */
10668             if (shift == 8 << size) {
10669                 shift -= 1;
10670             }
10671             gvec_fn = tcg_gen_gvec_sari;
10672         }
10673         break;
10674 
10675     case 0x04: /* SRSHR / URSHR (rounding) */
10676         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10677         break;
10678 
10679     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10680         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10681         break;
10682 
10683     default:
10684         g_assert_not_reached();
10685     }
10686 
10687     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10688 }
10689 
10690 /* SHL/SLI - Vector shift left */
10691 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10692                                  int immh, int immb, int opcode, int rn, int rd)
10693 {
10694     int size = 32 - clz32(immh) - 1;
10695     int immhb = immh << 3 | immb;
10696     int shift = immhb - (8 << size);
10697 
10698     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10699     assert(size >= 0 && size <= 3);
10700 
10701     if (extract32(immh, 3, 1) && !is_q) {
10702         unallocated_encoding(s);
10703         return;
10704     }
10705 
10706     if (!fp_access_check(s)) {
10707         return;
10708     }
10709 
10710     if (insert) {
10711         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10712     } else {
10713         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10714     }
10715 }
10716 
10717 /* USHLL/SHLL - Vector shift left with widening */
10718 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10719                                  int immh, int immb, int opcode, int rn, int rd)
10720 {
10721     int size = 32 - clz32(immh) - 1;
10722     int immhb = immh << 3 | immb;
10723     int shift = immhb - (8 << size);
10724     int dsize = 64;
10725     int esize = 8 << size;
10726     int elements = dsize/esize;
10727     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10728     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10729     int i;
10730 
10731     if (size >= 3) {
10732         unallocated_encoding(s);
10733         return;
10734     }
10735 
10736     if (!fp_access_check(s)) {
10737         return;
10738     }
10739 
10740     /* For the LL variants the store is larger than the load,
10741      * so if rd == rn we would overwrite parts of our input.
10742      * So load everything right now and use shifts in the main loop.
10743      */
10744     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10745 
10746     for (i = 0; i < elements; i++) {
10747         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10748         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10749         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10750         write_vec_element(s, tcg_rd, rd, i, size + 1);
10751     }
10752 }
10753 
10754 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10755 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10756                                  int immh, int immb, int opcode, int rn, int rd)
10757 {
10758     int immhb = immh << 3 | immb;
10759     int size = 32 - clz32(immh) - 1;
10760     int dsize = 64;
10761     int esize = 8 << size;
10762     int elements = dsize/esize;
10763     int shift = (2 * esize) - immhb;
10764     bool round = extract32(opcode, 0, 1);
10765     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10766     TCGv_i64 tcg_round;
10767     int i;
10768 
10769     if (extract32(immh, 3, 1)) {
10770         unallocated_encoding(s);
10771         return;
10772     }
10773 
10774     if (!fp_access_check(s)) {
10775         return;
10776     }
10777 
10778     tcg_rn = tcg_temp_new_i64();
10779     tcg_rd = tcg_temp_new_i64();
10780     tcg_final = tcg_temp_new_i64();
10781     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10782 
10783     if (round) {
10784         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10785     } else {
10786         tcg_round = NULL;
10787     }
10788 
10789     for (i = 0; i < elements; i++) {
10790         read_vec_element(s, tcg_rn, rn, i, size+1);
10791         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10792                                 false, true, size+1, shift);
10793 
10794         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10795     }
10796 
10797     if (!is_q) {
10798         write_vec_element(s, tcg_final, rd, 0, MO_64);
10799     } else {
10800         write_vec_element(s, tcg_final, rd, 1, MO_64);
10801     }
10802 
10803     clear_vec_high(s, is_q, rd);
10804 }
10805 
10806 
10807 /* AdvSIMD shift by immediate
10808  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10809  * +---+---+---+-------------+------+------+--------+---+------+------+
10810  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10811  * +---+---+---+-------------+------+------+--------+---+------+------+
10812  */
10813 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10814 {
10815     int rd = extract32(insn, 0, 5);
10816     int rn = extract32(insn, 5, 5);
10817     int opcode = extract32(insn, 11, 5);
10818     int immb = extract32(insn, 16, 3);
10819     int immh = extract32(insn, 19, 4);
10820     bool is_u = extract32(insn, 29, 1);
10821     bool is_q = extract32(insn, 30, 1);
10822 
10823     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10824     assert(immh != 0);
10825 
10826     switch (opcode) {
10827     case 0x08: /* SRI */
10828         if (!is_u) {
10829             unallocated_encoding(s);
10830             return;
10831         }
10832         /* fall through */
10833     case 0x00: /* SSHR / USHR */
10834     case 0x02: /* SSRA / USRA (accumulate) */
10835     case 0x04: /* SRSHR / URSHR (rounding) */
10836     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10837         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10838         break;
10839     case 0x0a: /* SHL / SLI */
10840         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10841         break;
10842     case 0x10: /* SHRN */
10843     case 0x11: /* RSHRN / SQRSHRUN */
10844         if (is_u) {
10845             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10846                                    opcode, rn, rd);
10847         } else {
10848             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10849         }
10850         break;
10851     case 0x12: /* SQSHRN / UQSHRN */
10852     case 0x13: /* SQRSHRN / UQRSHRN */
10853         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10854                                opcode, rn, rd);
10855         break;
10856     case 0x14: /* SSHLL / USHLL */
10857         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10858         break;
10859     case 0x1c: /* SCVTF / UCVTF */
10860         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10861                                      opcode, rn, rd);
10862         break;
10863     case 0xc: /* SQSHLU */
10864         if (!is_u) {
10865             unallocated_encoding(s);
10866             return;
10867         }
10868         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10869         break;
10870     case 0xe: /* SQSHL, UQSHL */
10871         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10872         break;
10873     case 0x1f: /* FCVTZS/ FCVTZU */
10874         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10875         return;
10876     default:
10877         unallocated_encoding(s);
10878         return;
10879     }
10880 }
10881 
10882 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
10883                                   int size, int rn, int rd)
10884 {
10885     /* Handle 2-reg-misc ops which are widening (so each size element
10886      * in the source becomes a 2*size element in the destination.
10887      * The only instruction like this is FCVTL.
10888      */
10889     int pass;
10890 
10891     if (size == 3) {
10892         /* 32 -> 64 bit fp conversion */
10893         TCGv_i64 tcg_res[2];
10894         int srcelt = is_q ? 2 : 0;
10895 
10896         for (pass = 0; pass < 2; pass++) {
10897             TCGv_i32 tcg_op = tcg_temp_new_i32();
10898             tcg_res[pass] = tcg_temp_new_i64();
10899 
10900             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
10901             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
10902         }
10903         for (pass = 0; pass < 2; pass++) {
10904             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10905         }
10906     } else {
10907         /* 16 -> 32 bit fp conversion */
10908         int srcelt = is_q ? 4 : 0;
10909         TCGv_i32 tcg_res[4];
10910         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10911         TCGv_i32 ahp = get_ahp_flag();
10912 
10913         for (pass = 0; pass < 4; pass++) {
10914             tcg_res[pass] = tcg_temp_new_i32();
10915 
10916             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
10917             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10918                                            fpst, ahp);
10919         }
10920         for (pass = 0; pass < 4; pass++) {
10921             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10922         }
10923     }
10924 }
10925 
10926 static void handle_rev(DisasContext *s, int opcode, bool u,
10927                        bool is_q, int size, int rn, int rd)
10928 {
10929     int op = (opcode << 1) | u;
10930     int opsz = op + size;
10931     int grp_size = 3 - opsz;
10932     int dsize = is_q ? 128 : 64;
10933     int i;
10934 
10935     if (opsz >= 3) {
10936         unallocated_encoding(s);
10937         return;
10938     }
10939 
10940     if (!fp_access_check(s)) {
10941         return;
10942     }
10943 
10944     if (size == 0) {
10945         /* Special case bytes, use bswap op on each group of elements */
10946         int groups = dsize / (8 << grp_size);
10947 
10948         for (i = 0; i < groups; i++) {
10949             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
10950 
10951             read_vec_element(s, tcg_tmp, rn, i, grp_size);
10952             switch (grp_size) {
10953             case MO_16:
10954                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
10955                 break;
10956             case MO_32:
10957                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
10958                 break;
10959             case MO_64:
10960                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
10961                 break;
10962             default:
10963                 g_assert_not_reached();
10964             }
10965             write_vec_element(s, tcg_tmp, rd, i, grp_size);
10966         }
10967         clear_vec_high(s, is_q, rd);
10968     } else {
10969         int revmask = (1 << grp_size) - 1;
10970         int esize = 8 << size;
10971         int elements = dsize / esize;
10972         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10973         TCGv_i64 tcg_rd[2];
10974 
10975         for (i = 0; i < 2; i++) {
10976             tcg_rd[i] = tcg_temp_new_i64();
10977             tcg_gen_movi_i64(tcg_rd[i], 0);
10978         }
10979 
10980         for (i = 0; i < elements; i++) {
10981             int e_rev = (i & 0xf) ^ revmask;
10982             int w = (e_rev * esize) / 64;
10983             int o = (e_rev * esize) % 64;
10984 
10985             read_vec_element(s, tcg_rn, rn, i, size);
10986             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
10987         }
10988 
10989         for (i = 0; i < 2; i++) {
10990             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
10991         }
10992         clear_vec_high(s, true, rd);
10993     }
10994 }
10995 
10996 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
10997                                   bool is_q, int size, int rn, int rd)
10998 {
10999     /* Implement the pairwise operations from 2-misc:
11000      * SADDLP, UADDLP, SADALP, UADALP.
11001      * These all add pairs of elements in the input to produce a
11002      * double-width result element in the output (possibly accumulating).
11003      */
11004     bool accum = (opcode == 0x6);
11005     int maxpass = is_q ? 2 : 1;
11006     int pass;
11007     TCGv_i64 tcg_res[2];
11008 
11009     if (size == 2) {
11010         /* 32 + 32 -> 64 op */
11011         MemOp memop = size + (u ? 0 : MO_SIGN);
11012 
11013         for (pass = 0; pass < maxpass; pass++) {
11014             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11015             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11016 
11017             tcg_res[pass] = tcg_temp_new_i64();
11018 
11019             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11020             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11021             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11022             if (accum) {
11023                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11024                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11025             }
11026         }
11027     } else {
11028         for (pass = 0; pass < maxpass; pass++) {
11029             TCGv_i64 tcg_op = tcg_temp_new_i64();
11030             NeonGenOne64OpFn *genfn;
11031             static NeonGenOne64OpFn * const fns[2][2] = {
11032                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11033                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11034             };
11035 
11036             genfn = fns[size][u];
11037 
11038             tcg_res[pass] = tcg_temp_new_i64();
11039 
11040             read_vec_element(s, tcg_op, rn, pass, MO_64);
11041             genfn(tcg_res[pass], tcg_op);
11042 
11043             if (accum) {
11044                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11045                 if (size == 0) {
11046                     gen_helper_neon_addl_u16(tcg_res[pass],
11047                                              tcg_res[pass], tcg_op);
11048                 } else {
11049                     gen_helper_neon_addl_u32(tcg_res[pass],
11050                                              tcg_res[pass], tcg_op);
11051                 }
11052             }
11053         }
11054     }
11055     if (!is_q) {
11056         tcg_res[1] = tcg_constant_i64(0);
11057     }
11058     for (pass = 0; pass < 2; pass++) {
11059         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11060     }
11061 }
11062 
11063 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11064 {
11065     /* Implement SHLL and SHLL2 */
11066     int pass;
11067     int part = is_q ? 2 : 0;
11068     TCGv_i64 tcg_res[2];
11069 
11070     for (pass = 0; pass < 2; pass++) {
11071         static NeonGenWidenFn * const widenfns[3] = {
11072             gen_helper_neon_widen_u8,
11073             gen_helper_neon_widen_u16,
11074             tcg_gen_extu_i32_i64,
11075         };
11076         NeonGenWidenFn *widenfn = widenfns[size];
11077         TCGv_i32 tcg_op = tcg_temp_new_i32();
11078 
11079         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11080         tcg_res[pass] = tcg_temp_new_i64();
11081         widenfn(tcg_res[pass], tcg_op);
11082         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11083     }
11084 
11085     for (pass = 0; pass < 2; pass++) {
11086         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11087     }
11088 }
11089 
11090 /* AdvSIMD two reg misc
11091  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11092  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11093  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11094  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11095  */
11096 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11097 {
11098     int size = extract32(insn, 22, 2);
11099     int opcode = extract32(insn, 12, 5);
11100     bool u = extract32(insn, 29, 1);
11101     bool is_q = extract32(insn, 30, 1);
11102     int rn = extract32(insn, 5, 5);
11103     int rd = extract32(insn, 0, 5);
11104     bool need_fpstatus = false;
11105     int rmode = -1;
11106     TCGv_i32 tcg_rmode;
11107     TCGv_ptr tcg_fpstatus;
11108 
11109     switch (opcode) {
11110     case 0x0: /* REV64, REV32 */
11111     case 0x1: /* REV16 */
11112         handle_rev(s, opcode, u, is_q, size, rn, rd);
11113         return;
11114     case 0x5: /* CNT, NOT, RBIT */
11115         if (u && size == 0) {
11116             /* NOT */
11117             break;
11118         } else if (u && size == 1) {
11119             /* RBIT */
11120             break;
11121         } else if (!u && size == 0) {
11122             /* CNT */
11123             break;
11124         }
11125         unallocated_encoding(s);
11126         return;
11127     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11128     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11129         if (size == 3) {
11130             unallocated_encoding(s);
11131             return;
11132         }
11133         if (!fp_access_check(s)) {
11134             return;
11135         }
11136 
11137         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11138         return;
11139     case 0x4: /* CLS, CLZ */
11140         if (size == 3) {
11141             unallocated_encoding(s);
11142             return;
11143         }
11144         break;
11145     case 0x2: /* SADDLP, UADDLP */
11146     case 0x6: /* SADALP, UADALP */
11147         if (size == 3) {
11148             unallocated_encoding(s);
11149             return;
11150         }
11151         if (!fp_access_check(s)) {
11152             return;
11153         }
11154         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11155         return;
11156     case 0x13: /* SHLL, SHLL2 */
11157         if (u == 0 || size == 3) {
11158             unallocated_encoding(s);
11159             return;
11160         }
11161         if (!fp_access_check(s)) {
11162             return;
11163         }
11164         handle_shll(s, is_q, size, rn, rd);
11165         return;
11166     case 0xa: /* CMLT */
11167         if (u == 1) {
11168             unallocated_encoding(s);
11169             return;
11170         }
11171         /* fall through */
11172     case 0x8: /* CMGT, CMGE */
11173     case 0x9: /* CMEQ, CMLE */
11174     case 0xb: /* ABS, NEG */
11175         if (size == 3 && !is_q) {
11176             unallocated_encoding(s);
11177             return;
11178         }
11179         break;
11180     case 0x7: /* SQABS, SQNEG */
11181         if (size == 3 && !is_q) {
11182             unallocated_encoding(s);
11183             return;
11184         }
11185         break;
11186     case 0xc ... 0xf:
11187     case 0x16 ... 0x1f:
11188     {
11189         /* Floating point: U, size[1] and opcode indicate operation;
11190          * size[0] indicates single or double precision.
11191          */
11192         int is_double = extract32(size, 0, 1);
11193         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11194         size = is_double ? 3 : 2;
11195         switch (opcode) {
11196         case 0x2f: /* FABS */
11197         case 0x6f: /* FNEG */
11198             if (size == 3 && !is_q) {
11199                 unallocated_encoding(s);
11200                 return;
11201             }
11202             break;
11203         case 0x1d: /* SCVTF */
11204         case 0x5d: /* UCVTF */
11205         {
11206             bool is_signed = (opcode == 0x1d) ? true : false;
11207             int elements = is_double ? 2 : is_q ? 4 : 2;
11208             if (is_double && !is_q) {
11209                 unallocated_encoding(s);
11210                 return;
11211             }
11212             if (!fp_access_check(s)) {
11213                 return;
11214             }
11215             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11216             return;
11217         }
11218         case 0x2c: /* FCMGT (zero) */
11219         case 0x2d: /* FCMEQ (zero) */
11220         case 0x2e: /* FCMLT (zero) */
11221         case 0x6c: /* FCMGE (zero) */
11222         case 0x6d: /* FCMLE (zero) */
11223             if (size == 3 && !is_q) {
11224                 unallocated_encoding(s);
11225                 return;
11226             }
11227             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11228             return;
11229         case 0x7f: /* FSQRT */
11230             if (size == 3 && !is_q) {
11231                 unallocated_encoding(s);
11232                 return;
11233             }
11234             break;
11235         case 0x1a: /* FCVTNS */
11236         case 0x1b: /* FCVTMS */
11237         case 0x3a: /* FCVTPS */
11238         case 0x3b: /* FCVTZS */
11239         case 0x5a: /* FCVTNU */
11240         case 0x5b: /* FCVTMU */
11241         case 0x7a: /* FCVTPU */
11242         case 0x7b: /* FCVTZU */
11243             need_fpstatus = true;
11244             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11245             if (size == 3 && !is_q) {
11246                 unallocated_encoding(s);
11247                 return;
11248             }
11249             break;
11250         case 0x5c: /* FCVTAU */
11251         case 0x1c: /* FCVTAS */
11252             need_fpstatus = true;
11253             rmode = FPROUNDING_TIEAWAY;
11254             if (size == 3 && !is_q) {
11255                 unallocated_encoding(s);
11256                 return;
11257             }
11258             break;
11259         case 0x3c: /* URECPE */
11260             if (size == 3) {
11261                 unallocated_encoding(s);
11262                 return;
11263             }
11264             /* fall through */
11265         case 0x3d: /* FRECPE */
11266         case 0x7d: /* FRSQRTE */
11267             if (size == 3 && !is_q) {
11268                 unallocated_encoding(s);
11269                 return;
11270             }
11271             if (!fp_access_check(s)) {
11272                 return;
11273             }
11274             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11275             return;
11276         case 0x56: /* FCVTXN, FCVTXN2 */
11277             if (size == 2) {
11278                 unallocated_encoding(s);
11279                 return;
11280             }
11281             /* fall through */
11282         case 0x16: /* FCVTN, FCVTN2 */
11283             /* handle_2misc_narrow does a 2*size -> size operation, but these
11284              * instructions encode the source size rather than dest size.
11285              */
11286             if (!fp_access_check(s)) {
11287                 return;
11288             }
11289             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11290             return;
11291         case 0x36: /* BFCVTN, BFCVTN2 */
11292             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11293                 unallocated_encoding(s);
11294                 return;
11295             }
11296             if (!fp_access_check(s)) {
11297                 return;
11298             }
11299             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11300             return;
11301         case 0x17: /* FCVTL, FCVTL2 */
11302             if (!fp_access_check(s)) {
11303                 return;
11304             }
11305             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11306             return;
11307         case 0x18: /* FRINTN */
11308         case 0x19: /* FRINTM */
11309         case 0x38: /* FRINTP */
11310         case 0x39: /* FRINTZ */
11311             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11312             /* fall through */
11313         case 0x59: /* FRINTX */
11314         case 0x79: /* FRINTI */
11315             need_fpstatus = true;
11316             if (size == 3 && !is_q) {
11317                 unallocated_encoding(s);
11318                 return;
11319             }
11320             break;
11321         case 0x58: /* FRINTA */
11322             rmode = FPROUNDING_TIEAWAY;
11323             need_fpstatus = true;
11324             if (size == 3 && !is_q) {
11325                 unallocated_encoding(s);
11326                 return;
11327             }
11328             break;
11329         case 0x7c: /* URSQRTE */
11330             if (size == 3) {
11331                 unallocated_encoding(s);
11332                 return;
11333             }
11334             break;
11335         case 0x1e: /* FRINT32Z */
11336         case 0x1f: /* FRINT64Z */
11337             rmode = FPROUNDING_ZERO;
11338             /* fall through */
11339         case 0x5e: /* FRINT32X */
11340         case 0x5f: /* FRINT64X */
11341             need_fpstatus = true;
11342             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11343                 unallocated_encoding(s);
11344                 return;
11345             }
11346             break;
11347         default:
11348             unallocated_encoding(s);
11349             return;
11350         }
11351         break;
11352     }
11353     default:
11354     case 0x3: /* SUQADD, USQADD */
11355         unallocated_encoding(s);
11356         return;
11357     }
11358 
11359     if (!fp_access_check(s)) {
11360         return;
11361     }
11362 
11363     if (need_fpstatus || rmode >= 0) {
11364         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11365     } else {
11366         tcg_fpstatus = NULL;
11367     }
11368     if (rmode >= 0) {
11369         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11370     } else {
11371         tcg_rmode = NULL;
11372     }
11373 
11374     switch (opcode) {
11375     case 0x5:
11376         if (u && size == 0) { /* NOT */
11377             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11378             return;
11379         }
11380         break;
11381     case 0x8: /* CMGT, CMGE */
11382         if (u) {
11383             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11384         } else {
11385             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11386         }
11387         return;
11388     case 0x9: /* CMEQ, CMLE */
11389         if (u) {
11390             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11391         } else {
11392             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11393         }
11394         return;
11395     case 0xa: /* CMLT */
11396         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11397         return;
11398     case 0xb:
11399         if (u) { /* ABS, NEG */
11400             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11401         } else {
11402             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11403         }
11404         return;
11405     }
11406 
11407     if (size == 3) {
11408         /* All 64-bit element operations can be shared with scalar 2misc */
11409         int pass;
11410 
11411         /* Coverity claims (size == 3 && !is_q) has been eliminated
11412          * from all paths leading to here.
11413          */
11414         tcg_debug_assert(is_q);
11415         for (pass = 0; pass < 2; pass++) {
11416             TCGv_i64 tcg_op = tcg_temp_new_i64();
11417             TCGv_i64 tcg_res = tcg_temp_new_i64();
11418 
11419             read_vec_element(s, tcg_op, rn, pass, MO_64);
11420 
11421             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11422                             tcg_rmode, tcg_fpstatus);
11423 
11424             write_vec_element(s, tcg_res, rd, pass, MO_64);
11425         }
11426     } else {
11427         int pass;
11428 
11429         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11430             TCGv_i32 tcg_op = tcg_temp_new_i32();
11431             TCGv_i32 tcg_res = tcg_temp_new_i32();
11432 
11433             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11434 
11435             if (size == 2) {
11436                 /* Special cases for 32 bit elements */
11437                 switch (opcode) {
11438                 case 0x4: /* CLS */
11439                     if (u) {
11440                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11441                     } else {
11442                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11443                     }
11444                     break;
11445                 case 0x7: /* SQABS, SQNEG */
11446                     if (u) {
11447                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11448                     } else {
11449                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11450                     }
11451                     break;
11452                 case 0x2f: /* FABS */
11453                     gen_vfp_abss(tcg_res, tcg_op);
11454                     break;
11455                 case 0x6f: /* FNEG */
11456                     gen_vfp_negs(tcg_res, tcg_op);
11457                     break;
11458                 case 0x7f: /* FSQRT */
11459                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11460                     break;
11461                 case 0x1a: /* FCVTNS */
11462                 case 0x1b: /* FCVTMS */
11463                 case 0x1c: /* FCVTAS */
11464                 case 0x3a: /* FCVTPS */
11465                 case 0x3b: /* FCVTZS */
11466                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11467                                          tcg_constant_i32(0), tcg_fpstatus);
11468                     break;
11469                 case 0x5a: /* FCVTNU */
11470                 case 0x5b: /* FCVTMU */
11471                 case 0x5c: /* FCVTAU */
11472                 case 0x7a: /* FCVTPU */
11473                 case 0x7b: /* FCVTZU */
11474                     gen_helper_vfp_touls(tcg_res, tcg_op,
11475                                          tcg_constant_i32(0), tcg_fpstatus);
11476                     break;
11477                 case 0x18: /* FRINTN */
11478                 case 0x19: /* FRINTM */
11479                 case 0x38: /* FRINTP */
11480                 case 0x39: /* FRINTZ */
11481                 case 0x58: /* FRINTA */
11482                 case 0x79: /* FRINTI */
11483                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11484                     break;
11485                 case 0x59: /* FRINTX */
11486                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11487                     break;
11488                 case 0x7c: /* URSQRTE */
11489                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11490                     break;
11491                 case 0x1e: /* FRINT32Z */
11492                 case 0x5e: /* FRINT32X */
11493                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11494                     break;
11495                 case 0x1f: /* FRINT64Z */
11496                 case 0x5f: /* FRINT64X */
11497                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11498                     break;
11499                 default:
11500                     g_assert_not_reached();
11501                 }
11502             } else {
11503                 /* Use helpers for 8 and 16 bit elements */
11504                 switch (opcode) {
11505                 case 0x5: /* CNT, RBIT */
11506                     /* For these two insns size is part of the opcode specifier
11507                      * (handled earlier); they always operate on byte elements.
11508                      */
11509                     if (u) {
11510                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11511                     } else {
11512                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11513                     }
11514                     break;
11515                 case 0x7: /* SQABS, SQNEG */
11516                 {
11517                     NeonGenOneOpEnvFn *genfn;
11518                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11519                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11520                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11521                     };
11522                     genfn = fns[size][u];
11523                     genfn(tcg_res, tcg_env, tcg_op);
11524                     break;
11525                 }
11526                 case 0x4: /* CLS, CLZ */
11527                     if (u) {
11528                         if (size == 0) {
11529                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11530                         } else {
11531                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11532                         }
11533                     } else {
11534                         if (size == 0) {
11535                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11536                         } else {
11537                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11538                         }
11539                     }
11540                     break;
11541                 default:
11542                     g_assert_not_reached();
11543                 }
11544             }
11545 
11546             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11547         }
11548     }
11549     clear_vec_high(s, is_q, rd);
11550 
11551     if (tcg_rmode) {
11552         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11553     }
11554 }
11555 
11556 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11557  *
11558  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11559  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11560  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11561  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11562  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11563  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11564  *
11565  * This actually covers two groups where scalar access is governed by
11566  * bit 28. A bunch of the instructions (float to integral) only exist
11567  * in the vector form and are un-allocated for the scalar decode. Also
11568  * in the scalar decode Q is always 1.
11569  */
11570 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11571 {
11572     int fpop, opcode, a, u;
11573     int rn, rd;
11574     bool is_q;
11575     bool is_scalar;
11576     bool only_in_vector = false;
11577 
11578     int pass;
11579     TCGv_i32 tcg_rmode = NULL;
11580     TCGv_ptr tcg_fpstatus = NULL;
11581     bool need_fpst = true;
11582     int rmode = -1;
11583 
11584     if (!dc_isar_feature(aa64_fp16, s)) {
11585         unallocated_encoding(s);
11586         return;
11587     }
11588 
11589     rd = extract32(insn, 0, 5);
11590     rn = extract32(insn, 5, 5);
11591 
11592     a = extract32(insn, 23, 1);
11593     u = extract32(insn, 29, 1);
11594     is_scalar = extract32(insn, 28, 1);
11595     is_q = extract32(insn, 30, 1);
11596 
11597     opcode = extract32(insn, 12, 5);
11598     fpop = deposit32(opcode, 5, 1, a);
11599     fpop = deposit32(fpop, 6, 1, u);
11600 
11601     switch (fpop) {
11602     case 0x1d: /* SCVTF */
11603     case 0x5d: /* UCVTF */
11604     {
11605         int elements;
11606 
11607         if (is_scalar) {
11608             elements = 1;
11609         } else {
11610             elements = (is_q ? 8 : 4);
11611         }
11612 
11613         if (!fp_access_check(s)) {
11614             return;
11615         }
11616         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11617         return;
11618     }
11619     break;
11620     case 0x2c: /* FCMGT (zero) */
11621     case 0x2d: /* FCMEQ (zero) */
11622     case 0x2e: /* FCMLT (zero) */
11623     case 0x6c: /* FCMGE (zero) */
11624     case 0x6d: /* FCMLE (zero) */
11625         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11626         return;
11627     case 0x3d: /* FRECPE */
11628     case 0x3f: /* FRECPX */
11629         break;
11630     case 0x18: /* FRINTN */
11631         only_in_vector = true;
11632         rmode = FPROUNDING_TIEEVEN;
11633         break;
11634     case 0x19: /* FRINTM */
11635         only_in_vector = true;
11636         rmode = FPROUNDING_NEGINF;
11637         break;
11638     case 0x38: /* FRINTP */
11639         only_in_vector = true;
11640         rmode = FPROUNDING_POSINF;
11641         break;
11642     case 0x39: /* FRINTZ */
11643         only_in_vector = true;
11644         rmode = FPROUNDING_ZERO;
11645         break;
11646     case 0x58: /* FRINTA */
11647         only_in_vector = true;
11648         rmode = FPROUNDING_TIEAWAY;
11649         break;
11650     case 0x59: /* FRINTX */
11651     case 0x79: /* FRINTI */
11652         only_in_vector = true;
11653         /* current rounding mode */
11654         break;
11655     case 0x1a: /* FCVTNS */
11656         rmode = FPROUNDING_TIEEVEN;
11657         break;
11658     case 0x1b: /* FCVTMS */
11659         rmode = FPROUNDING_NEGINF;
11660         break;
11661     case 0x1c: /* FCVTAS */
11662         rmode = FPROUNDING_TIEAWAY;
11663         break;
11664     case 0x3a: /* FCVTPS */
11665         rmode = FPROUNDING_POSINF;
11666         break;
11667     case 0x3b: /* FCVTZS */
11668         rmode = FPROUNDING_ZERO;
11669         break;
11670     case 0x5a: /* FCVTNU */
11671         rmode = FPROUNDING_TIEEVEN;
11672         break;
11673     case 0x5b: /* FCVTMU */
11674         rmode = FPROUNDING_NEGINF;
11675         break;
11676     case 0x5c: /* FCVTAU */
11677         rmode = FPROUNDING_TIEAWAY;
11678         break;
11679     case 0x7a: /* FCVTPU */
11680         rmode = FPROUNDING_POSINF;
11681         break;
11682     case 0x7b: /* FCVTZU */
11683         rmode = FPROUNDING_ZERO;
11684         break;
11685     case 0x2f: /* FABS */
11686     case 0x6f: /* FNEG */
11687         need_fpst = false;
11688         break;
11689     case 0x7d: /* FRSQRTE */
11690     case 0x7f: /* FSQRT (vector) */
11691         break;
11692     default:
11693         unallocated_encoding(s);
11694         return;
11695     }
11696 
11697 
11698     /* Check additional constraints for the scalar encoding */
11699     if (is_scalar) {
11700         if (!is_q) {
11701             unallocated_encoding(s);
11702             return;
11703         }
11704         /* FRINTxx is only in the vector form */
11705         if (only_in_vector) {
11706             unallocated_encoding(s);
11707             return;
11708         }
11709     }
11710 
11711     if (!fp_access_check(s)) {
11712         return;
11713     }
11714 
11715     if (rmode >= 0 || need_fpst) {
11716         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11717     }
11718 
11719     if (rmode >= 0) {
11720         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11721     }
11722 
11723     if (is_scalar) {
11724         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11725         TCGv_i32 tcg_res = tcg_temp_new_i32();
11726 
11727         switch (fpop) {
11728         case 0x1a: /* FCVTNS */
11729         case 0x1b: /* FCVTMS */
11730         case 0x1c: /* FCVTAS */
11731         case 0x3a: /* FCVTPS */
11732         case 0x3b: /* FCVTZS */
11733             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11734             break;
11735         case 0x3d: /* FRECPE */
11736             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11737             break;
11738         case 0x3f: /* FRECPX */
11739             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11740             break;
11741         case 0x5a: /* FCVTNU */
11742         case 0x5b: /* FCVTMU */
11743         case 0x5c: /* FCVTAU */
11744         case 0x7a: /* FCVTPU */
11745         case 0x7b: /* FCVTZU */
11746             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11747             break;
11748         case 0x6f: /* FNEG */
11749             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11750             break;
11751         case 0x7d: /* FRSQRTE */
11752             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11753             break;
11754         default:
11755             g_assert_not_reached();
11756         }
11757 
11758         /* limit any sign extension going on */
11759         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11760         write_fp_sreg(s, rd, tcg_res);
11761     } else {
11762         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11763             TCGv_i32 tcg_op = tcg_temp_new_i32();
11764             TCGv_i32 tcg_res = tcg_temp_new_i32();
11765 
11766             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11767 
11768             switch (fpop) {
11769             case 0x1a: /* FCVTNS */
11770             case 0x1b: /* FCVTMS */
11771             case 0x1c: /* FCVTAS */
11772             case 0x3a: /* FCVTPS */
11773             case 0x3b: /* FCVTZS */
11774                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11775                 break;
11776             case 0x3d: /* FRECPE */
11777                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11778                 break;
11779             case 0x5a: /* FCVTNU */
11780             case 0x5b: /* FCVTMU */
11781             case 0x5c: /* FCVTAU */
11782             case 0x7a: /* FCVTPU */
11783             case 0x7b: /* FCVTZU */
11784                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11785                 break;
11786             case 0x18: /* FRINTN */
11787             case 0x19: /* FRINTM */
11788             case 0x38: /* FRINTP */
11789             case 0x39: /* FRINTZ */
11790             case 0x58: /* FRINTA */
11791             case 0x79: /* FRINTI */
11792                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11793                 break;
11794             case 0x59: /* FRINTX */
11795                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11796                 break;
11797             case 0x2f: /* FABS */
11798                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11799                 break;
11800             case 0x6f: /* FNEG */
11801                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11802                 break;
11803             case 0x7d: /* FRSQRTE */
11804                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11805                 break;
11806             case 0x7f: /* FSQRT */
11807                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11808                 break;
11809             default:
11810                 g_assert_not_reached();
11811             }
11812 
11813             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11814         }
11815 
11816         clear_vec_high(s, is_q, rd);
11817     }
11818 
11819     if (tcg_rmode) {
11820         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11821     }
11822 }
11823 
11824 /* C3.6 Data processing - SIMD, inc Crypto
11825  *
11826  * As the decode gets a little complex we are using a table based
11827  * approach for this part of the decode.
11828  */
11829 static const AArch64DecodeTable data_proc_simd[] = {
11830     /* pattern  ,  mask     ,  fn                        */
11831     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
11832     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
11833     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
11834     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
11835     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
11836     { 0x0e000000, 0xbf208c00, disas_simd_tb },
11837     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
11838     { 0x2e000000, 0xbf208400, disas_simd_ext },
11839     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
11840     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
11841     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
11842     { 0x00000000, 0x00000000, NULL }
11843 };
11844 
11845 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
11846 {
11847     /* Note that this is called with all non-FP cases from
11848      * table C3-6 so it must UNDEF for entries not specifically
11849      * allocated to instructions in that table.
11850      */
11851     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
11852     if (fn) {
11853         fn(s, insn);
11854     } else {
11855         unallocated_encoding(s);
11856     }
11857 }
11858 
11859 /* C3.6 Data processing - SIMD and floating point */
11860 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
11861 {
11862     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
11863         disas_data_proc_fp(s, insn);
11864     } else {
11865         /* SIMD, including crypto */
11866         disas_data_proc_simd(s, insn);
11867     }
11868 }
11869 
11870 static bool trans_OK(DisasContext *s, arg_OK *a)
11871 {
11872     return true;
11873 }
11874 
11875 static bool trans_FAIL(DisasContext *s, arg_OK *a)
11876 {
11877     s->is_nonstreaming = true;
11878     return true;
11879 }
11880 
11881 /**
11882  * is_guarded_page:
11883  * @env: The cpu environment
11884  * @s: The DisasContext
11885  *
11886  * Return true if the page is guarded.
11887  */
11888 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
11889 {
11890     uint64_t addr = s->base.pc_first;
11891 #ifdef CONFIG_USER_ONLY
11892     return page_get_flags(addr) & PAGE_BTI;
11893 #else
11894     CPUTLBEntryFull *full;
11895     void *host;
11896     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
11897     int flags;
11898 
11899     /*
11900      * We test this immediately after reading an insn, which means
11901      * that the TLB entry must be present and valid, and thus this
11902      * access will never raise an exception.
11903      */
11904     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
11905                               false, &host, &full, 0);
11906     assert(!(flags & TLB_INVALID_MASK));
11907 
11908     return full->extra.arm.guarded;
11909 #endif
11910 }
11911 
11912 /**
11913  * btype_destination_ok:
11914  * @insn: The instruction at the branch destination
11915  * @bt: SCTLR_ELx.BT
11916  * @btype: PSTATE.BTYPE, and is non-zero
11917  *
11918  * On a guarded page, there are a limited number of insns
11919  * that may be present at the branch target:
11920  *   - branch target identifiers,
11921  *   - paciasp, pacibsp,
11922  *   - BRK insn
11923  *   - HLT insn
11924  * Anything else causes a Branch Target Exception.
11925  *
11926  * Return true if the branch is compatible, false to raise BTITRAP.
11927  */
11928 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
11929 {
11930     if ((insn & 0xfffff01fu) == 0xd503201fu) {
11931         /* HINT space */
11932         switch (extract32(insn, 5, 7)) {
11933         case 0b011001: /* PACIASP */
11934         case 0b011011: /* PACIBSP */
11935             /*
11936              * If SCTLR_ELx.BT, then PACI*SP are not compatible
11937              * with btype == 3.  Otherwise all btype are ok.
11938              */
11939             return !bt || btype != 3;
11940         case 0b100000: /* BTI */
11941             /* Not compatible with any btype.  */
11942             return false;
11943         case 0b100010: /* BTI c */
11944             /* Not compatible with btype == 3 */
11945             return btype != 3;
11946         case 0b100100: /* BTI j */
11947             /* Not compatible with btype == 2 */
11948             return btype != 2;
11949         case 0b100110: /* BTI jc */
11950             /* Compatible with any btype.  */
11951             return true;
11952         }
11953     } else {
11954         switch (insn & 0xffe0001fu) {
11955         case 0xd4200000u: /* BRK */
11956         case 0xd4400000u: /* HLT */
11957             /* Give priority to the breakpoint exception.  */
11958             return true;
11959         }
11960     }
11961     return false;
11962 }
11963 
11964 /* C3.1 A64 instruction index by encoding */
11965 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
11966 {
11967     switch (extract32(insn, 25, 4)) {
11968     case 0x5:
11969     case 0xd:      /* Data processing - register */
11970         disas_data_proc_reg(s, insn);
11971         break;
11972     case 0x7:
11973     case 0xf:      /* Data processing - SIMD and floating point */
11974         disas_data_proc_simd_fp(s, insn);
11975         break;
11976     default:
11977         unallocated_encoding(s);
11978         break;
11979     }
11980 }
11981 
11982 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
11983                                           CPUState *cpu)
11984 {
11985     DisasContext *dc = container_of(dcbase, DisasContext, base);
11986     CPUARMState *env = cpu_env(cpu);
11987     ARMCPU *arm_cpu = env_archcpu(env);
11988     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
11989     int bound, core_mmu_idx;
11990 
11991     dc->isar = &arm_cpu->isar;
11992     dc->condjmp = 0;
11993     dc->pc_save = dc->base.pc_first;
11994     dc->aarch64 = true;
11995     dc->thumb = false;
11996     dc->sctlr_b = 0;
11997     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
11998     dc->condexec_mask = 0;
11999     dc->condexec_cond = 0;
12000     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12001     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12002     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12003     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12004     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12005     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12006 #if !defined(CONFIG_USER_ONLY)
12007     dc->user = (dc->current_el == 0);
12008 #endif
12009     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12010     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12011     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12012     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12013     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12014     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12015     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12016     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12017     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12018     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12019     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12020     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12021     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12022     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12023     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12024     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12025     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12026     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12027     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12028     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12029     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12030     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12031     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12032     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12033     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12034     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12035     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12036     dc->vec_len = 0;
12037     dc->vec_stride = 0;
12038     dc->cp_regs = arm_cpu->cp_regs;
12039     dc->features = env->features;
12040     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12041     dc->gm_blocksize = arm_cpu->gm_blocksize;
12042 
12043 #ifdef CONFIG_USER_ONLY
12044     /* In sve_probe_page, we assume TBI is enabled. */
12045     tcg_debug_assert(dc->tbid & 1);
12046 #endif
12047 
12048     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12049 
12050     /* Single step state. The code-generation logic here is:
12051      *  SS_ACTIVE == 0:
12052      *   generate code with no special handling for single-stepping (except
12053      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12054      *   this happens anyway because those changes are all system register or
12055      *   PSTATE writes).
12056      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12057      *   emit code for one insn
12058      *   emit code to clear PSTATE.SS
12059      *   emit code to generate software step exception for completed step
12060      *   end TB (as usual for having generated an exception)
12061      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12062      *   emit code to generate a software step exception
12063      *   end the TB
12064      */
12065     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12066     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12067     dc->is_ldex = false;
12068 
12069     /* Bound the number of insns to execute to those left on the page.  */
12070     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12071 
12072     /* If architectural single step active, limit to 1.  */
12073     if (dc->ss_active) {
12074         bound = 1;
12075     }
12076     dc->base.max_insns = MIN(dc->base.max_insns, bound);
12077 }
12078 
12079 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12080 {
12081 }
12082 
12083 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12084 {
12085     DisasContext *dc = container_of(dcbase, DisasContext, base);
12086     target_ulong pc_arg = dc->base.pc_next;
12087 
12088     if (tb_cflags(dcbase->tb) & CF_PCREL) {
12089         pc_arg &= ~TARGET_PAGE_MASK;
12090     }
12091     tcg_gen_insn_start(pc_arg, 0, 0);
12092     dc->insn_start_updated = false;
12093 }
12094 
12095 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12096 {
12097     DisasContext *s = container_of(dcbase, DisasContext, base);
12098     CPUARMState *env = cpu_env(cpu);
12099     uint64_t pc = s->base.pc_next;
12100     uint32_t insn;
12101 
12102     /* Singlestep exceptions have the highest priority. */
12103     if (s->ss_active && !s->pstate_ss) {
12104         /* Singlestep state is Active-pending.
12105          * If we're in this state at the start of a TB then either
12106          *  a) we just took an exception to an EL which is being debugged
12107          *     and this is the first insn in the exception handler
12108          *  b) debug exceptions were masked and we just unmasked them
12109          *     without changing EL (eg by clearing PSTATE.D)
12110          * In either case we're going to take a swstep exception in the
12111          * "did not step an insn" case, and so the syndrome ISV and EX
12112          * bits should be zero.
12113          */
12114         assert(s->base.num_insns == 1);
12115         gen_swstep_exception(s, 0, 0);
12116         s->base.is_jmp = DISAS_NORETURN;
12117         s->base.pc_next = pc + 4;
12118         return;
12119     }
12120 
12121     if (pc & 3) {
12122         /*
12123          * PC alignment fault.  This has priority over the instruction abort
12124          * that we would receive from a translation fault via arm_ldl_code.
12125          * This should only be possible after an indirect branch, at the
12126          * start of the TB.
12127          */
12128         assert(s->base.num_insns == 1);
12129         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12130         s->base.is_jmp = DISAS_NORETURN;
12131         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12132         return;
12133     }
12134 
12135     s->pc_curr = pc;
12136     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12137     s->insn = insn;
12138     s->base.pc_next = pc + 4;
12139 
12140     s->fp_access_checked = false;
12141     s->sve_access_checked = false;
12142 
12143     if (s->pstate_il) {
12144         /*
12145          * Illegal execution state. This has priority over BTI
12146          * exceptions, but comes after instruction abort exceptions.
12147          */
12148         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12149         return;
12150     }
12151 
12152     if (dc_isar_feature(aa64_bti, s)) {
12153         if (s->base.num_insns == 1) {
12154             /*
12155              * At the first insn of the TB, compute s->guarded_page.
12156              * We delayed computing this until successfully reading
12157              * the first insn of the TB, above.  This (mostly) ensures
12158              * that the softmmu tlb entry has been populated, and the
12159              * page table GP bit is available.
12160              *
12161              * Note that we need to compute this even if btype == 0,
12162              * because this value is used for BR instructions later
12163              * where ENV is not available.
12164              */
12165             s->guarded_page = is_guarded_page(env, s);
12166 
12167             /* First insn can have btype set to non-zero.  */
12168             tcg_debug_assert(s->btype >= 0);
12169 
12170             /*
12171              * Note that the Branch Target Exception has fairly high
12172              * priority -- below debugging exceptions but above most
12173              * everything else.  This allows us to handle this now
12174              * instead of waiting until the insn is otherwise decoded.
12175              */
12176             if (s->btype != 0
12177                 && s->guarded_page
12178                 && !btype_destination_ok(insn, s->bt, s->btype)) {
12179                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12180                 return;
12181             }
12182         } else {
12183             /* Not the first insn: btype must be 0.  */
12184             tcg_debug_assert(s->btype == 0);
12185         }
12186     }
12187 
12188     s->is_nonstreaming = false;
12189     if (s->sme_trap_nonstreaming) {
12190         disas_sme_fa64(s, insn);
12191     }
12192 
12193     if (!disas_a64(s, insn) &&
12194         !disas_sme(s, insn) &&
12195         !disas_sve(s, insn)) {
12196         disas_a64_legacy(s, insn);
12197     }
12198 
12199     /*
12200      * After execution of most insns, btype is reset to 0.
12201      * Note that we set btype == -1 when the insn sets btype.
12202      */
12203     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12204         reset_btype(s);
12205     }
12206 }
12207 
12208 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12209 {
12210     DisasContext *dc = container_of(dcbase, DisasContext, base);
12211 
12212     if (unlikely(dc->ss_active)) {
12213         /* Note that this means single stepping WFI doesn't halt the CPU.
12214          * For conditional branch insns this is harmless unreachable code as
12215          * gen_goto_tb() has already handled emitting the debug exception
12216          * (and thus a tb-jump is not possible when singlestepping).
12217          */
12218         switch (dc->base.is_jmp) {
12219         default:
12220             gen_a64_update_pc(dc, 4);
12221             /* fall through */
12222         case DISAS_EXIT:
12223         case DISAS_JUMP:
12224             gen_step_complete_exception(dc);
12225             break;
12226         case DISAS_NORETURN:
12227             break;
12228         }
12229     } else {
12230         switch (dc->base.is_jmp) {
12231         case DISAS_NEXT:
12232         case DISAS_TOO_MANY:
12233             gen_goto_tb(dc, 1, 4);
12234             break;
12235         default:
12236         case DISAS_UPDATE_EXIT:
12237             gen_a64_update_pc(dc, 4);
12238             /* fall through */
12239         case DISAS_EXIT:
12240             tcg_gen_exit_tb(NULL, 0);
12241             break;
12242         case DISAS_UPDATE_NOCHAIN:
12243             gen_a64_update_pc(dc, 4);
12244             /* fall through */
12245         case DISAS_JUMP:
12246             tcg_gen_lookup_and_goto_ptr();
12247             break;
12248         case DISAS_NORETURN:
12249         case DISAS_SWI:
12250             break;
12251         case DISAS_WFE:
12252             gen_a64_update_pc(dc, 4);
12253             gen_helper_wfe(tcg_env);
12254             break;
12255         case DISAS_YIELD:
12256             gen_a64_update_pc(dc, 4);
12257             gen_helper_yield(tcg_env);
12258             break;
12259         case DISAS_WFI:
12260             /*
12261              * This is a special case because we don't want to just halt
12262              * the CPU if trying to debug across a WFI.
12263              */
12264             gen_a64_update_pc(dc, 4);
12265             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12266             /*
12267              * The helper doesn't necessarily throw an exception, but we
12268              * must go back to the main loop to check for interrupts anyway.
12269              */
12270             tcg_gen_exit_tb(NULL, 0);
12271             break;
12272         }
12273     }
12274 }
12275 
12276 const TranslatorOps aarch64_translator_ops = {
12277     .init_disas_context = aarch64_tr_init_disas_context,
12278     .tb_start           = aarch64_tr_tb_start,
12279     .insn_start         = aarch64_tr_insn_start,
12280     .translate_insn     = aarch64_tr_translate_insn,
12281     .tb_stop            = aarch64_tr_tb_stop,
12282 };
12283