1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmax = { 4919 gen_helper_advsimd_maxh, 4920 gen_helper_vfp_maxs, 4921 gen_helper_vfp_maxd, 4922 }; 4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4924 4925 static const FPScalar f_scalar_fmin = { 4926 gen_helper_advsimd_minh, 4927 gen_helper_vfp_mins, 4928 gen_helper_vfp_mind, 4929 }; 4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4931 4932 static const FPScalar f_scalar_fmaxnm = { 4933 gen_helper_advsimd_maxnumh, 4934 gen_helper_vfp_maxnums, 4935 gen_helper_vfp_maxnumd, 4936 }; 4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4938 4939 static const FPScalar f_scalar_fminnm = { 4940 gen_helper_advsimd_minnumh, 4941 gen_helper_vfp_minnums, 4942 gen_helper_vfp_minnumd, 4943 }; 4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4945 4946 static const FPScalar f_scalar_fmulx = { 4947 gen_helper_advsimd_mulxh, 4948 gen_helper_vfp_mulxs, 4949 gen_helper_vfp_mulxd, 4950 }; 4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4952 4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4954 { 4955 gen_helper_vfp_mulh(d, n, m, s); 4956 gen_vfp_negh(d, d); 4957 } 4958 4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_muls(d, n, m, s); 4962 gen_vfp_negs(d, d); 4963 } 4964 4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muld(d, n, m, s); 4968 gen_vfp_negd(d, d); 4969 } 4970 4971 static const FPScalar f_scalar_fnmul = { 4972 gen_fnmul_h, 4973 gen_fnmul_s, 4974 gen_fnmul_d, 4975 }; 4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4977 4978 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 4979 gen_helper_gvec_3_ptr * const fns[3]) 4980 { 4981 MemOp esz = a->esz; 4982 4983 switch (esz) { 4984 case MO_64: 4985 if (!a->q) { 4986 return false; 4987 } 4988 break; 4989 case MO_32: 4990 break; 4991 case MO_16: 4992 if (!dc_isar_feature(aa64_fp16, s)) { 4993 return false; 4994 } 4995 break; 4996 default: 4997 return false; 4998 } 4999 if (fp_access_check(s)) { 5000 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5001 esz == MO_16, 0, fns[esz - 1]); 5002 } 5003 return true; 5004 } 5005 5006 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5007 gen_helper_gvec_fadd_h, 5008 gen_helper_gvec_fadd_s, 5009 gen_helper_gvec_fadd_d, 5010 }; 5011 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5012 5013 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5014 gen_helper_gvec_fsub_h, 5015 gen_helper_gvec_fsub_s, 5016 gen_helper_gvec_fsub_d, 5017 }; 5018 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5019 5020 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5021 gen_helper_gvec_fdiv_h, 5022 gen_helper_gvec_fdiv_s, 5023 gen_helper_gvec_fdiv_d, 5024 }; 5025 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5026 5027 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5028 gen_helper_gvec_fmul_h, 5029 gen_helper_gvec_fmul_s, 5030 gen_helper_gvec_fmul_d, 5031 }; 5032 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5033 5034 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5035 gen_helper_gvec_fmax_h, 5036 gen_helper_gvec_fmax_s, 5037 gen_helper_gvec_fmax_d, 5038 }; 5039 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5040 5041 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5042 gen_helper_gvec_fmin_h, 5043 gen_helper_gvec_fmin_s, 5044 gen_helper_gvec_fmin_d, 5045 }; 5046 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5047 5048 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5049 gen_helper_gvec_fmaxnum_h, 5050 gen_helper_gvec_fmaxnum_s, 5051 gen_helper_gvec_fmaxnum_d, 5052 }; 5053 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5054 5055 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5056 gen_helper_gvec_fminnum_h, 5057 gen_helper_gvec_fminnum_s, 5058 gen_helper_gvec_fminnum_d, 5059 }; 5060 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5061 5062 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5063 gen_helper_gvec_fmulx_h, 5064 gen_helper_gvec_fmulx_s, 5065 gen_helper_gvec_fmulx_d, 5066 }; 5067 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5068 5069 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5070 gen_helper_gvec_vfma_h, 5071 gen_helper_gvec_vfma_s, 5072 gen_helper_gvec_vfma_d, 5073 }; 5074 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5075 5076 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5077 gen_helper_gvec_vfms_h, 5078 gen_helper_gvec_vfms_s, 5079 gen_helper_gvec_vfms_d, 5080 }; 5081 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5082 5083 /* 5084 * Advanced SIMD scalar/vector x indexed element 5085 */ 5086 5087 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5088 { 5089 switch (a->esz) { 5090 case MO_64: 5091 if (fp_access_check(s)) { 5092 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5093 TCGv_i64 t1 = tcg_temp_new_i64(); 5094 5095 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5096 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5097 write_fp_dreg(s, a->rd, t0); 5098 } 5099 break; 5100 case MO_32: 5101 if (fp_access_check(s)) { 5102 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5103 TCGv_i32 t1 = tcg_temp_new_i32(); 5104 5105 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5106 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5107 write_fp_sreg(s, a->rd, t0); 5108 } 5109 break; 5110 case MO_16: 5111 if (!dc_isar_feature(aa64_fp16, s)) { 5112 return false; 5113 } 5114 if (fp_access_check(s)) { 5115 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5116 TCGv_i32 t1 = tcg_temp_new_i32(); 5117 5118 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5119 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5120 write_fp_sreg(s, a->rd, t0); 5121 } 5122 break; 5123 default: 5124 g_assert_not_reached(); 5125 } 5126 return true; 5127 } 5128 5129 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5130 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5131 5132 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5133 { 5134 switch (a->esz) { 5135 case MO_64: 5136 if (fp_access_check(s)) { 5137 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5138 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5139 TCGv_i64 t2 = tcg_temp_new_i64(); 5140 5141 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5142 if (neg) { 5143 gen_vfp_negd(t1, t1); 5144 } 5145 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5146 write_fp_dreg(s, a->rd, t0); 5147 } 5148 break; 5149 case MO_32: 5150 if (fp_access_check(s)) { 5151 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5152 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5153 TCGv_i32 t2 = tcg_temp_new_i32(); 5154 5155 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5156 if (neg) { 5157 gen_vfp_negs(t1, t1); 5158 } 5159 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5160 write_fp_sreg(s, a->rd, t0); 5161 } 5162 break; 5163 case MO_16: 5164 if (!dc_isar_feature(aa64_fp16, s)) { 5165 return false; 5166 } 5167 if (fp_access_check(s)) { 5168 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5169 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5170 TCGv_i32 t2 = tcg_temp_new_i32(); 5171 5172 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5173 if (neg) { 5174 gen_vfp_negh(t1, t1); 5175 } 5176 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5177 fpstatus_ptr(FPST_FPCR_F16)); 5178 write_fp_sreg(s, a->rd, t0); 5179 } 5180 break; 5181 default: 5182 g_assert_not_reached(); 5183 } 5184 return true; 5185 } 5186 5187 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5188 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5189 5190 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5191 gen_helper_gvec_3_ptr * const fns[3]) 5192 { 5193 MemOp esz = a->esz; 5194 5195 switch (esz) { 5196 case MO_64: 5197 if (!a->q) { 5198 return false; 5199 } 5200 break; 5201 case MO_32: 5202 break; 5203 case MO_16: 5204 if (!dc_isar_feature(aa64_fp16, s)) { 5205 return false; 5206 } 5207 break; 5208 default: 5209 g_assert_not_reached(); 5210 } 5211 if (fp_access_check(s)) { 5212 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5213 esz == MO_16, a->idx, fns[esz - 1]); 5214 } 5215 return true; 5216 } 5217 5218 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5219 gen_helper_gvec_fmul_idx_h, 5220 gen_helper_gvec_fmul_idx_s, 5221 gen_helper_gvec_fmul_idx_d, 5222 }; 5223 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5224 5225 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5226 gen_helper_gvec_fmulx_idx_h, 5227 gen_helper_gvec_fmulx_idx_s, 5228 gen_helper_gvec_fmulx_idx_d, 5229 }; 5230 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5231 5232 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5233 { 5234 static gen_helper_gvec_4_ptr * const fns[3] = { 5235 gen_helper_gvec_fmla_idx_h, 5236 gen_helper_gvec_fmla_idx_s, 5237 gen_helper_gvec_fmla_idx_d, 5238 }; 5239 MemOp esz = a->esz; 5240 5241 switch (esz) { 5242 case MO_64: 5243 if (!a->q) { 5244 return false; 5245 } 5246 break; 5247 case MO_32: 5248 break; 5249 case MO_16: 5250 if (!dc_isar_feature(aa64_fp16, s)) { 5251 return false; 5252 } 5253 break; 5254 default: 5255 g_assert_not_reached(); 5256 } 5257 if (fp_access_check(s)) { 5258 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5259 esz == MO_16, (a->idx << 1) | neg, 5260 fns[esz - 1]); 5261 } 5262 return true; 5263 } 5264 5265 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5266 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5267 5268 5269 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5270 * Note that it is the caller's responsibility to ensure that the 5271 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5272 * mandated semantics for out of range shifts. 5273 */ 5274 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5275 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5276 { 5277 switch (shift_type) { 5278 case A64_SHIFT_TYPE_LSL: 5279 tcg_gen_shl_i64(dst, src, shift_amount); 5280 break; 5281 case A64_SHIFT_TYPE_LSR: 5282 tcg_gen_shr_i64(dst, src, shift_amount); 5283 break; 5284 case A64_SHIFT_TYPE_ASR: 5285 if (!sf) { 5286 tcg_gen_ext32s_i64(dst, src); 5287 } 5288 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5289 break; 5290 case A64_SHIFT_TYPE_ROR: 5291 if (sf) { 5292 tcg_gen_rotr_i64(dst, src, shift_amount); 5293 } else { 5294 TCGv_i32 t0, t1; 5295 t0 = tcg_temp_new_i32(); 5296 t1 = tcg_temp_new_i32(); 5297 tcg_gen_extrl_i64_i32(t0, src); 5298 tcg_gen_extrl_i64_i32(t1, shift_amount); 5299 tcg_gen_rotr_i32(t0, t0, t1); 5300 tcg_gen_extu_i32_i64(dst, t0); 5301 } 5302 break; 5303 default: 5304 assert(FALSE); /* all shift types should be handled */ 5305 break; 5306 } 5307 5308 if (!sf) { /* zero extend final result */ 5309 tcg_gen_ext32u_i64(dst, dst); 5310 } 5311 } 5312 5313 /* Shift a TCGv src by immediate, put result in dst. 5314 * The shift amount must be in range (this should always be true as the 5315 * relevant instructions will UNDEF on bad shift immediates). 5316 */ 5317 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5318 enum a64_shift_type shift_type, unsigned int shift_i) 5319 { 5320 assert(shift_i < (sf ? 64 : 32)); 5321 5322 if (shift_i == 0) { 5323 tcg_gen_mov_i64(dst, src); 5324 } else { 5325 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5326 } 5327 } 5328 5329 /* Logical (shifted register) 5330 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5331 * +----+-----+-----------+-------+---+------+--------+------+------+ 5332 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5333 * +----+-----+-----------+-------+---+------+--------+------+------+ 5334 */ 5335 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5336 { 5337 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5338 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5339 5340 sf = extract32(insn, 31, 1); 5341 opc = extract32(insn, 29, 2); 5342 shift_type = extract32(insn, 22, 2); 5343 invert = extract32(insn, 21, 1); 5344 rm = extract32(insn, 16, 5); 5345 shift_amount = extract32(insn, 10, 6); 5346 rn = extract32(insn, 5, 5); 5347 rd = extract32(insn, 0, 5); 5348 5349 if (!sf && (shift_amount & (1 << 5))) { 5350 unallocated_encoding(s); 5351 return; 5352 } 5353 5354 tcg_rd = cpu_reg(s, rd); 5355 5356 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5357 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5358 * register-register MOV and MVN, so it is worth special casing. 5359 */ 5360 tcg_rm = cpu_reg(s, rm); 5361 if (invert) { 5362 tcg_gen_not_i64(tcg_rd, tcg_rm); 5363 if (!sf) { 5364 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5365 } 5366 } else { 5367 if (sf) { 5368 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5369 } else { 5370 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5371 } 5372 } 5373 return; 5374 } 5375 5376 tcg_rm = read_cpu_reg(s, rm, sf); 5377 5378 if (shift_amount) { 5379 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5380 } 5381 5382 tcg_rn = cpu_reg(s, rn); 5383 5384 switch (opc | (invert << 2)) { 5385 case 0: /* AND */ 5386 case 3: /* ANDS */ 5387 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5388 break; 5389 case 1: /* ORR */ 5390 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5391 break; 5392 case 2: /* EOR */ 5393 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5394 break; 5395 case 4: /* BIC */ 5396 case 7: /* BICS */ 5397 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5398 break; 5399 case 5: /* ORN */ 5400 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5401 break; 5402 case 6: /* EON */ 5403 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5404 break; 5405 default: 5406 assert(FALSE); 5407 break; 5408 } 5409 5410 if (!sf) { 5411 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5412 } 5413 5414 if (opc == 3) { 5415 gen_logic_CC(sf, tcg_rd); 5416 } 5417 } 5418 5419 /* 5420 * Add/subtract (extended register) 5421 * 5422 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5423 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5424 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5425 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5426 * 5427 * sf: 0 -> 32bit, 1 -> 64bit 5428 * op: 0 -> add , 1 -> sub 5429 * S: 1 -> set flags 5430 * opt: 00 5431 * option: extension type (see DecodeRegExtend) 5432 * imm3: optional shift to Rm 5433 * 5434 * Rd = Rn + LSL(extend(Rm), amount) 5435 */ 5436 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5437 { 5438 int rd = extract32(insn, 0, 5); 5439 int rn = extract32(insn, 5, 5); 5440 int imm3 = extract32(insn, 10, 3); 5441 int option = extract32(insn, 13, 3); 5442 int rm = extract32(insn, 16, 5); 5443 int opt = extract32(insn, 22, 2); 5444 bool setflags = extract32(insn, 29, 1); 5445 bool sub_op = extract32(insn, 30, 1); 5446 bool sf = extract32(insn, 31, 1); 5447 5448 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5449 TCGv_i64 tcg_rd; 5450 TCGv_i64 tcg_result; 5451 5452 if (imm3 > 4 || opt != 0) { 5453 unallocated_encoding(s); 5454 return; 5455 } 5456 5457 /* non-flag setting ops may use SP */ 5458 if (!setflags) { 5459 tcg_rd = cpu_reg_sp(s, rd); 5460 } else { 5461 tcg_rd = cpu_reg(s, rd); 5462 } 5463 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5464 5465 tcg_rm = read_cpu_reg(s, rm, sf); 5466 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5467 5468 tcg_result = tcg_temp_new_i64(); 5469 5470 if (!setflags) { 5471 if (sub_op) { 5472 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5473 } else { 5474 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5475 } 5476 } else { 5477 if (sub_op) { 5478 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5479 } else { 5480 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5481 } 5482 } 5483 5484 if (sf) { 5485 tcg_gen_mov_i64(tcg_rd, tcg_result); 5486 } else { 5487 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5488 } 5489 } 5490 5491 /* 5492 * Add/subtract (shifted register) 5493 * 5494 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5495 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5496 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5497 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5498 * 5499 * sf: 0 -> 32bit, 1 -> 64bit 5500 * op: 0 -> add , 1 -> sub 5501 * S: 1 -> set flags 5502 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5503 * imm6: Shift amount to apply to Rm before the add/sub 5504 */ 5505 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5506 { 5507 int rd = extract32(insn, 0, 5); 5508 int rn = extract32(insn, 5, 5); 5509 int imm6 = extract32(insn, 10, 6); 5510 int rm = extract32(insn, 16, 5); 5511 int shift_type = extract32(insn, 22, 2); 5512 bool setflags = extract32(insn, 29, 1); 5513 bool sub_op = extract32(insn, 30, 1); 5514 bool sf = extract32(insn, 31, 1); 5515 5516 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5517 TCGv_i64 tcg_rn, tcg_rm; 5518 TCGv_i64 tcg_result; 5519 5520 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5521 unallocated_encoding(s); 5522 return; 5523 } 5524 5525 tcg_rn = read_cpu_reg(s, rn, sf); 5526 tcg_rm = read_cpu_reg(s, rm, sf); 5527 5528 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5529 5530 tcg_result = tcg_temp_new_i64(); 5531 5532 if (!setflags) { 5533 if (sub_op) { 5534 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5535 } else { 5536 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5537 } 5538 } else { 5539 if (sub_op) { 5540 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5541 } else { 5542 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5543 } 5544 } 5545 5546 if (sf) { 5547 tcg_gen_mov_i64(tcg_rd, tcg_result); 5548 } else { 5549 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5550 } 5551 } 5552 5553 /* Data-processing (3 source) 5554 * 5555 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5556 * +--+------+-----------+------+------+----+------+------+------+ 5557 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5558 * +--+------+-----------+------+------+----+------+------+------+ 5559 */ 5560 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5561 { 5562 int rd = extract32(insn, 0, 5); 5563 int rn = extract32(insn, 5, 5); 5564 int ra = extract32(insn, 10, 5); 5565 int rm = extract32(insn, 16, 5); 5566 int op_id = (extract32(insn, 29, 3) << 4) | 5567 (extract32(insn, 21, 3) << 1) | 5568 extract32(insn, 15, 1); 5569 bool sf = extract32(insn, 31, 1); 5570 bool is_sub = extract32(op_id, 0, 1); 5571 bool is_high = extract32(op_id, 2, 1); 5572 bool is_signed = false; 5573 TCGv_i64 tcg_op1; 5574 TCGv_i64 tcg_op2; 5575 TCGv_i64 tcg_tmp; 5576 5577 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5578 switch (op_id) { 5579 case 0x42: /* SMADDL */ 5580 case 0x43: /* SMSUBL */ 5581 case 0x44: /* SMULH */ 5582 is_signed = true; 5583 break; 5584 case 0x0: /* MADD (32bit) */ 5585 case 0x1: /* MSUB (32bit) */ 5586 case 0x40: /* MADD (64bit) */ 5587 case 0x41: /* MSUB (64bit) */ 5588 case 0x4a: /* UMADDL */ 5589 case 0x4b: /* UMSUBL */ 5590 case 0x4c: /* UMULH */ 5591 break; 5592 default: 5593 unallocated_encoding(s); 5594 return; 5595 } 5596 5597 if (is_high) { 5598 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5599 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5600 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5601 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5602 5603 if (is_signed) { 5604 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5605 } else { 5606 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5607 } 5608 return; 5609 } 5610 5611 tcg_op1 = tcg_temp_new_i64(); 5612 tcg_op2 = tcg_temp_new_i64(); 5613 tcg_tmp = tcg_temp_new_i64(); 5614 5615 if (op_id < 0x42) { 5616 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5617 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5618 } else { 5619 if (is_signed) { 5620 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5621 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5622 } else { 5623 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5624 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5625 } 5626 } 5627 5628 if (ra == 31 && !is_sub) { 5629 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5630 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5631 } else { 5632 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5633 if (is_sub) { 5634 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5635 } else { 5636 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5637 } 5638 } 5639 5640 if (!sf) { 5641 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5642 } 5643 } 5644 5645 /* Add/subtract (with carry) 5646 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5647 * +--+--+--+------------------------+------+-------------+------+-----+ 5648 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5649 * +--+--+--+------------------------+------+-------------+------+-----+ 5650 */ 5651 5652 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5653 { 5654 unsigned int sf, op, setflags, rm, rn, rd; 5655 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5656 5657 sf = extract32(insn, 31, 1); 5658 op = extract32(insn, 30, 1); 5659 setflags = extract32(insn, 29, 1); 5660 rm = extract32(insn, 16, 5); 5661 rn = extract32(insn, 5, 5); 5662 rd = extract32(insn, 0, 5); 5663 5664 tcg_rd = cpu_reg(s, rd); 5665 tcg_rn = cpu_reg(s, rn); 5666 5667 if (op) { 5668 tcg_y = tcg_temp_new_i64(); 5669 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5670 } else { 5671 tcg_y = cpu_reg(s, rm); 5672 } 5673 5674 if (setflags) { 5675 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5676 } else { 5677 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5678 } 5679 } 5680 5681 /* 5682 * Rotate right into flags 5683 * 31 30 29 21 15 10 5 4 0 5684 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5685 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5686 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5687 */ 5688 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5689 { 5690 int mask = extract32(insn, 0, 4); 5691 int o2 = extract32(insn, 4, 1); 5692 int rn = extract32(insn, 5, 5); 5693 int imm6 = extract32(insn, 15, 6); 5694 int sf_op_s = extract32(insn, 29, 3); 5695 TCGv_i64 tcg_rn; 5696 TCGv_i32 nzcv; 5697 5698 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5699 unallocated_encoding(s); 5700 return; 5701 } 5702 5703 tcg_rn = read_cpu_reg(s, rn, 1); 5704 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5705 5706 nzcv = tcg_temp_new_i32(); 5707 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5708 5709 if (mask & 8) { /* N */ 5710 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5711 } 5712 if (mask & 4) { /* Z */ 5713 tcg_gen_not_i32(cpu_ZF, nzcv); 5714 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5715 } 5716 if (mask & 2) { /* C */ 5717 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5718 } 5719 if (mask & 1) { /* V */ 5720 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5721 } 5722 } 5723 5724 /* 5725 * Evaluate into flags 5726 * 31 30 29 21 15 14 10 5 4 0 5727 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5728 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5729 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5730 */ 5731 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5732 { 5733 int o3_mask = extract32(insn, 0, 5); 5734 int rn = extract32(insn, 5, 5); 5735 int o2 = extract32(insn, 15, 6); 5736 int sz = extract32(insn, 14, 1); 5737 int sf_op_s = extract32(insn, 29, 3); 5738 TCGv_i32 tmp; 5739 int shift; 5740 5741 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5742 !dc_isar_feature(aa64_condm_4, s)) { 5743 unallocated_encoding(s); 5744 return; 5745 } 5746 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5747 5748 tmp = tcg_temp_new_i32(); 5749 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5750 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5751 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5752 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5753 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5754 } 5755 5756 /* Conditional compare (immediate / register) 5757 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5758 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5759 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5760 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5761 * [1] y [0] [0] 5762 */ 5763 static void disas_cc(DisasContext *s, uint32_t insn) 5764 { 5765 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5766 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5767 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5768 DisasCompare c; 5769 5770 if (!extract32(insn, 29, 1)) { 5771 unallocated_encoding(s); 5772 return; 5773 } 5774 if (insn & (1 << 10 | 1 << 4)) { 5775 unallocated_encoding(s); 5776 return; 5777 } 5778 sf = extract32(insn, 31, 1); 5779 op = extract32(insn, 30, 1); 5780 is_imm = extract32(insn, 11, 1); 5781 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5782 cond = extract32(insn, 12, 4); 5783 rn = extract32(insn, 5, 5); 5784 nzcv = extract32(insn, 0, 4); 5785 5786 /* Set T0 = !COND. */ 5787 tcg_t0 = tcg_temp_new_i32(); 5788 arm_test_cc(&c, cond); 5789 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5790 5791 /* Load the arguments for the new comparison. */ 5792 if (is_imm) { 5793 tcg_y = tcg_temp_new_i64(); 5794 tcg_gen_movi_i64(tcg_y, y); 5795 } else { 5796 tcg_y = cpu_reg(s, y); 5797 } 5798 tcg_rn = cpu_reg(s, rn); 5799 5800 /* Set the flags for the new comparison. */ 5801 tcg_tmp = tcg_temp_new_i64(); 5802 if (op) { 5803 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5804 } else { 5805 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5806 } 5807 5808 /* If COND was false, force the flags to #nzcv. Compute two masks 5809 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5810 * For tcg hosts that support ANDC, we can make do with just T1. 5811 * In either case, allow the tcg optimizer to delete any unused mask. 5812 */ 5813 tcg_t1 = tcg_temp_new_i32(); 5814 tcg_t2 = tcg_temp_new_i32(); 5815 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5816 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5817 5818 if (nzcv & 8) { /* N */ 5819 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5820 } else { 5821 if (TCG_TARGET_HAS_andc_i32) { 5822 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5823 } else { 5824 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5825 } 5826 } 5827 if (nzcv & 4) { /* Z */ 5828 if (TCG_TARGET_HAS_andc_i32) { 5829 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5830 } else { 5831 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5832 } 5833 } else { 5834 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5835 } 5836 if (nzcv & 2) { /* C */ 5837 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5838 } else { 5839 if (TCG_TARGET_HAS_andc_i32) { 5840 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5841 } else { 5842 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5843 } 5844 } 5845 if (nzcv & 1) { /* V */ 5846 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5847 } else { 5848 if (TCG_TARGET_HAS_andc_i32) { 5849 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5850 } else { 5851 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5852 } 5853 } 5854 } 5855 5856 /* Conditional select 5857 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5858 * +----+----+---+-----------------+------+------+-----+------+------+ 5859 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5860 * +----+----+---+-----------------+------+------+-----+------+------+ 5861 */ 5862 static void disas_cond_select(DisasContext *s, uint32_t insn) 5863 { 5864 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5865 TCGv_i64 tcg_rd, zero; 5866 DisasCompare64 c; 5867 5868 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5869 /* S == 1 or op2<1> == 1 */ 5870 unallocated_encoding(s); 5871 return; 5872 } 5873 sf = extract32(insn, 31, 1); 5874 else_inv = extract32(insn, 30, 1); 5875 rm = extract32(insn, 16, 5); 5876 cond = extract32(insn, 12, 4); 5877 else_inc = extract32(insn, 10, 1); 5878 rn = extract32(insn, 5, 5); 5879 rd = extract32(insn, 0, 5); 5880 5881 tcg_rd = cpu_reg(s, rd); 5882 5883 a64_test_cc(&c, cond); 5884 zero = tcg_constant_i64(0); 5885 5886 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5887 /* CSET & CSETM. */ 5888 if (else_inv) { 5889 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5890 tcg_rd, c.value, zero); 5891 } else { 5892 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5893 tcg_rd, c.value, zero); 5894 } 5895 } else { 5896 TCGv_i64 t_true = cpu_reg(s, rn); 5897 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5898 if (else_inv && else_inc) { 5899 tcg_gen_neg_i64(t_false, t_false); 5900 } else if (else_inv) { 5901 tcg_gen_not_i64(t_false, t_false); 5902 } else if (else_inc) { 5903 tcg_gen_addi_i64(t_false, t_false, 1); 5904 } 5905 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5906 } 5907 5908 if (!sf) { 5909 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5910 } 5911 } 5912 5913 static void handle_clz(DisasContext *s, unsigned int sf, 5914 unsigned int rn, unsigned int rd) 5915 { 5916 TCGv_i64 tcg_rd, tcg_rn; 5917 tcg_rd = cpu_reg(s, rd); 5918 tcg_rn = cpu_reg(s, rn); 5919 5920 if (sf) { 5921 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5922 } else { 5923 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5924 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5925 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5926 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5927 } 5928 } 5929 5930 static void handle_cls(DisasContext *s, unsigned int sf, 5931 unsigned int rn, unsigned int rd) 5932 { 5933 TCGv_i64 tcg_rd, tcg_rn; 5934 tcg_rd = cpu_reg(s, rd); 5935 tcg_rn = cpu_reg(s, rn); 5936 5937 if (sf) { 5938 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5939 } else { 5940 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5941 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5942 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5943 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5944 } 5945 } 5946 5947 static void handle_rbit(DisasContext *s, unsigned int sf, 5948 unsigned int rn, unsigned int rd) 5949 { 5950 TCGv_i64 tcg_rd, tcg_rn; 5951 tcg_rd = cpu_reg(s, rd); 5952 tcg_rn = cpu_reg(s, rn); 5953 5954 if (sf) { 5955 gen_helper_rbit64(tcg_rd, tcg_rn); 5956 } else { 5957 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5958 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5959 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5960 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5961 } 5962 } 5963 5964 /* REV with sf==1, opcode==3 ("REV64") */ 5965 static void handle_rev64(DisasContext *s, unsigned int sf, 5966 unsigned int rn, unsigned int rd) 5967 { 5968 if (!sf) { 5969 unallocated_encoding(s); 5970 return; 5971 } 5972 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5973 } 5974 5975 /* REV with sf==0, opcode==2 5976 * REV32 (sf==1, opcode==2) 5977 */ 5978 static void handle_rev32(DisasContext *s, unsigned int sf, 5979 unsigned int rn, unsigned int rd) 5980 { 5981 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5982 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5983 5984 if (sf) { 5985 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5986 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5987 } else { 5988 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5989 } 5990 } 5991 5992 /* REV16 (opcode==1) */ 5993 static void handle_rev16(DisasContext *s, unsigned int sf, 5994 unsigned int rn, unsigned int rd) 5995 { 5996 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5997 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5998 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5999 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6000 6001 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6002 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6003 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6004 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6005 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6006 } 6007 6008 /* Data-processing (1 source) 6009 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6010 * +----+---+---+-----------------+---------+--------+------+------+ 6011 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6012 * +----+---+---+-----------------+---------+--------+------+------+ 6013 */ 6014 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6015 { 6016 unsigned int sf, opcode, opcode2, rn, rd; 6017 TCGv_i64 tcg_rd; 6018 6019 if (extract32(insn, 29, 1)) { 6020 unallocated_encoding(s); 6021 return; 6022 } 6023 6024 sf = extract32(insn, 31, 1); 6025 opcode = extract32(insn, 10, 6); 6026 opcode2 = extract32(insn, 16, 5); 6027 rn = extract32(insn, 5, 5); 6028 rd = extract32(insn, 0, 5); 6029 6030 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6031 6032 switch (MAP(sf, opcode2, opcode)) { 6033 case MAP(0, 0x00, 0x00): /* RBIT */ 6034 case MAP(1, 0x00, 0x00): 6035 handle_rbit(s, sf, rn, rd); 6036 break; 6037 case MAP(0, 0x00, 0x01): /* REV16 */ 6038 case MAP(1, 0x00, 0x01): 6039 handle_rev16(s, sf, rn, rd); 6040 break; 6041 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6042 case MAP(1, 0x00, 0x02): 6043 handle_rev32(s, sf, rn, rd); 6044 break; 6045 case MAP(1, 0x00, 0x03): /* REV64 */ 6046 handle_rev64(s, sf, rn, rd); 6047 break; 6048 case MAP(0, 0x00, 0x04): /* CLZ */ 6049 case MAP(1, 0x00, 0x04): 6050 handle_clz(s, sf, rn, rd); 6051 break; 6052 case MAP(0, 0x00, 0x05): /* CLS */ 6053 case MAP(1, 0x00, 0x05): 6054 handle_cls(s, sf, rn, rd); 6055 break; 6056 case MAP(1, 0x01, 0x00): /* PACIA */ 6057 if (s->pauth_active) { 6058 tcg_rd = cpu_reg(s, rd); 6059 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6060 } else if (!dc_isar_feature(aa64_pauth, s)) { 6061 goto do_unallocated; 6062 } 6063 break; 6064 case MAP(1, 0x01, 0x01): /* PACIB */ 6065 if (s->pauth_active) { 6066 tcg_rd = cpu_reg(s, rd); 6067 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6068 } else if (!dc_isar_feature(aa64_pauth, s)) { 6069 goto do_unallocated; 6070 } 6071 break; 6072 case MAP(1, 0x01, 0x02): /* PACDA */ 6073 if (s->pauth_active) { 6074 tcg_rd = cpu_reg(s, rd); 6075 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6076 } else if (!dc_isar_feature(aa64_pauth, s)) { 6077 goto do_unallocated; 6078 } 6079 break; 6080 case MAP(1, 0x01, 0x03): /* PACDB */ 6081 if (s->pauth_active) { 6082 tcg_rd = cpu_reg(s, rd); 6083 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6084 } else if (!dc_isar_feature(aa64_pauth, s)) { 6085 goto do_unallocated; 6086 } 6087 break; 6088 case MAP(1, 0x01, 0x04): /* AUTIA */ 6089 if (s->pauth_active) { 6090 tcg_rd = cpu_reg(s, rd); 6091 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6092 } else if (!dc_isar_feature(aa64_pauth, s)) { 6093 goto do_unallocated; 6094 } 6095 break; 6096 case MAP(1, 0x01, 0x05): /* AUTIB */ 6097 if (s->pauth_active) { 6098 tcg_rd = cpu_reg(s, rd); 6099 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6100 } else if (!dc_isar_feature(aa64_pauth, s)) { 6101 goto do_unallocated; 6102 } 6103 break; 6104 case MAP(1, 0x01, 0x06): /* AUTDA */ 6105 if (s->pauth_active) { 6106 tcg_rd = cpu_reg(s, rd); 6107 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6108 } else if (!dc_isar_feature(aa64_pauth, s)) { 6109 goto do_unallocated; 6110 } 6111 break; 6112 case MAP(1, 0x01, 0x07): /* AUTDB */ 6113 if (s->pauth_active) { 6114 tcg_rd = cpu_reg(s, rd); 6115 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6116 } else if (!dc_isar_feature(aa64_pauth, s)) { 6117 goto do_unallocated; 6118 } 6119 break; 6120 case MAP(1, 0x01, 0x08): /* PACIZA */ 6121 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6122 goto do_unallocated; 6123 } else if (s->pauth_active) { 6124 tcg_rd = cpu_reg(s, rd); 6125 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6126 } 6127 break; 6128 case MAP(1, 0x01, 0x09): /* PACIZB */ 6129 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6130 goto do_unallocated; 6131 } else if (s->pauth_active) { 6132 tcg_rd = cpu_reg(s, rd); 6133 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6134 } 6135 break; 6136 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6137 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6138 goto do_unallocated; 6139 } else if (s->pauth_active) { 6140 tcg_rd = cpu_reg(s, rd); 6141 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6142 } 6143 break; 6144 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6145 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6146 goto do_unallocated; 6147 } else if (s->pauth_active) { 6148 tcg_rd = cpu_reg(s, rd); 6149 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6150 } 6151 break; 6152 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6153 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6154 goto do_unallocated; 6155 } else if (s->pauth_active) { 6156 tcg_rd = cpu_reg(s, rd); 6157 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6158 } 6159 break; 6160 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6161 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6162 goto do_unallocated; 6163 } else if (s->pauth_active) { 6164 tcg_rd = cpu_reg(s, rd); 6165 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6166 } 6167 break; 6168 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6169 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6170 goto do_unallocated; 6171 } else if (s->pauth_active) { 6172 tcg_rd = cpu_reg(s, rd); 6173 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6174 } 6175 break; 6176 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6177 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6178 goto do_unallocated; 6179 } else if (s->pauth_active) { 6180 tcg_rd = cpu_reg(s, rd); 6181 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6182 } 6183 break; 6184 case MAP(1, 0x01, 0x10): /* XPACI */ 6185 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6186 goto do_unallocated; 6187 } else if (s->pauth_active) { 6188 tcg_rd = cpu_reg(s, rd); 6189 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6190 } 6191 break; 6192 case MAP(1, 0x01, 0x11): /* XPACD */ 6193 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6194 goto do_unallocated; 6195 } else if (s->pauth_active) { 6196 tcg_rd = cpu_reg(s, rd); 6197 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6198 } 6199 break; 6200 default: 6201 do_unallocated: 6202 unallocated_encoding(s); 6203 break; 6204 } 6205 6206 #undef MAP 6207 } 6208 6209 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6210 unsigned int rm, unsigned int rn, unsigned int rd) 6211 { 6212 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6213 tcg_rd = cpu_reg(s, rd); 6214 6215 if (!sf && is_signed) { 6216 tcg_n = tcg_temp_new_i64(); 6217 tcg_m = tcg_temp_new_i64(); 6218 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6219 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6220 } else { 6221 tcg_n = read_cpu_reg(s, rn, sf); 6222 tcg_m = read_cpu_reg(s, rm, sf); 6223 } 6224 6225 if (is_signed) { 6226 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6227 } else { 6228 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6229 } 6230 6231 if (!sf) { /* zero extend final result */ 6232 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6233 } 6234 } 6235 6236 /* LSLV, LSRV, ASRV, RORV */ 6237 static void handle_shift_reg(DisasContext *s, 6238 enum a64_shift_type shift_type, unsigned int sf, 6239 unsigned int rm, unsigned int rn, unsigned int rd) 6240 { 6241 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6242 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6243 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6244 6245 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6246 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6247 } 6248 6249 /* CRC32[BHWX], CRC32C[BHWX] */ 6250 static void handle_crc32(DisasContext *s, 6251 unsigned int sf, unsigned int sz, bool crc32c, 6252 unsigned int rm, unsigned int rn, unsigned int rd) 6253 { 6254 TCGv_i64 tcg_acc, tcg_val; 6255 TCGv_i32 tcg_bytes; 6256 6257 if (!dc_isar_feature(aa64_crc32, s) 6258 || (sf == 1 && sz != 3) 6259 || (sf == 0 && sz == 3)) { 6260 unallocated_encoding(s); 6261 return; 6262 } 6263 6264 if (sz == 3) { 6265 tcg_val = cpu_reg(s, rm); 6266 } else { 6267 uint64_t mask; 6268 switch (sz) { 6269 case 0: 6270 mask = 0xFF; 6271 break; 6272 case 1: 6273 mask = 0xFFFF; 6274 break; 6275 case 2: 6276 mask = 0xFFFFFFFF; 6277 break; 6278 default: 6279 g_assert_not_reached(); 6280 } 6281 tcg_val = tcg_temp_new_i64(); 6282 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6283 } 6284 6285 tcg_acc = cpu_reg(s, rn); 6286 tcg_bytes = tcg_constant_i32(1 << sz); 6287 6288 if (crc32c) { 6289 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6290 } else { 6291 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6292 } 6293 } 6294 6295 /* Data-processing (2 source) 6296 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6297 * +----+---+---+-----------------+------+--------+------+------+ 6298 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6299 * +----+---+---+-----------------+------+--------+------+------+ 6300 */ 6301 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6302 { 6303 unsigned int sf, rm, opcode, rn, rd, setflag; 6304 sf = extract32(insn, 31, 1); 6305 setflag = extract32(insn, 29, 1); 6306 rm = extract32(insn, 16, 5); 6307 opcode = extract32(insn, 10, 6); 6308 rn = extract32(insn, 5, 5); 6309 rd = extract32(insn, 0, 5); 6310 6311 if (setflag && opcode != 0) { 6312 unallocated_encoding(s); 6313 return; 6314 } 6315 6316 switch (opcode) { 6317 case 0: /* SUBP(S) */ 6318 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6319 goto do_unallocated; 6320 } else { 6321 TCGv_i64 tcg_n, tcg_m, tcg_d; 6322 6323 tcg_n = read_cpu_reg_sp(s, rn, true); 6324 tcg_m = read_cpu_reg_sp(s, rm, true); 6325 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6326 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6327 tcg_d = cpu_reg(s, rd); 6328 6329 if (setflag) { 6330 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6331 } else { 6332 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6333 } 6334 } 6335 break; 6336 case 2: /* UDIV */ 6337 handle_div(s, false, sf, rm, rn, rd); 6338 break; 6339 case 3: /* SDIV */ 6340 handle_div(s, true, sf, rm, rn, rd); 6341 break; 6342 case 4: /* IRG */ 6343 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6344 goto do_unallocated; 6345 } 6346 if (s->ata[0]) { 6347 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6348 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6349 } else { 6350 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6351 cpu_reg_sp(s, rn)); 6352 } 6353 break; 6354 case 5: /* GMI */ 6355 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6356 goto do_unallocated; 6357 } else { 6358 TCGv_i64 t = tcg_temp_new_i64(); 6359 6360 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6361 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6362 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6363 } 6364 break; 6365 case 8: /* LSLV */ 6366 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6367 break; 6368 case 9: /* LSRV */ 6369 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6370 break; 6371 case 10: /* ASRV */ 6372 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6373 break; 6374 case 11: /* RORV */ 6375 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6376 break; 6377 case 12: /* PACGA */ 6378 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6379 goto do_unallocated; 6380 } 6381 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6382 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6383 break; 6384 case 16: 6385 case 17: 6386 case 18: 6387 case 19: 6388 case 20: 6389 case 21: 6390 case 22: 6391 case 23: /* CRC32 */ 6392 { 6393 int sz = extract32(opcode, 0, 2); 6394 bool crc32c = extract32(opcode, 2, 1); 6395 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6396 break; 6397 } 6398 default: 6399 do_unallocated: 6400 unallocated_encoding(s); 6401 break; 6402 } 6403 } 6404 6405 /* 6406 * Data processing - register 6407 * 31 30 29 28 25 21 20 16 10 0 6408 * +--+---+--+---+-------+-----+-------+-------+---------+ 6409 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6410 * +--+---+--+---+-------+-----+-------+-------+---------+ 6411 */ 6412 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6413 { 6414 int op0 = extract32(insn, 30, 1); 6415 int op1 = extract32(insn, 28, 1); 6416 int op2 = extract32(insn, 21, 4); 6417 int op3 = extract32(insn, 10, 6); 6418 6419 if (!op1) { 6420 if (op2 & 8) { 6421 if (op2 & 1) { 6422 /* Add/sub (extended register) */ 6423 disas_add_sub_ext_reg(s, insn); 6424 } else { 6425 /* Add/sub (shifted register) */ 6426 disas_add_sub_reg(s, insn); 6427 } 6428 } else { 6429 /* Logical (shifted register) */ 6430 disas_logic_reg(s, insn); 6431 } 6432 return; 6433 } 6434 6435 switch (op2) { 6436 case 0x0: 6437 switch (op3) { 6438 case 0x00: /* Add/subtract (with carry) */ 6439 disas_adc_sbc(s, insn); 6440 break; 6441 6442 case 0x01: /* Rotate right into flags */ 6443 case 0x21: 6444 disas_rotate_right_into_flags(s, insn); 6445 break; 6446 6447 case 0x02: /* Evaluate into flags */ 6448 case 0x12: 6449 case 0x22: 6450 case 0x32: 6451 disas_evaluate_into_flags(s, insn); 6452 break; 6453 6454 default: 6455 goto do_unallocated; 6456 } 6457 break; 6458 6459 case 0x2: /* Conditional compare */ 6460 disas_cc(s, insn); /* both imm and reg forms */ 6461 break; 6462 6463 case 0x4: /* Conditional select */ 6464 disas_cond_select(s, insn); 6465 break; 6466 6467 case 0x6: /* Data-processing */ 6468 if (op0) { /* (1 source) */ 6469 disas_data_proc_1src(s, insn); 6470 } else { /* (2 source) */ 6471 disas_data_proc_2src(s, insn); 6472 } 6473 break; 6474 case 0x8 ... 0xf: /* (3 source) */ 6475 disas_data_proc_3src(s, insn); 6476 break; 6477 6478 default: 6479 do_unallocated: 6480 unallocated_encoding(s); 6481 break; 6482 } 6483 } 6484 6485 static void handle_fp_compare(DisasContext *s, int size, 6486 unsigned int rn, unsigned int rm, 6487 bool cmp_with_zero, bool signal_all_nans) 6488 { 6489 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6490 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6491 6492 if (size == MO_64) { 6493 TCGv_i64 tcg_vn, tcg_vm; 6494 6495 tcg_vn = read_fp_dreg(s, rn); 6496 if (cmp_with_zero) { 6497 tcg_vm = tcg_constant_i64(0); 6498 } else { 6499 tcg_vm = read_fp_dreg(s, rm); 6500 } 6501 if (signal_all_nans) { 6502 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6503 } else { 6504 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6505 } 6506 } else { 6507 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6508 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6509 6510 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6511 if (cmp_with_zero) { 6512 tcg_gen_movi_i32(tcg_vm, 0); 6513 } else { 6514 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6515 } 6516 6517 switch (size) { 6518 case MO_32: 6519 if (signal_all_nans) { 6520 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6521 } else { 6522 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6523 } 6524 break; 6525 case MO_16: 6526 if (signal_all_nans) { 6527 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6528 } else { 6529 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6530 } 6531 break; 6532 default: 6533 g_assert_not_reached(); 6534 } 6535 } 6536 6537 gen_set_nzcv(tcg_flags); 6538 } 6539 6540 /* Floating point compare 6541 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6542 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6543 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6544 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6545 */ 6546 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6547 { 6548 unsigned int mos, type, rm, op, rn, opc, op2r; 6549 int size; 6550 6551 mos = extract32(insn, 29, 3); 6552 type = extract32(insn, 22, 2); 6553 rm = extract32(insn, 16, 5); 6554 op = extract32(insn, 14, 2); 6555 rn = extract32(insn, 5, 5); 6556 opc = extract32(insn, 3, 2); 6557 op2r = extract32(insn, 0, 3); 6558 6559 if (mos || op || op2r) { 6560 unallocated_encoding(s); 6561 return; 6562 } 6563 6564 switch (type) { 6565 case 0: 6566 size = MO_32; 6567 break; 6568 case 1: 6569 size = MO_64; 6570 break; 6571 case 3: 6572 size = MO_16; 6573 if (dc_isar_feature(aa64_fp16, s)) { 6574 break; 6575 } 6576 /* fallthru */ 6577 default: 6578 unallocated_encoding(s); 6579 return; 6580 } 6581 6582 if (!fp_access_check(s)) { 6583 return; 6584 } 6585 6586 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6587 } 6588 6589 /* Floating point conditional compare 6590 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6591 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6592 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6593 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6594 */ 6595 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6596 { 6597 unsigned int mos, type, rm, cond, rn, op, nzcv; 6598 TCGLabel *label_continue = NULL; 6599 int size; 6600 6601 mos = extract32(insn, 29, 3); 6602 type = extract32(insn, 22, 2); 6603 rm = extract32(insn, 16, 5); 6604 cond = extract32(insn, 12, 4); 6605 rn = extract32(insn, 5, 5); 6606 op = extract32(insn, 4, 1); 6607 nzcv = extract32(insn, 0, 4); 6608 6609 if (mos) { 6610 unallocated_encoding(s); 6611 return; 6612 } 6613 6614 switch (type) { 6615 case 0: 6616 size = MO_32; 6617 break; 6618 case 1: 6619 size = MO_64; 6620 break; 6621 case 3: 6622 size = MO_16; 6623 if (dc_isar_feature(aa64_fp16, s)) { 6624 break; 6625 } 6626 /* fallthru */ 6627 default: 6628 unallocated_encoding(s); 6629 return; 6630 } 6631 6632 if (!fp_access_check(s)) { 6633 return; 6634 } 6635 6636 if (cond < 0x0e) { /* not always */ 6637 TCGLabel *label_match = gen_new_label(); 6638 label_continue = gen_new_label(); 6639 arm_gen_test_cc(cond, label_match); 6640 /* nomatch: */ 6641 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6642 tcg_gen_br(label_continue); 6643 gen_set_label(label_match); 6644 } 6645 6646 handle_fp_compare(s, size, rn, rm, false, op); 6647 6648 if (cond < 0x0e) { 6649 gen_set_label(label_continue); 6650 } 6651 } 6652 6653 /* Floating point conditional select 6654 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6655 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6656 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6657 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6658 */ 6659 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6660 { 6661 unsigned int mos, type, rm, cond, rn, rd; 6662 TCGv_i64 t_true, t_false; 6663 DisasCompare64 c; 6664 MemOp sz; 6665 6666 mos = extract32(insn, 29, 3); 6667 type = extract32(insn, 22, 2); 6668 rm = extract32(insn, 16, 5); 6669 cond = extract32(insn, 12, 4); 6670 rn = extract32(insn, 5, 5); 6671 rd = extract32(insn, 0, 5); 6672 6673 if (mos) { 6674 unallocated_encoding(s); 6675 return; 6676 } 6677 6678 switch (type) { 6679 case 0: 6680 sz = MO_32; 6681 break; 6682 case 1: 6683 sz = MO_64; 6684 break; 6685 case 3: 6686 sz = MO_16; 6687 if (dc_isar_feature(aa64_fp16, s)) { 6688 break; 6689 } 6690 /* fallthru */ 6691 default: 6692 unallocated_encoding(s); 6693 return; 6694 } 6695 6696 if (!fp_access_check(s)) { 6697 return; 6698 } 6699 6700 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6701 t_true = tcg_temp_new_i64(); 6702 t_false = tcg_temp_new_i64(); 6703 read_vec_element(s, t_true, rn, 0, sz); 6704 read_vec_element(s, t_false, rm, 0, sz); 6705 6706 a64_test_cc(&c, cond); 6707 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6708 t_true, t_false); 6709 6710 /* Note that sregs & hregs write back zeros to the high bits, 6711 and we've already done the zero-extension. */ 6712 write_fp_dreg(s, rd, t_true); 6713 } 6714 6715 /* Floating-point data-processing (1 source) - half precision */ 6716 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6717 { 6718 TCGv_ptr fpst = NULL; 6719 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6720 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6721 6722 switch (opcode) { 6723 case 0x0: /* FMOV */ 6724 tcg_gen_mov_i32(tcg_res, tcg_op); 6725 break; 6726 case 0x1: /* FABS */ 6727 gen_vfp_absh(tcg_res, tcg_op); 6728 break; 6729 case 0x2: /* FNEG */ 6730 gen_vfp_negh(tcg_res, tcg_op); 6731 break; 6732 case 0x3: /* FSQRT */ 6733 fpst = fpstatus_ptr(FPST_FPCR_F16); 6734 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6735 break; 6736 case 0x8: /* FRINTN */ 6737 case 0x9: /* FRINTP */ 6738 case 0xa: /* FRINTM */ 6739 case 0xb: /* FRINTZ */ 6740 case 0xc: /* FRINTA */ 6741 { 6742 TCGv_i32 tcg_rmode; 6743 6744 fpst = fpstatus_ptr(FPST_FPCR_F16); 6745 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6746 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6747 gen_restore_rmode(tcg_rmode, fpst); 6748 break; 6749 } 6750 case 0xe: /* FRINTX */ 6751 fpst = fpstatus_ptr(FPST_FPCR_F16); 6752 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6753 break; 6754 case 0xf: /* FRINTI */ 6755 fpst = fpstatus_ptr(FPST_FPCR_F16); 6756 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6757 break; 6758 default: 6759 g_assert_not_reached(); 6760 } 6761 6762 write_fp_sreg(s, rd, tcg_res); 6763 } 6764 6765 /* Floating-point data-processing (1 source) - single precision */ 6766 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6767 { 6768 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6769 TCGv_i32 tcg_op, tcg_res; 6770 TCGv_ptr fpst; 6771 int rmode = -1; 6772 6773 tcg_op = read_fp_sreg(s, rn); 6774 tcg_res = tcg_temp_new_i32(); 6775 6776 switch (opcode) { 6777 case 0x0: /* FMOV */ 6778 tcg_gen_mov_i32(tcg_res, tcg_op); 6779 goto done; 6780 case 0x1: /* FABS */ 6781 gen_vfp_abss(tcg_res, tcg_op); 6782 goto done; 6783 case 0x2: /* FNEG */ 6784 gen_vfp_negs(tcg_res, tcg_op); 6785 goto done; 6786 case 0x3: /* FSQRT */ 6787 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6788 goto done; 6789 case 0x6: /* BFCVT */ 6790 gen_fpst = gen_helper_bfcvt; 6791 break; 6792 case 0x8: /* FRINTN */ 6793 case 0x9: /* FRINTP */ 6794 case 0xa: /* FRINTM */ 6795 case 0xb: /* FRINTZ */ 6796 case 0xc: /* FRINTA */ 6797 rmode = opcode & 7; 6798 gen_fpst = gen_helper_rints; 6799 break; 6800 case 0xe: /* FRINTX */ 6801 gen_fpst = gen_helper_rints_exact; 6802 break; 6803 case 0xf: /* FRINTI */ 6804 gen_fpst = gen_helper_rints; 6805 break; 6806 case 0x10: /* FRINT32Z */ 6807 rmode = FPROUNDING_ZERO; 6808 gen_fpst = gen_helper_frint32_s; 6809 break; 6810 case 0x11: /* FRINT32X */ 6811 gen_fpst = gen_helper_frint32_s; 6812 break; 6813 case 0x12: /* FRINT64Z */ 6814 rmode = FPROUNDING_ZERO; 6815 gen_fpst = gen_helper_frint64_s; 6816 break; 6817 case 0x13: /* FRINT64X */ 6818 gen_fpst = gen_helper_frint64_s; 6819 break; 6820 default: 6821 g_assert_not_reached(); 6822 } 6823 6824 fpst = fpstatus_ptr(FPST_FPCR); 6825 if (rmode >= 0) { 6826 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6827 gen_fpst(tcg_res, tcg_op, fpst); 6828 gen_restore_rmode(tcg_rmode, fpst); 6829 } else { 6830 gen_fpst(tcg_res, tcg_op, fpst); 6831 } 6832 6833 done: 6834 write_fp_sreg(s, rd, tcg_res); 6835 } 6836 6837 /* Floating-point data-processing (1 source) - double precision */ 6838 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6839 { 6840 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6841 TCGv_i64 tcg_op, tcg_res; 6842 TCGv_ptr fpst; 6843 int rmode = -1; 6844 6845 switch (opcode) { 6846 case 0x0: /* FMOV */ 6847 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6848 return; 6849 } 6850 6851 tcg_op = read_fp_dreg(s, rn); 6852 tcg_res = tcg_temp_new_i64(); 6853 6854 switch (opcode) { 6855 case 0x1: /* FABS */ 6856 gen_vfp_absd(tcg_res, tcg_op); 6857 goto done; 6858 case 0x2: /* FNEG */ 6859 gen_vfp_negd(tcg_res, tcg_op); 6860 goto done; 6861 case 0x3: /* FSQRT */ 6862 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6863 goto done; 6864 case 0x8: /* FRINTN */ 6865 case 0x9: /* FRINTP */ 6866 case 0xa: /* FRINTM */ 6867 case 0xb: /* FRINTZ */ 6868 case 0xc: /* FRINTA */ 6869 rmode = opcode & 7; 6870 gen_fpst = gen_helper_rintd; 6871 break; 6872 case 0xe: /* FRINTX */ 6873 gen_fpst = gen_helper_rintd_exact; 6874 break; 6875 case 0xf: /* FRINTI */ 6876 gen_fpst = gen_helper_rintd; 6877 break; 6878 case 0x10: /* FRINT32Z */ 6879 rmode = FPROUNDING_ZERO; 6880 gen_fpst = gen_helper_frint32_d; 6881 break; 6882 case 0x11: /* FRINT32X */ 6883 gen_fpst = gen_helper_frint32_d; 6884 break; 6885 case 0x12: /* FRINT64Z */ 6886 rmode = FPROUNDING_ZERO; 6887 gen_fpst = gen_helper_frint64_d; 6888 break; 6889 case 0x13: /* FRINT64X */ 6890 gen_fpst = gen_helper_frint64_d; 6891 break; 6892 default: 6893 g_assert_not_reached(); 6894 } 6895 6896 fpst = fpstatus_ptr(FPST_FPCR); 6897 if (rmode >= 0) { 6898 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6899 gen_fpst(tcg_res, tcg_op, fpst); 6900 gen_restore_rmode(tcg_rmode, fpst); 6901 } else { 6902 gen_fpst(tcg_res, tcg_op, fpst); 6903 } 6904 6905 done: 6906 write_fp_dreg(s, rd, tcg_res); 6907 } 6908 6909 static void handle_fp_fcvt(DisasContext *s, int opcode, 6910 int rd, int rn, int dtype, int ntype) 6911 { 6912 switch (ntype) { 6913 case 0x0: 6914 { 6915 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6916 if (dtype == 1) { 6917 /* Single to double */ 6918 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6919 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6920 write_fp_dreg(s, rd, tcg_rd); 6921 } else { 6922 /* Single to half */ 6923 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6924 TCGv_i32 ahp = get_ahp_flag(); 6925 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6926 6927 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6928 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6929 write_fp_sreg(s, rd, tcg_rd); 6930 } 6931 break; 6932 } 6933 case 0x1: 6934 { 6935 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6936 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6937 if (dtype == 0) { 6938 /* Double to single */ 6939 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6940 } else { 6941 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6942 TCGv_i32 ahp = get_ahp_flag(); 6943 /* Double to half */ 6944 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6945 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6946 } 6947 write_fp_sreg(s, rd, tcg_rd); 6948 break; 6949 } 6950 case 0x3: 6951 { 6952 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6953 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6954 TCGv_i32 tcg_ahp = get_ahp_flag(); 6955 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6956 if (dtype == 0) { 6957 /* Half to single */ 6958 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6959 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6960 write_fp_sreg(s, rd, tcg_rd); 6961 } else { 6962 /* Half to double */ 6963 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6964 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6965 write_fp_dreg(s, rd, tcg_rd); 6966 } 6967 break; 6968 } 6969 default: 6970 g_assert_not_reached(); 6971 } 6972 } 6973 6974 /* Floating point data-processing (1 source) 6975 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6976 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6977 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6978 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6979 */ 6980 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6981 { 6982 int mos = extract32(insn, 29, 3); 6983 int type = extract32(insn, 22, 2); 6984 int opcode = extract32(insn, 15, 6); 6985 int rn = extract32(insn, 5, 5); 6986 int rd = extract32(insn, 0, 5); 6987 6988 if (mos) { 6989 goto do_unallocated; 6990 } 6991 6992 switch (opcode) { 6993 case 0x4: case 0x5: case 0x7: 6994 { 6995 /* FCVT between half, single and double precision */ 6996 int dtype = extract32(opcode, 0, 2); 6997 if (type == 2 || dtype == type) { 6998 goto do_unallocated; 6999 } 7000 if (!fp_access_check(s)) { 7001 return; 7002 } 7003 7004 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7005 break; 7006 } 7007 7008 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7009 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7010 goto do_unallocated; 7011 } 7012 /* fall through */ 7013 case 0x0 ... 0x3: 7014 case 0x8 ... 0xc: 7015 case 0xe ... 0xf: 7016 /* 32-to-32 and 64-to-64 ops */ 7017 switch (type) { 7018 case 0: 7019 if (!fp_access_check(s)) { 7020 return; 7021 } 7022 handle_fp_1src_single(s, opcode, rd, rn); 7023 break; 7024 case 1: 7025 if (!fp_access_check(s)) { 7026 return; 7027 } 7028 handle_fp_1src_double(s, opcode, rd, rn); 7029 break; 7030 case 3: 7031 if (!dc_isar_feature(aa64_fp16, s)) { 7032 goto do_unallocated; 7033 } 7034 7035 if (!fp_access_check(s)) { 7036 return; 7037 } 7038 handle_fp_1src_half(s, opcode, rd, rn); 7039 break; 7040 default: 7041 goto do_unallocated; 7042 } 7043 break; 7044 7045 case 0x6: 7046 switch (type) { 7047 case 1: /* BFCVT */ 7048 if (!dc_isar_feature(aa64_bf16, s)) { 7049 goto do_unallocated; 7050 } 7051 if (!fp_access_check(s)) { 7052 return; 7053 } 7054 handle_fp_1src_single(s, opcode, rd, rn); 7055 break; 7056 default: 7057 goto do_unallocated; 7058 } 7059 break; 7060 7061 default: 7062 do_unallocated: 7063 unallocated_encoding(s); 7064 break; 7065 } 7066 } 7067 7068 /* Floating-point data-processing (3 source) - single precision */ 7069 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7070 int rd, int rn, int rm, int ra) 7071 { 7072 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7073 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7074 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7075 7076 tcg_op1 = read_fp_sreg(s, rn); 7077 tcg_op2 = read_fp_sreg(s, rm); 7078 tcg_op3 = read_fp_sreg(s, ra); 7079 7080 /* These are fused multiply-add, and must be done as one 7081 * floating point operation with no rounding between the 7082 * multiplication and addition steps. 7083 * NB that doing the negations here as separate steps is 7084 * correct : an input NaN should come out with its sign bit 7085 * flipped if it is a negated-input. 7086 */ 7087 if (o1 == true) { 7088 gen_vfp_negs(tcg_op3, tcg_op3); 7089 } 7090 7091 if (o0 != o1) { 7092 gen_vfp_negs(tcg_op1, tcg_op1); 7093 } 7094 7095 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7096 7097 write_fp_sreg(s, rd, tcg_res); 7098 } 7099 7100 /* Floating-point data-processing (3 source) - double precision */ 7101 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7102 int rd, int rn, int rm, int ra) 7103 { 7104 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7105 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7106 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7107 7108 tcg_op1 = read_fp_dreg(s, rn); 7109 tcg_op2 = read_fp_dreg(s, rm); 7110 tcg_op3 = read_fp_dreg(s, ra); 7111 7112 /* These are fused multiply-add, and must be done as one 7113 * floating point operation with no rounding between the 7114 * multiplication and addition steps. 7115 * NB that doing the negations here as separate steps is 7116 * correct : an input NaN should come out with its sign bit 7117 * flipped if it is a negated-input. 7118 */ 7119 if (o1 == true) { 7120 gen_vfp_negd(tcg_op3, tcg_op3); 7121 } 7122 7123 if (o0 != o1) { 7124 gen_vfp_negd(tcg_op1, tcg_op1); 7125 } 7126 7127 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7128 7129 write_fp_dreg(s, rd, tcg_res); 7130 } 7131 7132 /* Floating-point data-processing (3 source) - half precision */ 7133 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7134 int rd, int rn, int rm, int ra) 7135 { 7136 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7137 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7138 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7139 7140 tcg_op1 = read_fp_hreg(s, rn); 7141 tcg_op2 = read_fp_hreg(s, rm); 7142 tcg_op3 = read_fp_hreg(s, ra); 7143 7144 /* These are fused multiply-add, and must be done as one 7145 * floating point operation with no rounding between the 7146 * multiplication and addition steps. 7147 * NB that doing the negations here as separate steps is 7148 * correct : an input NaN should come out with its sign bit 7149 * flipped if it is a negated-input. 7150 */ 7151 if (o1 == true) { 7152 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7153 } 7154 7155 if (o0 != o1) { 7156 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7157 } 7158 7159 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7160 7161 write_fp_sreg(s, rd, tcg_res); 7162 } 7163 7164 /* Floating point data-processing (3 source) 7165 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7166 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7167 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7168 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7169 */ 7170 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7171 { 7172 int mos = extract32(insn, 29, 3); 7173 int type = extract32(insn, 22, 2); 7174 int rd = extract32(insn, 0, 5); 7175 int rn = extract32(insn, 5, 5); 7176 int ra = extract32(insn, 10, 5); 7177 int rm = extract32(insn, 16, 5); 7178 bool o0 = extract32(insn, 15, 1); 7179 bool o1 = extract32(insn, 21, 1); 7180 7181 if (mos) { 7182 unallocated_encoding(s); 7183 return; 7184 } 7185 7186 switch (type) { 7187 case 0: 7188 if (!fp_access_check(s)) { 7189 return; 7190 } 7191 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7192 break; 7193 case 1: 7194 if (!fp_access_check(s)) { 7195 return; 7196 } 7197 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7198 break; 7199 case 3: 7200 if (!dc_isar_feature(aa64_fp16, s)) { 7201 unallocated_encoding(s); 7202 return; 7203 } 7204 if (!fp_access_check(s)) { 7205 return; 7206 } 7207 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7208 break; 7209 default: 7210 unallocated_encoding(s); 7211 } 7212 } 7213 7214 /* Floating point immediate 7215 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7216 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7217 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7218 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7219 */ 7220 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7221 { 7222 int rd = extract32(insn, 0, 5); 7223 int imm5 = extract32(insn, 5, 5); 7224 int imm8 = extract32(insn, 13, 8); 7225 int type = extract32(insn, 22, 2); 7226 int mos = extract32(insn, 29, 3); 7227 uint64_t imm; 7228 MemOp sz; 7229 7230 if (mos || imm5) { 7231 unallocated_encoding(s); 7232 return; 7233 } 7234 7235 switch (type) { 7236 case 0: 7237 sz = MO_32; 7238 break; 7239 case 1: 7240 sz = MO_64; 7241 break; 7242 case 3: 7243 sz = MO_16; 7244 if (dc_isar_feature(aa64_fp16, s)) { 7245 break; 7246 } 7247 /* fallthru */ 7248 default: 7249 unallocated_encoding(s); 7250 return; 7251 } 7252 7253 if (!fp_access_check(s)) { 7254 return; 7255 } 7256 7257 imm = vfp_expand_imm(sz, imm8); 7258 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7259 } 7260 7261 /* Handle floating point <=> fixed point conversions. Note that we can 7262 * also deal with fp <=> integer conversions as a special case (scale == 64) 7263 * OPTME: consider handling that special case specially or at least skipping 7264 * the call to scalbn in the helpers for zero shifts. 7265 */ 7266 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7267 bool itof, int rmode, int scale, int sf, int type) 7268 { 7269 bool is_signed = !(opcode & 1); 7270 TCGv_ptr tcg_fpstatus; 7271 TCGv_i32 tcg_shift, tcg_single; 7272 TCGv_i64 tcg_double; 7273 7274 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7275 7276 tcg_shift = tcg_constant_i32(64 - scale); 7277 7278 if (itof) { 7279 TCGv_i64 tcg_int = cpu_reg(s, rn); 7280 if (!sf) { 7281 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7282 7283 if (is_signed) { 7284 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7285 } else { 7286 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7287 } 7288 7289 tcg_int = tcg_extend; 7290 } 7291 7292 switch (type) { 7293 case 1: /* float64 */ 7294 tcg_double = tcg_temp_new_i64(); 7295 if (is_signed) { 7296 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7297 tcg_shift, tcg_fpstatus); 7298 } else { 7299 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7300 tcg_shift, tcg_fpstatus); 7301 } 7302 write_fp_dreg(s, rd, tcg_double); 7303 break; 7304 7305 case 0: /* float32 */ 7306 tcg_single = tcg_temp_new_i32(); 7307 if (is_signed) { 7308 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7309 tcg_shift, tcg_fpstatus); 7310 } else { 7311 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7312 tcg_shift, tcg_fpstatus); 7313 } 7314 write_fp_sreg(s, rd, tcg_single); 7315 break; 7316 7317 case 3: /* float16 */ 7318 tcg_single = tcg_temp_new_i32(); 7319 if (is_signed) { 7320 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7321 tcg_shift, tcg_fpstatus); 7322 } else { 7323 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7324 tcg_shift, tcg_fpstatus); 7325 } 7326 write_fp_sreg(s, rd, tcg_single); 7327 break; 7328 7329 default: 7330 g_assert_not_reached(); 7331 } 7332 } else { 7333 TCGv_i64 tcg_int = cpu_reg(s, rd); 7334 TCGv_i32 tcg_rmode; 7335 7336 if (extract32(opcode, 2, 1)) { 7337 /* There are too many rounding modes to all fit into rmode, 7338 * so FCVTA[US] is a special case. 7339 */ 7340 rmode = FPROUNDING_TIEAWAY; 7341 } 7342 7343 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7344 7345 switch (type) { 7346 case 1: /* float64 */ 7347 tcg_double = read_fp_dreg(s, rn); 7348 if (is_signed) { 7349 if (!sf) { 7350 gen_helper_vfp_tosld(tcg_int, tcg_double, 7351 tcg_shift, tcg_fpstatus); 7352 } else { 7353 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7354 tcg_shift, tcg_fpstatus); 7355 } 7356 } else { 7357 if (!sf) { 7358 gen_helper_vfp_tould(tcg_int, tcg_double, 7359 tcg_shift, tcg_fpstatus); 7360 } else { 7361 gen_helper_vfp_touqd(tcg_int, tcg_double, 7362 tcg_shift, tcg_fpstatus); 7363 } 7364 } 7365 if (!sf) { 7366 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7367 } 7368 break; 7369 7370 case 0: /* float32 */ 7371 tcg_single = read_fp_sreg(s, rn); 7372 if (sf) { 7373 if (is_signed) { 7374 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7375 tcg_shift, tcg_fpstatus); 7376 } else { 7377 gen_helper_vfp_touqs(tcg_int, tcg_single, 7378 tcg_shift, tcg_fpstatus); 7379 } 7380 } else { 7381 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7382 if (is_signed) { 7383 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7384 tcg_shift, tcg_fpstatus); 7385 } else { 7386 gen_helper_vfp_touls(tcg_dest, tcg_single, 7387 tcg_shift, tcg_fpstatus); 7388 } 7389 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7390 } 7391 break; 7392 7393 case 3: /* float16 */ 7394 tcg_single = read_fp_sreg(s, rn); 7395 if (sf) { 7396 if (is_signed) { 7397 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7398 tcg_shift, tcg_fpstatus); 7399 } else { 7400 gen_helper_vfp_touqh(tcg_int, tcg_single, 7401 tcg_shift, tcg_fpstatus); 7402 } 7403 } else { 7404 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7405 if (is_signed) { 7406 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7407 tcg_shift, tcg_fpstatus); 7408 } else { 7409 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7410 tcg_shift, tcg_fpstatus); 7411 } 7412 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7413 } 7414 break; 7415 7416 default: 7417 g_assert_not_reached(); 7418 } 7419 7420 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7421 } 7422 } 7423 7424 /* Floating point <-> fixed point conversions 7425 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7426 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7427 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7428 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7429 */ 7430 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7431 { 7432 int rd = extract32(insn, 0, 5); 7433 int rn = extract32(insn, 5, 5); 7434 int scale = extract32(insn, 10, 6); 7435 int opcode = extract32(insn, 16, 3); 7436 int rmode = extract32(insn, 19, 2); 7437 int type = extract32(insn, 22, 2); 7438 bool sbit = extract32(insn, 29, 1); 7439 bool sf = extract32(insn, 31, 1); 7440 bool itof; 7441 7442 if (sbit || (!sf && scale < 32)) { 7443 unallocated_encoding(s); 7444 return; 7445 } 7446 7447 switch (type) { 7448 case 0: /* float32 */ 7449 case 1: /* float64 */ 7450 break; 7451 case 3: /* float16 */ 7452 if (dc_isar_feature(aa64_fp16, s)) { 7453 break; 7454 } 7455 /* fallthru */ 7456 default: 7457 unallocated_encoding(s); 7458 return; 7459 } 7460 7461 switch ((rmode << 3) | opcode) { 7462 case 0x2: /* SCVTF */ 7463 case 0x3: /* UCVTF */ 7464 itof = true; 7465 break; 7466 case 0x18: /* FCVTZS */ 7467 case 0x19: /* FCVTZU */ 7468 itof = false; 7469 break; 7470 default: 7471 unallocated_encoding(s); 7472 return; 7473 } 7474 7475 if (!fp_access_check(s)) { 7476 return; 7477 } 7478 7479 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7480 } 7481 7482 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7483 { 7484 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7485 * without conversion. 7486 */ 7487 7488 if (itof) { 7489 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7490 TCGv_i64 tmp; 7491 7492 switch (type) { 7493 case 0: 7494 /* 32 bit */ 7495 tmp = tcg_temp_new_i64(); 7496 tcg_gen_ext32u_i64(tmp, tcg_rn); 7497 write_fp_dreg(s, rd, tmp); 7498 break; 7499 case 1: 7500 /* 64 bit */ 7501 write_fp_dreg(s, rd, tcg_rn); 7502 break; 7503 case 2: 7504 /* 64 bit to top half. */ 7505 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7506 clear_vec_high(s, true, rd); 7507 break; 7508 case 3: 7509 /* 16 bit */ 7510 tmp = tcg_temp_new_i64(); 7511 tcg_gen_ext16u_i64(tmp, tcg_rn); 7512 write_fp_dreg(s, rd, tmp); 7513 break; 7514 default: 7515 g_assert_not_reached(); 7516 } 7517 } else { 7518 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7519 7520 switch (type) { 7521 case 0: 7522 /* 32 bit */ 7523 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7524 break; 7525 case 1: 7526 /* 64 bit */ 7527 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7528 break; 7529 case 2: 7530 /* 64 bits from top half */ 7531 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7532 break; 7533 case 3: 7534 /* 16 bit */ 7535 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7536 break; 7537 default: 7538 g_assert_not_reached(); 7539 } 7540 } 7541 } 7542 7543 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7544 { 7545 TCGv_i64 t = read_fp_dreg(s, rn); 7546 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7547 7548 gen_helper_fjcvtzs(t, t, fpstatus); 7549 7550 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7551 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7552 tcg_gen_movi_i32(cpu_CF, 0); 7553 tcg_gen_movi_i32(cpu_NF, 0); 7554 tcg_gen_movi_i32(cpu_VF, 0); 7555 } 7556 7557 /* Floating point <-> integer conversions 7558 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7559 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7560 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7561 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7562 */ 7563 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7564 { 7565 int rd = extract32(insn, 0, 5); 7566 int rn = extract32(insn, 5, 5); 7567 int opcode = extract32(insn, 16, 3); 7568 int rmode = extract32(insn, 19, 2); 7569 int type = extract32(insn, 22, 2); 7570 bool sbit = extract32(insn, 29, 1); 7571 bool sf = extract32(insn, 31, 1); 7572 bool itof = false; 7573 7574 if (sbit) { 7575 goto do_unallocated; 7576 } 7577 7578 switch (opcode) { 7579 case 2: /* SCVTF */ 7580 case 3: /* UCVTF */ 7581 itof = true; 7582 /* fallthru */ 7583 case 4: /* FCVTAS */ 7584 case 5: /* FCVTAU */ 7585 if (rmode != 0) { 7586 goto do_unallocated; 7587 } 7588 /* fallthru */ 7589 case 0: /* FCVT[NPMZ]S */ 7590 case 1: /* FCVT[NPMZ]U */ 7591 switch (type) { 7592 case 0: /* float32 */ 7593 case 1: /* float64 */ 7594 break; 7595 case 3: /* float16 */ 7596 if (!dc_isar_feature(aa64_fp16, s)) { 7597 goto do_unallocated; 7598 } 7599 break; 7600 default: 7601 goto do_unallocated; 7602 } 7603 if (!fp_access_check(s)) { 7604 return; 7605 } 7606 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7607 break; 7608 7609 default: 7610 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7611 case 0b01100110: /* FMOV half <-> 32-bit int */ 7612 case 0b01100111: 7613 case 0b11100110: /* FMOV half <-> 64-bit int */ 7614 case 0b11100111: 7615 if (!dc_isar_feature(aa64_fp16, s)) { 7616 goto do_unallocated; 7617 } 7618 /* fallthru */ 7619 case 0b00000110: /* FMOV 32-bit */ 7620 case 0b00000111: 7621 case 0b10100110: /* FMOV 64-bit */ 7622 case 0b10100111: 7623 case 0b11001110: /* FMOV top half of 128-bit */ 7624 case 0b11001111: 7625 if (!fp_access_check(s)) { 7626 return; 7627 } 7628 itof = opcode & 1; 7629 handle_fmov(s, rd, rn, type, itof); 7630 break; 7631 7632 case 0b00111110: /* FJCVTZS */ 7633 if (!dc_isar_feature(aa64_jscvt, s)) { 7634 goto do_unallocated; 7635 } else if (fp_access_check(s)) { 7636 handle_fjcvtzs(s, rd, rn); 7637 } 7638 break; 7639 7640 default: 7641 do_unallocated: 7642 unallocated_encoding(s); 7643 return; 7644 } 7645 break; 7646 } 7647 } 7648 7649 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7650 * 31 30 29 28 25 24 0 7651 * +---+---+---+---------+-----------------------------+ 7652 * | | 0 | | 1 1 1 1 | | 7653 * +---+---+---+---------+-----------------------------+ 7654 */ 7655 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7656 { 7657 if (extract32(insn, 24, 1)) { 7658 /* Floating point data-processing (3 source) */ 7659 disas_fp_3src(s, insn); 7660 } else if (extract32(insn, 21, 1) == 0) { 7661 /* Floating point to fixed point conversions */ 7662 disas_fp_fixed_conv(s, insn); 7663 } else { 7664 switch (extract32(insn, 10, 2)) { 7665 case 1: 7666 /* Floating point conditional compare */ 7667 disas_fp_ccomp(s, insn); 7668 break; 7669 case 2: 7670 /* Floating point data-processing (2 source) */ 7671 unallocated_encoding(s); /* in decodetree */ 7672 break; 7673 case 3: 7674 /* Floating point conditional select */ 7675 disas_fp_csel(s, insn); 7676 break; 7677 case 0: 7678 switch (ctz32(extract32(insn, 12, 4))) { 7679 case 0: /* [15:12] == xxx1 */ 7680 /* Floating point immediate */ 7681 disas_fp_imm(s, insn); 7682 break; 7683 case 1: /* [15:12] == xx10 */ 7684 /* Floating point compare */ 7685 disas_fp_compare(s, insn); 7686 break; 7687 case 2: /* [15:12] == x100 */ 7688 /* Floating point data-processing (1 source) */ 7689 disas_fp_1src(s, insn); 7690 break; 7691 case 3: /* [15:12] == 1000 */ 7692 unallocated_encoding(s); 7693 break; 7694 default: /* [15:12] == 0000 */ 7695 /* Floating point <-> integer conversions */ 7696 disas_fp_int_conv(s, insn); 7697 break; 7698 } 7699 break; 7700 } 7701 } 7702 } 7703 7704 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7705 int pos) 7706 { 7707 /* Extract 64 bits from the middle of two concatenated 64 bit 7708 * vector register slices left:right. The extracted bits start 7709 * at 'pos' bits into the right (least significant) side. 7710 * We return the result in tcg_right, and guarantee not to 7711 * trash tcg_left. 7712 */ 7713 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7714 assert(pos > 0 && pos < 64); 7715 7716 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7717 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7718 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7719 } 7720 7721 /* EXT 7722 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7723 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7724 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7725 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7726 */ 7727 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7728 { 7729 int is_q = extract32(insn, 30, 1); 7730 int op2 = extract32(insn, 22, 2); 7731 int imm4 = extract32(insn, 11, 4); 7732 int rm = extract32(insn, 16, 5); 7733 int rn = extract32(insn, 5, 5); 7734 int rd = extract32(insn, 0, 5); 7735 int pos = imm4 << 3; 7736 TCGv_i64 tcg_resl, tcg_resh; 7737 7738 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7739 unallocated_encoding(s); 7740 return; 7741 } 7742 7743 if (!fp_access_check(s)) { 7744 return; 7745 } 7746 7747 tcg_resh = tcg_temp_new_i64(); 7748 tcg_resl = tcg_temp_new_i64(); 7749 7750 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7751 * either extracting 128 bits from a 128:128 concatenation, or 7752 * extracting 64 bits from a 64:64 concatenation. 7753 */ 7754 if (!is_q) { 7755 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7756 if (pos != 0) { 7757 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7758 do_ext64(s, tcg_resh, tcg_resl, pos); 7759 } 7760 } else { 7761 TCGv_i64 tcg_hh; 7762 typedef struct { 7763 int reg; 7764 int elt; 7765 } EltPosns; 7766 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7767 EltPosns *elt = eltposns; 7768 7769 if (pos >= 64) { 7770 elt++; 7771 pos -= 64; 7772 } 7773 7774 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7775 elt++; 7776 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7777 elt++; 7778 if (pos != 0) { 7779 do_ext64(s, tcg_resh, tcg_resl, pos); 7780 tcg_hh = tcg_temp_new_i64(); 7781 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7782 do_ext64(s, tcg_hh, tcg_resh, pos); 7783 } 7784 } 7785 7786 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7787 if (is_q) { 7788 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7789 } 7790 clear_vec_high(s, is_q, rd); 7791 } 7792 7793 /* TBL/TBX 7794 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7795 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7796 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7797 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7798 */ 7799 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7800 { 7801 int op2 = extract32(insn, 22, 2); 7802 int is_q = extract32(insn, 30, 1); 7803 int rm = extract32(insn, 16, 5); 7804 int rn = extract32(insn, 5, 5); 7805 int rd = extract32(insn, 0, 5); 7806 int is_tbx = extract32(insn, 12, 1); 7807 int len = (extract32(insn, 13, 2) + 1) * 16; 7808 7809 if (op2 != 0) { 7810 unallocated_encoding(s); 7811 return; 7812 } 7813 7814 if (!fp_access_check(s)) { 7815 return; 7816 } 7817 7818 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7819 vec_full_reg_offset(s, rm), tcg_env, 7820 is_q ? 16 : 8, vec_full_reg_size(s), 7821 (len << 6) | (is_tbx << 5) | rn, 7822 gen_helper_simd_tblx); 7823 } 7824 7825 /* ZIP/UZP/TRN 7826 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7827 * +---+---+-------------+------+---+------+---+------------------+------+ 7828 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7829 * +---+---+-------------+------+---+------+---+------------------+------+ 7830 */ 7831 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7832 { 7833 int rd = extract32(insn, 0, 5); 7834 int rn = extract32(insn, 5, 5); 7835 int rm = extract32(insn, 16, 5); 7836 int size = extract32(insn, 22, 2); 7837 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7838 * bit 2 indicates 1 vs 2 variant of the insn. 7839 */ 7840 int opcode = extract32(insn, 12, 2); 7841 bool part = extract32(insn, 14, 1); 7842 bool is_q = extract32(insn, 30, 1); 7843 int esize = 8 << size; 7844 int i; 7845 int datasize = is_q ? 128 : 64; 7846 int elements = datasize / esize; 7847 TCGv_i64 tcg_res[2], tcg_ele; 7848 7849 if (opcode == 0 || (size == 3 && !is_q)) { 7850 unallocated_encoding(s); 7851 return; 7852 } 7853 7854 if (!fp_access_check(s)) { 7855 return; 7856 } 7857 7858 tcg_res[0] = tcg_temp_new_i64(); 7859 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7860 tcg_ele = tcg_temp_new_i64(); 7861 7862 for (i = 0; i < elements; i++) { 7863 int o, w; 7864 7865 switch (opcode) { 7866 case 1: /* UZP1/2 */ 7867 { 7868 int midpoint = elements / 2; 7869 if (i < midpoint) { 7870 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7871 } else { 7872 read_vec_element(s, tcg_ele, rm, 7873 2 * (i - midpoint) + part, size); 7874 } 7875 break; 7876 } 7877 case 2: /* TRN1/2 */ 7878 if (i & 1) { 7879 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7880 } else { 7881 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7882 } 7883 break; 7884 case 3: /* ZIP1/2 */ 7885 { 7886 int base = part * elements / 2; 7887 if (i & 1) { 7888 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7889 } else { 7890 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7891 } 7892 break; 7893 } 7894 default: 7895 g_assert_not_reached(); 7896 } 7897 7898 w = (i * esize) / 64; 7899 o = (i * esize) % 64; 7900 if (o == 0) { 7901 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7902 } else { 7903 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7904 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7905 } 7906 } 7907 7908 for (i = 0; i <= is_q; ++i) { 7909 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7910 } 7911 clear_vec_high(s, is_q, rd); 7912 } 7913 7914 /* 7915 * do_reduction_op helper 7916 * 7917 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7918 * important for correct NaN propagation that we do these 7919 * operations in exactly the order specified by the pseudocode. 7920 * 7921 * This is a recursive function, TCG temps should be freed by the 7922 * calling function once it is done with the values. 7923 */ 7924 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7925 int esize, int size, int vmap, TCGv_ptr fpst) 7926 { 7927 if (esize == size) { 7928 int element; 7929 MemOp msize = esize == 16 ? MO_16 : MO_32; 7930 TCGv_i32 tcg_elem; 7931 7932 /* We should have one register left here */ 7933 assert(ctpop8(vmap) == 1); 7934 element = ctz32(vmap); 7935 assert(element < 8); 7936 7937 tcg_elem = tcg_temp_new_i32(); 7938 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7939 return tcg_elem; 7940 } else { 7941 int bits = size / 2; 7942 int shift = ctpop8(vmap) / 2; 7943 int vmap_lo = (vmap >> shift) & vmap; 7944 int vmap_hi = (vmap & ~vmap_lo); 7945 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7946 7947 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7948 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7949 tcg_res = tcg_temp_new_i32(); 7950 7951 switch (fpopcode) { 7952 case 0x0c: /* fmaxnmv half-precision */ 7953 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7954 break; 7955 case 0x0f: /* fmaxv half-precision */ 7956 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7957 break; 7958 case 0x1c: /* fminnmv half-precision */ 7959 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7960 break; 7961 case 0x1f: /* fminv half-precision */ 7962 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7963 break; 7964 case 0x2c: /* fmaxnmv */ 7965 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7966 break; 7967 case 0x2f: /* fmaxv */ 7968 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7969 break; 7970 case 0x3c: /* fminnmv */ 7971 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7972 break; 7973 case 0x3f: /* fminv */ 7974 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7975 break; 7976 default: 7977 g_assert_not_reached(); 7978 } 7979 return tcg_res; 7980 } 7981 } 7982 7983 /* AdvSIMD across lanes 7984 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7985 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7986 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7987 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7988 */ 7989 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7990 { 7991 int rd = extract32(insn, 0, 5); 7992 int rn = extract32(insn, 5, 5); 7993 int size = extract32(insn, 22, 2); 7994 int opcode = extract32(insn, 12, 5); 7995 bool is_q = extract32(insn, 30, 1); 7996 bool is_u = extract32(insn, 29, 1); 7997 bool is_fp = false; 7998 bool is_min = false; 7999 int esize; 8000 int elements; 8001 int i; 8002 TCGv_i64 tcg_res, tcg_elt; 8003 8004 switch (opcode) { 8005 case 0x1b: /* ADDV */ 8006 if (is_u) { 8007 unallocated_encoding(s); 8008 return; 8009 } 8010 /* fall through */ 8011 case 0x3: /* SADDLV, UADDLV */ 8012 case 0xa: /* SMAXV, UMAXV */ 8013 case 0x1a: /* SMINV, UMINV */ 8014 if (size == 3 || (size == 2 && !is_q)) { 8015 unallocated_encoding(s); 8016 return; 8017 } 8018 break; 8019 case 0xc: /* FMAXNMV, FMINNMV */ 8020 case 0xf: /* FMAXV, FMINV */ 8021 /* Bit 1 of size field encodes min vs max and the actual size 8022 * depends on the encoding of the U bit. If not set (and FP16 8023 * enabled) then we do half-precision float instead of single 8024 * precision. 8025 */ 8026 is_min = extract32(size, 1, 1); 8027 is_fp = true; 8028 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8029 size = 1; 8030 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8031 unallocated_encoding(s); 8032 return; 8033 } else { 8034 size = 2; 8035 } 8036 break; 8037 default: 8038 unallocated_encoding(s); 8039 return; 8040 } 8041 8042 if (!fp_access_check(s)) { 8043 return; 8044 } 8045 8046 esize = 8 << size; 8047 elements = (is_q ? 128 : 64) / esize; 8048 8049 tcg_res = tcg_temp_new_i64(); 8050 tcg_elt = tcg_temp_new_i64(); 8051 8052 /* These instructions operate across all lanes of a vector 8053 * to produce a single result. We can guarantee that a 64 8054 * bit intermediate is sufficient: 8055 * + for [US]ADDLV the maximum element size is 32 bits, and 8056 * the result type is 64 bits 8057 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8058 * same as the element size, which is 32 bits at most 8059 * For the integer operations we can choose to work at 64 8060 * or 32 bits and truncate at the end; for simplicity 8061 * we use 64 bits always. The floating point 8062 * ops do require 32 bit intermediates, though. 8063 */ 8064 if (!is_fp) { 8065 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8066 8067 for (i = 1; i < elements; i++) { 8068 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8069 8070 switch (opcode) { 8071 case 0x03: /* SADDLV / UADDLV */ 8072 case 0x1b: /* ADDV */ 8073 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8074 break; 8075 case 0x0a: /* SMAXV / UMAXV */ 8076 if (is_u) { 8077 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8078 } else { 8079 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8080 } 8081 break; 8082 case 0x1a: /* SMINV / UMINV */ 8083 if (is_u) { 8084 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8085 } else { 8086 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8087 } 8088 break; 8089 default: 8090 g_assert_not_reached(); 8091 } 8092 8093 } 8094 } else { 8095 /* Floating point vector reduction ops which work across 32 8096 * bit (single) or 16 bit (half-precision) intermediates. 8097 * Note that correct NaN propagation requires that we do these 8098 * operations in exactly the order specified by the pseudocode. 8099 */ 8100 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8101 int fpopcode = opcode | is_min << 4 | is_u << 5; 8102 int vmap = (1 << elements) - 1; 8103 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8104 (is_q ? 128 : 64), vmap, fpst); 8105 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8106 } 8107 8108 /* Now truncate the result to the width required for the final output */ 8109 if (opcode == 0x03) { 8110 /* SADDLV, UADDLV: result is 2*esize */ 8111 size++; 8112 } 8113 8114 switch (size) { 8115 case 0: 8116 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8117 break; 8118 case 1: 8119 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8120 break; 8121 case 2: 8122 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8123 break; 8124 case 3: 8125 break; 8126 default: 8127 g_assert_not_reached(); 8128 } 8129 8130 write_fp_dreg(s, rd, tcg_res); 8131 } 8132 8133 /* AdvSIMD modified immediate 8134 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8135 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8136 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8137 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8138 * 8139 * There are a number of operations that can be carried out here: 8140 * MOVI - move (shifted) imm into register 8141 * MVNI - move inverted (shifted) imm into register 8142 * ORR - bitwise OR of (shifted) imm with register 8143 * BIC - bitwise clear of (shifted) imm with register 8144 * With ARMv8.2 we also have: 8145 * FMOV half-precision 8146 */ 8147 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8148 { 8149 int rd = extract32(insn, 0, 5); 8150 int cmode = extract32(insn, 12, 4); 8151 int o2 = extract32(insn, 11, 1); 8152 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8153 bool is_neg = extract32(insn, 29, 1); 8154 bool is_q = extract32(insn, 30, 1); 8155 uint64_t imm = 0; 8156 8157 if (o2) { 8158 if (cmode != 0xf || is_neg) { 8159 unallocated_encoding(s); 8160 return; 8161 } 8162 /* FMOV (vector, immediate) - half-precision */ 8163 if (!dc_isar_feature(aa64_fp16, s)) { 8164 unallocated_encoding(s); 8165 return; 8166 } 8167 imm = vfp_expand_imm(MO_16, abcdefgh); 8168 /* now duplicate across the lanes */ 8169 imm = dup_const(MO_16, imm); 8170 } else { 8171 if (cmode == 0xf && is_neg && !is_q) { 8172 unallocated_encoding(s); 8173 return; 8174 } 8175 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8176 } 8177 8178 if (!fp_access_check(s)) { 8179 return; 8180 } 8181 8182 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8183 /* MOVI or MVNI, with MVNI negation handled above. */ 8184 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8185 vec_full_reg_size(s), imm); 8186 } else { 8187 /* ORR or BIC, with BIC negation to AND handled above. */ 8188 if (is_neg) { 8189 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8190 } else { 8191 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8192 } 8193 } 8194 } 8195 8196 /* AdvSIMD scalar pairwise 8197 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8198 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8199 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8200 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8201 */ 8202 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8203 { 8204 int u = extract32(insn, 29, 1); 8205 int size = extract32(insn, 22, 2); 8206 int opcode = extract32(insn, 12, 5); 8207 int rn = extract32(insn, 5, 5); 8208 int rd = extract32(insn, 0, 5); 8209 TCGv_ptr fpst; 8210 8211 /* For some ops (the FP ones), size[1] is part of the encoding. 8212 * For ADDP strictly it is not but size[1] is always 1 for valid 8213 * encodings. 8214 */ 8215 opcode |= (extract32(size, 1, 1) << 5); 8216 8217 switch (opcode) { 8218 case 0x3b: /* ADDP */ 8219 if (u || size != 3) { 8220 unallocated_encoding(s); 8221 return; 8222 } 8223 if (!fp_access_check(s)) { 8224 return; 8225 } 8226 8227 fpst = NULL; 8228 break; 8229 case 0xc: /* FMAXNMP */ 8230 case 0xd: /* FADDP */ 8231 case 0xf: /* FMAXP */ 8232 case 0x2c: /* FMINNMP */ 8233 case 0x2f: /* FMINP */ 8234 /* FP op, size[0] is 32 or 64 bit*/ 8235 if (!u) { 8236 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8237 unallocated_encoding(s); 8238 return; 8239 } else { 8240 size = MO_16; 8241 } 8242 } else { 8243 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8244 } 8245 8246 if (!fp_access_check(s)) { 8247 return; 8248 } 8249 8250 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8251 break; 8252 default: 8253 unallocated_encoding(s); 8254 return; 8255 } 8256 8257 if (size == MO_64) { 8258 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8259 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8260 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8261 8262 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8263 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8264 8265 switch (opcode) { 8266 case 0x3b: /* ADDP */ 8267 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8268 break; 8269 case 0xc: /* FMAXNMP */ 8270 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8271 break; 8272 case 0xd: /* FADDP */ 8273 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8274 break; 8275 case 0xf: /* FMAXP */ 8276 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8277 break; 8278 case 0x2c: /* FMINNMP */ 8279 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8280 break; 8281 case 0x2f: /* FMINP */ 8282 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8283 break; 8284 default: 8285 g_assert_not_reached(); 8286 } 8287 8288 write_fp_dreg(s, rd, tcg_res); 8289 } else { 8290 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8291 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8292 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8293 8294 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8295 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8296 8297 if (size == MO_16) { 8298 switch (opcode) { 8299 case 0xc: /* FMAXNMP */ 8300 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8301 break; 8302 case 0xd: /* FADDP */ 8303 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8304 break; 8305 case 0xf: /* FMAXP */ 8306 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8307 break; 8308 case 0x2c: /* FMINNMP */ 8309 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8310 break; 8311 case 0x2f: /* FMINP */ 8312 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8313 break; 8314 default: 8315 g_assert_not_reached(); 8316 } 8317 } else { 8318 switch (opcode) { 8319 case 0xc: /* FMAXNMP */ 8320 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8321 break; 8322 case 0xd: /* FADDP */ 8323 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8324 break; 8325 case 0xf: /* FMAXP */ 8326 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8327 break; 8328 case 0x2c: /* FMINNMP */ 8329 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8330 break; 8331 case 0x2f: /* FMINP */ 8332 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8333 break; 8334 default: 8335 g_assert_not_reached(); 8336 } 8337 } 8338 8339 write_fp_sreg(s, rd, tcg_res); 8340 } 8341 } 8342 8343 /* 8344 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8345 * 8346 * This code is handles the common shifting code and is used by both 8347 * the vector and scalar code. 8348 */ 8349 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8350 TCGv_i64 tcg_rnd, bool accumulate, 8351 bool is_u, int size, int shift) 8352 { 8353 bool extended_result = false; 8354 bool round = tcg_rnd != NULL; 8355 int ext_lshift = 0; 8356 TCGv_i64 tcg_src_hi; 8357 8358 if (round && size == 3) { 8359 extended_result = true; 8360 ext_lshift = 64 - shift; 8361 tcg_src_hi = tcg_temp_new_i64(); 8362 } else if (shift == 64) { 8363 if (!accumulate && is_u) { 8364 /* result is zero */ 8365 tcg_gen_movi_i64(tcg_res, 0); 8366 return; 8367 } 8368 } 8369 8370 /* Deal with the rounding step */ 8371 if (round) { 8372 if (extended_result) { 8373 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8374 if (!is_u) { 8375 /* take care of sign extending tcg_res */ 8376 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8377 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8378 tcg_src, tcg_src_hi, 8379 tcg_rnd, tcg_zero); 8380 } else { 8381 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8382 tcg_src, tcg_zero, 8383 tcg_rnd, tcg_zero); 8384 } 8385 } else { 8386 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8387 } 8388 } 8389 8390 /* Now do the shift right */ 8391 if (round && extended_result) { 8392 /* extended case, >64 bit precision required */ 8393 if (ext_lshift == 0) { 8394 /* special case, only high bits matter */ 8395 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8396 } else { 8397 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8398 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8399 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8400 } 8401 } else { 8402 if (is_u) { 8403 if (shift == 64) { 8404 /* essentially shifting in 64 zeros */ 8405 tcg_gen_movi_i64(tcg_src, 0); 8406 } else { 8407 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8408 } 8409 } else { 8410 if (shift == 64) { 8411 /* effectively extending the sign-bit */ 8412 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8413 } else { 8414 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8415 } 8416 } 8417 } 8418 8419 if (accumulate) { 8420 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8421 } else { 8422 tcg_gen_mov_i64(tcg_res, tcg_src); 8423 } 8424 } 8425 8426 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8427 static void handle_scalar_simd_shri(DisasContext *s, 8428 bool is_u, int immh, int immb, 8429 int opcode, int rn, int rd) 8430 { 8431 const int size = 3; 8432 int immhb = immh << 3 | immb; 8433 int shift = 2 * (8 << size) - immhb; 8434 bool accumulate = false; 8435 bool round = false; 8436 bool insert = false; 8437 TCGv_i64 tcg_rn; 8438 TCGv_i64 tcg_rd; 8439 TCGv_i64 tcg_round; 8440 8441 if (!extract32(immh, 3, 1)) { 8442 unallocated_encoding(s); 8443 return; 8444 } 8445 8446 if (!fp_access_check(s)) { 8447 return; 8448 } 8449 8450 switch (opcode) { 8451 case 0x02: /* SSRA / USRA (accumulate) */ 8452 accumulate = true; 8453 break; 8454 case 0x04: /* SRSHR / URSHR (rounding) */ 8455 round = true; 8456 break; 8457 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8458 accumulate = round = true; 8459 break; 8460 case 0x08: /* SRI */ 8461 insert = true; 8462 break; 8463 } 8464 8465 if (round) { 8466 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8467 } else { 8468 tcg_round = NULL; 8469 } 8470 8471 tcg_rn = read_fp_dreg(s, rn); 8472 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8473 8474 if (insert) { 8475 /* shift count same as element size is valid but does nothing; 8476 * special case to avoid potential shift by 64. 8477 */ 8478 int esize = 8 << size; 8479 if (shift != esize) { 8480 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8481 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8482 } 8483 } else { 8484 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8485 accumulate, is_u, size, shift); 8486 } 8487 8488 write_fp_dreg(s, rd, tcg_rd); 8489 } 8490 8491 /* SHL/SLI - Scalar shift left */ 8492 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8493 int immh, int immb, int opcode, 8494 int rn, int rd) 8495 { 8496 int size = 32 - clz32(immh) - 1; 8497 int immhb = immh << 3 | immb; 8498 int shift = immhb - (8 << size); 8499 TCGv_i64 tcg_rn; 8500 TCGv_i64 tcg_rd; 8501 8502 if (!extract32(immh, 3, 1)) { 8503 unallocated_encoding(s); 8504 return; 8505 } 8506 8507 if (!fp_access_check(s)) { 8508 return; 8509 } 8510 8511 tcg_rn = read_fp_dreg(s, rn); 8512 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8513 8514 if (insert) { 8515 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8516 } else { 8517 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8518 } 8519 8520 write_fp_dreg(s, rd, tcg_rd); 8521 } 8522 8523 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8524 * (signed/unsigned) narrowing */ 8525 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8526 bool is_u_shift, bool is_u_narrow, 8527 int immh, int immb, int opcode, 8528 int rn, int rd) 8529 { 8530 int immhb = immh << 3 | immb; 8531 int size = 32 - clz32(immh) - 1; 8532 int esize = 8 << size; 8533 int shift = (2 * esize) - immhb; 8534 int elements = is_scalar ? 1 : (64 / esize); 8535 bool round = extract32(opcode, 0, 1); 8536 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8537 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8538 TCGv_i32 tcg_rd_narrowed; 8539 TCGv_i64 tcg_final; 8540 8541 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8542 { gen_helper_neon_narrow_sat_s8, 8543 gen_helper_neon_unarrow_sat8 }, 8544 { gen_helper_neon_narrow_sat_s16, 8545 gen_helper_neon_unarrow_sat16 }, 8546 { gen_helper_neon_narrow_sat_s32, 8547 gen_helper_neon_unarrow_sat32 }, 8548 { NULL, NULL }, 8549 }; 8550 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8551 gen_helper_neon_narrow_sat_u8, 8552 gen_helper_neon_narrow_sat_u16, 8553 gen_helper_neon_narrow_sat_u32, 8554 NULL 8555 }; 8556 NeonGenNarrowEnvFn *narrowfn; 8557 8558 int i; 8559 8560 assert(size < 4); 8561 8562 if (extract32(immh, 3, 1)) { 8563 unallocated_encoding(s); 8564 return; 8565 } 8566 8567 if (!fp_access_check(s)) { 8568 return; 8569 } 8570 8571 if (is_u_shift) { 8572 narrowfn = unsigned_narrow_fns[size]; 8573 } else { 8574 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8575 } 8576 8577 tcg_rn = tcg_temp_new_i64(); 8578 tcg_rd = tcg_temp_new_i64(); 8579 tcg_rd_narrowed = tcg_temp_new_i32(); 8580 tcg_final = tcg_temp_new_i64(); 8581 8582 if (round) { 8583 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8584 } else { 8585 tcg_round = NULL; 8586 } 8587 8588 for (i = 0; i < elements; i++) { 8589 read_vec_element(s, tcg_rn, rn, i, ldop); 8590 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8591 false, is_u_shift, size+1, shift); 8592 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8593 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8594 if (i == 0) { 8595 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8596 } else { 8597 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8598 } 8599 } 8600 8601 if (!is_q) { 8602 write_vec_element(s, tcg_final, rd, 0, MO_64); 8603 } else { 8604 write_vec_element(s, tcg_final, rd, 1, MO_64); 8605 } 8606 clear_vec_high(s, is_q, rd); 8607 } 8608 8609 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8610 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8611 bool src_unsigned, bool dst_unsigned, 8612 int immh, int immb, int rn, int rd) 8613 { 8614 int immhb = immh << 3 | immb; 8615 int size = 32 - clz32(immh) - 1; 8616 int shift = immhb - (8 << size); 8617 int pass; 8618 8619 assert(immh != 0); 8620 assert(!(scalar && is_q)); 8621 8622 if (!scalar) { 8623 if (!is_q && extract32(immh, 3, 1)) { 8624 unallocated_encoding(s); 8625 return; 8626 } 8627 8628 /* Since we use the variable-shift helpers we must 8629 * replicate the shift count into each element of 8630 * the tcg_shift value. 8631 */ 8632 switch (size) { 8633 case 0: 8634 shift |= shift << 8; 8635 /* fall through */ 8636 case 1: 8637 shift |= shift << 16; 8638 break; 8639 case 2: 8640 case 3: 8641 break; 8642 default: 8643 g_assert_not_reached(); 8644 } 8645 } 8646 8647 if (!fp_access_check(s)) { 8648 return; 8649 } 8650 8651 if (size == 3) { 8652 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8653 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8654 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8655 { NULL, gen_helper_neon_qshl_u64 }, 8656 }; 8657 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8658 int maxpass = is_q ? 2 : 1; 8659 8660 for (pass = 0; pass < maxpass; pass++) { 8661 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8662 8663 read_vec_element(s, tcg_op, rn, pass, MO_64); 8664 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8665 write_vec_element(s, tcg_op, rd, pass, MO_64); 8666 } 8667 clear_vec_high(s, is_q, rd); 8668 } else { 8669 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8670 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8671 { 8672 { gen_helper_neon_qshl_s8, 8673 gen_helper_neon_qshl_s16, 8674 gen_helper_neon_qshl_s32 }, 8675 { gen_helper_neon_qshlu_s8, 8676 gen_helper_neon_qshlu_s16, 8677 gen_helper_neon_qshlu_s32 } 8678 }, { 8679 { NULL, NULL, NULL }, 8680 { gen_helper_neon_qshl_u8, 8681 gen_helper_neon_qshl_u16, 8682 gen_helper_neon_qshl_u32 } 8683 } 8684 }; 8685 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8686 MemOp memop = scalar ? size : MO_32; 8687 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8688 8689 for (pass = 0; pass < maxpass; pass++) { 8690 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8691 8692 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8693 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8694 if (scalar) { 8695 switch (size) { 8696 case 0: 8697 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8698 break; 8699 case 1: 8700 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8701 break; 8702 case 2: 8703 break; 8704 default: 8705 g_assert_not_reached(); 8706 } 8707 write_fp_sreg(s, rd, tcg_op); 8708 } else { 8709 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8710 } 8711 } 8712 8713 if (!scalar) { 8714 clear_vec_high(s, is_q, rd); 8715 } 8716 } 8717 } 8718 8719 /* Common vector code for handling integer to FP conversion */ 8720 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8721 int elements, int is_signed, 8722 int fracbits, int size) 8723 { 8724 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8725 TCGv_i32 tcg_shift = NULL; 8726 8727 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8728 int pass; 8729 8730 if (fracbits || size == MO_64) { 8731 tcg_shift = tcg_constant_i32(fracbits); 8732 } 8733 8734 if (size == MO_64) { 8735 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8736 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8737 8738 for (pass = 0; pass < elements; pass++) { 8739 read_vec_element(s, tcg_int64, rn, pass, mop); 8740 8741 if (is_signed) { 8742 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8743 tcg_shift, tcg_fpst); 8744 } else { 8745 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8746 tcg_shift, tcg_fpst); 8747 } 8748 if (elements == 1) { 8749 write_fp_dreg(s, rd, tcg_double); 8750 } else { 8751 write_vec_element(s, tcg_double, rd, pass, MO_64); 8752 } 8753 } 8754 } else { 8755 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8756 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8757 8758 for (pass = 0; pass < elements; pass++) { 8759 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8760 8761 switch (size) { 8762 case MO_32: 8763 if (fracbits) { 8764 if (is_signed) { 8765 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8766 tcg_shift, tcg_fpst); 8767 } else { 8768 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8769 tcg_shift, tcg_fpst); 8770 } 8771 } else { 8772 if (is_signed) { 8773 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8774 } else { 8775 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8776 } 8777 } 8778 break; 8779 case MO_16: 8780 if (fracbits) { 8781 if (is_signed) { 8782 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8783 tcg_shift, tcg_fpst); 8784 } else { 8785 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8786 tcg_shift, tcg_fpst); 8787 } 8788 } else { 8789 if (is_signed) { 8790 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8791 } else { 8792 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8793 } 8794 } 8795 break; 8796 default: 8797 g_assert_not_reached(); 8798 } 8799 8800 if (elements == 1) { 8801 write_fp_sreg(s, rd, tcg_float); 8802 } else { 8803 write_vec_element_i32(s, tcg_float, rd, pass, size); 8804 } 8805 } 8806 } 8807 8808 clear_vec_high(s, elements << size == 16, rd); 8809 } 8810 8811 /* UCVTF/SCVTF - Integer to FP conversion */ 8812 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8813 bool is_q, bool is_u, 8814 int immh, int immb, int opcode, 8815 int rn, int rd) 8816 { 8817 int size, elements, fracbits; 8818 int immhb = immh << 3 | immb; 8819 8820 if (immh & 8) { 8821 size = MO_64; 8822 if (!is_scalar && !is_q) { 8823 unallocated_encoding(s); 8824 return; 8825 } 8826 } else if (immh & 4) { 8827 size = MO_32; 8828 } else if (immh & 2) { 8829 size = MO_16; 8830 if (!dc_isar_feature(aa64_fp16, s)) { 8831 unallocated_encoding(s); 8832 return; 8833 } 8834 } else { 8835 /* immh == 0 would be a failure of the decode logic */ 8836 g_assert(immh == 1); 8837 unallocated_encoding(s); 8838 return; 8839 } 8840 8841 if (is_scalar) { 8842 elements = 1; 8843 } else { 8844 elements = (8 << is_q) >> size; 8845 } 8846 fracbits = (16 << size) - immhb; 8847 8848 if (!fp_access_check(s)) { 8849 return; 8850 } 8851 8852 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8853 } 8854 8855 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8856 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8857 bool is_q, bool is_u, 8858 int immh, int immb, int rn, int rd) 8859 { 8860 int immhb = immh << 3 | immb; 8861 int pass, size, fracbits; 8862 TCGv_ptr tcg_fpstatus; 8863 TCGv_i32 tcg_rmode, tcg_shift; 8864 8865 if (immh & 0x8) { 8866 size = MO_64; 8867 if (!is_scalar && !is_q) { 8868 unallocated_encoding(s); 8869 return; 8870 } 8871 } else if (immh & 0x4) { 8872 size = MO_32; 8873 } else if (immh & 0x2) { 8874 size = MO_16; 8875 if (!dc_isar_feature(aa64_fp16, s)) { 8876 unallocated_encoding(s); 8877 return; 8878 } 8879 } else { 8880 /* Should have split out AdvSIMD modified immediate earlier. */ 8881 assert(immh == 1); 8882 unallocated_encoding(s); 8883 return; 8884 } 8885 8886 if (!fp_access_check(s)) { 8887 return; 8888 } 8889 8890 assert(!(is_scalar && is_q)); 8891 8892 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8893 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8894 fracbits = (16 << size) - immhb; 8895 tcg_shift = tcg_constant_i32(fracbits); 8896 8897 if (size == MO_64) { 8898 int maxpass = is_scalar ? 1 : 2; 8899 8900 for (pass = 0; pass < maxpass; pass++) { 8901 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8902 8903 read_vec_element(s, tcg_op, rn, pass, MO_64); 8904 if (is_u) { 8905 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8906 } else { 8907 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8908 } 8909 write_vec_element(s, tcg_op, rd, pass, MO_64); 8910 } 8911 clear_vec_high(s, is_q, rd); 8912 } else { 8913 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8914 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8915 8916 switch (size) { 8917 case MO_16: 8918 if (is_u) { 8919 fn = gen_helper_vfp_touhh; 8920 } else { 8921 fn = gen_helper_vfp_toshh; 8922 } 8923 break; 8924 case MO_32: 8925 if (is_u) { 8926 fn = gen_helper_vfp_touls; 8927 } else { 8928 fn = gen_helper_vfp_tosls; 8929 } 8930 break; 8931 default: 8932 g_assert_not_reached(); 8933 } 8934 8935 for (pass = 0; pass < maxpass; pass++) { 8936 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8937 8938 read_vec_element_i32(s, tcg_op, rn, pass, size); 8939 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8940 if (is_scalar) { 8941 if (size == MO_16 && !is_u) { 8942 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8943 } 8944 write_fp_sreg(s, rd, tcg_op); 8945 } else { 8946 write_vec_element_i32(s, tcg_op, rd, pass, size); 8947 } 8948 } 8949 if (!is_scalar) { 8950 clear_vec_high(s, is_q, rd); 8951 } 8952 } 8953 8954 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8955 } 8956 8957 /* AdvSIMD scalar shift by immediate 8958 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8959 * +-----+---+-------------+------+------+--------+---+------+------+ 8960 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8961 * +-----+---+-------------+------+------+--------+---+------+------+ 8962 * 8963 * This is the scalar version so it works on a fixed sized registers 8964 */ 8965 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8966 { 8967 int rd = extract32(insn, 0, 5); 8968 int rn = extract32(insn, 5, 5); 8969 int opcode = extract32(insn, 11, 5); 8970 int immb = extract32(insn, 16, 3); 8971 int immh = extract32(insn, 19, 4); 8972 bool is_u = extract32(insn, 29, 1); 8973 8974 if (immh == 0) { 8975 unallocated_encoding(s); 8976 return; 8977 } 8978 8979 switch (opcode) { 8980 case 0x08: /* SRI */ 8981 if (!is_u) { 8982 unallocated_encoding(s); 8983 return; 8984 } 8985 /* fall through */ 8986 case 0x00: /* SSHR / USHR */ 8987 case 0x02: /* SSRA / USRA */ 8988 case 0x04: /* SRSHR / URSHR */ 8989 case 0x06: /* SRSRA / URSRA */ 8990 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8991 break; 8992 case 0x0a: /* SHL / SLI */ 8993 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8994 break; 8995 case 0x1c: /* SCVTF, UCVTF */ 8996 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8997 opcode, rn, rd); 8998 break; 8999 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9000 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9001 if (!is_u) { 9002 unallocated_encoding(s); 9003 return; 9004 } 9005 handle_vec_simd_sqshrn(s, true, false, false, true, 9006 immh, immb, opcode, rn, rd); 9007 break; 9008 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9009 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9010 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9011 immh, immb, opcode, rn, rd); 9012 break; 9013 case 0xc: /* SQSHLU */ 9014 if (!is_u) { 9015 unallocated_encoding(s); 9016 return; 9017 } 9018 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9019 break; 9020 case 0xe: /* SQSHL, UQSHL */ 9021 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9022 break; 9023 case 0x1f: /* FCVTZS, FCVTZU */ 9024 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9025 break; 9026 default: 9027 unallocated_encoding(s); 9028 break; 9029 } 9030 } 9031 9032 /* AdvSIMD scalar three different 9033 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9034 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9035 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9036 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9037 */ 9038 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9039 { 9040 bool is_u = extract32(insn, 29, 1); 9041 int size = extract32(insn, 22, 2); 9042 int opcode = extract32(insn, 12, 4); 9043 int rm = extract32(insn, 16, 5); 9044 int rn = extract32(insn, 5, 5); 9045 int rd = extract32(insn, 0, 5); 9046 9047 if (is_u) { 9048 unallocated_encoding(s); 9049 return; 9050 } 9051 9052 switch (opcode) { 9053 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9054 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9055 case 0xd: /* SQDMULL, SQDMULL2 */ 9056 if (size == 0 || size == 3) { 9057 unallocated_encoding(s); 9058 return; 9059 } 9060 break; 9061 default: 9062 unallocated_encoding(s); 9063 return; 9064 } 9065 9066 if (!fp_access_check(s)) { 9067 return; 9068 } 9069 9070 if (size == 2) { 9071 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9072 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9073 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9074 9075 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9076 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9077 9078 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9079 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9080 9081 switch (opcode) { 9082 case 0xd: /* SQDMULL, SQDMULL2 */ 9083 break; 9084 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9085 tcg_gen_neg_i64(tcg_res, tcg_res); 9086 /* fall through */ 9087 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9088 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9089 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9090 tcg_res, tcg_op1); 9091 break; 9092 default: 9093 g_assert_not_reached(); 9094 } 9095 9096 write_fp_dreg(s, rd, tcg_res); 9097 } else { 9098 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9099 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9100 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9101 9102 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9103 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9104 9105 switch (opcode) { 9106 case 0xd: /* SQDMULL, SQDMULL2 */ 9107 break; 9108 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9109 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9110 /* fall through */ 9111 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9112 { 9113 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9114 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9115 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9116 tcg_res, tcg_op3); 9117 break; 9118 } 9119 default: 9120 g_assert_not_reached(); 9121 } 9122 9123 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9124 write_fp_dreg(s, rd, tcg_res); 9125 } 9126 } 9127 9128 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9129 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9130 { 9131 /* Handle 64x64->64 opcodes which are shared between the scalar 9132 * and vector 3-same groups. We cover every opcode where size == 3 9133 * is valid in either the three-reg-same (integer, not pairwise) 9134 * or scalar-three-reg-same groups. 9135 */ 9136 TCGCond cond; 9137 9138 switch (opcode) { 9139 case 0x1: /* SQADD */ 9140 if (u) { 9141 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9142 } else { 9143 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9144 } 9145 break; 9146 case 0x5: /* SQSUB */ 9147 if (u) { 9148 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9149 } else { 9150 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9151 } 9152 break; 9153 case 0x6: /* CMGT, CMHI */ 9154 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9155 do_cmop: 9156 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9157 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9158 break; 9159 case 0x7: /* CMGE, CMHS */ 9160 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9161 goto do_cmop; 9162 case 0x11: /* CMTST, CMEQ */ 9163 if (u) { 9164 cond = TCG_COND_EQ; 9165 goto do_cmop; 9166 } 9167 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9168 break; 9169 case 0x8: /* SSHL, USHL */ 9170 if (u) { 9171 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9172 } else { 9173 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9174 } 9175 break; 9176 case 0x9: /* SQSHL, UQSHL */ 9177 if (u) { 9178 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9179 } else { 9180 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9181 } 9182 break; 9183 case 0xa: /* SRSHL, URSHL */ 9184 if (u) { 9185 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9186 } else { 9187 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9188 } 9189 break; 9190 case 0xb: /* SQRSHL, UQRSHL */ 9191 if (u) { 9192 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9193 } else { 9194 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9195 } 9196 break; 9197 case 0x10: /* ADD, SUB */ 9198 if (u) { 9199 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9200 } else { 9201 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9202 } 9203 break; 9204 default: 9205 g_assert_not_reached(); 9206 } 9207 } 9208 9209 /* Handle the 3-same-operands float operations; shared by the scalar 9210 * and vector encodings. The caller must filter out any encodings 9211 * not allocated for the encoding it is dealing with. 9212 */ 9213 static void handle_3same_float(DisasContext *s, int size, int elements, 9214 int fpopcode, int rd, int rn, int rm) 9215 { 9216 int pass; 9217 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9218 9219 for (pass = 0; pass < elements; pass++) { 9220 if (size) { 9221 /* Double */ 9222 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9223 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9224 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9225 9226 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9227 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9228 9229 switch (fpopcode) { 9230 case 0x1c: /* FCMEQ */ 9231 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9232 break; 9233 case 0x1f: /* FRECPS */ 9234 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9235 break; 9236 case 0x3f: /* FRSQRTS */ 9237 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9238 break; 9239 case 0x5c: /* FCMGE */ 9240 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9241 break; 9242 case 0x5d: /* FACGE */ 9243 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9244 break; 9245 case 0x7a: /* FABD */ 9246 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9247 gen_vfp_absd(tcg_res, tcg_res); 9248 break; 9249 case 0x7c: /* FCMGT */ 9250 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9251 break; 9252 case 0x7d: /* FACGT */ 9253 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9254 break; 9255 default: 9256 case 0x18: /* FMAXNM */ 9257 case 0x19: /* FMLA */ 9258 case 0x1a: /* FADD */ 9259 case 0x1b: /* FMULX */ 9260 case 0x1e: /* FMAX */ 9261 case 0x38: /* FMINNM */ 9262 case 0x39: /* FMLS */ 9263 case 0x3a: /* FSUB */ 9264 case 0x3e: /* FMIN */ 9265 case 0x5b: /* FMUL */ 9266 case 0x5f: /* FDIV */ 9267 g_assert_not_reached(); 9268 } 9269 9270 write_vec_element(s, tcg_res, rd, pass, MO_64); 9271 } else { 9272 /* Single */ 9273 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9274 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9275 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9276 9277 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9278 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9279 9280 switch (fpopcode) { 9281 case 0x1c: /* FCMEQ */ 9282 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9283 break; 9284 case 0x1f: /* FRECPS */ 9285 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9286 break; 9287 case 0x3f: /* FRSQRTS */ 9288 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9289 break; 9290 case 0x5c: /* FCMGE */ 9291 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9292 break; 9293 case 0x5d: /* FACGE */ 9294 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9295 break; 9296 case 0x7a: /* FABD */ 9297 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9298 gen_vfp_abss(tcg_res, tcg_res); 9299 break; 9300 case 0x7c: /* FCMGT */ 9301 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9302 break; 9303 case 0x7d: /* FACGT */ 9304 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9305 break; 9306 default: 9307 case 0x18: /* FMAXNM */ 9308 case 0x19: /* FMLA */ 9309 case 0x1a: /* FADD */ 9310 case 0x1b: /* FMULX */ 9311 case 0x1e: /* FMAX */ 9312 case 0x38: /* FMINNM */ 9313 case 0x39: /* FMLS */ 9314 case 0x3a: /* FSUB */ 9315 case 0x3e: /* FMIN */ 9316 case 0x5b: /* FMUL */ 9317 case 0x5f: /* FDIV */ 9318 g_assert_not_reached(); 9319 } 9320 9321 if (elements == 1) { 9322 /* scalar single so clear high part */ 9323 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9324 9325 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9326 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9327 } else { 9328 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9329 } 9330 } 9331 } 9332 9333 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9334 } 9335 9336 /* AdvSIMD scalar three same 9337 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9338 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9339 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9340 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9341 */ 9342 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9343 { 9344 int rd = extract32(insn, 0, 5); 9345 int rn = extract32(insn, 5, 5); 9346 int opcode = extract32(insn, 11, 5); 9347 int rm = extract32(insn, 16, 5); 9348 int size = extract32(insn, 22, 2); 9349 bool u = extract32(insn, 29, 1); 9350 TCGv_i64 tcg_rd; 9351 9352 if (opcode >= 0x18) { 9353 /* Floating point: U, size[1] and opcode indicate operation */ 9354 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9355 switch (fpopcode) { 9356 case 0x1f: /* FRECPS */ 9357 case 0x3f: /* FRSQRTS */ 9358 case 0x5d: /* FACGE */ 9359 case 0x7d: /* FACGT */ 9360 case 0x1c: /* FCMEQ */ 9361 case 0x5c: /* FCMGE */ 9362 case 0x7c: /* FCMGT */ 9363 case 0x7a: /* FABD */ 9364 break; 9365 default: 9366 case 0x1b: /* FMULX */ 9367 unallocated_encoding(s); 9368 return; 9369 } 9370 9371 if (!fp_access_check(s)) { 9372 return; 9373 } 9374 9375 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9376 return; 9377 } 9378 9379 switch (opcode) { 9380 case 0x1: /* SQADD, UQADD */ 9381 case 0x5: /* SQSUB, UQSUB */ 9382 case 0x9: /* SQSHL, UQSHL */ 9383 case 0xb: /* SQRSHL, UQRSHL */ 9384 break; 9385 case 0x8: /* SSHL, USHL */ 9386 case 0xa: /* SRSHL, URSHL */ 9387 case 0x6: /* CMGT, CMHI */ 9388 case 0x7: /* CMGE, CMHS */ 9389 case 0x11: /* CMTST, CMEQ */ 9390 case 0x10: /* ADD, SUB (vector) */ 9391 if (size != 3) { 9392 unallocated_encoding(s); 9393 return; 9394 } 9395 break; 9396 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9397 if (size != 1 && size != 2) { 9398 unallocated_encoding(s); 9399 return; 9400 } 9401 break; 9402 default: 9403 unallocated_encoding(s); 9404 return; 9405 } 9406 9407 if (!fp_access_check(s)) { 9408 return; 9409 } 9410 9411 tcg_rd = tcg_temp_new_i64(); 9412 9413 if (size == 3) { 9414 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9415 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9416 9417 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9418 } else { 9419 /* Do a single operation on the lowest element in the vector. 9420 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9421 * no side effects for all these operations. 9422 * OPTME: special-purpose helpers would avoid doing some 9423 * unnecessary work in the helper for the 8 and 16 bit cases. 9424 */ 9425 NeonGenTwoOpEnvFn *genenvfn; 9426 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9427 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9428 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9429 9430 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9431 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9432 9433 switch (opcode) { 9434 case 0x1: /* SQADD, UQADD */ 9435 { 9436 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9437 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9438 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9439 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9440 }; 9441 genenvfn = fns[size][u]; 9442 break; 9443 } 9444 case 0x5: /* SQSUB, UQSUB */ 9445 { 9446 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9447 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9448 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9449 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9450 }; 9451 genenvfn = fns[size][u]; 9452 break; 9453 } 9454 case 0x9: /* SQSHL, UQSHL */ 9455 { 9456 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9457 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9458 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9459 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9460 }; 9461 genenvfn = fns[size][u]; 9462 break; 9463 } 9464 case 0xb: /* SQRSHL, UQRSHL */ 9465 { 9466 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9467 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9468 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9469 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9470 }; 9471 genenvfn = fns[size][u]; 9472 break; 9473 } 9474 case 0x16: /* SQDMULH, SQRDMULH */ 9475 { 9476 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9477 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9478 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9479 }; 9480 assert(size == 1 || size == 2); 9481 genenvfn = fns[size - 1][u]; 9482 break; 9483 } 9484 default: 9485 g_assert_not_reached(); 9486 } 9487 9488 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9489 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9490 } 9491 9492 write_fp_dreg(s, rd, tcg_rd); 9493 } 9494 9495 /* AdvSIMD scalar three same FP16 9496 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9497 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9498 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9499 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9500 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9501 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9502 */ 9503 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9504 uint32_t insn) 9505 { 9506 int rd = extract32(insn, 0, 5); 9507 int rn = extract32(insn, 5, 5); 9508 int opcode = extract32(insn, 11, 3); 9509 int rm = extract32(insn, 16, 5); 9510 bool u = extract32(insn, 29, 1); 9511 bool a = extract32(insn, 23, 1); 9512 int fpopcode = opcode | (a << 3) | (u << 4); 9513 TCGv_ptr fpst; 9514 TCGv_i32 tcg_op1; 9515 TCGv_i32 tcg_op2; 9516 TCGv_i32 tcg_res; 9517 9518 switch (fpopcode) { 9519 case 0x04: /* FCMEQ (reg) */ 9520 case 0x07: /* FRECPS */ 9521 case 0x0f: /* FRSQRTS */ 9522 case 0x14: /* FCMGE (reg) */ 9523 case 0x15: /* FACGE */ 9524 case 0x1a: /* FABD */ 9525 case 0x1c: /* FCMGT (reg) */ 9526 case 0x1d: /* FACGT */ 9527 break; 9528 default: 9529 case 0x03: /* FMULX */ 9530 unallocated_encoding(s); 9531 return; 9532 } 9533 9534 if (!dc_isar_feature(aa64_fp16, s)) { 9535 unallocated_encoding(s); 9536 } 9537 9538 if (!fp_access_check(s)) { 9539 return; 9540 } 9541 9542 fpst = fpstatus_ptr(FPST_FPCR_F16); 9543 9544 tcg_op1 = read_fp_hreg(s, rn); 9545 tcg_op2 = read_fp_hreg(s, rm); 9546 tcg_res = tcg_temp_new_i32(); 9547 9548 switch (fpopcode) { 9549 case 0x04: /* FCMEQ (reg) */ 9550 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9551 break; 9552 case 0x07: /* FRECPS */ 9553 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9554 break; 9555 case 0x0f: /* FRSQRTS */ 9556 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9557 break; 9558 case 0x14: /* FCMGE (reg) */ 9559 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9560 break; 9561 case 0x15: /* FACGE */ 9562 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9563 break; 9564 case 0x1a: /* FABD */ 9565 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9566 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9567 break; 9568 case 0x1c: /* FCMGT (reg) */ 9569 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9570 break; 9571 case 0x1d: /* FACGT */ 9572 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9573 break; 9574 default: 9575 case 0x03: /* FMULX */ 9576 g_assert_not_reached(); 9577 } 9578 9579 write_fp_sreg(s, rd, tcg_res); 9580 } 9581 9582 /* AdvSIMD scalar three same extra 9583 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9584 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9585 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9586 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9587 */ 9588 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9589 uint32_t insn) 9590 { 9591 int rd = extract32(insn, 0, 5); 9592 int rn = extract32(insn, 5, 5); 9593 int opcode = extract32(insn, 11, 4); 9594 int rm = extract32(insn, 16, 5); 9595 int size = extract32(insn, 22, 2); 9596 bool u = extract32(insn, 29, 1); 9597 TCGv_i32 ele1, ele2, ele3; 9598 TCGv_i64 res; 9599 bool feature; 9600 9601 switch (u * 16 + opcode) { 9602 case 0x10: /* SQRDMLAH (vector) */ 9603 case 0x11: /* SQRDMLSH (vector) */ 9604 if (size != 1 && size != 2) { 9605 unallocated_encoding(s); 9606 return; 9607 } 9608 feature = dc_isar_feature(aa64_rdm, s); 9609 break; 9610 default: 9611 unallocated_encoding(s); 9612 return; 9613 } 9614 if (!feature) { 9615 unallocated_encoding(s); 9616 return; 9617 } 9618 if (!fp_access_check(s)) { 9619 return; 9620 } 9621 9622 /* Do a single operation on the lowest element in the vector. 9623 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9624 * with no side effects for all these operations. 9625 * OPTME: special-purpose helpers would avoid doing some 9626 * unnecessary work in the helper for the 16 bit cases. 9627 */ 9628 ele1 = tcg_temp_new_i32(); 9629 ele2 = tcg_temp_new_i32(); 9630 ele3 = tcg_temp_new_i32(); 9631 9632 read_vec_element_i32(s, ele1, rn, 0, size); 9633 read_vec_element_i32(s, ele2, rm, 0, size); 9634 read_vec_element_i32(s, ele3, rd, 0, size); 9635 9636 switch (opcode) { 9637 case 0x0: /* SQRDMLAH */ 9638 if (size == 1) { 9639 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9640 } else { 9641 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9642 } 9643 break; 9644 case 0x1: /* SQRDMLSH */ 9645 if (size == 1) { 9646 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9647 } else { 9648 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9649 } 9650 break; 9651 default: 9652 g_assert_not_reached(); 9653 } 9654 9655 res = tcg_temp_new_i64(); 9656 tcg_gen_extu_i32_i64(res, ele3); 9657 write_fp_dreg(s, rd, res); 9658 } 9659 9660 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9661 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9662 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9663 { 9664 /* Handle 64->64 opcodes which are shared between the scalar and 9665 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9666 * is valid in either group and also the double-precision fp ops. 9667 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9668 * requires them. 9669 */ 9670 TCGCond cond; 9671 9672 switch (opcode) { 9673 case 0x4: /* CLS, CLZ */ 9674 if (u) { 9675 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9676 } else { 9677 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9678 } 9679 break; 9680 case 0x5: /* NOT */ 9681 /* This opcode is shared with CNT and RBIT but we have earlier 9682 * enforced that size == 3 if and only if this is the NOT insn. 9683 */ 9684 tcg_gen_not_i64(tcg_rd, tcg_rn); 9685 break; 9686 case 0x7: /* SQABS, SQNEG */ 9687 if (u) { 9688 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9689 } else { 9690 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9691 } 9692 break; 9693 case 0xa: /* CMLT */ 9694 cond = TCG_COND_LT; 9695 do_cmop: 9696 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9697 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9698 break; 9699 case 0x8: /* CMGT, CMGE */ 9700 cond = u ? TCG_COND_GE : TCG_COND_GT; 9701 goto do_cmop; 9702 case 0x9: /* CMEQ, CMLE */ 9703 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9704 goto do_cmop; 9705 case 0xb: /* ABS, NEG */ 9706 if (u) { 9707 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9708 } else { 9709 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9710 } 9711 break; 9712 case 0x2f: /* FABS */ 9713 gen_vfp_absd(tcg_rd, tcg_rn); 9714 break; 9715 case 0x6f: /* FNEG */ 9716 gen_vfp_negd(tcg_rd, tcg_rn); 9717 break; 9718 case 0x7f: /* FSQRT */ 9719 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9720 break; 9721 case 0x1a: /* FCVTNS */ 9722 case 0x1b: /* FCVTMS */ 9723 case 0x1c: /* FCVTAS */ 9724 case 0x3a: /* FCVTPS */ 9725 case 0x3b: /* FCVTZS */ 9726 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9727 break; 9728 case 0x5a: /* FCVTNU */ 9729 case 0x5b: /* FCVTMU */ 9730 case 0x5c: /* FCVTAU */ 9731 case 0x7a: /* FCVTPU */ 9732 case 0x7b: /* FCVTZU */ 9733 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9734 break; 9735 case 0x18: /* FRINTN */ 9736 case 0x19: /* FRINTM */ 9737 case 0x38: /* FRINTP */ 9738 case 0x39: /* FRINTZ */ 9739 case 0x58: /* FRINTA */ 9740 case 0x79: /* FRINTI */ 9741 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9742 break; 9743 case 0x59: /* FRINTX */ 9744 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9745 break; 9746 case 0x1e: /* FRINT32Z */ 9747 case 0x5e: /* FRINT32X */ 9748 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9749 break; 9750 case 0x1f: /* FRINT64Z */ 9751 case 0x5f: /* FRINT64X */ 9752 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9753 break; 9754 default: 9755 g_assert_not_reached(); 9756 } 9757 } 9758 9759 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9760 bool is_scalar, bool is_u, bool is_q, 9761 int size, int rn, int rd) 9762 { 9763 bool is_double = (size == MO_64); 9764 TCGv_ptr fpst; 9765 9766 if (!fp_access_check(s)) { 9767 return; 9768 } 9769 9770 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9771 9772 if (is_double) { 9773 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9774 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9775 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9776 NeonGenTwoDoubleOpFn *genfn; 9777 bool swap = false; 9778 int pass; 9779 9780 switch (opcode) { 9781 case 0x2e: /* FCMLT (zero) */ 9782 swap = true; 9783 /* fallthrough */ 9784 case 0x2c: /* FCMGT (zero) */ 9785 genfn = gen_helper_neon_cgt_f64; 9786 break; 9787 case 0x2d: /* FCMEQ (zero) */ 9788 genfn = gen_helper_neon_ceq_f64; 9789 break; 9790 case 0x6d: /* FCMLE (zero) */ 9791 swap = true; 9792 /* fall through */ 9793 case 0x6c: /* FCMGE (zero) */ 9794 genfn = gen_helper_neon_cge_f64; 9795 break; 9796 default: 9797 g_assert_not_reached(); 9798 } 9799 9800 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9801 read_vec_element(s, tcg_op, rn, pass, MO_64); 9802 if (swap) { 9803 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9804 } else { 9805 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9806 } 9807 write_vec_element(s, tcg_res, rd, pass, MO_64); 9808 } 9809 9810 clear_vec_high(s, !is_scalar, rd); 9811 } else { 9812 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9813 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9814 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9815 NeonGenTwoSingleOpFn *genfn; 9816 bool swap = false; 9817 int pass, maxpasses; 9818 9819 if (size == MO_16) { 9820 switch (opcode) { 9821 case 0x2e: /* FCMLT (zero) */ 9822 swap = true; 9823 /* fall through */ 9824 case 0x2c: /* FCMGT (zero) */ 9825 genfn = gen_helper_advsimd_cgt_f16; 9826 break; 9827 case 0x2d: /* FCMEQ (zero) */ 9828 genfn = gen_helper_advsimd_ceq_f16; 9829 break; 9830 case 0x6d: /* FCMLE (zero) */ 9831 swap = true; 9832 /* fall through */ 9833 case 0x6c: /* FCMGE (zero) */ 9834 genfn = gen_helper_advsimd_cge_f16; 9835 break; 9836 default: 9837 g_assert_not_reached(); 9838 } 9839 } else { 9840 switch (opcode) { 9841 case 0x2e: /* FCMLT (zero) */ 9842 swap = true; 9843 /* fall through */ 9844 case 0x2c: /* FCMGT (zero) */ 9845 genfn = gen_helper_neon_cgt_f32; 9846 break; 9847 case 0x2d: /* FCMEQ (zero) */ 9848 genfn = gen_helper_neon_ceq_f32; 9849 break; 9850 case 0x6d: /* FCMLE (zero) */ 9851 swap = true; 9852 /* fall through */ 9853 case 0x6c: /* FCMGE (zero) */ 9854 genfn = gen_helper_neon_cge_f32; 9855 break; 9856 default: 9857 g_assert_not_reached(); 9858 } 9859 } 9860 9861 if (is_scalar) { 9862 maxpasses = 1; 9863 } else { 9864 int vector_size = 8 << is_q; 9865 maxpasses = vector_size >> size; 9866 } 9867 9868 for (pass = 0; pass < maxpasses; pass++) { 9869 read_vec_element_i32(s, tcg_op, rn, pass, size); 9870 if (swap) { 9871 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9872 } else { 9873 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9874 } 9875 if (is_scalar) { 9876 write_fp_sreg(s, rd, tcg_res); 9877 } else { 9878 write_vec_element_i32(s, tcg_res, rd, pass, size); 9879 } 9880 } 9881 9882 if (!is_scalar) { 9883 clear_vec_high(s, is_q, rd); 9884 } 9885 } 9886 } 9887 9888 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9889 bool is_scalar, bool is_u, bool is_q, 9890 int size, int rn, int rd) 9891 { 9892 bool is_double = (size == 3); 9893 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9894 9895 if (is_double) { 9896 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9897 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9898 int pass; 9899 9900 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9901 read_vec_element(s, tcg_op, rn, pass, MO_64); 9902 switch (opcode) { 9903 case 0x3d: /* FRECPE */ 9904 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9905 break; 9906 case 0x3f: /* FRECPX */ 9907 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9908 break; 9909 case 0x7d: /* FRSQRTE */ 9910 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9911 break; 9912 default: 9913 g_assert_not_reached(); 9914 } 9915 write_vec_element(s, tcg_res, rd, pass, MO_64); 9916 } 9917 clear_vec_high(s, !is_scalar, rd); 9918 } else { 9919 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9920 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9921 int pass, maxpasses; 9922 9923 if (is_scalar) { 9924 maxpasses = 1; 9925 } else { 9926 maxpasses = is_q ? 4 : 2; 9927 } 9928 9929 for (pass = 0; pass < maxpasses; pass++) { 9930 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9931 9932 switch (opcode) { 9933 case 0x3c: /* URECPE */ 9934 gen_helper_recpe_u32(tcg_res, tcg_op); 9935 break; 9936 case 0x3d: /* FRECPE */ 9937 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9938 break; 9939 case 0x3f: /* FRECPX */ 9940 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9941 break; 9942 case 0x7d: /* FRSQRTE */ 9943 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9944 break; 9945 default: 9946 g_assert_not_reached(); 9947 } 9948 9949 if (is_scalar) { 9950 write_fp_sreg(s, rd, tcg_res); 9951 } else { 9952 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9953 } 9954 } 9955 if (!is_scalar) { 9956 clear_vec_high(s, is_q, rd); 9957 } 9958 } 9959 } 9960 9961 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9962 int opcode, bool u, bool is_q, 9963 int size, int rn, int rd) 9964 { 9965 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9966 * in the source becomes a size element in the destination). 9967 */ 9968 int pass; 9969 TCGv_i32 tcg_res[2]; 9970 int destelt = is_q ? 2 : 0; 9971 int passes = scalar ? 1 : 2; 9972 9973 if (scalar) { 9974 tcg_res[1] = tcg_constant_i32(0); 9975 } 9976 9977 for (pass = 0; pass < passes; pass++) { 9978 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9979 NeonGenNarrowFn *genfn = NULL; 9980 NeonGenNarrowEnvFn *genenvfn = NULL; 9981 9982 if (scalar) { 9983 read_vec_element(s, tcg_op, rn, pass, size + 1); 9984 } else { 9985 read_vec_element(s, tcg_op, rn, pass, MO_64); 9986 } 9987 tcg_res[pass] = tcg_temp_new_i32(); 9988 9989 switch (opcode) { 9990 case 0x12: /* XTN, SQXTUN */ 9991 { 9992 static NeonGenNarrowFn * const xtnfns[3] = { 9993 gen_helper_neon_narrow_u8, 9994 gen_helper_neon_narrow_u16, 9995 tcg_gen_extrl_i64_i32, 9996 }; 9997 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9998 gen_helper_neon_unarrow_sat8, 9999 gen_helper_neon_unarrow_sat16, 10000 gen_helper_neon_unarrow_sat32, 10001 }; 10002 if (u) { 10003 genenvfn = sqxtunfns[size]; 10004 } else { 10005 genfn = xtnfns[size]; 10006 } 10007 break; 10008 } 10009 case 0x14: /* SQXTN, UQXTN */ 10010 { 10011 static NeonGenNarrowEnvFn * const fns[3][2] = { 10012 { gen_helper_neon_narrow_sat_s8, 10013 gen_helper_neon_narrow_sat_u8 }, 10014 { gen_helper_neon_narrow_sat_s16, 10015 gen_helper_neon_narrow_sat_u16 }, 10016 { gen_helper_neon_narrow_sat_s32, 10017 gen_helper_neon_narrow_sat_u32 }, 10018 }; 10019 genenvfn = fns[size][u]; 10020 break; 10021 } 10022 case 0x16: /* FCVTN, FCVTN2 */ 10023 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10024 if (size == 2) { 10025 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 10026 } else { 10027 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10028 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10029 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10030 TCGv_i32 ahp = get_ahp_flag(); 10031 10032 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10033 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10034 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10035 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10036 } 10037 break; 10038 case 0x36: /* BFCVTN, BFCVTN2 */ 10039 { 10040 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10041 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10042 } 10043 break; 10044 case 0x56: /* FCVTXN, FCVTXN2 */ 10045 /* 64 bit to 32 bit float conversion 10046 * with von Neumann rounding (round to odd) 10047 */ 10048 assert(size == 2); 10049 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10050 break; 10051 default: 10052 g_assert_not_reached(); 10053 } 10054 10055 if (genfn) { 10056 genfn(tcg_res[pass], tcg_op); 10057 } else if (genenvfn) { 10058 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10059 } 10060 } 10061 10062 for (pass = 0; pass < 2; pass++) { 10063 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10064 } 10065 clear_vec_high(s, is_q, rd); 10066 } 10067 10068 /* Remaining saturating accumulating ops */ 10069 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10070 bool is_q, int size, int rn, int rd) 10071 { 10072 bool is_double = (size == 3); 10073 10074 if (is_double) { 10075 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10076 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10077 int pass; 10078 10079 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10080 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10081 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10082 10083 if (is_u) { /* USQADD */ 10084 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10085 } else { /* SUQADD */ 10086 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10087 } 10088 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10089 } 10090 clear_vec_high(s, !is_scalar, rd); 10091 } else { 10092 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10093 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10094 int pass, maxpasses; 10095 10096 if (is_scalar) { 10097 maxpasses = 1; 10098 } else { 10099 maxpasses = is_q ? 4 : 2; 10100 } 10101 10102 for (pass = 0; pass < maxpasses; pass++) { 10103 if (is_scalar) { 10104 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10105 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10106 } else { 10107 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10108 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10109 } 10110 10111 if (is_u) { /* USQADD */ 10112 switch (size) { 10113 case 0: 10114 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10115 break; 10116 case 1: 10117 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10118 break; 10119 case 2: 10120 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10121 break; 10122 default: 10123 g_assert_not_reached(); 10124 } 10125 } else { /* SUQADD */ 10126 switch (size) { 10127 case 0: 10128 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10129 break; 10130 case 1: 10131 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10132 break; 10133 case 2: 10134 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10135 break; 10136 default: 10137 g_assert_not_reached(); 10138 } 10139 } 10140 10141 if (is_scalar) { 10142 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10143 } 10144 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10145 } 10146 clear_vec_high(s, is_q, rd); 10147 } 10148 } 10149 10150 /* AdvSIMD scalar two reg misc 10151 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10152 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10153 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10154 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10155 */ 10156 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10157 { 10158 int rd = extract32(insn, 0, 5); 10159 int rn = extract32(insn, 5, 5); 10160 int opcode = extract32(insn, 12, 5); 10161 int size = extract32(insn, 22, 2); 10162 bool u = extract32(insn, 29, 1); 10163 bool is_fcvt = false; 10164 int rmode; 10165 TCGv_i32 tcg_rmode; 10166 TCGv_ptr tcg_fpstatus; 10167 10168 switch (opcode) { 10169 case 0x3: /* USQADD / SUQADD*/ 10170 if (!fp_access_check(s)) { 10171 return; 10172 } 10173 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10174 return; 10175 case 0x7: /* SQABS / SQNEG */ 10176 break; 10177 case 0xa: /* CMLT */ 10178 if (u) { 10179 unallocated_encoding(s); 10180 return; 10181 } 10182 /* fall through */ 10183 case 0x8: /* CMGT, CMGE */ 10184 case 0x9: /* CMEQ, CMLE */ 10185 case 0xb: /* ABS, NEG */ 10186 if (size != 3) { 10187 unallocated_encoding(s); 10188 return; 10189 } 10190 break; 10191 case 0x12: /* SQXTUN */ 10192 if (!u) { 10193 unallocated_encoding(s); 10194 return; 10195 } 10196 /* fall through */ 10197 case 0x14: /* SQXTN, UQXTN */ 10198 if (size == 3) { 10199 unallocated_encoding(s); 10200 return; 10201 } 10202 if (!fp_access_check(s)) { 10203 return; 10204 } 10205 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10206 return; 10207 case 0xc ... 0xf: 10208 case 0x16 ... 0x1d: 10209 case 0x1f: 10210 /* Floating point: U, size[1] and opcode indicate operation; 10211 * size[0] indicates single or double precision. 10212 */ 10213 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10214 size = extract32(size, 0, 1) ? 3 : 2; 10215 switch (opcode) { 10216 case 0x2c: /* FCMGT (zero) */ 10217 case 0x2d: /* FCMEQ (zero) */ 10218 case 0x2e: /* FCMLT (zero) */ 10219 case 0x6c: /* FCMGE (zero) */ 10220 case 0x6d: /* FCMLE (zero) */ 10221 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10222 return; 10223 case 0x1d: /* SCVTF */ 10224 case 0x5d: /* UCVTF */ 10225 { 10226 bool is_signed = (opcode == 0x1d); 10227 if (!fp_access_check(s)) { 10228 return; 10229 } 10230 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10231 return; 10232 } 10233 case 0x3d: /* FRECPE */ 10234 case 0x3f: /* FRECPX */ 10235 case 0x7d: /* FRSQRTE */ 10236 if (!fp_access_check(s)) { 10237 return; 10238 } 10239 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10240 return; 10241 case 0x1a: /* FCVTNS */ 10242 case 0x1b: /* FCVTMS */ 10243 case 0x3a: /* FCVTPS */ 10244 case 0x3b: /* FCVTZS */ 10245 case 0x5a: /* FCVTNU */ 10246 case 0x5b: /* FCVTMU */ 10247 case 0x7a: /* FCVTPU */ 10248 case 0x7b: /* FCVTZU */ 10249 is_fcvt = true; 10250 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10251 break; 10252 case 0x1c: /* FCVTAS */ 10253 case 0x5c: /* FCVTAU */ 10254 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10255 is_fcvt = true; 10256 rmode = FPROUNDING_TIEAWAY; 10257 break; 10258 case 0x56: /* FCVTXN, FCVTXN2 */ 10259 if (size == 2) { 10260 unallocated_encoding(s); 10261 return; 10262 } 10263 if (!fp_access_check(s)) { 10264 return; 10265 } 10266 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10267 return; 10268 default: 10269 unallocated_encoding(s); 10270 return; 10271 } 10272 break; 10273 default: 10274 unallocated_encoding(s); 10275 return; 10276 } 10277 10278 if (!fp_access_check(s)) { 10279 return; 10280 } 10281 10282 if (is_fcvt) { 10283 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10284 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10285 } else { 10286 tcg_fpstatus = NULL; 10287 tcg_rmode = NULL; 10288 } 10289 10290 if (size == 3) { 10291 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10292 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10293 10294 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10295 write_fp_dreg(s, rd, tcg_rd); 10296 } else { 10297 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10298 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10299 10300 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10301 10302 switch (opcode) { 10303 case 0x7: /* SQABS, SQNEG */ 10304 { 10305 NeonGenOneOpEnvFn *genfn; 10306 static NeonGenOneOpEnvFn * const fns[3][2] = { 10307 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10308 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10309 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10310 }; 10311 genfn = fns[size][u]; 10312 genfn(tcg_rd, tcg_env, tcg_rn); 10313 break; 10314 } 10315 case 0x1a: /* FCVTNS */ 10316 case 0x1b: /* FCVTMS */ 10317 case 0x1c: /* FCVTAS */ 10318 case 0x3a: /* FCVTPS */ 10319 case 0x3b: /* FCVTZS */ 10320 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10321 tcg_fpstatus); 10322 break; 10323 case 0x5a: /* FCVTNU */ 10324 case 0x5b: /* FCVTMU */ 10325 case 0x5c: /* FCVTAU */ 10326 case 0x7a: /* FCVTPU */ 10327 case 0x7b: /* FCVTZU */ 10328 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10329 tcg_fpstatus); 10330 break; 10331 default: 10332 g_assert_not_reached(); 10333 } 10334 10335 write_fp_sreg(s, rd, tcg_rd); 10336 } 10337 10338 if (is_fcvt) { 10339 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10340 } 10341 } 10342 10343 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10344 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10345 int immh, int immb, int opcode, int rn, int rd) 10346 { 10347 int size = 32 - clz32(immh) - 1; 10348 int immhb = immh << 3 | immb; 10349 int shift = 2 * (8 << size) - immhb; 10350 GVecGen2iFn *gvec_fn; 10351 10352 if (extract32(immh, 3, 1) && !is_q) { 10353 unallocated_encoding(s); 10354 return; 10355 } 10356 tcg_debug_assert(size <= 3); 10357 10358 if (!fp_access_check(s)) { 10359 return; 10360 } 10361 10362 switch (opcode) { 10363 case 0x02: /* SSRA / USRA (accumulate) */ 10364 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10365 break; 10366 10367 case 0x08: /* SRI */ 10368 gvec_fn = gen_gvec_sri; 10369 break; 10370 10371 case 0x00: /* SSHR / USHR */ 10372 if (is_u) { 10373 if (shift == 8 << size) { 10374 /* Shift count the same size as element size produces zero. */ 10375 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10376 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10377 return; 10378 } 10379 gvec_fn = tcg_gen_gvec_shri; 10380 } else { 10381 /* Shift count the same size as element size produces all sign. */ 10382 if (shift == 8 << size) { 10383 shift -= 1; 10384 } 10385 gvec_fn = tcg_gen_gvec_sari; 10386 } 10387 break; 10388 10389 case 0x04: /* SRSHR / URSHR (rounding) */ 10390 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10391 break; 10392 10393 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10394 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10395 break; 10396 10397 default: 10398 g_assert_not_reached(); 10399 } 10400 10401 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10402 } 10403 10404 /* SHL/SLI - Vector shift left */ 10405 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10406 int immh, int immb, int opcode, int rn, int rd) 10407 { 10408 int size = 32 - clz32(immh) - 1; 10409 int immhb = immh << 3 | immb; 10410 int shift = immhb - (8 << size); 10411 10412 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10413 assert(size >= 0 && size <= 3); 10414 10415 if (extract32(immh, 3, 1) && !is_q) { 10416 unallocated_encoding(s); 10417 return; 10418 } 10419 10420 if (!fp_access_check(s)) { 10421 return; 10422 } 10423 10424 if (insert) { 10425 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10426 } else { 10427 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10428 } 10429 } 10430 10431 /* USHLL/SHLL - Vector shift left with widening */ 10432 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10433 int immh, int immb, int opcode, int rn, int rd) 10434 { 10435 int size = 32 - clz32(immh) - 1; 10436 int immhb = immh << 3 | immb; 10437 int shift = immhb - (8 << size); 10438 int dsize = 64; 10439 int esize = 8 << size; 10440 int elements = dsize/esize; 10441 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10442 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10443 int i; 10444 10445 if (size >= 3) { 10446 unallocated_encoding(s); 10447 return; 10448 } 10449 10450 if (!fp_access_check(s)) { 10451 return; 10452 } 10453 10454 /* For the LL variants the store is larger than the load, 10455 * so if rd == rn we would overwrite parts of our input. 10456 * So load everything right now and use shifts in the main loop. 10457 */ 10458 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10459 10460 for (i = 0; i < elements; i++) { 10461 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10462 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10463 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10464 write_vec_element(s, tcg_rd, rd, i, size + 1); 10465 } 10466 } 10467 10468 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10469 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10470 int immh, int immb, int opcode, int rn, int rd) 10471 { 10472 int immhb = immh << 3 | immb; 10473 int size = 32 - clz32(immh) - 1; 10474 int dsize = 64; 10475 int esize = 8 << size; 10476 int elements = dsize/esize; 10477 int shift = (2 * esize) - immhb; 10478 bool round = extract32(opcode, 0, 1); 10479 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10480 TCGv_i64 tcg_round; 10481 int i; 10482 10483 if (extract32(immh, 3, 1)) { 10484 unallocated_encoding(s); 10485 return; 10486 } 10487 10488 if (!fp_access_check(s)) { 10489 return; 10490 } 10491 10492 tcg_rn = tcg_temp_new_i64(); 10493 tcg_rd = tcg_temp_new_i64(); 10494 tcg_final = tcg_temp_new_i64(); 10495 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10496 10497 if (round) { 10498 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10499 } else { 10500 tcg_round = NULL; 10501 } 10502 10503 for (i = 0; i < elements; i++) { 10504 read_vec_element(s, tcg_rn, rn, i, size+1); 10505 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10506 false, true, size+1, shift); 10507 10508 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10509 } 10510 10511 if (!is_q) { 10512 write_vec_element(s, tcg_final, rd, 0, MO_64); 10513 } else { 10514 write_vec_element(s, tcg_final, rd, 1, MO_64); 10515 } 10516 10517 clear_vec_high(s, is_q, rd); 10518 } 10519 10520 10521 /* AdvSIMD shift by immediate 10522 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10523 * +---+---+---+-------------+------+------+--------+---+------+------+ 10524 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10525 * +---+---+---+-------------+------+------+--------+---+------+------+ 10526 */ 10527 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10528 { 10529 int rd = extract32(insn, 0, 5); 10530 int rn = extract32(insn, 5, 5); 10531 int opcode = extract32(insn, 11, 5); 10532 int immb = extract32(insn, 16, 3); 10533 int immh = extract32(insn, 19, 4); 10534 bool is_u = extract32(insn, 29, 1); 10535 bool is_q = extract32(insn, 30, 1); 10536 10537 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10538 assert(immh != 0); 10539 10540 switch (opcode) { 10541 case 0x08: /* SRI */ 10542 if (!is_u) { 10543 unallocated_encoding(s); 10544 return; 10545 } 10546 /* fall through */ 10547 case 0x00: /* SSHR / USHR */ 10548 case 0x02: /* SSRA / USRA (accumulate) */ 10549 case 0x04: /* SRSHR / URSHR (rounding) */ 10550 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10551 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10552 break; 10553 case 0x0a: /* SHL / SLI */ 10554 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10555 break; 10556 case 0x10: /* SHRN */ 10557 case 0x11: /* RSHRN / SQRSHRUN */ 10558 if (is_u) { 10559 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10560 opcode, rn, rd); 10561 } else { 10562 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10563 } 10564 break; 10565 case 0x12: /* SQSHRN / UQSHRN */ 10566 case 0x13: /* SQRSHRN / UQRSHRN */ 10567 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10568 opcode, rn, rd); 10569 break; 10570 case 0x14: /* SSHLL / USHLL */ 10571 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10572 break; 10573 case 0x1c: /* SCVTF / UCVTF */ 10574 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10575 opcode, rn, rd); 10576 break; 10577 case 0xc: /* SQSHLU */ 10578 if (!is_u) { 10579 unallocated_encoding(s); 10580 return; 10581 } 10582 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10583 break; 10584 case 0xe: /* SQSHL, UQSHL */ 10585 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10586 break; 10587 case 0x1f: /* FCVTZS/ FCVTZU */ 10588 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10589 return; 10590 default: 10591 unallocated_encoding(s); 10592 return; 10593 } 10594 } 10595 10596 /* Generate code to do a "long" addition or subtraction, ie one done in 10597 * TCGv_i64 on vector lanes twice the width specified by size. 10598 */ 10599 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10600 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10601 { 10602 static NeonGenTwo64OpFn * const fns[3][2] = { 10603 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10604 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10605 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10606 }; 10607 NeonGenTwo64OpFn *genfn; 10608 assert(size < 3); 10609 10610 genfn = fns[size][is_sub]; 10611 genfn(tcg_res, tcg_op1, tcg_op2); 10612 } 10613 10614 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10615 int opcode, int rd, int rn, int rm) 10616 { 10617 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10618 TCGv_i64 tcg_res[2]; 10619 int pass, accop; 10620 10621 tcg_res[0] = tcg_temp_new_i64(); 10622 tcg_res[1] = tcg_temp_new_i64(); 10623 10624 /* Does this op do an adding accumulate, a subtracting accumulate, 10625 * or no accumulate at all? 10626 */ 10627 switch (opcode) { 10628 case 5: 10629 case 8: 10630 case 9: 10631 accop = 1; 10632 break; 10633 case 10: 10634 case 11: 10635 accop = -1; 10636 break; 10637 default: 10638 accop = 0; 10639 break; 10640 } 10641 10642 if (accop != 0) { 10643 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10644 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10645 } 10646 10647 /* size == 2 means two 32x32->64 operations; this is worth special 10648 * casing because we can generally handle it inline. 10649 */ 10650 if (size == 2) { 10651 for (pass = 0; pass < 2; pass++) { 10652 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10653 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10654 TCGv_i64 tcg_passres; 10655 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10656 10657 int elt = pass + is_q * 2; 10658 10659 read_vec_element(s, tcg_op1, rn, elt, memop); 10660 read_vec_element(s, tcg_op2, rm, elt, memop); 10661 10662 if (accop == 0) { 10663 tcg_passres = tcg_res[pass]; 10664 } else { 10665 tcg_passres = tcg_temp_new_i64(); 10666 } 10667 10668 switch (opcode) { 10669 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10670 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10671 break; 10672 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10673 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10674 break; 10675 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10676 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10677 { 10678 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10679 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10680 10681 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10682 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10683 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10684 tcg_passres, 10685 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10686 break; 10687 } 10688 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10689 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10690 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10691 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10692 break; 10693 case 9: /* SQDMLAL, SQDMLAL2 */ 10694 case 11: /* SQDMLSL, SQDMLSL2 */ 10695 case 13: /* SQDMULL, SQDMULL2 */ 10696 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10697 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10698 tcg_passres, tcg_passres); 10699 break; 10700 default: 10701 g_assert_not_reached(); 10702 } 10703 10704 if (opcode == 9 || opcode == 11) { 10705 /* saturating accumulate ops */ 10706 if (accop < 0) { 10707 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10708 } 10709 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10710 tcg_res[pass], tcg_passres); 10711 } else if (accop > 0) { 10712 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10713 } else if (accop < 0) { 10714 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10715 } 10716 } 10717 } else { 10718 /* size 0 or 1, generally helper functions */ 10719 for (pass = 0; pass < 2; pass++) { 10720 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10721 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10722 TCGv_i64 tcg_passres; 10723 int elt = pass + is_q * 2; 10724 10725 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10726 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10727 10728 if (accop == 0) { 10729 tcg_passres = tcg_res[pass]; 10730 } else { 10731 tcg_passres = tcg_temp_new_i64(); 10732 } 10733 10734 switch (opcode) { 10735 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10736 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10737 { 10738 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10739 static NeonGenWidenFn * const widenfns[2][2] = { 10740 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10741 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10742 }; 10743 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10744 10745 widenfn(tcg_op2_64, tcg_op2); 10746 widenfn(tcg_passres, tcg_op1); 10747 gen_neon_addl(size, (opcode == 2), tcg_passres, 10748 tcg_passres, tcg_op2_64); 10749 break; 10750 } 10751 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10752 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10753 if (size == 0) { 10754 if (is_u) { 10755 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10756 } else { 10757 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10758 } 10759 } else { 10760 if (is_u) { 10761 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10762 } else { 10763 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10764 } 10765 } 10766 break; 10767 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10768 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10769 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10770 if (size == 0) { 10771 if (is_u) { 10772 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10773 } else { 10774 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10775 } 10776 } else { 10777 if (is_u) { 10778 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10779 } else { 10780 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10781 } 10782 } 10783 break; 10784 case 9: /* SQDMLAL, SQDMLAL2 */ 10785 case 11: /* SQDMLSL, SQDMLSL2 */ 10786 case 13: /* SQDMULL, SQDMULL2 */ 10787 assert(size == 1); 10788 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10789 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10790 tcg_passres, tcg_passres); 10791 break; 10792 default: 10793 g_assert_not_reached(); 10794 } 10795 10796 if (accop != 0) { 10797 if (opcode == 9 || opcode == 11) { 10798 /* saturating accumulate ops */ 10799 if (accop < 0) { 10800 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10801 } 10802 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10803 tcg_res[pass], 10804 tcg_passres); 10805 } else { 10806 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10807 tcg_res[pass], tcg_passres); 10808 } 10809 } 10810 } 10811 } 10812 10813 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10814 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10815 } 10816 10817 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10818 int opcode, int rd, int rn, int rm) 10819 { 10820 TCGv_i64 tcg_res[2]; 10821 int part = is_q ? 2 : 0; 10822 int pass; 10823 10824 for (pass = 0; pass < 2; pass++) { 10825 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10826 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10827 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10828 static NeonGenWidenFn * const widenfns[3][2] = { 10829 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10830 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10831 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10832 }; 10833 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10834 10835 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10836 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10837 widenfn(tcg_op2_wide, tcg_op2); 10838 tcg_res[pass] = tcg_temp_new_i64(); 10839 gen_neon_addl(size, (opcode == 3), 10840 tcg_res[pass], tcg_op1, tcg_op2_wide); 10841 } 10842 10843 for (pass = 0; pass < 2; pass++) { 10844 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10845 } 10846 } 10847 10848 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10849 { 10850 tcg_gen_addi_i64(in, in, 1U << 31); 10851 tcg_gen_extrh_i64_i32(res, in); 10852 } 10853 10854 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10855 int opcode, int rd, int rn, int rm) 10856 { 10857 TCGv_i32 tcg_res[2]; 10858 int part = is_q ? 2 : 0; 10859 int pass; 10860 10861 for (pass = 0; pass < 2; pass++) { 10862 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10863 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10864 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10865 static NeonGenNarrowFn * const narrowfns[3][2] = { 10866 { gen_helper_neon_narrow_high_u8, 10867 gen_helper_neon_narrow_round_high_u8 }, 10868 { gen_helper_neon_narrow_high_u16, 10869 gen_helper_neon_narrow_round_high_u16 }, 10870 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10871 }; 10872 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10873 10874 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10875 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10876 10877 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10878 10879 tcg_res[pass] = tcg_temp_new_i32(); 10880 gennarrow(tcg_res[pass], tcg_wideres); 10881 } 10882 10883 for (pass = 0; pass < 2; pass++) { 10884 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10885 } 10886 clear_vec_high(s, is_q, rd); 10887 } 10888 10889 /* AdvSIMD three different 10890 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10891 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10892 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10893 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10894 */ 10895 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10896 { 10897 /* Instructions in this group fall into three basic classes 10898 * (in each case with the operation working on each element in 10899 * the input vectors): 10900 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10901 * 128 bit input) 10902 * (2) wide 64 x 128 -> 128 10903 * (3) narrowing 128 x 128 -> 64 10904 * Here we do initial decode, catch unallocated cases and 10905 * dispatch to separate functions for each class. 10906 */ 10907 int is_q = extract32(insn, 30, 1); 10908 int is_u = extract32(insn, 29, 1); 10909 int size = extract32(insn, 22, 2); 10910 int opcode = extract32(insn, 12, 4); 10911 int rm = extract32(insn, 16, 5); 10912 int rn = extract32(insn, 5, 5); 10913 int rd = extract32(insn, 0, 5); 10914 10915 switch (opcode) { 10916 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10917 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10918 /* 64 x 128 -> 128 */ 10919 if (size == 3) { 10920 unallocated_encoding(s); 10921 return; 10922 } 10923 if (!fp_access_check(s)) { 10924 return; 10925 } 10926 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10927 break; 10928 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10929 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10930 /* 128 x 128 -> 64 */ 10931 if (size == 3) { 10932 unallocated_encoding(s); 10933 return; 10934 } 10935 if (!fp_access_check(s)) { 10936 return; 10937 } 10938 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10939 break; 10940 case 14: /* PMULL, PMULL2 */ 10941 if (is_u) { 10942 unallocated_encoding(s); 10943 return; 10944 } 10945 switch (size) { 10946 case 0: /* PMULL.P8 */ 10947 if (!fp_access_check(s)) { 10948 return; 10949 } 10950 /* The Q field specifies lo/hi half input for this insn. */ 10951 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10952 gen_helper_neon_pmull_h); 10953 break; 10954 10955 case 3: /* PMULL.P64 */ 10956 if (!dc_isar_feature(aa64_pmull, s)) { 10957 unallocated_encoding(s); 10958 return; 10959 } 10960 if (!fp_access_check(s)) { 10961 return; 10962 } 10963 /* The Q field specifies lo/hi half input for this insn. */ 10964 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10965 gen_helper_gvec_pmull_q); 10966 break; 10967 10968 default: 10969 unallocated_encoding(s); 10970 break; 10971 } 10972 return; 10973 case 9: /* SQDMLAL, SQDMLAL2 */ 10974 case 11: /* SQDMLSL, SQDMLSL2 */ 10975 case 13: /* SQDMULL, SQDMULL2 */ 10976 if (is_u || size == 0) { 10977 unallocated_encoding(s); 10978 return; 10979 } 10980 /* fall through */ 10981 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10982 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10983 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10984 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10985 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10986 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10987 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10988 /* 64 x 64 -> 128 */ 10989 if (size == 3) { 10990 unallocated_encoding(s); 10991 return; 10992 } 10993 if (!fp_access_check(s)) { 10994 return; 10995 } 10996 10997 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10998 break; 10999 default: 11000 /* opcode 15 not allocated */ 11001 unallocated_encoding(s); 11002 break; 11003 } 11004 } 11005 11006 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 11007 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 11008 { 11009 int rd = extract32(insn, 0, 5); 11010 int rn = extract32(insn, 5, 5); 11011 int rm = extract32(insn, 16, 5); 11012 int size = extract32(insn, 22, 2); 11013 bool is_u = extract32(insn, 29, 1); 11014 bool is_q = extract32(insn, 30, 1); 11015 11016 if (!fp_access_check(s)) { 11017 return; 11018 } 11019 11020 switch (size + 4 * is_u) { 11021 case 0: /* AND */ 11022 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 11023 return; 11024 case 1: /* BIC */ 11025 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 11026 return; 11027 case 2: /* ORR */ 11028 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 11029 return; 11030 case 3: /* ORN */ 11031 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 11032 return; 11033 case 4: /* EOR */ 11034 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 11035 return; 11036 11037 case 5: /* BSL bitwise select */ 11038 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 11039 return; 11040 case 6: /* BIT, bitwise insert if true */ 11041 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 11042 return; 11043 case 7: /* BIF, bitwise insert if false */ 11044 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11045 return; 11046 11047 default: 11048 g_assert_not_reached(); 11049 } 11050 } 11051 11052 /* Pairwise op subgroup of C3.6.16. 11053 * 11054 * This is called directly or via the handle_3same_float for float pairwise 11055 * operations where the opcode and size are calculated differently. 11056 */ 11057 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11058 int size, int rn, int rm, int rd) 11059 { 11060 TCGv_ptr fpst; 11061 int pass; 11062 11063 /* Floating point operations need fpst */ 11064 if (opcode >= 0x58) { 11065 fpst = fpstatus_ptr(FPST_FPCR); 11066 } else { 11067 fpst = NULL; 11068 } 11069 11070 if (!fp_access_check(s)) { 11071 return; 11072 } 11073 11074 /* These operations work on the concatenated rm:rn, with each pair of 11075 * adjacent elements being operated on to produce an element in the result. 11076 */ 11077 if (size == 3) { 11078 TCGv_i64 tcg_res[2]; 11079 11080 for (pass = 0; pass < 2; pass++) { 11081 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11082 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11083 int passreg = (pass == 0) ? rn : rm; 11084 11085 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11086 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11087 tcg_res[pass] = tcg_temp_new_i64(); 11088 11089 switch (opcode) { 11090 case 0x17: /* ADDP */ 11091 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11092 break; 11093 case 0x58: /* FMAXNMP */ 11094 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11095 break; 11096 case 0x5a: /* FADDP */ 11097 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11098 break; 11099 case 0x5e: /* FMAXP */ 11100 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11101 break; 11102 case 0x78: /* FMINNMP */ 11103 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11104 break; 11105 case 0x7e: /* FMINP */ 11106 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11107 break; 11108 default: 11109 g_assert_not_reached(); 11110 } 11111 } 11112 11113 for (pass = 0; pass < 2; pass++) { 11114 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11115 } 11116 } else { 11117 int maxpass = is_q ? 4 : 2; 11118 TCGv_i32 tcg_res[4]; 11119 11120 for (pass = 0; pass < maxpass; pass++) { 11121 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11122 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11123 NeonGenTwoOpFn *genfn = NULL; 11124 int passreg = pass < (maxpass / 2) ? rn : rm; 11125 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11126 11127 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11128 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11129 tcg_res[pass] = tcg_temp_new_i32(); 11130 11131 switch (opcode) { 11132 case 0x17: /* ADDP */ 11133 { 11134 static NeonGenTwoOpFn * const fns[3] = { 11135 gen_helper_neon_padd_u8, 11136 gen_helper_neon_padd_u16, 11137 tcg_gen_add_i32, 11138 }; 11139 genfn = fns[size]; 11140 break; 11141 } 11142 case 0x14: /* SMAXP, UMAXP */ 11143 { 11144 static NeonGenTwoOpFn * const fns[3][2] = { 11145 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11146 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11147 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11148 }; 11149 genfn = fns[size][u]; 11150 break; 11151 } 11152 case 0x15: /* SMINP, UMINP */ 11153 { 11154 static NeonGenTwoOpFn * const fns[3][2] = { 11155 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11156 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11157 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11158 }; 11159 genfn = fns[size][u]; 11160 break; 11161 } 11162 /* The FP operations are all on single floats (32 bit) */ 11163 case 0x58: /* FMAXNMP */ 11164 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11165 break; 11166 case 0x5a: /* FADDP */ 11167 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11168 break; 11169 case 0x5e: /* FMAXP */ 11170 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11171 break; 11172 case 0x78: /* FMINNMP */ 11173 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11174 break; 11175 case 0x7e: /* FMINP */ 11176 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11177 break; 11178 default: 11179 g_assert_not_reached(); 11180 } 11181 11182 /* FP ops called directly, otherwise call now */ 11183 if (genfn) { 11184 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11185 } 11186 } 11187 11188 for (pass = 0; pass < maxpass; pass++) { 11189 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11190 } 11191 clear_vec_high(s, is_q, rd); 11192 } 11193 } 11194 11195 /* Floating point op subgroup of C3.6.16. */ 11196 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11197 { 11198 /* For floating point ops, the U, size[1] and opcode bits 11199 * together indicate the operation. size[0] indicates single 11200 * or double. 11201 */ 11202 int fpopcode = extract32(insn, 11, 5) 11203 | (extract32(insn, 23, 1) << 5) 11204 | (extract32(insn, 29, 1) << 6); 11205 int is_q = extract32(insn, 30, 1); 11206 int size = extract32(insn, 22, 1); 11207 int rm = extract32(insn, 16, 5); 11208 int rn = extract32(insn, 5, 5); 11209 int rd = extract32(insn, 0, 5); 11210 11211 int datasize = is_q ? 128 : 64; 11212 int esize = 32 << size; 11213 int elements = datasize / esize; 11214 11215 if (size == 1 && !is_q) { 11216 unallocated_encoding(s); 11217 return; 11218 } 11219 11220 switch (fpopcode) { 11221 case 0x58: /* FMAXNMP */ 11222 case 0x5a: /* FADDP */ 11223 case 0x5e: /* FMAXP */ 11224 case 0x78: /* FMINNMP */ 11225 case 0x7e: /* FMINP */ 11226 if (size && !is_q) { 11227 unallocated_encoding(s); 11228 return; 11229 } 11230 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11231 rn, rm, rd); 11232 return; 11233 case 0x1f: /* FRECPS */ 11234 case 0x3f: /* FRSQRTS */ 11235 case 0x5d: /* FACGE */ 11236 case 0x7d: /* FACGT */ 11237 case 0x1c: /* FCMEQ */ 11238 case 0x5c: /* FCMGE */ 11239 case 0x7a: /* FABD */ 11240 case 0x7c: /* FCMGT */ 11241 if (!fp_access_check(s)) { 11242 return; 11243 } 11244 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11245 return; 11246 11247 case 0x1d: /* FMLAL */ 11248 case 0x3d: /* FMLSL */ 11249 case 0x59: /* FMLAL2 */ 11250 case 0x79: /* FMLSL2 */ 11251 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11252 unallocated_encoding(s); 11253 return; 11254 } 11255 if (fp_access_check(s)) { 11256 int is_s = extract32(insn, 23, 1); 11257 int is_2 = extract32(insn, 29, 1); 11258 int data = (is_2 << 1) | is_s; 11259 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11260 vec_full_reg_offset(s, rn), 11261 vec_full_reg_offset(s, rm), tcg_env, 11262 is_q ? 16 : 8, vec_full_reg_size(s), 11263 data, gen_helper_gvec_fmlal_a64); 11264 } 11265 return; 11266 11267 default: 11268 case 0x18: /* FMAXNM */ 11269 case 0x19: /* FMLA */ 11270 case 0x1a: /* FADD */ 11271 case 0x1b: /* FMULX */ 11272 case 0x1e: /* FMAX */ 11273 case 0x38: /* FMINNM */ 11274 case 0x39: /* FMLS */ 11275 case 0x3a: /* FSUB */ 11276 case 0x3e: /* FMIN */ 11277 case 0x5b: /* FMUL */ 11278 case 0x5f: /* FDIV */ 11279 unallocated_encoding(s); 11280 return; 11281 } 11282 } 11283 11284 /* Integer op subgroup of C3.6.16. */ 11285 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11286 { 11287 int is_q = extract32(insn, 30, 1); 11288 int u = extract32(insn, 29, 1); 11289 int size = extract32(insn, 22, 2); 11290 int opcode = extract32(insn, 11, 5); 11291 int rm = extract32(insn, 16, 5); 11292 int rn = extract32(insn, 5, 5); 11293 int rd = extract32(insn, 0, 5); 11294 int pass; 11295 TCGCond cond; 11296 11297 switch (opcode) { 11298 case 0x13: /* MUL, PMUL */ 11299 if (u && size != 0) { 11300 unallocated_encoding(s); 11301 return; 11302 } 11303 /* fall through */ 11304 case 0x0: /* SHADD, UHADD */ 11305 case 0x2: /* SRHADD, URHADD */ 11306 case 0x4: /* SHSUB, UHSUB */ 11307 case 0xc: /* SMAX, UMAX */ 11308 case 0xd: /* SMIN, UMIN */ 11309 case 0xe: /* SABD, UABD */ 11310 case 0xf: /* SABA, UABA */ 11311 case 0x12: /* MLA, MLS */ 11312 if (size == 3) { 11313 unallocated_encoding(s); 11314 return; 11315 } 11316 break; 11317 case 0x16: /* SQDMULH, SQRDMULH */ 11318 if (size == 0 || size == 3) { 11319 unallocated_encoding(s); 11320 return; 11321 } 11322 break; 11323 default: 11324 if (size == 3 && !is_q) { 11325 unallocated_encoding(s); 11326 return; 11327 } 11328 break; 11329 } 11330 11331 if (!fp_access_check(s)) { 11332 return; 11333 } 11334 11335 switch (opcode) { 11336 case 0x01: /* SQADD, UQADD */ 11337 if (u) { 11338 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11339 } else { 11340 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11341 } 11342 return; 11343 case 0x05: /* SQSUB, UQSUB */ 11344 if (u) { 11345 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11346 } else { 11347 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11348 } 11349 return; 11350 case 0x08: /* SSHL, USHL */ 11351 if (u) { 11352 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11353 } else { 11354 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11355 } 11356 return; 11357 case 0x0c: /* SMAX, UMAX */ 11358 if (u) { 11359 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11360 } else { 11361 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11362 } 11363 return; 11364 case 0x0d: /* SMIN, UMIN */ 11365 if (u) { 11366 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11367 } else { 11368 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11369 } 11370 return; 11371 case 0xe: /* SABD, UABD */ 11372 if (u) { 11373 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11374 } else { 11375 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11376 } 11377 return; 11378 case 0xf: /* SABA, UABA */ 11379 if (u) { 11380 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11381 } else { 11382 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11383 } 11384 return; 11385 case 0x10: /* ADD, SUB */ 11386 if (u) { 11387 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11388 } else { 11389 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11390 } 11391 return; 11392 case 0x13: /* MUL, PMUL */ 11393 if (!u) { /* MUL */ 11394 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11395 } else { /* PMUL */ 11396 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11397 } 11398 return; 11399 case 0x12: /* MLA, MLS */ 11400 if (u) { 11401 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11402 } else { 11403 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11404 } 11405 return; 11406 case 0x16: /* SQDMULH, SQRDMULH */ 11407 { 11408 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11409 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11410 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11411 }; 11412 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11413 } 11414 return; 11415 case 0x11: 11416 if (!u) { /* CMTST */ 11417 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11418 return; 11419 } 11420 /* else CMEQ */ 11421 cond = TCG_COND_EQ; 11422 goto do_gvec_cmp; 11423 case 0x06: /* CMGT, CMHI */ 11424 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11425 goto do_gvec_cmp; 11426 case 0x07: /* CMGE, CMHS */ 11427 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11428 do_gvec_cmp: 11429 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11430 vec_full_reg_offset(s, rn), 11431 vec_full_reg_offset(s, rm), 11432 is_q ? 16 : 8, vec_full_reg_size(s)); 11433 return; 11434 } 11435 11436 if (size == 3) { 11437 assert(is_q); 11438 for (pass = 0; pass < 2; pass++) { 11439 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11440 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11441 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11442 11443 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11444 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11445 11446 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11447 11448 write_vec_element(s, tcg_res, rd, pass, MO_64); 11449 } 11450 } else { 11451 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11452 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11453 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11454 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11455 NeonGenTwoOpFn *genfn = NULL; 11456 NeonGenTwoOpEnvFn *genenvfn = NULL; 11457 11458 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11459 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11460 11461 switch (opcode) { 11462 case 0x0: /* SHADD, UHADD */ 11463 { 11464 static NeonGenTwoOpFn * const fns[3][2] = { 11465 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11466 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11467 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11468 }; 11469 genfn = fns[size][u]; 11470 break; 11471 } 11472 case 0x2: /* SRHADD, URHADD */ 11473 { 11474 static NeonGenTwoOpFn * const fns[3][2] = { 11475 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11476 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11477 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11478 }; 11479 genfn = fns[size][u]; 11480 break; 11481 } 11482 case 0x4: /* SHSUB, UHSUB */ 11483 { 11484 static NeonGenTwoOpFn * const fns[3][2] = { 11485 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11486 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11487 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11488 }; 11489 genfn = fns[size][u]; 11490 break; 11491 } 11492 case 0x9: /* SQSHL, UQSHL */ 11493 { 11494 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11495 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11496 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11497 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11498 }; 11499 genenvfn = fns[size][u]; 11500 break; 11501 } 11502 case 0xa: /* SRSHL, URSHL */ 11503 { 11504 static NeonGenTwoOpFn * const fns[3][2] = { 11505 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11506 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11507 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11508 }; 11509 genfn = fns[size][u]; 11510 break; 11511 } 11512 case 0xb: /* SQRSHL, UQRSHL */ 11513 { 11514 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11515 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11516 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11517 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11518 }; 11519 genenvfn = fns[size][u]; 11520 break; 11521 } 11522 default: 11523 g_assert_not_reached(); 11524 } 11525 11526 if (genenvfn) { 11527 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11528 } else { 11529 genfn(tcg_res, tcg_op1, tcg_op2); 11530 } 11531 11532 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11533 } 11534 } 11535 clear_vec_high(s, is_q, rd); 11536 } 11537 11538 /* AdvSIMD three same 11539 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11540 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11541 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11542 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11543 */ 11544 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11545 { 11546 int opcode = extract32(insn, 11, 5); 11547 11548 switch (opcode) { 11549 case 0x3: /* logic ops */ 11550 disas_simd_3same_logic(s, insn); 11551 break; 11552 case 0x17: /* ADDP */ 11553 case 0x14: /* SMAXP, UMAXP */ 11554 case 0x15: /* SMINP, UMINP */ 11555 { 11556 /* Pairwise operations */ 11557 int is_q = extract32(insn, 30, 1); 11558 int u = extract32(insn, 29, 1); 11559 int size = extract32(insn, 22, 2); 11560 int rm = extract32(insn, 16, 5); 11561 int rn = extract32(insn, 5, 5); 11562 int rd = extract32(insn, 0, 5); 11563 if (opcode == 0x17) { 11564 if (u || (size == 3 && !is_q)) { 11565 unallocated_encoding(s); 11566 return; 11567 } 11568 } else { 11569 if (size == 3) { 11570 unallocated_encoding(s); 11571 return; 11572 } 11573 } 11574 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11575 break; 11576 } 11577 case 0x18 ... 0x31: 11578 /* floating point ops, sz[1] and U are part of opcode */ 11579 disas_simd_3same_float(s, insn); 11580 break; 11581 default: 11582 disas_simd_3same_int(s, insn); 11583 break; 11584 } 11585 } 11586 11587 /* 11588 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11589 * 11590 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11591 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11592 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11593 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11594 * 11595 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11596 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11597 * 11598 */ 11599 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11600 { 11601 int opcode = extract32(insn, 11, 3); 11602 int u = extract32(insn, 29, 1); 11603 int a = extract32(insn, 23, 1); 11604 int is_q = extract32(insn, 30, 1); 11605 int rm = extract32(insn, 16, 5); 11606 int rn = extract32(insn, 5, 5); 11607 int rd = extract32(insn, 0, 5); 11608 /* 11609 * For these floating point ops, the U, a and opcode bits 11610 * together indicate the operation. 11611 */ 11612 int fpopcode = opcode | (a << 3) | (u << 4); 11613 int datasize = is_q ? 128 : 64; 11614 int elements = datasize / 16; 11615 bool pairwise; 11616 TCGv_ptr fpst; 11617 int pass; 11618 11619 switch (fpopcode) { 11620 case 0x4: /* FCMEQ */ 11621 case 0x7: /* FRECPS */ 11622 case 0xf: /* FRSQRTS */ 11623 case 0x14: /* FCMGE */ 11624 case 0x15: /* FACGE */ 11625 case 0x1a: /* FABD */ 11626 case 0x1c: /* FCMGT */ 11627 case 0x1d: /* FACGT */ 11628 pairwise = false; 11629 break; 11630 case 0x10: /* FMAXNMP */ 11631 case 0x12: /* FADDP */ 11632 case 0x16: /* FMAXP */ 11633 case 0x18: /* FMINNMP */ 11634 case 0x1e: /* FMINP */ 11635 pairwise = true; 11636 break; 11637 default: 11638 case 0x0: /* FMAXNM */ 11639 case 0x1: /* FMLA */ 11640 case 0x2: /* FADD */ 11641 case 0x3: /* FMULX */ 11642 case 0x6: /* FMAX */ 11643 case 0x8: /* FMINNM */ 11644 case 0x9: /* FMLS */ 11645 case 0xa: /* FSUB */ 11646 case 0xe: /* FMIN */ 11647 case 0x13: /* FMUL */ 11648 case 0x17: /* FDIV */ 11649 unallocated_encoding(s); 11650 return; 11651 } 11652 11653 if (!dc_isar_feature(aa64_fp16, s)) { 11654 unallocated_encoding(s); 11655 return; 11656 } 11657 11658 if (!fp_access_check(s)) { 11659 return; 11660 } 11661 11662 fpst = fpstatus_ptr(FPST_FPCR_F16); 11663 11664 if (pairwise) { 11665 int maxpass = is_q ? 8 : 4; 11666 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11667 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11668 TCGv_i32 tcg_res[8]; 11669 11670 for (pass = 0; pass < maxpass; pass++) { 11671 int passreg = pass < (maxpass / 2) ? rn : rm; 11672 int passelt = (pass << 1) & (maxpass - 1); 11673 11674 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11675 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11676 tcg_res[pass] = tcg_temp_new_i32(); 11677 11678 switch (fpopcode) { 11679 case 0x10: /* FMAXNMP */ 11680 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11681 fpst); 11682 break; 11683 case 0x12: /* FADDP */ 11684 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11685 break; 11686 case 0x16: /* FMAXP */ 11687 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11688 break; 11689 case 0x18: /* FMINNMP */ 11690 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11691 fpst); 11692 break; 11693 case 0x1e: /* FMINP */ 11694 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11695 break; 11696 default: 11697 g_assert_not_reached(); 11698 } 11699 } 11700 11701 for (pass = 0; pass < maxpass; pass++) { 11702 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11703 } 11704 } else { 11705 for (pass = 0; pass < elements; pass++) { 11706 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11707 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11708 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11709 11710 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11711 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11712 11713 switch (fpopcode) { 11714 case 0x4: /* FCMEQ */ 11715 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11716 break; 11717 case 0x7: /* FRECPS */ 11718 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11719 break; 11720 case 0xf: /* FRSQRTS */ 11721 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11722 break; 11723 case 0x14: /* FCMGE */ 11724 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11725 break; 11726 case 0x15: /* FACGE */ 11727 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11728 break; 11729 case 0x1a: /* FABD */ 11730 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11731 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11732 break; 11733 case 0x1c: /* FCMGT */ 11734 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11735 break; 11736 case 0x1d: /* FACGT */ 11737 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11738 break; 11739 default: 11740 case 0x0: /* FMAXNM */ 11741 case 0x1: /* FMLA */ 11742 case 0x2: /* FADD */ 11743 case 0x3: /* FMULX */ 11744 case 0x6: /* FMAX */ 11745 case 0x8: /* FMINNM */ 11746 case 0x9: /* FMLS */ 11747 case 0xa: /* FSUB */ 11748 case 0xe: /* FMIN */ 11749 case 0x13: /* FMUL */ 11750 case 0x17: /* FDIV */ 11751 g_assert_not_reached(); 11752 } 11753 11754 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11755 } 11756 } 11757 11758 clear_vec_high(s, is_q, rd); 11759 } 11760 11761 /* AdvSIMD three same extra 11762 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11763 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11764 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11765 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11766 */ 11767 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11768 { 11769 int rd = extract32(insn, 0, 5); 11770 int rn = extract32(insn, 5, 5); 11771 int opcode = extract32(insn, 11, 4); 11772 int rm = extract32(insn, 16, 5); 11773 int size = extract32(insn, 22, 2); 11774 bool u = extract32(insn, 29, 1); 11775 bool is_q = extract32(insn, 30, 1); 11776 bool feature; 11777 int rot; 11778 11779 switch (u * 16 + opcode) { 11780 case 0x10: /* SQRDMLAH (vector) */ 11781 case 0x11: /* SQRDMLSH (vector) */ 11782 if (size != 1 && size != 2) { 11783 unallocated_encoding(s); 11784 return; 11785 } 11786 feature = dc_isar_feature(aa64_rdm, s); 11787 break; 11788 case 0x02: /* SDOT (vector) */ 11789 case 0x12: /* UDOT (vector) */ 11790 if (size != MO_32) { 11791 unallocated_encoding(s); 11792 return; 11793 } 11794 feature = dc_isar_feature(aa64_dp, s); 11795 break; 11796 case 0x03: /* USDOT */ 11797 if (size != MO_32) { 11798 unallocated_encoding(s); 11799 return; 11800 } 11801 feature = dc_isar_feature(aa64_i8mm, s); 11802 break; 11803 case 0x04: /* SMMLA */ 11804 case 0x14: /* UMMLA */ 11805 case 0x05: /* USMMLA */ 11806 if (!is_q || size != MO_32) { 11807 unallocated_encoding(s); 11808 return; 11809 } 11810 feature = dc_isar_feature(aa64_i8mm, s); 11811 break; 11812 case 0x18: /* FCMLA, #0 */ 11813 case 0x19: /* FCMLA, #90 */ 11814 case 0x1a: /* FCMLA, #180 */ 11815 case 0x1b: /* FCMLA, #270 */ 11816 case 0x1c: /* FCADD, #90 */ 11817 case 0x1e: /* FCADD, #270 */ 11818 if (size == 0 11819 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11820 || (size == 3 && !is_q)) { 11821 unallocated_encoding(s); 11822 return; 11823 } 11824 feature = dc_isar_feature(aa64_fcma, s); 11825 break; 11826 case 0x1d: /* BFMMLA */ 11827 if (size != MO_16 || !is_q) { 11828 unallocated_encoding(s); 11829 return; 11830 } 11831 feature = dc_isar_feature(aa64_bf16, s); 11832 break; 11833 case 0x1f: 11834 switch (size) { 11835 case 1: /* BFDOT */ 11836 case 3: /* BFMLAL{B,T} */ 11837 feature = dc_isar_feature(aa64_bf16, s); 11838 break; 11839 default: 11840 unallocated_encoding(s); 11841 return; 11842 } 11843 break; 11844 default: 11845 unallocated_encoding(s); 11846 return; 11847 } 11848 if (!feature) { 11849 unallocated_encoding(s); 11850 return; 11851 } 11852 if (!fp_access_check(s)) { 11853 return; 11854 } 11855 11856 switch (opcode) { 11857 case 0x0: /* SQRDMLAH (vector) */ 11858 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11859 return; 11860 11861 case 0x1: /* SQRDMLSH (vector) */ 11862 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11863 return; 11864 11865 case 0x2: /* SDOT / UDOT */ 11866 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11867 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11868 return; 11869 11870 case 0x3: /* USDOT */ 11871 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11872 return; 11873 11874 case 0x04: /* SMMLA, UMMLA */ 11875 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11876 u ? gen_helper_gvec_ummla_b 11877 : gen_helper_gvec_smmla_b); 11878 return; 11879 case 0x05: /* USMMLA */ 11880 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11881 return; 11882 11883 case 0x8: /* FCMLA, #0 */ 11884 case 0x9: /* FCMLA, #90 */ 11885 case 0xa: /* FCMLA, #180 */ 11886 case 0xb: /* FCMLA, #270 */ 11887 rot = extract32(opcode, 0, 2); 11888 switch (size) { 11889 case 1: 11890 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11891 gen_helper_gvec_fcmlah); 11892 break; 11893 case 2: 11894 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11895 gen_helper_gvec_fcmlas); 11896 break; 11897 case 3: 11898 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11899 gen_helper_gvec_fcmlad); 11900 break; 11901 default: 11902 g_assert_not_reached(); 11903 } 11904 return; 11905 11906 case 0xc: /* FCADD, #90 */ 11907 case 0xe: /* FCADD, #270 */ 11908 rot = extract32(opcode, 1, 1); 11909 switch (size) { 11910 case 1: 11911 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11912 gen_helper_gvec_fcaddh); 11913 break; 11914 case 2: 11915 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11916 gen_helper_gvec_fcadds); 11917 break; 11918 case 3: 11919 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11920 gen_helper_gvec_fcaddd); 11921 break; 11922 default: 11923 g_assert_not_reached(); 11924 } 11925 return; 11926 11927 case 0xd: /* BFMMLA */ 11928 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11929 return; 11930 case 0xf: 11931 switch (size) { 11932 case 1: /* BFDOT */ 11933 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11934 break; 11935 case 3: /* BFMLAL{B,T} */ 11936 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11937 gen_helper_gvec_bfmlal); 11938 break; 11939 default: 11940 g_assert_not_reached(); 11941 } 11942 return; 11943 11944 default: 11945 g_assert_not_reached(); 11946 } 11947 } 11948 11949 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11950 int size, int rn, int rd) 11951 { 11952 /* Handle 2-reg-misc ops which are widening (so each size element 11953 * in the source becomes a 2*size element in the destination. 11954 * The only instruction like this is FCVTL. 11955 */ 11956 int pass; 11957 11958 if (size == 3) { 11959 /* 32 -> 64 bit fp conversion */ 11960 TCGv_i64 tcg_res[2]; 11961 int srcelt = is_q ? 2 : 0; 11962 11963 for (pass = 0; pass < 2; pass++) { 11964 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11965 tcg_res[pass] = tcg_temp_new_i64(); 11966 11967 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11968 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11969 } 11970 for (pass = 0; pass < 2; pass++) { 11971 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11972 } 11973 } else { 11974 /* 16 -> 32 bit fp conversion */ 11975 int srcelt = is_q ? 4 : 0; 11976 TCGv_i32 tcg_res[4]; 11977 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11978 TCGv_i32 ahp = get_ahp_flag(); 11979 11980 for (pass = 0; pass < 4; pass++) { 11981 tcg_res[pass] = tcg_temp_new_i32(); 11982 11983 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11984 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11985 fpst, ahp); 11986 } 11987 for (pass = 0; pass < 4; pass++) { 11988 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11989 } 11990 } 11991 } 11992 11993 static void handle_rev(DisasContext *s, int opcode, bool u, 11994 bool is_q, int size, int rn, int rd) 11995 { 11996 int op = (opcode << 1) | u; 11997 int opsz = op + size; 11998 int grp_size = 3 - opsz; 11999 int dsize = is_q ? 128 : 64; 12000 int i; 12001 12002 if (opsz >= 3) { 12003 unallocated_encoding(s); 12004 return; 12005 } 12006 12007 if (!fp_access_check(s)) { 12008 return; 12009 } 12010 12011 if (size == 0) { 12012 /* Special case bytes, use bswap op on each group of elements */ 12013 int groups = dsize / (8 << grp_size); 12014 12015 for (i = 0; i < groups; i++) { 12016 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12017 12018 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12019 switch (grp_size) { 12020 case MO_16: 12021 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12022 break; 12023 case MO_32: 12024 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12025 break; 12026 case MO_64: 12027 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12028 break; 12029 default: 12030 g_assert_not_reached(); 12031 } 12032 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12033 } 12034 clear_vec_high(s, is_q, rd); 12035 } else { 12036 int revmask = (1 << grp_size) - 1; 12037 int esize = 8 << size; 12038 int elements = dsize / esize; 12039 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12040 TCGv_i64 tcg_rd[2]; 12041 12042 for (i = 0; i < 2; i++) { 12043 tcg_rd[i] = tcg_temp_new_i64(); 12044 tcg_gen_movi_i64(tcg_rd[i], 0); 12045 } 12046 12047 for (i = 0; i < elements; i++) { 12048 int e_rev = (i & 0xf) ^ revmask; 12049 int w = (e_rev * esize) / 64; 12050 int o = (e_rev * esize) % 64; 12051 12052 read_vec_element(s, tcg_rn, rn, i, size); 12053 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12054 } 12055 12056 for (i = 0; i < 2; i++) { 12057 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12058 } 12059 clear_vec_high(s, true, rd); 12060 } 12061 } 12062 12063 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12064 bool is_q, int size, int rn, int rd) 12065 { 12066 /* Implement the pairwise operations from 2-misc: 12067 * SADDLP, UADDLP, SADALP, UADALP. 12068 * These all add pairs of elements in the input to produce a 12069 * double-width result element in the output (possibly accumulating). 12070 */ 12071 bool accum = (opcode == 0x6); 12072 int maxpass = is_q ? 2 : 1; 12073 int pass; 12074 TCGv_i64 tcg_res[2]; 12075 12076 if (size == 2) { 12077 /* 32 + 32 -> 64 op */ 12078 MemOp memop = size + (u ? 0 : MO_SIGN); 12079 12080 for (pass = 0; pass < maxpass; pass++) { 12081 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12082 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12083 12084 tcg_res[pass] = tcg_temp_new_i64(); 12085 12086 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12087 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12088 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12089 if (accum) { 12090 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12091 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12092 } 12093 } 12094 } else { 12095 for (pass = 0; pass < maxpass; pass++) { 12096 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12097 NeonGenOne64OpFn *genfn; 12098 static NeonGenOne64OpFn * const fns[2][2] = { 12099 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12100 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12101 }; 12102 12103 genfn = fns[size][u]; 12104 12105 tcg_res[pass] = tcg_temp_new_i64(); 12106 12107 read_vec_element(s, tcg_op, rn, pass, MO_64); 12108 genfn(tcg_res[pass], tcg_op); 12109 12110 if (accum) { 12111 read_vec_element(s, tcg_op, rd, pass, MO_64); 12112 if (size == 0) { 12113 gen_helper_neon_addl_u16(tcg_res[pass], 12114 tcg_res[pass], tcg_op); 12115 } else { 12116 gen_helper_neon_addl_u32(tcg_res[pass], 12117 tcg_res[pass], tcg_op); 12118 } 12119 } 12120 } 12121 } 12122 if (!is_q) { 12123 tcg_res[1] = tcg_constant_i64(0); 12124 } 12125 for (pass = 0; pass < 2; pass++) { 12126 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12127 } 12128 } 12129 12130 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12131 { 12132 /* Implement SHLL and SHLL2 */ 12133 int pass; 12134 int part = is_q ? 2 : 0; 12135 TCGv_i64 tcg_res[2]; 12136 12137 for (pass = 0; pass < 2; pass++) { 12138 static NeonGenWidenFn * const widenfns[3] = { 12139 gen_helper_neon_widen_u8, 12140 gen_helper_neon_widen_u16, 12141 tcg_gen_extu_i32_i64, 12142 }; 12143 NeonGenWidenFn *widenfn = widenfns[size]; 12144 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12145 12146 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12147 tcg_res[pass] = tcg_temp_new_i64(); 12148 widenfn(tcg_res[pass], tcg_op); 12149 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12150 } 12151 12152 for (pass = 0; pass < 2; pass++) { 12153 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12154 } 12155 } 12156 12157 /* AdvSIMD two reg misc 12158 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12159 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12160 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12161 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12162 */ 12163 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12164 { 12165 int size = extract32(insn, 22, 2); 12166 int opcode = extract32(insn, 12, 5); 12167 bool u = extract32(insn, 29, 1); 12168 bool is_q = extract32(insn, 30, 1); 12169 int rn = extract32(insn, 5, 5); 12170 int rd = extract32(insn, 0, 5); 12171 bool need_fpstatus = false; 12172 int rmode = -1; 12173 TCGv_i32 tcg_rmode; 12174 TCGv_ptr tcg_fpstatus; 12175 12176 switch (opcode) { 12177 case 0x0: /* REV64, REV32 */ 12178 case 0x1: /* REV16 */ 12179 handle_rev(s, opcode, u, is_q, size, rn, rd); 12180 return; 12181 case 0x5: /* CNT, NOT, RBIT */ 12182 if (u && size == 0) { 12183 /* NOT */ 12184 break; 12185 } else if (u && size == 1) { 12186 /* RBIT */ 12187 break; 12188 } else if (!u && size == 0) { 12189 /* CNT */ 12190 break; 12191 } 12192 unallocated_encoding(s); 12193 return; 12194 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12195 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12196 if (size == 3) { 12197 unallocated_encoding(s); 12198 return; 12199 } 12200 if (!fp_access_check(s)) { 12201 return; 12202 } 12203 12204 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12205 return; 12206 case 0x4: /* CLS, CLZ */ 12207 if (size == 3) { 12208 unallocated_encoding(s); 12209 return; 12210 } 12211 break; 12212 case 0x2: /* SADDLP, UADDLP */ 12213 case 0x6: /* SADALP, UADALP */ 12214 if (size == 3) { 12215 unallocated_encoding(s); 12216 return; 12217 } 12218 if (!fp_access_check(s)) { 12219 return; 12220 } 12221 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12222 return; 12223 case 0x13: /* SHLL, SHLL2 */ 12224 if (u == 0 || size == 3) { 12225 unallocated_encoding(s); 12226 return; 12227 } 12228 if (!fp_access_check(s)) { 12229 return; 12230 } 12231 handle_shll(s, is_q, size, rn, rd); 12232 return; 12233 case 0xa: /* CMLT */ 12234 if (u == 1) { 12235 unallocated_encoding(s); 12236 return; 12237 } 12238 /* fall through */ 12239 case 0x8: /* CMGT, CMGE */ 12240 case 0x9: /* CMEQ, CMLE */ 12241 case 0xb: /* ABS, NEG */ 12242 if (size == 3 && !is_q) { 12243 unallocated_encoding(s); 12244 return; 12245 } 12246 break; 12247 case 0x3: /* SUQADD, USQADD */ 12248 if (size == 3 && !is_q) { 12249 unallocated_encoding(s); 12250 return; 12251 } 12252 if (!fp_access_check(s)) { 12253 return; 12254 } 12255 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12256 return; 12257 case 0x7: /* SQABS, SQNEG */ 12258 if (size == 3 && !is_q) { 12259 unallocated_encoding(s); 12260 return; 12261 } 12262 break; 12263 case 0xc ... 0xf: 12264 case 0x16 ... 0x1f: 12265 { 12266 /* Floating point: U, size[1] and opcode indicate operation; 12267 * size[0] indicates single or double precision. 12268 */ 12269 int is_double = extract32(size, 0, 1); 12270 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12271 size = is_double ? 3 : 2; 12272 switch (opcode) { 12273 case 0x2f: /* FABS */ 12274 case 0x6f: /* FNEG */ 12275 if (size == 3 && !is_q) { 12276 unallocated_encoding(s); 12277 return; 12278 } 12279 break; 12280 case 0x1d: /* SCVTF */ 12281 case 0x5d: /* UCVTF */ 12282 { 12283 bool is_signed = (opcode == 0x1d) ? true : false; 12284 int elements = is_double ? 2 : is_q ? 4 : 2; 12285 if (is_double && !is_q) { 12286 unallocated_encoding(s); 12287 return; 12288 } 12289 if (!fp_access_check(s)) { 12290 return; 12291 } 12292 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12293 return; 12294 } 12295 case 0x2c: /* FCMGT (zero) */ 12296 case 0x2d: /* FCMEQ (zero) */ 12297 case 0x2e: /* FCMLT (zero) */ 12298 case 0x6c: /* FCMGE (zero) */ 12299 case 0x6d: /* FCMLE (zero) */ 12300 if (size == 3 && !is_q) { 12301 unallocated_encoding(s); 12302 return; 12303 } 12304 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12305 return; 12306 case 0x7f: /* FSQRT */ 12307 if (size == 3 && !is_q) { 12308 unallocated_encoding(s); 12309 return; 12310 } 12311 break; 12312 case 0x1a: /* FCVTNS */ 12313 case 0x1b: /* FCVTMS */ 12314 case 0x3a: /* FCVTPS */ 12315 case 0x3b: /* FCVTZS */ 12316 case 0x5a: /* FCVTNU */ 12317 case 0x5b: /* FCVTMU */ 12318 case 0x7a: /* FCVTPU */ 12319 case 0x7b: /* FCVTZU */ 12320 need_fpstatus = true; 12321 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12322 if (size == 3 && !is_q) { 12323 unallocated_encoding(s); 12324 return; 12325 } 12326 break; 12327 case 0x5c: /* FCVTAU */ 12328 case 0x1c: /* FCVTAS */ 12329 need_fpstatus = true; 12330 rmode = FPROUNDING_TIEAWAY; 12331 if (size == 3 && !is_q) { 12332 unallocated_encoding(s); 12333 return; 12334 } 12335 break; 12336 case 0x3c: /* URECPE */ 12337 if (size == 3) { 12338 unallocated_encoding(s); 12339 return; 12340 } 12341 /* fall through */ 12342 case 0x3d: /* FRECPE */ 12343 case 0x7d: /* FRSQRTE */ 12344 if (size == 3 && !is_q) { 12345 unallocated_encoding(s); 12346 return; 12347 } 12348 if (!fp_access_check(s)) { 12349 return; 12350 } 12351 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12352 return; 12353 case 0x56: /* FCVTXN, FCVTXN2 */ 12354 if (size == 2) { 12355 unallocated_encoding(s); 12356 return; 12357 } 12358 /* fall through */ 12359 case 0x16: /* FCVTN, FCVTN2 */ 12360 /* handle_2misc_narrow does a 2*size -> size operation, but these 12361 * instructions encode the source size rather than dest size. 12362 */ 12363 if (!fp_access_check(s)) { 12364 return; 12365 } 12366 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12367 return; 12368 case 0x36: /* BFCVTN, BFCVTN2 */ 12369 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12370 unallocated_encoding(s); 12371 return; 12372 } 12373 if (!fp_access_check(s)) { 12374 return; 12375 } 12376 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12377 return; 12378 case 0x17: /* FCVTL, FCVTL2 */ 12379 if (!fp_access_check(s)) { 12380 return; 12381 } 12382 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12383 return; 12384 case 0x18: /* FRINTN */ 12385 case 0x19: /* FRINTM */ 12386 case 0x38: /* FRINTP */ 12387 case 0x39: /* FRINTZ */ 12388 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12389 /* fall through */ 12390 case 0x59: /* FRINTX */ 12391 case 0x79: /* FRINTI */ 12392 need_fpstatus = true; 12393 if (size == 3 && !is_q) { 12394 unallocated_encoding(s); 12395 return; 12396 } 12397 break; 12398 case 0x58: /* FRINTA */ 12399 rmode = FPROUNDING_TIEAWAY; 12400 need_fpstatus = true; 12401 if (size == 3 && !is_q) { 12402 unallocated_encoding(s); 12403 return; 12404 } 12405 break; 12406 case 0x7c: /* URSQRTE */ 12407 if (size == 3) { 12408 unallocated_encoding(s); 12409 return; 12410 } 12411 break; 12412 case 0x1e: /* FRINT32Z */ 12413 case 0x1f: /* FRINT64Z */ 12414 rmode = FPROUNDING_ZERO; 12415 /* fall through */ 12416 case 0x5e: /* FRINT32X */ 12417 case 0x5f: /* FRINT64X */ 12418 need_fpstatus = true; 12419 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12420 unallocated_encoding(s); 12421 return; 12422 } 12423 break; 12424 default: 12425 unallocated_encoding(s); 12426 return; 12427 } 12428 break; 12429 } 12430 default: 12431 unallocated_encoding(s); 12432 return; 12433 } 12434 12435 if (!fp_access_check(s)) { 12436 return; 12437 } 12438 12439 if (need_fpstatus || rmode >= 0) { 12440 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12441 } else { 12442 tcg_fpstatus = NULL; 12443 } 12444 if (rmode >= 0) { 12445 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12446 } else { 12447 tcg_rmode = NULL; 12448 } 12449 12450 switch (opcode) { 12451 case 0x5: 12452 if (u && size == 0) { /* NOT */ 12453 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12454 return; 12455 } 12456 break; 12457 case 0x8: /* CMGT, CMGE */ 12458 if (u) { 12459 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12460 } else { 12461 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12462 } 12463 return; 12464 case 0x9: /* CMEQ, CMLE */ 12465 if (u) { 12466 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12467 } else { 12468 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12469 } 12470 return; 12471 case 0xa: /* CMLT */ 12472 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12473 return; 12474 case 0xb: 12475 if (u) { /* ABS, NEG */ 12476 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12477 } else { 12478 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12479 } 12480 return; 12481 } 12482 12483 if (size == 3) { 12484 /* All 64-bit element operations can be shared with scalar 2misc */ 12485 int pass; 12486 12487 /* Coverity claims (size == 3 && !is_q) has been eliminated 12488 * from all paths leading to here. 12489 */ 12490 tcg_debug_assert(is_q); 12491 for (pass = 0; pass < 2; pass++) { 12492 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12493 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12494 12495 read_vec_element(s, tcg_op, rn, pass, MO_64); 12496 12497 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12498 tcg_rmode, tcg_fpstatus); 12499 12500 write_vec_element(s, tcg_res, rd, pass, MO_64); 12501 } 12502 } else { 12503 int pass; 12504 12505 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12506 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12507 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12508 12509 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12510 12511 if (size == 2) { 12512 /* Special cases for 32 bit elements */ 12513 switch (opcode) { 12514 case 0x4: /* CLS */ 12515 if (u) { 12516 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12517 } else { 12518 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12519 } 12520 break; 12521 case 0x7: /* SQABS, SQNEG */ 12522 if (u) { 12523 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12524 } else { 12525 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12526 } 12527 break; 12528 case 0x2f: /* FABS */ 12529 gen_vfp_abss(tcg_res, tcg_op); 12530 break; 12531 case 0x6f: /* FNEG */ 12532 gen_vfp_negs(tcg_res, tcg_op); 12533 break; 12534 case 0x7f: /* FSQRT */ 12535 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12536 break; 12537 case 0x1a: /* FCVTNS */ 12538 case 0x1b: /* FCVTMS */ 12539 case 0x1c: /* FCVTAS */ 12540 case 0x3a: /* FCVTPS */ 12541 case 0x3b: /* FCVTZS */ 12542 gen_helper_vfp_tosls(tcg_res, tcg_op, 12543 tcg_constant_i32(0), tcg_fpstatus); 12544 break; 12545 case 0x5a: /* FCVTNU */ 12546 case 0x5b: /* FCVTMU */ 12547 case 0x5c: /* FCVTAU */ 12548 case 0x7a: /* FCVTPU */ 12549 case 0x7b: /* FCVTZU */ 12550 gen_helper_vfp_touls(tcg_res, tcg_op, 12551 tcg_constant_i32(0), tcg_fpstatus); 12552 break; 12553 case 0x18: /* FRINTN */ 12554 case 0x19: /* FRINTM */ 12555 case 0x38: /* FRINTP */ 12556 case 0x39: /* FRINTZ */ 12557 case 0x58: /* FRINTA */ 12558 case 0x79: /* FRINTI */ 12559 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12560 break; 12561 case 0x59: /* FRINTX */ 12562 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12563 break; 12564 case 0x7c: /* URSQRTE */ 12565 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12566 break; 12567 case 0x1e: /* FRINT32Z */ 12568 case 0x5e: /* FRINT32X */ 12569 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12570 break; 12571 case 0x1f: /* FRINT64Z */ 12572 case 0x5f: /* FRINT64X */ 12573 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12574 break; 12575 default: 12576 g_assert_not_reached(); 12577 } 12578 } else { 12579 /* Use helpers for 8 and 16 bit elements */ 12580 switch (opcode) { 12581 case 0x5: /* CNT, RBIT */ 12582 /* For these two insns size is part of the opcode specifier 12583 * (handled earlier); they always operate on byte elements. 12584 */ 12585 if (u) { 12586 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12587 } else { 12588 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12589 } 12590 break; 12591 case 0x7: /* SQABS, SQNEG */ 12592 { 12593 NeonGenOneOpEnvFn *genfn; 12594 static NeonGenOneOpEnvFn * const fns[2][2] = { 12595 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12596 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12597 }; 12598 genfn = fns[size][u]; 12599 genfn(tcg_res, tcg_env, tcg_op); 12600 break; 12601 } 12602 case 0x4: /* CLS, CLZ */ 12603 if (u) { 12604 if (size == 0) { 12605 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12606 } else { 12607 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12608 } 12609 } else { 12610 if (size == 0) { 12611 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12612 } else { 12613 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12614 } 12615 } 12616 break; 12617 default: 12618 g_assert_not_reached(); 12619 } 12620 } 12621 12622 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12623 } 12624 } 12625 clear_vec_high(s, is_q, rd); 12626 12627 if (tcg_rmode) { 12628 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12629 } 12630 } 12631 12632 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12633 * 12634 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12635 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12636 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12637 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12638 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12639 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12640 * 12641 * This actually covers two groups where scalar access is governed by 12642 * bit 28. A bunch of the instructions (float to integral) only exist 12643 * in the vector form and are un-allocated for the scalar decode. Also 12644 * in the scalar decode Q is always 1. 12645 */ 12646 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12647 { 12648 int fpop, opcode, a, u; 12649 int rn, rd; 12650 bool is_q; 12651 bool is_scalar; 12652 bool only_in_vector = false; 12653 12654 int pass; 12655 TCGv_i32 tcg_rmode = NULL; 12656 TCGv_ptr tcg_fpstatus = NULL; 12657 bool need_fpst = true; 12658 int rmode = -1; 12659 12660 if (!dc_isar_feature(aa64_fp16, s)) { 12661 unallocated_encoding(s); 12662 return; 12663 } 12664 12665 rd = extract32(insn, 0, 5); 12666 rn = extract32(insn, 5, 5); 12667 12668 a = extract32(insn, 23, 1); 12669 u = extract32(insn, 29, 1); 12670 is_scalar = extract32(insn, 28, 1); 12671 is_q = extract32(insn, 30, 1); 12672 12673 opcode = extract32(insn, 12, 5); 12674 fpop = deposit32(opcode, 5, 1, a); 12675 fpop = deposit32(fpop, 6, 1, u); 12676 12677 switch (fpop) { 12678 case 0x1d: /* SCVTF */ 12679 case 0x5d: /* UCVTF */ 12680 { 12681 int elements; 12682 12683 if (is_scalar) { 12684 elements = 1; 12685 } else { 12686 elements = (is_q ? 8 : 4); 12687 } 12688 12689 if (!fp_access_check(s)) { 12690 return; 12691 } 12692 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12693 return; 12694 } 12695 break; 12696 case 0x2c: /* FCMGT (zero) */ 12697 case 0x2d: /* FCMEQ (zero) */ 12698 case 0x2e: /* FCMLT (zero) */ 12699 case 0x6c: /* FCMGE (zero) */ 12700 case 0x6d: /* FCMLE (zero) */ 12701 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12702 return; 12703 case 0x3d: /* FRECPE */ 12704 case 0x3f: /* FRECPX */ 12705 break; 12706 case 0x18: /* FRINTN */ 12707 only_in_vector = true; 12708 rmode = FPROUNDING_TIEEVEN; 12709 break; 12710 case 0x19: /* FRINTM */ 12711 only_in_vector = true; 12712 rmode = FPROUNDING_NEGINF; 12713 break; 12714 case 0x38: /* FRINTP */ 12715 only_in_vector = true; 12716 rmode = FPROUNDING_POSINF; 12717 break; 12718 case 0x39: /* FRINTZ */ 12719 only_in_vector = true; 12720 rmode = FPROUNDING_ZERO; 12721 break; 12722 case 0x58: /* FRINTA */ 12723 only_in_vector = true; 12724 rmode = FPROUNDING_TIEAWAY; 12725 break; 12726 case 0x59: /* FRINTX */ 12727 case 0x79: /* FRINTI */ 12728 only_in_vector = true; 12729 /* current rounding mode */ 12730 break; 12731 case 0x1a: /* FCVTNS */ 12732 rmode = FPROUNDING_TIEEVEN; 12733 break; 12734 case 0x1b: /* FCVTMS */ 12735 rmode = FPROUNDING_NEGINF; 12736 break; 12737 case 0x1c: /* FCVTAS */ 12738 rmode = FPROUNDING_TIEAWAY; 12739 break; 12740 case 0x3a: /* FCVTPS */ 12741 rmode = FPROUNDING_POSINF; 12742 break; 12743 case 0x3b: /* FCVTZS */ 12744 rmode = FPROUNDING_ZERO; 12745 break; 12746 case 0x5a: /* FCVTNU */ 12747 rmode = FPROUNDING_TIEEVEN; 12748 break; 12749 case 0x5b: /* FCVTMU */ 12750 rmode = FPROUNDING_NEGINF; 12751 break; 12752 case 0x5c: /* FCVTAU */ 12753 rmode = FPROUNDING_TIEAWAY; 12754 break; 12755 case 0x7a: /* FCVTPU */ 12756 rmode = FPROUNDING_POSINF; 12757 break; 12758 case 0x7b: /* FCVTZU */ 12759 rmode = FPROUNDING_ZERO; 12760 break; 12761 case 0x2f: /* FABS */ 12762 case 0x6f: /* FNEG */ 12763 need_fpst = false; 12764 break; 12765 case 0x7d: /* FRSQRTE */ 12766 case 0x7f: /* FSQRT (vector) */ 12767 break; 12768 default: 12769 unallocated_encoding(s); 12770 return; 12771 } 12772 12773 12774 /* Check additional constraints for the scalar encoding */ 12775 if (is_scalar) { 12776 if (!is_q) { 12777 unallocated_encoding(s); 12778 return; 12779 } 12780 /* FRINTxx is only in the vector form */ 12781 if (only_in_vector) { 12782 unallocated_encoding(s); 12783 return; 12784 } 12785 } 12786 12787 if (!fp_access_check(s)) { 12788 return; 12789 } 12790 12791 if (rmode >= 0 || need_fpst) { 12792 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12793 } 12794 12795 if (rmode >= 0) { 12796 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12797 } 12798 12799 if (is_scalar) { 12800 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12801 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12802 12803 switch (fpop) { 12804 case 0x1a: /* FCVTNS */ 12805 case 0x1b: /* FCVTMS */ 12806 case 0x1c: /* FCVTAS */ 12807 case 0x3a: /* FCVTPS */ 12808 case 0x3b: /* FCVTZS */ 12809 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12810 break; 12811 case 0x3d: /* FRECPE */ 12812 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12813 break; 12814 case 0x3f: /* FRECPX */ 12815 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12816 break; 12817 case 0x5a: /* FCVTNU */ 12818 case 0x5b: /* FCVTMU */ 12819 case 0x5c: /* FCVTAU */ 12820 case 0x7a: /* FCVTPU */ 12821 case 0x7b: /* FCVTZU */ 12822 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12823 break; 12824 case 0x6f: /* FNEG */ 12825 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12826 break; 12827 case 0x7d: /* FRSQRTE */ 12828 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12829 break; 12830 default: 12831 g_assert_not_reached(); 12832 } 12833 12834 /* limit any sign extension going on */ 12835 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12836 write_fp_sreg(s, rd, tcg_res); 12837 } else { 12838 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12839 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12840 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12841 12842 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12843 12844 switch (fpop) { 12845 case 0x1a: /* FCVTNS */ 12846 case 0x1b: /* FCVTMS */ 12847 case 0x1c: /* FCVTAS */ 12848 case 0x3a: /* FCVTPS */ 12849 case 0x3b: /* FCVTZS */ 12850 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12851 break; 12852 case 0x3d: /* FRECPE */ 12853 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12854 break; 12855 case 0x5a: /* FCVTNU */ 12856 case 0x5b: /* FCVTMU */ 12857 case 0x5c: /* FCVTAU */ 12858 case 0x7a: /* FCVTPU */ 12859 case 0x7b: /* FCVTZU */ 12860 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12861 break; 12862 case 0x18: /* FRINTN */ 12863 case 0x19: /* FRINTM */ 12864 case 0x38: /* FRINTP */ 12865 case 0x39: /* FRINTZ */ 12866 case 0x58: /* FRINTA */ 12867 case 0x79: /* FRINTI */ 12868 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12869 break; 12870 case 0x59: /* FRINTX */ 12871 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12872 break; 12873 case 0x2f: /* FABS */ 12874 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12875 break; 12876 case 0x6f: /* FNEG */ 12877 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12878 break; 12879 case 0x7d: /* FRSQRTE */ 12880 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12881 break; 12882 case 0x7f: /* FSQRT */ 12883 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12884 break; 12885 default: 12886 g_assert_not_reached(); 12887 } 12888 12889 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12890 } 12891 12892 clear_vec_high(s, is_q, rd); 12893 } 12894 12895 if (tcg_rmode) { 12896 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12897 } 12898 } 12899 12900 /* AdvSIMD scalar x indexed element 12901 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12902 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12903 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12904 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12905 * AdvSIMD vector x indexed element 12906 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12907 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12908 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12909 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12910 */ 12911 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12912 { 12913 /* This encoding has two kinds of instruction: 12914 * normal, where we perform elt x idxelt => elt for each 12915 * element in the vector 12916 * long, where we perform elt x idxelt and generate a result of 12917 * double the width of the input element 12918 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12919 */ 12920 bool is_scalar = extract32(insn, 28, 1); 12921 bool is_q = extract32(insn, 30, 1); 12922 bool u = extract32(insn, 29, 1); 12923 int size = extract32(insn, 22, 2); 12924 int l = extract32(insn, 21, 1); 12925 int m = extract32(insn, 20, 1); 12926 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12927 int rm = extract32(insn, 16, 4); 12928 int opcode = extract32(insn, 12, 4); 12929 int h = extract32(insn, 11, 1); 12930 int rn = extract32(insn, 5, 5); 12931 int rd = extract32(insn, 0, 5); 12932 bool is_long = false; 12933 int is_fp = 0; 12934 bool is_fp16 = false; 12935 int index; 12936 TCGv_ptr fpst; 12937 12938 switch (16 * u + opcode) { 12939 case 0x08: /* MUL */ 12940 case 0x10: /* MLA */ 12941 case 0x14: /* MLS */ 12942 if (is_scalar) { 12943 unallocated_encoding(s); 12944 return; 12945 } 12946 break; 12947 case 0x02: /* SMLAL, SMLAL2 */ 12948 case 0x12: /* UMLAL, UMLAL2 */ 12949 case 0x06: /* SMLSL, SMLSL2 */ 12950 case 0x16: /* UMLSL, UMLSL2 */ 12951 case 0x0a: /* SMULL, SMULL2 */ 12952 case 0x1a: /* UMULL, UMULL2 */ 12953 if (is_scalar) { 12954 unallocated_encoding(s); 12955 return; 12956 } 12957 is_long = true; 12958 break; 12959 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12960 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12961 case 0x0b: /* SQDMULL, SQDMULL2 */ 12962 is_long = true; 12963 break; 12964 case 0x0c: /* SQDMULH */ 12965 case 0x0d: /* SQRDMULH */ 12966 break; 12967 case 0x1d: /* SQRDMLAH */ 12968 case 0x1f: /* SQRDMLSH */ 12969 if (!dc_isar_feature(aa64_rdm, s)) { 12970 unallocated_encoding(s); 12971 return; 12972 } 12973 break; 12974 case 0x0e: /* SDOT */ 12975 case 0x1e: /* UDOT */ 12976 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12977 unallocated_encoding(s); 12978 return; 12979 } 12980 break; 12981 case 0x0f: 12982 switch (size) { 12983 case 0: /* SUDOT */ 12984 case 2: /* USDOT */ 12985 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12986 unallocated_encoding(s); 12987 return; 12988 } 12989 size = MO_32; 12990 break; 12991 case 1: /* BFDOT */ 12992 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12993 unallocated_encoding(s); 12994 return; 12995 } 12996 size = MO_32; 12997 break; 12998 case 3: /* BFMLAL{B,T} */ 12999 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13000 unallocated_encoding(s); 13001 return; 13002 } 13003 /* can't set is_fp without other incorrect size checks */ 13004 size = MO_16; 13005 break; 13006 default: 13007 unallocated_encoding(s); 13008 return; 13009 } 13010 break; 13011 case 0x11: /* FCMLA #0 */ 13012 case 0x13: /* FCMLA #90 */ 13013 case 0x15: /* FCMLA #180 */ 13014 case 0x17: /* FCMLA #270 */ 13015 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13016 unallocated_encoding(s); 13017 return; 13018 } 13019 is_fp = 2; 13020 break; 13021 case 0x00: /* FMLAL */ 13022 case 0x04: /* FMLSL */ 13023 case 0x18: /* FMLAL2 */ 13024 case 0x1c: /* FMLSL2 */ 13025 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13026 unallocated_encoding(s); 13027 return; 13028 } 13029 size = MO_16; 13030 /* is_fp, but we pass tcg_env not fp_status. */ 13031 break; 13032 default: 13033 case 0x01: /* FMLA */ 13034 case 0x05: /* FMLS */ 13035 case 0x09: /* FMUL */ 13036 case 0x19: /* FMULX */ 13037 unallocated_encoding(s); 13038 return; 13039 } 13040 13041 switch (is_fp) { 13042 case 1: /* normal fp */ 13043 unallocated_encoding(s); /* in decodetree */ 13044 return; 13045 13046 case 2: /* complex fp */ 13047 /* Each indexable element is a complex pair. */ 13048 size += 1; 13049 switch (size) { 13050 case MO_32: 13051 if (h && !is_q) { 13052 unallocated_encoding(s); 13053 return; 13054 } 13055 is_fp16 = true; 13056 break; 13057 case MO_64: 13058 break; 13059 default: 13060 unallocated_encoding(s); 13061 return; 13062 } 13063 break; 13064 13065 default: /* integer */ 13066 switch (size) { 13067 case MO_8: 13068 case MO_64: 13069 unallocated_encoding(s); 13070 return; 13071 } 13072 break; 13073 } 13074 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13075 unallocated_encoding(s); 13076 return; 13077 } 13078 13079 /* Given MemOp size, adjust register and indexing. */ 13080 switch (size) { 13081 case MO_16: 13082 index = h << 2 | l << 1 | m; 13083 break; 13084 case MO_32: 13085 index = h << 1 | l; 13086 rm |= m << 4; 13087 break; 13088 case MO_64: 13089 if (l || !is_q) { 13090 unallocated_encoding(s); 13091 return; 13092 } 13093 index = h; 13094 rm |= m << 4; 13095 break; 13096 default: 13097 g_assert_not_reached(); 13098 } 13099 13100 if (!fp_access_check(s)) { 13101 return; 13102 } 13103 13104 if (is_fp) { 13105 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13106 } else { 13107 fpst = NULL; 13108 } 13109 13110 switch (16 * u + opcode) { 13111 case 0x0e: /* SDOT */ 13112 case 0x1e: /* UDOT */ 13113 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13114 u ? gen_helper_gvec_udot_idx_b 13115 : gen_helper_gvec_sdot_idx_b); 13116 return; 13117 case 0x0f: 13118 switch (extract32(insn, 22, 2)) { 13119 case 0: /* SUDOT */ 13120 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13121 gen_helper_gvec_sudot_idx_b); 13122 return; 13123 case 1: /* BFDOT */ 13124 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13125 gen_helper_gvec_bfdot_idx); 13126 return; 13127 case 2: /* USDOT */ 13128 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13129 gen_helper_gvec_usdot_idx_b); 13130 return; 13131 case 3: /* BFMLAL{B,T} */ 13132 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13133 gen_helper_gvec_bfmlal_idx); 13134 return; 13135 } 13136 g_assert_not_reached(); 13137 case 0x11: /* FCMLA #0 */ 13138 case 0x13: /* FCMLA #90 */ 13139 case 0x15: /* FCMLA #180 */ 13140 case 0x17: /* FCMLA #270 */ 13141 { 13142 int rot = extract32(insn, 13, 2); 13143 int data = (index << 2) | rot; 13144 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13145 vec_full_reg_offset(s, rn), 13146 vec_full_reg_offset(s, rm), 13147 vec_full_reg_offset(s, rd), fpst, 13148 is_q ? 16 : 8, vec_full_reg_size(s), data, 13149 size == MO_64 13150 ? gen_helper_gvec_fcmlas_idx 13151 : gen_helper_gvec_fcmlah_idx); 13152 } 13153 return; 13154 13155 case 0x00: /* FMLAL */ 13156 case 0x04: /* FMLSL */ 13157 case 0x18: /* FMLAL2 */ 13158 case 0x1c: /* FMLSL2 */ 13159 { 13160 int is_s = extract32(opcode, 2, 1); 13161 int is_2 = u; 13162 int data = (index << 2) | (is_2 << 1) | is_s; 13163 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13164 vec_full_reg_offset(s, rn), 13165 vec_full_reg_offset(s, rm), tcg_env, 13166 is_q ? 16 : 8, vec_full_reg_size(s), 13167 data, gen_helper_gvec_fmlal_idx_a64); 13168 } 13169 return; 13170 13171 case 0x08: /* MUL */ 13172 if (!is_long && !is_scalar) { 13173 static gen_helper_gvec_3 * const fns[3] = { 13174 gen_helper_gvec_mul_idx_h, 13175 gen_helper_gvec_mul_idx_s, 13176 gen_helper_gvec_mul_idx_d, 13177 }; 13178 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13179 vec_full_reg_offset(s, rn), 13180 vec_full_reg_offset(s, rm), 13181 is_q ? 16 : 8, vec_full_reg_size(s), 13182 index, fns[size - 1]); 13183 return; 13184 } 13185 break; 13186 13187 case 0x10: /* MLA */ 13188 if (!is_long && !is_scalar) { 13189 static gen_helper_gvec_4 * const fns[3] = { 13190 gen_helper_gvec_mla_idx_h, 13191 gen_helper_gvec_mla_idx_s, 13192 gen_helper_gvec_mla_idx_d, 13193 }; 13194 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13195 vec_full_reg_offset(s, rn), 13196 vec_full_reg_offset(s, rm), 13197 vec_full_reg_offset(s, rd), 13198 is_q ? 16 : 8, vec_full_reg_size(s), 13199 index, fns[size - 1]); 13200 return; 13201 } 13202 break; 13203 13204 case 0x14: /* MLS */ 13205 if (!is_long && !is_scalar) { 13206 static gen_helper_gvec_4 * const fns[3] = { 13207 gen_helper_gvec_mls_idx_h, 13208 gen_helper_gvec_mls_idx_s, 13209 gen_helper_gvec_mls_idx_d, 13210 }; 13211 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13212 vec_full_reg_offset(s, rn), 13213 vec_full_reg_offset(s, rm), 13214 vec_full_reg_offset(s, rd), 13215 is_q ? 16 : 8, vec_full_reg_size(s), 13216 index, fns[size - 1]); 13217 return; 13218 } 13219 break; 13220 } 13221 13222 if (size == 3) { 13223 g_assert_not_reached(); 13224 } else if (!is_long) { 13225 /* 32 bit floating point, or 16 or 32 bit integer. 13226 * For the 16 bit scalar case we use the usual Neon helpers and 13227 * rely on the fact that 0 op 0 == 0 with no side effects. 13228 */ 13229 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13230 int pass, maxpasses; 13231 13232 if (is_scalar) { 13233 maxpasses = 1; 13234 } else { 13235 maxpasses = is_q ? 4 : 2; 13236 } 13237 13238 read_vec_element_i32(s, tcg_idx, rm, index, size); 13239 13240 if (size == 1 && !is_scalar) { 13241 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13242 * the index into both halves of the 32 bit tcg_idx and then use 13243 * the usual Neon helpers. 13244 */ 13245 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13246 } 13247 13248 for (pass = 0; pass < maxpasses; pass++) { 13249 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13250 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13251 13252 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13253 13254 switch (16 * u + opcode) { 13255 case 0x08: /* MUL */ 13256 case 0x10: /* MLA */ 13257 case 0x14: /* MLS */ 13258 { 13259 static NeonGenTwoOpFn * const fns[2][2] = { 13260 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13261 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13262 }; 13263 NeonGenTwoOpFn *genfn; 13264 bool is_sub = opcode == 0x4; 13265 13266 if (size == 1) { 13267 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13268 } else { 13269 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13270 } 13271 if (opcode == 0x8) { 13272 break; 13273 } 13274 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13275 genfn = fns[size - 1][is_sub]; 13276 genfn(tcg_res, tcg_op, tcg_res); 13277 break; 13278 } 13279 case 0x0c: /* SQDMULH */ 13280 if (size == 1) { 13281 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13282 tcg_op, tcg_idx); 13283 } else { 13284 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13285 tcg_op, tcg_idx); 13286 } 13287 break; 13288 case 0x0d: /* SQRDMULH */ 13289 if (size == 1) { 13290 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13291 tcg_op, tcg_idx); 13292 } else { 13293 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13294 tcg_op, tcg_idx); 13295 } 13296 break; 13297 case 0x1d: /* SQRDMLAH */ 13298 read_vec_element_i32(s, tcg_res, rd, pass, 13299 is_scalar ? size : MO_32); 13300 if (size == 1) { 13301 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13302 tcg_op, tcg_idx, tcg_res); 13303 } else { 13304 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13305 tcg_op, tcg_idx, tcg_res); 13306 } 13307 break; 13308 case 0x1f: /* SQRDMLSH */ 13309 read_vec_element_i32(s, tcg_res, rd, pass, 13310 is_scalar ? size : MO_32); 13311 if (size == 1) { 13312 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13313 tcg_op, tcg_idx, tcg_res); 13314 } else { 13315 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13316 tcg_op, tcg_idx, tcg_res); 13317 } 13318 break; 13319 default: 13320 case 0x01: /* FMLA */ 13321 case 0x05: /* FMLS */ 13322 case 0x09: /* FMUL */ 13323 case 0x19: /* FMULX */ 13324 g_assert_not_reached(); 13325 } 13326 13327 if (is_scalar) { 13328 write_fp_sreg(s, rd, tcg_res); 13329 } else { 13330 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13331 } 13332 } 13333 13334 clear_vec_high(s, is_q, rd); 13335 } else { 13336 /* long ops: 16x16->32 or 32x32->64 */ 13337 TCGv_i64 tcg_res[2]; 13338 int pass; 13339 bool satop = extract32(opcode, 0, 1); 13340 MemOp memop = MO_32; 13341 13342 if (satop || !u) { 13343 memop |= MO_SIGN; 13344 } 13345 13346 if (size == 2) { 13347 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13348 13349 read_vec_element(s, tcg_idx, rm, index, memop); 13350 13351 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13352 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13353 TCGv_i64 tcg_passres; 13354 int passelt; 13355 13356 if (is_scalar) { 13357 passelt = 0; 13358 } else { 13359 passelt = pass + (is_q * 2); 13360 } 13361 13362 read_vec_element(s, tcg_op, rn, passelt, memop); 13363 13364 tcg_res[pass] = tcg_temp_new_i64(); 13365 13366 if (opcode == 0xa || opcode == 0xb) { 13367 /* Non-accumulating ops */ 13368 tcg_passres = tcg_res[pass]; 13369 } else { 13370 tcg_passres = tcg_temp_new_i64(); 13371 } 13372 13373 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13374 13375 if (satop) { 13376 /* saturating, doubling */ 13377 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13378 tcg_passres, tcg_passres); 13379 } 13380 13381 if (opcode == 0xa || opcode == 0xb) { 13382 continue; 13383 } 13384 13385 /* Accumulating op: handle accumulate step */ 13386 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13387 13388 switch (opcode) { 13389 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13390 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13391 break; 13392 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13393 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13394 break; 13395 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13396 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13397 /* fall through */ 13398 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13399 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13400 tcg_res[pass], 13401 tcg_passres); 13402 break; 13403 default: 13404 g_assert_not_reached(); 13405 } 13406 } 13407 13408 clear_vec_high(s, !is_scalar, rd); 13409 } else { 13410 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13411 13412 assert(size == 1); 13413 read_vec_element_i32(s, tcg_idx, rm, index, size); 13414 13415 if (!is_scalar) { 13416 /* The simplest way to handle the 16x16 indexed ops is to 13417 * duplicate the index into both halves of the 32 bit tcg_idx 13418 * and then use the usual Neon helpers. 13419 */ 13420 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13421 } 13422 13423 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13424 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13425 TCGv_i64 tcg_passres; 13426 13427 if (is_scalar) { 13428 read_vec_element_i32(s, tcg_op, rn, pass, size); 13429 } else { 13430 read_vec_element_i32(s, tcg_op, rn, 13431 pass + (is_q * 2), MO_32); 13432 } 13433 13434 tcg_res[pass] = tcg_temp_new_i64(); 13435 13436 if (opcode == 0xa || opcode == 0xb) { 13437 /* Non-accumulating ops */ 13438 tcg_passres = tcg_res[pass]; 13439 } else { 13440 tcg_passres = tcg_temp_new_i64(); 13441 } 13442 13443 if (memop & MO_SIGN) { 13444 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13445 } else { 13446 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13447 } 13448 if (satop) { 13449 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13450 tcg_passres, tcg_passres); 13451 } 13452 13453 if (opcode == 0xa || opcode == 0xb) { 13454 continue; 13455 } 13456 13457 /* Accumulating op: handle accumulate step */ 13458 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13459 13460 switch (opcode) { 13461 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13462 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13463 tcg_passres); 13464 break; 13465 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13466 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13467 tcg_passres); 13468 break; 13469 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13470 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13471 /* fall through */ 13472 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13473 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13474 tcg_res[pass], 13475 tcg_passres); 13476 break; 13477 default: 13478 g_assert_not_reached(); 13479 } 13480 } 13481 13482 if (is_scalar) { 13483 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13484 } 13485 } 13486 13487 if (is_scalar) { 13488 tcg_res[1] = tcg_constant_i64(0); 13489 } 13490 13491 for (pass = 0; pass < 2; pass++) { 13492 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13493 } 13494 } 13495 } 13496 13497 /* C3.6 Data processing - SIMD, inc Crypto 13498 * 13499 * As the decode gets a little complex we are using a table based 13500 * approach for this part of the decode. 13501 */ 13502 static const AArch64DecodeTable data_proc_simd[] = { 13503 /* pattern , mask , fn */ 13504 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13505 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13506 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13507 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13508 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13509 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13510 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13511 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13512 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13513 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13514 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13515 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13516 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13517 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13518 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13519 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13520 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13521 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13522 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13523 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13524 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13525 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13526 { 0x00000000, 0x00000000, NULL } 13527 }; 13528 13529 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13530 { 13531 /* Note that this is called with all non-FP cases from 13532 * table C3-6 so it must UNDEF for entries not specifically 13533 * allocated to instructions in that table. 13534 */ 13535 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13536 if (fn) { 13537 fn(s, insn); 13538 } else { 13539 unallocated_encoding(s); 13540 } 13541 } 13542 13543 /* C3.6 Data processing - SIMD and floating point */ 13544 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13545 { 13546 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13547 disas_data_proc_fp(s, insn); 13548 } else { 13549 /* SIMD, including crypto */ 13550 disas_data_proc_simd(s, insn); 13551 } 13552 } 13553 13554 static bool trans_OK(DisasContext *s, arg_OK *a) 13555 { 13556 return true; 13557 } 13558 13559 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13560 { 13561 s->is_nonstreaming = true; 13562 return true; 13563 } 13564 13565 /** 13566 * is_guarded_page: 13567 * @env: The cpu environment 13568 * @s: The DisasContext 13569 * 13570 * Return true if the page is guarded. 13571 */ 13572 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13573 { 13574 uint64_t addr = s->base.pc_first; 13575 #ifdef CONFIG_USER_ONLY 13576 return page_get_flags(addr) & PAGE_BTI; 13577 #else 13578 CPUTLBEntryFull *full; 13579 void *host; 13580 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13581 int flags; 13582 13583 /* 13584 * We test this immediately after reading an insn, which means 13585 * that the TLB entry must be present and valid, and thus this 13586 * access will never raise an exception. 13587 */ 13588 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13589 false, &host, &full, 0); 13590 assert(!(flags & TLB_INVALID_MASK)); 13591 13592 return full->extra.arm.guarded; 13593 #endif 13594 } 13595 13596 /** 13597 * btype_destination_ok: 13598 * @insn: The instruction at the branch destination 13599 * @bt: SCTLR_ELx.BT 13600 * @btype: PSTATE.BTYPE, and is non-zero 13601 * 13602 * On a guarded page, there are a limited number of insns 13603 * that may be present at the branch target: 13604 * - branch target identifiers, 13605 * - paciasp, pacibsp, 13606 * - BRK insn 13607 * - HLT insn 13608 * Anything else causes a Branch Target Exception. 13609 * 13610 * Return true if the branch is compatible, false to raise BTITRAP. 13611 */ 13612 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13613 { 13614 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13615 /* HINT space */ 13616 switch (extract32(insn, 5, 7)) { 13617 case 0b011001: /* PACIASP */ 13618 case 0b011011: /* PACIBSP */ 13619 /* 13620 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13621 * with btype == 3. Otherwise all btype are ok. 13622 */ 13623 return !bt || btype != 3; 13624 case 0b100000: /* BTI */ 13625 /* Not compatible with any btype. */ 13626 return false; 13627 case 0b100010: /* BTI c */ 13628 /* Not compatible with btype == 3 */ 13629 return btype != 3; 13630 case 0b100100: /* BTI j */ 13631 /* Not compatible with btype == 2 */ 13632 return btype != 2; 13633 case 0b100110: /* BTI jc */ 13634 /* Compatible with any btype. */ 13635 return true; 13636 } 13637 } else { 13638 switch (insn & 0xffe0001fu) { 13639 case 0xd4200000u: /* BRK */ 13640 case 0xd4400000u: /* HLT */ 13641 /* Give priority to the breakpoint exception. */ 13642 return true; 13643 } 13644 } 13645 return false; 13646 } 13647 13648 /* C3.1 A64 instruction index by encoding */ 13649 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13650 { 13651 switch (extract32(insn, 25, 4)) { 13652 case 0x5: 13653 case 0xd: /* Data processing - register */ 13654 disas_data_proc_reg(s, insn); 13655 break; 13656 case 0x7: 13657 case 0xf: /* Data processing - SIMD and floating point */ 13658 disas_data_proc_simd_fp(s, insn); 13659 break; 13660 default: 13661 unallocated_encoding(s); 13662 break; 13663 } 13664 } 13665 13666 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13667 CPUState *cpu) 13668 { 13669 DisasContext *dc = container_of(dcbase, DisasContext, base); 13670 CPUARMState *env = cpu_env(cpu); 13671 ARMCPU *arm_cpu = env_archcpu(env); 13672 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13673 int bound, core_mmu_idx; 13674 13675 dc->isar = &arm_cpu->isar; 13676 dc->condjmp = 0; 13677 dc->pc_save = dc->base.pc_first; 13678 dc->aarch64 = true; 13679 dc->thumb = false; 13680 dc->sctlr_b = 0; 13681 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13682 dc->condexec_mask = 0; 13683 dc->condexec_cond = 0; 13684 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13685 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13686 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13687 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13688 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13689 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13690 #if !defined(CONFIG_USER_ONLY) 13691 dc->user = (dc->current_el == 0); 13692 #endif 13693 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13694 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13695 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13696 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13697 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13698 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13699 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13700 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13701 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13702 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13703 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13704 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13705 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13706 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13707 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13708 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13709 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13710 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13711 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13712 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13713 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13714 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13715 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13716 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13717 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13718 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13719 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13720 dc->vec_len = 0; 13721 dc->vec_stride = 0; 13722 dc->cp_regs = arm_cpu->cp_regs; 13723 dc->features = env->features; 13724 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13725 dc->gm_blocksize = arm_cpu->gm_blocksize; 13726 13727 #ifdef CONFIG_USER_ONLY 13728 /* In sve_probe_page, we assume TBI is enabled. */ 13729 tcg_debug_assert(dc->tbid & 1); 13730 #endif 13731 13732 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13733 13734 /* Single step state. The code-generation logic here is: 13735 * SS_ACTIVE == 0: 13736 * generate code with no special handling for single-stepping (except 13737 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13738 * this happens anyway because those changes are all system register or 13739 * PSTATE writes). 13740 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13741 * emit code for one insn 13742 * emit code to clear PSTATE.SS 13743 * emit code to generate software step exception for completed step 13744 * end TB (as usual for having generated an exception) 13745 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13746 * emit code to generate a software step exception 13747 * end the TB 13748 */ 13749 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13750 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13751 dc->is_ldex = false; 13752 13753 /* Bound the number of insns to execute to those left on the page. */ 13754 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13755 13756 /* If architectural single step active, limit to 1. */ 13757 if (dc->ss_active) { 13758 bound = 1; 13759 } 13760 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13761 } 13762 13763 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13764 { 13765 } 13766 13767 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13768 { 13769 DisasContext *dc = container_of(dcbase, DisasContext, base); 13770 target_ulong pc_arg = dc->base.pc_next; 13771 13772 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13773 pc_arg &= ~TARGET_PAGE_MASK; 13774 } 13775 tcg_gen_insn_start(pc_arg, 0, 0); 13776 dc->insn_start_updated = false; 13777 } 13778 13779 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13780 { 13781 DisasContext *s = container_of(dcbase, DisasContext, base); 13782 CPUARMState *env = cpu_env(cpu); 13783 uint64_t pc = s->base.pc_next; 13784 uint32_t insn; 13785 13786 /* Singlestep exceptions have the highest priority. */ 13787 if (s->ss_active && !s->pstate_ss) { 13788 /* Singlestep state is Active-pending. 13789 * If we're in this state at the start of a TB then either 13790 * a) we just took an exception to an EL which is being debugged 13791 * and this is the first insn in the exception handler 13792 * b) debug exceptions were masked and we just unmasked them 13793 * without changing EL (eg by clearing PSTATE.D) 13794 * In either case we're going to take a swstep exception in the 13795 * "did not step an insn" case, and so the syndrome ISV and EX 13796 * bits should be zero. 13797 */ 13798 assert(s->base.num_insns == 1); 13799 gen_swstep_exception(s, 0, 0); 13800 s->base.is_jmp = DISAS_NORETURN; 13801 s->base.pc_next = pc + 4; 13802 return; 13803 } 13804 13805 if (pc & 3) { 13806 /* 13807 * PC alignment fault. This has priority over the instruction abort 13808 * that we would receive from a translation fault via arm_ldl_code. 13809 * This should only be possible after an indirect branch, at the 13810 * start of the TB. 13811 */ 13812 assert(s->base.num_insns == 1); 13813 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13814 s->base.is_jmp = DISAS_NORETURN; 13815 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13816 return; 13817 } 13818 13819 s->pc_curr = pc; 13820 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13821 s->insn = insn; 13822 s->base.pc_next = pc + 4; 13823 13824 s->fp_access_checked = false; 13825 s->sve_access_checked = false; 13826 13827 if (s->pstate_il) { 13828 /* 13829 * Illegal execution state. This has priority over BTI 13830 * exceptions, but comes after instruction abort exceptions. 13831 */ 13832 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13833 return; 13834 } 13835 13836 if (dc_isar_feature(aa64_bti, s)) { 13837 if (s->base.num_insns == 1) { 13838 /* 13839 * At the first insn of the TB, compute s->guarded_page. 13840 * We delayed computing this until successfully reading 13841 * the first insn of the TB, above. This (mostly) ensures 13842 * that the softmmu tlb entry has been populated, and the 13843 * page table GP bit is available. 13844 * 13845 * Note that we need to compute this even if btype == 0, 13846 * because this value is used for BR instructions later 13847 * where ENV is not available. 13848 */ 13849 s->guarded_page = is_guarded_page(env, s); 13850 13851 /* First insn can have btype set to non-zero. */ 13852 tcg_debug_assert(s->btype >= 0); 13853 13854 /* 13855 * Note that the Branch Target Exception has fairly high 13856 * priority -- below debugging exceptions but above most 13857 * everything else. This allows us to handle this now 13858 * instead of waiting until the insn is otherwise decoded. 13859 */ 13860 if (s->btype != 0 13861 && s->guarded_page 13862 && !btype_destination_ok(insn, s->bt, s->btype)) { 13863 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13864 return; 13865 } 13866 } else { 13867 /* Not the first insn: btype must be 0. */ 13868 tcg_debug_assert(s->btype == 0); 13869 } 13870 } 13871 13872 s->is_nonstreaming = false; 13873 if (s->sme_trap_nonstreaming) { 13874 disas_sme_fa64(s, insn); 13875 } 13876 13877 if (!disas_a64(s, insn) && 13878 !disas_sme(s, insn) && 13879 !disas_sve(s, insn)) { 13880 disas_a64_legacy(s, insn); 13881 } 13882 13883 /* 13884 * After execution of most insns, btype is reset to 0. 13885 * Note that we set btype == -1 when the insn sets btype. 13886 */ 13887 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13888 reset_btype(s); 13889 } 13890 } 13891 13892 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13893 { 13894 DisasContext *dc = container_of(dcbase, DisasContext, base); 13895 13896 if (unlikely(dc->ss_active)) { 13897 /* Note that this means single stepping WFI doesn't halt the CPU. 13898 * For conditional branch insns this is harmless unreachable code as 13899 * gen_goto_tb() has already handled emitting the debug exception 13900 * (and thus a tb-jump is not possible when singlestepping). 13901 */ 13902 switch (dc->base.is_jmp) { 13903 default: 13904 gen_a64_update_pc(dc, 4); 13905 /* fall through */ 13906 case DISAS_EXIT: 13907 case DISAS_JUMP: 13908 gen_step_complete_exception(dc); 13909 break; 13910 case DISAS_NORETURN: 13911 break; 13912 } 13913 } else { 13914 switch (dc->base.is_jmp) { 13915 case DISAS_NEXT: 13916 case DISAS_TOO_MANY: 13917 gen_goto_tb(dc, 1, 4); 13918 break; 13919 default: 13920 case DISAS_UPDATE_EXIT: 13921 gen_a64_update_pc(dc, 4); 13922 /* fall through */ 13923 case DISAS_EXIT: 13924 tcg_gen_exit_tb(NULL, 0); 13925 break; 13926 case DISAS_UPDATE_NOCHAIN: 13927 gen_a64_update_pc(dc, 4); 13928 /* fall through */ 13929 case DISAS_JUMP: 13930 tcg_gen_lookup_and_goto_ptr(); 13931 break; 13932 case DISAS_NORETURN: 13933 case DISAS_SWI: 13934 break; 13935 case DISAS_WFE: 13936 gen_a64_update_pc(dc, 4); 13937 gen_helper_wfe(tcg_env); 13938 break; 13939 case DISAS_YIELD: 13940 gen_a64_update_pc(dc, 4); 13941 gen_helper_yield(tcg_env); 13942 break; 13943 case DISAS_WFI: 13944 /* 13945 * This is a special case because we don't want to just halt 13946 * the CPU if trying to debug across a WFI. 13947 */ 13948 gen_a64_update_pc(dc, 4); 13949 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13950 /* 13951 * The helper doesn't necessarily throw an exception, but we 13952 * must go back to the main loop to check for interrupts anyway. 13953 */ 13954 tcg_gen_exit_tb(NULL, 0); 13955 break; 13956 } 13957 } 13958 } 13959 13960 const TranslatorOps aarch64_translator_ops = { 13961 .init_disas_context = aarch64_tr_init_disas_context, 13962 .tb_start = aarch64_tr_tb_start, 13963 .insn_start = aarch64_tr_insn_start, 13964 .translate_insn = aarch64_tr_translate_insn, 13965 .tb_stop = aarch64_tr_tb_stop, 13966 }; 13967