xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 2d558efb)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1356 {
1357     if (!a->q && a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 /*
1367  * This utility function is for doing register extension with an
1368  * optional shift. You will likely want to pass a temporary for the
1369  * destination register. See DecodeRegExtend() in the ARM ARM.
1370  */
1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1372                               int option, unsigned int shift)
1373 {
1374     int extsize = extract32(option, 0, 2);
1375     bool is_signed = extract32(option, 2, 1);
1376 
1377     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1378     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1379 }
1380 
1381 static inline void gen_check_sp_alignment(DisasContext *s)
1382 {
1383     /* The AArch64 architecture mandates that (if enabled via PSTATE
1384      * or SCTLR bits) there is a check that SP is 16-aligned on every
1385      * SP-relative load or store (with an exception generated if it is not).
1386      * In line with general QEMU practice regarding misaligned accesses,
1387      * we omit these checks for the sake of guest program performance.
1388      * This function is provided as a hook so we can more easily add these
1389      * checks in future (possibly as a "favour catching guest program bugs
1390      * over speed" user selectable option).
1391      */
1392 }
1393 
1394 /*
1395  * This provides a simple table based table lookup decoder. It is
1396  * intended to be used when the relevant bits for decode are too
1397  * awkwardly placed and switch/if based logic would be confusing and
1398  * deeply nested. Since it's a linear search through the table, tables
1399  * should be kept small.
1400  *
1401  * It returns the first handler where insn & mask == pattern, or
1402  * NULL if there is no match.
1403  * The table is terminated by an empty mask (i.e. 0)
1404  */
1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1406                                                uint32_t insn)
1407 {
1408     const AArch64DecodeTable *tptr = table;
1409 
1410     while (tptr->mask) {
1411         if ((insn & tptr->mask) == tptr->pattern) {
1412             return tptr->disas_fn;
1413         }
1414         tptr++;
1415     }
1416     return NULL;
1417 }
1418 
1419 /*
1420  * The instruction disassembly implemented here matches
1421  * the instruction encoding classifications in chapter C4
1422  * of the ARM Architecture Reference Manual (DDI0487B_a);
1423  * classification names and decode diagrams here should generally
1424  * match up with those in the manual.
1425  */
1426 
1427 static bool trans_B(DisasContext *s, arg_i *a)
1428 {
1429     reset_btype(s);
1430     gen_goto_tb(s, 0, a->imm);
1431     return true;
1432 }
1433 
1434 static bool trans_BL(DisasContext *s, arg_i *a)
1435 {
1436     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1437     reset_btype(s);
1438     gen_goto_tb(s, 0, a->imm);
1439     return true;
1440 }
1441 
1442 
1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1444 {
1445     DisasLabel match;
1446     TCGv_i64 tcg_cmp;
1447 
1448     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1449     reset_btype(s);
1450 
1451     match = gen_disas_label(s);
1452     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1453                         tcg_cmp, 0, match.label);
1454     gen_goto_tb(s, 0, 4);
1455     set_disas_label(s, match);
1456     gen_goto_tb(s, 1, a->imm);
1457     return true;
1458 }
1459 
1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1461 {
1462     DisasLabel match;
1463     TCGv_i64 tcg_cmp;
1464 
1465     tcg_cmp = tcg_temp_new_i64();
1466     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1467 
1468     reset_btype(s);
1469 
1470     match = gen_disas_label(s);
1471     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1472                         tcg_cmp, 0, match.label);
1473     gen_goto_tb(s, 0, 4);
1474     set_disas_label(s, match);
1475     gen_goto_tb(s, 1, a->imm);
1476     return true;
1477 }
1478 
1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1480 {
1481     /* BC.cond is only present with FEAT_HBC */
1482     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1483         return false;
1484     }
1485     reset_btype(s);
1486     if (a->cond < 0x0e) {
1487         /* genuinely conditional branches */
1488         DisasLabel match = gen_disas_label(s);
1489         arm_gen_test_cc(a->cond, match.label);
1490         gen_goto_tb(s, 0, 4);
1491         set_disas_label(s, match);
1492         gen_goto_tb(s, 1, a->imm);
1493     } else {
1494         /* 0xe and 0xf are both "always" conditions */
1495         gen_goto_tb(s, 0, a->imm);
1496     }
1497     return true;
1498 }
1499 
1500 static void set_btype_for_br(DisasContext *s, int rn)
1501 {
1502     if (dc_isar_feature(aa64_bti, s)) {
1503         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1504         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1505     }
1506 }
1507 
1508 static void set_btype_for_blr(DisasContext *s)
1509 {
1510     if (dc_isar_feature(aa64_bti, s)) {
1511         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1512         set_btype(s, 2);
1513     }
1514 }
1515 
1516 static bool trans_BR(DisasContext *s, arg_r *a)
1517 {
1518     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1519     set_btype_for_br(s, a->rn);
1520     s->base.is_jmp = DISAS_JUMP;
1521     return true;
1522 }
1523 
1524 static bool trans_BLR(DisasContext *s, arg_r *a)
1525 {
1526     TCGv_i64 dst = cpu_reg(s, a->rn);
1527     TCGv_i64 lr = cpu_reg(s, 30);
1528     if (dst == lr) {
1529         TCGv_i64 tmp = tcg_temp_new_i64();
1530         tcg_gen_mov_i64(tmp, dst);
1531         dst = tmp;
1532     }
1533     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1534     gen_a64_set_pc(s, dst);
1535     set_btype_for_blr(s);
1536     s->base.is_jmp = DISAS_JUMP;
1537     return true;
1538 }
1539 
1540 static bool trans_RET(DisasContext *s, arg_r *a)
1541 {
1542     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1543     s->base.is_jmp = DISAS_JUMP;
1544     return true;
1545 }
1546 
1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1548                                    TCGv_i64 modifier, bool use_key_a)
1549 {
1550     TCGv_i64 truedst;
1551     /*
1552      * Return the branch target for a BRAA/RETA/etc, which is either
1553      * just the destination dst, or that value with the pauth check
1554      * done and the code removed from the high bits.
1555      */
1556     if (!s->pauth_active) {
1557         return dst;
1558     }
1559 
1560     truedst = tcg_temp_new_i64();
1561     if (use_key_a) {
1562         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1563     } else {
1564         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1565     }
1566     return truedst;
1567 }
1568 
1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1570 {
1571     TCGv_i64 dst;
1572 
1573     if (!dc_isar_feature(aa64_pauth, s)) {
1574         return false;
1575     }
1576 
1577     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1578     gen_a64_set_pc(s, dst);
1579     set_btype_for_br(s, a->rn);
1580     s->base.is_jmp = DISAS_JUMP;
1581     return true;
1582 }
1583 
1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1585 {
1586     TCGv_i64 dst, lr;
1587 
1588     if (!dc_isar_feature(aa64_pauth, s)) {
1589         return false;
1590     }
1591 
1592     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1593     lr = cpu_reg(s, 30);
1594     if (dst == lr) {
1595         TCGv_i64 tmp = tcg_temp_new_i64();
1596         tcg_gen_mov_i64(tmp, dst);
1597         dst = tmp;
1598     }
1599     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1600     gen_a64_set_pc(s, dst);
1601     set_btype_for_blr(s);
1602     s->base.is_jmp = DISAS_JUMP;
1603     return true;
1604 }
1605 
1606 static bool trans_RETA(DisasContext *s, arg_reta *a)
1607 {
1608     TCGv_i64 dst;
1609 
1610     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1611     gen_a64_set_pc(s, dst);
1612     s->base.is_jmp = DISAS_JUMP;
1613     return true;
1614 }
1615 
1616 static bool trans_BRA(DisasContext *s, arg_bra *a)
1617 {
1618     TCGv_i64 dst;
1619 
1620     if (!dc_isar_feature(aa64_pauth, s)) {
1621         return false;
1622     }
1623     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1624     gen_a64_set_pc(s, dst);
1625     set_btype_for_br(s, a->rn);
1626     s->base.is_jmp = DISAS_JUMP;
1627     return true;
1628 }
1629 
1630 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1631 {
1632     TCGv_i64 dst, lr;
1633 
1634     if (!dc_isar_feature(aa64_pauth, s)) {
1635         return false;
1636     }
1637     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1638     lr = cpu_reg(s, 30);
1639     if (dst == lr) {
1640         TCGv_i64 tmp = tcg_temp_new_i64();
1641         tcg_gen_mov_i64(tmp, dst);
1642         dst = tmp;
1643     }
1644     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1645     gen_a64_set_pc(s, dst);
1646     set_btype_for_blr(s);
1647     s->base.is_jmp = DISAS_JUMP;
1648     return true;
1649 }
1650 
1651 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1652 {
1653     TCGv_i64 dst;
1654 
1655     if (s->current_el == 0) {
1656         return false;
1657     }
1658     if (s->trap_eret) {
1659         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1660         return true;
1661     }
1662     dst = tcg_temp_new_i64();
1663     tcg_gen_ld_i64(dst, tcg_env,
1664                    offsetof(CPUARMState, elr_el[s->current_el]));
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(tcg_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1675 {
1676     TCGv_i64 dst;
1677 
1678     if (!dc_isar_feature(aa64_pauth, s)) {
1679         return false;
1680     }
1681     if (s->current_el == 0) {
1682         return false;
1683     }
1684     /* The FGT trap takes precedence over an auth trap. */
1685     if (s->trap_eret) {
1686         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1687         return true;
1688     }
1689     dst = tcg_temp_new_i64();
1690     tcg_gen_ld_i64(dst, tcg_env,
1691                    offsetof(CPUARMState, elr_el[s->current_el]));
1692 
1693     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1694 
1695     translator_io_start(&s->base);
1696 
1697     gen_helper_exception_return(tcg_env, dst);
1698     /* Must exit loop to check un-masked IRQs */
1699     s->base.is_jmp = DISAS_EXIT;
1700     return true;
1701 }
1702 
1703 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1704 {
1705     return true;
1706 }
1707 
1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1709 {
1710     /*
1711      * When running in MTTCG we don't generate jumps to the yield and
1712      * WFE helpers as it won't affect the scheduling of other vCPUs.
1713      * If we wanted to more completely model WFE/SEV so we don't busy
1714      * spin unnecessarily we would need to do something more involved.
1715      */
1716     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1717         s->base.is_jmp = DISAS_YIELD;
1718     }
1719     return true;
1720 }
1721 
1722 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1723 {
1724     s->base.is_jmp = DISAS_WFI;
1725     return true;
1726 }
1727 
1728 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1729 {
1730     /*
1731      * When running in MTTCG we don't generate jumps to the yield and
1732      * WFE helpers as it won't affect the scheduling of other vCPUs.
1733      * If we wanted to more completely model WFE/SEV so we don't busy
1734      * spin unnecessarily we would need to do something more involved.
1735      */
1736     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1737         s->base.is_jmp = DISAS_WFE;
1738     }
1739     return true;
1740 }
1741 
1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1743 {
1744     if (s->pauth_active) {
1745         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1746     }
1747     return true;
1748 }
1749 
1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1751 {
1752     if (s->pauth_active) {
1753         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1754     }
1755     return true;
1756 }
1757 
1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1759 {
1760     if (s->pauth_active) {
1761         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1762     }
1763     return true;
1764 }
1765 
1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1767 {
1768     if (s->pauth_active) {
1769         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1770     }
1771     return true;
1772 }
1773 
1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1775 {
1776     if (s->pauth_active) {
1777         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1778     }
1779     return true;
1780 }
1781 
1782 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1783 {
1784     /* Without RAS, we must implement this as NOP. */
1785     if (dc_isar_feature(aa64_ras, s)) {
1786         /*
1787          * QEMU does not have a source of physical SErrors,
1788          * so we are only concerned with virtual SErrors.
1789          * The pseudocode in the ARM for this case is
1790          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1791          *      AArch64.vESBOperation();
1792          * Most of the condition can be evaluated at translation time.
1793          * Test for EL2 present, and defer test for SEL2 to runtime.
1794          */
1795         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1796             gen_helper_vesb(tcg_env);
1797         }
1798     }
1799     return true;
1800 }
1801 
1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1803 {
1804     if (s->pauth_active) {
1805         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1806     }
1807     return true;
1808 }
1809 
1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1811 {
1812     if (s->pauth_active) {
1813         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1814     }
1815     return true;
1816 }
1817 
1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1819 {
1820     if (s->pauth_active) {
1821         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1822     }
1823     return true;
1824 }
1825 
1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1827 {
1828     if (s->pauth_active) {
1829         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1830     }
1831     return true;
1832 }
1833 
1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1835 {
1836     if (s->pauth_active) {
1837         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1838     }
1839     return true;
1840 }
1841 
1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1843 {
1844     if (s->pauth_active) {
1845         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1846     }
1847     return true;
1848 }
1849 
1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1851 {
1852     if (s->pauth_active) {
1853         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854     }
1855     return true;
1856 }
1857 
1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1859 {
1860     if (s->pauth_active) {
1861         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862     }
1863     return true;
1864 }
1865 
1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1867 {
1868     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1869     return true;
1870 }
1871 
1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1873 {
1874     /* We handle DSB and DMB the same way */
1875     TCGBar bar;
1876 
1877     switch (a->types) {
1878     case 1: /* MBReqTypes_Reads */
1879         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1880         break;
1881     case 2: /* MBReqTypes_Writes */
1882         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1883         break;
1884     default: /* MBReqTypes_All */
1885         bar = TCG_BAR_SC | TCG_MO_ALL;
1886         break;
1887     }
1888     tcg_gen_mb(bar);
1889     return true;
1890 }
1891 
1892 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1893 {
1894     /*
1895      * We need to break the TB after this insn to execute
1896      * self-modifying code correctly and also to take
1897      * any pending interrupts immediately.
1898      */
1899     reset_btype(s);
1900     gen_goto_tb(s, 0, 4);
1901     return true;
1902 }
1903 
1904 static bool trans_SB(DisasContext *s, arg_SB *a)
1905 {
1906     if (!dc_isar_feature(aa64_sb, s)) {
1907         return false;
1908     }
1909     /*
1910      * TODO: There is no speculation barrier opcode for TCG;
1911      * MB and end the TB instead.
1912      */
1913     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1914     gen_goto_tb(s, 0, 4);
1915     return true;
1916 }
1917 
1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1919 {
1920     if (!dc_isar_feature(aa64_condm_4, s)) {
1921         return false;
1922     }
1923     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1924     return true;
1925 }
1926 
1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1928 {
1929     TCGv_i32 z;
1930 
1931     if (!dc_isar_feature(aa64_condm_5, s)) {
1932         return false;
1933     }
1934 
1935     z = tcg_temp_new_i32();
1936 
1937     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1938 
1939     /*
1940      * (!C & !Z) << 31
1941      * (!(C | Z)) << 31
1942      * ~((C | Z) << 31)
1943      * ~-(C | Z)
1944      * (C | Z) - 1
1945      */
1946     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1947     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1948 
1949     /* !(Z & C) */
1950     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1951     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1952 
1953     /* (!C & Z) << 31 -> -(Z & ~C) */
1954     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1955     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1956 
1957     /* C | Z */
1958     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1959 
1960     return true;
1961 }
1962 
1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1964 {
1965     if (!dc_isar_feature(aa64_condm_5, s)) {
1966         return false;
1967     }
1968 
1969     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1970     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1971 
1972     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1973     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1974 
1975     tcg_gen_movi_i32(cpu_NF, 0);
1976     tcg_gen_movi_i32(cpu_VF, 0);
1977 
1978     return true;
1979 }
1980 
1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1982 {
1983     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1984         return false;
1985     }
1986     if (a->imm & 1) {
1987         set_pstate_bits(PSTATE_UAO);
1988     } else {
1989         clear_pstate_bits(PSTATE_UAO);
1990     }
1991     gen_rebuild_hflags(s);
1992     s->base.is_jmp = DISAS_TOO_MANY;
1993     return true;
1994 }
1995 
1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1997 {
1998     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1999         return false;
2000     }
2001     if (a->imm & 1) {
2002         set_pstate_bits(PSTATE_PAN);
2003     } else {
2004         clear_pstate_bits(PSTATE_PAN);
2005     }
2006     gen_rebuild_hflags(s);
2007     s->base.is_jmp = DISAS_TOO_MANY;
2008     return true;
2009 }
2010 
2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2012 {
2013     if (s->current_el == 0) {
2014         return false;
2015     }
2016     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2017     s->base.is_jmp = DISAS_TOO_MANY;
2018     return true;
2019 }
2020 
2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2022 {
2023     if (!dc_isar_feature(aa64_ssbs, s)) {
2024         return false;
2025     }
2026     if (a->imm & 1) {
2027         set_pstate_bits(PSTATE_SSBS);
2028     } else {
2029         clear_pstate_bits(PSTATE_SSBS);
2030     }
2031     /* Don't need to rebuild hflags since SSBS is a nop */
2032     s->base.is_jmp = DISAS_TOO_MANY;
2033     return true;
2034 }
2035 
2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2037 {
2038     if (!dc_isar_feature(aa64_dit, s)) {
2039         return false;
2040     }
2041     if (a->imm & 1) {
2042         set_pstate_bits(PSTATE_DIT);
2043     } else {
2044         clear_pstate_bits(PSTATE_DIT);
2045     }
2046     /* There's no need to rebuild hflags because DIT is a nop */
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2052 {
2053     if (dc_isar_feature(aa64_mte, s)) {
2054         /* Full MTE is enabled -- set the TCO bit as directed. */
2055         if (a->imm & 1) {
2056             set_pstate_bits(PSTATE_TCO);
2057         } else {
2058             clear_pstate_bits(PSTATE_TCO);
2059         }
2060         gen_rebuild_hflags(s);
2061         /* Many factors, including TCO, go into MTE_ACTIVE. */
2062         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2063         return true;
2064     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2065         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2066         return true;
2067     } else {
2068         /* Insn not present */
2069         return false;
2070     }
2071 }
2072 
2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2074 {
2075     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2076     s->base.is_jmp = DISAS_TOO_MANY;
2077     return true;
2078 }
2079 
2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2081 {
2082     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2083     /* Exit the cpu loop to re-evaluate pending IRQs. */
2084     s->base.is_jmp = DISAS_UPDATE_EXIT;
2085     return true;
2086 }
2087 
2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2089 {
2090     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2091         return false;
2092     }
2093 
2094     if (a->imm == 0) {
2095         clear_pstate_bits(PSTATE_ALLINT);
2096     } else if (s->current_el > 1) {
2097         set_pstate_bits(PSTATE_ALLINT);
2098     } else {
2099         gen_helper_msr_set_allint_el1(tcg_env);
2100     }
2101 
2102     /* Exit the cpu loop to re-evaluate pending IRQs. */
2103     s->base.is_jmp = DISAS_UPDATE_EXIT;
2104     return true;
2105 }
2106 
2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2108 {
2109     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2110         return false;
2111     }
2112     if (sme_access_check(s)) {
2113         int old = s->pstate_sm | (s->pstate_za << 1);
2114         int new = a->imm * 3;
2115 
2116         if ((old ^ new) & a->mask) {
2117             /* At least one bit changes. */
2118             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2119                                 tcg_constant_i32(a->mask));
2120             s->base.is_jmp = DISAS_TOO_MANY;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2127 {
2128     TCGv_i32 tmp = tcg_temp_new_i32();
2129     TCGv_i32 nzcv = tcg_temp_new_i32();
2130 
2131     /* build bit 31, N */
2132     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2133     /* build bit 30, Z */
2134     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2135     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2136     /* build bit 29, C */
2137     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2138     /* build bit 28, V */
2139     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2140     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2141     /* generate result */
2142     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2143 }
2144 
2145 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2146 {
2147     TCGv_i32 nzcv = tcg_temp_new_i32();
2148 
2149     /* take NZCV from R[t] */
2150     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2151 
2152     /* bit 31, N */
2153     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2154     /* bit 30, Z */
2155     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2156     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2157     /* bit 29, C */
2158     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2159     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2160     /* bit 28, V */
2161     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2162     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2163 }
2164 
2165 static void gen_sysreg_undef(DisasContext *s, bool isread,
2166                              uint8_t op0, uint8_t op1, uint8_t op2,
2167                              uint8_t crn, uint8_t crm, uint8_t rt)
2168 {
2169     /*
2170      * Generate code to emit an UNDEF with correct syndrome
2171      * information for a failed system register access.
2172      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2173      * but if FEAT_IDST is implemented then read accesses to registers
2174      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2175      * syndrome.
2176      */
2177     uint32_t syndrome;
2178 
2179     if (isread && dc_isar_feature(aa64_ids, s) &&
2180         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182     } else {
2183         syndrome = syn_uncategorized();
2184     }
2185     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2186 }
2187 
2188 /* MRS - move from system register
2189  * MSR (register) - move to system register
2190  * SYS
2191  * SYSL
2192  * These are all essentially the same insn in 'read' and 'write'
2193  * versions, with varying op0 fields.
2194  */
2195 static void handle_sys(DisasContext *s, bool isread,
2196                        unsigned int op0, unsigned int op1, unsigned int op2,
2197                        unsigned int crn, unsigned int crm, unsigned int rt)
2198 {
2199     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2200                                       crn, crm, op0, op1, op2);
2201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2202     bool need_exit_tb = false;
2203     bool nv_trap_to_el2 = false;
2204     bool nv_redirect_reg = false;
2205     bool skip_fp_access_checks = false;
2206     bool nv2_mem_redirect = false;
2207     TCGv_ptr tcg_ri = NULL;
2208     TCGv_i64 tcg_rt;
2209     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2210 
2211     if (crn == 11 || crn == 15) {
2212         /*
2213          * Check for TIDCP trap, which must take precedence over
2214          * the UNDEF for "no such register" etc.
2215          */
2216         switch (s->current_el) {
2217         case 0:
2218             if (dc_isar_feature(aa64_tidcp1, s)) {
2219                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2220             }
2221             break;
2222         case 1:
2223             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2224             break;
2225         }
2226     }
2227 
2228     if (!ri) {
2229         /* Unknown register; this might be a guest error or a QEMU
2230          * unimplemented feature.
2231          */
2232         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2233                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2234                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2235         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2236         return;
2237     }
2238 
2239     if (s->nv2 && ri->nv2_redirect_offset) {
2240         /*
2241          * Some registers always redirect to memory; some only do so if
2242          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2243          * pairs which share an offset; see the table in R_CSRPQ).
2244          */
2245         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2246             nv2_mem_redirect = s->nv1;
2247         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2248             nv2_mem_redirect = !s->nv1;
2249         } else {
2250             nv2_mem_redirect = true;
2251         }
2252     }
2253 
2254     /* Check access permissions */
2255     if (!cp_access_ok(s->current_el, ri, isread)) {
2256         /*
2257          * FEAT_NV/NV2 handling does not do the usual FP access checks
2258          * for registers only accessible at EL2 (though it *does* do them
2259          * for registers accessible at EL1).
2260          */
2261         skip_fp_access_checks = true;
2262         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2263             /*
2264              * This is one of the few EL2 registers which should redirect
2265              * to the equivalent EL1 register. We do that after running
2266              * the EL2 register's accessfn.
2267              */
2268             nv_redirect_reg = true;
2269             assert(!nv2_mem_redirect);
2270         } else if (nv2_mem_redirect) {
2271             /*
2272              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2273              * UNDEF to EL1.
2274              */
2275         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2276             /*
2277              * This register / instruction exists and is an EL2 register, so
2278              * we must trap to EL2 if accessed in nested virtualization EL1
2279              * instead of UNDEFing. We'll do that after the usual access checks.
2280              * (This makes a difference only for a couple of registers like
2281              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2282              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2283              * an accessfn which does nothing when called from EL1, because
2284              * the trap-to-EL3 controls which would apply to that register
2285              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2286              */
2287             nv_trap_to_el2 = true;
2288         } else {
2289             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290             return;
2291         }
2292     }
2293 
2294     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2295         /* Emit code to perform further access permissions checks at
2296          * runtime; this may result in an exception.
2297          */
2298         gen_a64_update_pc(s, 0);
2299         tcg_ri = tcg_temp_new_ptr();
2300         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2301                                        tcg_constant_i32(key),
2302                                        tcg_constant_i32(syndrome),
2303                                        tcg_constant_i32(isread));
2304     } else if (ri->type & ARM_CP_RAISES_EXC) {
2305         /*
2306          * The readfn or writefn might raise an exception;
2307          * synchronize the CPU state in case it does.
2308          */
2309         gen_a64_update_pc(s, 0);
2310     }
2311 
2312     if (!skip_fp_access_checks) {
2313         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2314             return;
2315         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2316             return;
2317         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2318             return;
2319         }
2320     }
2321 
2322     if (nv_trap_to_el2) {
2323         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2324         return;
2325     }
2326 
2327     if (nv_redirect_reg) {
2328         /*
2329          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2330          * Conveniently in all cases the encoding of the EL1 register is
2331          * identical to the EL2 register except that opc1 is 0.
2332          * Get the reginfo for the EL1 register to use for the actual access.
2333          * We don't use the EL1 register's access function, and
2334          * fine-grained-traps on EL1 also do not apply here.
2335          */
2336         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2337                                  crn, crm, op0, 0, op2);
2338         ri = get_arm_cp_reginfo(s->cp_regs, key);
2339         assert(ri);
2340         assert(cp_access_ok(s->current_el, ri, isread));
2341         /*
2342          * We might not have done an update_pc earlier, so check we don't
2343          * need it. We could support this in future if necessary.
2344          */
2345         assert(!(ri->type & ARM_CP_RAISES_EXC));
2346     }
2347 
2348     if (nv2_mem_redirect) {
2349         /*
2350          * This system register is being redirected into an EL2 memory access.
2351          * This means it is not an IO operation, doesn't change hflags,
2352          * and need not end the TB, because it has no side effects.
2353          *
2354          * The access is 64-bit single copy atomic, guaranteed aligned because
2355          * of the definition of VCNR_EL2. Its endianness depends on
2356          * SCTLR_EL2.EE, not on the data endianness of EL1.
2357          * It is done under either the EL2 translation regime or the EL2&0
2358          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2359          * PSTATE.PAN is 0.
2360          */
2361         TCGv_i64 ptr = tcg_temp_new_i64();
2362         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2363         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2364         int memidx = arm_to_core_mmu_idx(armmemidx);
2365         uint32_t syn;
2366 
2367         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2368 
2369         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2370         tcg_gen_addi_i64(ptr, ptr,
2371                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2372         tcg_rt = cpu_reg(s, rt);
2373 
2374         syn = syn_data_abort_vncr(0, !isread, 0);
2375         disas_set_insn_syndrome(s, syn);
2376         if (isread) {
2377             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2378         } else {
2379             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2380         }
2381         return;
2382     }
2383 
2384     /* Handle special cases first */
2385     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2386     case 0:
2387         break;
2388     case ARM_CP_NOP:
2389         return;
2390     case ARM_CP_NZCV:
2391         tcg_rt = cpu_reg(s, rt);
2392         if (isread) {
2393             gen_get_nzcv(tcg_rt);
2394         } else {
2395             gen_set_nzcv(tcg_rt);
2396         }
2397         return;
2398     case ARM_CP_CURRENTEL:
2399     {
2400         /*
2401          * Reads as current EL value from pstate, which is
2402          * guaranteed to be constant by the tb flags.
2403          * For nested virt we should report EL2.
2404          */
2405         int el = s->nv ? 2 : s->current_el;
2406         tcg_rt = cpu_reg(s, rt);
2407         tcg_gen_movi_i64(tcg_rt, el << 2);
2408         return;
2409     }
2410     case ARM_CP_DC_ZVA:
2411         /* Writes clear the aligned block of memory which rt points into. */
2412         if (s->mte_active[0]) {
2413             int desc = 0;
2414 
2415             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2416             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2417             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2418 
2419             tcg_rt = tcg_temp_new_i64();
2420             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2421                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2422         } else {
2423             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2424         }
2425         gen_helper_dc_zva(tcg_env, tcg_rt);
2426         return;
2427     case ARM_CP_DC_GVA:
2428         {
2429             TCGv_i64 clean_addr, tag;
2430 
2431             /*
2432              * DC_GVA, like DC_ZVA, requires that we supply the original
2433              * pointer for an invalid page.  Probe that address first.
2434              */
2435             tcg_rt = cpu_reg(s, rt);
2436             clean_addr = clean_data_tbi(s, tcg_rt);
2437             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2438 
2439             if (s->ata[0]) {
2440                 /* Extract the tag from the register to match STZGM.  */
2441                 tag = tcg_temp_new_i64();
2442                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2443                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2444             }
2445         }
2446         return;
2447     case ARM_CP_DC_GZVA:
2448         {
2449             TCGv_i64 clean_addr, tag;
2450 
2451             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2452             tcg_rt = cpu_reg(s, rt);
2453             clean_addr = clean_data_tbi(s, tcg_rt);
2454             gen_helper_dc_zva(tcg_env, clean_addr);
2455 
2456             if (s->ata[0]) {
2457                 /* Extract the tag from the register to match STZGM.  */
2458                 tag = tcg_temp_new_i64();
2459                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2460                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2461             }
2462         }
2463         return;
2464     default:
2465         g_assert_not_reached();
2466     }
2467 
2468     if (ri->type & ARM_CP_IO) {
2469         /* I/O operations must end the TB here (whether read or write) */
2470         need_exit_tb = translator_io_start(&s->base);
2471     }
2472 
2473     tcg_rt = cpu_reg(s, rt);
2474 
2475     if (isread) {
2476         if (ri->type & ARM_CP_CONST) {
2477             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2478         } else if (ri->readfn) {
2479             if (!tcg_ri) {
2480                 tcg_ri = gen_lookup_cp_reg(key);
2481             }
2482             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2483         } else {
2484             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2485         }
2486     } else {
2487         if (ri->type & ARM_CP_CONST) {
2488             /* If not forbidden by access permissions, treat as WI */
2489             return;
2490         } else if (ri->writefn) {
2491             if (!tcg_ri) {
2492                 tcg_ri = gen_lookup_cp_reg(key);
2493             }
2494             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2495         } else {
2496             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497         }
2498     }
2499 
2500     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2501         /*
2502          * A write to any coprocessor register that ends a TB
2503          * must rebuild the hflags for the next TB.
2504          */
2505         gen_rebuild_hflags(s);
2506         /*
2507          * We default to ending the TB on a coprocessor register write,
2508          * but allow this to be suppressed by the register definition
2509          * (usually only necessary to work around guest bugs).
2510          */
2511         need_exit_tb = true;
2512     }
2513     if (need_exit_tb) {
2514         s->base.is_jmp = DISAS_UPDATE_EXIT;
2515     }
2516 }
2517 
2518 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2519 {
2520     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2521     return true;
2522 }
2523 
2524 static bool trans_SVC(DisasContext *s, arg_i *a)
2525 {
2526     /*
2527      * For SVC, HVC and SMC we advance the single-step state
2528      * machine before taking the exception. This is architecturally
2529      * mandated, to ensure that single-stepping a system call
2530      * instruction works properly.
2531      */
2532     uint32_t syndrome = syn_aa64_svc(a->imm);
2533     if (s->fgt_svc) {
2534         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2535         return true;
2536     }
2537     gen_ss_advance(s);
2538     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2539     return true;
2540 }
2541 
2542 static bool trans_HVC(DisasContext *s, arg_i *a)
2543 {
2544     int target_el = s->current_el == 3 ? 3 : 2;
2545 
2546     if (s->current_el == 0) {
2547         unallocated_encoding(s);
2548         return true;
2549     }
2550     /*
2551      * The pre HVC helper handles cases when HVC gets trapped
2552      * as an undefined insn by runtime configuration.
2553      */
2554     gen_a64_update_pc(s, 0);
2555     gen_helper_pre_hvc(tcg_env);
2556     /* Architecture requires ss advance before we do the actual work */
2557     gen_ss_advance(s);
2558     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2559     return true;
2560 }
2561 
2562 static bool trans_SMC(DisasContext *s, arg_i *a)
2563 {
2564     if (s->current_el == 0) {
2565         unallocated_encoding(s);
2566         return true;
2567     }
2568     gen_a64_update_pc(s, 0);
2569     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2570     /* Architecture requires ss advance before we do the actual work */
2571     gen_ss_advance(s);
2572     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2573     return true;
2574 }
2575 
2576 static bool trans_BRK(DisasContext *s, arg_i *a)
2577 {
2578     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2579     return true;
2580 }
2581 
2582 static bool trans_HLT(DisasContext *s, arg_i *a)
2583 {
2584     /*
2585      * HLT. This has two purposes.
2586      * Architecturally, it is an external halting debug instruction.
2587      * Since QEMU doesn't implement external debug, we treat this as
2588      * it is required for halting debug disabled: it will UNDEF.
2589      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2590      */
2591     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2592         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2593     } else {
2594         unallocated_encoding(s);
2595     }
2596     return true;
2597 }
2598 
2599 /*
2600  * Load/Store exclusive instructions are implemented by remembering
2601  * the value/address loaded, and seeing if these are the same
2602  * when the store is performed. This is not actually the architecturally
2603  * mandated semantics, but it works for typical guest code sequences
2604  * and avoids having to monitor regular stores.
2605  *
2606  * The store exclusive uses the atomic cmpxchg primitives to avoid
2607  * races in multi-threaded linux-user and when MTTCG softmmu is
2608  * enabled.
2609  */
2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2611                                int size, bool is_pair)
2612 {
2613     int idx = get_mem_index(s);
2614     TCGv_i64 dirty_addr, clean_addr;
2615     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2616 
2617     s->is_ldex = true;
2618     dirty_addr = cpu_reg_sp(s, rn);
2619     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2620 
2621     g_assert(size <= 3);
2622     if (is_pair) {
2623         g_assert(size >= 2);
2624         if (size == 2) {
2625             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2626             if (s->be_data == MO_LE) {
2627                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2628                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2629             } else {
2630                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2631                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2632             }
2633         } else {
2634             TCGv_i128 t16 = tcg_temp_new_i128();
2635 
2636             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2637 
2638             if (s->be_data == MO_LE) {
2639                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2640                                       cpu_exclusive_high, t16);
2641             } else {
2642                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2643                                       cpu_exclusive_val, t16);
2644             }
2645             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2646             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2647         }
2648     } else {
2649         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2650         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2651     }
2652     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2653 }
2654 
2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2656                                 int rn, int size, int is_pair)
2657 {
2658     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2659      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2660      *     [addr] = {Rt};
2661      *     if (is_pair) {
2662      *         [addr + datasize] = {Rt2};
2663      *     }
2664      *     {Rd} = 0;
2665      * } else {
2666      *     {Rd} = 1;
2667      * }
2668      * env->exclusive_addr = -1;
2669      */
2670     TCGLabel *fail_label = gen_new_label();
2671     TCGLabel *done_label = gen_new_label();
2672     TCGv_i64 tmp, clean_addr;
2673     MemOp memop;
2674 
2675     /*
2676      * FIXME: We are out of spec here.  We have recorded only the address
2677      * from load_exclusive, not the entire range, and we assume that the
2678      * size of the access on both sides match.  The architecture allows the
2679      * store to be smaller than the load, so long as the stored bytes are
2680      * within the range recorded by the load.
2681      */
2682 
2683     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2684     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2685     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2686 
2687     /*
2688      * The write, and any associated faults, only happen if the virtual
2689      * and physical addresses pass the exclusive monitor check.  These
2690      * faults are exceedingly unlikely, because normally the guest uses
2691      * the exact same address register for the load_exclusive, and we
2692      * would have recognized these faults there.
2693      *
2694      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2695      * unaligned 4-byte write within the range of an aligned 8-byte load.
2696      * With LSE2, the store would need to cross a 16-byte boundary when the
2697      * load did not, which would mean the store is outside the range
2698      * recorded for the monitor, which would have failed a corrected monitor
2699      * check above.  For now, we assume no size change and retain the
2700      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2701      *
2702      * It is possible to trigger an MTE fault, by performing the load with
2703      * a virtual address with a valid tag and performing the store with the
2704      * same virtual address and a different invalid tag.
2705      */
2706     memop = size + is_pair;
2707     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2708         memop |= MO_ALIGN;
2709     }
2710     memop = finalize_memop(s, memop);
2711     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2712 
2713     tmp = tcg_temp_new_i64();
2714     if (is_pair) {
2715         if (size == 2) {
2716             if (s->be_data == MO_LE) {
2717                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2718             } else {
2719                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2720             }
2721             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2722                                        cpu_exclusive_val, tmp,
2723                                        get_mem_index(s), memop);
2724             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2725         } else {
2726             TCGv_i128 t16 = tcg_temp_new_i128();
2727             TCGv_i128 c16 = tcg_temp_new_i128();
2728             TCGv_i64 a, b;
2729 
2730             if (s->be_data == MO_LE) {
2731                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2732                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2733                                         cpu_exclusive_high);
2734             } else {
2735                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2736                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2737                                         cpu_exclusive_val);
2738             }
2739 
2740             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2741                                         get_mem_index(s), memop);
2742 
2743             a = tcg_temp_new_i64();
2744             b = tcg_temp_new_i64();
2745             if (s->be_data == MO_LE) {
2746                 tcg_gen_extr_i128_i64(a, b, t16);
2747             } else {
2748                 tcg_gen_extr_i128_i64(b, a, t16);
2749             }
2750 
2751             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2752             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2753             tcg_gen_or_i64(tmp, a, b);
2754 
2755             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2756         }
2757     } else {
2758         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2759                                    cpu_reg(s, rt), get_mem_index(s), memop);
2760         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2761     }
2762     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2763     tcg_gen_br(done_label);
2764 
2765     gen_set_label(fail_label);
2766     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2767     gen_set_label(done_label);
2768     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2769 }
2770 
2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2772                                  int rn, int size)
2773 {
2774     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2775     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776     int memidx = get_mem_index(s);
2777     TCGv_i64 clean_addr;
2778     MemOp memop;
2779 
2780     if (rn == 31) {
2781         gen_check_sp_alignment(s);
2782     }
2783     memop = check_atomic_align(s, rn, size);
2784     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2785     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2786                                memidx, memop);
2787 }
2788 
2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2790                                       int rn, int size)
2791 {
2792     TCGv_i64 s1 = cpu_reg(s, rs);
2793     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2794     TCGv_i64 t1 = cpu_reg(s, rt);
2795     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2796     TCGv_i64 clean_addr;
2797     int memidx = get_mem_index(s);
2798     MemOp memop;
2799 
2800     if (rn == 31) {
2801         gen_check_sp_alignment(s);
2802     }
2803 
2804     /* This is a single atomic access, despite the "pair". */
2805     memop = check_atomic_align(s, rn, size + 1);
2806     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2807 
2808     if (size == 2) {
2809         TCGv_i64 cmp = tcg_temp_new_i64();
2810         TCGv_i64 val = tcg_temp_new_i64();
2811 
2812         if (s->be_data == MO_LE) {
2813             tcg_gen_concat32_i64(val, t1, t2);
2814             tcg_gen_concat32_i64(cmp, s1, s2);
2815         } else {
2816             tcg_gen_concat32_i64(val, t2, t1);
2817             tcg_gen_concat32_i64(cmp, s2, s1);
2818         }
2819 
2820         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2821 
2822         if (s->be_data == MO_LE) {
2823             tcg_gen_extr32_i64(s1, s2, cmp);
2824         } else {
2825             tcg_gen_extr32_i64(s2, s1, cmp);
2826         }
2827     } else {
2828         TCGv_i128 cmp = tcg_temp_new_i128();
2829         TCGv_i128 val = tcg_temp_new_i128();
2830 
2831         if (s->be_data == MO_LE) {
2832             tcg_gen_concat_i64_i128(val, t1, t2);
2833             tcg_gen_concat_i64_i128(cmp, s1, s2);
2834         } else {
2835             tcg_gen_concat_i64_i128(val, t2, t1);
2836             tcg_gen_concat_i64_i128(cmp, s2, s1);
2837         }
2838 
2839         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2840 
2841         if (s->be_data == MO_LE) {
2842             tcg_gen_extr_i128_i64(s1, s2, cmp);
2843         } else {
2844             tcg_gen_extr_i128_i64(s2, s1, cmp);
2845         }
2846     }
2847 }
2848 
2849 /*
2850  * Compute the ISS.SF bit for syndrome information if an exception
2851  * is taken on a load or store. This indicates whether the instruction
2852  * is accessing a 32-bit or 64-bit register. This logic is derived
2853  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2854  */
2855 static bool ldst_iss_sf(int size, bool sign, bool ext)
2856 {
2857 
2858     if (sign) {
2859         /*
2860          * Signed loads are 64 bit results if we are not going to
2861          * do a zero-extend from 32 to 64 after the load.
2862          * (For a store, sign and ext are always false.)
2863          */
2864         return !ext;
2865     } else {
2866         /* Unsigned loads/stores work at the specified size */
2867         return size == MO_64;
2868     }
2869 }
2870 
2871 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2872 {
2873     if (a->rn == 31) {
2874         gen_check_sp_alignment(s);
2875     }
2876     if (a->lasr) {
2877         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2878     }
2879     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2880     return true;
2881 }
2882 
2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2884 {
2885     if (a->rn == 31) {
2886         gen_check_sp_alignment(s);
2887     }
2888     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2889     if (a->lasr) {
2890         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2891     }
2892     return true;
2893 }
2894 
2895 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2896 {
2897     TCGv_i64 clean_addr;
2898     MemOp memop;
2899     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2900 
2901     /*
2902      * StoreLORelease is the same as Store-Release for QEMU, but
2903      * needs the feature-test.
2904      */
2905     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2906         return false;
2907     }
2908     /* Generate ISS for non-exclusive accesses including LASR.  */
2909     if (a->rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2913     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2914     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2915                                 true, a->rn != 31, memop);
2916     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2917               iss_sf, a->lasr);
2918     return true;
2919 }
2920 
2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2922 {
2923     TCGv_i64 clean_addr;
2924     MemOp memop;
2925     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2926 
2927     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2928     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2929         return false;
2930     }
2931     /* Generate ISS for non-exclusive accesses including LASR.  */
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2936     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2937                                 false, a->rn != 31, memop);
2938     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2939               a->rt, iss_sf, a->lasr);
2940     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2941     return true;
2942 }
2943 
2944 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2945 {
2946     if (a->rn == 31) {
2947         gen_check_sp_alignment(s);
2948     }
2949     if (a->lasr) {
2950         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2951     }
2952     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2953     return true;
2954 }
2955 
2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2957 {
2958     if (a->rn == 31) {
2959         gen_check_sp_alignment(s);
2960     }
2961     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2962     if (a->lasr) {
2963         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2964     }
2965     return true;
2966 }
2967 
2968 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2969 {
2970     if (!dc_isar_feature(aa64_atomics, s)) {
2971         return false;
2972     }
2973     if (((a->rt | a->rs) & 1) != 0) {
2974         return false;
2975     }
2976 
2977     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2978     return true;
2979 }
2980 
2981 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2982 {
2983     if (!dc_isar_feature(aa64_atomics, s)) {
2984         return false;
2985     }
2986     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2987     return true;
2988 }
2989 
2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2991 {
2992     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2993     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2994     TCGv_i64 clean_addr = tcg_temp_new_i64();
2995     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2996 
2997     gen_pc_plus_diff(s, clean_addr, a->imm);
2998     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2999               false, true, a->rt, iss_sf, false);
3000     return true;
3001 }
3002 
3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3004 {
3005     /* Load register (literal), vector version */
3006     TCGv_i64 clean_addr;
3007     MemOp memop;
3008 
3009     if (!fp_access_check(s)) {
3010         return true;
3011     }
3012     memop = finalize_memop_asimd(s, a->sz);
3013     clean_addr = tcg_temp_new_i64();
3014     gen_pc_plus_diff(s, clean_addr, a->imm);
3015     do_fp_ld(s, a->rt, clean_addr, memop);
3016     return true;
3017 }
3018 
3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3020                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3021                                  uint64_t offset, bool is_store, MemOp mop)
3022 {
3023     if (a->rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3028     if (!a->p) {
3029         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3030     }
3031 
3032     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3033                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3034 }
3035 
3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3037                                   TCGv_i64 dirty_addr, uint64_t offset)
3038 {
3039     if (a->w) {
3040         if (a->p) {
3041             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3042         }
3043         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3044     }
3045 }
3046 
3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3048 {
3049     uint64_t offset = a->imm << a->sz;
3050     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3051     MemOp mop = finalize_memop(s, a->sz);
3052 
3053     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3054     tcg_rt = cpu_reg(s, a->rt);
3055     tcg_rt2 = cpu_reg(s, a->rt2);
3056     /*
3057      * We built mop above for the single logical access -- rebuild it
3058      * now for the paired operation.
3059      *
3060      * With LSE2, non-sign-extending pairs are treated atomically if
3061      * aligned, and if unaligned one of the pair will be completely
3062      * within a 16-byte block and that element will be atomic.
3063      * Otherwise each element is separately atomic.
3064      * In all cases, issue one operation with the correct atomicity.
3065      */
3066     mop = a->sz + 1;
3067     if (s->align_mem) {
3068         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3069     }
3070     mop = finalize_memop_pair(s, mop);
3071     if (a->sz == 2) {
3072         TCGv_i64 tmp = tcg_temp_new_i64();
3073 
3074         if (s->be_data == MO_LE) {
3075             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3076         } else {
3077             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3078         }
3079         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3080     } else {
3081         TCGv_i128 tmp = tcg_temp_new_i128();
3082 
3083         if (s->be_data == MO_LE) {
3084             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3085         } else {
3086             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3087         }
3088         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3089     }
3090     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3091     return true;
3092 }
3093 
3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103 
3104     /*
3105      * We built mop above for the single logical access -- rebuild it
3106      * now for the paired operation.
3107      *
3108      * With LSE2, non-sign-extending pairs are treated atomically if
3109      * aligned, and if unaligned one of the pair will be completely
3110      * within a 16-byte block and that element will be atomic.
3111      * Otherwise each element is separately atomic.
3112      * In all cases, issue one operation with the correct atomicity.
3113      *
3114      * This treats sign-extending loads like zero-extending loads,
3115      * since that reuses the most code below.
3116      */
3117     mop = a->sz + 1;
3118     if (s->align_mem) {
3119         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3120     }
3121     mop = finalize_memop_pair(s, mop);
3122     if (a->sz == 2) {
3123         int o2 = s->be_data == MO_LE ? 32 : 0;
3124         int o1 = o2 ^ 32;
3125 
3126         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3127         if (a->sign) {
3128             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3129             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3130         } else {
3131             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3132             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3133         }
3134     } else {
3135         TCGv_i128 tmp = tcg_temp_new_i128();
3136 
3137         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3138         if (s->be_data == MO_LE) {
3139             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3140         } else {
3141             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3142         }
3143     }
3144     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145     return true;
3146 }
3147 
3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3149 {
3150     uint64_t offset = a->imm << a->sz;
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157 
3158     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3159     mop = finalize_memop_asimd(s, a->sz);
3160     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3161     do_fp_st(s, a->rt, clean_addr, mop);
3162     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3163     do_fp_st(s, a->rt2, clean_addr, mop);
3164     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3165     return true;
3166 }
3167 
3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3169 {
3170     uint64_t offset = a->imm << a->sz;
3171     TCGv_i64 clean_addr, dirty_addr;
3172     MemOp mop;
3173 
3174     if (!fp_access_check(s)) {
3175         return true;
3176     }
3177 
3178     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3179     mop = finalize_memop_asimd(s, a->sz);
3180     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3181     do_fp_ld(s, a->rt, clean_addr, mop);
3182     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3183     do_fp_ld(s, a->rt2, clean_addr, mop);
3184     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3185     return true;
3186 }
3187 
3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3189 {
3190     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3191     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3192     MemOp mop;
3193     TCGv_i128 tmp;
3194 
3195     /* STGP only comes in one size. */
3196     tcg_debug_assert(a->sz == MO_64);
3197 
3198     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3199         return false;
3200     }
3201 
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205 
3206     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3207     if (!a->p) {
3208         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209     }
3210 
3211     clean_addr = clean_data_tbi(s, dirty_addr);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     tcg_rt2 = cpu_reg(s, a->rt2);
3214 
3215     /*
3216      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3217      * and one tag operation.  We implement it as one single aligned 16-byte
3218      * memory operation for convenience.  Note that the alignment ensures
3219      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3220      */
3221     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3222 
3223     tmp = tcg_temp_new_i128();
3224     if (s->be_data == MO_LE) {
3225         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3226     } else {
3227         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3228     }
3229     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3230 
3231     /* Perform the tag store, if tag access enabled. */
3232     if (s->ata[0]) {
3233         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3234             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3235         } else {
3236             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3237         }
3238     }
3239 
3240     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3241     return true;
3242 }
3243 
3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3245                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3246                                  uint64_t offset, bool is_store, MemOp mop)
3247 {
3248     int memidx;
3249 
3250     if (a->rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253 
3254     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3255     if (!a->p) {
3256         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3257     }
3258     memidx = get_a64_user_mem_index(s, a->unpriv);
3259     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3260                                         a->w || a->rn != 31,
3261                                         mop, a->unpriv, memidx);
3262 }
3263 
3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3265                                   TCGv_i64 dirty_addr, uint64_t offset)
3266 {
3267     if (a->w) {
3268         if (a->p) {
3269             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3270         }
3271         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3272     }
3273 }
3274 
3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3276 {
3277     bool iss_sf, iss_valid = !a->w;
3278     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3279     int memidx = get_a64_user_mem_index(s, a->unpriv);
3280     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3281 
3282     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3283 
3284     tcg_rt = cpu_reg(s, a->rt);
3285     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3286 
3287     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3288                      iss_valid, a->rt, iss_sf, false);
3289     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3290     return true;
3291 }
3292 
3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3294 {
3295     bool iss_sf, iss_valid = !a->w;
3296     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3297     int memidx = get_a64_user_mem_index(s, a->unpriv);
3298     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3299 
3300     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3301 
3302     tcg_rt = cpu_reg(s, a->rt);
3303     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3304 
3305     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3306                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3307     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3308     return true;
3309 }
3310 
3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3312 {
3313     TCGv_i64 clean_addr, dirty_addr;
3314     MemOp mop;
3315 
3316     if (!fp_access_check(s)) {
3317         return true;
3318     }
3319     mop = finalize_memop_asimd(s, a->sz);
3320     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3321     do_fp_st(s, a->rt, clean_addr, mop);
3322     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp mop;
3330 
3331     if (!fp_access_check(s)) {
3332         return true;
3333     }
3334     mop = finalize_memop_asimd(s, a->sz);
3335     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3336     do_fp_ld(s, a->rt, clean_addr, mop);
3337     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3338     return true;
3339 }
3340 
3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3342                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3343                              bool is_store, MemOp memop)
3344 {
3345     TCGv_i64 tcg_rm;
3346 
3347     if (a->rn == 31) {
3348         gen_check_sp_alignment(s);
3349     }
3350     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3351 
3352     tcg_rm = read_cpu_reg(s, a->rm, 1);
3353     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3354 
3355     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3356     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3357 }
3358 
3359 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3360 {
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3362     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3363     MemOp memop;
3364 
3365     if (extract32(a->opt, 1, 1) == 0) {
3366         return false;
3367     }
3368 
3369     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               a->ext, true, a->rt, iss_sf, false);
3374     return true;
3375 }
3376 
3377 static bool trans_STR(DisasContext *s, arg_ldst *a)
3378 {
3379     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3380     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3381     MemOp memop;
3382 
3383     if (extract32(a->opt, 1, 1) == 0) {
3384         return false;
3385     }
3386 
3387     memop = finalize_memop(s, a->sz);
3388     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3389     tcg_rt = cpu_reg(s, a->rt);
3390     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3391     return true;
3392 }
3393 
3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3395 {
3396     TCGv_i64 clean_addr, dirty_addr;
3397     MemOp memop;
3398 
3399     if (extract32(a->opt, 1, 1) == 0) {
3400         return false;
3401     }
3402 
3403     if (!fp_access_check(s)) {
3404         return true;
3405     }
3406 
3407     memop = finalize_memop_asimd(s, a->sz);
3408     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3409     do_fp_ld(s, a->rt, clean_addr, memop);
3410     return true;
3411 }
3412 
3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3414 {
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp memop;
3417 
3418     if (extract32(a->opt, 1, 1) == 0) {
3419         return false;
3420     }
3421 
3422     if (!fp_access_check(s)) {
3423         return true;
3424     }
3425 
3426     memop = finalize_memop_asimd(s, a->sz);
3427     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3428     do_fp_st(s, a->rt, clean_addr, memop);
3429     return true;
3430 }
3431 
3432 
3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3434                          int sign, bool invert)
3435 {
3436     MemOp mop = a->sz | sign;
3437     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3438 
3439     if (a->rn == 31) {
3440         gen_check_sp_alignment(s);
3441     }
3442     mop = check_atomic_align(s, a->rn, mop);
3443     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3444                                 a->rn != 31, mop);
3445     tcg_rs = read_cpu_reg(s, a->rs, true);
3446     tcg_rt = cpu_reg(s, a->rt);
3447     if (invert) {
3448         tcg_gen_not_i64(tcg_rs, tcg_rs);
3449     }
3450     /*
3451      * The tcg atomic primitives are all full barriers.  Therefore we
3452      * can ignore the Acquire and Release bits of this instruction.
3453      */
3454     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3455 
3456     if (mop & MO_SIGN) {
3457         switch (a->sz) {
3458         case MO_8:
3459             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3460             break;
3461         case MO_16:
3462             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3463             break;
3464         case MO_32:
3465             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3466             break;
3467         case MO_64:
3468             break;
3469         default:
3470             g_assert_not_reached();
3471         }
3472     }
3473     return true;
3474 }
3475 
3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3485 
3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3487 {
3488     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3489     TCGv_i64 clean_addr;
3490     MemOp mop;
3491 
3492     if (!dc_isar_feature(aa64_atomics, s) ||
3493         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3494         return false;
3495     }
3496     if (a->rn == 31) {
3497         gen_check_sp_alignment(s);
3498     }
3499     mop = check_atomic_align(s, a->rn, a->sz);
3500     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3501                                 a->rn != 31, mop);
3502     /*
3503      * LDAPR* are a special case because they are a simple load, not a
3504      * fetch-and-do-something op.
3505      * The architectural consistency requirements here are weaker than
3506      * full load-acquire (we only need "load-acquire processor consistent"),
3507      * but we choose to implement them as full LDAQ.
3508      */
3509     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3510               true, a->rt, iss_sf, true);
3511     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3512     return true;
3513 }
3514 
3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3516 {
3517     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3518     MemOp memop;
3519 
3520     /* Load with pointer authentication */
3521     if (!dc_isar_feature(aa64_pauth, s)) {
3522         return false;
3523     }
3524 
3525     if (a->rn == 31) {
3526         gen_check_sp_alignment(s);
3527     }
3528     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3529 
3530     if (s->pauth_active) {
3531         if (!a->m) {
3532             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3533                                       tcg_constant_i64(0));
3534         } else {
3535             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3536                                       tcg_constant_i64(0));
3537         }
3538     }
3539 
3540     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3541 
3542     memop = finalize_memop(s, MO_64);
3543 
3544     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3545     clean_addr = gen_mte_check1(s, dirty_addr, false,
3546                                 a->w || a->rn != 31, memop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3550               /* extend */ false, /* iss_valid */ !a->w,
3551               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3552 
3553     if (a->w) {
3554         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3555     }
3556     return true;
3557 }
3558 
3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3560 {
3561     TCGv_i64 clean_addr, dirty_addr;
3562     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3563     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3564 
3565     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3566         return false;
3567     }
3568 
3569     if (a->rn == 31) {
3570         gen_check_sp_alignment(s);
3571     }
3572 
3573     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3574     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3575     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3576     clean_addr = clean_data_tbi(s, dirty_addr);
3577 
3578     /*
3579      * Load-AcquirePC semantics; we implement as the slightly more
3580      * restrictive Load-Acquire.
3581      */
3582     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3583               a->rt, iss_sf, true);
3584     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3585     return true;
3586 }
3587 
3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3589 {
3590     TCGv_i64 clean_addr, dirty_addr;
3591     MemOp mop = a->sz;
3592     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3593 
3594     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3595         return false;
3596     }
3597 
3598     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3599 
3600     if (a->rn == 31) {
3601         gen_check_sp_alignment(s);
3602     }
3603 
3604     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3605     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3606     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3607     clean_addr = clean_data_tbi(s, dirty_addr);
3608 
3609     /* Store-Release semantics */
3610     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3611     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3612     return true;
3613 }
3614 
3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3616 {
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int r;
3623     int size = a->sz;
3624 
3625     if (!a->p && a->rm != 0) {
3626         /* For non-postindexed accesses the Rm field must be 0 */
3627         return false;
3628     }
3629     if (size == 3 && !a->q && a->selem != 1) {
3630         return false;
3631     }
3632     if (!fp_access_check(s)) {
3633         return true;
3634     }
3635 
3636     if (a->rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     /* For our purposes, bytes are always little-endian.  */
3641     endian = s->be_data;
3642     if (size == 0) {
3643         endian = MO_LE;
3644     }
3645 
3646     total = a->rpt * a->selem * (a->q ? 16 : 8);
3647     tcg_rn = cpu_reg_sp(s, a->rn);
3648 
3649     /*
3650      * Issue the MTE check vs the logical repeat count, before we
3651      * promote consecutive little-endian elements below.
3652      */
3653     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3654                                 finalize_memop_asimd(s, size));
3655 
3656     /*
3657      * Consecutive little-endian elements from a single register
3658      * can be promoted to a larger little-endian operation.
3659      */
3660     align = MO_ALIGN;
3661     if (a->selem == 1 && endian == MO_LE) {
3662         align = pow2_align(size);
3663         size = 3;
3664     }
3665     if (!s->align_mem) {
3666         align = 0;
3667     }
3668     mop = endian | size | align;
3669 
3670     elements = (a->q ? 16 : 8) >> size;
3671     tcg_ebytes = tcg_constant_i64(1 << size);
3672     for (r = 0; r < a->rpt; r++) {
3673         int e;
3674         for (e = 0; e < elements; e++) {
3675             int xs;
3676             for (xs = 0; xs < a->selem; xs++) {
3677                 int tt = (a->rt + r + xs) % 32;
3678                 do_vec_ld(s, tt, e, clean_addr, mop);
3679                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3680             }
3681         }
3682     }
3683 
3684     /*
3685      * For non-quad operations, setting a slice of the low 64 bits of
3686      * the register clears the high 64 bits (in the ARM ARM pseudocode
3687      * this is implicit in the fact that 'rval' is a 64 bit wide
3688      * variable).  For quad operations, we might still need to zero
3689      * the high bits of SVE.
3690      */
3691     for (r = 0; r < a->rpt * a->selem; r++) {
3692         int tt = (a->rt + r) % 32;
3693         clear_vec_high(s, a->q, tt);
3694     }
3695 
3696     if (a->p) {
3697         if (a->rm == 31) {
3698             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699         } else {
3700             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701         }
3702     }
3703     return true;
3704 }
3705 
3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3707 {
3708     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3709     MemOp endian, align, mop;
3710 
3711     int total;    /* total bytes */
3712     int elements; /* elements per vector */
3713     int r;
3714     int size = a->sz;
3715 
3716     if (!a->p && a->rm != 0) {
3717         /* For non-postindexed accesses the Rm field must be 0 */
3718         return false;
3719     }
3720     if (size == 3 && !a->q && a->selem != 1) {
3721         return false;
3722     }
3723     if (!fp_access_check(s)) {
3724         return true;
3725     }
3726 
3727     if (a->rn == 31) {
3728         gen_check_sp_alignment(s);
3729     }
3730 
3731     /* For our purposes, bytes are always little-endian.  */
3732     endian = s->be_data;
3733     if (size == 0) {
3734         endian = MO_LE;
3735     }
3736 
3737     total = a->rpt * a->selem * (a->q ? 16 : 8);
3738     tcg_rn = cpu_reg_sp(s, a->rn);
3739 
3740     /*
3741      * Issue the MTE check vs the logical repeat count, before we
3742      * promote consecutive little-endian elements below.
3743      */
3744     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3745                                 finalize_memop_asimd(s, size));
3746 
3747     /*
3748      * Consecutive little-endian elements from a single register
3749      * can be promoted to a larger little-endian operation.
3750      */
3751     align = MO_ALIGN;
3752     if (a->selem == 1 && endian == MO_LE) {
3753         align = pow2_align(size);
3754         size = 3;
3755     }
3756     if (!s->align_mem) {
3757         align = 0;
3758     }
3759     mop = endian | size | align;
3760 
3761     elements = (a->q ? 16 : 8) >> size;
3762     tcg_ebytes = tcg_constant_i64(1 << size);
3763     for (r = 0; r < a->rpt; r++) {
3764         int e;
3765         for (e = 0; e < elements; e++) {
3766             int xs;
3767             for (xs = 0; xs < a->selem; xs++) {
3768                 int tt = (a->rt + r + xs) % 32;
3769                 do_vec_st(s, tt, e, clean_addr, mop);
3770                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771             }
3772         }
3773     }
3774 
3775     if (a->p) {
3776         if (a->rm == 31) {
3777             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3778         } else {
3779             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3780         }
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3786 {
3787     int xs, total, rt;
3788     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3789     MemOp mop;
3790 
3791     if (!a->p && a->rm != 0) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     total = a->selem << a->scale;
3803     tcg_rn = cpu_reg_sp(s, a->rn);
3804 
3805     mop = finalize_memop_asimd(s, a->scale);
3806     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3807                                 total, mop);
3808 
3809     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3810     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3811         do_vec_st(s, rt, a->index, clean_addr, mop);
3812         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3813     }
3814 
3815     if (a->p) {
3816         if (a->rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3820         }
3821     }
3822     return true;
3823 }
3824 
3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3826 {
3827     int xs, total, rt;
3828     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3829     MemOp mop;
3830 
3831     if (!a->p && a->rm != 0) {
3832         return false;
3833     }
3834     if (!fp_access_check(s)) {
3835         return true;
3836     }
3837 
3838     if (a->rn == 31) {
3839         gen_check_sp_alignment(s);
3840     }
3841 
3842     total = a->selem << a->scale;
3843     tcg_rn = cpu_reg_sp(s, a->rn);
3844 
3845     mop = finalize_memop_asimd(s, a->scale);
3846     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3847                                 total, mop);
3848 
3849     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3850     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3851         do_vec_ld(s, rt, a->index, clean_addr, mop);
3852         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3853     }
3854 
3855     if (a->p) {
3856         if (a->rm == 31) {
3857             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3858         } else {
3859             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3860         }
3861     }
3862     return true;
3863 }
3864 
3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3866 {
3867     int xs, total, rt;
3868     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3869     MemOp mop;
3870 
3871     if (!a->p && a->rm != 0) {
3872         return false;
3873     }
3874     if (!fp_access_check(s)) {
3875         return true;
3876     }
3877 
3878     if (a->rn == 31) {
3879         gen_check_sp_alignment(s);
3880     }
3881 
3882     total = a->selem << a->scale;
3883     tcg_rn = cpu_reg_sp(s, a->rn);
3884 
3885     mop = finalize_memop_asimd(s, a->scale);
3886     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3887                                 total, mop);
3888 
3889     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3890     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3891         /* Load and replicate to all elements */
3892         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3893 
3894         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3895         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3896                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3897         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3898     }
3899 
3900     if (a->p) {
3901         if (a->rm == 31) {
3902             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3903         } else {
3904             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3905         }
3906     }
3907     return true;
3908 }
3909 
3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3911 {
3912     TCGv_i64 addr, clean_addr, tcg_rt;
3913     int size = 4 << s->dcz_blocksize;
3914 
3915     if (!dc_isar_feature(aa64_mte, s)) {
3916         return false;
3917     }
3918     if (s->current_el == 0) {
3919         return false;
3920     }
3921 
3922     if (a->rn == 31) {
3923         gen_check_sp_alignment(s);
3924     }
3925 
3926     addr = read_cpu_reg_sp(s, a->rn, true);
3927     tcg_gen_addi_i64(addr, addr, a->imm);
3928     tcg_rt = cpu_reg(s, a->rt);
3929 
3930     if (s->ata[0]) {
3931         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3932     }
3933     /*
3934      * The non-tags portion of STZGM is mostly like DC_ZVA,
3935      * except the alignment happens before the access.
3936      */
3937     clean_addr = clean_data_tbi(s, addr);
3938     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3939     gen_helper_dc_zva(tcg_env, clean_addr);
3940     return true;
3941 }
3942 
3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3944 {
3945     TCGv_i64 addr, clean_addr, tcg_rt;
3946 
3947     if (!dc_isar_feature(aa64_mte, s)) {
3948         return false;
3949     }
3950     if (s->current_el == 0) {
3951         return false;
3952     }
3953 
3954     if (a->rn == 31) {
3955         gen_check_sp_alignment(s);
3956     }
3957 
3958     addr = read_cpu_reg_sp(s, a->rn, true);
3959     tcg_gen_addi_i64(addr, addr, a->imm);
3960     tcg_rt = cpu_reg(s, a->rt);
3961 
3962     if (s->ata[0]) {
3963         gen_helper_stgm(tcg_env, addr, tcg_rt);
3964     } else {
3965         MMUAccessType acc = MMU_DATA_STORE;
3966         int size = 4 << s->gm_blocksize;
3967 
3968         clean_addr = clean_data_tbi(s, addr);
3969         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3970         gen_probe_access(s, clean_addr, acc, size);
3971     }
3972     return true;
3973 }
3974 
3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3976 {
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     if (!dc_isar_feature(aa64_mte, s)) {
3980         return false;
3981     }
3982     if (s->current_el == 0) {
3983         return false;
3984     }
3985 
3986     if (a->rn == 31) {
3987         gen_check_sp_alignment(s);
3988     }
3989 
3990     addr = read_cpu_reg_sp(s, a->rn, true);
3991     tcg_gen_addi_i64(addr, addr, a->imm);
3992     tcg_rt = cpu_reg(s, a->rt);
3993 
3994     if (s->ata[0]) {
3995         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3996     } else {
3997         MMUAccessType acc = MMU_DATA_LOAD;
3998         int size = 4 << s->gm_blocksize;
3999 
4000         clean_addr = clean_data_tbi(s, addr);
4001         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4002         gen_probe_access(s, clean_addr, acc, size);
4003         /* The result tags are zeros.  */
4004         tcg_gen_movi_i64(tcg_rt, 0);
4005     }
4006     return true;
4007 }
4008 
4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4010 {
4011     TCGv_i64 addr, clean_addr, tcg_rt;
4012 
4013     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4014         return false;
4015     }
4016 
4017     if (a->rn == 31) {
4018         gen_check_sp_alignment(s);
4019     }
4020 
4021     addr = read_cpu_reg_sp(s, a->rn, true);
4022     if (!a->p) {
4023         /* pre-index or signed offset */
4024         tcg_gen_addi_i64(addr, addr, a->imm);
4025     }
4026 
4027     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4028     tcg_rt = cpu_reg(s, a->rt);
4029     if (s->ata[0]) {
4030         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4031     } else {
4032         /*
4033          * Tag access disabled: we must check for aborts on the load
4034          * load from [rn+offset], and then insert a 0 tag into rt.
4035          */
4036         clean_addr = clean_data_tbi(s, addr);
4037         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4038         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4039     }
4040 
4041     if (a->w) {
4042         /* pre-index or post-index */
4043         if (a->p) {
4044             /* post-index */
4045             tcg_gen_addi_i64(addr, addr, a->imm);
4046         }
4047         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4048     }
4049     return true;
4050 }
4051 
4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4053 {
4054     TCGv_i64 addr, tcg_rt;
4055 
4056     if (a->rn == 31) {
4057         gen_check_sp_alignment(s);
4058     }
4059 
4060     addr = read_cpu_reg_sp(s, a->rn, true);
4061     if (!a->p) {
4062         /* pre-index or signed offset */
4063         tcg_gen_addi_i64(addr, addr, a->imm);
4064     }
4065     tcg_rt = cpu_reg_sp(s, a->rt);
4066     if (!s->ata[0]) {
4067         /*
4068          * For STG and ST2G, we need to check alignment and probe memory.
4069          * TODO: For STZG and STZ2G, we could rely on the stores below,
4070          * at least for system mode; user-only won't enforce alignment.
4071          */
4072         if (is_pair) {
4073             gen_helper_st2g_stub(tcg_env, addr);
4074         } else {
4075             gen_helper_stg_stub(tcg_env, addr);
4076         }
4077     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4078         if (is_pair) {
4079             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4080         } else {
4081             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4082         }
4083     } else {
4084         if (is_pair) {
4085             gen_helper_st2g(tcg_env, addr, tcg_rt);
4086         } else {
4087             gen_helper_stg(tcg_env, addr, tcg_rt);
4088         }
4089     }
4090 
4091     if (is_zero) {
4092         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4093         TCGv_i64 zero64 = tcg_constant_i64(0);
4094         TCGv_i128 zero128 = tcg_temp_new_i128();
4095         int mem_index = get_mem_index(s);
4096         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4097 
4098         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4099 
4100         /* This is 1 or 2 atomic 16-byte operations. */
4101         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4102         if (is_pair) {
4103             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4104             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4105         }
4106     }
4107 
4108     if (a->w) {
4109         /* pre-index or post-index */
4110         if (a->p) {
4111             /* post-index */
4112             tcg_gen_addi_i64(addr, addr, a->imm);
4113         }
4114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4115     }
4116     return true;
4117 }
4118 
4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4123 
4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4125 
4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4127                    bool is_setg, SetFn fn)
4128 {
4129     int memidx;
4130     uint32_t syndrome, desc = 0;
4131 
4132     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4133         return false;
4134     }
4135 
4136     /*
4137      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4138      * us to pull this check before the CheckMOPSEnabled() test
4139      * (which we do in the helper function)
4140      */
4141     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4142         a->rd == 31 || a->rn == 31) {
4143         return false;
4144     }
4145 
4146     memidx = get_a64_user_mem_index(s, a->unpriv);
4147 
4148     /*
4149      * We pass option_a == true, matching our implementation;
4150      * we pass wrong_option == false: helper function may set that bit.
4151      */
4152     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4153                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4154 
4155     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4156         /* We may need to do MTE tag checking, so assemble the descriptor */
4157         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4158         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4159         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4160         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4161     }
4162     /* The helper function always needs the memidx even with MTE disabled */
4163     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4164 
4165     /*
4166      * The helper needs the register numbers, but since they're in
4167      * the syndrome anyway, we let it extract them from there rather
4168      * than passing in an extra three integer arguments.
4169      */
4170     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4171     return true;
4172 }
4173 
4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4180 
4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4182 
4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4184 {
4185     int rmemidx, wmemidx;
4186     uint32_t syndrome, rdesc = 0, wdesc = 0;
4187     bool wunpriv = extract32(a->options, 0, 1);
4188     bool runpriv = extract32(a->options, 1, 1);
4189 
4190     /*
4191      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192      * us to pull this check before the CheckMOPSEnabled() test
4193      * (which we do in the helper function)
4194      */
4195     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4197         return false;
4198     }
4199 
4200     rmemidx = get_a64_user_mem_index(s, runpriv);
4201     wmemidx = get_a64_user_mem_index(s, wunpriv);
4202 
4203     /*
4204      * We pass option_a == true, matching our implementation;
4205      * we pass wrong_option == false: helper function may set that bit.
4206      */
4207     syndrome = syn_mop(false, false, a->options, is_epilogue,
4208                        false, true, a->rd, a->rs, a->rn);
4209 
4210     /* If we need to do MTE tag checking, assemble the descriptors */
4211     if (s->mte_active[runpriv]) {
4212         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4213         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4214     }
4215     if (s->mte_active[wunpriv]) {
4216         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4217         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4218         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4219     }
4220     /* The helper function needs these parts of the descriptor regardless */
4221     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4222     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4223 
4224     /*
4225      * The helper needs the register numbers, but since they're in
4226      * the syndrome anyway, we let it extract them from there rather
4227      * than passing in an extra three integer arguments.
4228      */
4229     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4230        tcg_constant_i32(rdesc));
4231     return true;
4232 }
4233 
4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4240 
4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4242 
4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4244                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4245 {
4246     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4247     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4248     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4249 
4250     fn(tcg_rd, tcg_rn, tcg_imm);
4251     if (!a->sf) {
4252         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4253     }
4254     return true;
4255 }
4256 
4257 /*
4258  * PC-rel. addressing
4259  */
4260 
4261 static bool trans_ADR(DisasContext *s, arg_ri *a)
4262 {
4263     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4264     return true;
4265 }
4266 
4267 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4268 {
4269     int64_t offset = (int64_t)a->imm << 12;
4270 
4271     /* The page offset is ok for CF_PCREL. */
4272     offset -= s->pc_curr & 0xfff;
4273     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4274     return true;
4275 }
4276 
4277 /*
4278  * Add/subtract (immediate)
4279  */
4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4284 
4285 /*
4286  * Add/subtract (immediate, with tags)
4287  */
4288 
4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4290                                       bool sub_op)
4291 {
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     imm = a->uimm6 << LOG2_TAG_GRANULE;
4296     if (sub_op) {
4297         imm = -imm;
4298     }
4299 
4300     tcg_rn = cpu_reg_sp(s, a->rn);
4301     tcg_rd = cpu_reg_sp(s, a->rd);
4302 
4303     if (s->ata[0]) {
4304         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4305                            tcg_constant_i32(imm),
4306                            tcg_constant_i32(a->uimm4));
4307     } else {
4308         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4309         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4310     }
4311     return true;
4312 }
4313 
4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4316 
4317 /* The input should be a value in the bottom e bits (with higher
4318  * bits zero); returns that value replicated into every element
4319  * of size e in a 64 bit integer.
4320  */
4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4322 {
4323     assert(e != 0);
4324     while (e < 64) {
4325         mask |= mask << e;
4326         e *= 2;
4327     }
4328     return mask;
4329 }
4330 
4331 /*
4332  * Logical (immediate)
4333  */
4334 
4335 /*
4336  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4337  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4338  * value (ie should cause a guest UNDEF exception), and true if they are
4339  * valid, in which case the decoded bit pattern is written to result.
4340  */
4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4342                             unsigned int imms, unsigned int immr)
4343 {
4344     uint64_t mask;
4345     unsigned e, levels, s, r;
4346     int len;
4347 
4348     assert(immn < 2 && imms < 64 && immr < 64);
4349 
4350     /* The bit patterns we create here are 64 bit patterns which
4351      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4352      * 64 bits each. Each element contains the same value: a run
4353      * of between 1 and e-1 non-zero bits, rotated within the
4354      * element by between 0 and e-1 bits.
4355      *
4356      * The element size and run length are encoded into immn (1 bit)
4357      * and imms (6 bits) as follows:
4358      * 64 bit elements: immn = 1, imms = <length of run - 1>
4359      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4360      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4361      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4362      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4363      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4364      * Notice that immn = 0, imms = 11111x is the only combination
4365      * not covered by one of the above options; this is reserved.
4366      * Further, <length of run - 1> all-ones is a reserved pattern.
4367      *
4368      * In all cases the rotation is by immr % e (and immr is 6 bits).
4369      */
4370 
4371     /* First determine the element size */
4372     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4373     if (len < 1) {
4374         /* This is the immn == 0, imms == 0x11111x case */
4375         return false;
4376     }
4377     e = 1 << len;
4378 
4379     levels = e - 1;
4380     s = imms & levels;
4381     r = immr & levels;
4382 
4383     if (s == levels) {
4384         /* <length of run - 1> mustn't be all-ones. */
4385         return false;
4386     }
4387 
4388     /* Create the value of one element: s+1 set bits rotated
4389      * by r within the element (which is e bits wide)...
4390      */
4391     mask = MAKE_64BIT_MASK(0, s + 1);
4392     if (r) {
4393         mask = (mask >> r) | (mask << (e - r));
4394         mask &= MAKE_64BIT_MASK(0, e);
4395     }
4396     /* ...then replicate the element over the whole 64 bit value */
4397     mask = bitfield_replicate(mask, e);
4398     *result = mask;
4399     return true;
4400 }
4401 
4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4403                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4404 {
4405     TCGv_i64 tcg_rd, tcg_rn;
4406     uint64_t imm;
4407 
4408     /* Some immediate field values are reserved. */
4409     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4410                                 extract32(a->dbm, 0, 6),
4411                                 extract32(a->dbm, 6, 6))) {
4412         return false;
4413     }
4414     if (!a->sf) {
4415         imm &= 0xffffffffull;
4416     }
4417 
4418     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4419     tcg_rn = cpu_reg(s, a->rn);
4420 
4421     fn(tcg_rd, tcg_rn, imm);
4422     if (set_cc) {
4423         gen_logic_CC(a->sf, tcg_rd);
4424     }
4425     if (!a->sf) {
4426         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4427     }
4428     return true;
4429 }
4430 
4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4435 
4436 /*
4437  * Move wide (immediate)
4438  */
4439 
4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4441 {
4442     int pos = a->hw << 4;
4443     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4444     return true;
4445 }
4446 
4447 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4448 {
4449     int pos = a->hw << 4;
4450     uint64_t imm = a->imm;
4451 
4452     imm = ~(imm << pos);
4453     if (!a->sf) {
4454         imm = (uint32_t)imm;
4455     }
4456     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4457     return true;
4458 }
4459 
4460 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4461 {
4462     int pos = a->hw << 4;
4463     TCGv_i64 tcg_rd, tcg_im;
4464 
4465     tcg_rd = cpu_reg(s, a->rd);
4466     tcg_im = tcg_constant_i64(a->imm);
4467     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4468     if (!a->sf) {
4469         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4470     }
4471     return true;
4472 }
4473 
4474 /*
4475  * Bitfield
4476  */
4477 
4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4479 {
4480     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4481     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482     unsigned int bitsize = a->sf ? 64 : 32;
4483     unsigned int ri = a->immr;
4484     unsigned int si = a->imms;
4485     unsigned int pos, len;
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         len = (si - ri) + 1;
4490         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4491         if (!a->sf) {
4492             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4493         }
4494     } else {
4495         /* Wd<32+s-r,32-r> = Wn<s:0> */
4496         len = si + 1;
4497         pos = (bitsize - ri) & (bitsize - 1);
4498 
4499         if (len < ri) {
4500             /*
4501              * Sign extend the destination field from len to fill the
4502              * balance of the word.  Let the deposit below insert all
4503              * of those sign bits.
4504              */
4505             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4506             len = ri;
4507         }
4508 
4509         /*
4510          * We start with zero, and we haven't modified any bits outside
4511          * bitsize, therefore no final zero-extension is unneeded for !sf.
4512          */
4513         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4514     }
4515     return true;
4516 }
4517 
4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4519 {
4520     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4521     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4522     unsigned int bitsize = a->sf ? 64 : 32;
4523     unsigned int ri = a->immr;
4524     unsigned int si = a->imms;
4525     unsigned int pos, len;
4526 
4527     tcg_rd = cpu_reg(s, a->rd);
4528     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 
4530     if (si >= ri) {
4531         /* Wd<s-r:0> = Wn<s:r> */
4532         len = (si - ri) + 1;
4533         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534     } else {
4535         /* Wd<32+s-r,32-r> = Wn<s:0> */
4536         len = si + 1;
4537         pos = (bitsize - ri) & (bitsize - 1);
4538         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4539     }
4540     return true;
4541 }
4542 
4543 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4544 {
4545     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4546     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4547     unsigned int bitsize = a->sf ? 64 : 32;
4548     unsigned int ri = a->immr;
4549     unsigned int si = a->imms;
4550     unsigned int pos, len;
4551 
4552     tcg_rd = cpu_reg(s, a->rd);
4553     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4554 
4555     if (si >= ri) {
4556         /* Wd<s-r:0> = Wn<s:r> */
4557         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4558         len = (si - ri) + 1;
4559         pos = 0;
4560     } else {
4561         /* Wd<32+s-r,32-r> = Wn<s:0> */
4562         len = si + 1;
4563         pos = (bitsize - ri) & (bitsize - 1);
4564     }
4565 
4566     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4567     if (!a->sf) {
4568         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4569     }
4570     return true;
4571 }
4572 
4573 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4574 {
4575     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4576 
4577     tcg_rd = cpu_reg(s, a->rd);
4578 
4579     if (unlikely(a->imm == 0)) {
4580         /*
4581          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4582          * so an extract from bit 0 is a special case.
4583          */
4584         if (a->sf) {
4585             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4586         } else {
4587             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4588         }
4589     } else {
4590         tcg_rm = cpu_reg(s, a->rm);
4591         tcg_rn = cpu_reg(s, a->rn);
4592 
4593         if (a->sf) {
4594             /* Specialization to ROR happens in EXTRACT2.  */
4595             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4596         } else {
4597             TCGv_i32 t0 = tcg_temp_new_i32();
4598 
4599             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4600             if (a->rm == a->rn) {
4601                 tcg_gen_rotri_i32(t0, t0, a->imm);
4602             } else {
4603                 TCGv_i32 t1 = tcg_temp_new_i32();
4604                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4605                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4606             }
4607             tcg_gen_extu_i32_i64(tcg_rd, t0);
4608         }
4609     }
4610     return true;
4611 }
4612 
4613 /*
4614  * Cryptographic AES, SHA, SHA512
4615  */
4616 
4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4621 
4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4626 
4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4630 
4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4634 
4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4642 
4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4645 
4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4648 
4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4650 {
4651     if (!dc_isar_feature(aa64_sm3, s)) {
4652         return false;
4653     }
4654     if (fp_access_check(s)) {
4655         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4656         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4657         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4658         TCGv_i32 tcg_res = tcg_temp_new_i32();
4659         unsigned vsz, dofs;
4660 
4661         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4662         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4663         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4664 
4665         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4666         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4667         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4668         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4669 
4670         /* Clear the whole register first, then store bits [127:96]. */
4671         vsz = vec_full_reg_size(s);
4672         dofs = vec_full_reg_offset(s, a->rd);
4673         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4674         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4675     }
4676     return true;
4677 }
4678 
4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4680 {
4681     if (fp_access_check(s)) {
4682         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4683     }
4684     return true;
4685 }
4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4690 
4691 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4692 {
4693     if (!dc_isar_feature(aa64_sha3, s)) {
4694         return false;
4695     }
4696     if (fp_access_check(s)) {
4697         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4698                      vec_full_reg_offset(s, a->rn),
4699                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4700                      vec_full_reg_size(s));
4701     }
4702     return true;
4703 }
4704 
4705 /*
4706  * Advanced SIMD copy
4707  */
4708 
4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4710 {
4711     unsigned esz = ctz32(imm);
4712     if (esz <= MO_64) {
4713         *pesz = esz;
4714         *pidx = imm >> (esz + 1);
4715         return true;
4716     }
4717     return false;
4718 }
4719 
4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4721 {
4722     MemOp esz;
4723     unsigned idx;
4724 
4725     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4726         return false;
4727     }
4728     if (fp_access_check(s)) {
4729         /*
4730          * This instruction just extracts the specified element and
4731          * zero-extends it into the bottom of the destination register.
4732          */
4733         TCGv_i64 tmp = tcg_temp_new_i64();
4734         read_vec_element(s, tmp, a->rn, idx, esz);
4735         write_fp_dreg(s, a->rd, tmp);
4736     }
4737     return true;
4738 }
4739 
4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4741 {
4742     MemOp esz;
4743     unsigned idx;
4744 
4745     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4746         return false;
4747     }
4748     if (esz == MO_64 && !a->q) {
4749         return false;
4750     }
4751     if (fp_access_check(s)) {
4752         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4753                              vec_reg_offset(s, a->rn, idx, esz),
4754                              a->q ? 16 : 8, vec_full_reg_size(s));
4755     }
4756     return true;
4757 }
4758 
4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4760 {
4761     MemOp esz;
4762     unsigned idx;
4763 
4764     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4765         return false;
4766     }
4767     if (esz == MO_64 && !a->q) {
4768         return false;
4769     }
4770     if (fp_access_check(s)) {
4771         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4772                              a->q ? 16 : 8, vec_full_reg_size(s),
4773                              cpu_reg(s, a->rn));
4774     }
4775     return true;
4776 }
4777 
4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4779 {
4780     MemOp esz;
4781     unsigned idx;
4782 
4783     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4784         return false;
4785     }
4786     if (is_signed) {
4787         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4788             return false;
4789         }
4790     } else {
4791         if (esz == MO_64 ? !a->q : a->q) {
4792             return false;
4793         }
4794     }
4795     if (fp_access_check(s)) {
4796         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4797         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4798         if (is_signed && !a->q) {
4799             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4800         }
4801     }
4802     return true;
4803 }
4804 
4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4806 TRANS(UMOV, do_smov_umov, a, 0)
4807 
4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4809 {
4810     MemOp esz;
4811     unsigned idx;
4812 
4813     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4814         return false;
4815     }
4816     if (fp_access_check(s)) {
4817         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4818         clear_vec_high(s, true, a->rd);
4819     }
4820     return true;
4821 }
4822 
4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4824 {
4825     MemOp esz;
4826     unsigned didx, sidx;
4827 
4828     if (!decode_esz_idx(a->di, &esz, &didx)) {
4829         return false;
4830     }
4831     sidx = a->si >> esz;
4832     if (fp_access_check(s)) {
4833         TCGv_i64 tmp = tcg_temp_new_i64();
4834 
4835         read_vec_element(s, tmp, a->rn, sidx, esz);
4836         write_vec_element(s, tmp, a->rd, didx, esz);
4837 
4838         /* INS is considered a 128-bit write for SVE. */
4839         clear_vec_high(s, true, a->rd);
4840     }
4841     return true;
4842 }
4843 
4844 /*
4845  * Advanced SIMD three same
4846  */
4847 
4848 typedef struct FPScalar {
4849     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4850     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4851     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4852 } FPScalar;
4853 
4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4855 {
4856     switch (a->esz) {
4857     case MO_64:
4858         if (fp_access_check(s)) {
4859             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4860             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4861             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4862             write_fp_dreg(s, a->rd, t0);
4863         }
4864         break;
4865     case MO_32:
4866         if (fp_access_check(s)) {
4867             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4868             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4869             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4870             write_fp_sreg(s, a->rd, t0);
4871         }
4872         break;
4873     case MO_16:
4874         if (!dc_isar_feature(aa64_fp16, s)) {
4875             return false;
4876         }
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     default:
4885         return false;
4886     }
4887     return true;
4888 }
4889 
4890 static const FPScalar f_scalar_fadd = {
4891     gen_helper_vfp_addh,
4892     gen_helper_vfp_adds,
4893     gen_helper_vfp_addd,
4894 };
4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4896 
4897 static const FPScalar f_scalar_fsub = {
4898     gen_helper_vfp_subh,
4899     gen_helper_vfp_subs,
4900     gen_helper_vfp_subd,
4901 };
4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4903 
4904 static const FPScalar f_scalar_fdiv = {
4905     gen_helper_vfp_divh,
4906     gen_helper_vfp_divs,
4907     gen_helper_vfp_divd,
4908 };
4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4910 
4911 static const FPScalar f_scalar_fmul = {
4912     gen_helper_vfp_mulh,
4913     gen_helper_vfp_muls,
4914     gen_helper_vfp_muld,
4915 };
4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4917 
4918 static const FPScalar f_scalar_fmax = {
4919     gen_helper_advsimd_maxh,
4920     gen_helper_vfp_maxs,
4921     gen_helper_vfp_maxd,
4922 };
4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4924 
4925 static const FPScalar f_scalar_fmin = {
4926     gen_helper_advsimd_minh,
4927     gen_helper_vfp_mins,
4928     gen_helper_vfp_mind,
4929 };
4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4931 
4932 static const FPScalar f_scalar_fmaxnm = {
4933     gen_helper_advsimd_maxnumh,
4934     gen_helper_vfp_maxnums,
4935     gen_helper_vfp_maxnumd,
4936 };
4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4938 
4939 static const FPScalar f_scalar_fminnm = {
4940     gen_helper_advsimd_minnumh,
4941     gen_helper_vfp_minnums,
4942     gen_helper_vfp_minnumd,
4943 };
4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4945 
4946 static const FPScalar f_scalar_fmulx = {
4947     gen_helper_advsimd_mulxh,
4948     gen_helper_vfp_mulxs,
4949     gen_helper_vfp_mulxd,
4950 };
4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4952 
4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4954 {
4955     gen_helper_vfp_mulh(d, n, m, s);
4956     gen_vfp_negh(d, d);
4957 }
4958 
4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4960 {
4961     gen_helper_vfp_muls(d, n, m, s);
4962     gen_vfp_negs(d, d);
4963 }
4964 
4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4966 {
4967     gen_helper_vfp_muld(d, n, m, s);
4968     gen_vfp_negd(d, d);
4969 }
4970 
4971 static const FPScalar f_scalar_fnmul = {
4972     gen_fnmul_h,
4973     gen_fnmul_s,
4974     gen_fnmul_d,
4975 };
4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4977 
4978 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
4979                           gen_helper_gvec_3_ptr * const fns[3])
4980 {
4981     MemOp esz = a->esz;
4982 
4983     switch (esz) {
4984     case MO_64:
4985         if (!a->q) {
4986             return false;
4987         }
4988         break;
4989     case MO_32:
4990         break;
4991     case MO_16:
4992         if (!dc_isar_feature(aa64_fp16, s)) {
4993             return false;
4994         }
4995         break;
4996     default:
4997         return false;
4998     }
4999     if (fp_access_check(s)) {
5000         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5001                           esz == MO_16, 0, fns[esz - 1]);
5002     }
5003     return true;
5004 }
5005 
5006 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5007     gen_helper_gvec_fadd_h,
5008     gen_helper_gvec_fadd_s,
5009     gen_helper_gvec_fadd_d,
5010 };
5011 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5012 
5013 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5014     gen_helper_gvec_fsub_h,
5015     gen_helper_gvec_fsub_s,
5016     gen_helper_gvec_fsub_d,
5017 };
5018 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5019 
5020 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5021     gen_helper_gvec_fdiv_h,
5022     gen_helper_gvec_fdiv_s,
5023     gen_helper_gvec_fdiv_d,
5024 };
5025 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5026 
5027 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5028     gen_helper_gvec_fmul_h,
5029     gen_helper_gvec_fmul_s,
5030     gen_helper_gvec_fmul_d,
5031 };
5032 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5033 
5034 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5035     gen_helper_gvec_fmax_h,
5036     gen_helper_gvec_fmax_s,
5037     gen_helper_gvec_fmax_d,
5038 };
5039 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5040 
5041 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5042     gen_helper_gvec_fmin_h,
5043     gen_helper_gvec_fmin_s,
5044     gen_helper_gvec_fmin_d,
5045 };
5046 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5047 
5048 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5049     gen_helper_gvec_fmaxnum_h,
5050     gen_helper_gvec_fmaxnum_s,
5051     gen_helper_gvec_fmaxnum_d,
5052 };
5053 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5054 
5055 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5056     gen_helper_gvec_fminnum_h,
5057     gen_helper_gvec_fminnum_s,
5058     gen_helper_gvec_fminnum_d,
5059 };
5060 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5061 
5062 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5063     gen_helper_gvec_fmulx_h,
5064     gen_helper_gvec_fmulx_s,
5065     gen_helper_gvec_fmulx_d,
5066 };
5067 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5068 
5069 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5070     gen_helper_gvec_vfma_h,
5071     gen_helper_gvec_vfma_s,
5072     gen_helper_gvec_vfma_d,
5073 };
5074 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5075 
5076 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5077     gen_helper_gvec_vfms_h,
5078     gen_helper_gvec_vfms_s,
5079     gen_helper_gvec_vfms_d,
5080 };
5081 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5082 
5083 /*
5084  * Advanced SIMD scalar/vector x indexed element
5085  */
5086 
5087 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5088 {
5089     switch (a->esz) {
5090     case MO_64:
5091         if (fp_access_check(s)) {
5092             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5093             TCGv_i64 t1 = tcg_temp_new_i64();
5094 
5095             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5096             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5097             write_fp_dreg(s, a->rd, t0);
5098         }
5099         break;
5100     case MO_32:
5101         if (fp_access_check(s)) {
5102             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5103             TCGv_i32 t1 = tcg_temp_new_i32();
5104 
5105             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5106             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5107             write_fp_sreg(s, a->rd, t0);
5108         }
5109         break;
5110     case MO_16:
5111         if (!dc_isar_feature(aa64_fp16, s)) {
5112             return false;
5113         }
5114         if (fp_access_check(s)) {
5115             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5116             TCGv_i32 t1 = tcg_temp_new_i32();
5117 
5118             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5119             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5120             write_fp_sreg(s, a->rd, t0);
5121         }
5122         break;
5123     default:
5124         g_assert_not_reached();
5125     }
5126     return true;
5127 }
5128 
5129 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5130 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5131 
5132 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5133 {
5134     switch (a->esz) {
5135     case MO_64:
5136         if (fp_access_check(s)) {
5137             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5138             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5139             TCGv_i64 t2 = tcg_temp_new_i64();
5140 
5141             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5142             if (neg) {
5143                 gen_vfp_negd(t1, t1);
5144             }
5145             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5146             write_fp_dreg(s, a->rd, t0);
5147         }
5148         break;
5149     case MO_32:
5150         if (fp_access_check(s)) {
5151             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5152             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5153             TCGv_i32 t2 = tcg_temp_new_i32();
5154 
5155             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5156             if (neg) {
5157                 gen_vfp_negs(t1, t1);
5158             }
5159             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5160             write_fp_sreg(s, a->rd, t0);
5161         }
5162         break;
5163     case MO_16:
5164         if (!dc_isar_feature(aa64_fp16, s)) {
5165             return false;
5166         }
5167         if (fp_access_check(s)) {
5168             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5169             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5170             TCGv_i32 t2 = tcg_temp_new_i32();
5171 
5172             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5173             if (neg) {
5174                 gen_vfp_negh(t1, t1);
5175             }
5176             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5177                                        fpstatus_ptr(FPST_FPCR_F16));
5178             write_fp_sreg(s, a->rd, t0);
5179         }
5180         break;
5181     default:
5182         g_assert_not_reached();
5183     }
5184     return true;
5185 }
5186 
5187 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5188 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5189 
5190 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5191                               gen_helper_gvec_3_ptr * const fns[3])
5192 {
5193     MemOp esz = a->esz;
5194 
5195     switch (esz) {
5196     case MO_64:
5197         if (!a->q) {
5198             return false;
5199         }
5200         break;
5201     case MO_32:
5202         break;
5203     case MO_16:
5204         if (!dc_isar_feature(aa64_fp16, s)) {
5205             return false;
5206         }
5207         break;
5208     default:
5209         g_assert_not_reached();
5210     }
5211     if (fp_access_check(s)) {
5212         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5213                           esz == MO_16, a->idx, fns[esz - 1]);
5214     }
5215     return true;
5216 }
5217 
5218 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5219     gen_helper_gvec_fmul_idx_h,
5220     gen_helper_gvec_fmul_idx_s,
5221     gen_helper_gvec_fmul_idx_d,
5222 };
5223 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5224 
5225 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5226     gen_helper_gvec_fmulx_idx_h,
5227     gen_helper_gvec_fmulx_idx_s,
5228     gen_helper_gvec_fmulx_idx_d,
5229 };
5230 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5231 
5232 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5233 {
5234     static gen_helper_gvec_4_ptr * const fns[3] = {
5235         gen_helper_gvec_fmla_idx_h,
5236         gen_helper_gvec_fmla_idx_s,
5237         gen_helper_gvec_fmla_idx_d,
5238     };
5239     MemOp esz = a->esz;
5240 
5241     switch (esz) {
5242     case MO_64:
5243         if (!a->q) {
5244             return false;
5245         }
5246         break;
5247     case MO_32:
5248         break;
5249     case MO_16:
5250         if (!dc_isar_feature(aa64_fp16, s)) {
5251             return false;
5252         }
5253         break;
5254     default:
5255         g_assert_not_reached();
5256     }
5257     if (fp_access_check(s)) {
5258         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5259                           esz == MO_16, (a->idx << 1) | neg,
5260                           fns[esz - 1]);
5261     }
5262     return true;
5263 }
5264 
5265 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5266 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5267 
5268 
5269 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5270  * Note that it is the caller's responsibility to ensure that the
5271  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5272  * mandated semantics for out of range shifts.
5273  */
5274 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5275                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5276 {
5277     switch (shift_type) {
5278     case A64_SHIFT_TYPE_LSL:
5279         tcg_gen_shl_i64(dst, src, shift_amount);
5280         break;
5281     case A64_SHIFT_TYPE_LSR:
5282         tcg_gen_shr_i64(dst, src, shift_amount);
5283         break;
5284     case A64_SHIFT_TYPE_ASR:
5285         if (!sf) {
5286             tcg_gen_ext32s_i64(dst, src);
5287         }
5288         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5289         break;
5290     case A64_SHIFT_TYPE_ROR:
5291         if (sf) {
5292             tcg_gen_rotr_i64(dst, src, shift_amount);
5293         } else {
5294             TCGv_i32 t0, t1;
5295             t0 = tcg_temp_new_i32();
5296             t1 = tcg_temp_new_i32();
5297             tcg_gen_extrl_i64_i32(t0, src);
5298             tcg_gen_extrl_i64_i32(t1, shift_amount);
5299             tcg_gen_rotr_i32(t0, t0, t1);
5300             tcg_gen_extu_i32_i64(dst, t0);
5301         }
5302         break;
5303     default:
5304         assert(FALSE); /* all shift types should be handled */
5305         break;
5306     }
5307 
5308     if (!sf) { /* zero extend final result */
5309         tcg_gen_ext32u_i64(dst, dst);
5310     }
5311 }
5312 
5313 /* Shift a TCGv src by immediate, put result in dst.
5314  * The shift amount must be in range (this should always be true as the
5315  * relevant instructions will UNDEF on bad shift immediates).
5316  */
5317 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5318                           enum a64_shift_type shift_type, unsigned int shift_i)
5319 {
5320     assert(shift_i < (sf ? 64 : 32));
5321 
5322     if (shift_i == 0) {
5323         tcg_gen_mov_i64(dst, src);
5324     } else {
5325         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5326     }
5327 }
5328 
5329 /* Logical (shifted register)
5330  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5331  * +----+-----+-----------+-------+---+------+--------+------+------+
5332  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5333  * +----+-----+-----------+-------+---+------+--------+------+------+
5334  */
5335 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5336 {
5337     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5338     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5339 
5340     sf = extract32(insn, 31, 1);
5341     opc = extract32(insn, 29, 2);
5342     shift_type = extract32(insn, 22, 2);
5343     invert = extract32(insn, 21, 1);
5344     rm = extract32(insn, 16, 5);
5345     shift_amount = extract32(insn, 10, 6);
5346     rn = extract32(insn, 5, 5);
5347     rd = extract32(insn, 0, 5);
5348 
5349     if (!sf && (shift_amount & (1 << 5))) {
5350         unallocated_encoding(s);
5351         return;
5352     }
5353 
5354     tcg_rd = cpu_reg(s, rd);
5355 
5356     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5357         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5358          * register-register MOV and MVN, so it is worth special casing.
5359          */
5360         tcg_rm = cpu_reg(s, rm);
5361         if (invert) {
5362             tcg_gen_not_i64(tcg_rd, tcg_rm);
5363             if (!sf) {
5364                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5365             }
5366         } else {
5367             if (sf) {
5368                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5369             } else {
5370                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5371             }
5372         }
5373         return;
5374     }
5375 
5376     tcg_rm = read_cpu_reg(s, rm, sf);
5377 
5378     if (shift_amount) {
5379         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5380     }
5381 
5382     tcg_rn = cpu_reg(s, rn);
5383 
5384     switch (opc | (invert << 2)) {
5385     case 0: /* AND */
5386     case 3: /* ANDS */
5387         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5388         break;
5389     case 1: /* ORR */
5390         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5391         break;
5392     case 2: /* EOR */
5393         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5394         break;
5395     case 4: /* BIC */
5396     case 7: /* BICS */
5397         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5398         break;
5399     case 5: /* ORN */
5400         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5401         break;
5402     case 6: /* EON */
5403         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5404         break;
5405     default:
5406         assert(FALSE);
5407         break;
5408     }
5409 
5410     if (!sf) {
5411         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5412     }
5413 
5414     if (opc == 3) {
5415         gen_logic_CC(sf, tcg_rd);
5416     }
5417 }
5418 
5419 /*
5420  * Add/subtract (extended register)
5421  *
5422  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5423  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5424  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5425  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5426  *
5427  *  sf: 0 -> 32bit, 1 -> 64bit
5428  *  op: 0 -> add  , 1 -> sub
5429  *   S: 1 -> set flags
5430  * opt: 00
5431  * option: extension type (see DecodeRegExtend)
5432  * imm3: optional shift to Rm
5433  *
5434  * Rd = Rn + LSL(extend(Rm), amount)
5435  */
5436 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5437 {
5438     int rd = extract32(insn, 0, 5);
5439     int rn = extract32(insn, 5, 5);
5440     int imm3 = extract32(insn, 10, 3);
5441     int option = extract32(insn, 13, 3);
5442     int rm = extract32(insn, 16, 5);
5443     int opt = extract32(insn, 22, 2);
5444     bool setflags = extract32(insn, 29, 1);
5445     bool sub_op = extract32(insn, 30, 1);
5446     bool sf = extract32(insn, 31, 1);
5447 
5448     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5449     TCGv_i64 tcg_rd;
5450     TCGv_i64 tcg_result;
5451 
5452     if (imm3 > 4 || opt != 0) {
5453         unallocated_encoding(s);
5454         return;
5455     }
5456 
5457     /* non-flag setting ops may use SP */
5458     if (!setflags) {
5459         tcg_rd = cpu_reg_sp(s, rd);
5460     } else {
5461         tcg_rd = cpu_reg(s, rd);
5462     }
5463     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5464 
5465     tcg_rm = read_cpu_reg(s, rm, sf);
5466     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5467 
5468     tcg_result = tcg_temp_new_i64();
5469 
5470     if (!setflags) {
5471         if (sub_op) {
5472             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5473         } else {
5474             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5475         }
5476     } else {
5477         if (sub_op) {
5478             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5479         } else {
5480             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5481         }
5482     }
5483 
5484     if (sf) {
5485         tcg_gen_mov_i64(tcg_rd, tcg_result);
5486     } else {
5487         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5488     }
5489 }
5490 
5491 /*
5492  * Add/subtract (shifted register)
5493  *
5494  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5495  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5496  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5497  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5498  *
5499  *    sf: 0 -> 32bit, 1 -> 64bit
5500  *    op: 0 -> add  , 1 -> sub
5501  *     S: 1 -> set flags
5502  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5503  *  imm6: Shift amount to apply to Rm before the add/sub
5504  */
5505 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5506 {
5507     int rd = extract32(insn, 0, 5);
5508     int rn = extract32(insn, 5, 5);
5509     int imm6 = extract32(insn, 10, 6);
5510     int rm = extract32(insn, 16, 5);
5511     int shift_type = extract32(insn, 22, 2);
5512     bool setflags = extract32(insn, 29, 1);
5513     bool sub_op = extract32(insn, 30, 1);
5514     bool sf = extract32(insn, 31, 1);
5515 
5516     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5517     TCGv_i64 tcg_rn, tcg_rm;
5518     TCGv_i64 tcg_result;
5519 
5520     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5521         unallocated_encoding(s);
5522         return;
5523     }
5524 
5525     tcg_rn = read_cpu_reg(s, rn, sf);
5526     tcg_rm = read_cpu_reg(s, rm, sf);
5527 
5528     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5529 
5530     tcg_result = tcg_temp_new_i64();
5531 
5532     if (!setflags) {
5533         if (sub_op) {
5534             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5535         } else {
5536             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5537         }
5538     } else {
5539         if (sub_op) {
5540             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5541         } else {
5542             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5543         }
5544     }
5545 
5546     if (sf) {
5547         tcg_gen_mov_i64(tcg_rd, tcg_result);
5548     } else {
5549         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5550     }
5551 }
5552 
5553 /* Data-processing (3 source)
5554  *
5555  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5556  *  +--+------+-----------+------+------+----+------+------+------+
5557  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5558  *  +--+------+-----------+------+------+----+------+------+------+
5559  */
5560 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5561 {
5562     int rd = extract32(insn, 0, 5);
5563     int rn = extract32(insn, 5, 5);
5564     int ra = extract32(insn, 10, 5);
5565     int rm = extract32(insn, 16, 5);
5566     int op_id = (extract32(insn, 29, 3) << 4) |
5567         (extract32(insn, 21, 3) << 1) |
5568         extract32(insn, 15, 1);
5569     bool sf = extract32(insn, 31, 1);
5570     bool is_sub = extract32(op_id, 0, 1);
5571     bool is_high = extract32(op_id, 2, 1);
5572     bool is_signed = false;
5573     TCGv_i64 tcg_op1;
5574     TCGv_i64 tcg_op2;
5575     TCGv_i64 tcg_tmp;
5576 
5577     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5578     switch (op_id) {
5579     case 0x42: /* SMADDL */
5580     case 0x43: /* SMSUBL */
5581     case 0x44: /* SMULH */
5582         is_signed = true;
5583         break;
5584     case 0x0: /* MADD (32bit) */
5585     case 0x1: /* MSUB (32bit) */
5586     case 0x40: /* MADD (64bit) */
5587     case 0x41: /* MSUB (64bit) */
5588     case 0x4a: /* UMADDL */
5589     case 0x4b: /* UMSUBL */
5590     case 0x4c: /* UMULH */
5591         break;
5592     default:
5593         unallocated_encoding(s);
5594         return;
5595     }
5596 
5597     if (is_high) {
5598         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5599         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5600         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5601         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5602 
5603         if (is_signed) {
5604             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5605         } else {
5606             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5607         }
5608         return;
5609     }
5610 
5611     tcg_op1 = tcg_temp_new_i64();
5612     tcg_op2 = tcg_temp_new_i64();
5613     tcg_tmp = tcg_temp_new_i64();
5614 
5615     if (op_id < 0x42) {
5616         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5617         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5618     } else {
5619         if (is_signed) {
5620             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5621             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5622         } else {
5623             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5624             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5625         }
5626     }
5627 
5628     if (ra == 31 && !is_sub) {
5629         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5630         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5631     } else {
5632         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5633         if (is_sub) {
5634             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5635         } else {
5636             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5637         }
5638     }
5639 
5640     if (!sf) {
5641         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5642     }
5643 }
5644 
5645 /* Add/subtract (with carry)
5646  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5647  * +--+--+--+------------------------+------+-------------+------+-----+
5648  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5649  * +--+--+--+------------------------+------+-------------+------+-----+
5650  */
5651 
5652 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5653 {
5654     unsigned int sf, op, setflags, rm, rn, rd;
5655     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5656 
5657     sf = extract32(insn, 31, 1);
5658     op = extract32(insn, 30, 1);
5659     setflags = extract32(insn, 29, 1);
5660     rm = extract32(insn, 16, 5);
5661     rn = extract32(insn, 5, 5);
5662     rd = extract32(insn, 0, 5);
5663 
5664     tcg_rd = cpu_reg(s, rd);
5665     tcg_rn = cpu_reg(s, rn);
5666 
5667     if (op) {
5668         tcg_y = tcg_temp_new_i64();
5669         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5670     } else {
5671         tcg_y = cpu_reg(s, rm);
5672     }
5673 
5674     if (setflags) {
5675         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5676     } else {
5677         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5678     }
5679 }
5680 
5681 /*
5682  * Rotate right into flags
5683  *  31 30 29                21       15          10      5  4      0
5684  * +--+--+--+-----------------+--------+-----------+------+--+------+
5685  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5686  * +--+--+--+-----------------+--------+-----------+------+--+------+
5687  */
5688 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5689 {
5690     int mask = extract32(insn, 0, 4);
5691     int o2 = extract32(insn, 4, 1);
5692     int rn = extract32(insn, 5, 5);
5693     int imm6 = extract32(insn, 15, 6);
5694     int sf_op_s = extract32(insn, 29, 3);
5695     TCGv_i64 tcg_rn;
5696     TCGv_i32 nzcv;
5697 
5698     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5699         unallocated_encoding(s);
5700         return;
5701     }
5702 
5703     tcg_rn = read_cpu_reg(s, rn, 1);
5704     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5705 
5706     nzcv = tcg_temp_new_i32();
5707     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5708 
5709     if (mask & 8) { /* N */
5710         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5711     }
5712     if (mask & 4) { /* Z */
5713         tcg_gen_not_i32(cpu_ZF, nzcv);
5714         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5715     }
5716     if (mask & 2) { /* C */
5717         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5718     }
5719     if (mask & 1) { /* V */
5720         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5721     }
5722 }
5723 
5724 /*
5725  * Evaluate into flags
5726  *  31 30 29                21        15   14        10      5  4      0
5727  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5728  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5729  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5730  */
5731 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5732 {
5733     int o3_mask = extract32(insn, 0, 5);
5734     int rn = extract32(insn, 5, 5);
5735     int o2 = extract32(insn, 15, 6);
5736     int sz = extract32(insn, 14, 1);
5737     int sf_op_s = extract32(insn, 29, 3);
5738     TCGv_i32 tmp;
5739     int shift;
5740 
5741     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5742         !dc_isar_feature(aa64_condm_4, s)) {
5743         unallocated_encoding(s);
5744         return;
5745     }
5746     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5747 
5748     tmp = tcg_temp_new_i32();
5749     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5750     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5751     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5752     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5753     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5754 }
5755 
5756 /* Conditional compare (immediate / register)
5757  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5758  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5759  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5760  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5761  *        [1]                             y                [0]       [0]
5762  */
5763 static void disas_cc(DisasContext *s, uint32_t insn)
5764 {
5765     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5766     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5767     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5768     DisasCompare c;
5769 
5770     if (!extract32(insn, 29, 1)) {
5771         unallocated_encoding(s);
5772         return;
5773     }
5774     if (insn & (1 << 10 | 1 << 4)) {
5775         unallocated_encoding(s);
5776         return;
5777     }
5778     sf = extract32(insn, 31, 1);
5779     op = extract32(insn, 30, 1);
5780     is_imm = extract32(insn, 11, 1);
5781     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5782     cond = extract32(insn, 12, 4);
5783     rn = extract32(insn, 5, 5);
5784     nzcv = extract32(insn, 0, 4);
5785 
5786     /* Set T0 = !COND.  */
5787     tcg_t0 = tcg_temp_new_i32();
5788     arm_test_cc(&c, cond);
5789     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5790 
5791     /* Load the arguments for the new comparison.  */
5792     if (is_imm) {
5793         tcg_y = tcg_temp_new_i64();
5794         tcg_gen_movi_i64(tcg_y, y);
5795     } else {
5796         tcg_y = cpu_reg(s, y);
5797     }
5798     tcg_rn = cpu_reg(s, rn);
5799 
5800     /* Set the flags for the new comparison.  */
5801     tcg_tmp = tcg_temp_new_i64();
5802     if (op) {
5803         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5804     } else {
5805         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5806     }
5807 
5808     /* If COND was false, force the flags to #nzcv.  Compute two masks
5809      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5810      * For tcg hosts that support ANDC, we can make do with just T1.
5811      * In either case, allow the tcg optimizer to delete any unused mask.
5812      */
5813     tcg_t1 = tcg_temp_new_i32();
5814     tcg_t2 = tcg_temp_new_i32();
5815     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5816     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5817 
5818     if (nzcv & 8) { /* N */
5819         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5820     } else {
5821         if (TCG_TARGET_HAS_andc_i32) {
5822             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5823         } else {
5824             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5825         }
5826     }
5827     if (nzcv & 4) { /* Z */
5828         if (TCG_TARGET_HAS_andc_i32) {
5829             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5830         } else {
5831             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5832         }
5833     } else {
5834         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5835     }
5836     if (nzcv & 2) { /* C */
5837         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5838     } else {
5839         if (TCG_TARGET_HAS_andc_i32) {
5840             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5841         } else {
5842             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5843         }
5844     }
5845     if (nzcv & 1) { /* V */
5846         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5847     } else {
5848         if (TCG_TARGET_HAS_andc_i32) {
5849             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5850         } else {
5851             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5852         }
5853     }
5854 }
5855 
5856 /* Conditional select
5857  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5858  * +----+----+---+-----------------+------+------+-----+------+------+
5859  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5860  * +----+----+---+-----------------+------+------+-----+------+------+
5861  */
5862 static void disas_cond_select(DisasContext *s, uint32_t insn)
5863 {
5864     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5865     TCGv_i64 tcg_rd, zero;
5866     DisasCompare64 c;
5867 
5868     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5869         /* S == 1 or op2<1> == 1 */
5870         unallocated_encoding(s);
5871         return;
5872     }
5873     sf = extract32(insn, 31, 1);
5874     else_inv = extract32(insn, 30, 1);
5875     rm = extract32(insn, 16, 5);
5876     cond = extract32(insn, 12, 4);
5877     else_inc = extract32(insn, 10, 1);
5878     rn = extract32(insn, 5, 5);
5879     rd = extract32(insn, 0, 5);
5880 
5881     tcg_rd = cpu_reg(s, rd);
5882 
5883     a64_test_cc(&c, cond);
5884     zero = tcg_constant_i64(0);
5885 
5886     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5887         /* CSET & CSETM.  */
5888         if (else_inv) {
5889             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5890                                    tcg_rd, c.value, zero);
5891         } else {
5892             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5893                                 tcg_rd, c.value, zero);
5894         }
5895     } else {
5896         TCGv_i64 t_true = cpu_reg(s, rn);
5897         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5898         if (else_inv && else_inc) {
5899             tcg_gen_neg_i64(t_false, t_false);
5900         } else if (else_inv) {
5901             tcg_gen_not_i64(t_false, t_false);
5902         } else if (else_inc) {
5903             tcg_gen_addi_i64(t_false, t_false, 1);
5904         }
5905         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5906     }
5907 
5908     if (!sf) {
5909         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5910     }
5911 }
5912 
5913 static void handle_clz(DisasContext *s, unsigned int sf,
5914                        unsigned int rn, unsigned int rd)
5915 {
5916     TCGv_i64 tcg_rd, tcg_rn;
5917     tcg_rd = cpu_reg(s, rd);
5918     tcg_rn = cpu_reg(s, rn);
5919 
5920     if (sf) {
5921         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5922     } else {
5923         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5924         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5925         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5926         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5927     }
5928 }
5929 
5930 static void handle_cls(DisasContext *s, unsigned int sf,
5931                        unsigned int rn, unsigned int rd)
5932 {
5933     TCGv_i64 tcg_rd, tcg_rn;
5934     tcg_rd = cpu_reg(s, rd);
5935     tcg_rn = cpu_reg(s, rn);
5936 
5937     if (sf) {
5938         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5939     } else {
5940         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5941         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5942         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5943         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5944     }
5945 }
5946 
5947 static void handle_rbit(DisasContext *s, unsigned int sf,
5948                         unsigned int rn, unsigned int rd)
5949 {
5950     TCGv_i64 tcg_rd, tcg_rn;
5951     tcg_rd = cpu_reg(s, rd);
5952     tcg_rn = cpu_reg(s, rn);
5953 
5954     if (sf) {
5955         gen_helper_rbit64(tcg_rd, tcg_rn);
5956     } else {
5957         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5958         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5959         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5960         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5961     }
5962 }
5963 
5964 /* REV with sf==1, opcode==3 ("REV64") */
5965 static void handle_rev64(DisasContext *s, unsigned int sf,
5966                          unsigned int rn, unsigned int rd)
5967 {
5968     if (!sf) {
5969         unallocated_encoding(s);
5970         return;
5971     }
5972     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5973 }
5974 
5975 /* REV with sf==0, opcode==2
5976  * REV32 (sf==1, opcode==2)
5977  */
5978 static void handle_rev32(DisasContext *s, unsigned int sf,
5979                          unsigned int rn, unsigned int rd)
5980 {
5981     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5982     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5983 
5984     if (sf) {
5985         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5986         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5987     } else {
5988         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5989     }
5990 }
5991 
5992 /* REV16 (opcode==1) */
5993 static void handle_rev16(DisasContext *s, unsigned int sf,
5994                          unsigned int rn, unsigned int rd)
5995 {
5996     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5997     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5998     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5999     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6000 
6001     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6002     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6003     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6004     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6005     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6006 }
6007 
6008 /* Data-processing (1 source)
6009  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6010  * +----+---+---+-----------------+---------+--------+------+------+
6011  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6012  * +----+---+---+-----------------+---------+--------+------+------+
6013  */
6014 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6015 {
6016     unsigned int sf, opcode, opcode2, rn, rd;
6017     TCGv_i64 tcg_rd;
6018 
6019     if (extract32(insn, 29, 1)) {
6020         unallocated_encoding(s);
6021         return;
6022     }
6023 
6024     sf = extract32(insn, 31, 1);
6025     opcode = extract32(insn, 10, 6);
6026     opcode2 = extract32(insn, 16, 5);
6027     rn = extract32(insn, 5, 5);
6028     rd = extract32(insn, 0, 5);
6029 
6030 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6031 
6032     switch (MAP(sf, opcode2, opcode)) {
6033     case MAP(0, 0x00, 0x00): /* RBIT */
6034     case MAP(1, 0x00, 0x00):
6035         handle_rbit(s, sf, rn, rd);
6036         break;
6037     case MAP(0, 0x00, 0x01): /* REV16 */
6038     case MAP(1, 0x00, 0x01):
6039         handle_rev16(s, sf, rn, rd);
6040         break;
6041     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6042     case MAP(1, 0x00, 0x02):
6043         handle_rev32(s, sf, rn, rd);
6044         break;
6045     case MAP(1, 0x00, 0x03): /* REV64 */
6046         handle_rev64(s, sf, rn, rd);
6047         break;
6048     case MAP(0, 0x00, 0x04): /* CLZ */
6049     case MAP(1, 0x00, 0x04):
6050         handle_clz(s, sf, rn, rd);
6051         break;
6052     case MAP(0, 0x00, 0x05): /* CLS */
6053     case MAP(1, 0x00, 0x05):
6054         handle_cls(s, sf, rn, rd);
6055         break;
6056     case MAP(1, 0x01, 0x00): /* PACIA */
6057         if (s->pauth_active) {
6058             tcg_rd = cpu_reg(s, rd);
6059             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6060         } else if (!dc_isar_feature(aa64_pauth, s)) {
6061             goto do_unallocated;
6062         }
6063         break;
6064     case MAP(1, 0x01, 0x01): /* PACIB */
6065         if (s->pauth_active) {
6066             tcg_rd = cpu_reg(s, rd);
6067             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6068         } else if (!dc_isar_feature(aa64_pauth, s)) {
6069             goto do_unallocated;
6070         }
6071         break;
6072     case MAP(1, 0x01, 0x02): /* PACDA */
6073         if (s->pauth_active) {
6074             tcg_rd = cpu_reg(s, rd);
6075             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6076         } else if (!dc_isar_feature(aa64_pauth, s)) {
6077             goto do_unallocated;
6078         }
6079         break;
6080     case MAP(1, 0x01, 0x03): /* PACDB */
6081         if (s->pauth_active) {
6082             tcg_rd = cpu_reg(s, rd);
6083             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6084         } else if (!dc_isar_feature(aa64_pauth, s)) {
6085             goto do_unallocated;
6086         }
6087         break;
6088     case MAP(1, 0x01, 0x04): /* AUTIA */
6089         if (s->pauth_active) {
6090             tcg_rd = cpu_reg(s, rd);
6091             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6092         } else if (!dc_isar_feature(aa64_pauth, s)) {
6093             goto do_unallocated;
6094         }
6095         break;
6096     case MAP(1, 0x01, 0x05): /* AUTIB */
6097         if (s->pauth_active) {
6098             tcg_rd = cpu_reg(s, rd);
6099             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6100         } else if (!dc_isar_feature(aa64_pauth, s)) {
6101             goto do_unallocated;
6102         }
6103         break;
6104     case MAP(1, 0x01, 0x06): /* AUTDA */
6105         if (s->pauth_active) {
6106             tcg_rd = cpu_reg(s, rd);
6107             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6108         } else if (!dc_isar_feature(aa64_pauth, s)) {
6109             goto do_unallocated;
6110         }
6111         break;
6112     case MAP(1, 0x01, 0x07): /* AUTDB */
6113         if (s->pauth_active) {
6114             tcg_rd = cpu_reg(s, rd);
6115             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6116         } else if (!dc_isar_feature(aa64_pauth, s)) {
6117             goto do_unallocated;
6118         }
6119         break;
6120     case MAP(1, 0x01, 0x08): /* PACIZA */
6121         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6122             goto do_unallocated;
6123         } else if (s->pauth_active) {
6124             tcg_rd = cpu_reg(s, rd);
6125             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6126         }
6127         break;
6128     case MAP(1, 0x01, 0x09): /* PACIZB */
6129         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6130             goto do_unallocated;
6131         } else if (s->pauth_active) {
6132             tcg_rd = cpu_reg(s, rd);
6133             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6134         }
6135         break;
6136     case MAP(1, 0x01, 0x0a): /* PACDZA */
6137         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6138             goto do_unallocated;
6139         } else if (s->pauth_active) {
6140             tcg_rd = cpu_reg(s, rd);
6141             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6142         }
6143         break;
6144     case MAP(1, 0x01, 0x0b): /* PACDZB */
6145         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6146             goto do_unallocated;
6147         } else if (s->pauth_active) {
6148             tcg_rd = cpu_reg(s, rd);
6149             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6150         }
6151         break;
6152     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6153         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6154             goto do_unallocated;
6155         } else if (s->pauth_active) {
6156             tcg_rd = cpu_reg(s, rd);
6157             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6158         }
6159         break;
6160     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6161         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6162             goto do_unallocated;
6163         } else if (s->pauth_active) {
6164             tcg_rd = cpu_reg(s, rd);
6165             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6166         }
6167         break;
6168     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6169         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6170             goto do_unallocated;
6171         } else if (s->pauth_active) {
6172             tcg_rd = cpu_reg(s, rd);
6173             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6174         }
6175         break;
6176     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6177         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6178             goto do_unallocated;
6179         } else if (s->pauth_active) {
6180             tcg_rd = cpu_reg(s, rd);
6181             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6182         }
6183         break;
6184     case MAP(1, 0x01, 0x10): /* XPACI */
6185         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6186             goto do_unallocated;
6187         } else if (s->pauth_active) {
6188             tcg_rd = cpu_reg(s, rd);
6189             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6190         }
6191         break;
6192     case MAP(1, 0x01, 0x11): /* XPACD */
6193         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6194             goto do_unallocated;
6195         } else if (s->pauth_active) {
6196             tcg_rd = cpu_reg(s, rd);
6197             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6198         }
6199         break;
6200     default:
6201     do_unallocated:
6202         unallocated_encoding(s);
6203         break;
6204     }
6205 
6206 #undef MAP
6207 }
6208 
6209 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6210                        unsigned int rm, unsigned int rn, unsigned int rd)
6211 {
6212     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6213     tcg_rd = cpu_reg(s, rd);
6214 
6215     if (!sf && is_signed) {
6216         tcg_n = tcg_temp_new_i64();
6217         tcg_m = tcg_temp_new_i64();
6218         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6219         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6220     } else {
6221         tcg_n = read_cpu_reg(s, rn, sf);
6222         tcg_m = read_cpu_reg(s, rm, sf);
6223     }
6224 
6225     if (is_signed) {
6226         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6227     } else {
6228         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6229     }
6230 
6231     if (!sf) { /* zero extend final result */
6232         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6233     }
6234 }
6235 
6236 /* LSLV, LSRV, ASRV, RORV */
6237 static void handle_shift_reg(DisasContext *s,
6238                              enum a64_shift_type shift_type, unsigned int sf,
6239                              unsigned int rm, unsigned int rn, unsigned int rd)
6240 {
6241     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6242     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6243     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6244 
6245     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6246     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6247 }
6248 
6249 /* CRC32[BHWX], CRC32C[BHWX] */
6250 static void handle_crc32(DisasContext *s,
6251                          unsigned int sf, unsigned int sz, bool crc32c,
6252                          unsigned int rm, unsigned int rn, unsigned int rd)
6253 {
6254     TCGv_i64 tcg_acc, tcg_val;
6255     TCGv_i32 tcg_bytes;
6256 
6257     if (!dc_isar_feature(aa64_crc32, s)
6258         || (sf == 1 && sz != 3)
6259         || (sf == 0 && sz == 3)) {
6260         unallocated_encoding(s);
6261         return;
6262     }
6263 
6264     if (sz == 3) {
6265         tcg_val = cpu_reg(s, rm);
6266     } else {
6267         uint64_t mask;
6268         switch (sz) {
6269         case 0:
6270             mask = 0xFF;
6271             break;
6272         case 1:
6273             mask = 0xFFFF;
6274             break;
6275         case 2:
6276             mask = 0xFFFFFFFF;
6277             break;
6278         default:
6279             g_assert_not_reached();
6280         }
6281         tcg_val = tcg_temp_new_i64();
6282         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6283     }
6284 
6285     tcg_acc = cpu_reg(s, rn);
6286     tcg_bytes = tcg_constant_i32(1 << sz);
6287 
6288     if (crc32c) {
6289         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6290     } else {
6291         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6292     }
6293 }
6294 
6295 /* Data-processing (2 source)
6296  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6297  * +----+---+---+-----------------+------+--------+------+------+
6298  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6299  * +----+---+---+-----------------+------+--------+------+------+
6300  */
6301 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6302 {
6303     unsigned int sf, rm, opcode, rn, rd, setflag;
6304     sf = extract32(insn, 31, 1);
6305     setflag = extract32(insn, 29, 1);
6306     rm = extract32(insn, 16, 5);
6307     opcode = extract32(insn, 10, 6);
6308     rn = extract32(insn, 5, 5);
6309     rd = extract32(insn, 0, 5);
6310 
6311     if (setflag && opcode != 0) {
6312         unallocated_encoding(s);
6313         return;
6314     }
6315 
6316     switch (opcode) {
6317     case 0: /* SUBP(S) */
6318         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6319             goto do_unallocated;
6320         } else {
6321             TCGv_i64 tcg_n, tcg_m, tcg_d;
6322 
6323             tcg_n = read_cpu_reg_sp(s, rn, true);
6324             tcg_m = read_cpu_reg_sp(s, rm, true);
6325             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6326             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6327             tcg_d = cpu_reg(s, rd);
6328 
6329             if (setflag) {
6330                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6331             } else {
6332                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6333             }
6334         }
6335         break;
6336     case 2: /* UDIV */
6337         handle_div(s, false, sf, rm, rn, rd);
6338         break;
6339     case 3: /* SDIV */
6340         handle_div(s, true, sf, rm, rn, rd);
6341         break;
6342     case 4: /* IRG */
6343         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6344             goto do_unallocated;
6345         }
6346         if (s->ata[0]) {
6347             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6348                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6349         } else {
6350             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6351                                              cpu_reg_sp(s, rn));
6352         }
6353         break;
6354     case 5: /* GMI */
6355         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6356             goto do_unallocated;
6357         } else {
6358             TCGv_i64 t = tcg_temp_new_i64();
6359 
6360             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6361             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6362             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6363         }
6364         break;
6365     case 8: /* LSLV */
6366         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6367         break;
6368     case 9: /* LSRV */
6369         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6370         break;
6371     case 10: /* ASRV */
6372         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6373         break;
6374     case 11: /* RORV */
6375         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6376         break;
6377     case 12: /* PACGA */
6378         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6379             goto do_unallocated;
6380         }
6381         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6382                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6383         break;
6384     case 16:
6385     case 17:
6386     case 18:
6387     case 19:
6388     case 20:
6389     case 21:
6390     case 22:
6391     case 23: /* CRC32 */
6392     {
6393         int sz = extract32(opcode, 0, 2);
6394         bool crc32c = extract32(opcode, 2, 1);
6395         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6396         break;
6397     }
6398     default:
6399     do_unallocated:
6400         unallocated_encoding(s);
6401         break;
6402     }
6403 }
6404 
6405 /*
6406  * Data processing - register
6407  *  31  30 29  28      25    21  20  16      10         0
6408  * +--+---+--+---+-------+-----+-------+-------+---------+
6409  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6410  * +--+---+--+---+-------+-----+-------+-------+---------+
6411  */
6412 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6413 {
6414     int op0 = extract32(insn, 30, 1);
6415     int op1 = extract32(insn, 28, 1);
6416     int op2 = extract32(insn, 21, 4);
6417     int op3 = extract32(insn, 10, 6);
6418 
6419     if (!op1) {
6420         if (op2 & 8) {
6421             if (op2 & 1) {
6422                 /* Add/sub (extended register) */
6423                 disas_add_sub_ext_reg(s, insn);
6424             } else {
6425                 /* Add/sub (shifted register) */
6426                 disas_add_sub_reg(s, insn);
6427             }
6428         } else {
6429             /* Logical (shifted register) */
6430             disas_logic_reg(s, insn);
6431         }
6432         return;
6433     }
6434 
6435     switch (op2) {
6436     case 0x0:
6437         switch (op3) {
6438         case 0x00: /* Add/subtract (with carry) */
6439             disas_adc_sbc(s, insn);
6440             break;
6441 
6442         case 0x01: /* Rotate right into flags */
6443         case 0x21:
6444             disas_rotate_right_into_flags(s, insn);
6445             break;
6446 
6447         case 0x02: /* Evaluate into flags */
6448         case 0x12:
6449         case 0x22:
6450         case 0x32:
6451             disas_evaluate_into_flags(s, insn);
6452             break;
6453 
6454         default:
6455             goto do_unallocated;
6456         }
6457         break;
6458 
6459     case 0x2: /* Conditional compare */
6460         disas_cc(s, insn); /* both imm and reg forms */
6461         break;
6462 
6463     case 0x4: /* Conditional select */
6464         disas_cond_select(s, insn);
6465         break;
6466 
6467     case 0x6: /* Data-processing */
6468         if (op0) {    /* (1 source) */
6469             disas_data_proc_1src(s, insn);
6470         } else {      /* (2 source) */
6471             disas_data_proc_2src(s, insn);
6472         }
6473         break;
6474     case 0x8 ... 0xf: /* (3 source) */
6475         disas_data_proc_3src(s, insn);
6476         break;
6477 
6478     default:
6479     do_unallocated:
6480         unallocated_encoding(s);
6481         break;
6482     }
6483 }
6484 
6485 static void handle_fp_compare(DisasContext *s, int size,
6486                               unsigned int rn, unsigned int rm,
6487                               bool cmp_with_zero, bool signal_all_nans)
6488 {
6489     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6490     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6491 
6492     if (size == MO_64) {
6493         TCGv_i64 tcg_vn, tcg_vm;
6494 
6495         tcg_vn = read_fp_dreg(s, rn);
6496         if (cmp_with_zero) {
6497             tcg_vm = tcg_constant_i64(0);
6498         } else {
6499             tcg_vm = read_fp_dreg(s, rm);
6500         }
6501         if (signal_all_nans) {
6502             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6503         } else {
6504             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6505         }
6506     } else {
6507         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6508         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6509 
6510         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6511         if (cmp_with_zero) {
6512             tcg_gen_movi_i32(tcg_vm, 0);
6513         } else {
6514             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6515         }
6516 
6517         switch (size) {
6518         case MO_32:
6519             if (signal_all_nans) {
6520                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6521             } else {
6522                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6523             }
6524             break;
6525         case MO_16:
6526             if (signal_all_nans) {
6527                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6528             } else {
6529                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6530             }
6531             break;
6532         default:
6533             g_assert_not_reached();
6534         }
6535     }
6536 
6537     gen_set_nzcv(tcg_flags);
6538 }
6539 
6540 /* Floating point compare
6541  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6542  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6543  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6544  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6545  */
6546 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6547 {
6548     unsigned int mos, type, rm, op, rn, opc, op2r;
6549     int size;
6550 
6551     mos = extract32(insn, 29, 3);
6552     type = extract32(insn, 22, 2);
6553     rm = extract32(insn, 16, 5);
6554     op = extract32(insn, 14, 2);
6555     rn = extract32(insn, 5, 5);
6556     opc = extract32(insn, 3, 2);
6557     op2r = extract32(insn, 0, 3);
6558 
6559     if (mos || op || op2r) {
6560         unallocated_encoding(s);
6561         return;
6562     }
6563 
6564     switch (type) {
6565     case 0:
6566         size = MO_32;
6567         break;
6568     case 1:
6569         size = MO_64;
6570         break;
6571     case 3:
6572         size = MO_16;
6573         if (dc_isar_feature(aa64_fp16, s)) {
6574             break;
6575         }
6576         /* fallthru */
6577     default:
6578         unallocated_encoding(s);
6579         return;
6580     }
6581 
6582     if (!fp_access_check(s)) {
6583         return;
6584     }
6585 
6586     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6587 }
6588 
6589 /* Floating point conditional compare
6590  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6591  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6592  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6593  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6594  */
6595 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6596 {
6597     unsigned int mos, type, rm, cond, rn, op, nzcv;
6598     TCGLabel *label_continue = NULL;
6599     int size;
6600 
6601     mos = extract32(insn, 29, 3);
6602     type = extract32(insn, 22, 2);
6603     rm = extract32(insn, 16, 5);
6604     cond = extract32(insn, 12, 4);
6605     rn = extract32(insn, 5, 5);
6606     op = extract32(insn, 4, 1);
6607     nzcv = extract32(insn, 0, 4);
6608 
6609     if (mos) {
6610         unallocated_encoding(s);
6611         return;
6612     }
6613 
6614     switch (type) {
6615     case 0:
6616         size = MO_32;
6617         break;
6618     case 1:
6619         size = MO_64;
6620         break;
6621     case 3:
6622         size = MO_16;
6623         if (dc_isar_feature(aa64_fp16, s)) {
6624             break;
6625         }
6626         /* fallthru */
6627     default:
6628         unallocated_encoding(s);
6629         return;
6630     }
6631 
6632     if (!fp_access_check(s)) {
6633         return;
6634     }
6635 
6636     if (cond < 0x0e) { /* not always */
6637         TCGLabel *label_match = gen_new_label();
6638         label_continue = gen_new_label();
6639         arm_gen_test_cc(cond, label_match);
6640         /* nomatch: */
6641         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6642         tcg_gen_br(label_continue);
6643         gen_set_label(label_match);
6644     }
6645 
6646     handle_fp_compare(s, size, rn, rm, false, op);
6647 
6648     if (cond < 0x0e) {
6649         gen_set_label(label_continue);
6650     }
6651 }
6652 
6653 /* Floating point conditional select
6654  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6655  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6656  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6657  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6658  */
6659 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6660 {
6661     unsigned int mos, type, rm, cond, rn, rd;
6662     TCGv_i64 t_true, t_false;
6663     DisasCompare64 c;
6664     MemOp sz;
6665 
6666     mos = extract32(insn, 29, 3);
6667     type = extract32(insn, 22, 2);
6668     rm = extract32(insn, 16, 5);
6669     cond = extract32(insn, 12, 4);
6670     rn = extract32(insn, 5, 5);
6671     rd = extract32(insn, 0, 5);
6672 
6673     if (mos) {
6674         unallocated_encoding(s);
6675         return;
6676     }
6677 
6678     switch (type) {
6679     case 0:
6680         sz = MO_32;
6681         break;
6682     case 1:
6683         sz = MO_64;
6684         break;
6685     case 3:
6686         sz = MO_16;
6687         if (dc_isar_feature(aa64_fp16, s)) {
6688             break;
6689         }
6690         /* fallthru */
6691     default:
6692         unallocated_encoding(s);
6693         return;
6694     }
6695 
6696     if (!fp_access_check(s)) {
6697         return;
6698     }
6699 
6700     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6701     t_true = tcg_temp_new_i64();
6702     t_false = tcg_temp_new_i64();
6703     read_vec_element(s, t_true, rn, 0, sz);
6704     read_vec_element(s, t_false, rm, 0, sz);
6705 
6706     a64_test_cc(&c, cond);
6707     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6708                         t_true, t_false);
6709 
6710     /* Note that sregs & hregs write back zeros to the high bits,
6711        and we've already done the zero-extension.  */
6712     write_fp_dreg(s, rd, t_true);
6713 }
6714 
6715 /* Floating-point data-processing (1 source) - half precision */
6716 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6717 {
6718     TCGv_ptr fpst = NULL;
6719     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6720     TCGv_i32 tcg_res = tcg_temp_new_i32();
6721 
6722     switch (opcode) {
6723     case 0x0: /* FMOV */
6724         tcg_gen_mov_i32(tcg_res, tcg_op);
6725         break;
6726     case 0x1: /* FABS */
6727         gen_vfp_absh(tcg_res, tcg_op);
6728         break;
6729     case 0x2: /* FNEG */
6730         gen_vfp_negh(tcg_res, tcg_op);
6731         break;
6732     case 0x3: /* FSQRT */
6733         fpst = fpstatus_ptr(FPST_FPCR_F16);
6734         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6735         break;
6736     case 0x8: /* FRINTN */
6737     case 0x9: /* FRINTP */
6738     case 0xa: /* FRINTM */
6739     case 0xb: /* FRINTZ */
6740     case 0xc: /* FRINTA */
6741     {
6742         TCGv_i32 tcg_rmode;
6743 
6744         fpst = fpstatus_ptr(FPST_FPCR_F16);
6745         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6746         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6747         gen_restore_rmode(tcg_rmode, fpst);
6748         break;
6749     }
6750     case 0xe: /* FRINTX */
6751         fpst = fpstatus_ptr(FPST_FPCR_F16);
6752         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6753         break;
6754     case 0xf: /* FRINTI */
6755         fpst = fpstatus_ptr(FPST_FPCR_F16);
6756         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6757         break;
6758     default:
6759         g_assert_not_reached();
6760     }
6761 
6762     write_fp_sreg(s, rd, tcg_res);
6763 }
6764 
6765 /* Floating-point data-processing (1 source) - single precision */
6766 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6767 {
6768     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6769     TCGv_i32 tcg_op, tcg_res;
6770     TCGv_ptr fpst;
6771     int rmode = -1;
6772 
6773     tcg_op = read_fp_sreg(s, rn);
6774     tcg_res = tcg_temp_new_i32();
6775 
6776     switch (opcode) {
6777     case 0x0: /* FMOV */
6778         tcg_gen_mov_i32(tcg_res, tcg_op);
6779         goto done;
6780     case 0x1: /* FABS */
6781         gen_vfp_abss(tcg_res, tcg_op);
6782         goto done;
6783     case 0x2: /* FNEG */
6784         gen_vfp_negs(tcg_res, tcg_op);
6785         goto done;
6786     case 0x3: /* FSQRT */
6787         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6788         goto done;
6789     case 0x6: /* BFCVT */
6790         gen_fpst = gen_helper_bfcvt;
6791         break;
6792     case 0x8: /* FRINTN */
6793     case 0x9: /* FRINTP */
6794     case 0xa: /* FRINTM */
6795     case 0xb: /* FRINTZ */
6796     case 0xc: /* FRINTA */
6797         rmode = opcode & 7;
6798         gen_fpst = gen_helper_rints;
6799         break;
6800     case 0xe: /* FRINTX */
6801         gen_fpst = gen_helper_rints_exact;
6802         break;
6803     case 0xf: /* FRINTI */
6804         gen_fpst = gen_helper_rints;
6805         break;
6806     case 0x10: /* FRINT32Z */
6807         rmode = FPROUNDING_ZERO;
6808         gen_fpst = gen_helper_frint32_s;
6809         break;
6810     case 0x11: /* FRINT32X */
6811         gen_fpst = gen_helper_frint32_s;
6812         break;
6813     case 0x12: /* FRINT64Z */
6814         rmode = FPROUNDING_ZERO;
6815         gen_fpst = gen_helper_frint64_s;
6816         break;
6817     case 0x13: /* FRINT64X */
6818         gen_fpst = gen_helper_frint64_s;
6819         break;
6820     default:
6821         g_assert_not_reached();
6822     }
6823 
6824     fpst = fpstatus_ptr(FPST_FPCR);
6825     if (rmode >= 0) {
6826         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6827         gen_fpst(tcg_res, tcg_op, fpst);
6828         gen_restore_rmode(tcg_rmode, fpst);
6829     } else {
6830         gen_fpst(tcg_res, tcg_op, fpst);
6831     }
6832 
6833  done:
6834     write_fp_sreg(s, rd, tcg_res);
6835 }
6836 
6837 /* Floating-point data-processing (1 source) - double precision */
6838 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6839 {
6840     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6841     TCGv_i64 tcg_op, tcg_res;
6842     TCGv_ptr fpst;
6843     int rmode = -1;
6844 
6845     switch (opcode) {
6846     case 0x0: /* FMOV */
6847         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6848         return;
6849     }
6850 
6851     tcg_op = read_fp_dreg(s, rn);
6852     tcg_res = tcg_temp_new_i64();
6853 
6854     switch (opcode) {
6855     case 0x1: /* FABS */
6856         gen_vfp_absd(tcg_res, tcg_op);
6857         goto done;
6858     case 0x2: /* FNEG */
6859         gen_vfp_negd(tcg_res, tcg_op);
6860         goto done;
6861     case 0x3: /* FSQRT */
6862         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6863         goto done;
6864     case 0x8: /* FRINTN */
6865     case 0x9: /* FRINTP */
6866     case 0xa: /* FRINTM */
6867     case 0xb: /* FRINTZ */
6868     case 0xc: /* FRINTA */
6869         rmode = opcode & 7;
6870         gen_fpst = gen_helper_rintd;
6871         break;
6872     case 0xe: /* FRINTX */
6873         gen_fpst = gen_helper_rintd_exact;
6874         break;
6875     case 0xf: /* FRINTI */
6876         gen_fpst = gen_helper_rintd;
6877         break;
6878     case 0x10: /* FRINT32Z */
6879         rmode = FPROUNDING_ZERO;
6880         gen_fpst = gen_helper_frint32_d;
6881         break;
6882     case 0x11: /* FRINT32X */
6883         gen_fpst = gen_helper_frint32_d;
6884         break;
6885     case 0x12: /* FRINT64Z */
6886         rmode = FPROUNDING_ZERO;
6887         gen_fpst = gen_helper_frint64_d;
6888         break;
6889     case 0x13: /* FRINT64X */
6890         gen_fpst = gen_helper_frint64_d;
6891         break;
6892     default:
6893         g_assert_not_reached();
6894     }
6895 
6896     fpst = fpstatus_ptr(FPST_FPCR);
6897     if (rmode >= 0) {
6898         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6899         gen_fpst(tcg_res, tcg_op, fpst);
6900         gen_restore_rmode(tcg_rmode, fpst);
6901     } else {
6902         gen_fpst(tcg_res, tcg_op, fpst);
6903     }
6904 
6905  done:
6906     write_fp_dreg(s, rd, tcg_res);
6907 }
6908 
6909 static void handle_fp_fcvt(DisasContext *s, int opcode,
6910                            int rd, int rn, int dtype, int ntype)
6911 {
6912     switch (ntype) {
6913     case 0x0:
6914     {
6915         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6916         if (dtype == 1) {
6917             /* Single to double */
6918             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6919             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6920             write_fp_dreg(s, rd, tcg_rd);
6921         } else {
6922             /* Single to half */
6923             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6924             TCGv_i32 ahp = get_ahp_flag();
6925             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6926 
6927             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6928             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6929             write_fp_sreg(s, rd, tcg_rd);
6930         }
6931         break;
6932     }
6933     case 0x1:
6934     {
6935         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6936         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6937         if (dtype == 0) {
6938             /* Double to single */
6939             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
6940         } else {
6941             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6942             TCGv_i32 ahp = get_ahp_flag();
6943             /* Double to half */
6944             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6945             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6946         }
6947         write_fp_sreg(s, rd, tcg_rd);
6948         break;
6949     }
6950     case 0x3:
6951     {
6952         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6953         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6954         TCGv_i32 tcg_ahp = get_ahp_flag();
6955         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6956         if (dtype == 0) {
6957             /* Half to single */
6958             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6959             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6960             write_fp_sreg(s, rd, tcg_rd);
6961         } else {
6962             /* Half to double */
6963             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6964             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6965             write_fp_dreg(s, rd, tcg_rd);
6966         }
6967         break;
6968     }
6969     default:
6970         g_assert_not_reached();
6971     }
6972 }
6973 
6974 /* Floating point data-processing (1 source)
6975  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6976  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6977  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6978  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6979  */
6980 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6981 {
6982     int mos = extract32(insn, 29, 3);
6983     int type = extract32(insn, 22, 2);
6984     int opcode = extract32(insn, 15, 6);
6985     int rn = extract32(insn, 5, 5);
6986     int rd = extract32(insn, 0, 5);
6987 
6988     if (mos) {
6989         goto do_unallocated;
6990     }
6991 
6992     switch (opcode) {
6993     case 0x4: case 0x5: case 0x7:
6994     {
6995         /* FCVT between half, single and double precision */
6996         int dtype = extract32(opcode, 0, 2);
6997         if (type == 2 || dtype == type) {
6998             goto do_unallocated;
6999         }
7000         if (!fp_access_check(s)) {
7001             return;
7002         }
7003 
7004         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7005         break;
7006     }
7007 
7008     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7009         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7010             goto do_unallocated;
7011         }
7012         /* fall through */
7013     case 0x0 ... 0x3:
7014     case 0x8 ... 0xc:
7015     case 0xe ... 0xf:
7016         /* 32-to-32 and 64-to-64 ops */
7017         switch (type) {
7018         case 0:
7019             if (!fp_access_check(s)) {
7020                 return;
7021             }
7022             handle_fp_1src_single(s, opcode, rd, rn);
7023             break;
7024         case 1:
7025             if (!fp_access_check(s)) {
7026                 return;
7027             }
7028             handle_fp_1src_double(s, opcode, rd, rn);
7029             break;
7030         case 3:
7031             if (!dc_isar_feature(aa64_fp16, s)) {
7032                 goto do_unallocated;
7033             }
7034 
7035             if (!fp_access_check(s)) {
7036                 return;
7037             }
7038             handle_fp_1src_half(s, opcode, rd, rn);
7039             break;
7040         default:
7041             goto do_unallocated;
7042         }
7043         break;
7044 
7045     case 0x6:
7046         switch (type) {
7047         case 1: /* BFCVT */
7048             if (!dc_isar_feature(aa64_bf16, s)) {
7049                 goto do_unallocated;
7050             }
7051             if (!fp_access_check(s)) {
7052                 return;
7053             }
7054             handle_fp_1src_single(s, opcode, rd, rn);
7055             break;
7056         default:
7057             goto do_unallocated;
7058         }
7059         break;
7060 
7061     default:
7062     do_unallocated:
7063         unallocated_encoding(s);
7064         break;
7065     }
7066 }
7067 
7068 /* Floating-point data-processing (3 source) - single precision */
7069 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7070                                   int rd, int rn, int rm, int ra)
7071 {
7072     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7073     TCGv_i32 tcg_res = tcg_temp_new_i32();
7074     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7075 
7076     tcg_op1 = read_fp_sreg(s, rn);
7077     tcg_op2 = read_fp_sreg(s, rm);
7078     tcg_op3 = read_fp_sreg(s, ra);
7079 
7080     /* These are fused multiply-add, and must be done as one
7081      * floating point operation with no rounding between the
7082      * multiplication and addition steps.
7083      * NB that doing the negations here as separate steps is
7084      * correct : an input NaN should come out with its sign bit
7085      * flipped if it is a negated-input.
7086      */
7087     if (o1 == true) {
7088         gen_vfp_negs(tcg_op3, tcg_op3);
7089     }
7090 
7091     if (o0 != o1) {
7092         gen_vfp_negs(tcg_op1, tcg_op1);
7093     }
7094 
7095     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7096 
7097     write_fp_sreg(s, rd, tcg_res);
7098 }
7099 
7100 /* Floating-point data-processing (3 source) - double precision */
7101 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7102                                   int rd, int rn, int rm, int ra)
7103 {
7104     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7105     TCGv_i64 tcg_res = tcg_temp_new_i64();
7106     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7107 
7108     tcg_op1 = read_fp_dreg(s, rn);
7109     tcg_op2 = read_fp_dreg(s, rm);
7110     tcg_op3 = read_fp_dreg(s, ra);
7111 
7112     /* These are fused multiply-add, and must be done as one
7113      * floating point operation with no rounding between the
7114      * multiplication and addition steps.
7115      * NB that doing the negations here as separate steps is
7116      * correct : an input NaN should come out with its sign bit
7117      * flipped if it is a negated-input.
7118      */
7119     if (o1 == true) {
7120         gen_vfp_negd(tcg_op3, tcg_op3);
7121     }
7122 
7123     if (o0 != o1) {
7124         gen_vfp_negd(tcg_op1, tcg_op1);
7125     }
7126 
7127     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7128 
7129     write_fp_dreg(s, rd, tcg_res);
7130 }
7131 
7132 /* Floating-point data-processing (3 source) - half precision */
7133 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7134                                 int rd, int rn, int rm, int ra)
7135 {
7136     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7137     TCGv_i32 tcg_res = tcg_temp_new_i32();
7138     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7139 
7140     tcg_op1 = read_fp_hreg(s, rn);
7141     tcg_op2 = read_fp_hreg(s, rm);
7142     tcg_op3 = read_fp_hreg(s, ra);
7143 
7144     /* These are fused multiply-add, and must be done as one
7145      * floating point operation with no rounding between the
7146      * multiplication and addition steps.
7147      * NB that doing the negations here as separate steps is
7148      * correct : an input NaN should come out with its sign bit
7149      * flipped if it is a negated-input.
7150      */
7151     if (o1 == true) {
7152         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7153     }
7154 
7155     if (o0 != o1) {
7156         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7157     }
7158 
7159     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7160 
7161     write_fp_sreg(s, rd, tcg_res);
7162 }
7163 
7164 /* Floating point data-processing (3 source)
7165  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7166  * +---+---+---+-----------+------+----+------+----+------+------+------+
7167  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7168  * +---+---+---+-----------+------+----+------+----+------+------+------+
7169  */
7170 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7171 {
7172     int mos = extract32(insn, 29, 3);
7173     int type = extract32(insn, 22, 2);
7174     int rd = extract32(insn, 0, 5);
7175     int rn = extract32(insn, 5, 5);
7176     int ra = extract32(insn, 10, 5);
7177     int rm = extract32(insn, 16, 5);
7178     bool o0 = extract32(insn, 15, 1);
7179     bool o1 = extract32(insn, 21, 1);
7180 
7181     if (mos) {
7182         unallocated_encoding(s);
7183         return;
7184     }
7185 
7186     switch (type) {
7187     case 0:
7188         if (!fp_access_check(s)) {
7189             return;
7190         }
7191         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7192         break;
7193     case 1:
7194         if (!fp_access_check(s)) {
7195             return;
7196         }
7197         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7198         break;
7199     case 3:
7200         if (!dc_isar_feature(aa64_fp16, s)) {
7201             unallocated_encoding(s);
7202             return;
7203         }
7204         if (!fp_access_check(s)) {
7205             return;
7206         }
7207         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7208         break;
7209     default:
7210         unallocated_encoding(s);
7211     }
7212 }
7213 
7214 /* Floating point immediate
7215  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7216  * +---+---+---+-----------+------+---+------------+-------+------+------+
7217  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7218  * +---+---+---+-----------+------+---+------------+-------+------+------+
7219  */
7220 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7221 {
7222     int rd = extract32(insn, 0, 5);
7223     int imm5 = extract32(insn, 5, 5);
7224     int imm8 = extract32(insn, 13, 8);
7225     int type = extract32(insn, 22, 2);
7226     int mos = extract32(insn, 29, 3);
7227     uint64_t imm;
7228     MemOp sz;
7229 
7230     if (mos || imm5) {
7231         unallocated_encoding(s);
7232         return;
7233     }
7234 
7235     switch (type) {
7236     case 0:
7237         sz = MO_32;
7238         break;
7239     case 1:
7240         sz = MO_64;
7241         break;
7242     case 3:
7243         sz = MO_16;
7244         if (dc_isar_feature(aa64_fp16, s)) {
7245             break;
7246         }
7247         /* fallthru */
7248     default:
7249         unallocated_encoding(s);
7250         return;
7251     }
7252 
7253     if (!fp_access_check(s)) {
7254         return;
7255     }
7256 
7257     imm = vfp_expand_imm(sz, imm8);
7258     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7259 }
7260 
7261 /* Handle floating point <=> fixed point conversions. Note that we can
7262  * also deal with fp <=> integer conversions as a special case (scale == 64)
7263  * OPTME: consider handling that special case specially or at least skipping
7264  * the call to scalbn in the helpers for zero shifts.
7265  */
7266 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7267                            bool itof, int rmode, int scale, int sf, int type)
7268 {
7269     bool is_signed = !(opcode & 1);
7270     TCGv_ptr tcg_fpstatus;
7271     TCGv_i32 tcg_shift, tcg_single;
7272     TCGv_i64 tcg_double;
7273 
7274     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7275 
7276     tcg_shift = tcg_constant_i32(64 - scale);
7277 
7278     if (itof) {
7279         TCGv_i64 tcg_int = cpu_reg(s, rn);
7280         if (!sf) {
7281             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7282 
7283             if (is_signed) {
7284                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7285             } else {
7286                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7287             }
7288 
7289             tcg_int = tcg_extend;
7290         }
7291 
7292         switch (type) {
7293         case 1: /* float64 */
7294             tcg_double = tcg_temp_new_i64();
7295             if (is_signed) {
7296                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7297                                      tcg_shift, tcg_fpstatus);
7298             } else {
7299                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7300                                      tcg_shift, tcg_fpstatus);
7301             }
7302             write_fp_dreg(s, rd, tcg_double);
7303             break;
7304 
7305         case 0: /* float32 */
7306             tcg_single = tcg_temp_new_i32();
7307             if (is_signed) {
7308                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7309                                      tcg_shift, tcg_fpstatus);
7310             } else {
7311                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7312                                      tcg_shift, tcg_fpstatus);
7313             }
7314             write_fp_sreg(s, rd, tcg_single);
7315             break;
7316 
7317         case 3: /* float16 */
7318             tcg_single = tcg_temp_new_i32();
7319             if (is_signed) {
7320                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7321                                      tcg_shift, tcg_fpstatus);
7322             } else {
7323                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7324                                      tcg_shift, tcg_fpstatus);
7325             }
7326             write_fp_sreg(s, rd, tcg_single);
7327             break;
7328 
7329         default:
7330             g_assert_not_reached();
7331         }
7332     } else {
7333         TCGv_i64 tcg_int = cpu_reg(s, rd);
7334         TCGv_i32 tcg_rmode;
7335 
7336         if (extract32(opcode, 2, 1)) {
7337             /* There are too many rounding modes to all fit into rmode,
7338              * so FCVTA[US] is a special case.
7339              */
7340             rmode = FPROUNDING_TIEAWAY;
7341         }
7342 
7343         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7344 
7345         switch (type) {
7346         case 1: /* float64 */
7347             tcg_double = read_fp_dreg(s, rn);
7348             if (is_signed) {
7349                 if (!sf) {
7350                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7351                                          tcg_shift, tcg_fpstatus);
7352                 } else {
7353                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7354                                          tcg_shift, tcg_fpstatus);
7355                 }
7356             } else {
7357                 if (!sf) {
7358                     gen_helper_vfp_tould(tcg_int, tcg_double,
7359                                          tcg_shift, tcg_fpstatus);
7360                 } else {
7361                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7362                                          tcg_shift, tcg_fpstatus);
7363                 }
7364             }
7365             if (!sf) {
7366                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7367             }
7368             break;
7369 
7370         case 0: /* float32 */
7371             tcg_single = read_fp_sreg(s, rn);
7372             if (sf) {
7373                 if (is_signed) {
7374                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7375                                          tcg_shift, tcg_fpstatus);
7376                 } else {
7377                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7378                                          tcg_shift, tcg_fpstatus);
7379                 }
7380             } else {
7381                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7382                 if (is_signed) {
7383                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7384                                          tcg_shift, tcg_fpstatus);
7385                 } else {
7386                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7387                                          tcg_shift, tcg_fpstatus);
7388                 }
7389                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7390             }
7391             break;
7392 
7393         case 3: /* float16 */
7394             tcg_single = read_fp_sreg(s, rn);
7395             if (sf) {
7396                 if (is_signed) {
7397                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7398                                          tcg_shift, tcg_fpstatus);
7399                 } else {
7400                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7401                                          tcg_shift, tcg_fpstatus);
7402                 }
7403             } else {
7404                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7405                 if (is_signed) {
7406                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7407                                          tcg_shift, tcg_fpstatus);
7408                 } else {
7409                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7410                                          tcg_shift, tcg_fpstatus);
7411                 }
7412                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7413             }
7414             break;
7415 
7416         default:
7417             g_assert_not_reached();
7418         }
7419 
7420         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7421     }
7422 }
7423 
7424 /* Floating point <-> fixed point conversions
7425  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7426  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7427  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7428  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7429  */
7430 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7431 {
7432     int rd = extract32(insn, 0, 5);
7433     int rn = extract32(insn, 5, 5);
7434     int scale = extract32(insn, 10, 6);
7435     int opcode = extract32(insn, 16, 3);
7436     int rmode = extract32(insn, 19, 2);
7437     int type = extract32(insn, 22, 2);
7438     bool sbit = extract32(insn, 29, 1);
7439     bool sf = extract32(insn, 31, 1);
7440     bool itof;
7441 
7442     if (sbit || (!sf && scale < 32)) {
7443         unallocated_encoding(s);
7444         return;
7445     }
7446 
7447     switch (type) {
7448     case 0: /* float32 */
7449     case 1: /* float64 */
7450         break;
7451     case 3: /* float16 */
7452         if (dc_isar_feature(aa64_fp16, s)) {
7453             break;
7454         }
7455         /* fallthru */
7456     default:
7457         unallocated_encoding(s);
7458         return;
7459     }
7460 
7461     switch ((rmode << 3) | opcode) {
7462     case 0x2: /* SCVTF */
7463     case 0x3: /* UCVTF */
7464         itof = true;
7465         break;
7466     case 0x18: /* FCVTZS */
7467     case 0x19: /* FCVTZU */
7468         itof = false;
7469         break;
7470     default:
7471         unallocated_encoding(s);
7472         return;
7473     }
7474 
7475     if (!fp_access_check(s)) {
7476         return;
7477     }
7478 
7479     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7480 }
7481 
7482 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7483 {
7484     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7485      * without conversion.
7486      */
7487 
7488     if (itof) {
7489         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7490         TCGv_i64 tmp;
7491 
7492         switch (type) {
7493         case 0:
7494             /* 32 bit */
7495             tmp = tcg_temp_new_i64();
7496             tcg_gen_ext32u_i64(tmp, tcg_rn);
7497             write_fp_dreg(s, rd, tmp);
7498             break;
7499         case 1:
7500             /* 64 bit */
7501             write_fp_dreg(s, rd, tcg_rn);
7502             break;
7503         case 2:
7504             /* 64 bit to top half. */
7505             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7506             clear_vec_high(s, true, rd);
7507             break;
7508         case 3:
7509             /* 16 bit */
7510             tmp = tcg_temp_new_i64();
7511             tcg_gen_ext16u_i64(tmp, tcg_rn);
7512             write_fp_dreg(s, rd, tmp);
7513             break;
7514         default:
7515             g_assert_not_reached();
7516         }
7517     } else {
7518         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7519 
7520         switch (type) {
7521         case 0:
7522             /* 32 bit */
7523             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7524             break;
7525         case 1:
7526             /* 64 bit */
7527             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7528             break;
7529         case 2:
7530             /* 64 bits from top half */
7531             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7532             break;
7533         case 3:
7534             /* 16 bit */
7535             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7536             break;
7537         default:
7538             g_assert_not_reached();
7539         }
7540     }
7541 }
7542 
7543 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7544 {
7545     TCGv_i64 t = read_fp_dreg(s, rn);
7546     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7547 
7548     gen_helper_fjcvtzs(t, t, fpstatus);
7549 
7550     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7551     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7552     tcg_gen_movi_i32(cpu_CF, 0);
7553     tcg_gen_movi_i32(cpu_NF, 0);
7554     tcg_gen_movi_i32(cpu_VF, 0);
7555 }
7556 
7557 /* Floating point <-> integer conversions
7558  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7559  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7560  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7561  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7562  */
7563 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7564 {
7565     int rd = extract32(insn, 0, 5);
7566     int rn = extract32(insn, 5, 5);
7567     int opcode = extract32(insn, 16, 3);
7568     int rmode = extract32(insn, 19, 2);
7569     int type = extract32(insn, 22, 2);
7570     bool sbit = extract32(insn, 29, 1);
7571     bool sf = extract32(insn, 31, 1);
7572     bool itof = false;
7573 
7574     if (sbit) {
7575         goto do_unallocated;
7576     }
7577 
7578     switch (opcode) {
7579     case 2: /* SCVTF */
7580     case 3: /* UCVTF */
7581         itof = true;
7582         /* fallthru */
7583     case 4: /* FCVTAS */
7584     case 5: /* FCVTAU */
7585         if (rmode != 0) {
7586             goto do_unallocated;
7587         }
7588         /* fallthru */
7589     case 0: /* FCVT[NPMZ]S */
7590     case 1: /* FCVT[NPMZ]U */
7591         switch (type) {
7592         case 0: /* float32 */
7593         case 1: /* float64 */
7594             break;
7595         case 3: /* float16 */
7596             if (!dc_isar_feature(aa64_fp16, s)) {
7597                 goto do_unallocated;
7598             }
7599             break;
7600         default:
7601             goto do_unallocated;
7602         }
7603         if (!fp_access_check(s)) {
7604             return;
7605         }
7606         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7607         break;
7608 
7609     default:
7610         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7611         case 0b01100110: /* FMOV half <-> 32-bit int */
7612         case 0b01100111:
7613         case 0b11100110: /* FMOV half <-> 64-bit int */
7614         case 0b11100111:
7615             if (!dc_isar_feature(aa64_fp16, s)) {
7616                 goto do_unallocated;
7617             }
7618             /* fallthru */
7619         case 0b00000110: /* FMOV 32-bit */
7620         case 0b00000111:
7621         case 0b10100110: /* FMOV 64-bit */
7622         case 0b10100111:
7623         case 0b11001110: /* FMOV top half of 128-bit */
7624         case 0b11001111:
7625             if (!fp_access_check(s)) {
7626                 return;
7627             }
7628             itof = opcode & 1;
7629             handle_fmov(s, rd, rn, type, itof);
7630             break;
7631 
7632         case 0b00111110: /* FJCVTZS */
7633             if (!dc_isar_feature(aa64_jscvt, s)) {
7634                 goto do_unallocated;
7635             } else if (fp_access_check(s)) {
7636                 handle_fjcvtzs(s, rd, rn);
7637             }
7638             break;
7639 
7640         default:
7641         do_unallocated:
7642             unallocated_encoding(s);
7643             return;
7644         }
7645         break;
7646     }
7647 }
7648 
7649 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7650  *   31  30  29 28     25 24                          0
7651  * +---+---+---+---------+-----------------------------+
7652  * |   | 0 |   | 1 1 1 1 |                             |
7653  * +---+---+---+---------+-----------------------------+
7654  */
7655 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7656 {
7657     if (extract32(insn, 24, 1)) {
7658         /* Floating point data-processing (3 source) */
7659         disas_fp_3src(s, insn);
7660     } else if (extract32(insn, 21, 1) == 0) {
7661         /* Floating point to fixed point conversions */
7662         disas_fp_fixed_conv(s, insn);
7663     } else {
7664         switch (extract32(insn, 10, 2)) {
7665         case 1:
7666             /* Floating point conditional compare */
7667             disas_fp_ccomp(s, insn);
7668             break;
7669         case 2:
7670             /* Floating point data-processing (2 source) */
7671             unallocated_encoding(s); /* in decodetree */
7672             break;
7673         case 3:
7674             /* Floating point conditional select */
7675             disas_fp_csel(s, insn);
7676             break;
7677         case 0:
7678             switch (ctz32(extract32(insn, 12, 4))) {
7679             case 0: /* [15:12] == xxx1 */
7680                 /* Floating point immediate */
7681                 disas_fp_imm(s, insn);
7682                 break;
7683             case 1: /* [15:12] == xx10 */
7684                 /* Floating point compare */
7685                 disas_fp_compare(s, insn);
7686                 break;
7687             case 2: /* [15:12] == x100 */
7688                 /* Floating point data-processing (1 source) */
7689                 disas_fp_1src(s, insn);
7690                 break;
7691             case 3: /* [15:12] == 1000 */
7692                 unallocated_encoding(s);
7693                 break;
7694             default: /* [15:12] == 0000 */
7695                 /* Floating point <-> integer conversions */
7696                 disas_fp_int_conv(s, insn);
7697                 break;
7698             }
7699             break;
7700         }
7701     }
7702 }
7703 
7704 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7705                      int pos)
7706 {
7707     /* Extract 64 bits from the middle of two concatenated 64 bit
7708      * vector register slices left:right. The extracted bits start
7709      * at 'pos' bits into the right (least significant) side.
7710      * We return the result in tcg_right, and guarantee not to
7711      * trash tcg_left.
7712      */
7713     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7714     assert(pos > 0 && pos < 64);
7715 
7716     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7717     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7718     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7719 }
7720 
7721 /* EXT
7722  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7723  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7724  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7725  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7726  */
7727 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7728 {
7729     int is_q = extract32(insn, 30, 1);
7730     int op2 = extract32(insn, 22, 2);
7731     int imm4 = extract32(insn, 11, 4);
7732     int rm = extract32(insn, 16, 5);
7733     int rn = extract32(insn, 5, 5);
7734     int rd = extract32(insn, 0, 5);
7735     int pos = imm4 << 3;
7736     TCGv_i64 tcg_resl, tcg_resh;
7737 
7738     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7739         unallocated_encoding(s);
7740         return;
7741     }
7742 
7743     if (!fp_access_check(s)) {
7744         return;
7745     }
7746 
7747     tcg_resh = tcg_temp_new_i64();
7748     tcg_resl = tcg_temp_new_i64();
7749 
7750     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7751      * either extracting 128 bits from a 128:128 concatenation, or
7752      * extracting 64 bits from a 64:64 concatenation.
7753      */
7754     if (!is_q) {
7755         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7756         if (pos != 0) {
7757             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7758             do_ext64(s, tcg_resh, tcg_resl, pos);
7759         }
7760     } else {
7761         TCGv_i64 tcg_hh;
7762         typedef struct {
7763             int reg;
7764             int elt;
7765         } EltPosns;
7766         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7767         EltPosns *elt = eltposns;
7768 
7769         if (pos >= 64) {
7770             elt++;
7771             pos -= 64;
7772         }
7773 
7774         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7775         elt++;
7776         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7777         elt++;
7778         if (pos != 0) {
7779             do_ext64(s, tcg_resh, tcg_resl, pos);
7780             tcg_hh = tcg_temp_new_i64();
7781             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7782             do_ext64(s, tcg_hh, tcg_resh, pos);
7783         }
7784     }
7785 
7786     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7787     if (is_q) {
7788         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7789     }
7790     clear_vec_high(s, is_q, rd);
7791 }
7792 
7793 /* TBL/TBX
7794  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7795  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7796  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7797  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7798  */
7799 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7800 {
7801     int op2 = extract32(insn, 22, 2);
7802     int is_q = extract32(insn, 30, 1);
7803     int rm = extract32(insn, 16, 5);
7804     int rn = extract32(insn, 5, 5);
7805     int rd = extract32(insn, 0, 5);
7806     int is_tbx = extract32(insn, 12, 1);
7807     int len = (extract32(insn, 13, 2) + 1) * 16;
7808 
7809     if (op2 != 0) {
7810         unallocated_encoding(s);
7811         return;
7812     }
7813 
7814     if (!fp_access_check(s)) {
7815         return;
7816     }
7817 
7818     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7819                        vec_full_reg_offset(s, rm), tcg_env,
7820                        is_q ? 16 : 8, vec_full_reg_size(s),
7821                        (len << 6) | (is_tbx << 5) | rn,
7822                        gen_helper_simd_tblx);
7823 }
7824 
7825 /* ZIP/UZP/TRN
7826  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7827  * +---+---+-------------+------+---+------+---+------------------+------+
7828  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7829  * +---+---+-------------+------+---+------+---+------------------+------+
7830  */
7831 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7832 {
7833     int rd = extract32(insn, 0, 5);
7834     int rn = extract32(insn, 5, 5);
7835     int rm = extract32(insn, 16, 5);
7836     int size = extract32(insn, 22, 2);
7837     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7838      * bit 2 indicates 1 vs 2 variant of the insn.
7839      */
7840     int opcode = extract32(insn, 12, 2);
7841     bool part = extract32(insn, 14, 1);
7842     bool is_q = extract32(insn, 30, 1);
7843     int esize = 8 << size;
7844     int i;
7845     int datasize = is_q ? 128 : 64;
7846     int elements = datasize / esize;
7847     TCGv_i64 tcg_res[2], tcg_ele;
7848 
7849     if (opcode == 0 || (size == 3 && !is_q)) {
7850         unallocated_encoding(s);
7851         return;
7852     }
7853 
7854     if (!fp_access_check(s)) {
7855         return;
7856     }
7857 
7858     tcg_res[0] = tcg_temp_new_i64();
7859     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7860     tcg_ele = tcg_temp_new_i64();
7861 
7862     for (i = 0; i < elements; i++) {
7863         int o, w;
7864 
7865         switch (opcode) {
7866         case 1: /* UZP1/2 */
7867         {
7868             int midpoint = elements / 2;
7869             if (i < midpoint) {
7870                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7871             } else {
7872                 read_vec_element(s, tcg_ele, rm,
7873                                  2 * (i - midpoint) + part, size);
7874             }
7875             break;
7876         }
7877         case 2: /* TRN1/2 */
7878             if (i & 1) {
7879                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7880             } else {
7881                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7882             }
7883             break;
7884         case 3: /* ZIP1/2 */
7885         {
7886             int base = part * elements / 2;
7887             if (i & 1) {
7888                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7889             } else {
7890                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7891             }
7892             break;
7893         }
7894         default:
7895             g_assert_not_reached();
7896         }
7897 
7898         w = (i * esize) / 64;
7899         o = (i * esize) % 64;
7900         if (o == 0) {
7901             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7902         } else {
7903             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7904             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7905         }
7906     }
7907 
7908     for (i = 0; i <= is_q; ++i) {
7909         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7910     }
7911     clear_vec_high(s, is_q, rd);
7912 }
7913 
7914 /*
7915  * do_reduction_op helper
7916  *
7917  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7918  * important for correct NaN propagation that we do these
7919  * operations in exactly the order specified by the pseudocode.
7920  *
7921  * This is a recursive function, TCG temps should be freed by the
7922  * calling function once it is done with the values.
7923  */
7924 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7925                                 int esize, int size, int vmap, TCGv_ptr fpst)
7926 {
7927     if (esize == size) {
7928         int element;
7929         MemOp msize = esize == 16 ? MO_16 : MO_32;
7930         TCGv_i32 tcg_elem;
7931 
7932         /* We should have one register left here */
7933         assert(ctpop8(vmap) == 1);
7934         element = ctz32(vmap);
7935         assert(element < 8);
7936 
7937         tcg_elem = tcg_temp_new_i32();
7938         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7939         return tcg_elem;
7940     } else {
7941         int bits = size / 2;
7942         int shift = ctpop8(vmap) / 2;
7943         int vmap_lo = (vmap >> shift) & vmap;
7944         int vmap_hi = (vmap & ~vmap_lo);
7945         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7946 
7947         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7948         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7949         tcg_res = tcg_temp_new_i32();
7950 
7951         switch (fpopcode) {
7952         case 0x0c: /* fmaxnmv half-precision */
7953             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7954             break;
7955         case 0x0f: /* fmaxv half-precision */
7956             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7957             break;
7958         case 0x1c: /* fminnmv half-precision */
7959             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7960             break;
7961         case 0x1f: /* fminv half-precision */
7962             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7963             break;
7964         case 0x2c: /* fmaxnmv */
7965             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7966             break;
7967         case 0x2f: /* fmaxv */
7968             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7969             break;
7970         case 0x3c: /* fminnmv */
7971             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7972             break;
7973         case 0x3f: /* fminv */
7974             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7975             break;
7976         default:
7977             g_assert_not_reached();
7978         }
7979         return tcg_res;
7980     }
7981 }
7982 
7983 /* AdvSIMD across lanes
7984  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7985  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7986  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7987  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7988  */
7989 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7990 {
7991     int rd = extract32(insn, 0, 5);
7992     int rn = extract32(insn, 5, 5);
7993     int size = extract32(insn, 22, 2);
7994     int opcode = extract32(insn, 12, 5);
7995     bool is_q = extract32(insn, 30, 1);
7996     bool is_u = extract32(insn, 29, 1);
7997     bool is_fp = false;
7998     bool is_min = false;
7999     int esize;
8000     int elements;
8001     int i;
8002     TCGv_i64 tcg_res, tcg_elt;
8003 
8004     switch (opcode) {
8005     case 0x1b: /* ADDV */
8006         if (is_u) {
8007             unallocated_encoding(s);
8008             return;
8009         }
8010         /* fall through */
8011     case 0x3: /* SADDLV, UADDLV */
8012     case 0xa: /* SMAXV, UMAXV */
8013     case 0x1a: /* SMINV, UMINV */
8014         if (size == 3 || (size == 2 && !is_q)) {
8015             unallocated_encoding(s);
8016             return;
8017         }
8018         break;
8019     case 0xc: /* FMAXNMV, FMINNMV */
8020     case 0xf: /* FMAXV, FMINV */
8021         /* Bit 1 of size field encodes min vs max and the actual size
8022          * depends on the encoding of the U bit. If not set (and FP16
8023          * enabled) then we do half-precision float instead of single
8024          * precision.
8025          */
8026         is_min = extract32(size, 1, 1);
8027         is_fp = true;
8028         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8029             size = 1;
8030         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8031             unallocated_encoding(s);
8032             return;
8033         } else {
8034             size = 2;
8035         }
8036         break;
8037     default:
8038         unallocated_encoding(s);
8039         return;
8040     }
8041 
8042     if (!fp_access_check(s)) {
8043         return;
8044     }
8045 
8046     esize = 8 << size;
8047     elements = (is_q ? 128 : 64) / esize;
8048 
8049     tcg_res = tcg_temp_new_i64();
8050     tcg_elt = tcg_temp_new_i64();
8051 
8052     /* These instructions operate across all lanes of a vector
8053      * to produce a single result. We can guarantee that a 64
8054      * bit intermediate is sufficient:
8055      *  + for [US]ADDLV the maximum element size is 32 bits, and
8056      *    the result type is 64 bits
8057      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8058      *    same as the element size, which is 32 bits at most
8059      * For the integer operations we can choose to work at 64
8060      * or 32 bits and truncate at the end; for simplicity
8061      * we use 64 bits always. The floating point
8062      * ops do require 32 bit intermediates, though.
8063      */
8064     if (!is_fp) {
8065         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8066 
8067         for (i = 1; i < elements; i++) {
8068             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8069 
8070             switch (opcode) {
8071             case 0x03: /* SADDLV / UADDLV */
8072             case 0x1b: /* ADDV */
8073                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8074                 break;
8075             case 0x0a: /* SMAXV / UMAXV */
8076                 if (is_u) {
8077                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8078                 } else {
8079                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8080                 }
8081                 break;
8082             case 0x1a: /* SMINV / UMINV */
8083                 if (is_u) {
8084                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8085                 } else {
8086                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8087                 }
8088                 break;
8089             default:
8090                 g_assert_not_reached();
8091             }
8092 
8093         }
8094     } else {
8095         /* Floating point vector reduction ops which work across 32
8096          * bit (single) or 16 bit (half-precision) intermediates.
8097          * Note that correct NaN propagation requires that we do these
8098          * operations in exactly the order specified by the pseudocode.
8099          */
8100         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8101         int fpopcode = opcode | is_min << 4 | is_u << 5;
8102         int vmap = (1 << elements) - 1;
8103         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8104                                              (is_q ? 128 : 64), vmap, fpst);
8105         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8106     }
8107 
8108     /* Now truncate the result to the width required for the final output */
8109     if (opcode == 0x03) {
8110         /* SADDLV, UADDLV: result is 2*esize */
8111         size++;
8112     }
8113 
8114     switch (size) {
8115     case 0:
8116         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8117         break;
8118     case 1:
8119         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8120         break;
8121     case 2:
8122         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8123         break;
8124     case 3:
8125         break;
8126     default:
8127         g_assert_not_reached();
8128     }
8129 
8130     write_fp_dreg(s, rd, tcg_res);
8131 }
8132 
8133 /* AdvSIMD modified immediate
8134  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8135  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8136  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8137  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8138  *
8139  * There are a number of operations that can be carried out here:
8140  *   MOVI - move (shifted) imm into register
8141  *   MVNI - move inverted (shifted) imm into register
8142  *   ORR  - bitwise OR of (shifted) imm with register
8143  *   BIC  - bitwise clear of (shifted) imm with register
8144  * With ARMv8.2 we also have:
8145  *   FMOV half-precision
8146  */
8147 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8148 {
8149     int rd = extract32(insn, 0, 5);
8150     int cmode = extract32(insn, 12, 4);
8151     int o2 = extract32(insn, 11, 1);
8152     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8153     bool is_neg = extract32(insn, 29, 1);
8154     bool is_q = extract32(insn, 30, 1);
8155     uint64_t imm = 0;
8156 
8157     if (o2) {
8158         if (cmode != 0xf || is_neg) {
8159             unallocated_encoding(s);
8160             return;
8161         }
8162         /* FMOV (vector, immediate) - half-precision */
8163         if (!dc_isar_feature(aa64_fp16, s)) {
8164             unallocated_encoding(s);
8165             return;
8166         }
8167         imm = vfp_expand_imm(MO_16, abcdefgh);
8168         /* now duplicate across the lanes */
8169         imm = dup_const(MO_16, imm);
8170     } else {
8171         if (cmode == 0xf && is_neg && !is_q) {
8172             unallocated_encoding(s);
8173             return;
8174         }
8175         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8176     }
8177 
8178     if (!fp_access_check(s)) {
8179         return;
8180     }
8181 
8182     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8183         /* MOVI or MVNI, with MVNI negation handled above.  */
8184         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8185                              vec_full_reg_size(s), imm);
8186     } else {
8187         /* ORR or BIC, with BIC negation to AND handled above.  */
8188         if (is_neg) {
8189             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8190         } else {
8191             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8192         }
8193     }
8194 }
8195 
8196 /* AdvSIMD scalar pairwise
8197  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8198  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8199  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8200  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8201  */
8202 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8203 {
8204     int u = extract32(insn, 29, 1);
8205     int size = extract32(insn, 22, 2);
8206     int opcode = extract32(insn, 12, 5);
8207     int rn = extract32(insn, 5, 5);
8208     int rd = extract32(insn, 0, 5);
8209     TCGv_ptr fpst;
8210 
8211     /* For some ops (the FP ones), size[1] is part of the encoding.
8212      * For ADDP strictly it is not but size[1] is always 1 for valid
8213      * encodings.
8214      */
8215     opcode |= (extract32(size, 1, 1) << 5);
8216 
8217     switch (opcode) {
8218     case 0x3b: /* ADDP */
8219         if (u || size != 3) {
8220             unallocated_encoding(s);
8221             return;
8222         }
8223         if (!fp_access_check(s)) {
8224             return;
8225         }
8226 
8227         fpst = NULL;
8228         break;
8229     case 0xc: /* FMAXNMP */
8230     case 0xd: /* FADDP */
8231     case 0xf: /* FMAXP */
8232     case 0x2c: /* FMINNMP */
8233     case 0x2f: /* FMINP */
8234         /* FP op, size[0] is 32 or 64 bit*/
8235         if (!u) {
8236             if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) {
8237                 unallocated_encoding(s);
8238                 return;
8239             } else {
8240                 size = MO_16;
8241             }
8242         } else {
8243             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8244         }
8245 
8246         if (!fp_access_check(s)) {
8247             return;
8248         }
8249 
8250         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8251         break;
8252     default:
8253         unallocated_encoding(s);
8254         return;
8255     }
8256 
8257     if (size == MO_64) {
8258         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8259         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8260         TCGv_i64 tcg_res = tcg_temp_new_i64();
8261 
8262         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8263         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8264 
8265         switch (opcode) {
8266         case 0x3b: /* ADDP */
8267             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8268             break;
8269         case 0xc: /* FMAXNMP */
8270             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8271             break;
8272         case 0xd: /* FADDP */
8273             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8274             break;
8275         case 0xf: /* FMAXP */
8276             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8277             break;
8278         case 0x2c: /* FMINNMP */
8279             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8280             break;
8281         case 0x2f: /* FMINP */
8282             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8283             break;
8284         default:
8285             g_assert_not_reached();
8286         }
8287 
8288         write_fp_dreg(s, rd, tcg_res);
8289     } else {
8290         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8291         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8292         TCGv_i32 tcg_res = tcg_temp_new_i32();
8293 
8294         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8295         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8296 
8297         if (size == MO_16) {
8298             switch (opcode) {
8299             case 0xc: /* FMAXNMP */
8300                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8301                 break;
8302             case 0xd: /* FADDP */
8303                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8304                 break;
8305             case 0xf: /* FMAXP */
8306                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8307                 break;
8308             case 0x2c: /* FMINNMP */
8309                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8310                 break;
8311             case 0x2f: /* FMINP */
8312                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8313                 break;
8314             default:
8315                 g_assert_not_reached();
8316             }
8317         } else {
8318             switch (opcode) {
8319             case 0xc: /* FMAXNMP */
8320                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8321                 break;
8322             case 0xd: /* FADDP */
8323                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8324                 break;
8325             case 0xf: /* FMAXP */
8326                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8327                 break;
8328             case 0x2c: /* FMINNMP */
8329                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8330                 break;
8331             case 0x2f: /* FMINP */
8332                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8333                 break;
8334             default:
8335                 g_assert_not_reached();
8336             }
8337         }
8338 
8339         write_fp_sreg(s, rd, tcg_res);
8340     }
8341 }
8342 
8343 /*
8344  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8345  *
8346  * This code is handles the common shifting code and is used by both
8347  * the vector and scalar code.
8348  */
8349 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8350                                     TCGv_i64 tcg_rnd, bool accumulate,
8351                                     bool is_u, int size, int shift)
8352 {
8353     bool extended_result = false;
8354     bool round = tcg_rnd != NULL;
8355     int ext_lshift = 0;
8356     TCGv_i64 tcg_src_hi;
8357 
8358     if (round && size == 3) {
8359         extended_result = true;
8360         ext_lshift = 64 - shift;
8361         tcg_src_hi = tcg_temp_new_i64();
8362     } else if (shift == 64) {
8363         if (!accumulate && is_u) {
8364             /* result is zero */
8365             tcg_gen_movi_i64(tcg_res, 0);
8366             return;
8367         }
8368     }
8369 
8370     /* Deal with the rounding step */
8371     if (round) {
8372         if (extended_result) {
8373             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8374             if (!is_u) {
8375                 /* take care of sign extending tcg_res */
8376                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8377                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8378                                  tcg_src, tcg_src_hi,
8379                                  tcg_rnd, tcg_zero);
8380             } else {
8381                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8382                                  tcg_src, tcg_zero,
8383                                  tcg_rnd, tcg_zero);
8384             }
8385         } else {
8386             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8387         }
8388     }
8389 
8390     /* Now do the shift right */
8391     if (round && extended_result) {
8392         /* extended case, >64 bit precision required */
8393         if (ext_lshift == 0) {
8394             /* special case, only high bits matter */
8395             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8396         } else {
8397             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8398             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8399             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8400         }
8401     } else {
8402         if (is_u) {
8403             if (shift == 64) {
8404                 /* essentially shifting in 64 zeros */
8405                 tcg_gen_movi_i64(tcg_src, 0);
8406             } else {
8407                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8408             }
8409         } else {
8410             if (shift == 64) {
8411                 /* effectively extending the sign-bit */
8412                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8413             } else {
8414                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8415             }
8416         }
8417     }
8418 
8419     if (accumulate) {
8420         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8421     } else {
8422         tcg_gen_mov_i64(tcg_res, tcg_src);
8423     }
8424 }
8425 
8426 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8427 static void handle_scalar_simd_shri(DisasContext *s,
8428                                     bool is_u, int immh, int immb,
8429                                     int opcode, int rn, int rd)
8430 {
8431     const int size = 3;
8432     int immhb = immh << 3 | immb;
8433     int shift = 2 * (8 << size) - immhb;
8434     bool accumulate = false;
8435     bool round = false;
8436     bool insert = false;
8437     TCGv_i64 tcg_rn;
8438     TCGv_i64 tcg_rd;
8439     TCGv_i64 tcg_round;
8440 
8441     if (!extract32(immh, 3, 1)) {
8442         unallocated_encoding(s);
8443         return;
8444     }
8445 
8446     if (!fp_access_check(s)) {
8447         return;
8448     }
8449 
8450     switch (opcode) {
8451     case 0x02: /* SSRA / USRA (accumulate) */
8452         accumulate = true;
8453         break;
8454     case 0x04: /* SRSHR / URSHR (rounding) */
8455         round = true;
8456         break;
8457     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8458         accumulate = round = true;
8459         break;
8460     case 0x08: /* SRI */
8461         insert = true;
8462         break;
8463     }
8464 
8465     if (round) {
8466         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8467     } else {
8468         tcg_round = NULL;
8469     }
8470 
8471     tcg_rn = read_fp_dreg(s, rn);
8472     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8473 
8474     if (insert) {
8475         /* shift count same as element size is valid but does nothing;
8476          * special case to avoid potential shift by 64.
8477          */
8478         int esize = 8 << size;
8479         if (shift != esize) {
8480             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8481             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8482         }
8483     } else {
8484         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8485                                 accumulate, is_u, size, shift);
8486     }
8487 
8488     write_fp_dreg(s, rd, tcg_rd);
8489 }
8490 
8491 /* SHL/SLI - Scalar shift left */
8492 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8493                                     int immh, int immb, int opcode,
8494                                     int rn, int rd)
8495 {
8496     int size = 32 - clz32(immh) - 1;
8497     int immhb = immh << 3 | immb;
8498     int shift = immhb - (8 << size);
8499     TCGv_i64 tcg_rn;
8500     TCGv_i64 tcg_rd;
8501 
8502     if (!extract32(immh, 3, 1)) {
8503         unallocated_encoding(s);
8504         return;
8505     }
8506 
8507     if (!fp_access_check(s)) {
8508         return;
8509     }
8510 
8511     tcg_rn = read_fp_dreg(s, rn);
8512     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8513 
8514     if (insert) {
8515         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8516     } else {
8517         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8518     }
8519 
8520     write_fp_dreg(s, rd, tcg_rd);
8521 }
8522 
8523 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8524  * (signed/unsigned) narrowing */
8525 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8526                                    bool is_u_shift, bool is_u_narrow,
8527                                    int immh, int immb, int opcode,
8528                                    int rn, int rd)
8529 {
8530     int immhb = immh << 3 | immb;
8531     int size = 32 - clz32(immh) - 1;
8532     int esize = 8 << size;
8533     int shift = (2 * esize) - immhb;
8534     int elements = is_scalar ? 1 : (64 / esize);
8535     bool round = extract32(opcode, 0, 1);
8536     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8537     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8538     TCGv_i32 tcg_rd_narrowed;
8539     TCGv_i64 tcg_final;
8540 
8541     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8542         { gen_helper_neon_narrow_sat_s8,
8543           gen_helper_neon_unarrow_sat8 },
8544         { gen_helper_neon_narrow_sat_s16,
8545           gen_helper_neon_unarrow_sat16 },
8546         { gen_helper_neon_narrow_sat_s32,
8547           gen_helper_neon_unarrow_sat32 },
8548         { NULL, NULL },
8549     };
8550     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8551         gen_helper_neon_narrow_sat_u8,
8552         gen_helper_neon_narrow_sat_u16,
8553         gen_helper_neon_narrow_sat_u32,
8554         NULL
8555     };
8556     NeonGenNarrowEnvFn *narrowfn;
8557 
8558     int i;
8559 
8560     assert(size < 4);
8561 
8562     if (extract32(immh, 3, 1)) {
8563         unallocated_encoding(s);
8564         return;
8565     }
8566 
8567     if (!fp_access_check(s)) {
8568         return;
8569     }
8570 
8571     if (is_u_shift) {
8572         narrowfn = unsigned_narrow_fns[size];
8573     } else {
8574         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8575     }
8576 
8577     tcg_rn = tcg_temp_new_i64();
8578     tcg_rd = tcg_temp_new_i64();
8579     tcg_rd_narrowed = tcg_temp_new_i32();
8580     tcg_final = tcg_temp_new_i64();
8581 
8582     if (round) {
8583         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8584     } else {
8585         tcg_round = NULL;
8586     }
8587 
8588     for (i = 0; i < elements; i++) {
8589         read_vec_element(s, tcg_rn, rn, i, ldop);
8590         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8591                                 false, is_u_shift, size+1, shift);
8592         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8593         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8594         if (i == 0) {
8595             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8596         } else {
8597             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8598         }
8599     }
8600 
8601     if (!is_q) {
8602         write_vec_element(s, tcg_final, rd, 0, MO_64);
8603     } else {
8604         write_vec_element(s, tcg_final, rd, 1, MO_64);
8605     }
8606     clear_vec_high(s, is_q, rd);
8607 }
8608 
8609 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8610 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8611                              bool src_unsigned, bool dst_unsigned,
8612                              int immh, int immb, int rn, int rd)
8613 {
8614     int immhb = immh << 3 | immb;
8615     int size = 32 - clz32(immh) - 1;
8616     int shift = immhb - (8 << size);
8617     int pass;
8618 
8619     assert(immh != 0);
8620     assert(!(scalar && is_q));
8621 
8622     if (!scalar) {
8623         if (!is_q && extract32(immh, 3, 1)) {
8624             unallocated_encoding(s);
8625             return;
8626         }
8627 
8628         /* Since we use the variable-shift helpers we must
8629          * replicate the shift count into each element of
8630          * the tcg_shift value.
8631          */
8632         switch (size) {
8633         case 0:
8634             shift |= shift << 8;
8635             /* fall through */
8636         case 1:
8637             shift |= shift << 16;
8638             break;
8639         case 2:
8640         case 3:
8641             break;
8642         default:
8643             g_assert_not_reached();
8644         }
8645     }
8646 
8647     if (!fp_access_check(s)) {
8648         return;
8649     }
8650 
8651     if (size == 3) {
8652         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8653         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8654             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8655             { NULL, gen_helper_neon_qshl_u64 },
8656         };
8657         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8658         int maxpass = is_q ? 2 : 1;
8659 
8660         for (pass = 0; pass < maxpass; pass++) {
8661             TCGv_i64 tcg_op = tcg_temp_new_i64();
8662 
8663             read_vec_element(s, tcg_op, rn, pass, MO_64);
8664             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8665             write_vec_element(s, tcg_op, rd, pass, MO_64);
8666         }
8667         clear_vec_high(s, is_q, rd);
8668     } else {
8669         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8670         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8671             {
8672                 { gen_helper_neon_qshl_s8,
8673                   gen_helper_neon_qshl_s16,
8674                   gen_helper_neon_qshl_s32 },
8675                 { gen_helper_neon_qshlu_s8,
8676                   gen_helper_neon_qshlu_s16,
8677                   gen_helper_neon_qshlu_s32 }
8678             }, {
8679                 { NULL, NULL, NULL },
8680                 { gen_helper_neon_qshl_u8,
8681                   gen_helper_neon_qshl_u16,
8682                   gen_helper_neon_qshl_u32 }
8683             }
8684         };
8685         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8686         MemOp memop = scalar ? size : MO_32;
8687         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8688 
8689         for (pass = 0; pass < maxpass; pass++) {
8690             TCGv_i32 tcg_op = tcg_temp_new_i32();
8691 
8692             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8693             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8694             if (scalar) {
8695                 switch (size) {
8696                 case 0:
8697                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8698                     break;
8699                 case 1:
8700                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8701                     break;
8702                 case 2:
8703                     break;
8704                 default:
8705                     g_assert_not_reached();
8706                 }
8707                 write_fp_sreg(s, rd, tcg_op);
8708             } else {
8709                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8710             }
8711         }
8712 
8713         if (!scalar) {
8714             clear_vec_high(s, is_q, rd);
8715         }
8716     }
8717 }
8718 
8719 /* Common vector code for handling integer to FP conversion */
8720 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8721                                    int elements, int is_signed,
8722                                    int fracbits, int size)
8723 {
8724     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8725     TCGv_i32 tcg_shift = NULL;
8726 
8727     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8728     int pass;
8729 
8730     if (fracbits || size == MO_64) {
8731         tcg_shift = tcg_constant_i32(fracbits);
8732     }
8733 
8734     if (size == MO_64) {
8735         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8736         TCGv_i64 tcg_double = tcg_temp_new_i64();
8737 
8738         for (pass = 0; pass < elements; pass++) {
8739             read_vec_element(s, tcg_int64, rn, pass, mop);
8740 
8741             if (is_signed) {
8742                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8743                                      tcg_shift, tcg_fpst);
8744             } else {
8745                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8746                                      tcg_shift, tcg_fpst);
8747             }
8748             if (elements == 1) {
8749                 write_fp_dreg(s, rd, tcg_double);
8750             } else {
8751                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8752             }
8753         }
8754     } else {
8755         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8756         TCGv_i32 tcg_float = tcg_temp_new_i32();
8757 
8758         for (pass = 0; pass < elements; pass++) {
8759             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8760 
8761             switch (size) {
8762             case MO_32:
8763                 if (fracbits) {
8764                     if (is_signed) {
8765                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8766                                              tcg_shift, tcg_fpst);
8767                     } else {
8768                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8769                                              tcg_shift, tcg_fpst);
8770                     }
8771                 } else {
8772                     if (is_signed) {
8773                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8774                     } else {
8775                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8776                     }
8777                 }
8778                 break;
8779             case MO_16:
8780                 if (fracbits) {
8781                     if (is_signed) {
8782                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8783                                              tcg_shift, tcg_fpst);
8784                     } else {
8785                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8786                                              tcg_shift, tcg_fpst);
8787                     }
8788                 } else {
8789                     if (is_signed) {
8790                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8791                     } else {
8792                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8793                     }
8794                 }
8795                 break;
8796             default:
8797                 g_assert_not_reached();
8798             }
8799 
8800             if (elements == 1) {
8801                 write_fp_sreg(s, rd, tcg_float);
8802             } else {
8803                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8804             }
8805         }
8806     }
8807 
8808     clear_vec_high(s, elements << size == 16, rd);
8809 }
8810 
8811 /* UCVTF/SCVTF - Integer to FP conversion */
8812 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8813                                          bool is_q, bool is_u,
8814                                          int immh, int immb, int opcode,
8815                                          int rn, int rd)
8816 {
8817     int size, elements, fracbits;
8818     int immhb = immh << 3 | immb;
8819 
8820     if (immh & 8) {
8821         size = MO_64;
8822         if (!is_scalar && !is_q) {
8823             unallocated_encoding(s);
8824             return;
8825         }
8826     } else if (immh & 4) {
8827         size = MO_32;
8828     } else if (immh & 2) {
8829         size = MO_16;
8830         if (!dc_isar_feature(aa64_fp16, s)) {
8831             unallocated_encoding(s);
8832             return;
8833         }
8834     } else {
8835         /* immh == 0 would be a failure of the decode logic */
8836         g_assert(immh == 1);
8837         unallocated_encoding(s);
8838         return;
8839     }
8840 
8841     if (is_scalar) {
8842         elements = 1;
8843     } else {
8844         elements = (8 << is_q) >> size;
8845     }
8846     fracbits = (16 << size) - immhb;
8847 
8848     if (!fp_access_check(s)) {
8849         return;
8850     }
8851 
8852     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8853 }
8854 
8855 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8856 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8857                                          bool is_q, bool is_u,
8858                                          int immh, int immb, int rn, int rd)
8859 {
8860     int immhb = immh << 3 | immb;
8861     int pass, size, fracbits;
8862     TCGv_ptr tcg_fpstatus;
8863     TCGv_i32 tcg_rmode, tcg_shift;
8864 
8865     if (immh & 0x8) {
8866         size = MO_64;
8867         if (!is_scalar && !is_q) {
8868             unallocated_encoding(s);
8869             return;
8870         }
8871     } else if (immh & 0x4) {
8872         size = MO_32;
8873     } else if (immh & 0x2) {
8874         size = MO_16;
8875         if (!dc_isar_feature(aa64_fp16, s)) {
8876             unallocated_encoding(s);
8877             return;
8878         }
8879     } else {
8880         /* Should have split out AdvSIMD modified immediate earlier.  */
8881         assert(immh == 1);
8882         unallocated_encoding(s);
8883         return;
8884     }
8885 
8886     if (!fp_access_check(s)) {
8887         return;
8888     }
8889 
8890     assert(!(is_scalar && is_q));
8891 
8892     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8893     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8894     fracbits = (16 << size) - immhb;
8895     tcg_shift = tcg_constant_i32(fracbits);
8896 
8897     if (size == MO_64) {
8898         int maxpass = is_scalar ? 1 : 2;
8899 
8900         for (pass = 0; pass < maxpass; pass++) {
8901             TCGv_i64 tcg_op = tcg_temp_new_i64();
8902 
8903             read_vec_element(s, tcg_op, rn, pass, MO_64);
8904             if (is_u) {
8905                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8906             } else {
8907                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8908             }
8909             write_vec_element(s, tcg_op, rd, pass, MO_64);
8910         }
8911         clear_vec_high(s, is_q, rd);
8912     } else {
8913         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8914         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8915 
8916         switch (size) {
8917         case MO_16:
8918             if (is_u) {
8919                 fn = gen_helper_vfp_touhh;
8920             } else {
8921                 fn = gen_helper_vfp_toshh;
8922             }
8923             break;
8924         case MO_32:
8925             if (is_u) {
8926                 fn = gen_helper_vfp_touls;
8927             } else {
8928                 fn = gen_helper_vfp_tosls;
8929             }
8930             break;
8931         default:
8932             g_assert_not_reached();
8933         }
8934 
8935         for (pass = 0; pass < maxpass; pass++) {
8936             TCGv_i32 tcg_op = tcg_temp_new_i32();
8937 
8938             read_vec_element_i32(s, tcg_op, rn, pass, size);
8939             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8940             if (is_scalar) {
8941                 if (size == MO_16 && !is_u) {
8942                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8943                 }
8944                 write_fp_sreg(s, rd, tcg_op);
8945             } else {
8946                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8947             }
8948         }
8949         if (!is_scalar) {
8950             clear_vec_high(s, is_q, rd);
8951         }
8952     }
8953 
8954     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8955 }
8956 
8957 /* AdvSIMD scalar shift by immediate
8958  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8959  * +-----+---+-------------+------+------+--------+---+------+------+
8960  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8961  * +-----+---+-------------+------+------+--------+---+------+------+
8962  *
8963  * This is the scalar version so it works on a fixed sized registers
8964  */
8965 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8966 {
8967     int rd = extract32(insn, 0, 5);
8968     int rn = extract32(insn, 5, 5);
8969     int opcode = extract32(insn, 11, 5);
8970     int immb = extract32(insn, 16, 3);
8971     int immh = extract32(insn, 19, 4);
8972     bool is_u = extract32(insn, 29, 1);
8973 
8974     if (immh == 0) {
8975         unallocated_encoding(s);
8976         return;
8977     }
8978 
8979     switch (opcode) {
8980     case 0x08: /* SRI */
8981         if (!is_u) {
8982             unallocated_encoding(s);
8983             return;
8984         }
8985         /* fall through */
8986     case 0x00: /* SSHR / USHR */
8987     case 0x02: /* SSRA / USRA */
8988     case 0x04: /* SRSHR / URSHR */
8989     case 0x06: /* SRSRA / URSRA */
8990         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8991         break;
8992     case 0x0a: /* SHL / SLI */
8993         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8994         break;
8995     case 0x1c: /* SCVTF, UCVTF */
8996         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8997                                      opcode, rn, rd);
8998         break;
8999     case 0x10: /* SQSHRUN, SQSHRUN2 */
9000     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9001         if (!is_u) {
9002             unallocated_encoding(s);
9003             return;
9004         }
9005         handle_vec_simd_sqshrn(s, true, false, false, true,
9006                                immh, immb, opcode, rn, rd);
9007         break;
9008     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9009     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9010         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9011                                immh, immb, opcode, rn, rd);
9012         break;
9013     case 0xc: /* SQSHLU */
9014         if (!is_u) {
9015             unallocated_encoding(s);
9016             return;
9017         }
9018         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9019         break;
9020     case 0xe: /* SQSHL, UQSHL */
9021         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9022         break;
9023     case 0x1f: /* FCVTZS, FCVTZU */
9024         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9025         break;
9026     default:
9027         unallocated_encoding(s);
9028         break;
9029     }
9030 }
9031 
9032 /* AdvSIMD scalar three different
9033  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9034  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9035  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9036  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9037  */
9038 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9039 {
9040     bool is_u = extract32(insn, 29, 1);
9041     int size = extract32(insn, 22, 2);
9042     int opcode = extract32(insn, 12, 4);
9043     int rm = extract32(insn, 16, 5);
9044     int rn = extract32(insn, 5, 5);
9045     int rd = extract32(insn, 0, 5);
9046 
9047     if (is_u) {
9048         unallocated_encoding(s);
9049         return;
9050     }
9051 
9052     switch (opcode) {
9053     case 0x9: /* SQDMLAL, SQDMLAL2 */
9054     case 0xb: /* SQDMLSL, SQDMLSL2 */
9055     case 0xd: /* SQDMULL, SQDMULL2 */
9056         if (size == 0 || size == 3) {
9057             unallocated_encoding(s);
9058             return;
9059         }
9060         break;
9061     default:
9062         unallocated_encoding(s);
9063         return;
9064     }
9065 
9066     if (!fp_access_check(s)) {
9067         return;
9068     }
9069 
9070     if (size == 2) {
9071         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9072         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9073         TCGv_i64 tcg_res = tcg_temp_new_i64();
9074 
9075         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9076         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9077 
9078         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9079         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9080 
9081         switch (opcode) {
9082         case 0xd: /* SQDMULL, SQDMULL2 */
9083             break;
9084         case 0xb: /* SQDMLSL, SQDMLSL2 */
9085             tcg_gen_neg_i64(tcg_res, tcg_res);
9086             /* fall through */
9087         case 0x9: /* SQDMLAL, SQDMLAL2 */
9088             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9089             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9090                                               tcg_res, tcg_op1);
9091             break;
9092         default:
9093             g_assert_not_reached();
9094         }
9095 
9096         write_fp_dreg(s, rd, tcg_res);
9097     } else {
9098         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9099         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9100         TCGv_i64 tcg_res = tcg_temp_new_i64();
9101 
9102         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9103         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9104 
9105         switch (opcode) {
9106         case 0xd: /* SQDMULL, SQDMULL2 */
9107             break;
9108         case 0xb: /* SQDMLSL, SQDMLSL2 */
9109             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9110             /* fall through */
9111         case 0x9: /* SQDMLAL, SQDMLAL2 */
9112         {
9113             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9114             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9115             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9116                                               tcg_res, tcg_op3);
9117             break;
9118         }
9119         default:
9120             g_assert_not_reached();
9121         }
9122 
9123         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9124         write_fp_dreg(s, rd, tcg_res);
9125     }
9126 }
9127 
9128 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9129                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9130 {
9131     /* Handle 64x64->64 opcodes which are shared between the scalar
9132      * and vector 3-same groups. We cover every opcode where size == 3
9133      * is valid in either the three-reg-same (integer, not pairwise)
9134      * or scalar-three-reg-same groups.
9135      */
9136     TCGCond cond;
9137 
9138     switch (opcode) {
9139     case 0x1: /* SQADD */
9140         if (u) {
9141             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9142         } else {
9143             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9144         }
9145         break;
9146     case 0x5: /* SQSUB */
9147         if (u) {
9148             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9149         } else {
9150             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9151         }
9152         break;
9153     case 0x6: /* CMGT, CMHI */
9154         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9155     do_cmop:
9156         /* 64 bit integer comparison, result = test ? -1 : 0. */
9157         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9158         break;
9159     case 0x7: /* CMGE, CMHS */
9160         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9161         goto do_cmop;
9162     case 0x11: /* CMTST, CMEQ */
9163         if (u) {
9164             cond = TCG_COND_EQ;
9165             goto do_cmop;
9166         }
9167         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9168         break;
9169     case 0x8: /* SSHL, USHL */
9170         if (u) {
9171             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9172         } else {
9173             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9174         }
9175         break;
9176     case 0x9: /* SQSHL, UQSHL */
9177         if (u) {
9178             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9179         } else {
9180             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9181         }
9182         break;
9183     case 0xa: /* SRSHL, URSHL */
9184         if (u) {
9185             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9186         } else {
9187             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9188         }
9189         break;
9190     case 0xb: /* SQRSHL, UQRSHL */
9191         if (u) {
9192             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9193         } else {
9194             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9195         }
9196         break;
9197     case 0x10: /* ADD, SUB */
9198         if (u) {
9199             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9200         } else {
9201             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9202         }
9203         break;
9204     default:
9205         g_assert_not_reached();
9206     }
9207 }
9208 
9209 /* Handle the 3-same-operands float operations; shared by the scalar
9210  * and vector encodings. The caller must filter out any encodings
9211  * not allocated for the encoding it is dealing with.
9212  */
9213 static void handle_3same_float(DisasContext *s, int size, int elements,
9214                                int fpopcode, int rd, int rn, int rm)
9215 {
9216     int pass;
9217     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9218 
9219     for (pass = 0; pass < elements; pass++) {
9220         if (size) {
9221             /* Double */
9222             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9223             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9224             TCGv_i64 tcg_res = tcg_temp_new_i64();
9225 
9226             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9227             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9228 
9229             switch (fpopcode) {
9230             case 0x1c: /* FCMEQ */
9231                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9232                 break;
9233             case 0x1f: /* FRECPS */
9234                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9235                 break;
9236             case 0x3f: /* FRSQRTS */
9237                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9238                 break;
9239             case 0x5c: /* FCMGE */
9240                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9241                 break;
9242             case 0x5d: /* FACGE */
9243                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9244                 break;
9245             case 0x7a: /* FABD */
9246                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9247                 gen_vfp_absd(tcg_res, tcg_res);
9248                 break;
9249             case 0x7c: /* FCMGT */
9250                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9251                 break;
9252             case 0x7d: /* FACGT */
9253                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9254                 break;
9255             default:
9256             case 0x18: /* FMAXNM */
9257             case 0x19: /* FMLA */
9258             case 0x1a: /* FADD */
9259             case 0x1b: /* FMULX */
9260             case 0x1e: /* FMAX */
9261             case 0x38: /* FMINNM */
9262             case 0x39: /* FMLS */
9263             case 0x3a: /* FSUB */
9264             case 0x3e: /* FMIN */
9265             case 0x5b: /* FMUL */
9266             case 0x5f: /* FDIV */
9267                 g_assert_not_reached();
9268             }
9269 
9270             write_vec_element(s, tcg_res, rd, pass, MO_64);
9271         } else {
9272             /* Single */
9273             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9274             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9275             TCGv_i32 tcg_res = tcg_temp_new_i32();
9276 
9277             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9278             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9279 
9280             switch (fpopcode) {
9281             case 0x1c: /* FCMEQ */
9282                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9283                 break;
9284             case 0x1f: /* FRECPS */
9285                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9286                 break;
9287             case 0x3f: /* FRSQRTS */
9288                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9289                 break;
9290             case 0x5c: /* FCMGE */
9291                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9292                 break;
9293             case 0x5d: /* FACGE */
9294                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9295                 break;
9296             case 0x7a: /* FABD */
9297                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9298                 gen_vfp_abss(tcg_res, tcg_res);
9299                 break;
9300             case 0x7c: /* FCMGT */
9301                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9302                 break;
9303             case 0x7d: /* FACGT */
9304                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9305                 break;
9306             default:
9307             case 0x18: /* FMAXNM */
9308             case 0x19: /* FMLA */
9309             case 0x1a: /* FADD */
9310             case 0x1b: /* FMULX */
9311             case 0x1e: /* FMAX */
9312             case 0x38: /* FMINNM */
9313             case 0x39: /* FMLS */
9314             case 0x3a: /* FSUB */
9315             case 0x3e: /* FMIN */
9316             case 0x5b: /* FMUL */
9317             case 0x5f: /* FDIV */
9318                 g_assert_not_reached();
9319             }
9320 
9321             if (elements == 1) {
9322                 /* scalar single so clear high part */
9323                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9324 
9325                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9326                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9327             } else {
9328                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9329             }
9330         }
9331     }
9332 
9333     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9334 }
9335 
9336 /* AdvSIMD scalar three same
9337  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9338  * +-----+---+-----------+------+---+------+--------+---+------+------+
9339  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9340  * +-----+---+-----------+------+---+------+--------+---+------+------+
9341  */
9342 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9343 {
9344     int rd = extract32(insn, 0, 5);
9345     int rn = extract32(insn, 5, 5);
9346     int opcode = extract32(insn, 11, 5);
9347     int rm = extract32(insn, 16, 5);
9348     int size = extract32(insn, 22, 2);
9349     bool u = extract32(insn, 29, 1);
9350     TCGv_i64 tcg_rd;
9351 
9352     if (opcode >= 0x18) {
9353         /* Floating point: U, size[1] and opcode indicate operation */
9354         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9355         switch (fpopcode) {
9356         case 0x1f: /* FRECPS */
9357         case 0x3f: /* FRSQRTS */
9358         case 0x5d: /* FACGE */
9359         case 0x7d: /* FACGT */
9360         case 0x1c: /* FCMEQ */
9361         case 0x5c: /* FCMGE */
9362         case 0x7c: /* FCMGT */
9363         case 0x7a: /* FABD */
9364             break;
9365         default:
9366         case 0x1b: /* FMULX */
9367             unallocated_encoding(s);
9368             return;
9369         }
9370 
9371         if (!fp_access_check(s)) {
9372             return;
9373         }
9374 
9375         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9376         return;
9377     }
9378 
9379     switch (opcode) {
9380     case 0x1: /* SQADD, UQADD */
9381     case 0x5: /* SQSUB, UQSUB */
9382     case 0x9: /* SQSHL, UQSHL */
9383     case 0xb: /* SQRSHL, UQRSHL */
9384         break;
9385     case 0x8: /* SSHL, USHL */
9386     case 0xa: /* SRSHL, URSHL */
9387     case 0x6: /* CMGT, CMHI */
9388     case 0x7: /* CMGE, CMHS */
9389     case 0x11: /* CMTST, CMEQ */
9390     case 0x10: /* ADD, SUB (vector) */
9391         if (size != 3) {
9392             unallocated_encoding(s);
9393             return;
9394         }
9395         break;
9396     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9397         if (size != 1 && size != 2) {
9398             unallocated_encoding(s);
9399             return;
9400         }
9401         break;
9402     default:
9403         unallocated_encoding(s);
9404         return;
9405     }
9406 
9407     if (!fp_access_check(s)) {
9408         return;
9409     }
9410 
9411     tcg_rd = tcg_temp_new_i64();
9412 
9413     if (size == 3) {
9414         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9415         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9416 
9417         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9418     } else {
9419         /* Do a single operation on the lowest element in the vector.
9420          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9421          * no side effects for all these operations.
9422          * OPTME: special-purpose helpers would avoid doing some
9423          * unnecessary work in the helper for the 8 and 16 bit cases.
9424          */
9425         NeonGenTwoOpEnvFn *genenvfn;
9426         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9427         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9428         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9429 
9430         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9431         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9432 
9433         switch (opcode) {
9434         case 0x1: /* SQADD, UQADD */
9435         {
9436             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9437                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9438                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9439                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9440             };
9441             genenvfn = fns[size][u];
9442             break;
9443         }
9444         case 0x5: /* SQSUB, UQSUB */
9445         {
9446             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9447                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9448                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9449                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9450             };
9451             genenvfn = fns[size][u];
9452             break;
9453         }
9454         case 0x9: /* SQSHL, UQSHL */
9455         {
9456             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9457                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9458                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9459                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9460             };
9461             genenvfn = fns[size][u];
9462             break;
9463         }
9464         case 0xb: /* SQRSHL, UQRSHL */
9465         {
9466             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9467                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9468                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9469                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9470             };
9471             genenvfn = fns[size][u];
9472             break;
9473         }
9474         case 0x16: /* SQDMULH, SQRDMULH */
9475         {
9476             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9477                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9478                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9479             };
9480             assert(size == 1 || size == 2);
9481             genenvfn = fns[size - 1][u];
9482             break;
9483         }
9484         default:
9485             g_assert_not_reached();
9486         }
9487 
9488         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9489         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9490     }
9491 
9492     write_fp_dreg(s, rd, tcg_rd);
9493 }
9494 
9495 /* AdvSIMD scalar three same FP16
9496  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9497  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9498  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9499  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9500  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9501  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9502  */
9503 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9504                                                   uint32_t insn)
9505 {
9506     int rd = extract32(insn, 0, 5);
9507     int rn = extract32(insn, 5, 5);
9508     int opcode = extract32(insn, 11, 3);
9509     int rm = extract32(insn, 16, 5);
9510     bool u = extract32(insn, 29, 1);
9511     bool a = extract32(insn, 23, 1);
9512     int fpopcode = opcode | (a << 3) |  (u << 4);
9513     TCGv_ptr fpst;
9514     TCGv_i32 tcg_op1;
9515     TCGv_i32 tcg_op2;
9516     TCGv_i32 tcg_res;
9517 
9518     switch (fpopcode) {
9519     case 0x04: /* FCMEQ (reg) */
9520     case 0x07: /* FRECPS */
9521     case 0x0f: /* FRSQRTS */
9522     case 0x14: /* FCMGE (reg) */
9523     case 0x15: /* FACGE */
9524     case 0x1a: /* FABD */
9525     case 0x1c: /* FCMGT (reg) */
9526     case 0x1d: /* FACGT */
9527         break;
9528     default:
9529     case 0x03: /* FMULX */
9530         unallocated_encoding(s);
9531         return;
9532     }
9533 
9534     if (!dc_isar_feature(aa64_fp16, s)) {
9535         unallocated_encoding(s);
9536     }
9537 
9538     if (!fp_access_check(s)) {
9539         return;
9540     }
9541 
9542     fpst = fpstatus_ptr(FPST_FPCR_F16);
9543 
9544     tcg_op1 = read_fp_hreg(s, rn);
9545     tcg_op2 = read_fp_hreg(s, rm);
9546     tcg_res = tcg_temp_new_i32();
9547 
9548     switch (fpopcode) {
9549     case 0x04: /* FCMEQ (reg) */
9550         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9551         break;
9552     case 0x07: /* FRECPS */
9553         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9554         break;
9555     case 0x0f: /* FRSQRTS */
9556         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9557         break;
9558     case 0x14: /* FCMGE (reg) */
9559         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9560         break;
9561     case 0x15: /* FACGE */
9562         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9563         break;
9564     case 0x1a: /* FABD */
9565         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9566         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9567         break;
9568     case 0x1c: /* FCMGT (reg) */
9569         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9570         break;
9571     case 0x1d: /* FACGT */
9572         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9573         break;
9574     default:
9575     case 0x03: /* FMULX */
9576         g_assert_not_reached();
9577     }
9578 
9579     write_fp_sreg(s, rd, tcg_res);
9580 }
9581 
9582 /* AdvSIMD scalar three same extra
9583  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9584  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9585  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9586  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9587  */
9588 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9589                                                    uint32_t insn)
9590 {
9591     int rd = extract32(insn, 0, 5);
9592     int rn = extract32(insn, 5, 5);
9593     int opcode = extract32(insn, 11, 4);
9594     int rm = extract32(insn, 16, 5);
9595     int size = extract32(insn, 22, 2);
9596     bool u = extract32(insn, 29, 1);
9597     TCGv_i32 ele1, ele2, ele3;
9598     TCGv_i64 res;
9599     bool feature;
9600 
9601     switch (u * 16 + opcode) {
9602     case 0x10: /* SQRDMLAH (vector) */
9603     case 0x11: /* SQRDMLSH (vector) */
9604         if (size != 1 && size != 2) {
9605             unallocated_encoding(s);
9606             return;
9607         }
9608         feature = dc_isar_feature(aa64_rdm, s);
9609         break;
9610     default:
9611         unallocated_encoding(s);
9612         return;
9613     }
9614     if (!feature) {
9615         unallocated_encoding(s);
9616         return;
9617     }
9618     if (!fp_access_check(s)) {
9619         return;
9620     }
9621 
9622     /* Do a single operation on the lowest element in the vector.
9623      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9624      * with no side effects for all these operations.
9625      * OPTME: special-purpose helpers would avoid doing some
9626      * unnecessary work in the helper for the 16 bit cases.
9627      */
9628     ele1 = tcg_temp_new_i32();
9629     ele2 = tcg_temp_new_i32();
9630     ele3 = tcg_temp_new_i32();
9631 
9632     read_vec_element_i32(s, ele1, rn, 0, size);
9633     read_vec_element_i32(s, ele2, rm, 0, size);
9634     read_vec_element_i32(s, ele3, rd, 0, size);
9635 
9636     switch (opcode) {
9637     case 0x0: /* SQRDMLAH */
9638         if (size == 1) {
9639             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9640         } else {
9641             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9642         }
9643         break;
9644     case 0x1: /* SQRDMLSH */
9645         if (size == 1) {
9646             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9647         } else {
9648             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9649         }
9650         break;
9651     default:
9652         g_assert_not_reached();
9653     }
9654 
9655     res = tcg_temp_new_i64();
9656     tcg_gen_extu_i32_i64(res, ele3);
9657     write_fp_dreg(s, rd, res);
9658 }
9659 
9660 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9661                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9662                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9663 {
9664     /* Handle 64->64 opcodes which are shared between the scalar and
9665      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9666      * is valid in either group and also the double-precision fp ops.
9667      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9668      * requires them.
9669      */
9670     TCGCond cond;
9671 
9672     switch (opcode) {
9673     case 0x4: /* CLS, CLZ */
9674         if (u) {
9675             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9676         } else {
9677             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9678         }
9679         break;
9680     case 0x5: /* NOT */
9681         /* This opcode is shared with CNT and RBIT but we have earlier
9682          * enforced that size == 3 if and only if this is the NOT insn.
9683          */
9684         tcg_gen_not_i64(tcg_rd, tcg_rn);
9685         break;
9686     case 0x7: /* SQABS, SQNEG */
9687         if (u) {
9688             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9689         } else {
9690             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9691         }
9692         break;
9693     case 0xa: /* CMLT */
9694         cond = TCG_COND_LT;
9695     do_cmop:
9696         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9697         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9698         break;
9699     case 0x8: /* CMGT, CMGE */
9700         cond = u ? TCG_COND_GE : TCG_COND_GT;
9701         goto do_cmop;
9702     case 0x9: /* CMEQ, CMLE */
9703         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9704         goto do_cmop;
9705     case 0xb: /* ABS, NEG */
9706         if (u) {
9707             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9708         } else {
9709             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9710         }
9711         break;
9712     case 0x2f: /* FABS */
9713         gen_vfp_absd(tcg_rd, tcg_rn);
9714         break;
9715     case 0x6f: /* FNEG */
9716         gen_vfp_negd(tcg_rd, tcg_rn);
9717         break;
9718     case 0x7f: /* FSQRT */
9719         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9720         break;
9721     case 0x1a: /* FCVTNS */
9722     case 0x1b: /* FCVTMS */
9723     case 0x1c: /* FCVTAS */
9724     case 0x3a: /* FCVTPS */
9725     case 0x3b: /* FCVTZS */
9726         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9727         break;
9728     case 0x5a: /* FCVTNU */
9729     case 0x5b: /* FCVTMU */
9730     case 0x5c: /* FCVTAU */
9731     case 0x7a: /* FCVTPU */
9732     case 0x7b: /* FCVTZU */
9733         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9734         break;
9735     case 0x18: /* FRINTN */
9736     case 0x19: /* FRINTM */
9737     case 0x38: /* FRINTP */
9738     case 0x39: /* FRINTZ */
9739     case 0x58: /* FRINTA */
9740     case 0x79: /* FRINTI */
9741         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9742         break;
9743     case 0x59: /* FRINTX */
9744         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9745         break;
9746     case 0x1e: /* FRINT32Z */
9747     case 0x5e: /* FRINT32X */
9748         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9749         break;
9750     case 0x1f: /* FRINT64Z */
9751     case 0x5f: /* FRINT64X */
9752         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9753         break;
9754     default:
9755         g_assert_not_reached();
9756     }
9757 }
9758 
9759 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9760                                    bool is_scalar, bool is_u, bool is_q,
9761                                    int size, int rn, int rd)
9762 {
9763     bool is_double = (size == MO_64);
9764     TCGv_ptr fpst;
9765 
9766     if (!fp_access_check(s)) {
9767         return;
9768     }
9769 
9770     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9771 
9772     if (is_double) {
9773         TCGv_i64 tcg_op = tcg_temp_new_i64();
9774         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9775         TCGv_i64 tcg_res = tcg_temp_new_i64();
9776         NeonGenTwoDoubleOpFn *genfn;
9777         bool swap = false;
9778         int pass;
9779 
9780         switch (opcode) {
9781         case 0x2e: /* FCMLT (zero) */
9782             swap = true;
9783             /* fallthrough */
9784         case 0x2c: /* FCMGT (zero) */
9785             genfn = gen_helper_neon_cgt_f64;
9786             break;
9787         case 0x2d: /* FCMEQ (zero) */
9788             genfn = gen_helper_neon_ceq_f64;
9789             break;
9790         case 0x6d: /* FCMLE (zero) */
9791             swap = true;
9792             /* fall through */
9793         case 0x6c: /* FCMGE (zero) */
9794             genfn = gen_helper_neon_cge_f64;
9795             break;
9796         default:
9797             g_assert_not_reached();
9798         }
9799 
9800         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9801             read_vec_element(s, tcg_op, rn, pass, MO_64);
9802             if (swap) {
9803                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9804             } else {
9805                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9806             }
9807             write_vec_element(s, tcg_res, rd, pass, MO_64);
9808         }
9809 
9810         clear_vec_high(s, !is_scalar, rd);
9811     } else {
9812         TCGv_i32 tcg_op = tcg_temp_new_i32();
9813         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9814         TCGv_i32 tcg_res = tcg_temp_new_i32();
9815         NeonGenTwoSingleOpFn *genfn;
9816         bool swap = false;
9817         int pass, maxpasses;
9818 
9819         if (size == MO_16) {
9820             switch (opcode) {
9821             case 0x2e: /* FCMLT (zero) */
9822                 swap = true;
9823                 /* fall through */
9824             case 0x2c: /* FCMGT (zero) */
9825                 genfn = gen_helper_advsimd_cgt_f16;
9826                 break;
9827             case 0x2d: /* FCMEQ (zero) */
9828                 genfn = gen_helper_advsimd_ceq_f16;
9829                 break;
9830             case 0x6d: /* FCMLE (zero) */
9831                 swap = true;
9832                 /* fall through */
9833             case 0x6c: /* FCMGE (zero) */
9834                 genfn = gen_helper_advsimd_cge_f16;
9835                 break;
9836             default:
9837                 g_assert_not_reached();
9838             }
9839         } else {
9840             switch (opcode) {
9841             case 0x2e: /* FCMLT (zero) */
9842                 swap = true;
9843                 /* fall through */
9844             case 0x2c: /* FCMGT (zero) */
9845                 genfn = gen_helper_neon_cgt_f32;
9846                 break;
9847             case 0x2d: /* FCMEQ (zero) */
9848                 genfn = gen_helper_neon_ceq_f32;
9849                 break;
9850             case 0x6d: /* FCMLE (zero) */
9851                 swap = true;
9852                 /* fall through */
9853             case 0x6c: /* FCMGE (zero) */
9854                 genfn = gen_helper_neon_cge_f32;
9855                 break;
9856             default:
9857                 g_assert_not_reached();
9858             }
9859         }
9860 
9861         if (is_scalar) {
9862             maxpasses = 1;
9863         } else {
9864             int vector_size = 8 << is_q;
9865             maxpasses = vector_size >> size;
9866         }
9867 
9868         for (pass = 0; pass < maxpasses; pass++) {
9869             read_vec_element_i32(s, tcg_op, rn, pass, size);
9870             if (swap) {
9871                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9872             } else {
9873                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9874             }
9875             if (is_scalar) {
9876                 write_fp_sreg(s, rd, tcg_res);
9877             } else {
9878                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9879             }
9880         }
9881 
9882         if (!is_scalar) {
9883             clear_vec_high(s, is_q, rd);
9884         }
9885     }
9886 }
9887 
9888 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9889                                     bool is_scalar, bool is_u, bool is_q,
9890                                     int size, int rn, int rd)
9891 {
9892     bool is_double = (size == 3);
9893     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9894 
9895     if (is_double) {
9896         TCGv_i64 tcg_op = tcg_temp_new_i64();
9897         TCGv_i64 tcg_res = tcg_temp_new_i64();
9898         int pass;
9899 
9900         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9901             read_vec_element(s, tcg_op, rn, pass, MO_64);
9902             switch (opcode) {
9903             case 0x3d: /* FRECPE */
9904                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9905                 break;
9906             case 0x3f: /* FRECPX */
9907                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9908                 break;
9909             case 0x7d: /* FRSQRTE */
9910                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9911                 break;
9912             default:
9913                 g_assert_not_reached();
9914             }
9915             write_vec_element(s, tcg_res, rd, pass, MO_64);
9916         }
9917         clear_vec_high(s, !is_scalar, rd);
9918     } else {
9919         TCGv_i32 tcg_op = tcg_temp_new_i32();
9920         TCGv_i32 tcg_res = tcg_temp_new_i32();
9921         int pass, maxpasses;
9922 
9923         if (is_scalar) {
9924             maxpasses = 1;
9925         } else {
9926             maxpasses = is_q ? 4 : 2;
9927         }
9928 
9929         for (pass = 0; pass < maxpasses; pass++) {
9930             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9931 
9932             switch (opcode) {
9933             case 0x3c: /* URECPE */
9934                 gen_helper_recpe_u32(tcg_res, tcg_op);
9935                 break;
9936             case 0x3d: /* FRECPE */
9937                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9938                 break;
9939             case 0x3f: /* FRECPX */
9940                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9941                 break;
9942             case 0x7d: /* FRSQRTE */
9943                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9944                 break;
9945             default:
9946                 g_assert_not_reached();
9947             }
9948 
9949             if (is_scalar) {
9950                 write_fp_sreg(s, rd, tcg_res);
9951             } else {
9952                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9953             }
9954         }
9955         if (!is_scalar) {
9956             clear_vec_high(s, is_q, rd);
9957         }
9958     }
9959 }
9960 
9961 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9962                                 int opcode, bool u, bool is_q,
9963                                 int size, int rn, int rd)
9964 {
9965     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9966      * in the source becomes a size element in the destination).
9967      */
9968     int pass;
9969     TCGv_i32 tcg_res[2];
9970     int destelt = is_q ? 2 : 0;
9971     int passes = scalar ? 1 : 2;
9972 
9973     if (scalar) {
9974         tcg_res[1] = tcg_constant_i32(0);
9975     }
9976 
9977     for (pass = 0; pass < passes; pass++) {
9978         TCGv_i64 tcg_op = tcg_temp_new_i64();
9979         NeonGenNarrowFn *genfn = NULL;
9980         NeonGenNarrowEnvFn *genenvfn = NULL;
9981 
9982         if (scalar) {
9983             read_vec_element(s, tcg_op, rn, pass, size + 1);
9984         } else {
9985             read_vec_element(s, tcg_op, rn, pass, MO_64);
9986         }
9987         tcg_res[pass] = tcg_temp_new_i32();
9988 
9989         switch (opcode) {
9990         case 0x12: /* XTN, SQXTUN */
9991         {
9992             static NeonGenNarrowFn * const xtnfns[3] = {
9993                 gen_helper_neon_narrow_u8,
9994                 gen_helper_neon_narrow_u16,
9995                 tcg_gen_extrl_i64_i32,
9996             };
9997             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9998                 gen_helper_neon_unarrow_sat8,
9999                 gen_helper_neon_unarrow_sat16,
10000                 gen_helper_neon_unarrow_sat32,
10001             };
10002             if (u) {
10003                 genenvfn = sqxtunfns[size];
10004             } else {
10005                 genfn = xtnfns[size];
10006             }
10007             break;
10008         }
10009         case 0x14: /* SQXTN, UQXTN */
10010         {
10011             static NeonGenNarrowEnvFn * const fns[3][2] = {
10012                 { gen_helper_neon_narrow_sat_s8,
10013                   gen_helper_neon_narrow_sat_u8 },
10014                 { gen_helper_neon_narrow_sat_s16,
10015                   gen_helper_neon_narrow_sat_u16 },
10016                 { gen_helper_neon_narrow_sat_s32,
10017                   gen_helper_neon_narrow_sat_u32 },
10018             };
10019             genenvfn = fns[size][u];
10020             break;
10021         }
10022         case 0x16: /* FCVTN, FCVTN2 */
10023             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10024             if (size == 2) {
10025                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10026             } else {
10027                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10028                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10029                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10030                 TCGv_i32 ahp = get_ahp_flag();
10031 
10032                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10033                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10034                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10035                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10036             }
10037             break;
10038         case 0x36: /* BFCVTN, BFCVTN2 */
10039             {
10040                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10041                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10042             }
10043             break;
10044         case 0x56:  /* FCVTXN, FCVTXN2 */
10045             /* 64 bit to 32 bit float conversion
10046              * with von Neumann rounding (round to odd)
10047              */
10048             assert(size == 2);
10049             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10050             break;
10051         default:
10052             g_assert_not_reached();
10053         }
10054 
10055         if (genfn) {
10056             genfn(tcg_res[pass], tcg_op);
10057         } else if (genenvfn) {
10058             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10059         }
10060     }
10061 
10062     for (pass = 0; pass < 2; pass++) {
10063         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10064     }
10065     clear_vec_high(s, is_q, rd);
10066 }
10067 
10068 /* Remaining saturating accumulating ops */
10069 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10070                                 bool is_q, int size, int rn, int rd)
10071 {
10072     bool is_double = (size == 3);
10073 
10074     if (is_double) {
10075         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10076         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10077         int pass;
10078 
10079         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10080             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10081             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10082 
10083             if (is_u) { /* USQADD */
10084                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10085             } else { /* SUQADD */
10086                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10087             }
10088             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10089         }
10090         clear_vec_high(s, !is_scalar, rd);
10091     } else {
10092         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10093         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10094         int pass, maxpasses;
10095 
10096         if (is_scalar) {
10097             maxpasses = 1;
10098         } else {
10099             maxpasses = is_q ? 4 : 2;
10100         }
10101 
10102         for (pass = 0; pass < maxpasses; pass++) {
10103             if (is_scalar) {
10104                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10105                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10106             } else {
10107                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10108                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10109             }
10110 
10111             if (is_u) { /* USQADD */
10112                 switch (size) {
10113                 case 0:
10114                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10115                     break;
10116                 case 1:
10117                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10118                     break;
10119                 case 2:
10120                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10121                     break;
10122                 default:
10123                     g_assert_not_reached();
10124                 }
10125             } else { /* SUQADD */
10126                 switch (size) {
10127                 case 0:
10128                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10129                     break;
10130                 case 1:
10131                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10132                     break;
10133                 case 2:
10134                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10135                     break;
10136                 default:
10137                     g_assert_not_reached();
10138                 }
10139             }
10140 
10141             if (is_scalar) {
10142                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10143             }
10144             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10145         }
10146         clear_vec_high(s, is_q, rd);
10147     }
10148 }
10149 
10150 /* AdvSIMD scalar two reg misc
10151  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10152  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10153  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10154  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10155  */
10156 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10157 {
10158     int rd = extract32(insn, 0, 5);
10159     int rn = extract32(insn, 5, 5);
10160     int opcode = extract32(insn, 12, 5);
10161     int size = extract32(insn, 22, 2);
10162     bool u = extract32(insn, 29, 1);
10163     bool is_fcvt = false;
10164     int rmode;
10165     TCGv_i32 tcg_rmode;
10166     TCGv_ptr tcg_fpstatus;
10167 
10168     switch (opcode) {
10169     case 0x3: /* USQADD / SUQADD*/
10170         if (!fp_access_check(s)) {
10171             return;
10172         }
10173         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10174         return;
10175     case 0x7: /* SQABS / SQNEG */
10176         break;
10177     case 0xa: /* CMLT */
10178         if (u) {
10179             unallocated_encoding(s);
10180             return;
10181         }
10182         /* fall through */
10183     case 0x8: /* CMGT, CMGE */
10184     case 0x9: /* CMEQ, CMLE */
10185     case 0xb: /* ABS, NEG */
10186         if (size != 3) {
10187             unallocated_encoding(s);
10188             return;
10189         }
10190         break;
10191     case 0x12: /* SQXTUN */
10192         if (!u) {
10193             unallocated_encoding(s);
10194             return;
10195         }
10196         /* fall through */
10197     case 0x14: /* SQXTN, UQXTN */
10198         if (size == 3) {
10199             unallocated_encoding(s);
10200             return;
10201         }
10202         if (!fp_access_check(s)) {
10203             return;
10204         }
10205         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10206         return;
10207     case 0xc ... 0xf:
10208     case 0x16 ... 0x1d:
10209     case 0x1f:
10210         /* Floating point: U, size[1] and opcode indicate operation;
10211          * size[0] indicates single or double precision.
10212          */
10213         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10214         size = extract32(size, 0, 1) ? 3 : 2;
10215         switch (opcode) {
10216         case 0x2c: /* FCMGT (zero) */
10217         case 0x2d: /* FCMEQ (zero) */
10218         case 0x2e: /* FCMLT (zero) */
10219         case 0x6c: /* FCMGE (zero) */
10220         case 0x6d: /* FCMLE (zero) */
10221             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10222             return;
10223         case 0x1d: /* SCVTF */
10224         case 0x5d: /* UCVTF */
10225         {
10226             bool is_signed = (opcode == 0x1d);
10227             if (!fp_access_check(s)) {
10228                 return;
10229             }
10230             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10231             return;
10232         }
10233         case 0x3d: /* FRECPE */
10234         case 0x3f: /* FRECPX */
10235         case 0x7d: /* FRSQRTE */
10236             if (!fp_access_check(s)) {
10237                 return;
10238             }
10239             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10240             return;
10241         case 0x1a: /* FCVTNS */
10242         case 0x1b: /* FCVTMS */
10243         case 0x3a: /* FCVTPS */
10244         case 0x3b: /* FCVTZS */
10245         case 0x5a: /* FCVTNU */
10246         case 0x5b: /* FCVTMU */
10247         case 0x7a: /* FCVTPU */
10248         case 0x7b: /* FCVTZU */
10249             is_fcvt = true;
10250             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10251             break;
10252         case 0x1c: /* FCVTAS */
10253         case 0x5c: /* FCVTAU */
10254             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10255             is_fcvt = true;
10256             rmode = FPROUNDING_TIEAWAY;
10257             break;
10258         case 0x56: /* FCVTXN, FCVTXN2 */
10259             if (size == 2) {
10260                 unallocated_encoding(s);
10261                 return;
10262             }
10263             if (!fp_access_check(s)) {
10264                 return;
10265             }
10266             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10267             return;
10268         default:
10269             unallocated_encoding(s);
10270             return;
10271         }
10272         break;
10273     default:
10274         unallocated_encoding(s);
10275         return;
10276     }
10277 
10278     if (!fp_access_check(s)) {
10279         return;
10280     }
10281 
10282     if (is_fcvt) {
10283         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10284         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10285     } else {
10286         tcg_fpstatus = NULL;
10287         tcg_rmode = NULL;
10288     }
10289 
10290     if (size == 3) {
10291         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10292         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10293 
10294         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10295         write_fp_dreg(s, rd, tcg_rd);
10296     } else {
10297         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10298         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10299 
10300         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10301 
10302         switch (opcode) {
10303         case 0x7: /* SQABS, SQNEG */
10304         {
10305             NeonGenOneOpEnvFn *genfn;
10306             static NeonGenOneOpEnvFn * const fns[3][2] = {
10307                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10308                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10309                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10310             };
10311             genfn = fns[size][u];
10312             genfn(tcg_rd, tcg_env, tcg_rn);
10313             break;
10314         }
10315         case 0x1a: /* FCVTNS */
10316         case 0x1b: /* FCVTMS */
10317         case 0x1c: /* FCVTAS */
10318         case 0x3a: /* FCVTPS */
10319         case 0x3b: /* FCVTZS */
10320             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10321                                  tcg_fpstatus);
10322             break;
10323         case 0x5a: /* FCVTNU */
10324         case 0x5b: /* FCVTMU */
10325         case 0x5c: /* FCVTAU */
10326         case 0x7a: /* FCVTPU */
10327         case 0x7b: /* FCVTZU */
10328             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10329                                  tcg_fpstatus);
10330             break;
10331         default:
10332             g_assert_not_reached();
10333         }
10334 
10335         write_fp_sreg(s, rd, tcg_rd);
10336     }
10337 
10338     if (is_fcvt) {
10339         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10340     }
10341 }
10342 
10343 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10344 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10345                                  int immh, int immb, int opcode, int rn, int rd)
10346 {
10347     int size = 32 - clz32(immh) - 1;
10348     int immhb = immh << 3 | immb;
10349     int shift = 2 * (8 << size) - immhb;
10350     GVecGen2iFn *gvec_fn;
10351 
10352     if (extract32(immh, 3, 1) && !is_q) {
10353         unallocated_encoding(s);
10354         return;
10355     }
10356     tcg_debug_assert(size <= 3);
10357 
10358     if (!fp_access_check(s)) {
10359         return;
10360     }
10361 
10362     switch (opcode) {
10363     case 0x02: /* SSRA / USRA (accumulate) */
10364         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10365         break;
10366 
10367     case 0x08: /* SRI */
10368         gvec_fn = gen_gvec_sri;
10369         break;
10370 
10371     case 0x00: /* SSHR / USHR */
10372         if (is_u) {
10373             if (shift == 8 << size) {
10374                 /* Shift count the same size as element size produces zero.  */
10375                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10376                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10377                 return;
10378             }
10379             gvec_fn = tcg_gen_gvec_shri;
10380         } else {
10381             /* Shift count the same size as element size produces all sign.  */
10382             if (shift == 8 << size) {
10383                 shift -= 1;
10384             }
10385             gvec_fn = tcg_gen_gvec_sari;
10386         }
10387         break;
10388 
10389     case 0x04: /* SRSHR / URSHR (rounding) */
10390         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10391         break;
10392 
10393     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10394         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10395         break;
10396 
10397     default:
10398         g_assert_not_reached();
10399     }
10400 
10401     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10402 }
10403 
10404 /* SHL/SLI - Vector shift left */
10405 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10406                                  int immh, int immb, int opcode, int rn, int rd)
10407 {
10408     int size = 32 - clz32(immh) - 1;
10409     int immhb = immh << 3 | immb;
10410     int shift = immhb - (8 << size);
10411 
10412     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10413     assert(size >= 0 && size <= 3);
10414 
10415     if (extract32(immh, 3, 1) && !is_q) {
10416         unallocated_encoding(s);
10417         return;
10418     }
10419 
10420     if (!fp_access_check(s)) {
10421         return;
10422     }
10423 
10424     if (insert) {
10425         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10426     } else {
10427         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10428     }
10429 }
10430 
10431 /* USHLL/SHLL - Vector shift left with widening */
10432 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10433                                  int immh, int immb, int opcode, int rn, int rd)
10434 {
10435     int size = 32 - clz32(immh) - 1;
10436     int immhb = immh << 3 | immb;
10437     int shift = immhb - (8 << size);
10438     int dsize = 64;
10439     int esize = 8 << size;
10440     int elements = dsize/esize;
10441     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10442     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10443     int i;
10444 
10445     if (size >= 3) {
10446         unallocated_encoding(s);
10447         return;
10448     }
10449 
10450     if (!fp_access_check(s)) {
10451         return;
10452     }
10453 
10454     /* For the LL variants the store is larger than the load,
10455      * so if rd == rn we would overwrite parts of our input.
10456      * So load everything right now and use shifts in the main loop.
10457      */
10458     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10459 
10460     for (i = 0; i < elements; i++) {
10461         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10462         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10463         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10464         write_vec_element(s, tcg_rd, rd, i, size + 1);
10465     }
10466 }
10467 
10468 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10469 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10470                                  int immh, int immb, int opcode, int rn, int rd)
10471 {
10472     int immhb = immh << 3 | immb;
10473     int size = 32 - clz32(immh) - 1;
10474     int dsize = 64;
10475     int esize = 8 << size;
10476     int elements = dsize/esize;
10477     int shift = (2 * esize) - immhb;
10478     bool round = extract32(opcode, 0, 1);
10479     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10480     TCGv_i64 tcg_round;
10481     int i;
10482 
10483     if (extract32(immh, 3, 1)) {
10484         unallocated_encoding(s);
10485         return;
10486     }
10487 
10488     if (!fp_access_check(s)) {
10489         return;
10490     }
10491 
10492     tcg_rn = tcg_temp_new_i64();
10493     tcg_rd = tcg_temp_new_i64();
10494     tcg_final = tcg_temp_new_i64();
10495     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10496 
10497     if (round) {
10498         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10499     } else {
10500         tcg_round = NULL;
10501     }
10502 
10503     for (i = 0; i < elements; i++) {
10504         read_vec_element(s, tcg_rn, rn, i, size+1);
10505         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10506                                 false, true, size+1, shift);
10507 
10508         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10509     }
10510 
10511     if (!is_q) {
10512         write_vec_element(s, tcg_final, rd, 0, MO_64);
10513     } else {
10514         write_vec_element(s, tcg_final, rd, 1, MO_64);
10515     }
10516 
10517     clear_vec_high(s, is_q, rd);
10518 }
10519 
10520 
10521 /* AdvSIMD shift by immediate
10522  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10523  * +---+---+---+-------------+------+------+--------+---+------+------+
10524  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10525  * +---+---+---+-------------+------+------+--------+---+------+------+
10526  */
10527 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10528 {
10529     int rd = extract32(insn, 0, 5);
10530     int rn = extract32(insn, 5, 5);
10531     int opcode = extract32(insn, 11, 5);
10532     int immb = extract32(insn, 16, 3);
10533     int immh = extract32(insn, 19, 4);
10534     bool is_u = extract32(insn, 29, 1);
10535     bool is_q = extract32(insn, 30, 1);
10536 
10537     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10538     assert(immh != 0);
10539 
10540     switch (opcode) {
10541     case 0x08: /* SRI */
10542         if (!is_u) {
10543             unallocated_encoding(s);
10544             return;
10545         }
10546         /* fall through */
10547     case 0x00: /* SSHR / USHR */
10548     case 0x02: /* SSRA / USRA (accumulate) */
10549     case 0x04: /* SRSHR / URSHR (rounding) */
10550     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10551         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10552         break;
10553     case 0x0a: /* SHL / SLI */
10554         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10555         break;
10556     case 0x10: /* SHRN */
10557     case 0x11: /* RSHRN / SQRSHRUN */
10558         if (is_u) {
10559             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10560                                    opcode, rn, rd);
10561         } else {
10562             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10563         }
10564         break;
10565     case 0x12: /* SQSHRN / UQSHRN */
10566     case 0x13: /* SQRSHRN / UQRSHRN */
10567         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10568                                opcode, rn, rd);
10569         break;
10570     case 0x14: /* SSHLL / USHLL */
10571         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10572         break;
10573     case 0x1c: /* SCVTF / UCVTF */
10574         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10575                                      opcode, rn, rd);
10576         break;
10577     case 0xc: /* SQSHLU */
10578         if (!is_u) {
10579             unallocated_encoding(s);
10580             return;
10581         }
10582         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10583         break;
10584     case 0xe: /* SQSHL, UQSHL */
10585         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10586         break;
10587     case 0x1f: /* FCVTZS/ FCVTZU */
10588         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10589         return;
10590     default:
10591         unallocated_encoding(s);
10592         return;
10593     }
10594 }
10595 
10596 /* Generate code to do a "long" addition or subtraction, ie one done in
10597  * TCGv_i64 on vector lanes twice the width specified by size.
10598  */
10599 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10600                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10601 {
10602     static NeonGenTwo64OpFn * const fns[3][2] = {
10603         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10604         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10605         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10606     };
10607     NeonGenTwo64OpFn *genfn;
10608     assert(size < 3);
10609 
10610     genfn = fns[size][is_sub];
10611     genfn(tcg_res, tcg_op1, tcg_op2);
10612 }
10613 
10614 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10615                                 int opcode, int rd, int rn, int rm)
10616 {
10617     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10618     TCGv_i64 tcg_res[2];
10619     int pass, accop;
10620 
10621     tcg_res[0] = tcg_temp_new_i64();
10622     tcg_res[1] = tcg_temp_new_i64();
10623 
10624     /* Does this op do an adding accumulate, a subtracting accumulate,
10625      * or no accumulate at all?
10626      */
10627     switch (opcode) {
10628     case 5:
10629     case 8:
10630     case 9:
10631         accop = 1;
10632         break;
10633     case 10:
10634     case 11:
10635         accop = -1;
10636         break;
10637     default:
10638         accop = 0;
10639         break;
10640     }
10641 
10642     if (accop != 0) {
10643         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10644         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10645     }
10646 
10647     /* size == 2 means two 32x32->64 operations; this is worth special
10648      * casing because we can generally handle it inline.
10649      */
10650     if (size == 2) {
10651         for (pass = 0; pass < 2; pass++) {
10652             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10653             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10654             TCGv_i64 tcg_passres;
10655             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10656 
10657             int elt = pass + is_q * 2;
10658 
10659             read_vec_element(s, tcg_op1, rn, elt, memop);
10660             read_vec_element(s, tcg_op2, rm, elt, memop);
10661 
10662             if (accop == 0) {
10663                 tcg_passres = tcg_res[pass];
10664             } else {
10665                 tcg_passres = tcg_temp_new_i64();
10666             }
10667 
10668             switch (opcode) {
10669             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10670                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10671                 break;
10672             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10673                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10674                 break;
10675             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10676             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10677             {
10678                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10679                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10680 
10681                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10682                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10683                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10684                                     tcg_passres,
10685                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10686                 break;
10687             }
10688             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10689             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10690             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10691                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10692                 break;
10693             case 9: /* SQDMLAL, SQDMLAL2 */
10694             case 11: /* SQDMLSL, SQDMLSL2 */
10695             case 13: /* SQDMULL, SQDMULL2 */
10696                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10697                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10698                                                   tcg_passres, tcg_passres);
10699                 break;
10700             default:
10701                 g_assert_not_reached();
10702             }
10703 
10704             if (opcode == 9 || opcode == 11) {
10705                 /* saturating accumulate ops */
10706                 if (accop < 0) {
10707                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10708                 }
10709                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10710                                                   tcg_res[pass], tcg_passres);
10711             } else if (accop > 0) {
10712                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10713             } else if (accop < 0) {
10714                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10715             }
10716         }
10717     } else {
10718         /* size 0 or 1, generally helper functions */
10719         for (pass = 0; pass < 2; pass++) {
10720             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10721             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10722             TCGv_i64 tcg_passres;
10723             int elt = pass + is_q * 2;
10724 
10725             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10726             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10727 
10728             if (accop == 0) {
10729                 tcg_passres = tcg_res[pass];
10730             } else {
10731                 tcg_passres = tcg_temp_new_i64();
10732             }
10733 
10734             switch (opcode) {
10735             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10736             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10737             {
10738                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10739                 static NeonGenWidenFn * const widenfns[2][2] = {
10740                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10741                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10742                 };
10743                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10744 
10745                 widenfn(tcg_op2_64, tcg_op2);
10746                 widenfn(tcg_passres, tcg_op1);
10747                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10748                               tcg_passres, tcg_op2_64);
10749                 break;
10750             }
10751             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10752             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10753                 if (size == 0) {
10754                     if (is_u) {
10755                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10756                     } else {
10757                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10758                     }
10759                 } else {
10760                     if (is_u) {
10761                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10762                     } else {
10763                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10764                     }
10765                 }
10766                 break;
10767             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10768             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10769             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10770                 if (size == 0) {
10771                     if (is_u) {
10772                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10773                     } else {
10774                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10775                     }
10776                 } else {
10777                     if (is_u) {
10778                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10779                     } else {
10780                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10781                     }
10782                 }
10783                 break;
10784             case 9: /* SQDMLAL, SQDMLAL2 */
10785             case 11: /* SQDMLSL, SQDMLSL2 */
10786             case 13: /* SQDMULL, SQDMULL2 */
10787                 assert(size == 1);
10788                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10789                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10790                                                   tcg_passres, tcg_passres);
10791                 break;
10792             default:
10793                 g_assert_not_reached();
10794             }
10795 
10796             if (accop != 0) {
10797                 if (opcode == 9 || opcode == 11) {
10798                     /* saturating accumulate ops */
10799                     if (accop < 0) {
10800                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10801                     }
10802                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10803                                                       tcg_res[pass],
10804                                                       tcg_passres);
10805                 } else {
10806                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10807                                   tcg_res[pass], tcg_passres);
10808                 }
10809             }
10810         }
10811     }
10812 
10813     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10814     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10815 }
10816 
10817 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10818                             int opcode, int rd, int rn, int rm)
10819 {
10820     TCGv_i64 tcg_res[2];
10821     int part = is_q ? 2 : 0;
10822     int pass;
10823 
10824     for (pass = 0; pass < 2; pass++) {
10825         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10826         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10827         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10828         static NeonGenWidenFn * const widenfns[3][2] = {
10829             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10830             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10831             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10832         };
10833         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10834 
10835         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10836         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10837         widenfn(tcg_op2_wide, tcg_op2);
10838         tcg_res[pass] = tcg_temp_new_i64();
10839         gen_neon_addl(size, (opcode == 3),
10840                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10841     }
10842 
10843     for (pass = 0; pass < 2; pass++) {
10844         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10845     }
10846 }
10847 
10848 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10849 {
10850     tcg_gen_addi_i64(in, in, 1U << 31);
10851     tcg_gen_extrh_i64_i32(res, in);
10852 }
10853 
10854 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10855                                  int opcode, int rd, int rn, int rm)
10856 {
10857     TCGv_i32 tcg_res[2];
10858     int part = is_q ? 2 : 0;
10859     int pass;
10860 
10861     for (pass = 0; pass < 2; pass++) {
10862         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10863         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10864         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10865         static NeonGenNarrowFn * const narrowfns[3][2] = {
10866             { gen_helper_neon_narrow_high_u8,
10867               gen_helper_neon_narrow_round_high_u8 },
10868             { gen_helper_neon_narrow_high_u16,
10869               gen_helper_neon_narrow_round_high_u16 },
10870             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10871         };
10872         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10873 
10874         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10875         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10876 
10877         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10878 
10879         tcg_res[pass] = tcg_temp_new_i32();
10880         gennarrow(tcg_res[pass], tcg_wideres);
10881     }
10882 
10883     for (pass = 0; pass < 2; pass++) {
10884         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10885     }
10886     clear_vec_high(s, is_q, rd);
10887 }
10888 
10889 /* AdvSIMD three different
10890  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10891  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10892  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10893  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10894  */
10895 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10896 {
10897     /* Instructions in this group fall into three basic classes
10898      * (in each case with the operation working on each element in
10899      * the input vectors):
10900      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10901      *     128 bit input)
10902      * (2) wide 64 x 128 -> 128
10903      * (3) narrowing 128 x 128 -> 64
10904      * Here we do initial decode, catch unallocated cases and
10905      * dispatch to separate functions for each class.
10906      */
10907     int is_q = extract32(insn, 30, 1);
10908     int is_u = extract32(insn, 29, 1);
10909     int size = extract32(insn, 22, 2);
10910     int opcode = extract32(insn, 12, 4);
10911     int rm = extract32(insn, 16, 5);
10912     int rn = extract32(insn, 5, 5);
10913     int rd = extract32(insn, 0, 5);
10914 
10915     switch (opcode) {
10916     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10917     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10918         /* 64 x 128 -> 128 */
10919         if (size == 3) {
10920             unallocated_encoding(s);
10921             return;
10922         }
10923         if (!fp_access_check(s)) {
10924             return;
10925         }
10926         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10927         break;
10928     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10929     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10930         /* 128 x 128 -> 64 */
10931         if (size == 3) {
10932             unallocated_encoding(s);
10933             return;
10934         }
10935         if (!fp_access_check(s)) {
10936             return;
10937         }
10938         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10939         break;
10940     case 14: /* PMULL, PMULL2 */
10941         if (is_u) {
10942             unallocated_encoding(s);
10943             return;
10944         }
10945         switch (size) {
10946         case 0: /* PMULL.P8 */
10947             if (!fp_access_check(s)) {
10948                 return;
10949             }
10950             /* The Q field specifies lo/hi half input for this insn.  */
10951             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10952                              gen_helper_neon_pmull_h);
10953             break;
10954 
10955         case 3: /* PMULL.P64 */
10956             if (!dc_isar_feature(aa64_pmull, s)) {
10957                 unallocated_encoding(s);
10958                 return;
10959             }
10960             if (!fp_access_check(s)) {
10961                 return;
10962             }
10963             /* The Q field specifies lo/hi half input for this insn.  */
10964             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10965                              gen_helper_gvec_pmull_q);
10966             break;
10967 
10968         default:
10969             unallocated_encoding(s);
10970             break;
10971         }
10972         return;
10973     case 9: /* SQDMLAL, SQDMLAL2 */
10974     case 11: /* SQDMLSL, SQDMLSL2 */
10975     case 13: /* SQDMULL, SQDMULL2 */
10976         if (is_u || size == 0) {
10977             unallocated_encoding(s);
10978             return;
10979         }
10980         /* fall through */
10981     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10982     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10983     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10984     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10985     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10986     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10987     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10988         /* 64 x 64 -> 128 */
10989         if (size == 3) {
10990             unallocated_encoding(s);
10991             return;
10992         }
10993         if (!fp_access_check(s)) {
10994             return;
10995         }
10996 
10997         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10998         break;
10999     default:
11000         /* opcode 15 not allocated */
11001         unallocated_encoding(s);
11002         break;
11003     }
11004 }
11005 
11006 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11007 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11008 {
11009     int rd = extract32(insn, 0, 5);
11010     int rn = extract32(insn, 5, 5);
11011     int rm = extract32(insn, 16, 5);
11012     int size = extract32(insn, 22, 2);
11013     bool is_u = extract32(insn, 29, 1);
11014     bool is_q = extract32(insn, 30, 1);
11015 
11016     if (!fp_access_check(s)) {
11017         return;
11018     }
11019 
11020     switch (size + 4 * is_u) {
11021     case 0: /* AND */
11022         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11023         return;
11024     case 1: /* BIC */
11025         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11026         return;
11027     case 2: /* ORR */
11028         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11029         return;
11030     case 3: /* ORN */
11031         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11032         return;
11033     case 4: /* EOR */
11034         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11035         return;
11036 
11037     case 5: /* BSL bitwise select */
11038         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11039         return;
11040     case 6: /* BIT, bitwise insert if true */
11041         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11042         return;
11043     case 7: /* BIF, bitwise insert if false */
11044         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11045         return;
11046 
11047     default:
11048         g_assert_not_reached();
11049     }
11050 }
11051 
11052 /* Pairwise op subgroup of C3.6.16.
11053  *
11054  * This is called directly or via the handle_3same_float for float pairwise
11055  * operations where the opcode and size are calculated differently.
11056  */
11057 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11058                                    int size, int rn, int rm, int rd)
11059 {
11060     TCGv_ptr fpst;
11061     int pass;
11062 
11063     /* Floating point operations need fpst */
11064     if (opcode >= 0x58) {
11065         fpst = fpstatus_ptr(FPST_FPCR);
11066     } else {
11067         fpst = NULL;
11068     }
11069 
11070     if (!fp_access_check(s)) {
11071         return;
11072     }
11073 
11074     /* These operations work on the concatenated rm:rn, with each pair of
11075      * adjacent elements being operated on to produce an element in the result.
11076      */
11077     if (size == 3) {
11078         TCGv_i64 tcg_res[2];
11079 
11080         for (pass = 0; pass < 2; pass++) {
11081             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11082             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11083             int passreg = (pass == 0) ? rn : rm;
11084 
11085             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11086             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11087             tcg_res[pass] = tcg_temp_new_i64();
11088 
11089             switch (opcode) {
11090             case 0x17: /* ADDP */
11091                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11092                 break;
11093             case 0x58: /* FMAXNMP */
11094                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11095                 break;
11096             case 0x5a: /* FADDP */
11097                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11098                 break;
11099             case 0x5e: /* FMAXP */
11100                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11101                 break;
11102             case 0x78: /* FMINNMP */
11103                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11104                 break;
11105             case 0x7e: /* FMINP */
11106                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11107                 break;
11108             default:
11109                 g_assert_not_reached();
11110             }
11111         }
11112 
11113         for (pass = 0; pass < 2; pass++) {
11114             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11115         }
11116     } else {
11117         int maxpass = is_q ? 4 : 2;
11118         TCGv_i32 tcg_res[4];
11119 
11120         for (pass = 0; pass < maxpass; pass++) {
11121             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11122             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11123             NeonGenTwoOpFn *genfn = NULL;
11124             int passreg = pass < (maxpass / 2) ? rn : rm;
11125             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11126 
11127             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11128             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11129             tcg_res[pass] = tcg_temp_new_i32();
11130 
11131             switch (opcode) {
11132             case 0x17: /* ADDP */
11133             {
11134                 static NeonGenTwoOpFn * const fns[3] = {
11135                     gen_helper_neon_padd_u8,
11136                     gen_helper_neon_padd_u16,
11137                     tcg_gen_add_i32,
11138                 };
11139                 genfn = fns[size];
11140                 break;
11141             }
11142             case 0x14: /* SMAXP, UMAXP */
11143             {
11144                 static NeonGenTwoOpFn * const fns[3][2] = {
11145                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11146                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11147                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11148                 };
11149                 genfn = fns[size][u];
11150                 break;
11151             }
11152             case 0x15: /* SMINP, UMINP */
11153             {
11154                 static NeonGenTwoOpFn * const fns[3][2] = {
11155                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11156                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11157                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11158                 };
11159                 genfn = fns[size][u];
11160                 break;
11161             }
11162             /* The FP operations are all on single floats (32 bit) */
11163             case 0x58: /* FMAXNMP */
11164                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11165                 break;
11166             case 0x5a: /* FADDP */
11167                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11168                 break;
11169             case 0x5e: /* FMAXP */
11170                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11171                 break;
11172             case 0x78: /* FMINNMP */
11173                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11174                 break;
11175             case 0x7e: /* FMINP */
11176                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11177                 break;
11178             default:
11179                 g_assert_not_reached();
11180             }
11181 
11182             /* FP ops called directly, otherwise call now */
11183             if (genfn) {
11184                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11185             }
11186         }
11187 
11188         for (pass = 0; pass < maxpass; pass++) {
11189             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11190         }
11191         clear_vec_high(s, is_q, rd);
11192     }
11193 }
11194 
11195 /* Floating point op subgroup of C3.6.16. */
11196 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11197 {
11198     /* For floating point ops, the U, size[1] and opcode bits
11199      * together indicate the operation. size[0] indicates single
11200      * or double.
11201      */
11202     int fpopcode = extract32(insn, 11, 5)
11203         | (extract32(insn, 23, 1) << 5)
11204         | (extract32(insn, 29, 1) << 6);
11205     int is_q = extract32(insn, 30, 1);
11206     int size = extract32(insn, 22, 1);
11207     int rm = extract32(insn, 16, 5);
11208     int rn = extract32(insn, 5, 5);
11209     int rd = extract32(insn, 0, 5);
11210 
11211     int datasize = is_q ? 128 : 64;
11212     int esize = 32 << size;
11213     int elements = datasize / esize;
11214 
11215     if (size == 1 && !is_q) {
11216         unallocated_encoding(s);
11217         return;
11218     }
11219 
11220     switch (fpopcode) {
11221     case 0x58: /* FMAXNMP */
11222     case 0x5a: /* FADDP */
11223     case 0x5e: /* FMAXP */
11224     case 0x78: /* FMINNMP */
11225     case 0x7e: /* FMINP */
11226         if (size && !is_q) {
11227             unallocated_encoding(s);
11228             return;
11229         }
11230         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11231                                rn, rm, rd);
11232         return;
11233     case 0x1f: /* FRECPS */
11234     case 0x3f: /* FRSQRTS */
11235     case 0x5d: /* FACGE */
11236     case 0x7d: /* FACGT */
11237     case 0x1c: /* FCMEQ */
11238     case 0x5c: /* FCMGE */
11239     case 0x7a: /* FABD */
11240     case 0x7c: /* FCMGT */
11241         if (!fp_access_check(s)) {
11242             return;
11243         }
11244         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11245         return;
11246 
11247     case 0x1d: /* FMLAL  */
11248     case 0x3d: /* FMLSL  */
11249     case 0x59: /* FMLAL2 */
11250     case 0x79: /* FMLSL2 */
11251         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11252             unallocated_encoding(s);
11253             return;
11254         }
11255         if (fp_access_check(s)) {
11256             int is_s = extract32(insn, 23, 1);
11257             int is_2 = extract32(insn, 29, 1);
11258             int data = (is_2 << 1) | is_s;
11259             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11260                                vec_full_reg_offset(s, rn),
11261                                vec_full_reg_offset(s, rm), tcg_env,
11262                                is_q ? 16 : 8, vec_full_reg_size(s),
11263                                data, gen_helper_gvec_fmlal_a64);
11264         }
11265         return;
11266 
11267     default:
11268     case 0x18: /* FMAXNM */
11269     case 0x19: /* FMLA */
11270     case 0x1a: /* FADD */
11271     case 0x1b: /* FMULX */
11272     case 0x1e: /* FMAX */
11273     case 0x38: /* FMINNM */
11274     case 0x39: /* FMLS */
11275     case 0x3a: /* FSUB */
11276     case 0x3e: /* FMIN */
11277     case 0x5b: /* FMUL */
11278     case 0x5f: /* FDIV */
11279         unallocated_encoding(s);
11280         return;
11281     }
11282 }
11283 
11284 /* Integer op subgroup of C3.6.16. */
11285 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11286 {
11287     int is_q = extract32(insn, 30, 1);
11288     int u = extract32(insn, 29, 1);
11289     int size = extract32(insn, 22, 2);
11290     int opcode = extract32(insn, 11, 5);
11291     int rm = extract32(insn, 16, 5);
11292     int rn = extract32(insn, 5, 5);
11293     int rd = extract32(insn, 0, 5);
11294     int pass;
11295     TCGCond cond;
11296 
11297     switch (opcode) {
11298     case 0x13: /* MUL, PMUL */
11299         if (u && size != 0) {
11300             unallocated_encoding(s);
11301             return;
11302         }
11303         /* fall through */
11304     case 0x0: /* SHADD, UHADD */
11305     case 0x2: /* SRHADD, URHADD */
11306     case 0x4: /* SHSUB, UHSUB */
11307     case 0xc: /* SMAX, UMAX */
11308     case 0xd: /* SMIN, UMIN */
11309     case 0xe: /* SABD, UABD */
11310     case 0xf: /* SABA, UABA */
11311     case 0x12: /* MLA, MLS */
11312         if (size == 3) {
11313             unallocated_encoding(s);
11314             return;
11315         }
11316         break;
11317     case 0x16: /* SQDMULH, SQRDMULH */
11318         if (size == 0 || size == 3) {
11319             unallocated_encoding(s);
11320             return;
11321         }
11322         break;
11323     default:
11324         if (size == 3 && !is_q) {
11325             unallocated_encoding(s);
11326             return;
11327         }
11328         break;
11329     }
11330 
11331     if (!fp_access_check(s)) {
11332         return;
11333     }
11334 
11335     switch (opcode) {
11336     case 0x01: /* SQADD, UQADD */
11337         if (u) {
11338             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11339         } else {
11340             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11341         }
11342         return;
11343     case 0x05: /* SQSUB, UQSUB */
11344         if (u) {
11345             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11346         } else {
11347             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11348         }
11349         return;
11350     case 0x08: /* SSHL, USHL */
11351         if (u) {
11352             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11353         } else {
11354             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11355         }
11356         return;
11357     case 0x0c: /* SMAX, UMAX */
11358         if (u) {
11359             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11360         } else {
11361             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11362         }
11363         return;
11364     case 0x0d: /* SMIN, UMIN */
11365         if (u) {
11366             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11367         } else {
11368             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11369         }
11370         return;
11371     case 0xe: /* SABD, UABD */
11372         if (u) {
11373             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11374         } else {
11375             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11376         }
11377         return;
11378     case 0xf: /* SABA, UABA */
11379         if (u) {
11380             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11381         } else {
11382             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11383         }
11384         return;
11385     case 0x10: /* ADD, SUB */
11386         if (u) {
11387             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11388         } else {
11389             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11390         }
11391         return;
11392     case 0x13: /* MUL, PMUL */
11393         if (!u) { /* MUL */
11394             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11395         } else {  /* PMUL */
11396             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11397         }
11398         return;
11399     case 0x12: /* MLA, MLS */
11400         if (u) {
11401             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11402         } else {
11403             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11404         }
11405         return;
11406     case 0x16: /* SQDMULH, SQRDMULH */
11407         {
11408             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11409                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11410                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11411             };
11412             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11413         }
11414         return;
11415     case 0x11:
11416         if (!u) { /* CMTST */
11417             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11418             return;
11419         }
11420         /* else CMEQ */
11421         cond = TCG_COND_EQ;
11422         goto do_gvec_cmp;
11423     case 0x06: /* CMGT, CMHI */
11424         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11425         goto do_gvec_cmp;
11426     case 0x07: /* CMGE, CMHS */
11427         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11428     do_gvec_cmp:
11429         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11430                          vec_full_reg_offset(s, rn),
11431                          vec_full_reg_offset(s, rm),
11432                          is_q ? 16 : 8, vec_full_reg_size(s));
11433         return;
11434     }
11435 
11436     if (size == 3) {
11437         assert(is_q);
11438         for (pass = 0; pass < 2; pass++) {
11439             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11440             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11441             TCGv_i64 tcg_res = tcg_temp_new_i64();
11442 
11443             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11444             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11445 
11446             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11447 
11448             write_vec_element(s, tcg_res, rd, pass, MO_64);
11449         }
11450     } else {
11451         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11452             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11453             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11454             TCGv_i32 tcg_res = tcg_temp_new_i32();
11455             NeonGenTwoOpFn *genfn = NULL;
11456             NeonGenTwoOpEnvFn *genenvfn = NULL;
11457 
11458             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11459             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11460 
11461             switch (opcode) {
11462             case 0x0: /* SHADD, UHADD */
11463             {
11464                 static NeonGenTwoOpFn * const fns[3][2] = {
11465                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11466                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11467                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11468                 };
11469                 genfn = fns[size][u];
11470                 break;
11471             }
11472             case 0x2: /* SRHADD, URHADD */
11473             {
11474                 static NeonGenTwoOpFn * const fns[3][2] = {
11475                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11476                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11477                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11478                 };
11479                 genfn = fns[size][u];
11480                 break;
11481             }
11482             case 0x4: /* SHSUB, UHSUB */
11483             {
11484                 static NeonGenTwoOpFn * const fns[3][2] = {
11485                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11486                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11487                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11488                 };
11489                 genfn = fns[size][u];
11490                 break;
11491             }
11492             case 0x9: /* SQSHL, UQSHL */
11493             {
11494                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11495                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11496                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11497                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11498                 };
11499                 genenvfn = fns[size][u];
11500                 break;
11501             }
11502             case 0xa: /* SRSHL, URSHL */
11503             {
11504                 static NeonGenTwoOpFn * const fns[3][2] = {
11505                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11506                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11507                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11508                 };
11509                 genfn = fns[size][u];
11510                 break;
11511             }
11512             case 0xb: /* SQRSHL, UQRSHL */
11513             {
11514                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11515                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11516                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11517                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11518                 };
11519                 genenvfn = fns[size][u];
11520                 break;
11521             }
11522             default:
11523                 g_assert_not_reached();
11524             }
11525 
11526             if (genenvfn) {
11527                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11528             } else {
11529                 genfn(tcg_res, tcg_op1, tcg_op2);
11530             }
11531 
11532             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11533         }
11534     }
11535     clear_vec_high(s, is_q, rd);
11536 }
11537 
11538 /* AdvSIMD three same
11539  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11540  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11541  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11542  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11543  */
11544 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11545 {
11546     int opcode = extract32(insn, 11, 5);
11547 
11548     switch (opcode) {
11549     case 0x3: /* logic ops */
11550         disas_simd_3same_logic(s, insn);
11551         break;
11552     case 0x17: /* ADDP */
11553     case 0x14: /* SMAXP, UMAXP */
11554     case 0x15: /* SMINP, UMINP */
11555     {
11556         /* Pairwise operations */
11557         int is_q = extract32(insn, 30, 1);
11558         int u = extract32(insn, 29, 1);
11559         int size = extract32(insn, 22, 2);
11560         int rm = extract32(insn, 16, 5);
11561         int rn = extract32(insn, 5, 5);
11562         int rd = extract32(insn, 0, 5);
11563         if (opcode == 0x17) {
11564             if (u || (size == 3 && !is_q)) {
11565                 unallocated_encoding(s);
11566                 return;
11567             }
11568         } else {
11569             if (size == 3) {
11570                 unallocated_encoding(s);
11571                 return;
11572             }
11573         }
11574         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11575         break;
11576     }
11577     case 0x18 ... 0x31:
11578         /* floating point ops, sz[1] and U are part of opcode */
11579         disas_simd_3same_float(s, insn);
11580         break;
11581     default:
11582         disas_simd_3same_int(s, insn);
11583         break;
11584     }
11585 }
11586 
11587 /*
11588  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11589  *
11590  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11591  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11592  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11593  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11594  *
11595  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11596  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11597  *
11598  */
11599 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11600 {
11601     int opcode = extract32(insn, 11, 3);
11602     int u = extract32(insn, 29, 1);
11603     int a = extract32(insn, 23, 1);
11604     int is_q = extract32(insn, 30, 1);
11605     int rm = extract32(insn, 16, 5);
11606     int rn = extract32(insn, 5, 5);
11607     int rd = extract32(insn, 0, 5);
11608     /*
11609      * For these floating point ops, the U, a and opcode bits
11610      * together indicate the operation.
11611      */
11612     int fpopcode = opcode | (a << 3) | (u << 4);
11613     int datasize = is_q ? 128 : 64;
11614     int elements = datasize / 16;
11615     bool pairwise;
11616     TCGv_ptr fpst;
11617     int pass;
11618 
11619     switch (fpopcode) {
11620     case 0x4: /* FCMEQ */
11621     case 0x7: /* FRECPS */
11622     case 0xf: /* FRSQRTS */
11623     case 0x14: /* FCMGE */
11624     case 0x15: /* FACGE */
11625     case 0x1a: /* FABD */
11626     case 0x1c: /* FCMGT */
11627     case 0x1d: /* FACGT */
11628         pairwise = false;
11629         break;
11630     case 0x10: /* FMAXNMP */
11631     case 0x12: /* FADDP */
11632     case 0x16: /* FMAXP */
11633     case 0x18: /* FMINNMP */
11634     case 0x1e: /* FMINP */
11635         pairwise = true;
11636         break;
11637     default:
11638     case 0x0: /* FMAXNM */
11639     case 0x1: /* FMLA */
11640     case 0x2: /* FADD */
11641     case 0x3: /* FMULX */
11642     case 0x6: /* FMAX */
11643     case 0x8: /* FMINNM */
11644     case 0x9: /* FMLS */
11645     case 0xa: /* FSUB */
11646     case 0xe: /* FMIN */
11647     case 0x13: /* FMUL */
11648     case 0x17: /* FDIV */
11649         unallocated_encoding(s);
11650         return;
11651     }
11652 
11653     if (!dc_isar_feature(aa64_fp16, s)) {
11654         unallocated_encoding(s);
11655         return;
11656     }
11657 
11658     if (!fp_access_check(s)) {
11659         return;
11660     }
11661 
11662     fpst = fpstatus_ptr(FPST_FPCR_F16);
11663 
11664     if (pairwise) {
11665         int maxpass = is_q ? 8 : 4;
11666         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11667         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11668         TCGv_i32 tcg_res[8];
11669 
11670         for (pass = 0; pass < maxpass; pass++) {
11671             int passreg = pass < (maxpass / 2) ? rn : rm;
11672             int passelt = (pass << 1) & (maxpass - 1);
11673 
11674             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11675             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11676             tcg_res[pass] = tcg_temp_new_i32();
11677 
11678             switch (fpopcode) {
11679             case 0x10: /* FMAXNMP */
11680                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11681                                            fpst);
11682                 break;
11683             case 0x12: /* FADDP */
11684                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11685                 break;
11686             case 0x16: /* FMAXP */
11687                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11688                 break;
11689             case 0x18: /* FMINNMP */
11690                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11691                                            fpst);
11692                 break;
11693             case 0x1e: /* FMINP */
11694                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11695                 break;
11696             default:
11697                 g_assert_not_reached();
11698             }
11699         }
11700 
11701         for (pass = 0; pass < maxpass; pass++) {
11702             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11703         }
11704     } else {
11705         for (pass = 0; pass < elements; pass++) {
11706             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11707             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11708             TCGv_i32 tcg_res = tcg_temp_new_i32();
11709 
11710             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11711             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11712 
11713             switch (fpopcode) {
11714             case 0x4: /* FCMEQ */
11715                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11716                 break;
11717             case 0x7: /* FRECPS */
11718                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11719                 break;
11720             case 0xf: /* FRSQRTS */
11721                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11722                 break;
11723             case 0x14: /* FCMGE */
11724                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11725                 break;
11726             case 0x15: /* FACGE */
11727                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11728                 break;
11729             case 0x1a: /* FABD */
11730                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11731                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11732                 break;
11733             case 0x1c: /* FCMGT */
11734                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11735                 break;
11736             case 0x1d: /* FACGT */
11737                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11738                 break;
11739             default:
11740             case 0x0: /* FMAXNM */
11741             case 0x1: /* FMLA */
11742             case 0x2: /* FADD */
11743             case 0x3: /* FMULX */
11744             case 0x6: /* FMAX */
11745             case 0x8: /* FMINNM */
11746             case 0x9: /* FMLS */
11747             case 0xa: /* FSUB */
11748             case 0xe: /* FMIN */
11749             case 0x13: /* FMUL */
11750             case 0x17: /* FDIV */
11751                 g_assert_not_reached();
11752             }
11753 
11754             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11755         }
11756     }
11757 
11758     clear_vec_high(s, is_q, rd);
11759 }
11760 
11761 /* AdvSIMD three same extra
11762  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11763  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11764  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11765  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11766  */
11767 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11768 {
11769     int rd = extract32(insn, 0, 5);
11770     int rn = extract32(insn, 5, 5);
11771     int opcode = extract32(insn, 11, 4);
11772     int rm = extract32(insn, 16, 5);
11773     int size = extract32(insn, 22, 2);
11774     bool u = extract32(insn, 29, 1);
11775     bool is_q = extract32(insn, 30, 1);
11776     bool feature;
11777     int rot;
11778 
11779     switch (u * 16 + opcode) {
11780     case 0x10: /* SQRDMLAH (vector) */
11781     case 0x11: /* SQRDMLSH (vector) */
11782         if (size != 1 && size != 2) {
11783             unallocated_encoding(s);
11784             return;
11785         }
11786         feature = dc_isar_feature(aa64_rdm, s);
11787         break;
11788     case 0x02: /* SDOT (vector) */
11789     case 0x12: /* UDOT (vector) */
11790         if (size != MO_32) {
11791             unallocated_encoding(s);
11792             return;
11793         }
11794         feature = dc_isar_feature(aa64_dp, s);
11795         break;
11796     case 0x03: /* USDOT */
11797         if (size != MO_32) {
11798             unallocated_encoding(s);
11799             return;
11800         }
11801         feature = dc_isar_feature(aa64_i8mm, s);
11802         break;
11803     case 0x04: /* SMMLA */
11804     case 0x14: /* UMMLA */
11805     case 0x05: /* USMMLA */
11806         if (!is_q || size != MO_32) {
11807             unallocated_encoding(s);
11808             return;
11809         }
11810         feature = dc_isar_feature(aa64_i8mm, s);
11811         break;
11812     case 0x18: /* FCMLA, #0 */
11813     case 0x19: /* FCMLA, #90 */
11814     case 0x1a: /* FCMLA, #180 */
11815     case 0x1b: /* FCMLA, #270 */
11816     case 0x1c: /* FCADD, #90 */
11817     case 0x1e: /* FCADD, #270 */
11818         if (size == 0
11819             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11820             || (size == 3 && !is_q)) {
11821             unallocated_encoding(s);
11822             return;
11823         }
11824         feature = dc_isar_feature(aa64_fcma, s);
11825         break;
11826     case 0x1d: /* BFMMLA */
11827         if (size != MO_16 || !is_q) {
11828             unallocated_encoding(s);
11829             return;
11830         }
11831         feature = dc_isar_feature(aa64_bf16, s);
11832         break;
11833     case 0x1f:
11834         switch (size) {
11835         case 1: /* BFDOT */
11836         case 3: /* BFMLAL{B,T} */
11837             feature = dc_isar_feature(aa64_bf16, s);
11838             break;
11839         default:
11840             unallocated_encoding(s);
11841             return;
11842         }
11843         break;
11844     default:
11845         unallocated_encoding(s);
11846         return;
11847     }
11848     if (!feature) {
11849         unallocated_encoding(s);
11850         return;
11851     }
11852     if (!fp_access_check(s)) {
11853         return;
11854     }
11855 
11856     switch (opcode) {
11857     case 0x0: /* SQRDMLAH (vector) */
11858         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11859         return;
11860 
11861     case 0x1: /* SQRDMLSH (vector) */
11862         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11863         return;
11864 
11865     case 0x2: /* SDOT / UDOT */
11866         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11867                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11868         return;
11869 
11870     case 0x3: /* USDOT */
11871         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11872         return;
11873 
11874     case 0x04: /* SMMLA, UMMLA */
11875         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11876                          u ? gen_helper_gvec_ummla_b
11877                          : gen_helper_gvec_smmla_b);
11878         return;
11879     case 0x05: /* USMMLA */
11880         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11881         return;
11882 
11883     case 0x8: /* FCMLA, #0 */
11884     case 0x9: /* FCMLA, #90 */
11885     case 0xa: /* FCMLA, #180 */
11886     case 0xb: /* FCMLA, #270 */
11887         rot = extract32(opcode, 0, 2);
11888         switch (size) {
11889         case 1:
11890             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11891                               gen_helper_gvec_fcmlah);
11892             break;
11893         case 2:
11894             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11895                               gen_helper_gvec_fcmlas);
11896             break;
11897         case 3:
11898             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11899                               gen_helper_gvec_fcmlad);
11900             break;
11901         default:
11902             g_assert_not_reached();
11903         }
11904         return;
11905 
11906     case 0xc: /* FCADD, #90 */
11907     case 0xe: /* FCADD, #270 */
11908         rot = extract32(opcode, 1, 1);
11909         switch (size) {
11910         case 1:
11911             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11912                               gen_helper_gvec_fcaddh);
11913             break;
11914         case 2:
11915             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11916                               gen_helper_gvec_fcadds);
11917             break;
11918         case 3:
11919             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11920                               gen_helper_gvec_fcaddd);
11921             break;
11922         default:
11923             g_assert_not_reached();
11924         }
11925         return;
11926 
11927     case 0xd: /* BFMMLA */
11928         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11929         return;
11930     case 0xf:
11931         switch (size) {
11932         case 1: /* BFDOT */
11933             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11934             break;
11935         case 3: /* BFMLAL{B,T} */
11936             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11937                               gen_helper_gvec_bfmlal);
11938             break;
11939         default:
11940             g_assert_not_reached();
11941         }
11942         return;
11943 
11944     default:
11945         g_assert_not_reached();
11946     }
11947 }
11948 
11949 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11950                                   int size, int rn, int rd)
11951 {
11952     /* Handle 2-reg-misc ops which are widening (so each size element
11953      * in the source becomes a 2*size element in the destination.
11954      * The only instruction like this is FCVTL.
11955      */
11956     int pass;
11957 
11958     if (size == 3) {
11959         /* 32 -> 64 bit fp conversion */
11960         TCGv_i64 tcg_res[2];
11961         int srcelt = is_q ? 2 : 0;
11962 
11963         for (pass = 0; pass < 2; pass++) {
11964             TCGv_i32 tcg_op = tcg_temp_new_i32();
11965             tcg_res[pass] = tcg_temp_new_i64();
11966 
11967             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11968             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11969         }
11970         for (pass = 0; pass < 2; pass++) {
11971             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11972         }
11973     } else {
11974         /* 16 -> 32 bit fp conversion */
11975         int srcelt = is_q ? 4 : 0;
11976         TCGv_i32 tcg_res[4];
11977         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11978         TCGv_i32 ahp = get_ahp_flag();
11979 
11980         for (pass = 0; pass < 4; pass++) {
11981             tcg_res[pass] = tcg_temp_new_i32();
11982 
11983             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11984             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11985                                            fpst, ahp);
11986         }
11987         for (pass = 0; pass < 4; pass++) {
11988             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11989         }
11990     }
11991 }
11992 
11993 static void handle_rev(DisasContext *s, int opcode, bool u,
11994                        bool is_q, int size, int rn, int rd)
11995 {
11996     int op = (opcode << 1) | u;
11997     int opsz = op + size;
11998     int grp_size = 3 - opsz;
11999     int dsize = is_q ? 128 : 64;
12000     int i;
12001 
12002     if (opsz >= 3) {
12003         unallocated_encoding(s);
12004         return;
12005     }
12006 
12007     if (!fp_access_check(s)) {
12008         return;
12009     }
12010 
12011     if (size == 0) {
12012         /* Special case bytes, use bswap op on each group of elements */
12013         int groups = dsize / (8 << grp_size);
12014 
12015         for (i = 0; i < groups; i++) {
12016             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12017 
12018             read_vec_element(s, tcg_tmp, rn, i, grp_size);
12019             switch (grp_size) {
12020             case MO_16:
12021                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12022                 break;
12023             case MO_32:
12024                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12025                 break;
12026             case MO_64:
12027                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12028                 break;
12029             default:
12030                 g_assert_not_reached();
12031             }
12032             write_vec_element(s, tcg_tmp, rd, i, grp_size);
12033         }
12034         clear_vec_high(s, is_q, rd);
12035     } else {
12036         int revmask = (1 << grp_size) - 1;
12037         int esize = 8 << size;
12038         int elements = dsize / esize;
12039         TCGv_i64 tcg_rn = tcg_temp_new_i64();
12040         TCGv_i64 tcg_rd[2];
12041 
12042         for (i = 0; i < 2; i++) {
12043             tcg_rd[i] = tcg_temp_new_i64();
12044             tcg_gen_movi_i64(tcg_rd[i], 0);
12045         }
12046 
12047         for (i = 0; i < elements; i++) {
12048             int e_rev = (i & 0xf) ^ revmask;
12049             int w = (e_rev * esize) / 64;
12050             int o = (e_rev * esize) % 64;
12051 
12052             read_vec_element(s, tcg_rn, rn, i, size);
12053             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
12054         }
12055 
12056         for (i = 0; i < 2; i++) {
12057             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
12058         }
12059         clear_vec_high(s, true, rd);
12060     }
12061 }
12062 
12063 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12064                                   bool is_q, int size, int rn, int rd)
12065 {
12066     /* Implement the pairwise operations from 2-misc:
12067      * SADDLP, UADDLP, SADALP, UADALP.
12068      * These all add pairs of elements in the input to produce a
12069      * double-width result element in the output (possibly accumulating).
12070      */
12071     bool accum = (opcode == 0x6);
12072     int maxpass = is_q ? 2 : 1;
12073     int pass;
12074     TCGv_i64 tcg_res[2];
12075 
12076     if (size == 2) {
12077         /* 32 + 32 -> 64 op */
12078         MemOp memop = size + (u ? 0 : MO_SIGN);
12079 
12080         for (pass = 0; pass < maxpass; pass++) {
12081             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12082             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12083 
12084             tcg_res[pass] = tcg_temp_new_i64();
12085 
12086             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12087             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12088             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12089             if (accum) {
12090                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12091                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12092             }
12093         }
12094     } else {
12095         for (pass = 0; pass < maxpass; pass++) {
12096             TCGv_i64 tcg_op = tcg_temp_new_i64();
12097             NeonGenOne64OpFn *genfn;
12098             static NeonGenOne64OpFn * const fns[2][2] = {
12099                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12100                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12101             };
12102 
12103             genfn = fns[size][u];
12104 
12105             tcg_res[pass] = tcg_temp_new_i64();
12106 
12107             read_vec_element(s, tcg_op, rn, pass, MO_64);
12108             genfn(tcg_res[pass], tcg_op);
12109 
12110             if (accum) {
12111                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12112                 if (size == 0) {
12113                     gen_helper_neon_addl_u16(tcg_res[pass],
12114                                              tcg_res[pass], tcg_op);
12115                 } else {
12116                     gen_helper_neon_addl_u32(tcg_res[pass],
12117                                              tcg_res[pass], tcg_op);
12118                 }
12119             }
12120         }
12121     }
12122     if (!is_q) {
12123         tcg_res[1] = tcg_constant_i64(0);
12124     }
12125     for (pass = 0; pass < 2; pass++) {
12126         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12127     }
12128 }
12129 
12130 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12131 {
12132     /* Implement SHLL and SHLL2 */
12133     int pass;
12134     int part = is_q ? 2 : 0;
12135     TCGv_i64 tcg_res[2];
12136 
12137     for (pass = 0; pass < 2; pass++) {
12138         static NeonGenWidenFn * const widenfns[3] = {
12139             gen_helper_neon_widen_u8,
12140             gen_helper_neon_widen_u16,
12141             tcg_gen_extu_i32_i64,
12142         };
12143         NeonGenWidenFn *widenfn = widenfns[size];
12144         TCGv_i32 tcg_op = tcg_temp_new_i32();
12145 
12146         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12147         tcg_res[pass] = tcg_temp_new_i64();
12148         widenfn(tcg_res[pass], tcg_op);
12149         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12150     }
12151 
12152     for (pass = 0; pass < 2; pass++) {
12153         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12154     }
12155 }
12156 
12157 /* AdvSIMD two reg misc
12158  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12159  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12160  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12161  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12162  */
12163 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12164 {
12165     int size = extract32(insn, 22, 2);
12166     int opcode = extract32(insn, 12, 5);
12167     bool u = extract32(insn, 29, 1);
12168     bool is_q = extract32(insn, 30, 1);
12169     int rn = extract32(insn, 5, 5);
12170     int rd = extract32(insn, 0, 5);
12171     bool need_fpstatus = false;
12172     int rmode = -1;
12173     TCGv_i32 tcg_rmode;
12174     TCGv_ptr tcg_fpstatus;
12175 
12176     switch (opcode) {
12177     case 0x0: /* REV64, REV32 */
12178     case 0x1: /* REV16 */
12179         handle_rev(s, opcode, u, is_q, size, rn, rd);
12180         return;
12181     case 0x5: /* CNT, NOT, RBIT */
12182         if (u && size == 0) {
12183             /* NOT */
12184             break;
12185         } else if (u && size == 1) {
12186             /* RBIT */
12187             break;
12188         } else if (!u && size == 0) {
12189             /* CNT */
12190             break;
12191         }
12192         unallocated_encoding(s);
12193         return;
12194     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12195     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12196         if (size == 3) {
12197             unallocated_encoding(s);
12198             return;
12199         }
12200         if (!fp_access_check(s)) {
12201             return;
12202         }
12203 
12204         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12205         return;
12206     case 0x4: /* CLS, CLZ */
12207         if (size == 3) {
12208             unallocated_encoding(s);
12209             return;
12210         }
12211         break;
12212     case 0x2: /* SADDLP, UADDLP */
12213     case 0x6: /* SADALP, UADALP */
12214         if (size == 3) {
12215             unallocated_encoding(s);
12216             return;
12217         }
12218         if (!fp_access_check(s)) {
12219             return;
12220         }
12221         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12222         return;
12223     case 0x13: /* SHLL, SHLL2 */
12224         if (u == 0 || size == 3) {
12225             unallocated_encoding(s);
12226             return;
12227         }
12228         if (!fp_access_check(s)) {
12229             return;
12230         }
12231         handle_shll(s, is_q, size, rn, rd);
12232         return;
12233     case 0xa: /* CMLT */
12234         if (u == 1) {
12235             unallocated_encoding(s);
12236             return;
12237         }
12238         /* fall through */
12239     case 0x8: /* CMGT, CMGE */
12240     case 0x9: /* CMEQ, CMLE */
12241     case 0xb: /* ABS, NEG */
12242         if (size == 3 && !is_q) {
12243             unallocated_encoding(s);
12244             return;
12245         }
12246         break;
12247     case 0x3: /* SUQADD, USQADD */
12248         if (size == 3 && !is_q) {
12249             unallocated_encoding(s);
12250             return;
12251         }
12252         if (!fp_access_check(s)) {
12253             return;
12254         }
12255         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12256         return;
12257     case 0x7: /* SQABS, SQNEG */
12258         if (size == 3 && !is_q) {
12259             unallocated_encoding(s);
12260             return;
12261         }
12262         break;
12263     case 0xc ... 0xf:
12264     case 0x16 ... 0x1f:
12265     {
12266         /* Floating point: U, size[1] and opcode indicate operation;
12267          * size[0] indicates single or double precision.
12268          */
12269         int is_double = extract32(size, 0, 1);
12270         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12271         size = is_double ? 3 : 2;
12272         switch (opcode) {
12273         case 0x2f: /* FABS */
12274         case 0x6f: /* FNEG */
12275             if (size == 3 && !is_q) {
12276                 unallocated_encoding(s);
12277                 return;
12278             }
12279             break;
12280         case 0x1d: /* SCVTF */
12281         case 0x5d: /* UCVTF */
12282         {
12283             bool is_signed = (opcode == 0x1d) ? true : false;
12284             int elements = is_double ? 2 : is_q ? 4 : 2;
12285             if (is_double && !is_q) {
12286                 unallocated_encoding(s);
12287                 return;
12288             }
12289             if (!fp_access_check(s)) {
12290                 return;
12291             }
12292             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12293             return;
12294         }
12295         case 0x2c: /* FCMGT (zero) */
12296         case 0x2d: /* FCMEQ (zero) */
12297         case 0x2e: /* FCMLT (zero) */
12298         case 0x6c: /* FCMGE (zero) */
12299         case 0x6d: /* FCMLE (zero) */
12300             if (size == 3 && !is_q) {
12301                 unallocated_encoding(s);
12302                 return;
12303             }
12304             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12305             return;
12306         case 0x7f: /* FSQRT */
12307             if (size == 3 && !is_q) {
12308                 unallocated_encoding(s);
12309                 return;
12310             }
12311             break;
12312         case 0x1a: /* FCVTNS */
12313         case 0x1b: /* FCVTMS */
12314         case 0x3a: /* FCVTPS */
12315         case 0x3b: /* FCVTZS */
12316         case 0x5a: /* FCVTNU */
12317         case 0x5b: /* FCVTMU */
12318         case 0x7a: /* FCVTPU */
12319         case 0x7b: /* FCVTZU */
12320             need_fpstatus = true;
12321             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12322             if (size == 3 && !is_q) {
12323                 unallocated_encoding(s);
12324                 return;
12325             }
12326             break;
12327         case 0x5c: /* FCVTAU */
12328         case 0x1c: /* FCVTAS */
12329             need_fpstatus = true;
12330             rmode = FPROUNDING_TIEAWAY;
12331             if (size == 3 && !is_q) {
12332                 unallocated_encoding(s);
12333                 return;
12334             }
12335             break;
12336         case 0x3c: /* URECPE */
12337             if (size == 3) {
12338                 unallocated_encoding(s);
12339                 return;
12340             }
12341             /* fall through */
12342         case 0x3d: /* FRECPE */
12343         case 0x7d: /* FRSQRTE */
12344             if (size == 3 && !is_q) {
12345                 unallocated_encoding(s);
12346                 return;
12347             }
12348             if (!fp_access_check(s)) {
12349                 return;
12350             }
12351             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12352             return;
12353         case 0x56: /* FCVTXN, FCVTXN2 */
12354             if (size == 2) {
12355                 unallocated_encoding(s);
12356                 return;
12357             }
12358             /* fall through */
12359         case 0x16: /* FCVTN, FCVTN2 */
12360             /* handle_2misc_narrow does a 2*size -> size operation, but these
12361              * instructions encode the source size rather than dest size.
12362              */
12363             if (!fp_access_check(s)) {
12364                 return;
12365             }
12366             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12367             return;
12368         case 0x36: /* BFCVTN, BFCVTN2 */
12369             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12370                 unallocated_encoding(s);
12371                 return;
12372             }
12373             if (!fp_access_check(s)) {
12374                 return;
12375             }
12376             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12377             return;
12378         case 0x17: /* FCVTL, FCVTL2 */
12379             if (!fp_access_check(s)) {
12380                 return;
12381             }
12382             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12383             return;
12384         case 0x18: /* FRINTN */
12385         case 0x19: /* FRINTM */
12386         case 0x38: /* FRINTP */
12387         case 0x39: /* FRINTZ */
12388             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12389             /* fall through */
12390         case 0x59: /* FRINTX */
12391         case 0x79: /* FRINTI */
12392             need_fpstatus = true;
12393             if (size == 3 && !is_q) {
12394                 unallocated_encoding(s);
12395                 return;
12396             }
12397             break;
12398         case 0x58: /* FRINTA */
12399             rmode = FPROUNDING_TIEAWAY;
12400             need_fpstatus = true;
12401             if (size == 3 && !is_q) {
12402                 unallocated_encoding(s);
12403                 return;
12404             }
12405             break;
12406         case 0x7c: /* URSQRTE */
12407             if (size == 3) {
12408                 unallocated_encoding(s);
12409                 return;
12410             }
12411             break;
12412         case 0x1e: /* FRINT32Z */
12413         case 0x1f: /* FRINT64Z */
12414             rmode = FPROUNDING_ZERO;
12415             /* fall through */
12416         case 0x5e: /* FRINT32X */
12417         case 0x5f: /* FRINT64X */
12418             need_fpstatus = true;
12419             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12420                 unallocated_encoding(s);
12421                 return;
12422             }
12423             break;
12424         default:
12425             unallocated_encoding(s);
12426             return;
12427         }
12428         break;
12429     }
12430     default:
12431         unallocated_encoding(s);
12432         return;
12433     }
12434 
12435     if (!fp_access_check(s)) {
12436         return;
12437     }
12438 
12439     if (need_fpstatus || rmode >= 0) {
12440         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12441     } else {
12442         tcg_fpstatus = NULL;
12443     }
12444     if (rmode >= 0) {
12445         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12446     } else {
12447         tcg_rmode = NULL;
12448     }
12449 
12450     switch (opcode) {
12451     case 0x5:
12452         if (u && size == 0) { /* NOT */
12453             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12454             return;
12455         }
12456         break;
12457     case 0x8: /* CMGT, CMGE */
12458         if (u) {
12459             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12460         } else {
12461             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12462         }
12463         return;
12464     case 0x9: /* CMEQ, CMLE */
12465         if (u) {
12466             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12467         } else {
12468             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12469         }
12470         return;
12471     case 0xa: /* CMLT */
12472         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12473         return;
12474     case 0xb:
12475         if (u) { /* ABS, NEG */
12476             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12477         } else {
12478             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12479         }
12480         return;
12481     }
12482 
12483     if (size == 3) {
12484         /* All 64-bit element operations can be shared with scalar 2misc */
12485         int pass;
12486 
12487         /* Coverity claims (size == 3 && !is_q) has been eliminated
12488          * from all paths leading to here.
12489          */
12490         tcg_debug_assert(is_q);
12491         for (pass = 0; pass < 2; pass++) {
12492             TCGv_i64 tcg_op = tcg_temp_new_i64();
12493             TCGv_i64 tcg_res = tcg_temp_new_i64();
12494 
12495             read_vec_element(s, tcg_op, rn, pass, MO_64);
12496 
12497             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12498                             tcg_rmode, tcg_fpstatus);
12499 
12500             write_vec_element(s, tcg_res, rd, pass, MO_64);
12501         }
12502     } else {
12503         int pass;
12504 
12505         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12506             TCGv_i32 tcg_op = tcg_temp_new_i32();
12507             TCGv_i32 tcg_res = tcg_temp_new_i32();
12508 
12509             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12510 
12511             if (size == 2) {
12512                 /* Special cases for 32 bit elements */
12513                 switch (opcode) {
12514                 case 0x4: /* CLS */
12515                     if (u) {
12516                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12517                     } else {
12518                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12519                     }
12520                     break;
12521                 case 0x7: /* SQABS, SQNEG */
12522                     if (u) {
12523                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12524                     } else {
12525                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12526                     }
12527                     break;
12528                 case 0x2f: /* FABS */
12529                     gen_vfp_abss(tcg_res, tcg_op);
12530                     break;
12531                 case 0x6f: /* FNEG */
12532                     gen_vfp_negs(tcg_res, tcg_op);
12533                     break;
12534                 case 0x7f: /* FSQRT */
12535                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12536                     break;
12537                 case 0x1a: /* FCVTNS */
12538                 case 0x1b: /* FCVTMS */
12539                 case 0x1c: /* FCVTAS */
12540                 case 0x3a: /* FCVTPS */
12541                 case 0x3b: /* FCVTZS */
12542                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12543                                          tcg_constant_i32(0), tcg_fpstatus);
12544                     break;
12545                 case 0x5a: /* FCVTNU */
12546                 case 0x5b: /* FCVTMU */
12547                 case 0x5c: /* FCVTAU */
12548                 case 0x7a: /* FCVTPU */
12549                 case 0x7b: /* FCVTZU */
12550                     gen_helper_vfp_touls(tcg_res, tcg_op,
12551                                          tcg_constant_i32(0), tcg_fpstatus);
12552                     break;
12553                 case 0x18: /* FRINTN */
12554                 case 0x19: /* FRINTM */
12555                 case 0x38: /* FRINTP */
12556                 case 0x39: /* FRINTZ */
12557                 case 0x58: /* FRINTA */
12558                 case 0x79: /* FRINTI */
12559                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12560                     break;
12561                 case 0x59: /* FRINTX */
12562                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12563                     break;
12564                 case 0x7c: /* URSQRTE */
12565                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12566                     break;
12567                 case 0x1e: /* FRINT32Z */
12568                 case 0x5e: /* FRINT32X */
12569                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12570                     break;
12571                 case 0x1f: /* FRINT64Z */
12572                 case 0x5f: /* FRINT64X */
12573                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12574                     break;
12575                 default:
12576                     g_assert_not_reached();
12577                 }
12578             } else {
12579                 /* Use helpers for 8 and 16 bit elements */
12580                 switch (opcode) {
12581                 case 0x5: /* CNT, RBIT */
12582                     /* For these two insns size is part of the opcode specifier
12583                      * (handled earlier); they always operate on byte elements.
12584                      */
12585                     if (u) {
12586                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12587                     } else {
12588                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12589                     }
12590                     break;
12591                 case 0x7: /* SQABS, SQNEG */
12592                 {
12593                     NeonGenOneOpEnvFn *genfn;
12594                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12595                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12596                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12597                     };
12598                     genfn = fns[size][u];
12599                     genfn(tcg_res, tcg_env, tcg_op);
12600                     break;
12601                 }
12602                 case 0x4: /* CLS, CLZ */
12603                     if (u) {
12604                         if (size == 0) {
12605                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12606                         } else {
12607                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12608                         }
12609                     } else {
12610                         if (size == 0) {
12611                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12612                         } else {
12613                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12614                         }
12615                     }
12616                     break;
12617                 default:
12618                     g_assert_not_reached();
12619                 }
12620             }
12621 
12622             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12623         }
12624     }
12625     clear_vec_high(s, is_q, rd);
12626 
12627     if (tcg_rmode) {
12628         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12629     }
12630 }
12631 
12632 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12633  *
12634  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12635  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12636  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12637  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12638  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12639  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12640  *
12641  * This actually covers two groups where scalar access is governed by
12642  * bit 28. A bunch of the instructions (float to integral) only exist
12643  * in the vector form and are un-allocated for the scalar decode. Also
12644  * in the scalar decode Q is always 1.
12645  */
12646 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12647 {
12648     int fpop, opcode, a, u;
12649     int rn, rd;
12650     bool is_q;
12651     bool is_scalar;
12652     bool only_in_vector = false;
12653 
12654     int pass;
12655     TCGv_i32 tcg_rmode = NULL;
12656     TCGv_ptr tcg_fpstatus = NULL;
12657     bool need_fpst = true;
12658     int rmode = -1;
12659 
12660     if (!dc_isar_feature(aa64_fp16, s)) {
12661         unallocated_encoding(s);
12662         return;
12663     }
12664 
12665     rd = extract32(insn, 0, 5);
12666     rn = extract32(insn, 5, 5);
12667 
12668     a = extract32(insn, 23, 1);
12669     u = extract32(insn, 29, 1);
12670     is_scalar = extract32(insn, 28, 1);
12671     is_q = extract32(insn, 30, 1);
12672 
12673     opcode = extract32(insn, 12, 5);
12674     fpop = deposit32(opcode, 5, 1, a);
12675     fpop = deposit32(fpop, 6, 1, u);
12676 
12677     switch (fpop) {
12678     case 0x1d: /* SCVTF */
12679     case 0x5d: /* UCVTF */
12680     {
12681         int elements;
12682 
12683         if (is_scalar) {
12684             elements = 1;
12685         } else {
12686             elements = (is_q ? 8 : 4);
12687         }
12688 
12689         if (!fp_access_check(s)) {
12690             return;
12691         }
12692         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12693         return;
12694     }
12695     break;
12696     case 0x2c: /* FCMGT (zero) */
12697     case 0x2d: /* FCMEQ (zero) */
12698     case 0x2e: /* FCMLT (zero) */
12699     case 0x6c: /* FCMGE (zero) */
12700     case 0x6d: /* FCMLE (zero) */
12701         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12702         return;
12703     case 0x3d: /* FRECPE */
12704     case 0x3f: /* FRECPX */
12705         break;
12706     case 0x18: /* FRINTN */
12707         only_in_vector = true;
12708         rmode = FPROUNDING_TIEEVEN;
12709         break;
12710     case 0x19: /* FRINTM */
12711         only_in_vector = true;
12712         rmode = FPROUNDING_NEGINF;
12713         break;
12714     case 0x38: /* FRINTP */
12715         only_in_vector = true;
12716         rmode = FPROUNDING_POSINF;
12717         break;
12718     case 0x39: /* FRINTZ */
12719         only_in_vector = true;
12720         rmode = FPROUNDING_ZERO;
12721         break;
12722     case 0x58: /* FRINTA */
12723         only_in_vector = true;
12724         rmode = FPROUNDING_TIEAWAY;
12725         break;
12726     case 0x59: /* FRINTX */
12727     case 0x79: /* FRINTI */
12728         only_in_vector = true;
12729         /* current rounding mode */
12730         break;
12731     case 0x1a: /* FCVTNS */
12732         rmode = FPROUNDING_TIEEVEN;
12733         break;
12734     case 0x1b: /* FCVTMS */
12735         rmode = FPROUNDING_NEGINF;
12736         break;
12737     case 0x1c: /* FCVTAS */
12738         rmode = FPROUNDING_TIEAWAY;
12739         break;
12740     case 0x3a: /* FCVTPS */
12741         rmode = FPROUNDING_POSINF;
12742         break;
12743     case 0x3b: /* FCVTZS */
12744         rmode = FPROUNDING_ZERO;
12745         break;
12746     case 0x5a: /* FCVTNU */
12747         rmode = FPROUNDING_TIEEVEN;
12748         break;
12749     case 0x5b: /* FCVTMU */
12750         rmode = FPROUNDING_NEGINF;
12751         break;
12752     case 0x5c: /* FCVTAU */
12753         rmode = FPROUNDING_TIEAWAY;
12754         break;
12755     case 0x7a: /* FCVTPU */
12756         rmode = FPROUNDING_POSINF;
12757         break;
12758     case 0x7b: /* FCVTZU */
12759         rmode = FPROUNDING_ZERO;
12760         break;
12761     case 0x2f: /* FABS */
12762     case 0x6f: /* FNEG */
12763         need_fpst = false;
12764         break;
12765     case 0x7d: /* FRSQRTE */
12766     case 0x7f: /* FSQRT (vector) */
12767         break;
12768     default:
12769         unallocated_encoding(s);
12770         return;
12771     }
12772 
12773 
12774     /* Check additional constraints for the scalar encoding */
12775     if (is_scalar) {
12776         if (!is_q) {
12777             unallocated_encoding(s);
12778             return;
12779         }
12780         /* FRINTxx is only in the vector form */
12781         if (only_in_vector) {
12782             unallocated_encoding(s);
12783             return;
12784         }
12785     }
12786 
12787     if (!fp_access_check(s)) {
12788         return;
12789     }
12790 
12791     if (rmode >= 0 || need_fpst) {
12792         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12793     }
12794 
12795     if (rmode >= 0) {
12796         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12797     }
12798 
12799     if (is_scalar) {
12800         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12801         TCGv_i32 tcg_res = tcg_temp_new_i32();
12802 
12803         switch (fpop) {
12804         case 0x1a: /* FCVTNS */
12805         case 0x1b: /* FCVTMS */
12806         case 0x1c: /* FCVTAS */
12807         case 0x3a: /* FCVTPS */
12808         case 0x3b: /* FCVTZS */
12809             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12810             break;
12811         case 0x3d: /* FRECPE */
12812             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12813             break;
12814         case 0x3f: /* FRECPX */
12815             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12816             break;
12817         case 0x5a: /* FCVTNU */
12818         case 0x5b: /* FCVTMU */
12819         case 0x5c: /* FCVTAU */
12820         case 0x7a: /* FCVTPU */
12821         case 0x7b: /* FCVTZU */
12822             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12823             break;
12824         case 0x6f: /* FNEG */
12825             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12826             break;
12827         case 0x7d: /* FRSQRTE */
12828             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12829             break;
12830         default:
12831             g_assert_not_reached();
12832         }
12833 
12834         /* limit any sign extension going on */
12835         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12836         write_fp_sreg(s, rd, tcg_res);
12837     } else {
12838         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12839             TCGv_i32 tcg_op = tcg_temp_new_i32();
12840             TCGv_i32 tcg_res = tcg_temp_new_i32();
12841 
12842             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12843 
12844             switch (fpop) {
12845             case 0x1a: /* FCVTNS */
12846             case 0x1b: /* FCVTMS */
12847             case 0x1c: /* FCVTAS */
12848             case 0x3a: /* FCVTPS */
12849             case 0x3b: /* FCVTZS */
12850                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12851                 break;
12852             case 0x3d: /* FRECPE */
12853                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12854                 break;
12855             case 0x5a: /* FCVTNU */
12856             case 0x5b: /* FCVTMU */
12857             case 0x5c: /* FCVTAU */
12858             case 0x7a: /* FCVTPU */
12859             case 0x7b: /* FCVTZU */
12860                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12861                 break;
12862             case 0x18: /* FRINTN */
12863             case 0x19: /* FRINTM */
12864             case 0x38: /* FRINTP */
12865             case 0x39: /* FRINTZ */
12866             case 0x58: /* FRINTA */
12867             case 0x79: /* FRINTI */
12868                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12869                 break;
12870             case 0x59: /* FRINTX */
12871                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12872                 break;
12873             case 0x2f: /* FABS */
12874                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12875                 break;
12876             case 0x6f: /* FNEG */
12877                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12878                 break;
12879             case 0x7d: /* FRSQRTE */
12880                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12881                 break;
12882             case 0x7f: /* FSQRT */
12883                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12884                 break;
12885             default:
12886                 g_assert_not_reached();
12887             }
12888 
12889             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12890         }
12891 
12892         clear_vec_high(s, is_q, rd);
12893     }
12894 
12895     if (tcg_rmode) {
12896         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12897     }
12898 }
12899 
12900 /* AdvSIMD scalar x indexed element
12901  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12902  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12903  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12904  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12905  * AdvSIMD vector x indexed element
12906  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12907  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12908  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12909  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12910  */
12911 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12912 {
12913     /* This encoding has two kinds of instruction:
12914      *  normal, where we perform elt x idxelt => elt for each
12915      *     element in the vector
12916      *  long, where we perform elt x idxelt and generate a result of
12917      *     double the width of the input element
12918      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12919      */
12920     bool is_scalar = extract32(insn, 28, 1);
12921     bool is_q = extract32(insn, 30, 1);
12922     bool u = extract32(insn, 29, 1);
12923     int size = extract32(insn, 22, 2);
12924     int l = extract32(insn, 21, 1);
12925     int m = extract32(insn, 20, 1);
12926     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12927     int rm = extract32(insn, 16, 4);
12928     int opcode = extract32(insn, 12, 4);
12929     int h = extract32(insn, 11, 1);
12930     int rn = extract32(insn, 5, 5);
12931     int rd = extract32(insn, 0, 5);
12932     bool is_long = false;
12933     int is_fp = 0;
12934     bool is_fp16 = false;
12935     int index;
12936     TCGv_ptr fpst;
12937 
12938     switch (16 * u + opcode) {
12939     case 0x08: /* MUL */
12940     case 0x10: /* MLA */
12941     case 0x14: /* MLS */
12942         if (is_scalar) {
12943             unallocated_encoding(s);
12944             return;
12945         }
12946         break;
12947     case 0x02: /* SMLAL, SMLAL2 */
12948     case 0x12: /* UMLAL, UMLAL2 */
12949     case 0x06: /* SMLSL, SMLSL2 */
12950     case 0x16: /* UMLSL, UMLSL2 */
12951     case 0x0a: /* SMULL, SMULL2 */
12952     case 0x1a: /* UMULL, UMULL2 */
12953         if (is_scalar) {
12954             unallocated_encoding(s);
12955             return;
12956         }
12957         is_long = true;
12958         break;
12959     case 0x03: /* SQDMLAL, SQDMLAL2 */
12960     case 0x07: /* SQDMLSL, SQDMLSL2 */
12961     case 0x0b: /* SQDMULL, SQDMULL2 */
12962         is_long = true;
12963         break;
12964     case 0x0c: /* SQDMULH */
12965     case 0x0d: /* SQRDMULH */
12966         break;
12967     case 0x1d: /* SQRDMLAH */
12968     case 0x1f: /* SQRDMLSH */
12969         if (!dc_isar_feature(aa64_rdm, s)) {
12970             unallocated_encoding(s);
12971             return;
12972         }
12973         break;
12974     case 0x0e: /* SDOT */
12975     case 0x1e: /* UDOT */
12976         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12977             unallocated_encoding(s);
12978             return;
12979         }
12980         break;
12981     case 0x0f:
12982         switch (size) {
12983         case 0: /* SUDOT */
12984         case 2: /* USDOT */
12985             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12986                 unallocated_encoding(s);
12987                 return;
12988             }
12989             size = MO_32;
12990             break;
12991         case 1: /* BFDOT */
12992             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12993                 unallocated_encoding(s);
12994                 return;
12995             }
12996             size = MO_32;
12997             break;
12998         case 3: /* BFMLAL{B,T} */
12999             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13000                 unallocated_encoding(s);
13001                 return;
13002             }
13003             /* can't set is_fp without other incorrect size checks */
13004             size = MO_16;
13005             break;
13006         default:
13007             unallocated_encoding(s);
13008             return;
13009         }
13010         break;
13011     case 0x11: /* FCMLA #0 */
13012     case 0x13: /* FCMLA #90 */
13013     case 0x15: /* FCMLA #180 */
13014     case 0x17: /* FCMLA #270 */
13015         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13016             unallocated_encoding(s);
13017             return;
13018         }
13019         is_fp = 2;
13020         break;
13021     case 0x00: /* FMLAL */
13022     case 0x04: /* FMLSL */
13023     case 0x18: /* FMLAL2 */
13024     case 0x1c: /* FMLSL2 */
13025         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13026             unallocated_encoding(s);
13027             return;
13028         }
13029         size = MO_16;
13030         /* is_fp, but we pass tcg_env not fp_status.  */
13031         break;
13032     default:
13033     case 0x01: /* FMLA */
13034     case 0x05: /* FMLS */
13035     case 0x09: /* FMUL */
13036     case 0x19: /* FMULX */
13037         unallocated_encoding(s);
13038         return;
13039     }
13040 
13041     switch (is_fp) {
13042     case 1: /* normal fp */
13043         unallocated_encoding(s); /* in decodetree */
13044         return;
13045 
13046     case 2: /* complex fp */
13047         /* Each indexable element is a complex pair.  */
13048         size += 1;
13049         switch (size) {
13050         case MO_32:
13051             if (h && !is_q) {
13052                 unallocated_encoding(s);
13053                 return;
13054             }
13055             is_fp16 = true;
13056             break;
13057         case MO_64:
13058             break;
13059         default:
13060             unallocated_encoding(s);
13061             return;
13062         }
13063         break;
13064 
13065     default: /* integer */
13066         switch (size) {
13067         case MO_8:
13068         case MO_64:
13069             unallocated_encoding(s);
13070             return;
13071         }
13072         break;
13073     }
13074     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13075         unallocated_encoding(s);
13076         return;
13077     }
13078 
13079     /* Given MemOp size, adjust register and indexing.  */
13080     switch (size) {
13081     case MO_16:
13082         index = h << 2 | l << 1 | m;
13083         break;
13084     case MO_32:
13085         index = h << 1 | l;
13086         rm |= m << 4;
13087         break;
13088     case MO_64:
13089         if (l || !is_q) {
13090             unallocated_encoding(s);
13091             return;
13092         }
13093         index = h;
13094         rm |= m << 4;
13095         break;
13096     default:
13097         g_assert_not_reached();
13098     }
13099 
13100     if (!fp_access_check(s)) {
13101         return;
13102     }
13103 
13104     if (is_fp) {
13105         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13106     } else {
13107         fpst = NULL;
13108     }
13109 
13110     switch (16 * u + opcode) {
13111     case 0x0e: /* SDOT */
13112     case 0x1e: /* UDOT */
13113         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13114                          u ? gen_helper_gvec_udot_idx_b
13115                          : gen_helper_gvec_sdot_idx_b);
13116         return;
13117     case 0x0f:
13118         switch (extract32(insn, 22, 2)) {
13119         case 0: /* SUDOT */
13120             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13121                              gen_helper_gvec_sudot_idx_b);
13122             return;
13123         case 1: /* BFDOT */
13124             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13125                              gen_helper_gvec_bfdot_idx);
13126             return;
13127         case 2: /* USDOT */
13128             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13129                              gen_helper_gvec_usdot_idx_b);
13130             return;
13131         case 3: /* BFMLAL{B,T} */
13132             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13133                               gen_helper_gvec_bfmlal_idx);
13134             return;
13135         }
13136         g_assert_not_reached();
13137     case 0x11: /* FCMLA #0 */
13138     case 0x13: /* FCMLA #90 */
13139     case 0x15: /* FCMLA #180 */
13140     case 0x17: /* FCMLA #270 */
13141         {
13142             int rot = extract32(insn, 13, 2);
13143             int data = (index << 2) | rot;
13144             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13145                                vec_full_reg_offset(s, rn),
13146                                vec_full_reg_offset(s, rm),
13147                                vec_full_reg_offset(s, rd), fpst,
13148                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13149                                size == MO_64
13150                                ? gen_helper_gvec_fcmlas_idx
13151                                : gen_helper_gvec_fcmlah_idx);
13152         }
13153         return;
13154 
13155     case 0x00: /* FMLAL */
13156     case 0x04: /* FMLSL */
13157     case 0x18: /* FMLAL2 */
13158     case 0x1c: /* FMLSL2 */
13159         {
13160             int is_s = extract32(opcode, 2, 1);
13161             int is_2 = u;
13162             int data = (index << 2) | (is_2 << 1) | is_s;
13163             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13164                                vec_full_reg_offset(s, rn),
13165                                vec_full_reg_offset(s, rm), tcg_env,
13166                                is_q ? 16 : 8, vec_full_reg_size(s),
13167                                data, gen_helper_gvec_fmlal_idx_a64);
13168         }
13169         return;
13170 
13171     case 0x08: /* MUL */
13172         if (!is_long && !is_scalar) {
13173             static gen_helper_gvec_3 * const fns[3] = {
13174                 gen_helper_gvec_mul_idx_h,
13175                 gen_helper_gvec_mul_idx_s,
13176                 gen_helper_gvec_mul_idx_d,
13177             };
13178             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13179                                vec_full_reg_offset(s, rn),
13180                                vec_full_reg_offset(s, rm),
13181                                is_q ? 16 : 8, vec_full_reg_size(s),
13182                                index, fns[size - 1]);
13183             return;
13184         }
13185         break;
13186 
13187     case 0x10: /* MLA */
13188         if (!is_long && !is_scalar) {
13189             static gen_helper_gvec_4 * const fns[3] = {
13190                 gen_helper_gvec_mla_idx_h,
13191                 gen_helper_gvec_mla_idx_s,
13192                 gen_helper_gvec_mla_idx_d,
13193             };
13194             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13195                                vec_full_reg_offset(s, rn),
13196                                vec_full_reg_offset(s, rm),
13197                                vec_full_reg_offset(s, rd),
13198                                is_q ? 16 : 8, vec_full_reg_size(s),
13199                                index, fns[size - 1]);
13200             return;
13201         }
13202         break;
13203 
13204     case 0x14: /* MLS */
13205         if (!is_long && !is_scalar) {
13206             static gen_helper_gvec_4 * const fns[3] = {
13207                 gen_helper_gvec_mls_idx_h,
13208                 gen_helper_gvec_mls_idx_s,
13209                 gen_helper_gvec_mls_idx_d,
13210             };
13211             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13212                                vec_full_reg_offset(s, rn),
13213                                vec_full_reg_offset(s, rm),
13214                                vec_full_reg_offset(s, rd),
13215                                is_q ? 16 : 8, vec_full_reg_size(s),
13216                                index, fns[size - 1]);
13217             return;
13218         }
13219         break;
13220     }
13221 
13222     if (size == 3) {
13223         g_assert_not_reached();
13224     } else if (!is_long) {
13225         /* 32 bit floating point, or 16 or 32 bit integer.
13226          * For the 16 bit scalar case we use the usual Neon helpers and
13227          * rely on the fact that 0 op 0 == 0 with no side effects.
13228          */
13229         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13230         int pass, maxpasses;
13231 
13232         if (is_scalar) {
13233             maxpasses = 1;
13234         } else {
13235             maxpasses = is_q ? 4 : 2;
13236         }
13237 
13238         read_vec_element_i32(s, tcg_idx, rm, index, size);
13239 
13240         if (size == 1 && !is_scalar) {
13241             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13242              * the index into both halves of the 32 bit tcg_idx and then use
13243              * the usual Neon helpers.
13244              */
13245             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13246         }
13247 
13248         for (pass = 0; pass < maxpasses; pass++) {
13249             TCGv_i32 tcg_op = tcg_temp_new_i32();
13250             TCGv_i32 tcg_res = tcg_temp_new_i32();
13251 
13252             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13253 
13254             switch (16 * u + opcode) {
13255             case 0x08: /* MUL */
13256             case 0x10: /* MLA */
13257             case 0x14: /* MLS */
13258             {
13259                 static NeonGenTwoOpFn * const fns[2][2] = {
13260                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13261                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13262                 };
13263                 NeonGenTwoOpFn *genfn;
13264                 bool is_sub = opcode == 0x4;
13265 
13266                 if (size == 1) {
13267                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13268                 } else {
13269                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13270                 }
13271                 if (opcode == 0x8) {
13272                     break;
13273                 }
13274                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13275                 genfn = fns[size - 1][is_sub];
13276                 genfn(tcg_res, tcg_op, tcg_res);
13277                 break;
13278             }
13279             case 0x0c: /* SQDMULH */
13280                 if (size == 1) {
13281                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13282                                                tcg_op, tcg_idx);
13283                 } else {
13284                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13285                                                tcg_op, tcg_idx);
13286                 }
13287                 break;
13288             case 0x0d: /* SQRDMULH */
13289                 if (size == 1) {
13290                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13291                                                 tcg_op, tcg_idx);
13292                 } else {
13293                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13294                                                 tcg_op, tcg_idx);
13295                 }
13296                 break;
13297             case 0x1d: /* SQRDMLAH */
13298                 read_vec_element_i32(s, tcg_res, rd, pass,
13299                                      is_scalar ? size : MO_32);
13300                 if (size == 1) {
13301                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13302                                                 tcg_op, tcg_idx, tcg_res);
13303                 } else {
13304                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13305                                                 tcg_op, tcg_idx, tcg_res);
13306                 }
13307                 break;
13308             case 0x1f: /* SQRDMLSH */
13309                 read_vec_element_i32(s, tcg_res, rd, pass,
13310                                      is_scalar ? size : MO_32);
13311                 if (size == 1) {
13312                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13313                                                 tcg_op, tcg_idx, tcg_res);
13314                 } else {
13315                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13316                                                 tcg_op, tcg_idx, tcg_res);
13317                 }
13318                 break;
13319             default:
13320             case 0x01: /* FMLA */
13321             case 0x05: /* FMLS */
13322             case 0x09: /* FMUL */
13323             case 0x19: /* FMULX */
13324                 g_assert_not_reached();
13325             }
13326 
13327             if (is_scalar) {
13328                 write_fp_sreg(s, rd, tcg_res);
13329             } else {
13330                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13331             }
13332         }
13333 
13334         clear_vec_high(s, is_q, rd);
13335     } else {
13336         /* long ops: 16x16->32 or 32x32->64 */
13337         TCGv_i64 tcg_res[2];
13338         int pass;
13339         bool satop = extract32(opcode, 0, 1);
13340         MemOp memop = MO_32;
13341 
13342         if (satop || !u) {
13343             memop |= MO_SIGN;
13344         }
13345 
13346         if (size == 2) {
13347             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13348 
13349             read_vec_element(s, tcg_idx, rm, index, memop);
13350 
13351             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13352                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13353                 TCGv_i64 tcg_passres;
13354                 int passelt;
13355 
13356                 if (is_scalar) {
13357                     passelt = 0;
13358                 } else {
13359                     passelt = pass + (is_q * 2);
13360                 }
13361 
13362                 read_vec_element(s, tcg_op, rn, passelt, memop);
13363 
13364                 tcg_res[pass] = tcg_temp_new_i64();
13365 
13366                 if (opcode == 0xa || opcode == 0xb) {
13367                     /* Non-accumulating ops */
13368                     tcg_passres = tcg_res[pass];
13369                 } else {
13370                     tcg_passres = tcg_temp_new_i64();
13371                 }
13372 
13373                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13374 
13375                 if (satop) {
13376                     /* saturating, doubling */
13377                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13378                                                       tcg_passres, tcg_passres);
13379                 }
13380 
13381                 if (opcode == 0xa || opcode == 0xb) {
13382                     continue;
13383                 }
13384 
13385                 /* Accumulating op: handle accumulate step */
13386                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13387 
13388                 switch (opcode) {
13389                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13390                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13391                     break;
13392                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13393                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13394                     break;
13395                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13396                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13397                     /* fall through */
13398                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13399                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13400                                                       tcg_res[pass],
13401                                                       tcg_passres);
13402                     break;
13403                 default:
13404                     g_assert_not_reached();
13405                 }
13406             }
13407 
13408             clear_vec_high(s, !is_scalar, rd);
13409         } else {
13410             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13411 
13412             assert(size == 1);
13413             read_vec_element_i32(s, tcg_idx, rm, index, size);
13414 
13415             if (!is_scalar) {
13416                 /* The simplest way to handle the 16x16 indexed ops is to
13417                  * duplicate the index into both halves of the 32 bit tcg_idx
13418                  * and then use the usual Neon helpers.
13419                  */
13420                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13421             }
13422 
13423             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13424                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13425                 TCGv_i64 tcg_passres;
13426 
13427                 if (is_scalar) {
13428                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13429                 } else {
13430                     read_vec_element_i32(s, tcg_op, rn,
13431                                          pass + (is_q * 2), MO_32);
13432                 }
13433 
13434                 tcg_res[pass] = tcg_temp_new_i64();
13435 
13436                 if (opcode == 0xa || opcode == 0xb) {
13437                     /* Non-accumulating ops */
13438                     tcg_passres = tcg_res[pass];
13439                 } else {
13440                     tcg_passres = tcg_temp_new_i64();
13441                 }
13442 
13443                 if (memop & MO_SIGN) {
13444                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13445                 } else {
13446                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13447                 }
13448                 if (satop) {
13449                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13450                                                       tcg_passres, tcg_passres);
13451                 }
13452 
13453                 if (opcode == 0xa || opcode == 0xb) {
13454                     continue;
13455                 }
13456 
13457                 /* Accumulating op: handle accumulate step */
13458                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13459 
13460                 switch (opcode) {
13461                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13462                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13463                                              tcg_passres);
13464                     break;
13465                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13466                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13467                                              tcg_passres);
13468                     break;
13469                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13470                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13471                     /* fall through */
13472                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13473                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13474                                                       tcg_res[pass],
13475                                                       tcg_passres);
13476                     break;
13477                 default:
13478                     g_assert_not_reached();
13479                 }
13480             }
13481 
13482             if (is_scalar) {
13483                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13484             }
13485         }
13486 
13487         if (is_scalar) {
13488             tcg_res[1] = tcg_constant_i64(0);
13489         }
13490 
13491         for (pass = 0; pass < 2; pass++) {
13492             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13493         }
13494     }
13495 }
13496 
13497 /* C3.6 Data processing - SIMD, inc Crypto
13498  *
13499  * As the decode gets a little complex we are using a table based
13500  * approach for this part of the decode.
13501  */
13502 static const AArch64DecodeTable data_proc_simd[] = {
13503     /* pattern  ,  mask     ,  fn                        */
13504     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13505     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13506     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13507     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13508     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13509     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13510     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13511     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13512     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13513     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13514     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13515     { 0x2e000000, 0xbf208400, disas_simd_ext },
13516     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13517     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13518     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13519     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13520     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13521     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13522     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13523     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13524     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13525     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13526     { 0x00000000, 0x00000000, NULL }
13527 };
13528 
13529 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13530 {
13531     /* Note that this is called with all non-FP cases from
13532      * table C3-6 so it must UNDEF for entries not specifically
13533      * allocated to instructions in that table.
13534      */
13535     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13536     if (fn) {
13537         fn(s, insn);
13538     } else {
13539         unallocated_encoding(s);
13540     }
13541 }
13542 
13543 /* C3.6 Data processing - SIMD and floating point */
13544 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13545 {
13546     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13547         disas_data_proc_fp(s, insn);
13548     } else {
13549         /* SIMD, including crypto */
13550         disas_data_proc_simd(s, insn);
13551     }
13552 }
13553 
13554 static bool trans_OK(DisasContext *s, arg_OK *a)
13555 {
13556     return true;
13557 }
13558 
13559 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13560 {
13561     s->is_nonstreaming = true;
13562     return true;
13563 }
13564 
13565 /**
13566  * is_guarded_page:
13567  * @env: The cpu environment
13568  * @s: The DisasContext
13569  *
13570  * Return true if the page is guarded.
13571  */
13572 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13573 {
13574     uint64_t addr = s->base.pc_first;
13575 #ifdef CONFIG_USER_ONLY
13576     return page_get_flags(addr) & PAGE_BTI;
13577 #else
13578     CPUTLBEntryFull *full;
13579     void *host;
13580     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13581     int flags;
13582 
13583     /*
13584      * We test this immediately after reading an insn, which means
13585      * that the TLB entry must be present and valid, and thus this
13586      * access will never raise an exception.
13587      */
13588     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13589                               false, &host, &full, 0);
13590     assert(!(flags & TLB_INVALID_MASK));
13591 
13592     return full->extra.arm.guarded;
13593 #endif
13594 }
13595 
13596 /**
13597  * btype_destination_ok:
13598  * @insn: The instruction at the branch destination
13599  * @bt: SCTLR_ELx.BT
13600  * @btype: PSTATE.BTYPE, and is non-zero
13601  *
13602  * On a guarded page, there are a limited number of insns
13603  * that may be present at the branch target:
13604  *   - branch target identifiers,
13605  *   - paciasp, pacibsp,
13606  *   - BRK insn
13607  *   - HLT insn
13608  * Anything else causes a Branch Target Exception.
13609  *
13610  * Return true if the branch is compatible, false to raise BTITRAP.
13611  */
13612 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13613 {
13614     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13615         /* HINT space */
13616         switch (extract32(insn, 5, 7)) {
13617         case 0b011001: /* PACIASP */
13618         case 0b011011: /* PACIBSP */
13619             /*
13620              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13621              * with btype == 3.  Otherwise all btype are ok.
13622              */
13623             return !bt || btype != 3;
13624         case 0b100000: /* BTI */
13625             /* Not compatible with any btype.  */
13626             return false;
13627         case 0b100010: /* BTI c */
13628             /* Not compatible with btype == 3 */
13629             return btype != 3;
13630         case 0b100100: /* BTI j */
13631             /* Not compatible with btype == 2 */
13632             return btype != 2;
13633         case 0b100110: /* BTI jc */
13634             /* Compatible with any btype.  */
13635             return true;
13636         }
13637     } else {
13638         switch (insn & 0xffe0001fu) {
13639         case 0xd4200000u: /* BRK */
13640         case 0xd4400000u: /* HLT */
13641             /* Give priority to the breakpoint exception.  */
13642             return true;
13643         }
13644     }
13645     return false;
13646 }
13647 
13648 /* C3.1 A64 instruction index by encoding */
13649 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13650 {
13651     switch (extract32(insn, 25, 4)) {
13652     case 0x5:
13653     case 0xd:      /* Data processing - register */
13654         disas_data_proc_reg(s, insn);
13655         break;
13656     case 0x7:
13657     case 0xf:      /* Data processing - SIMD and floating point */
13658         disas_data_proc_simd_fp(s, insn);
13659         break;
13660     default:
13661         unallocated_encoding(s);
13662         break;
13663     }
13664 }
13665 
13666 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13667                                           CPUState *cpu)
13668 {
13669     DisasContext *dc = container_of(dcbase, DisasContext, base);
13670     CPUARMState *env = cpu_env(cpu);
13671     ARMCPU *arm_cpu = env_archcpu(env);
13672     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13673     int bound, core_mmu_idx;
13674 
13675     dc->isar = &arm_cpu->isar;
13676     dc->condjmp = 0;
13677     dc->pc_save = dc->base.pc_first;
13678     dc->aarch64 = true;
13679     dc->thumb = false;
13680     dc->sctlr_b = 0;
13681     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13682     dc->condexec_mask = 0;
13683     dc->condexec_cond = 0;
13684     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13685     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13686     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13687     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13688     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13689     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13690 #if !defined(CONFIG_USER_ONLY)
13691     dc->user = (dc->current_el == 0);
13692 #endif
13693     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13694     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13695     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13696     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13697     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13698     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13699     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13700     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13701     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13702     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13703     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13704     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13705     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13706     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13707     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13708     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13709     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13710     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13711     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13712     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13713     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13714     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13715     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13716     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13717     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13718     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13719     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13720     dc->vec_len = 0;
13721     dc->vec_stride = 0;
13722     dc->cp_regs = arm_cpu->cp_regs;
13723     dc->features = env->features;
13724     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13725     dc->gm_blocksize = arm_cpu->gm_blocksize;
13726 
13727 #ifdef CONFIG_USER_ONLY
13728     /* In sve_probe_page, we assume TBI is enabled. */
13729     tcg_debug_assert(dc->tbid & 1);
13730 #endif
13731 
13732     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13733 
13734     /* Single step state. The code-generation logic here is:
13735      *  SS_ACTIVE == 0:
13736      *   generate code with no special handling for single-stepping (except
13737      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13738      *   this happens anyway because those changes are all system register or
13739      *   PSTATE writes).
13740      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13741      *   emit code for one insn
13742      *   emit code to clear PSTATE.SS
13743      *   emit code to generate software step exception for completed step
13744      *   end TB (as usual for having generated an exception)
13745      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13746      *   emit code to generate a software step exception
13747      *   end the TB
13748      */
13749     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13750     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13751     dc->is_ldex = false;
13752 
13753     /* Bound the number of insns to execute to those left on the page.  */
13754     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13755 
13756     /* If architectural single step active, limit to 1.  */
13757     if (dc->ss_active) {
13758         bound = 1;
13759     }
13760     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13761 }
13762 
13763 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13764 {
13765 }
13766 
13767 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13768 {
13769     DisasContext *dc = container_of(dcbase, DisasContext, base);
13770     target_ulong pc_arg = dc->base.pc_next;
13771 
13772     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13773         pc_arg &= ~TARGET_PAGE_MASK;
13774     }
13775     tcg_gen_insn_start(pc_arg, 0, 0);
13776     dc->insn_start_updated = false;
13777 }
13778 
13779 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13780 {
13781     DisasContext *s = container_of(dcbase, DisasContext, base);
13782     CPUARMState *env = cpu_env(cpu);
13783     uint64_t pc = s->base.pc_next;
13784     uint32_t insn;
13785 
13786     /* Singlestep exceptions have the highest priority. */
13787     if (s->ss_active && !s->pstate_ss) {
13788         /* Singlestep state is Active-pending.
13789          * If we're in this state at the start of a TB then either
13790          *  a) we just took an exception to an EL which is being debugged
13791          *     and this is the first insn in the exception handler
13792          *  b) debug exceptions were masked and we just unmasked them
13793          *     without changing EL (eg by clearing PSTATE.D)
13794          * In either case we're going to take a swstep exception in the
13795          * "did not step an insn" case, and so the syndrome ISV and EX
13796          * bits should be zero.
13797          */
13798         assert(s->base.num_insns == 1);
13799         gen_swstep_exception(s, 0, 0);
13800         s->base.is_jmp = DISAS_NORETURN;
13801         s->base.pc_next = pc + 4;
13802         return;
13803     }
13804 
13805     if (pc & 3) {
13806         /*
13807          * PC alignment fault.  This has priority over the instruction abort
13808          * that we would receive from a translation fault via arm_ldl_code.
13809          * This should only be possible after an indirect branch, at the
13810          * start of the TB.
13811          */
13812         assert(s->base.num_insns == 1);
13813         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13814         s->base.is_jmp = DISAS_NORETURN;
13815         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13816         return;
13817     }
13818 
13819     s->pc_curr = pc;
13820     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13821     s->insn = insn;
13822     s->base.pc_next = pc + 4;
13823 
13824     s->fp_access_checked = false;
13825     s->sve_access_checked = false;
13826 
13827     if (s->pstate_il) {
13828         /*
13829          * Illegal execution state. This has priority over BTI
13830          * exceptions, but comes after instruction abort exceptions.
13831          */
13832         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13833         return;
13834     }
13835 
13836     if (dc_isar_feature(aa64_bti, s)) {
13837         if (s->base.num_insns == 1) {
13838             /*
13839              * At the first insn of the TB, compute s->guarded_page.
13840              * We delayed computing this until successfully reading
13841              * the first insn of the TB, above.  This (mostly) ensures
13842              * that the softmmu tlb entry has been populated, and the
13843              * page table GP bit is available.
13844              *
13845              * Note that we need to compute this even if btype == 0,
13846              * because this value is used for BR instructions later
13847              * where ENV is not available.
13848              */
13849             s->guarded_page = is_guarded_page(env, s);
13850 
13851             /* First insn can have btype set to non-zero.  */
13852             tcg_debug_assert(s->btype >= 0);
13853 
13854             /*
13855              * Note that the Branch Target Exception has fairly high
13856              * priority -- below debugging exceptions but above most
13857              * everything else.  This allows us to handle this now
13858              * instead of waiting until the insn is otherwise decoded.
13859              */
13860             if (s->btype != 0
13861                 && s->guarded_page
13862                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13863                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13864                 return;
13865             }
13866         } else {
13867             /* Not the first insn: btype must be 0.  */
13868             tcg_debug_assert(s->btype == 0);
13869         }
13870     }
13871 
13872     s->is_nonstreaming = false;
13873     if (s->sme_trap_nonstreaming) {
13874         disas_sme_fa64(s, insn);
13875     }
13876 
13877     if (!disas_a64(s, insn) &&
13878         !disas_sme(s, insn) &&
13879         !disas_sve(s, insn)) {
13880         disas_a64_legacy(s, insn);
13881     }
13882 
13883     /*
13884      * After execution of most insns, btype is reset to 0.
13885      * Note that we set btype == -1 when the insn sets btype.
13886      */
13887     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13888         reset_btype(s);
13889     }
13890 }
13891 
13892 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13893 {
13894     DisasContext *dc = container_of(dcbase, DisasContext, base);
13895 
13896     if (unlikely(dc->ss_active)) {
13897         /* Note that this means single stepping WFI doesn't halt the CPU.
13898          * For conditional branch insns this is harmless unreachable code as
13899          * gen_goto_tb() has already handled emitting the debug exception
13900          * (and thus a tb-jump is not possible when singlestepping).
13901          */
13902         switch (dc->base.is_jmp) {
13903         default:
13904             gen_a64_update_pc(dc, 4);
13905             /* fall through */
13906         case DISAS_EXIT:
13907         case DISAS_JUMP:
13908             gen_step_complete_exception(dc);
13909             break;
13910         case DISAS_NORETURN:
13911             break;
13912         }
13913     } else {
13914         switch (dc->base.is_jmp) {
13915         case DISAS_NEXT:
13916         case DISAS_TOO_MANY:
13917             gen_goto_tb(dc, 1, 4);
13918             break;
13919         default:
13920         case DISAS_UPDATE_EXIT:
13921             gen_a64_update_pc(dc, 4);
13922             /* fall through */
13923         case DISAS_EXIT:
13924             tcg_gen_exit_tb(NULL, 0);
13925             break;
13926         case DISAS_UPDATE_NOCHAIN:
13927             gen_a64_update_pc(dc, 4);
13928             /* fall through */
13929         case DISAS_JUMP:
13930             tcg_gen_lookup_and_goto_ptr();
13931             break;
13932         case DISAS_NORETURN:
13933         case DISAS_SWI:
13934             break;
13935         case DISAS_WFE:
13936             gen_a64_update_pc(dc, 4);
13937             gen_helper_wfe(tcg_env);
13938             break;
13939         case DISAS_YIELD:
13940             gen_a64_update_pc(dc, 4);
13941             gen_helper_yield(tcg_env);
13942             break;
13943         case DISAS_WFI:
13944             /*
13945              * This is a special case because we don't want to just halt
13946              * the CPU if trying to debug across a WFI.
13947              */
13948             gen_a64_update_pc(dc, 4);
13949             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
13950             /*
13951              * The helper doesn't necessarily throw an exception, but we
13952              * must go back to the main loop to check for interrupts anyway.
13953              */
13954             tcg_gen_exit_tb(NULL, 0);
13955             break;
13956         }
13957     }
13958 }
13959 
13960 const TranslatorOps aarch64_translator_ops = {
13961     .init_disas_context = aarch64_tr_init_disas_context,
13962     .tb_start           = aarch64_tr_tb_start,
13963     .insn_start         = aarch64_tr_insn_start,
13964     .translate_insn     = aarch64_tr_translate_insn,
13965     .tb_stop            = aarch64_tr_tb_stop,
13966 };
13967