1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1356 { 1357 if (a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1367 { 1368 if (!a->q && a->esz == MO_64) { 1369 return false; 1370 } 1371 if (fp_access_check(s)) { 1372 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1373 } 1374 return true; 1375 } 1376 1377 /* 1378 * This utility function is for doing register extension with an 1379 * optional shift. You will likely want to pass a temporary for the 1380 * destination register. See DecodeRegExtend() in the ARM ARM. 1381 */ 1382 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1383 int option, unsigned int shift) 1384 { 1385 int extsize = extract32(option, 0, 2); 1386 bool is_signed = extract32(option, 2, 1); 1387 1388 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1389 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1390 } 1391 1392 static inline void gen_check_sp_alignment(DisasContext *s) 1393 { 1394 /* The AArch64 architecture mandates that (if enabled via PSTATE 1395 * or SCTLR bits) there is a check that SP is 16-aligned on every 1396 * SP-relative load or store (with an exception generated if it is not). 1397 * In line with general QEMU practice regarding misaligned accesses, 1398 * we omit these checks for the sake of guest program performance. 1399 * This function is provided as a hook so we can more easily add these 1400 * checks in future (possibly as a "favour catching guest program bugs 1401 * over speed" user selectable option). 1402 */ 1403 } 1404 1405 /* 1406 * This provides a simple table based table lookup decoder. It is 1407 * intended to be used when the relevant bits for decode are too 1408 * awkwardly placed and switch/if based logic would be confusing and 1409 * deeply nested. Since it's a linear search through the table, tables 1410 * should be kept small. 1411 * 1412 * It returns the first handler where insn & mask == pattern, or 1413 * NULL if there is no match. 1414 * The table is terminated by an empty mask (i.e. 0) 1415 */ 1416 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1417 uint32_t insn) 1418 { 1419 const AArch64DecodeTable *tptr = table; 1420 1421 while (tptr->mask) { 1422 if ((insn & tptr->mask) == tptr->pattern) { 1423 return tptr->disas_fn; 1424 } 1425 tptr++; 1426 } 1427 return NULL; 1428 } 1429 1430 /* 1431 * The instruction disassembly implemented here matches 1432 * the instruction encoding classifications in chapter C4 1433 * of the ARM Architecture Reference Manual (DDI0487B_a); 1434 * classification names and decode diagrams here should generally 1435 * match up with those in the manual. 1436 */ 1437 1438 static bool trans_B(DisasContext *s, arg_i *a) 1439 { 1440 reset_btype(s); 1441 gen_goto_tb(s, 0, a->imm); 1442 return true; 1443 } 1444 1445 static bool trans_BL(DisasContext *s, arg_i *a) 1446 { 1447 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1448 reset_btype(s); 1449 gen_goto_tb(s, 0, a->imm); 1450 return true; 1451 } 1452 1453 1454 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1455 { 1456 DisasLabel match; 1457 TCGv_i64 tcg_cmp; 1458 1459 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1460 reset_btype(s); 1461 1462 match = gen_disas_label(s); 1463 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1464 tcg_cmp, 0, match.label); 1465 gen_goto_tb(s, 0, 4); 1466 set_disas_label(s, match); 1467 gen_goto_tb(s, 1, a->imm); 1468 return true; 1469 } 1470 1471 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1472 { 1473 DisasLabel match; 1474 TCGv_i64 tcg_cmp; 1475 1476 tcg_cmp = tcg_temp_new_i64(); 1477 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1478 1479 reset_btype(s); 1480 1481 match = gen_disas_label(s); 1482 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1483 tcg_cmp, 0, match.label); 1484 gen_goto_tb(s, 0, 4); 1485 set_disas_label(s, match); 1486 gen_goto_tb(s, 1, a->imm); 1487 return true; 1488 } 1489 1490 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1491 { 1492 /* BC.cond is only present with FEAT_HBC */ 1493 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1494 return false; 1495 } 1496 reset_btype(s); 1497 if (a->cond < 0x0e) { 1498 /* genuinely conditional branches */ 1499 DisasLabel match = gen_disas_label(s); 1500 arm_gen_test_cc(a->cond, match.label); 1501 gen_goto_tb(s, 0, 4); 1502 set_disas_label(s, match); 1503 gen_goto_tb(s, 1, a->imm); 1504 } else { 1505 /* 0xe and 0xf are both "always" conditions */ 1506 gen_goto_tb(s, 0, a->imm); 1507 } 1508 return true; 1509 } 1510 1511 static void set_btype_for_br(DisasContext *s, int rn) 1512 { 1513 if (dc_isar_feature(aa64_bti, s)) { 1514 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1515 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1516 } 1517 } 1518 1519 static void set_btype_for_blr(DisasContext *s) 1520 { 1521 if (dc_isar_feature(aa64_bti, s)) { 1522 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1523 set_btype(s, 2); 1524 } 1525 } 1526 1527 static bool trans_BR(DisasContext *s, arg_r *a) 1528 { 1529 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1530 set_btype_for_br(s, a->rn); 1531 s->base.is_jmp = DISAS_JUMP; 1532 return true; 1533 } 1534 1535 static bool trans_BLR(DisasContext *s, arg_r *a) 1536 { 1537 TCGv_i64 dst = cpu_reg(s, a->rn); 1538 TCGv_i64 lr = cpu_reg(s, 30); 1539 if (dst == lr) { 1540 TCGv_i64 tmp = tcg_temp_new_i64(); 1541 tcg_gen_mov_i64(tmp, dst); 1542 dst = tmp; 1543 } 1544 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1545 gen_a64_set_pc(s, dst); 1546 set_btype_for_blr(s); 1547 s->base.is_jmp = DISAS_JUMP; 1548 return true; 1549 } 1550 1551 static bool trans_RET(DisasContext *s, arg_r *a) 1552 { 1553 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1554 s->base.is_jmp = DISAS_JUMP; 1555 return true; 1556 } 1557 1558 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1559 TCGv_i64 modifier, bool use_key_a) 1560 { 1561 TCGv_i64 truedst; 1562 /* 1563 * Return the branch target for a BRAA/RETA/etc, which is either 1564 * just the destination dst, or that value with the pauth check 1565 * done and the code removed from the high bits. 1566 */ 1567 if (!s->pauth_active) { 1568 return dst; 1569 } 1570 1571 truedst = tcg_temp_new_i64(); 1572 if (use_key_a) { 1573 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1574 } else { 1575 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1576 } 1577 return truedst; 1578 } 1579 1580 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1581 { 1582 TCGv_i64 dst; 1583 1584 if (!dc_isar_feature(aa64_pauth, s)) { 1585 return false; 1586 } 1587 1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1589 gen_a64_set_pc(s, dst); 1590 set_btype_for_br(s, a->rn); 1591 s->base.is_jmp = DISAS_JUMP; 1592 return true; 1593 } 1594 1595 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1596 { 1597 TCGv_i64 dst, lr; 1598 1599 if (!dc_isar_feature(aa64_pauth, s)) { 1600 return false; 1601 } 1602 1603 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1604 lr = cpu_reg(s, 30); 1605 if (dst == lr) { 1606 TCGv_i64 tmp = tcg_temp_new_i64(); 1607 tcg_gen_mov_i64(tmp, dst); 1608 dst = tmp; 1609 } 1610 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1611 gen_a64_set_pc(s, dst); 1612 set_btype_for_blr(s); 1613 s->base.is_jmp = DISAS_JUMP; 1614 return true; 1615 } 1616 1617 static bool trans_RETA(DisasContext *s, arg_reta *a) 1618 { 1619 TCGv_i64 dst; 1620 1621 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1622 gen_a64_set_pc(s, dst); 1623 s->base.is_jmp = DISAS_JUMP; 1624 return true; 1625 } 1626 1627 static bool trans_BRA(DisasContext *s, arg_bra *a) 1628 { 1629 TCGv_i64 dst; 1630 1631 if (!dc_isar_feature(aa64_pauth, s)) { 1632 return false; 1633 } 1634 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1635 gen_a64_set_pc(s, dst); 1636 set_btype_for_br(s, a->rn); 1637 s->base.is_jmp = DISAS_JUMP; 1638 return true; 1639 } 1640 1641 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1642 { 1643 TCGv_i64 dst, lr; 1644 1645 if (!dc_isar_feature(aa64_pauth, s)) { 1646 return false; 1647 } 1648 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1649 lr = cpu_reg(s, 30); 1650 if (dst == lr) { 1651 TCGv_i64 tmp = tcg_temp_new_i64(); 1652 tcg_gen_mov_i64(tmp, dst); 1653 dst = tmp; 1654 } 1655 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1656 gen_a64_set_pc(s, dst); 1657 set_btype_for_blr(s); 1658 s->base.is_jmp = DISAS_JUMP; 1659 return true; 1660 } 1661 1662 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1663 { 1664 TCGv_i64 dst; 1665 1666 if (s->current_el == 0) { 1667 return false; 1668 } 1669 if (s->trap_eret) { 1670 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1671 return true; 1672 } 1673 dst = tcg_temp_new_i64(); 1674 tcg_gen_ld_i64(dst, tcg_env, 1675 offsetof(CPUARMState, elr_el[s->current_el])); 1676 1677 translator_io_start(&s->base); 1678 1679 gen_helper_exception_return(tcg_env, dst); 1680 /* Must exit loop to check un-masked IRQs */ 1681 s->base.is_jmp = DISAS_EXIT; 1682 return true; 1683 } 1684 1685 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1686 { 1687 TCGv_i64 dst; 1688 1689 if (!dc_isar_feature(aa64_pauth, s)) { 1690 return false; 1691 } 1692 if (s->current_el == 0) { 1693 return false; 1694 } 1695 /* The FGT trap takes precedence over an auth trap. */ 1696 if (s->trap_eret) { 1697 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1698 return true; 1699 } 1700 dst = tcg_temp_new_i64(); 1701 tcg_gen_ld_i64(dst, tcg_env, 1702 offsetof(CPUARMState, elr_el[s->current_el])); 1703 1704 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1705 1706 translator_io_start(&s->base); 1707 1708 gen_helper_exception_return(tcg_env, dst); 1709 /* Must exit loop to check un-masked IRQs */ 1710 s->base.is_jmp = DISAS_EXIT; 1711 return true; 1712 } 1713 1714 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1715 { 1716 return true; 1717 } 1718 1719 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1720 { 1721 /* 1722 * When running in MTTCG we don't generate jumps to the yield and 1723 * WFE helpers as it won't affect the scheduling of other vCPUs. 1724 * If we wanted to more completely model WFE/SEV so we don't busy 1725 * spin unnecessarily we would need to do something more involved. 1726 */ 1727 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1728 s->base.is_jmp = DISAS_YIELD; 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1734 { 1735 s->base.is_jmp = DISAS_WFI; 1736 return true; 1737 } 1738 1739 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1740 { 1741 /* 1742 * When running in MTTCG we don't generate jumps to the yield and 1743 * WFE helpers as it won't affect the scheduling of other vCPUs. 1744 * If we wanted to more completely model WFE/SEV so we don't busy 1745 * spin unnecessarily we would need to do something more involved. 1746 */ 1747 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1748 s->base.is_jmp = DISAS_WFE; 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1754 { 1755 if (s->pauth_active) { 1756 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1757 } 1758 return true; 1759 } 1760 1761 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1762 { 1763 if (s->pauth_active) { 1764 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1765 } 1766 return true; 1767 } 1768 1769 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1770 { 1771 if (s->pauth_active) { 1772 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1773 } 1774 return true; 1775 } 1776 1777 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1778 { 1779 if (s->pauth_active) { 1780 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1794 { 1795 /* Without RAS, we must implement this as NOP. */ 1796 if (dc_isar_feature(aa64_ras, s)) { 1797 /* 1798 * QEMU does not have a source of physical SErrors, 1799 * so we are only concerned with virtual SErrors. 1800 * The pseudocode in the ARM for this case is 1801 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1802 * AArch64.vESBOperation(); 1803 * Most of the condition can be evaluated at translation time. 1804 * Test for EL2 present, and defer test for SEL2 to runtime. 1805 */ 1806 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1807 gen_helper_vesb(tcg_env); 1808 } 1809 } 1810 return true; 1811 } 1812 1813 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1814 { 1815 if (s->pauth_active) { 1816 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1817 } 1818 return true; 1819 } 1820 1821 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1822 { 1823 if (s->pauth_active) { 1824 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1825 } 1826 return true; 1827 } 1828 1829 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1830 { 1831 if (s->pauth_active) { 1832 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1833 } 1834 return true; 1835 } 1836 1837 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1838 { 1839 if (s->pauth_active) { 1840 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1841 } 1842 return true; 1843 } 1844 1845 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1846 { 1847 if (s->pauth_active) { 1848 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1849 } 1850 return true; 1851 } 1852 1853 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1854 { 1855 if (s->pauth_active) { 1856 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1857 } 1858 return true; 1859 } 1860 1861 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1862 { 1863 if (s->pauth_active) { 1864 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1865 } 1866 return true; 1867 } 1868 1869 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1870 { 1871 if (s->pauth_active) { 1872 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1873 } 1874 return true; 1875 } 1876 1877 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1878 { 1879 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1880 return true; 1881 } 1882 1883 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1884 { 1885 /* We handle DSB and DMB the same way */ 1886 TCGBar bar; 1887 1888 switch (a->types) { 1889 case 1: /* MBReqTypes_Reads */ 1890 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1891 break; 1892 case 2: /* MBReqTypes_Writes */ 1893 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1894 break; 1895 default: /* MBReqTypes_All */ 1896 bar = TCG_BAR_SC | TCG_MO_ALL; 1897 break; 1898 } 1899 tcg_gen_mb(bar); 1900 return true; 1901 } 1902 1903 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1904 { 1905 /* 1906 * We need to break the TB after this insn to execute 1907 * self-modifying code correctly and also to take 1908 * any pending interrupts immediately. 1909 */ 1910 reset_btype(s); 1911 gen_goto_tb(s, 0, 4); 1912 return true; 1913 } 1914 1915 static bool trans_SB(DisasContext *s, arg_SB *a) 1916 { 1917 if (!dc_isar_feature(aa64_sb, s)) { 1918 return false; 1919 } 1920 /* 1921 * TODO: There is no speculation barrier opcode for TCG; 1922 * MB and end the TB instead. 1923 */ 1924 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1925 gen_goto_tb(s, 0, 4); 1926 return true; 1927 } 1928 1929 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1930 { 1931 if (!dc_isar_feature(aa64_condm_4, s)) { 1932 return false; 1933 } 1934 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1935 return true; 1936 } 1937 1938 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1939 { 1940 TCGv_i32 z; 1941 1942 if (!dc_isar_feature(aa64_condm_5, s)) { 1943 return false; 1944 } 1945 1946 z = tcg_temp_new_i32(); 1947 1948 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1949 1950 /* 1951 * (!C & !Z) << 31 1952 * (!(C | Z)) << 31 1953 * ~((C | Z) << 31) 1954 * ~-(C | Z) 1955 * (C | Z) - 1 1956 */ 1957 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1958 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1959 1960 /* !(Z & C) */ 1961 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1962 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1963 1964 /* (!C & Z) << 31 -> -(Z & ~C) */ 1965 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1966 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1967 1968 /* C | Z */ 1969 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1970 1971 return true; 1972 } 1973 1974 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1975 { 1976 if (!dc_isar_feature(aa64_condm_5, s)) { 1977 return false; 1978 } 1979 1980 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1981 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1982 1983 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1984 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1985 1986 tcg_gen_movi_i32(cpu_NF, 0); 1987 tcg_gen_movi_i32(cpu_VF, 0); 1988 1989 return true; 1990 } 1991 1992 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1993 { 1994 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1995 return false; 1996 } 1997 if (a->imm & 1) { 1998 set_pstate_bits(PSTATE_UAO); 1999 } else { 2000 clear_pstate_bits(PSTATE_UAO); 2001 } 2002 gen_rebuild_hflags(s); 2003 s->base.is_jmp = DISAS_TOO_MANY; 2004 return true; 2005 } 2006 2007 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 2008 { 2009 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 2010 return false; 2011 } 2012 if (a->imm & 1) { 2013 set_pstate_bits(PSTATE_PAN); 2014 } else { 2015 clear_pstate_bits(PSTATE_PAN); 2016 } 2017 gen_rebuild_hflags(s); 2018 s->base.is_jmp = DISAS_TOO_MANY; 2019 return true; 2020 } 2021 2022 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2023 { 2024 if (s->current_el == 0) { 2025 return false; 2026 } 2027 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2028 s->base.is_jmp = DISAS_TOO_MANY; 2029 return true; 2030 } 2031 2032 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2033 { 2034 if (!dc_isar_feature(aa64_ssbs, s)) { 2035 return false; 2036 } 2037 if (a->imm & 1) { 2038 set_pstate_bits(PSTATE_SSBS); 2039 } else { 2040 clear_pstate_bits(PSTATE_SSBS); 2041 } 2042 /* Don't need to rebuild hflags since SSBS is a nop */ 2043 s->base.is_jmp = DISAS_TOO_MANY; 2044 return true; 2045 } 2046 2047 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2048 { 2049 if (!dc_isar_feature(aa64_dit, s)) { 2050 return false; 2051 } 2052 if (a->imm & 1) { 2053 set_pstate_bits(PSTATE_DIT); 2054 } else { 2055 clear_pstate_bits(PSTATE_DIT); 2056 } 2057 /* There's no need to rebuild hflags because DIT is a nop */ 2058 s->base.is_jmp = DISAS_TOO_MANY; 2059 return true; 2060 } 2061 2062 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2063 { 2064 if (dc_isar_feature(aa64_mte, s)) { 2065 /* Full MTE is enabled -- set the TCO bit as directed. */ 2066 if (a->imm & 1) { 2067 set_pstate_bits(PSTATE_TCO); 2068 } else { 2069 clear_pstate_bits(PSTATE_TCO); 2070 } 2071 gen_rebuild_hflags(s); 2072 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2073 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2074 return true; 2075 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2076 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2077 return true; 2078 } else { 2079 /* Insn not present */ 2080 return false; 2081 } 2082 } 2083 2084 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2085 { 2086 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2087 s->base.is_jmp = DISAS_TOO_MANY; 2088 return true; 2089 } 2090 2091 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2092 { 2093 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2094 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2095 s->base.is_jmp = DISAS_UPDATE_EXIT; 2096 return true; 2097 } 2098 2099 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2100 { 2101 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2102 return false; 2103 } 2104 2105 if (a->imm == 0) { 2106 clear_pstate_bits(PSTATE_ALLINT); 2107 } else if (s->current_el > 1) { 2108 set_pstate_bits(PSTATE_ALLINT); 2109 } else { 2110 gen_helper_msr_set_allint_el1(tcg_env); 2111 } 2112 2113 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2114 s->base.is_jmp = DISAS_UPDATE_EXIT; 2115 return true; 2116 } 2117 2118 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2119 { 2120 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2121 return false; 2122 } 2123 if (sme_access_check(s)) { 2124 int old = s->pstate_sm | (s->pstate_za << 1); 2125 int new = a->imm * 3; 2126 2127 if ((old ^ new) & a->mask) { 2128 /* At least one bit changes. */ 2129 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2130 tcg_constant_i32(a->mask)); 2131 s->base.is_jmp = DISAS_TOO_MANY; 2132 } 2133 } 2134 return true; 2135 } 2136 2137 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2138 { 2139 TCGv_i32 tmp = tcg_temp_new_i32(); 2140 TCGv_i32 nzcv = tcg_temp_new_i32(); 2141 2142 /* build bit 31, N */ 2143 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2144 /* build bit 30, Z */ 2145 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2146 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2147 /* build bit 29, C */ 2148 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2149 /* build bit 28, V */ 2150 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2151 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2152 /* generate result */ 2153 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2154 } 2155 2156 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2157 { 2158 TCGv_i32 nzcv = tcg_temp_new_i32(); 2159 2160 /* take NZCV from R[t] */ 2161 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2162 2163 /* bit 31, N */ 2164 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2165 /* bit 30, Z */ 2166 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2167 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2168 /* bit 29, C */ 2169 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2170 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2171 /* bit 28, V */ 2172 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2173 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2174 } 2175 2176 static void gen_sysreg_undef(DisasContext *s, bool isread, 2177 uint8_t op0, uint8_t op1, uint8_t op2, 2178 uint8_t crn, uint8_t crm, uint8_t rt) 2179 { 2180 /* 2181 * Generate code to emit an UNDEF with correct syndrome 2182 * information for a failed system register access. 2183 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2184 * but if FEAT_IDST is implemented then read accesses to registers 2185 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2186 * syndrome. 2187 */ 2188 uint32_t syndrome; 2189 2190 if (isread && dc_isar_feature(aa64_ids, s) && 2191 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2192 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2193 } else { 2194 syndrome = syn_uncategorized(); 2195 } 2196 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2197 } 2198 2199 /* MRS - move from system register 2200 * MSR (register) - move to system register 2201 * SYS 2202 * SYSL 2203 * These are all essentially the same insn in 'read' and 'write' 2204 * versions, with varying op0 fields. 2205 */ 2206 static void handle_sys(DisasContext *s, bool isread, 2207 unsigned int op0, unsigned int op1, unsigned int op2, 2208 unsigned int crn, unsigned int crm, unsigned int rt) 2209 { 2210 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2211 crn, crm, op0, op1, op2); 2212 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2213 bool need_exit_tb = false; 2214 bool nv_trap_to_el2 = false; 2215 bool nv_redirect_reg = false; 2216 bool skip_fp_access_checks = false; 2217 bool nv2_mem_redirect = false; 2218 TCGv_ptr tcg_ri = NULL; 2219 TCGv_i64 tcg_rt; 2220 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2221 2222 if (crn == 11 || crn == 15) { 2223 /* 2224 * Check for TIDCP trap, which must take precedence over 2225 * the UNDEF for "no such register" etc. 2226 */ 2227 switch (s->current_el) { 2228 case 0: 2229 if (dc_isar_feature(aa64_tidcp1, s)) { 2230 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2231 } 2232 break; 2233 case 1: 2234 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2235 break; 2236 } 2237 } 2238 2239 if (!ri) { 2240 /* Unknown register; this might be a guest error or a QEMU 2241 * unimplemented feature. 2242 */ 2243 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2244 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2245 isread ? "read" : "write", op0, op1, crn, crm, op2); 2246 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2247 return; 2248 } 2249 2250 if (s->nv2 && ri->nv2_redirect_offset) { 2251 /* 2252 * Some registers always redirect to memory; some only do so if 2253 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2254 * pairs which share an offset; see the table in R_CSRPQ). 2255 */ 2256 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2257 nv2_mem_redirect = s->nv1; 2258 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2259 nv2_mem_redirect = !s->nv1; 2260 } else { 2261 nv2_mem_redirect = true; 2262 } 2263 } 2264 2265 /* Check access permissions */ 2266 if (!cp_access_ok(s->current_el, ri, isread)) { 2267 /* 2268 * FEAT_NV/NV2 handling does not do the usual FP access checks 2269 * for registers only accessible at EL2 (though it *does* do them 2270 * for registers accessible at EL1). 2271 */ 2272 skip_fp_access_checks = true; 2273 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2274 /* 2275 * This is one of the few EL2 registers which should redirect 2276 * to the equivalent EL1 register. We do that after running 2277 * the EL2 register's accessfn. 2278 */ 2279 nv_redirect_reg = true; 2280 assert(!nv2_mem_redirect); 2281 } else if (nv2_mem_redirect) { 2282 /* 2283 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2284 * UNDEF to EL1. 2285 */ 2286 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2287 /* 2288 * This register / instruction exists and is an EL2 register, so 2289 * we must trap to EL2 if accessed in nested virtualization EL1 2290 * instead of UNDEFing. We'll do that after the usual access checks. 2291 * (This makes a difference only for a couple of registers like 2292 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2293 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2294 * an accessfn which does nothing when called from EL1, because 2295 * the trap-to-EL3 controls which would apply to that register 2296 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2297 */ 2298 nv_trap_to_el2 = true; 2299 } else { 2300 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2301 return; 2302 } 2303 } 2304 2305 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2306 /* Emit code to perform further access permissions checks at 2307 * runtime; this may result in an exception. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 tcg_ri = tcg_temp_new_ptr(); 2311 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2312 tcg_constant_i32(key), 2313 tcg_constant_i32(syndrome), 2314 tcg_constant_i32(isread)); 2315 } else if (ri->type & ARM_CP_RAISES_EXC) { 2316 /* 2317 * The readfn or writefn might raise an exception; 2318 * synchronize the CPU state in case it does. 2319 */ 2320 gen_a64_update_pc(s, 0); 2321 } 2322 2323 if (!skip_fp_access_checks) { 2324 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2325 return; 2326 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2327 return; 2328 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2329 return; 2330 } 2331 } 2332 2333 if (nv_trap_to_el2) { 2334 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2335 return; 2336 } 2337 2338 if (nv_redirect_reg) { 2339 /* 2340 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2341 * Conveniently in all cases the encoding of the EL1 register is 2342 * identical to the EL2 register except that opc1 is 0. 2343 * Get the reginfo for the EL1 register to use for the actual access. 2344 * We don't use the EL1 register's access function, and 2345 * fine-grained-traps on EL1 also do not apply here. 2346 */ 2347 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2348 crn, crm, op0, 0, op2); 2349 ri = get_arm_cp_reginfo(s->cp_regs, key); 2350 assert(ri); 2351 assert(cp_access_ok(s->current_el, ri, isread)); 2352 /* 2353 * We might not have done an update_pc earlier, so check we don't 2354 * need it. We could support this in future if necessary. 2355 */ 2356 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2357 } 2358 2359 if (nv2_mem_redirect) { 2360 /* 2361 * This system register is being redirected into an EL2 memory access. 2362 * This means it is not an IO operation, doesn't change hflags, 2363 * and need not end the TB, because it has no side effects. 2364 * 2365 * The access is 64-bit single copy atomic, guaranteed aligned because 2366 * of the definition of VCNR_EL2. Its endianness depends on 2367 * SCTLR_EL2.EE, not on the data endianness of EL1. 2368 * It is done under either the EL2 translation regime or the EL2&0 2369 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2370 * PSTATE.PAN is 0. 2371 */ 2372 TCGv_i64 ptr = tcg_temp_new_i64(); 2373 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2374 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2375 int memidx = arm_to_core_mmu_idx(armmemidx); 2376 uint32_t syn; 2377 2378 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2379 2380 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2381 tcg_gen_addi_i64(ptr, ptr, 2382 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2383 tcg_rt = cpu_reg(s, rt); 2384 2385 syn = syn_data_abort_vncr(0, !isread, 0); 2386 disas_set_insn_syndrome(s, syn); 2387 if (isread) { 2388 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2389 } else { 2390 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2391 } 2392 return; 2393 } 2394 2395 /* Handle special cases first */ 2396 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2397 case 0: 2398 break; 2399 case ARM_CP_NOP: 2400 return; 2401 case ARM_CP_NZCV: 2402 tcg_rt = cpu_reg(s, rt); 2403 if (isread) { 2404 gen_get_nzcv(tcg_rt); 2405 } else { 2406 gen_set_nzcv(tcg_rt); 2407 } 2408 return; 2409 case ARM_CP_CURRENTEL: 2410 { 2411 /* 2412 * Reads as current EL value from pstate, which is 2413 * guaranteed to be constant by the tb flags. 2414 * For nested virt we should report EL2. 2415 */ 2416 int el = s->nv ? 2 : s->current_el; 2417 tcg_rt = cpu_reg(s, rt); 2418 tcg_gen_movi_i64(tcg_rt, el << 2); 2419 return; 2420 } 2421 case ARM_CP_DC_ZVA: 2422 /* Writes clear the aligned block of memory which rt points into. */ 2423 if (s->mte_active[0]) { 2424 int desc = 0; 2425 2426 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2427 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2428 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2429 2430 tcg_rt = tcg_temp_new_i64(); 2431 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2432 tcg_constant_i32(desc), cpu_reg(s, rt)); 2433 } else { 2434 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2435 } 2436 gen_helper_dc_zva(tcg_env, tcg_rt); 2437 return; 2438 case ARM_CP_DC_GVA: 2439 { 2440 TCGv_i64 clean_addr, tag; 2441 2442 /* 2443 * DC_GVA, like DC_ZVA, requires that we supply the original 2444 * pointer for an invalid page. Probe that address first. 2445 */ 2446 tcg_rt = cpu_reg(s, rt); 2447 clean_addr = clean_data_tbi(s, tcg_rt); 2448 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2449 2450 if (s->ata[0]) { 2451 /* Extract the tag from the register to match STZGM. */ 2452 tag = tcg_temp_new_i64(); 2453 tcg_gen_shri_i64(tag, tcg_rt, 56); 2454 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2455 } 2456 } 2457 return; 2458 case ARM_CP_DC_GZVA: 2459 { 2460 TCGv_i64 clean_addr, tag; 2461 2462 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2463 tcg_rt = cpu_reg(s, rt); 2464 clean_addr = clean_data_tbi(s, tcg_rt); 2465 gen_helper_dc_zva(tcg_env, clean_addr); 2466 2467 if (s->ata[0]) { 2468 /* Extract the tag from the register to match STZGM. */ 2469 tag = tcg_temp_new_i64(); 2470 tcg_gen_shri_i64(tag, tcg_rt, 56); 2471 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2472 } 2473 } 2474 return; 2475 default: 2476 g_assert_not_reached(); 2477 } 2478 2479 if (ri->type & ARM_CP_IO) { 2480 /* I/O operations must end the TB here (whether read or write) */ 2481 need_exit_tb = translator_io_start(&s->base); 2482 } 2483 2484 tcg_rt = cpu_reg(s, rt); 2485 2486 if (isread) { 2487 if (ri->type & ARM_CP_CONST) { 2488 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2489 } else if (ri->readfn) { 2490 if (!tcg_ri) { 2491 tcg_ri = gen_lookup_cp_reg(key); 2492 } 2493 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2494 } else { 2495 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2496 } 2497 } else { 2498 if (ri->type & ARM_CP_CONST) { 2499 /* If not forbidden by access permissions, treat as WI */ 2500 return; 2501 } else if (ri->writefn) { 2502 if (!tcg_ri) { 2503 tcg_ri = gen_lookup_cp_reg(key); 2504 } 2505 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2506 } else { 2507 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2508 } 2509 } 2510 2511 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2512 /* 2513 * A write to any coprocessor register that ends a TB 2514 * must rebuild the hflags for the next TB. 2515 */ 2516 gen_rebuild_hflags(s); 2517 /* 2518 * We default to ending the TB on a coprocessor register write, 2519 * but allow this to be suppressed by the register definition 2520 * (usually only necessary to work around guest bugs). 2521 */ 2522 need_exit_tb = true; 2523 } 2524 if (need_exit_tb) { 2525 s->base.is_jmp = DISAS_UPDATE_EXIT; 2526 } 2527 } 2528 2529 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2530 { 2531 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2532 return true; 2533 } 2534 2535 static bool trans_SVC(DisasContext *s, arg_i *a) 2536 { 2537 /* 2538 * For SVC, HVC and SMC we advance the single-step state 2539 * machine before taking the exception. This is architecturally 2540 * mandated, to ensure that single-stepping a system call 2541 * instruction works properly. 2542 */ 2543 uint32_t syndrome = syn_aa64_svc(a->imm); 2544 if (s->fgt_svc) { 2545 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2546 return true; 2547 } 2548 gen_ss_advance(s); 2549 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2550 return true; 2551 } 2552 2553 static bool trans_HVC(DisasContext *s, arg_i *a) 2554 { 2555 int target_el = s->current_el == 3 ? 3 : 2; 2556 2557 if (s->current_el == 0) { 2558 unallocated_encoding(s); 2559 return true; 2560 } 2561 /* 2562 * The pre HVC helper handles cases when HVC gets trapped 2563 * as an undefined insn by runtime configuration. 2564 */ 2565 gen_a64_update_pc(s, 0); 2566 gen_helper_pre_hvc(tcg_env); 2567 /* Architecture requires ss advance before we do the actual work */ 2568 gen_ss_advance(s); 2569 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2570 return true; 2571 } 2572 2573 static bool trans_SMC(DisasContext *s, arg_i *a) 2574 { 2575 if (s->current_el == 0) { 2576 unallocated_encoding(s); 2577 return true; 2578 } 2579 gen_a64_update_pc(s, 0); 2580 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2581 /* Architecture requires ss advance before we do the actual work */ 2582 gen_ss_advance(s); 2583 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2584 return true; 2585 } 2586 2587 static bool trans_BRK(DisasContext *s, arg_i *a) 2588 { 2589 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2590 return true; 2591 } 2592 2593 static bool trans_HLT(DisasContext *s, arg_i *a) 2594 { 2595 /* 2596 * HLT. This has two purposes. 2597 * Architecturally, it is an external halting debug instruction. 2598 * Since QEMU doesn't implement external debug, we treat this as 2599 * it is required for halting debug disabled: it will UNDEF. 2600 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2601 */ 2602 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2603 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2604 } else { 2605 unallocated_encoding(s); 2606 } 2607 return true; 2608 } 2609 2610 /* 2611 * Load/Store exclusive instructions are implemented by remembering 2612 * the value/address loaded, and seeing if these are the same 2613 * when the store is performed. This is not actually the architecturally 2614 * mandated semantics, but it works for typical guest code sequences 2615 * and avoids having to monitor regular stores. 2616 * 2617 * The store exclusive uses the atomic cmpxchg primitives to avoid 2618 * races in multi-threaded linux-user and when MTTCG softmmu is 2619 * enabled. 2620 */ 2621 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2622 int size, bool is_pair) 2623 { 2624 int idx = get_mem_index(s); 2625 TCGv_i64 dirty_addr, clean_addr; 2626 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2627 2628 s->is_ldex = true; 2629 dirty_addr = cpu_reg_sp(s, rn); 2630 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2631 2632 g_assert(size <= 3); 2633 if (is_pair) { 2634 g_assert(size >= 2); 2635 if (size == 2) { 2636 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2637 if (s->be_data == MO_LE) { 2638 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2639 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2640 } else { 2641 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2642 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2643 } 2644 } else { 2645 TCGv_i128 t16 = tcg_temp_new_i128(); 2646 2647 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2648 2649 if (s->be_data == MO_LE) { 2650 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2651 cpu_exclusive_high, t16); 2652 } else { 2653 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2654 cpu_exclusive_val, t16); 2655 } 2656 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2657 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2658 } 2659 } else { 2660 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2661 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2662 } 2663 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2664 } 2665 2666 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2667 int rn, int size, int is_pair) 2668 { 2669 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2670 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2671 * [addr] = {Rt}; 2672 * if (is_pair) { 2673 * [addr + datasize] = {Rt2}; 2674 * } 2675 * {Rd} = 0; 2676 * } else { 2677 * {Rd} = 1; 2678 * } 2679 * env->exclusive_addr = -1; 2680 */ 2681 TCGLabel *fail_label = gen_new_label(); 2682 TCGLabel *done_label = gen_new_label(); 2683 TCGv_i64 tmp, clean_addr; 2684 MemOp memop; 2685 2686 /* 2687 * FIXME: We are out of spec here. We have recorded only the address 2688 * from load_exclusive, not the entire range, and we assume that the 2689 * size of the access on both sides match. The architecture allows the 2690 * store to be smaller than the load, so long as the stored bytes are 2691 * within the range recorded by the load. 2692 */ 2693 2694 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2695 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2696 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2697 2698 /* 2699 * The write, and any associated faults, only happen if the virtual 2700 * and physical addresses pass the exclusive monitor check. These 2701 * faults are exceedingly unlikely, because normally the guest uses 2702 * the exact same address register for the load_exclusive, and we 2703 * would have recognized these faults there. 2704 * 2705 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2706 * unaligned 4-byte write within the range of an aligned 8-byte load. 2707 * With LSE2, the store would need to cross a 16-byte boundary when the 2708 * load did not, which would mean the store is outside the range 2709 * recorded for the monitor, which would have failed a corrected monitor 2710 * check above. For now, we assume no size change and retain the 2711 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2712 * 2713 * It is possible to trigger an MTE fault, by performing the load with 2714 * a virtual address with a valid tag and performing the store with the 2715 * same virtual address and a different invalid tag. 2716 */ 2717 memop = size + is_pair; 2718 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2719 memop |= MO_ALIGN; 2720 } 2721 memop = finalize_memop(s, memop); 2722 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2723 2724 tmp = tcg_temp_new_i64(); 2725 if (is_pair) { 2726 if (size == 2) { 2727 if (s->be_data == MO_LE) { 2728 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2729 } else { 2730 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2731 } 2732 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2733 cpu_exclusive_val, tmp, 2734 get_mem_index(s), memop); 2735 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2736 } else { 2737 TCGv_i128 t16 = tcg_temp_new_i128(); 2738 TCGv_i128 c16 = tcg_temp_new_i128(); 2739 TCGv_i64 a, b; 2740 2741 if (s->be_data == MO_LE) { 2742 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2743 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2744 cpu_exclusive_high); 2745 } else { 2746 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2747 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2748 cpu_exclusive_val); 2749 } 2750 2751 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2752 get_mem_index(s), memop); 2753 2754 a = tcg_temp_new_i64(); 2755 b = tcg_temp_new_i64(); 2756 if (s->be_data == MO_LE) { 2757 tcg_gen_extr_i128_i64(a, b, t16); 2758 } else { 2759 tcg_gen_extr_i128_i64(b, a, t16); 2760 } 2761 2762 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2763 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2764 tcg_gen_or_i64(tmp, a, b); 2765 2766 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2767 } 2768 } else { 2769 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2770 cpu_reg(s, rt), get_mem_index(s), memop); 2771 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2772 } 2773 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2774 tcg_gen_br(done_label); 2775 2776 gen_set_label(fail_label); 2777 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2778 gen_set_label(done_label); 2779 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2780 } 2781 2782 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2783 int rn, int size) 2784 { 2785 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2786 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2787 int memidx = get_mem_index(s); 2788 TCGv_i64 clean_addr; 2789 MemOp memop; 2790 2791 if (rn == 31) { 2792 gen_check_sp_alignment(s); 2793 } 2794 memop = check_atomic_align(s, rn, size); 2795 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2796 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2797 memidx, memop); 2798 } 2799 2800 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2801 int rn, int size) 2802 { 2803 TCGv_i64 s1 = cpu_reg(s, rs); 2804 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2805 TCGv_i64 t1 = cpu_reg(s, rt); 2806 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2807 TCGv_i64 clean_addr; 2808 int memidx = get_mem_index(s); 2809 MemOp memop; 2810 2811 if (rn == 31) { 2812 gen_check_sp_alignment(s); 2813 } 2814 2815 /* This is a single atomic access, despite the "pair". */ 2816 memop = check_atomic_align(s, rn, size + 1); 2817 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2818 2819 if (size == 2) { 2820 TCGv_i64 cmp = tcg_temp_new_i64(); 2821 TCGv_i64 val = tcg_temp_new_i64(); 2822 2823 if (s->be_data == MO_LE) { 2824 tcg_gen_concat32_i64(val, t1, t2); 2825 tcg_gen_concat32_i64(cmp, s1, s2); 2826 } else { 2827 tcg_gen_concat32_i64(val, t2, t1); 2828 tcg_gen_concat32_i64(cmp, s2, s1); 2829 } 2830 2831 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2832 2833 if (s->be_data == MO_LE) { 2834 tcg_gen_extr32_i64(s1, s2, cmp); 2835 } else { 2836 tcg_gen_extr32_i64(s2, s1, cmp); 2837 } 2838 } else { 2839 TCGv_i128 cmp = tcg_temp_new_i128(); 2840 TCGv_i128 val = tcg_temp_new_i128(); 2841 2842 if (s->be_data == MO_LE) { 2843 tcg_gen_concat_i64_i128(val, t1, t2); 2844 tcg_gen_concat_i64_i128(cmp, s1, s2); 2845 } else { 2846 tcg_gen_concat_i64_i128(val, t2, t1); 2847 tcg_gen_concat_i64_i128(cmp, s2, s1); 2848 } 2849 2850 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2851 2852 if (s->be_data == MO_LE) { 2853 tcg_gen_extr_i128_i64(s1, s2, cmp); 2854 } else { 2855 tcg_gen_extr_i128_i64(s2, s1, cmp); 2856 } 2857 } 2858 } 2859 2860 /* 2861 * Compute the ISS.SF bit for syndrome information if an exception 2862 * is taken on a load or store. This indicates whether the instruction 2863 * is accessing a 32-bit or 64-bit register. This logic is derived 2864 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2865 */ 2866 static bool ldst_iss_sf(int size, bool sign, bool ext) 2867 { 2868 2869 if (sign) { 2870 /* 2871 * Signed loads are 64 bit results if we are not going to 2872 * do a zero-extend from 32 to 64 after the load. 2873 * (For a store, sign and ext are always false.) 2874 */ 2875 return !ext; 2876 } else { 2877 /* Unsigned loads/stores work at the specified size */ 2878 return size == MO_64; 2879 } 2880 } 2881 2882 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2883 { 2884 if (a->rn == 31) { 2885 gen_check_sp_alignment(s); 2886 } 2887 if (a->lasr) { 2888 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2889 } 2890 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2891 return true; 2892 } 2893 2894 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2895 { 2896 if (a->rn == 31) { 2897 gen_check_sp_alignment(s); 2898 } 2899 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2900 if (a->lasr) { 2901 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2902 } 2903 return true; 2904 } 2905 2906 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2907 { 2908 TCGv_i64 clean_addr; 2909 MemOp memop; 2910 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2911 2912 /* 2913 * StoreLORelease is the same as Store-Release for QEMU, but 2914 * needs the feature-test. 2915 */ 2916 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2917 return false; 2918 } 2919 /* Generate ISS for non-exclusive accesses including LASR. */ 2920 if (a->rn == 31) { 2921 gen_check_sp_alignment(s); 2922 } 2923 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2924 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2925 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2926 true, a->rn != 31, memop); 2927 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2928 iss_sf, a->lasr); 2929 return true; 2930 } 2931 2932 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2933 { 2934 TCGv_i64 clean_addr; 2935 MemOp memop; 2936 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2937 2938 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2939 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2940 return false; 2941 } 2942 /* Generate ISS for non-exclusive accesses including LASR. */ 2943 if (a->rn == 31) { 2944 gen_check_sp_alignment(s); 2945 } 2946 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2947 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2948 false, a->rn != 31, memop); 2949 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2950 a->rt, iss_sf, a->lasr); 2951 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2952 return true; 2953 } 2954 2955 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2956 { 2957 if (a->rn == 31) { 2958 gen_check_sp_alignment(s); 2959 } 2960 if (a->lasr) { 2961 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2962 } 2963 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2964 return true; 2965 } 2966 2967 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2968 { 2969 if (a->rn == 31) { 2970 gen_check_sp_alignment(s); 2971 } 2972 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2973 if (a->lasr) { 2974 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2975 } 2976 return true; 2977 } 2978 2979 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2980 { 2981 if (!dc_isar_feature(aa64_atomics, s)) { 2982 return false; 2983 } 2984 if (((a->rt | a->rs) & 1) != 0) { 2985 return false; 2986 } 2987 2988 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2989 return true; 2990 } 2991 2992 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2993 { 2994 if (!dc_isar_feature(aa64_atomics, s)) { 2995 return false; 2996 } 2997 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2998 return true; 2999 } 3000 3001 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 3002 { 3003 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 3004 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 3005 TCGv_i64 clean_addr = tcg_temp_new_i64(); 3006 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3007 3008 gen_pc_plus_diff(s, clean_addr, a->imm); 3009 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3010 false, true, a->rt, iss_sf, false); 3011 return true; 3012 } 3013 3014 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3015 { 3016 /* Load register (literal), vector version */ 3017 TCGv_i64 clean_addr; 3018 MemOp memop; 3019 3020 if (!fp_access_check(s)) { 3021 return true; 3022 } 3023 memop = finalize_memop_asimd(s, a->sz); 3024 clean_addr = tcg_temp_new_i64(); 3025 gen_pc_plus_diff(s, clean_addr, a->imm); 3026 do_fp_ld(s, a->rt, clean_addr, memop); 3027 return true; 3028 } 3029 3030 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3031 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3032 uint64_t offset, bool is_store, MemOp mop) 3033 { 3034 if (a->rn == 31) { 3035 gen_check_sp_alignment(s); 3036 } 3037 3038 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3039 if (!a->p) { 3040 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3041 } 3042 3043 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3044 (a->w || a->rn != 31), 2 << a->sz, mop); 3045 } 3046 3047 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3048 TCGv_i64 dirty_addr, uint64_t offset) 3049 { 3050 if (a->w) { 3051 if (a->p) { 3052 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3053 } 3054 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3055 } 3056 } 3057 3058 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3059 { 3060 uint64_t offset = a->imm << a->sz; 3061 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3062 MemOp mop = finalize_memop(s, a->sz); 3063 3064 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3065 tcg_rt = cpu_reg(s, a->rt); 3066 tcg_rt2 = cpu_reg(s, a->rt2); 3067 /* 3068 * We built mop above for the single logical access -- rebuild it 3069 * now for the paired operation. 3070 * 3071 * With LSE2, non-sign-extending pairs are treated atomically if 3072 * aligned, and if unaligned one of the pair will be completely 3073 * within a 16-byte block and that element will be atomic. 3074 * Otherwise each element is separately atomic. 3075 * In all cases, issue one operation with the correct atomicity. 3076 */ 3077 mop = a->sz + 1; 3078 if (s->align_mem) { 3079 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3080 } 3081 mop = finalize_memop_pair(s, mop); 3082 if (a->sz == 2) { 3083 TCGv_i64 tmp = tcg_temp_new_i64(); 3084 3085 if (s->be_data == MO_LE) { 3086 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3087 } else { 3088 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3089 } 3090 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3091 } else { 3092 TCGv_i128 tmp = tcg_temp_new_i128(); 3093 3094 if (s->be_data == MO_LE) { 3095 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3096 } else { 3097 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3098 } 3099 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3100 } 3101 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3102 return true; 3103 } 3104 3105 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3106 { 3107 uint64_t offset = a->imm << a->sz; 3108 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3109 MemOp mop = finalize_memop(s, a->sz); 3110 3111 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3112 tcg_rt = cpu_reg(s, a->rt); 3113 tcg_rt2 = cpu_reg(s, a->rt2); 3114 3115 /* 3116 * We built mop above for the single logical access -- rebuild it 3117 * now for the paired operation. 3118 * 3119 * With LSE2, non-sign-extending pairs are treated atomically if 3120 * aligned, and if unaligned one of the pair will be completely 3121 * within a 16-byte block and that element will be atomic. 3122 * Otherwise each element is separately atomic. 3123 * In all cases, issue one operation with the correct atomicity. 3124 * 3125 * This treats sign-extending loads like zero-extending loads, 3126 * since that reuses the most code below. 3127 */ 3128 mop = a->sz + 1; 3129 if (s->align_mem) { 3130 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3131 } 3132 mop = finalize_memop_pair(s, mop); 3133 if (a->sz == 2) { 3134 int o2 = s->be_data == MO_LE ? 32 : 0; 3135 int o1 = o2 ^ 32; 3136 3137 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3138 if (a->sign) { 3139 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3140 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3141 } else { 3142 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3143 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3144 } 3145 } else { 3146 TCGv_i128 tmp = tcg_temp_new_i128(); 3147 3148 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3149 if (s->be_data == MO_LE) { 3150 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3151 } else { 3152 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3153 } 3154 } 3155 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3156 return true; 3157 } 3158 3159 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3160 { 3161 uint64_t offset = a->imm << a->sz; 3162 TCGv_i64 clean_addr, dirty_addr; 3163 MemOp mop; 3164 3165 if (!fp_access_check(s)) { 3166 return true; 3167 } 3168 3169 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3170 mop = finalize_memop_asimd(s, a->sz); 3171 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3172 do_fp_st(s, a->rt, clean_addr, mop); 3173 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3174 do_fp_st(s, a->rt2, clean_addr, mop); 3175 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3176 return true; 3177 } 3178 3179 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3180 { 3181 uint64_t offset = a->imm << a->sz; 3182 TCGv_i64 clean_addr, dirty_addr; 3183 MemOp mop; 3184 3185 if (!fp_access_check(s)) { 3186 return true; 3187 } 3188 3189 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3190 mop = finalize_memop_asimd(s, a->sz); 3191 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3192 do_fp_ld(s, a->rt, clean_addr, mop); 3193 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3194 do_fp_ld(s, a->rt2, clean_addr, mop); 3195 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3196 return true; 3197 } 3198 3199 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3200 { 3201 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3202 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3203 MemOp mop; 3204 TCGv_i128 tmp; 3205 3206 /* STGP only comes in one size. */ 3207 tcg_debug_assert(a->sz == MO_64); 3208 3209 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3210 return false; 3211 } 3212 3213 if (a->rn == 31) { 3214 gen_check_sp_alignment(s); 3215 } 3216 3217 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3218 if (!a->p) { 3219 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3220 } 3221 3222 clean_addr = clean_data_tbi(s, dirty_addr); 3223 tcg_rt = cpu_reg(s, a->rt); 3224 tcg_rt2 = cpu_reg(s, a->rt2); 3225 3226 /* 3227 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3228 * and one tag operation. We implement it as one single aligned 16-byte 3229 * memory operation for convenience. Note that the alignment ensures 3230 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3231 */ 3232 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3233 3234 tmp = tcg_temp_new_i128(); 3235 if (s->be_data == MO_LE) { 3236 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3237 } else { 3238 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3239 } 3240 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3241 3242 /* Perform the tag store, if tag access enabled. */ 3243 if (s->ata[0]) { 3244 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3245 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3246 } else { 3247 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3248 } 3249 } 3250 3251 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3252 return true; 3253 } 3254 3255 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3256 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3257 uint64_t offset, bool is_store, MemOp mop) 3258 { 3259 int memidx; 3260 3261 if (a->rn == 31) { 3262 gen_check_sp_alignment(s); 3263 } 3264 3265 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3266 if (!a->p) { 3267 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3268 } 3269 memidx = get_a64_user_mem_index(s, a->unpriv); 3270 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3271 a->w || a->rn != 31, 3272 mop, a->unpriv, memidx); 3273 } 3274 3275 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3276 TCGv_i64 dirty_addr, uint64_t offset) 3277 { 3278 if (a->w) { 3279 if (a->p) { 3280 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3281 } 3282 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3283 } 3284 } 3285 3286 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3287 { 3288 bool iss_sf, iss_valid = !a->w; 3289 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3290 int memidx = get_a64_user_mem_index(s, a->unpriv); 3291 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3292 3293 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3294 3295 tcg_rt = cpu_reg(s, a->rt); 3296 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3297 3298 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3299 iss_valid, a->rt, iss_sf, false); 3300 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3301 return true; 3302 } 3303 3304 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3305 { 3306 bool iss_sf, iss_valid = !a->w; 3307 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3308 int memidx = get_a64_user_mem_index(s, a->unpriv); 3309 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3310 3311 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3312 3313 tcg_rt = cpu_reg(s, a->rt); 3314 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3315 3316 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3317 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3318 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3319 return true; 3320 } 3321 3322 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3323 { 3324 TCGv_i64 clean_addr, dirty_addr; 3325 MemOp mop; 3326 3327 if (!fp_access_check(s)) { 3328 return true; 3329 } 3330 mop = finalize_memop_asimd(s, a->sz); 3331 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3332 do_fp_st(s, a->rt, clean_addr, mop); 3333 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3334 return true; 3335 } 3336 3337 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3338 { 3339 TCGv_i64 clean_addr, dirty_addr; 3340 MemOp mop; 3341 3342 if (!fp_access_check(s)) { 3343 return true; 3344 } 3345 mop = finalize_memop_asimd(s, a->sz); 3346 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3347 do_fp_ld(s, a->rt, clean_addr, mop); 3348 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3349 return true; 3350 } 3351 3352 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3353 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3354 bool is_store, MemOp memop) 3355 { 3356 TCGv_i64 tcg_rm; 3357 3358 if (a->rn == 31) { 3359 gen_check_sp_alignment(s); 3360 } 3361 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3362 3363 tcg_rm = read_cpu_reg(s, a->rm, 1); 3364 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3365 3366 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3367 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3368 } 3369 3370 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3371 { 3372 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3373 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3374 MemOp memop; 3375 3376 if (extract32(a->opt, 1, 1) == 0) { 3377 return false; 3378 } 3379 3380 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3381 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3382 tcg_rt = cpu_reg(s, a->rt); 3383 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3384 a->ext, true, a->rt, iss_sf, false); 3385 return true; 3386 } 3387 3388 static bool trans_STR(DisasContext *s, arg_ldst *a) 3389 { 3390 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3391 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3392 MemOp memop; 3393 3394 if (extract32(a->opt, 1, 1) == 0) { 3395 return false; 3396 } 3397 3398 memop = finalize_memop(s, a->sz); 3399 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3400 tcg_rt = cpu_reg(s, a->rt); 3401 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3402 return true; 3403 } 3404 3405 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3406 { 3407 TCGv_i64 clean_addr, dirty_addr; 3408 MemOp memop; 3409 3410 if (extract32(a->opt, 1, 1) == 0) { 3411 return false; 3412 } 3413 3414 if (!fp_access_check(s)) { 3415 return true; 3416 } 3417 3418 memop = finalize_memop_asimd(s, a->sz); 3419 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3420 do_fp_ld(s, a->rt, clean_addr, memop); 3421 return true; 3422 } 3423 3424 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3425 { 3426 TCGv_i64 clean_addr, dirty_addr; 3427 MemOp memop; 3428 3429 if (extract32(a->opt, 1, 1) == 0) { 3430 return false; 3431 } 3432 3433 if (!fp_access_check(s)) { 3434 return true; 3435 } 3436 3437 memop = finalize_memop_asimd(s, a->sz); 3438 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3439 do_fp_st(s, a->rt, clean_addr, memop); 3440 return true; 3441 } 3442 3443 3444 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3445 int sign, bool invert) 3446 { 3447 MemOp mop = a->sz | sign; 3448 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3449 3450 if (a->rn == 31) { 3451 gen_check_sp_alignment(s); 3452 } 3453 mop = check_atomic_align(s, a->rn, mop); 3454 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3455 a->rn != 31, mop); 3456 tcg_rs = read_cpu_reg(s, a->rs, true); 3457 tcg_rt = cpu_reg(s, a->rt); 3458 if (invert) { 3459 tcg_gen_not_i64(tcg_rs, tcg_rs); 3460 } 3461 /* 3462 * The tcg atomic primitives are all full barriers. Therefore we 3463 * can ignore the Acquire and Release bits of this instruction. 3464 */ 3465 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3466 3467 if (mop & MO_SIGN) { 3468 switch (a->sz) { 3469 case MO_8: 3470 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3471 break; 3472 case MO_16: 3473 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3474 break; 3475 case MO_32: 3476 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3477 break; 3478 case MO_64: 3479 break; 3480 default: 3481 g_assert_not_reached(); 3482 } 3483 } 3484 return true; 3485 } 3486 3487 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3488 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3489 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3490 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3491 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3492 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3493 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3494 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3495 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3496 3497 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3498 { 3499 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3500 TCGv_i64 clean_addr; 3501 MemOp mop; 3502 3503 if (!dc_isar_feature(aa64_atomics, s) || 3504 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3505 return false; 3506 } 3507 if (a->rn == 31) { 3508 gen_check_sp_alignment(s); 3509 } 3510 mop = check_atomic_align(s, a->rn, a->sz); 3511 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3512 a->rn != 31, mop); 3513 /* 3514 * LDAPR* are a special case because they are a simple load, not a 3515 * fetch-and-do-something op. 3516 * The architectural consistency requirements here are weaker than 3517 * full load-acquire (we only need "load-acquire processor consistent"), 3518 * but we choose to implement them as full LDAQ. 3519 */ 3520 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3521 true, a->rt, iss_sf, true); 3522 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3523 return true; 3524 } 3525 3526 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3527 { 3528 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3529 MemOp memop; 3530 3531 /* Load with pointer authentication */ 3532 if (!dc_isar_feature(aa64_pauth, s)) { 3533 return false; 3534 } 3535 3536 if (a->rn == 31) { 3537 gen_check_sp_alignment(s); 3538 } 3539 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3540 3541 if (s->pauth_active) { 3542 if (!a->m) { 3543 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3544 tcg_constant_i64(0)); 3545 } else { 3546 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3547 tcg_constant_i64(0)); 3548 } 3549 } 3550 3551 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3552 3553 memop = finalize_memop(s, MO_64); 3554 3555 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3556 clean_addr = gen_mte_check1(s, dirty_addr, false, 3557 a->w || a->rn != 31, memop); 3558 3559 tcg_rt = cpu_reg(s, a->rt); 3560 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3561 /* extend */ false, /* iss_valid */ !a->w, 3562 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3563 3564 if (a->w) { 3565 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3566 } 3567 return true; 3568 } 3569 3570 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3571 { 3572 TCGv_i64 clean_addr, dirty_addr; 3573 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3574 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3575 3576 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3577 return false; 3578 } 3579 3580 if (a->rn == 31) { 3581 gen_check_sp_alignment(s); 3582 } 3583 3584 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3585 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3586 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3587 clean_addr = clean_data_tbi(s, dirty_addr); 3588 3589 /* 3590 * Load-AcquirePC semantics; we implement as the slightly more 3591 * restrictive Load-Acquire. 3592 */ 3593 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3594 a->rt, iss_sf, true); 3595 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3596 return true; 3597 } 3598 3599 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3600 { 3601 TCGv_i64 clean_addr, dirty_addr; 3602 MemOp mop = a->sz; 3603 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3604 3605 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3606 return false; 3607 } 3608 3609 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3610 3611 if (a->rn == 31) { 3612 gen_check_sp_alignment(s); 3613 } 3614 3615 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3616 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3617 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3618 clean_addr = clean_data_tbi(s, dirty_addr); 3619 3620 /* Store-Release semantics */ 3621 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3622 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3623 return true; 3624 } 3625 3626 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3627 { 3628 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3629 MemOp endian, align, mop; 3630 3631 int total; /* total bytes */ 3632 int elements; /* elements per vector */ 3633 int r; 3634 int size = a->sz; 3635 3636 if (!a->p && a->rm != 0) { 3637 /* For non-postindexed accesses the Rm field must be 0 */ 3638 return false; 3639 } 3640 if (size == 3 && !a->q && a->selem != 1) { 3641 return false; 3642 } 3643 if (!fp_access_check(s)) { 3644 return true; 3645 } 3646 3647 if (a->rn == 31) { 3648 gen_check_sp_alignment(s); 3649 } 3650 3651 /* For our purposes, bytes are always little-endian. */ 3652 endian = s->be_data; 3653 if (size == 0) { 3654 endian = MO_LE; 3655 } 3656 3657 total = a->rpt * a->selem * (a->q ? 16 : 8); 3658 tcg_rn = cpu_reg_sp(s, a->rn); 3659 3660 /* 3661 * Issue the MTE check vs the logical repeat count, before we 3662 * promote consecutive little-endian elements below. 3663 */ 3664 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3665 finalize_memop_asimd(s, size)); 3666 3667 /* 3668 * Consecutive little-endian elements from a single register 3669 * can be promoted to a larger little-endian operation. 3670 */ 3671 align = MO_ALIGN; 3672 if (a->selem == 1 && endian == MO_LE) { 3673 align = pow2_align(size); 3674 size = 3; 3675 } 3676 if (!s->align_mem) { 3677 align = 0; 3678 } 3679 mop = endian | size | align; 3680 3681 elements = (a->q ? 16 : 8) >> size; 3682 tcg_ebytes = tcg_constant_i64(1 << size); 3683 for (r = 0; r < a->rpt; r++) { 3684 int e; 3685 for (e = 0; e < elements; e++) { 3686 int xs; 3687 for (xs = 0; xs < a->selem; xs++) { 3688 int tt = (a->rt + r + xs) % 32; 3689 do_vec_ld(s, tt, e, clean_addr, mop); 3690 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3691 } 3692 } 3693 } 3694 3695 /* 3696 * For non-quad operations, setting a slice of the low 64 bits of 3697 * the register clears the high 64 bits (in the ARM ARM pseudocode 3698 * this is implicit in the fact that 'rval' is a 64 bit wide 3699 * variable). For quad operations, we might still need to zero 3700 * the high bits of SVE. 3701 */ 3702 for (r = 0; r < a->rpt * a->selem; r++) { 3703 int tt = (a->rt + r) % 32; 3704 clear_vec_high(s, a->q, tt); 3705 } 3706 3707 if (a->p) { 3708 if (a->rm == 31) { 3709 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3710 } else { 3711 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3712 } 3713 } 3714 return true; 3715 } 3716 3717 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3718 { 3719 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3720 MemOp endian, align, mop; 3721 3722 int total; /* total bytes */ 3723 int elements; /* elements per vector */ 3724 int r; 3725 int size = a->sz; 3726 3727 if (!a->p && a->rm != 0) { 3728 /* For non-postindexed accesses the Rm field must be 0 */ 3729 return false; 3730 } 3731 if (size == 3 && !a->q && a->selem != 1) { 3732 return false; 3733 } 3734 if (!fp_access_check(s)) { 3735 return true; 3736 } 3737 3738 if (a->rn == 31) { 3739 gen_check_sp_alignment(s); 3740 } 3741 3742 /* For our purposes, bytes are always little-endian. */ 3743 endian = s->be_data; 3744 if (size == 0) { 3745 endian = MO_LE; 3746 } 3747 3748 total = a->rpt * a->selem * (a->q ? 16 : 8); 3749 tcg_rn = cpu_reg_sp(s, a->rn); 3750 3751 /* 3752 * Issue the MTE check vs the logical repeat count, before we 3753 * promote consecutive little-endian elements below. 3754 */ 3755 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3756 finalize_memop_asimd(s, size)); 3757 3758 /* 3759 * Consecutive little-endian elements from a single register 3760 * can be promoted to a larger little-endian operation. 3761 */ 3762 align = MO_ALIGN; 3763 if (a->selem == 1 && endian == MO_LE) { 3764 align = pow2_align(size); 3765 size = 3; 3766 } 3767 if (!s->align_mem) { 3768 align = 0; 3769 } 3770 mop = endian | size | align; 3771 3772 elements = (a->q ? 16 : 8) >> size; 3773 tcg_ebytes = tcg_constant_i64(1 << size); 3774 for (r = 0; r < a->rpt; r++) { 3775 int e; 3776 for (e = 0; e < elements; e++) { 3777 int xs; 3778 for (xs = 0; xs < a->selem; xs++) { 3779 int tt = (a->rt + r + xs) % 32; 3780 do_vec_st(s, tt, e, clean_addr, mop); 3781 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3782 } 3783 } 3784 } 3785 3786 if (a->p) { 3787 if (a->rm == 31) { 3788 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3789 } else { 3790 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3791 } 3792 } 3793 return true; 3794 } 3795 3796 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3797 { 3798 int xs, total, rt; 3799 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3800 MemOp mop; 3801 3802 if (!a->p && a->rm != 0) { 3803 return false; 3804 } 3805 if (!fp_access_check(s)) { 3806 return true; 3807 } 3808 3809 if (a->rn == 31) { 3810 gen_check_sp_alignment(s); 3811 } 3812 3813 total = a->selem << a->scale; 3814 tcg_rn = cpu_reg_sp(s, a->rn); 3815 3816 mop = finalize_memop_asimd(s, a->scale); 3817 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3818 total, mop); 3819 3820 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3821 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3822 do_vec_st(s, rt, a->index, clean_addr, mop); 3823 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3824 } 3825 3826 if (a->p) { 3827 if (a->rm == 31) { 3828 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3829 } else { 3830 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3831 } 3832 } 3833 return true; 3834 } 3835 3836 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3837 { 3838 int xs, total, rt; 3839 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3840 MemOp mop; 3841 3842 if (!a->p && a->rm != 0) { 3843 return false; 3844 } 3845 if (!fp_access_check(s)) { 3846 return true; 3847 } 3848 3849 if (a->rn == 31) { 3850 gen_check_sp_alignment(s); 3851 } 3852 3853 total = a->selem << a->scale; 3854 tcg_rn = cpu_reg_sp(s, a->rn); 3855 3856 mop = finalize_memop_asimd(s, a->scale); 3857 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3858 total, mop); 3859 3860 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3861 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3862 do_vec_ld(s, rt, a->index, clean_addr, mop); 3863 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3864 } 3865 3866 if (a->p) { 3867 if (a->rm == 31) { 3868 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3869 } else { 3870 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3871 } 3872 } 3873 return true; 3874 } 3875 3876 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3877 { 3878 int xs, total, rt; 3879 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3880 MemOp mop; 3881 3882 if (!a->p && a->rm != 0) { 3883 return false; 3884 } 3885 if (!fp_access_check(s)) { 3886 return true; 3887 } 3888 3889 if (a->rn == 31) { 3890 gen_check_sp_alignment(s); 3891 } 3892 3893 total = a->selem << a->scale; 3894 tcg_rn = cpu_reg_sp(s, a->rn); 3895 3896 mop = finalize_memop_asimd(s, a->scale); 3897 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3898 total, mop); 3899 3900 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3901 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3902 /* Load and replicate to all elements */ 3903 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3904 3905 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3906 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3907 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3908 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3909 } 3910 3911 if (a->p) { 3912 if (a->rm == 31) { 3913 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3914 } else { 3915 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3916 } 3917 } 3918 return true; 3919 } 3920 3921 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3922 { 3923 TCGv_i64 addr, clean_addr, tcg_rt; 3924 int size = 4 << s->dcz_blocksize; 3925 3926 if (!dc_isar_feature(aa64_mte, s)) { 3927 return false; 3928 } 3929 if (s->current_el == 0) { 3930 return false; 3931 } 3932 3933 if (a->rn == 31) { 3934 gen_check_sp_alignment(s); 3935 } 3936 3937 addr = read_cpu_reg_sp(s, a->rn, true); 3938 tcg_gen_addi_i64(addr, addr, a->imm); 3939 tcg_rt = cpu_reg(s, a->rt); 3940 3941 if (s->ata[0]) { 3942 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3943 } 3944 /* 3945 * The non-tags portion of STZGM is mostly like DC_ZVA, 3946 * except the alignment happens before the access. 3947 */ 3948 clean_addr = clean_data_tbi(s, addr); 3949 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3950 gen_helper_dc_zva(tcg_env, clean_addr); 3951 return true; 3952 } 3953 3954 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3955 { 3956 TCGv_i64 addr, clean_addr, tcg_rt; 3957 3958 if (!dc_isar_feature(aa64_mte, s)) { 3959 return false; 3960 } 3961 if (s->current_el == 0) { 3962 return false; 3963 } 3964 3965 if (a->rn == 31) { 3966 gen_check_sp_alignment(s); 3967 } 3968 3969 addr = read_cpu_reg_sp(s, a->rn, true); 3970 tcg_gen_addi_i64(addr, addr, a->imm); 3971 tcg_rt = cpu_reg(s, a->rt); 3972 3973 if (s->ata[0]) { 3974 gen_helper_stgm(tcg_env, addr, tcg_rt); 3975 } else { 3976 MMUAccessType acc = MMU_DATA_STORE; 3977 int size = 4 << s->gm_blocksize; 3978 3979 clean_addr = clean_data_tbi(s, addr); 3980 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3981 gen_probe_access(s, clean_addr, acc, size); 3982 } 3983 return true; 3984 } 3985 3986 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3987 { 3988 TCGv_i64 addr, clean_addr, tcg_rt; 3989 3990 if (!dc_isar_feature(aa64_mte, s)) { 3991 return false; 3992 } 3993 if (s->current_el == 0) { 3994 return false; 3995 } 3996 3997 if (a->rn == 31) { 3998 gen_check_sp_alignment(s); 3999 } 4000 4001 addr = read_cpu_reg_sp(s, a->rn, true); 4002 tcg_gen_addi_i64(addr, addr, a->imm); 4003 tcg_rt = cpu_reg(s, a->rt); 4004 4005 if (s->ata[0]) { 4006 gen_helper_ldgm(tcg_rt, tcg_env, addr); 4007 } else { 4008 MMUAccessType acc = MMU_DATA_LOAD; 4009 int size = 4 << s->gm_blocksize; 4010 4011 clean_addr = clean_data_tbi(s, addr); 4012 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4013 gen_probe_access(s, clean_addr, acc, size); 4014 /* The result tags are zeros. */ 4015 tcg_gen_movi_i64(tcg_rt, 0); 4016 } 4017 return true; 4018 } 4019 4020 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4021 { 4022 TCGv_i64 addr, clean_addr, tcg_rt; 4023 4024 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4025 return false; 4026 } 4027 4028 if (a->rn == 31) { 4029 gen_check_sp_alignment(s); 4030 } 4031 4032 addr = read_cpu_reg_sp(s, a->rn, true); 4033 if (!a->p) { 4034 /* pre-index or signed offset */ 4035 tcg_gen_addi_i64(addr, addr, a->imm); 4036 } 4037 4038 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4039 tcg_rt = cpu_reg(s, a->rt); 4040 if (s->ata[0]) { 4041 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4042 } else { 4043 /* 4044 * Tag access disabled: we must check for aborts on the load 4045 * load from [rn+offset], and then insert a 0 tag into rt. 4046 */ 4047 clean_addr = clean_data_tbi(s, addr); 4048 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4049 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4050 } 4051 4052 if (a->w) { 4053 /* pre-index or post-index */ 4054 if (a->p) { 4055 /* post-index */ 4056 tcg_gen_addi_i64(addr, addr, a->imm); 4057 } 4058 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4059 } 4060 return true; 4061 } 4062 4063 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4064 { 4065 TCGv_i64 addr, tcg_rt; 4066 4067 if (a->rn == 31) { 4068 gen_check_sp_alignment(s); 4069 } 4070 4071 addr = read_cpu_reg_sp(s, a->rn, true); 4072 if (!a->p) { 4073 /* pre-index or signed offset */ 4074 tcg_gen_addi_i64(addr, addr, a->imm); 4075 } 4076 tcg_rt = cpu_reg_sp(s, a->rt); 4077 if (!s->ata[0]) { 4078 /* 4079 * For STG and ST2G, we need to check alignment and probe memory. 4080 * TODO: For STZG and STZ2G, we could rely on the stores below, 4081 * at least for system mode; user-only won't enforce alignment. 4082 */ 4083 if (is_pair) { 4084 gen_helper_st2g_stub(tcg_env, addr); 4085 } else { 4086 gen_helper_stg_stub(tcg_env, addr); 4087 } 4088 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4089 if (is_pair) { 4090 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4091 } else { 4092 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4093 } 4094 } else { 4095 if (is_pair) { 4096 gen_helper_st2g(tcg_env, addr, tcg_rt); 4097 } else { 4098 gen_helper_stg(tcg_env, addr, tcg_rt); 4099 } 4100 } 4101 4102 if (is_zero) { 4103 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4104 TCGv_i64 zero64 = tcg_constant_i64(0); 4105 TCGv_i128 zero128 = tcg_temp_new_i128(); 4106 int mem_index = get_mem_index(s); 4107 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4108 4109 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4110 4111 /* This is 1 or 2 atomic 16-byte operations. */ 4112 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4113 if (is_pair) { 4114 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4115 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4116 } 4117 } 4118 4119 if (a->w) { 4120 /* pre-index or post-index */ 4121 if (a->p) { 4122 /* post-index */ 4123 tcg_gen_addi_i64(addr, addr, a->imm); 4124 } 4125 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4126 } 4127 return true; 4128 } 4129 4130 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4131 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4132 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4133 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4134 4135 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4136 4137 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4138 bool is_setg, SetFn fn) 4139 { 4140 int memidx; 4141 uint32_t syndrome, desc = 0; 4142 4143 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4144 return false; 4145 } 4146 4147 /* 4148 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4149 * us to pull this check before the CheckMOPSEnabled() test 4150 * (which we do in the helper function) 4151 */ 4152 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4153 a->rd == 31 || a->rn == 31) { 4154 return false; 4155 } 4156 4157 memidx = get_a64_user_mem_index(s, a->unpriv); 4158 4159 /* 4160 * We pass option_a == true, matching our implementation; 4161 * we pass wrong_option == false: helper function may set that bit. 4162 */ 4163 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4164 is_epilogue, false, true, a->rd, a->rs, a->rn); 4165 4166 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4167 /* We may need to do MTE tag checking, so assemble the descriptor */ 4168 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4169 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4170 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4171 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4172 } 4173 /* The helper function always needs the memidx even with MTE disabled */ 4174 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4175 4176 /* 4177 * The helper needs the register numbers, but since they're in 4178 * the syndrome anyway, we let it extract them from there rather 4179 * than passing in an extra three integer arguments. 4180 */ 4181 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4182 return true; 4183 } 4184 4185 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4186 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4187 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4188 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4189 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4190 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4191 4192 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4193 4194 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4195 { 4196 int rmemidx, wmemidx; 4197 uint32_t syndrome, rdesc = 0, wdesc = 0; 4198 bool wunpriv = extract32(a->options, 0, 1); 4199 bool runpriv = extract32(a->options, 1, 1); 4200 4201 /* 4202 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4203 * us to pull this check before the CheckMOPSEnabled() test 4204 * (which we do in the helper function) 4205 */ 4206 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4207 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4208 return false; 4209 } 4210 4211 rmemidx = get_a64_user_mem_index(s, runpriv); 4212 wmemidx = get_a64_user_mem_index(s, wunpriv); 4213 4214 /* 4215 * We pass option_a == true, matching our implementation; 4216 * we pass wrong_option == false: helper function may set that bit. 4217 */ 4218 syndrome = syn_mop(false, false, a->options, is_epilogue, 4219 false, true, a->rd, a->rs, a->rn); 4220 4221 /* If we need to do MTE tag checking, assemble the descriptors */ 4222 if (s->mte_active[runpriv]) { 4223 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4224 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4225 } 4226 if (s->mte_active[wunpriv]) { 4227 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4228 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4229 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4230 } 4231 /* The helper function needs these parts of the descriptor regardless */ 4232 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4233 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4234 4235 /* 4236 * The helper needs the register numbers, but since they're in 4237 * the syndrome anyway, we let it extract them from there rather 4238 * than passing in an extra three integer arguments. 4239 */ 4240 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4241 tcg_constant_i32(rdesc)); 4242 return true; 4243 } 4244 4245 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4246 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4247 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4248 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4249 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4250 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4251 4252 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4253 4254 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4255 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4256 { 4257 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4258 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4259 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4260 4261 fn(tcg_rd, tcg_rn, tcg_imm); 4262 if (!a->sf) { 4263 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4264 } 4265 return true; 4266 } 4267 4268 /* 4269 * PC-rel. addressing 4270 */ 4271 4272 static bool trans_ADR(DisasContext *s, arg_ri *a) 4273 { 4274 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4275 return true; 4276 } 4277 4278 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4279 { 4280 int64_t offset = (int64_t)a->imm << 12; 4281 4282 /* The page offset is ok for CF_PCREL. */ 4283 offset -= s->pc_curr & 0xfff; 4284 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4285 return true; 4286 } 4287 4288 /* 4289 * Add/subtract (immediate) 4290 */ 4291 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4292 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4293 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4294 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4295 4296 /* 4297 * Add/subtract (immediate, with tags) 4298 */ 4299 4300 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4301 bool sub_op) 4302 { 4303 TCGv_i64 tcg_rn, tcg_rd; 4304 int imm; 4305 4306 imm = a->uimm6 << LOG2_TAG_GRANULE; 4307 if (sub_op) { 4308 imm = -imm; 4309 } 4310 4311 tcg_rn = cpu_reg_sp(s, a->rn); 4312 tcg_rd = cpu_reg_sp(s, a->rd); 4313 4314 if (s->ata[0]) { 4315 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4316 tcg_constant_i32(imm), 4317 tcg_constant_i32(a->uimm4)); 4318 } else { 4319 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4320 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4321 } 4322 return true; 4323 } 4324 4325 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4326 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4327 4328 /* The input should be a value in the bottom e bits (with higher 4329 * bits zero); returns that value replicated into every element 4330 * of size e in a 64 bit integer. 4331 */ 4332 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4333 { 4334 assert(e != 0); 4335 while (e < 64) { 4336 mask |= mask << e; 4337 e *= 2; 4338 } 4339 return mask; 4340 } 4341 4342 /* 4343 * Logical (immediate) 4344 */ 4345 4346 /* 4347 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4348 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4349 * value (ie should cause a guest UNDEF exception), and true if they are 4350 * valid, in which case the decoded bit pattern is written to result. 4351 */ 4352 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4353 unsigned int imms, unsigned int immr) 4354 { 4355 uint64_t mask; 4356 unsigned e, levels, s, r; 4357 int len; 4358 4359 assert(immn < 2 && imms < 64 && immr < 64); 4360 4361 /* The bit patterns we create here are 64 bit patterns which 4362 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4363 * 64 bits each. Each element contains the same value: a run 4364 * of between 1 and e-1 non-zero bits, rotated within the 4365 * element by between 0 and e-1 bits. 4366 * 4367 * The element size and run length are encoded into immn (1 bit) 4368 * and imms (6 bits) as follows: 4369 * 64 bit elements: immn = 1, imms = <length of run - 1> 4370 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4371 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4372 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4373 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4374 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4375 * Notice that immn = 0, imms = 11111x is the only combination 4376 * not covered by one of the above options; this is reserved. 4377 * Further, <length of run - 1> all-ones is a reserved pattern. 4378 * 4379 * In all cases the rotation is by immr % e (and immr is 6 bits). 4380 */ 4381 4382 /* First determine the element size */ 4383 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4384 if (len < 1) { 4385 /* This is the immn == 0, imms == 0x11111x case */ 4386 return false; 4387 } 4388 e = 1 << len; 4389 4390 levels = e - 1; 4391 s = imms & levels; 4392 r = immr & levels; 4393 4394 if (s == levels) { 4395 /* <length of run - 1> mustn't be all-ones. */ 4396 return false; 4397 } 4398 4399 /* Create the value of one element: s+1 set bits rotated 4400 * by r within the element (which is e bits wide)... 4401 */ 4402 mask = MAKE_64BIT_MASK(0, s + 1); 4403 if (r) { 4404 mask = (mask >> r) | (mask << (e - r)); 4405 mask &= MAKE_64BIT_MASK(0, e); 4406 } 4407 /* ...then replicate the element over the whole 64 bit value */ 4408 mask = bitfield_replicate(mask, e); 4409 *result = mask; 4410 return true; 4411 } 4412 4413 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4414 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4415 { 4416 TCGv_i64 tcg_rd, tcg_rn; 4417 uint64_t imm; 4418 4419 /* Some immediate field values are reserved. */ 4420 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4421 extract32(a->dbm, 0, 6), 4422 extract32(a->dbm, 6, 6))) { 4423 return false; 4424 } 4425 if (!a->sf) { 4426 imm &= 0xffffffffull; 4427 } 4428 4429 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4430 tcg_rn = cpu_reg(s, a->rn); 4431 4432 fn(tcg_rd, tcg_rn, imm); 4433 if (set_cc) { 4434 gen_logic_CC(a->sf, tcg_rd); 4435 } 4436 if (!a->sf) { 4437 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4438 } 4439 return true; 4440 } 4441 4442 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4443 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4444 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4445 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4446 4447 /* 4448 * Move wide (immediate) 4449 */ 4450 4451 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4452 { 4453 int pos = a->hw << 4; 4454 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4455 return true; 4456 } 4457 4458 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4459 { 4460 int pos = a->hw << 4; 4461 uint64_t imm = a->imm; 4462 4463 imm = ~(imm << pos); 4464 if (!a->sf) { 4465 imm = (uint32_t)imm; 4466 } 4467 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4468 return true; 4469 } 4470 4471 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4472 { 4473 int pos = a->hw << 4; 4474 TCGv_i64 tcg_rd, tcg_im; 4475 4476 tcg_rd = cpu_reg(s, a->rd); 4477 tcg_im = tcg_constant_i64(a->imm); 4478 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4479 if (!a->sf) { 4480 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4481 } 4482 return true; 4483 } 4484 4485 /* 4486 * Bitfield 4487 */ 4488 4489 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4490 { 4491 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4492 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4493 unsigned int bitsize = a->sf ? 64 : 32; 4494 unsigned int ri = a->immr; 4495 unsigned int si = a->imms; 4496 unsigned int pos, len; 4497 4498 if (si >= ri) { 4499 /* Wd<s-r:0> = Wn<s:r> */ 4500 len = (si - ri) + 1; 4501 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4502 if (!a->sf) { 4503 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4504 } 4505 } else { 4506 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4507 len = si + 1; 4508 pos = (bitsize - ri) & (bitsize - 1); 4509 4510 if (len < ri) { 4511 /* 4512 * Sign extend the destination field from len to fill the 4513 * balance of the word. Let the deposit below insert all 4514 * of those sign bits. 4515 */ 4516 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4517 len = ri; 4518 } 4519 4520 /* 4521 * We start with zero, and we haven't modified any bits outside 4522 * bitsize, therefore no final zero-extension is unneeded for !sf. 4523 */ 4524 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4525 } 4526 return true; 4527 } 4528 4529 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4530 { 4531 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4532 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4533 unsigned int bitsize = a->sf ? 64 : 32; 4534 unsigned int ri = a->immr; 4535 unsigned int si = a->imms; 4536 unsigned int pos, len; 4537 4538 tcg_rd = cpu_reg(s, a->rd); 4539 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4540 4541 if (si >= ri) { 4542 /* Wd<s-r:0> = Wn<s:r> */ 4543 len = (si - ri) + 1; 4544 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4545 } else { 4546 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4547 len = si + 1; 4548 pos = (bitsize - ri) & (bitsize - 1); 4549 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4550 } 4551 return true; 4552 } 4553 4554 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4555 { 4556 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4557 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4558 unsigned int bitsize = a->sf ? 64 : 32; 4559 unsigned int ri = a->immr; 4560 unsigned int si = a->imms; 4561 unsigned int pos, len; 4562 4563 tcg_rd = cpu_reg(s, a->rd); 4564 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4565 4566 if (si >= ri) { 4567 /* Wd<s-r:0> = Wn<s:r> */ 4568 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4569 len = (si - ri) + 1; 4570 pos = 0; 4571 } else { 4572 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4573 len = si + 1; 4574 pos = (bitsize - ri) & (bitsize - 1); 4575 } 4576 4577 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4578 if (!a->sf) { 4579 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4580 } 4581 return true; 4582 } 4583 4584 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4585 { 4586 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4587 4588 tcg_rd = cpu_reg(s, a->rd); 4589 4590 if (unlikely(a->imm == 0)) { 4591 /* 4592 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4593 * so an extract from bit 0 is a special case. 4594 */ 4595 if (a->sf) { 4596 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4597 } else { 4598 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4599 } 4600 } else { 4601 tcg_rm = cpu_reg(s, a->rm); 4602 tcg_rn = cpu_reg(s, a->rn); 4603 4604 if (a->sf) { 4605 /* Specialization to ROR happens in EXTRACT2. */ 4606 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4607 } else { 4608 TCGv_i32 t0 = tcg_temp_new_i32(); 4609 4610 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4611 if (a->rm == a->rn) { 4612 tcg_gen_rotri_i32(t0, t0, a->imm); 4613 } else { 4614 TCGv_i32 t1 = tcg_temp_new_i32(); 4615 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4616 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4617 } 4618 tcg_gen_extu_i32_i64(tcg_rd, t0); 4619 } 4620 } 4621 return true; 4622 } 4623 4624 /* 4625 * Cryptographic AES, SHA, SHA512 4626 */ 4627 4628 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4629 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4630 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4631 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4632 4633 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4634 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4635 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4636 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4637 4638 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4639 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4640 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4641 4642 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4643 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4644 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4645 4646 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4647 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4648 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4649 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4650 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4651 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4652 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4653 4654 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4655 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4656 4657 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4658 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4659 4660 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4661 { 4662 if (!dc_isar_feature(aa64_sm3, s)) { 4663 return false; 4664 } 4665 if (fp_access_check(s)) { 4666 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4667 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4668 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4669 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4670 unsigned vsz, dofs; 4671 4672 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4673 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4674 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4675 4676 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4677 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4678 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4679 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4680 4681 /* Clear the whole register first, then store bits [127:96]. */ 4682 vsz = vec_full_reg_size(s); 4683 dofs = vec_full_reg_offset(s, a->rd); 4684 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4685 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4686 } 4687 return true; 4688 } 4689 4690 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4691 { 4692 if (fp_access_check(s)) { 4693 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4694 } 4695 return true; 4696 } 4697 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4698 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4699 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4700 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4701 4702 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4703 { 4704 if (!dc_isar_feature(aa64_sha3, s)) { 4705 return false; 4706 } 4707 if (fp_access_check(s)) { 4708 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4709 vec_full_reg_offset(s, a->rn), 4710 vec_full_reg_offset(s, a->rm), a->imm, 16, 4711 vec_full_reg_size(s)); 4712 } 4713 return true; 4714 } 4715 4716 /* 4717 * Advanced SIMD copy 4718 */ 4719 4720 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4721 { 4722 unsigned esz = ctz32(imm); 4723 if (esz <= MO_64) { 4724 *pesz = esz; 4725 *pidx = imm >> (esz + 1); 4726 return true; 4727 } 4728 return false; 4729 } 4730 4731 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4732 { 4733 MemOp esz; 4734 unsigned idx; 4735 4736 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4737 return false; 4738 } 4739 if (fp_access_check(s)) { 4740 /* 4741 * This instruction just extracts the specified element and 4742 * zero-extends it into the bottom of the destination register. 4743 */ 4744 TCGv_i64 tmp = tcg_temp_new_i64(); 4745 read_vec_element(s, tmp, a->rn, idx, esz); 4746 write_fp_dreg(s, a->rd, tmp); 4747 } 4748 return true; 4749 } 4750 4751 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4752 { 4753 MemOp esz; 4754 unsigned idx; 4755 4756 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4757 return false; 4758 } 4759 if (esz == MO_64 && !a->q) { 4760 return false; 4761 } 4762 if (fp_access_check(s)) { 4763 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4764 vec_reg_offset(s, a->rn, idx, esz), 4765 a->q ? 16 : 8, vec_full_reg_size(s)); 4766 } 4767 return true; 4768 } 4769 4770 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4771 { 4772 MemOp esz; 4773 unsigned idx; 4774 4775 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4776 return false; 4777 } 4778 if (esz == MO_64 && !a->q) { 4779 return false; 4780 } 4781 if (fp_access_check(s)) { 4782 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4783 a->q ? 16 : 8, vec_full_reg_size(s), 4784 cpu_reg(s, a->rn)); 4785 } 4786 return true; 4787 } 4788 4789 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4790 { 4791 MemOp esz; 4792 unsigned idx; 4793 4794 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4795 return false; 4796 } 4797 if (is_signed) { 4798 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4799 return false; 4800 } 4801 } else { 4802 if (esz == MO_64 ? !a->q : a->q) { 4803 return false; 4804 } 4805 } 4806 if (fp_access_check(s)) { 4807 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4808 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4809 if (is_signed && !a->q) { 4810 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4811 } 4812 } 4813 return true; 4814 } 4815 4816 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4817 TRANS(UMOV, do_smov_umov, a, 0) 4818 4819 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4820 { 4821 MemOp esz; 4822 unsigned idx; 4823 4824 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4825 return false; 4826 } 4827 if (fp_access_check(s)) { 4828 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4829 clear_vec_high(s, true, a->rd); 4830 } 4831 return true; 4832 } 4833 4834 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4835 { 4836 MemOp esz; 4837 unsigned didx, sidx; 4838 4839 if (!decode_esz_idx(a->di, &esz, &didx)) { 4840 return false; 4841 } 4842 sidx = a->si >> esz; 4843 if (fp_access_check(s)) { 4844 TCGv_i64 tmp = tcg_temp_new_i64(); 4845 4846 read_vec_element(s, tmp, a->rn, sidx, esz); 4847 write_vec_element(s, tmp, a->rd, didx, esz); 4848 4849 /* INS is considered a 128-bit write for SVE. */ 4850 clear_vec_high(s, true, a->rd); 4851 } 4852 return true; 4853 } 4854 4855 /* 4856 * Advanced SIMD three same 4857 */ 4858 4859 typedef struct FPScalar { 4860 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4861 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4862 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4863 } FPScalar; 4864 4865 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4866 { 4867 switch (a->esz) { 4868 case MO_64: 4869 if (fp_access_check(s)) { 4870 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4871 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4872 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4873 write_fp_dreg(s, a->rd, t0); 4874 } 4875 break; 4876 case MO_32: 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4880 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 case MO_16: 4885 if (!dc_isar_feature(aa64_fp16, s)) { 4886 return false; 4887 } 4888 if (fp_access_check(s)) { 4889 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4890 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4891 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4892 write_fp_sreg(s, a->rd, t0); 4893 } 4894 break; 4895 default: 4896 return false; 4897 } 4898 return true; 4899 } 4900 4901 static const FPScalar f_scalar_fadd = { 4902 gen_helper_vfp_addh, 4903 gen_helper_vfp_adds, 4904 gen_helper_vfp_addd, 4905 }; 4906 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4907 4908 static const FPScalar f_scalar_fsub = { 4909 gen_helper_vfp_subh, 4910 gen_helper_vfp_subs, 4911 gen_helper_vfp_subd, 4912 }; 4913 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4914 4915 static const FPScalar f_scalar_fdiv = { 4916 gen_helper_vfp_divh, 4917 gen_helper_vfp_divs, 4918 gen_helper_vfp_divd, 4919 }; 4920 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4921 4922 static const FPScalar f_scalar_fmul = { 4923 gen_helper_vfp_mulh, 4924 gen_helper_vfp_muls, 4925 gen_helper_vfp_muld, 4926 }; 4927 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4928 4929 static const FPScalar f_scalar_fmax = { 4930 gen_helper_advsimd_maxh, 4931 gen_helper_vfp_maxs, 4932 gen_helper_vfp_maxd, 4933 }; 4934 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4935 4936 static const FPScalar f_scalar_fmin = { 4937 gen_helper_advsimd_minh, 4938 gen_helper_vfp_mins, 4939 gen_helper_vfp_mind, 4940 }; 4941 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4942 4943 static const FPScalar f_scalar_fmaxnm = { 4944 gen_helper_advsimd_maxnumh, 4945 gen_helper_vfp_maxnums, 4946 gen_helper_vfp_maxnumd, 4947 }; 4948 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4949 4950 static const FPScalar f_scalar_fminnm = { 4951 gen_helper_advsimd_minnumh, 4952 gen_helper_vfp_minnums, 4953 gen_helper_vfp_minnumd, 4954 }; 4955 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4956 4957 static const FPScalar f_scalar_fmulx = { 4958 gen_helper_advsimd_mulxh, 4959 gen_helper_vfp_mulxs, 4960 gen_helper_vfp_mulxd, 4961 }; 4962 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4963 4964 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4965 { 4966 gen_helper_vfp_mulh(d, n, m, s); 4967 gen_vfp_negh(d, d); 4968 } 4969 4970 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4971 { 4972 gen_helper_vfp_muls(d, n, m, s); 4973 gen_vfp_negs(d, d); 4974 } 4975 4976 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4977 { 4978 gen_helper_vfp_muld(d, n, m, s); 4979 gen_vfp_negd(d, d); 4980 } 4981 4982 static const FPScalar f_scalar_fnmul = { 4983 gen_fnmul_h, 4984 gen_fnmul_s, 4985 gen_fnmul_d, 4986 }; 4987 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4988 4989 static const FPScalar f_scalar_fcmeq = { 4990 gen_helper_advsimd_ceq_f16, 4991 gen_helper_neon_ceq_f32, 4992 gen_helper_neon_ceq_f64, 4993 }; 4994 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4995 4996 static const FPScalar f_scalar_fcmge = { 4997 gen_helper_advsimd_cge_f16, 4998 gen_helper_neon_cge_f32, 4999 gen_helper_neon_cge_f64, 5000 }; 5001 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 5002 5003 static const FPScalar f_scalar_fcmgt = { 5004 gen_helper_advsimd_cgt_f16, 5005 gen_helper_neon_cgt_f32, 5006 gen_helper_neon_cgt_f64, 5007 }; 5008 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 5009 5010 static const FPScalar f_scalar_facge = { 5011 gen_helper_advsimd_acge_f16, 5012 gen_helper_neon_acge_f32, 5013 gen_helper_neon_acge_f64, 5014 }; 5015 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5016 5017 static const FPScalar f_scalar_facgt = { 5018 gen_helper_advsimd_acgt_f16, 5019 gen_helper_neon_acgt_f32, 5020 gen_helper_neon_acgt_f64, 5021 }; 5022 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5023 5024 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5025 { 5026 gen_helper_vfp_subh(d, n, m, s); 5027 gen_vfp_absh(d, d); 5028 } 5029 5030 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5031 { 5032 gen_helper_vfp_subs(d, n, m, s); 5033 gen_vfp_abss(d, d); 5034 } 5035 5036 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5037 { 5038 gen_helper_vfp_subd(d, n, m, s); 5039 gen_vfp_absd(d, d); 5040 } 5041 5042 static const FPScalar f_scalar_fabd = { 5043 gen_fabd_h, 5044 gen_fabd_s, 5045 gen_fabd_d, 5046 }; 5047 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5048 5049 static const FPScalar f_scalar_frecps = { 5050 gen_helper_recpsf_f16, 5051 gen_helper_recpsf_f32, 5052 gen_helper_recpsf_f64, 5053 }; 5054 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5055 5056 static const FPScalar f_scalar_frsqrts = { 5057 gen_helper_rsqrtsf_f16, 5058 gen_helper_rsqrtsf_f32, 5059 gen_helper_rsqrtsf_f64, 5060 }; 5061 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5062 5063 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5064 gen_helper_gvec_3_ptr * const fns[3]) 5065 { 5066 MemOp esz = a->esz; 5067 5068 switch (esz) { 5069 case MO_64: 5070 if (!a->q) { 5071 return false; 5072 } 5073 break; 5074 case MO_32: 5075 break; 5076 case MO_16: 5077 if (!dc_isar_feature(aa64_fp16, s)) { 5078 return false; 5079 } 5080 break; 5081 default: 5082 return false; 5083 } 5084 if (fp_access_check(s)) { 5085 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5086 esz == MO_16, 0, fns[esz - 1]); 5087 } 5088 return true; 5089 } 5090 5091 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5092 gen_helper_gvec_fadd_h, 5093 gen_helper_gvec_fadd_s, 5094 gen_helper_gvec_fadd_d, 5095 }; 5096 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5097 5098 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5099 gen_helper_gvec_fsub_h, 5100 gen_helper_gvec_fsub_s, 5101 gen_helper_gvec_fsub_d, 5102 }; 5103 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5104 5105 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5106 gen_helper_gvec_fdiv_h, 5107 gen_helper_gvec_fdiv_s, 5108 gen_helper_gvec_fdiv_d, 5109 }; 5110 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5111 5112 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5113 gen_helper_gvec_fmul_h, 5114 gen_helper_gvec_fmul_s, 5115 gen_helper_gvec_fmul_d, 5116 }; 5117 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5118 5119 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5120 gen_helper_gvec_fmax_h, 5121 gen_helper_gvec_fmax_s, 5122 gen_helper_gvec_fmax_d, 5123 }; 5124 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5125 5126 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5127 gen_helper_gvec_fmin_h, 5128 gen_helper_gvec_fmin_s, 5129 gen_helper_gvec_fmin_d, 5130 }; 5131 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5132 5133 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5134 gen_helper_gvec_fmaxnum_h, 5135 gen_helper_gvec_fmaxnum_s, 5136 gen_helper_gvec_fmaxnum_d, 5137 }; 5138 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5139 5140 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5141 gen_helper_gvec_fminnum_h, 5142 gen_helper_gvec_fminnum_s, 5143 gen_helper_gvec_fminnum_d, 5144 }; 5145 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5146 5147 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5148 gen_helper_gvec_fmulx_h, 5149 gen_helper_gvec_fmulx_s, 5150 gen_helper_gvec_fmulx_d, 5151 }; 5152 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5153 5154 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5155 gen_helper_gvec_vfma_h, 5156 gen_helper_gvec_vfma_s, 5157 gen_helper_gvec_vfma_d, 5158 }; 5159 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5160 5161 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5162 gen_helper_gvec_vfms_h, 5163 gen_helper_gvec_vfms_s, 5164 gen_helper_gvec_vfms_d, 5165 }; 5166 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5167 5168 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5169 gen_helper_gvec_fceq_h, 5170 gen_helper_gvec_fceq_s, 5171 gen_helper_gvec_fceq_d, 5172 }; 5173 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5174 5175 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5176 gen_helper_gvec_fcge_h, 5177 gen_helper_gvec_fcge_s, 5178 gen_helper_gvec_fcge_d, 5179 }; 5180 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5181 5182 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5183 gen_helper_gvec_fcgt_h, 5184 gen_helper_gvec_fcgt_s, 5185 gen_helper_gvec_fcgt_d, 5186 }; 5187 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5188 5189 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5190 gen_helper_gvec_facge_h, 5191 gen_helper_gvec_facge_s, 5192 gen_helper_gvec_facge_d, 5193 }; 5194 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5195 5196 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5197 gen_helper_gvec_facgt_h, 5198 gen_helper_gvec_facgt_s, 5199 gen_helper_gvec_facgt_d, 5200 }; 5201 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5202 5203 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5204 gen_helper_gvec_fabd_h, 5205 gen_helper_gvec_fabd_s, 5206 gen_helper_gvec_fabd_d, 5207 }; 5208 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5209 5210 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5211 gen_helper_gvec_recps_h, 5212 gen_helper_gvec_recps_s, 5213 gen_helper_gvec_recps_d, 5214 }; 5215 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) 5216 5217 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5218 gen_helper_gvec_rsqrts_h, 5219 gen_helper_gvec_rsqrts_s, 5220 gen_helper_gvec_rsqrts_d, 5221 }; 5222 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) 5223 5224 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5225 gen_helper_gvec_faddp_h, 5226 gen_helper_gvec_faddp_s, 5227 gen_helper_gvec_faddp_d, 5228 }; 5229 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp) 5230 5231 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5232 gen_helper_gvec_fmaxp_h, 5233 gen_helper_gvec_fmaxp_s, 5234 gen_helper_gvec_fmaxp_d, 5235 }; 5236 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp) 5237 5238 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5239 gen_helper_gvec_fminp_h, 5240 gen_helper_gvec_fminp_s, 5241 gen_helper_gvec_fminp_d, 5242 }; 5243 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp) 5244 5245 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5246 gen_helper_gvec_fmaxnump_h, 5247 gen_helper_gvec_fmaxnump_s, 5248 gen_helper_gvec_fmaxnump_d, 5249 }; 5250 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp) 5251 5252 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5253 gen_helper_gvec_fminnump_h, 5254 gen_helper_gvec_fminnump_s, 5255 gen_helper_gvec_fminnump_d, 5256 }; 5257 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp) 5258 5259 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5260 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) 5261 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) 5262 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) 5263 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) 5264 5265 /* 5266 * Advanced SIMD scalar/vector x indexed element 5267 */ 5268 5269 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5270 { 5271 switch (a->esz) { 5272 case MO_64: 5273 if (fp_access_check(s)) { 5274 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5275 TCGv_i64 t1 = tcg_temp_new_i64(); 5276 5277 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5278 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5279 write_fp_dreg(s, a->rd, t0); 5280 } 5281 break; 5282 case MO_32: 5283 if (fp_access_check(s)) { 5284 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5285 TCGv_i32 t1 = tcg_temp_new_i32(); 5286 5287 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5288 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5289 write_fp_sreg(s, a->rd, t0); 5290 } 5291 break; 5292 case MO_16: 5293 if (!dc_isar_feature(aa64_fp16, s)) { 5294 return false; 5295 } 5296 if (fp_access_check(s)) { 5297 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5298 TCGv_i32 t1 = tcg_temp_new_i32(); 5299 5300 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5301 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5302 write_fp_sreg(s, a->rd, t0); 5303 } 5304 break; 5305 default: 5306 g_assert_not_reached(); 5307 } 5308 return true; 5309 } 5310 5311 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5312 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5313 5314 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5315 { 5316 switch (a->esz) { 5317 case MO_64: 5318 if (fp_access_check(s)) { 5319 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5320 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5321 TCGv_i64 t2 = tcg_temp_new_i64(); 5322 5323 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5324 if (neg) { 5325 gen_vfp_negd(t1, t1); 5326 } 5327 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5328 write_fp_dreg(s, a->rd, t0); 5329 } 5330 break; 5331 case MO_32: 5332 if (fp_access_check(s)) { 5333 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5334 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5335 TCGv_i32 t2 = tcg_temp_new_i32(); 5336 5337 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5338 if (neg) { 5339 gen_vfp_negs(t1, t1); 5340 } 5341 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5342 write_fp_sreg(s, a->rd, t0); 5343 } 5344 break; 5345 case MO_16: 5346 if (!dc_isar_feature(aa64_fp16, s)) { 5347 return false; 5348 } 5349 if (fp_access_check(s)) { 5350 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5351 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5352 TCGv_i32 t2 = tcg_temp_new_i32(); 5353 5354 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5355 if (neg) { 5356 gen_vfp_negh(t1, t1); 5357 } 5358 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5359 fpstatus_ptr(FPST_FPCR_F16)); 5360 write_fp_sreg(s, a->rd, t0); 5361 } 5362 break; 5363 default: 5364 g_assert_not_reached(); 5365 } 5366 return true; 5367 } 5368 5369 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5370 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5371 5372 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5373 gen_helper_gvec_3_ptr * const fns[3]) 5374 { 5375 MemOp esz = a->esz; 5376 5377 switch (esz) { 5378 case MO_64: 5379 if (!a->q) { 5380 return false; 5381 } 5382 break; 5383 case MO_32: 5384 break; 5385 case MO_16: 5386 if (!dc_isar_feature(aa64_fp16, s)) { 5387 return false; 5388 } 5389 break; 5390 default: 5391 g_assert_not_reached(); 5392 } 5393 if (fp_access_check(s)) { 5394 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5395 esz == MO_16, a->idx, fns[esz - 1]); 5396 } 5397 return true; 5398 } 5399 5400 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5401 gen_helper_gvec_fmul_idx_h, 5402 gen_helper_gvec_fmul_idx_s, 5403 gen_helper_gvec_fmul_idx_d, 5404 }; 5405 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5406 5407 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5408 gen_helper_gvec_fmulx_idx_h, 5409 gen_helper_gvec_fmulx_idx_s, 5410 gen_helper_gvec_fmulx_idx_d, 5411 }; 5412 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5413 5414 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5415 { 5416 static gen_helper_gvec_4_ptr * const fns[3] = { 5417 gen_helper_gvec_fmla_idx_h, 5418 gen_helper_gvec_fmla_idx_s, 5419 gen_helper_gvec_fmla_idx_d, 5420 }; 5421 MemOp esz = a->esz; 5422 5423 switch (esz) { 5424 case MO_64: 5425 if (!a->q) { 5426 return false; 5427 } 5428 break; 5429 case MO_32: 5430 break; 5431 case MO_16: 5432 if (!dc_isar_feature(aa64_fp16, s)) { 5433 return false; 5434 } 5435 break; 5436 default: 5437 g_assert_not_reached(); 5438 } 5439 if (fp_access_check(s)) { 5440 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5441 esz == MO_16, (a->idx << 1) | neg, 5442 fns[esz - 1]); 5443 } 5444 return true; 5445 } 5446 5447 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5448 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5449 5450 /* 5451 * Advanced SIMD scalar pairwise 5452 */ 5453 5454 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 5455 { 5456 switch (a->esz) { 5457 case MO_64: 5458 if (fp_access_check(s)) { 5459 TCGv_i64 t0 = tcg_temp_new_i64(); 5460 TCGv_i64 t1 = tcg_temp_new_i64(); 5461 5462 read_vec_element(s, t0, a->rn, 0, MO_64); 5463 read_vec_element(s, t1, a->rn, 1, MO_64); 5464 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5465 write_fp_dreg(s, a->rd, t0); 5466 } 5467 break; 5468 case MO_32: 5469 if (fp_access_check(s)) { 5470 TCGv_i32 t0 = tcg_temp_new_i32(); 5471 TCGv_i32 t1 = tcg_temp_new_i32(); 5472 5473 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 5474 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 5475 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5476 write_fp_sreg(s, a->rd, t0); 5477 } 5478 break; 5479 case MO_16: 5480 if (!dc_isar_feature(aa64_fp16, s)) { 5481 return false; 5482 } 5483 if (fp_access_check(s)) { 5484 TCGv_i32 t0 = tcg_temp_new_i32(); 5485 TCGv_i32 t1 = tcg_temp_new_i32(); 5486 5487 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 5488 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 5489 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5490 write_fp_sreg(s, a->rd, t0); 5491 } 5492 break; 5493 default: 5494 g_assert_not_reached(); 5495 } 5496 return true; 5497 } 5498 5499 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 5500 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 5501 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 5502 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 5503 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 5504 5505 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 5506 { 5507 if (fp_access_check(s)) { 5508 TCGv_i64 t0 = tcg_temp_new_i64(); 5509 TCGv_i64 t1 = tcg_temp_new_i64(); 5510 5511 read_vec_element(s, t0, a->rn, 0, MO_64); 5512 read_vec_element(s, t1, a->rn, 1, MO_64); 5513 tcg_gen_add_i64(t0, t0, t1); 5514 write_fp_dreg(s, a->rd, t0); 5515 } 5516 return true; 5517 } 5518 5519 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5520 * Note that it is the caller's responsibility to ensure that the 5521 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5522 * mandated semantics for out of range shifts. 5523 */ 5524 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5525 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5526 { 5527 switch (shift_type) { 5528 case A64_SHIFT_TYPE_LSL: 5529 tcg_gen_shl_i64(dst, src, shift_amount); 5530 break; 5531 case A64_SHIFT_TYPE_LSR: 5532 tcg_gen_shr_i64(dst, src, shift_amount); 5533 break; 5534 case A64_SHIFT_TYPE_ASR: 5535 if (!sf) { 5536 tcg_gen_ext32s_i64(dst, src); 5537 } 5538 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5539 break; 5540 case A64_SHIFT_TYPE_ROR: 5541 if (sf) { 5542 tcg_gen_rotr_i64(dst, src, shift_amount); 5543 } else { 5544 TCGv_i32 t0, t1; 5545 t0 = tcg_temp_new_i32(); 5546 t1 = tcg_temp_new_i32(); 5547 tcg_gen_extrl_i64_i32(t0, src); 5548 tcg_gen_extrl_i64_i32(t1, shift_amount); 5549 tcg_gen_rotr_i32(t0, t0, t1); 5550 tcg_gen_extu_i32_i64(dst, t0); 5551 } 5552 break; 5553 default: 5554 assert(FALSE); /* all shift types should be handled */ 5555 break; 5556 } 5557 5558 if (!sf) { /* zero extend final result */ 5559 tcg_gen_ext32u_i64(dst, dst); 5560 } 5561 } 5562 5563 /* Shift a TCGv src by immediate, put result in dst. 5564 * The shift amount must be in range (this should always be true as the 5565 * relevant instructions will UNDEF on bad shift immediates). 5566 */ 5567 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5568 enum a64_shift_type shift_type, unsigned int shift_i) 5569 { 5570 assert(shift_i < (sf ? 64 : 32)); 5571 5572 if (shift_i == 0) { 5573 tcg_gen_mov_i64(dst, src); 5574 } else { 5575 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5576 } 5577 } 5578 5579 /* Logical (shifted register) 5580 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5581 * +----+-----+-----------+-------+---+------+--------+------+------+ 5582 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5583 * +----+-----+-----------+-------+---+------+--------+------+------+ 5584 */ 5585 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5586 { 5587 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5588 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5589 5590 sf = extract32(insn, 31, 1); 5591 opc = extract32(insn, 29, 2); 5592 shift_type = extract32(insn, 22, 2); 5593 invert = extract32(insn, 21, 1); 5594 rm = extract32(insn, 16, 5); 5595 shift_amount = extract32(insn, 10, 6); 5596 rn = extract32(insn, 5, 5); 5597 rd = extract32(insn, 0, 5); 5598 5599 if (!sf && (shift_amount & (1 << 5))) { 5600 unallocated_encoding(s); 5601 return; 5602 } 5603 5604 tcg_rd = cpu_reg(s, rd); 5605 5606 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5607 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5608 * register-register MOV and MVN, so it is worth special casing. 5609 */ 5610 tcg_rm = cpu_reg(s, rm); 5611 if (invert) { 5612 tcg_gen_not_i64(tcg_rd, tcg_rm); 5613 if (!sf) { 5614 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5615 } 5616 } else { 5617 if (sf) { 5618 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5619 } else { 5620 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5621 } 5622 } 5623 return; 5624 } 5625 5626 tcg_rm = read_cpu_reg(s, rm, sf); 5627 5628 if (shift_amount) { 5629 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5630 } 5631 5632 tcg_rn = cpu_reg(s, rn); 5633 5634 switch (opc | (invert << 2)) { 5635 case 0: /* AND */ 5636 case 3: /* ANDS */ 5637 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5638 break; 5639 case 1: /* ORR */ 5640 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5641 break; 5642 case 2: /* EOR */ 5643 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5644 break; 5645 case 4: /* BIC */ 5646 case 7: /* BICS */ 5647 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5648 break; 5649 case 5: /* ORN */ 5650 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5651 break; 5652 case 6: /* EON */ 5653 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5654 break; 5655 default: 5656 assert(FALSE); 5657 break; 5658 } 5659 5660 if (!sf) { 5661 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5662 } 5663 5664 if (opc == 3) { 5665 gen_logic_CC(sf, tcg_rd); 5666 } 5667 } 5668 5669 /* 5670 * Add/subtract (extended register) 5671 * 5672 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5673 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5674 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5675 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5676 * 5677 * sf: 0 -> 32bit, 1 -> 64bit 5678 * op: 0 -> add , 1 -> sub 5679 * S: 1 -> set flags 5680 * opt: 00 5681 * option: extension type (see DecodeRegExtend) 5682 * imm3: optional shift to Rm 5683 * 5684 * Rd = Rn + LSL(extend(Rm), amount) 5685 */ 5686 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5687 { 5688 int rd = extract32(insn, 0, 5); 5689 int rn = extract32(insn, 5, 5); 5690 int imm3 = extract32(insn, 10, 3); 5691 int option = extract32(insn, 13, 3); 5692 int rm = extract32(insn, 16, 5); 5693 int opt = extract32(insn, 22, 2); 5694 bool setflags = extract32(insn, 29, 1); 5695 bool sub_op = extract32(insn, 30, 1); 5696 bool sf = extract32(insn, 31, 1); 5697 5698 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5699 TCGv_i64 tcg_rd; 5700 TCGv_i64 tcg_result; 5701 5702 if (imm3 > 4 || opt != 0) { 5703 unallocated_encoding(s); 5704 return; 5705 } 5706 5707 /* non-flag setting ops may use SP */ 5708 if (!setflags) { 5709 tcg_rd = cpu_reg_sp(s, rd); 5710 } else { 5711 tcg_rd = cpu_reg(s, rd); 5712 } 5713 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5714 5715 tcg_rm = read_cpu_reg(s, rm, sf); 5716 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5717 5718 tcg_result = tcg_temp_new_i64(); 5719 5720 if (!setflags) { 5721 if (sub_op) { 5722 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5723 } else { 5724 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5725 } 5726 } else { 5727 if (sub_op) { 5728 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5729 } else { 5730 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5731 } 5732 } 5733 5734 if (sf) { 5735 tcg_gen_mov_i64(tcg_rd, tcg_result); 5736 } else { 5737 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5738 } 5739 } 5740 5741 /* 5742 * Add/subtract (shifted register) 5743 * 5744 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5745 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5746 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5747 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5748 * 5749 * sf: 0 -> 32bit, 1 -> 64bit 5750 * op: 0 -> add , 1 -> sub 5751 * S: 1 -> set flags 5752 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5753 * imm6: Shift amount to apply to Rm before the add/sub 5754 */ 5755 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5756 { 5757 int rd = extract32(insn, 0, 5); 5758 int rn = extract32(insn, 5, 5); 5759 int imm6 = extract32(insn, 10, 6); 5760 int rm = extract32(insn, 16, 5); 5761 int shift_type = extract32(insn, 22, 2); 5762 bool setflags = extract32(insn, 29, 1); 5763 bool sub_op = extract32(insn, 30, 1); 5764 bool sf = extract32(insn, 31, 1); 5765 5766 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5767 TCGv_i64 tcg_rn, tcg_rm; 5768 TCGv_i64 tcg_result; 5769 5770 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5771 unallocated_encoding(s); 5772 return; 5773 } 5774 5775 tcg_rn = read_cpu_reg(s, rn, sf); 5776 tcg_rm = read_cpu_reg(s, rm, sf); 5777 5778 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5779 5780 tcg_result = tcg_temp_new_i64(); 5781 5782 if (!setflags) { 5783 if (sub_op) { 5784 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5785 } else { 5786 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5787 } 5788 } else { 5789 if (sub_op) { 5790 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5791 } else { 5792 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5793 } 5794 } 5795 5796 if (sf) { 5797 tcg_gen_mov_i64(tcg_rd, tcg_result); 5798 } else { 5799 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5800 } 5801 } 5802 5803 /* Data-processing (3 source) 5804 * 5805 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5806 * +--+------+-----------+------+------+----+------+------+------+ 5807 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5808 * +--+------+-----------+------+------+----+------+------+------+ 5809 */ 5810 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5811 { 5812 int rd = extract32(insn, 0, 5); 5813 int rn = extract32(insn, 5, 5); 5814 int ra = extract32(insn, 10, 5); 5815 int rm = extract32(insn, 16, 5); 5816 int op_id = (extract32(insn, 29, 3) << 4) | 5817 (extract32(insn, 21, 3) << 1) | 5818 extract32(insn, 15, 1); 5819 bool sf = extract32(insn, 31, 1); 5820 bool is_sub = extract32(op_id, 0, 1); 5821 bool is_high = extract32(op_id, 2, 1); 5822 bool is_signed = false; 5823 TCGv_i64 tcg_op1; 5824 TCGv_i64 tcg_op2; 5825 TCGv_i64 tcg_tmp; 5826 5827 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5828 switch (op_id) { 5829 case 0x42: /* SMADDL */ 5830 case 0x43: /* SMSUBL */ 5831 case 0x44: /* SMULH */ 5832 is_signed = true; 5833 break; 5834 case 0x0: /* MADD (32bit) */ 5835 case 0x1: /* MSUB (32bit) */ 5836 case 0x40: /* MADD (64bit) */ 5837 case 0x41: /* MSUB (64bit) */ 5838 case 0x4a: /* UMADDL */ 5839 case 0x4b: /* UMSUBL */ 5840 case 0x4c: /* UMULH */ 5841 break; 5842 default: 5843 unallocated_encoding(s); 5844 return; 5845 } 5846 5847 if (is_high) { 5848 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5849 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5850 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5851 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5852 5853 if (is_signed) { 5854 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5855 } else { 5856 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5857 } 5858 return; 5859 } 5860 5861 tcg_op1 = tcg_temp_new_i64(); 5862 tcg_op2 = tcg_temp_new_i64(); 5863 tcg_tmp = tcg_temp_new_i64(); 5864 5865 if (op_id < 0x42) { 5866 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5867 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5868 } else { 5869 if (is_signed) { 5870 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5871 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5872 } else { 5873 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5874 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5875 } 5876 } 5877 5878 if (ra == 31 && !is_sub) { 5879 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5880 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5881 } else { 5882 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5883 if (is_sub) { 5884 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5885 } else { 5886 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5887 } 5888 } 5889 5890 if (!sf) { 5891 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5892 } 5893 } 5894 5895 /* Add/subtract (with carry) 5896 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5897 * +--+--+--+------------------------+------+-------------+------+-----+ 5898 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5899 * +--+--+--+------------------------+------+-------------+------+-----+ 5900 */ 5901 5902 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5903 { 5904 unsigned int sf, op, setflags, rm, rn, rd; 5905 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5906 5907 sf = extract32(insn, 31, 1); 5908 op = extract32(insn, 30, 1); 5909 setflags = extract32(insn, 29, 1); 5910 rm = extract32(insn, 16, 5); 5911 rn = extract32(insn, 5, 5); 5912 rd = extract32(insn, 0, 5); 5913 5914 tcg_rd = cpu_reg(s, rd); 5915 tcg_rn = cpu_reg(s, rn); 5916 5917 if (op) { 5918 tcg_y = tcg_temp_new_i64(); 5919 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5920 } else { 5921 tcg_y = cpu_reg(s, rm); 5922 } 5923 5924 if (setflags) { 5925 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5926 } else { 5927 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5928 } 5929 } 5930 5931 /* 5932 * Rotate right into flags 5933 * 31 30 29 21 15 10 5 4 0 5934 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5935 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5936 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5937 */ 5938 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5939 { 5940 int mask = extract32(insn, 0, 4); 5941 int o2 = extract32(insn, 4, 1); 5942 int rn = extract32(insn, 5, 5); 5943 int imm6 = extract32(insn, 15, 6); 5944 int sf_op_s = extract32(insn, 29, 3); 5945 TCGv_i64 tcg_rn; 5946 TCGv_i32 nzcv; 5947 5948 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5949 unallocated_encoding(s); 5950 return; 5951 } 5952 5953 tcg_rn = read_cpu_reg(s, rn, 1); 5954 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5955 5956 nzcv = tcg_temp_new_i32(); 5957 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5958 5959 if (mask & 8) { /* N */ 5960 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5961 } 5962 if (mask & 4) { /* Z */ 5963 tcg_gen_not_i32(cpu_ZF, nzcv); 5964 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5965 } 5966 if (mask & 2) { /* C */ 5967 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5968 } 5969 if (mask & 1) { /* V */ 5970 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5971 } 5972 } 5973 5974 /* 5975 * Evaluate into flags 5976 * 31 30 29 21 15 14 10 5 4 0 5977 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5978 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5979 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5980 */ 5981 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5982 { 5983 int o3_mask = extract32(insn, 0, 5); 5984 int rn = extract32(insn, 5, 5); 5985 int o2 = extract32(insn, 15, 6); 5986 int sz = extract32(insn, 14, 1); 5987 int sf_op_s = extract32(insn, 29, 3); 5988 TCGv_i32 tmp; 5989 int shift; 5990 5991 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5992 !dc_isar_feature(aa64_condm_4, s)) { 5993 unallocated_encoding(s); 5994 return; 5995 } 5996 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5997 5998 tmp = tcg_temp_new_i32(); 5999 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 6000 tcg_gen_shli_i32(cpu_NF, tmp, shift); 6001 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 6002 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 6003 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 6004 } 6005 6006 /* Conditional compare (immediate / register) 6007 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6008 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6009 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 6010 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6011 * [1] y [0] [0] 6012 */ 6013 static void disas_cc(DisasContext *s, uint32_t insn) 6014 { 6015 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 6016 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 6017 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 6018 DisasCompare c; 6019 6020 if (!extract32(insn, 29, 1)) { 6021 unallocated_encoding(s); 6022 return; 6023 } 6024 if (insn & (1 << 10 | 1 << 4)) { 6025 unallocated_encoding(s); 6026 return; 6027 } 6028 sf = extract32(insn, 31, 1); 6029 op = extract32(insn, 30, 1); 6030 is_imm = extract32(insn, 11, 1); 6031 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 6032 cond = extract32(insn, 12, 4); 6033 rn = extract32(insn, 5, 5); 6034 nzcv = extract32(insn, 0, 4); 6035 6036 /* Set T0 = !COND. */ 6037 tcg_t0 = tcg_temp_new_i32(); 6038 arm_test_cc(&c, cond); 6039 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 6040 6041 /* Load the arguments for the new comparison. */ 6042 if (is_imm) { 6043 tcg_y = tcg_temp_new_i64(); 6044 tcg_gen_movi_i64(tcg_y, y); 6045 } else { 6046 tcg_y = cpu_reg(s, y); 6047 } 6048 tcg_rn = cpu_reg(s, rn); 6049 6050 /* Set the flags for the new comparison. */ 6051 tcg_tmp = tcg_temp_new_i64(); 6052 if (op) { 6053 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6054 } else { 6055 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6056 } 6057 6058 /* If COND was false, force the flags to #nzcv. Compute two masks 6059 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 6060 * For tcg hosts that support ANDC, we can make do with just T1. 6061 * In either case, allow the tcg optimizer to delete any unused mask. 6062 */ 6063 tcg_t1 = tcg_temp_new_i32(); 6064 tcg_t2 = tcg_temp_new_i32(); 6065 tcg_gen_neg_i32(tcg_t1, tcg_t0); 6066 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 6067 6068 if (nzcv & 8) { /* N */ 6069 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 6070 } else { 6071 if (TCG_TARGET_HAS_andc_i32) { 6072 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 6073 } else { 6074 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 6075 } 6076 } 6077 if (nzcv & 4) { /* Z */ 6078 if (TCG_TARGET_HAS_andc_i32) { 6079 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 6080 } else { 6081 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 6082 } 6083 } else { 6084 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 6085 } 6086 if (nzcv & 2) { /* C */ 6087 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 6088 } else { 6089 if (TCG_TARGET_HAS_andc_i32) { 6090 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 6091 } else { 6092 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 6093 } 6094 } 6095 if (nzcv & 1) { /* V */ 6096 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 6097 } else { 6098 if (TCG_TARGET_HAS_andc_i32) { 6099 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 6100 } else { 6101 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 6102 } 6103 } 6104 } 6105 6106 /* Conditional select 6107 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 6108 * +----+----+---+-----------------+------+------+-----+------+------+ 6109 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 6110 * +----+----+---+-----------------+------+------+-----+------+------+ 6111 */ 6112 static void disas_cond_select(DisasContext *s, uint32_t insn) 6113 { 6114 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 6115 TCGv_i64 tcg_rd, zero; 6116 DisasCompare64 c; 6117 6118 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 6119 /* S == 1 or op2<1> == 1 */ 6120 unallocated_encoding(s); 6121 return; 6122 } 6123 sf = extract32(insn, 31, 1); 6124 else_inv = extract32(insn, 30, 1); 6125 rm = extract32(insn, 16, 5); 6126 cond = extract32(insn, 12, 4); 6127 else_inc = extract32(insn, 10, 1); 6128 rn = extract32(insn, 5, 5); 6129 rd = extract32(insn, 0, 5); 6130 6131 tcg_rd = cpu_reg(s, rd); 6132 6133 a64_test_cc(&c, cond); 6134 zero = tcg_constant_i64(0); 6135 6136 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6137 /* CSET & CSETM. */ 6138 if (else_inv) { 6139 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6140 tcg_rd, c.value, zero); 6141 } else { 6142 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6143 tcg_rd, c.value, zero); 6144 } 6145 } else { 6146 TCGv_i64 t_true = cpu_reg(s, rn); 6147 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6148 if (else_inv && else_inc) { 6149 tcg_gen_neg_i64(t_false, t_false); 6150 } else if (else_inv) { 6151 tcg_gen_not_i64(t_false, t_false); 6152 } else if (else_inc) { 6153 tcg_gen_addi_i64(t_false, t_false, 1); 6154 } 6155 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6156 } 6157 6158 if (!sf) { 6159 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6160 } 6161 } 6162 6163 static void handle_clz(DisasContext *s, unsigned int sf, 6164 unsigned int rn, unsigned int rd) 6165 { 6166 TCGv_i64 tcg_rd, tcg_rn; 6167 tcg_rd = cpu_reg(s, rd); 6168 tcg_rn = cpu_reg(s, rn); 6169 6170 if (sf) { 6171 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6172 } else { 6173 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6174 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6175 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6176 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6177 } 6178 } 6179 6180 static void handle_cls(DisasContext *s, unsigned int sf, 6181 unsigned int rn, unsigned int rd) 6182 { 6183 TCGv_i64 tcg_rd, tcg_rn; 6184 tcg_rd = cpu_reg(s, rd); 6185 tcg_rn = cpu_reg(s, rn); 6186 6187 if (sf) { 6188 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6189 } else { 6190 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6191 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6192 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6193 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6194 } 6195 } 6196 6197 static void handle_rbit(DisasContext *s, unsigned int sf, 6198 unsigned int rn, unsigned int rd) 6199 { 6200 TCGv_i64 tcg_rd, tcg_rn; 6201 tcg_rd = cpu_reg(s, rd); 6202 tcg_rn = cpu_reg(s, rn); 6203 6204 if (sf) { 6205 gen_helper_rbit64(tcg_rd, tcg_rn); 6206 } else { 6207 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6208 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6209 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6210 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6211 } 6212 } 6213 6214 /* REV with sf==1, opcode==3 ("REV64") */ 6215 static void handle_rev64(DisasContext *s, unsigned int sf, 6216 unsigned int rn, unsigned int rd) 6217 { 6218 if (!sf) { 6219 unallocated_encoding(s); 6220 return; 6221 } 6222 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6223 } 6224 6225 /* REV with sf==0, opcode==2 6226 * REV32 (sf==1, opcode==2) 6227 */ 6228 static void handle_rev32(DisasContext *s, unsigned int sf, 6229 unsigned int rn, unsigned int rd) 6230 { 6231 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6232 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6233 6234 if (sf) { 6235 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6236 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6237 } else { 6238 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6239 } 6240 } 6241 6242 /* REV16 (opcode==1) */ 6243 static void handle_rev16(DisasContext *s, unsigned int sf, 6244 unsigned int rn, unsigned int rd) 6245 { 6246 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6247 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6248 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6249 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6250 6251 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6252 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6253 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6254 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6255 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6256 } 6257 6258 /* Data-processing (1 source) 6259 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6260 * +----+---+---+-----------------+---------+--------+------+------+ 6261 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6262 * +----+---+---+-----------------+---------+--------+------+------+ 6263 */ 6264 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6265 { 6266 unsigned int sf, opcode, opcode2, rn, rd; 6267 TCGv_i64 tcg_rd; 6268 6269 if (extract32(insn, 29, 1)) { 6270 unallocated_encoding(s); 6271 return; 6272 } 6273 6274 sf = extract32(insn, 31, 1); 6275 opcode = extract32(insn, 10, 6); 6276 opcode2 = extract32(insn, 16, 5); 6277 rn = extract32(insn, 5, 5); 6278 rd = extract32(insn, 0, 5); 6279 6280 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6281 6282 switch (MAP(sf, opcode2, opcode)) { 6283 case MAP(0, 0x00, 0x00): /* RBIT */ 6284 case MAP(1, 0x00, 0x00): 6285 handle_rbit(s, sf, rn, rd); 6286 break; 6287 case MAP(0, 0x00, 0x01): /* REV16 */ 6288 case MAP(1, 0x00, 0x01): 6289 handle_rev16(s, sf, rn, rd); 6290 break; 6291 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6292 case MAP(1, 0x00, 0x02): 6293 handle_rev32(s, sf, rn, rd); 6294 break; 6295 case MAP(1, 0x00, 0x03): /* REV64 */ 6296 handle_rev64(s, sf, rn, rd); 6297 break; 6298 case MAP(0, 0x00, 0x04): /* CLZ */ 6299 case MAP(1, 0x00, 0x04): 6300 handle_clz(s, sf, rn, rd); 6301 break; 6302 case MAP(0, 0x00, 0x05): /* CLS */ 6303 case MAP(1, 0x00, 0x05): 6304 handle_cls(s, sf, rn, rd); 6305 break; 6306 case MAP(1, 0x01, 0x00): /* PACIA */ 6307 if (s->pauth_active) { 6308 tcg_rd = cpu_reg(s, rd); 6309 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6310 } else if (!dc_isar_feature(aa64_pauth, s)) { 6311 goto do_unallocated; 6312 } 6313 break; 6314 case MAP(1, 0x01, 0x01): /* PACIB */ 6315 if (s->pauth_active) { 6316 tcg_rd = cpu_reg(s, rd); 6317 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6318 } else if (!dc_isar_feature(aa64_pauth, s)) { 6319 goto do_unallocated; 6320 } 6321 break; 6322 case MAP(1, 0x01, 0x02): /* PACDA */ 6323 if (s->pauth_active) { 6324 tcg_rd = cpu_reg(s, rd); 6325 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6326 } else if (!dc_isar_feature(aa64_pauth, s)) { 6327 goto do_unallocated; 6328 } 6329 break; 6330 case MAP(1, 0x01, 0x03): /* PACDB */ 6331 if (s->pauth_active) { 6332 tcg_rd = cpu_reg(s, rd); 6333 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6334 } else if (!dc_isar_feature(aa64_pauth, s)) { 6335 goto do_unallocated; 6336 } 6337 break; 6338 case MAP(1, 0x01, 0x04): /* AUTIA */ 6339 if (s->pauth_active) { 6340 tcg_rd = cpu_reg(s, rd); 6341 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6342 } else if (!dc_isar_feature(aa64_pauth, s)) { 6343 goto do_unallocated; 6344 } 6345 break; 6346 case MAP(1, 0x01, 0x05): /* AUTIB */ 6347 if (s->pauth_active) { 6348 tcg_rd = cpu_reg(s, rd); 6349 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6350 } else if (!dc_isar_feature(aa64_pauth, s)) { 6351 goto do_unallocated; 6352 } 6353 break; 6354 case MAP(1, 0x01, 0x06): /* AUTDA */ 6355 if (s->pauth_active) { 6356 tcg_rd = cpu_reg(s, rd); 6357 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6358 } else if (!dc_isar_feature(aa64_pauth, s)) { 6359 goto do_unallocated; 6360 } 6361 break; 6362 case MAP(1, 0x01, 0x07): /* AUTDB */ 6363 if (s->pauth_active) { 6364 tcg_rd = cpu_reg(s, rd); 6365 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6366 } else if (!dc_isar_feature(aa64_pauth, s)) { 6367 goto do_unallocated; 6368 } 6369 break; 6370 case MAP(1, 0x01, 0x08): /* PACIZA */ 6371 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6372 goto do_unallocated; 6373 } else if (s->pauth_active) { 6374 tcg_rd = cpu_reg(s, rd); 6375 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6376 } 6377 break; 6378 case MAP(1, 0x01, 0x09): /* PACIZB */ 6379 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6380 goto do_unallocated; 6381 } else if (s->pauth_active) { 6382 tcg_rd = cpu_reg(s, rd); 6383 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6384 } 6385 break; 6386 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6387 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6388 goto do_unallocated; 6389 } else if (s->pauth_active) { 6390 tcg_rd = cpu_reg(s, rd); 6391 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6392 } 6393 break; 6394 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6395 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6396 goto do_unallocated; 6397 } else if (s->pauth_active) { 6398 tcg_rd = cpu_reg(s, rd); 6399 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6400 } 6401 break; 6402 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6403 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6404 goto do_unallocated; 6405 } else if (s->pauth_active) { 6406 tcg_rd = cpu_reg(s, rd); 6407 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6408 } 6409 break; 6410 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6411 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6412 goto do_unallocated; 6413 } else if (s->pauth_active) { 6414 tcg_rd = cpu_reg(s, rd); 6415 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6416 } 6417 break; 6418 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6419 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6420 goto do_unallocated; 6421 } else if (s->pauth_active) { 6422 tcg_rd = cpu_reg(s, rd); 6423 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6424 } 6425 break; 6426 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6427 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6428 goto do_unallocated; 6429 } else if (s->pauth_active) { 6430 tcg_rd = cpu_reg(s, rd); 6431 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6432 } 6433 break; 6434 case MAP(1, 0x01, 0x10): /* XPACI */ 6435 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6436 goto do_unallocated; 6437 } else if (s->pauth_active) { 6438 tcg_rd = cpu_reg(s, rd); 6439 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6440 } 6441 break; 6442 case MAP(1, 0x01, 0x11): /* XPACD */ 6443 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6444 goto do_unallocated; 6445 } else if (s->pauth_active) { 6446 tcg_rd = cpu_reg(s, rd); 6447 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6448 } 6449 break; 6450 default: 6451 do_unallocated: 6452 unallocated_encoding(s); 6453 break; 6454 } 6455 6456 #undef MAP 6457 } 6458 6459 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6460 unsigned int rm, unsigned int rn, unsigned int rd) 6461 { 6462 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6463 tcg_rd = cpu_reg(s, rd); 6464 6465 if (!sf && is_signed) { 6466 tcg_n = tcg_temp_new_i64(); 6467 tcg_m = tcg_temp_new_i64(); 6468 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6469 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6470 } else { 6471 tcg_n = read_cpu_reg(s, rn, sf); 6472 tcg_m = read_cpu_reg(s, rm, sf); 6473 } 6474 6475 if (is_signed) { 6476 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6477 } else { 6478 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6479 } 6480 6481 if (!sf) { /* zero extend final result */ 6482 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6483 } 6484 } 6485 6486 /* LSLV, LSRV, ASRV, RORV */ 6487 static void handle_shift_reg(DisasContext *s, 6488 enum a64_shift_type shift_type, unsigned int sf, 6489 unsigned int rm, unsigned int rn, unsigned int rd) 6490 { 6491 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6492 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6493 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6494 6495 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6496 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6497 } 6498 6499 /* CRC32[BHWX], CRC32C[BHWX] */ 6500 static void handle_crc32(DisasContext *s, 6501 unsigned int sf, unsigned int sz, bool crc32c, 6502 unsigned int rm, unsigned int rn, unsigned int rd) 6503 { 6504 TCGv_i64 tcg_acc, tcg_val; 6505 TCGv_i32 tcg_bytes; 6506 6507 if (!dc_isar_feature(aa64_crc32, s) 6508 || (sf == 1 && sz != 3) 6509 || (sf == 0 && sz == 3)) { 6510 unallocated_encoding(s); 6511 return; 6512 } 6513 6514 if (sz == 3) { 6515 tcg_val = cpu_reg(s, rm); 6516 } else { 6517 uint64_t mask; 6518 switch (sz) { 6519 case 0: 6520 mask = 0xFF; 6521 break; 6522 case 1: 6523 mask = 0xFFFF; 6524 break; 6525 case 2: 6526 mask = 0xFFFFFFFF; 6527 break; 6528 default: 6529 g_assert_not_reached(); 6530 } 6531 tcg_val = tcg_temp_new_i64(); 6532 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6533 } 6534 6535 tcg_acc = cpu_reg(s, rn); 6536 tcg_bytes = tcg_constant_i32(1 << sz); 6537 6538 if (crc32c) { 6539 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6540 } else { 6541 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6542 } 6543 } 6544 6545 /* Data-processing (2 source) 6546 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6547 * +----+---+---+-----------------+------+--------+------+------+ 6548 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6549 * +----+---+---+-----------------+------+--------+------+------+ 6550 */ 6551 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6552 { 6553 unsigned int sf, rm, opcode, rn, rd, setflag; 6554 sf = extract32(insn, 31, 1); 6555 setflag = extract32(insn, 29, 1); 6556 rm = extract32(insn, 16, 5); 6557 opcode = extract32(insn, 10, 6); 6558 rn = extract32(insn, 5, 5); 6559 rd = extract32(insn, 0, 5); 6560 6561 if (setflag && opcode != 0) { 6562 unallocated_encoding(s); 6563 return; 6564 } 6565 6566 switch (opcode) { 6567 case 0: /* SUBP(S) */ 6568 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6569 goto do_unallocated; 6570 } else { 6571 TCGv_i64 tcg_n, tcg_m, tcg_d; 6572 6573 tcg_n = read_cpu_reg_sp(s, rn, true); 6574 tcg_m = read_cpu_reg_sp(s, rm, true); 6575 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6576 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6577 tcg_d = cpu_reg(s, rd); 6578 6579 if (setflag) { 6580 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6581 } else { 6582 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6583 } 6584 } 6585 break; 6586 case 2: /* UDIV */ 6587 handle_div(s, false, sf, rm, rn, rd); 6588 break; 6589 case 3: /* SDIV */ 6590 handle_div(s, true, sf, rm, rn, rd); 6591 break; 6592 case 4: /* IRG */ 6593 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6594 goto do_unallocated; 6595 } 6596 if (s->ata[0]) { 6597 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6598 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6599 } else { 6600 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6601 cpu_reg_sp(s, rn)); 6602 } 6603 break; 6604 case 5: /* GMI */ 6605 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6606 goto do_unallocated; 6607 } else { 6608 TCGv_i64 t = tcg_temp_new_i64(); 6609 6610 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6611 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6612 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6613 } 6614 break; 6615 case 8: /* LSLV */ 6616 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6617 break; 6618 case 9: /* LSRV */ 6619 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6620 break; 6621 case 10: /* ASRV */ 6622 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6623 break; 6624 case 11: /* RORV */ 6625 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6626 break; 6627 case 12: /* PACGA */ 6628 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6629 goto do_unallocated; 6630 } 6631 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6632 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6633 break; 6634 case 16: 6635 case 17: 6636 case 18: 6637 case 19: 6638 case 20: 6639 case 21: 6640 case 22: 6641 case 23: /* CRC32 */ 6642 { 6643 int sz = extract32(opcode, 0, 2); 6644 bool crc32c = extract32(opcode, 2, 1); 6645 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6646 break; 6647 } 6648 default: 6649 do_unallocated: 6650 unallocated_encoding(s); 6651 break; 6652 } 6653 } 6654 6655 /* 6656 * Data processing - register 6657 * 31 30 29 28 25 21 20 16 10 0 6658 * +--+---+--+---+-------+-----+-------+-------+---------+ 6659 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6660 * +--+---+--+---+-------+-----+-------+-------+---------+ 6661 */ 6662 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6663 { 6664 int op0 = extract32(insn, 30, 1); 6665 int op1 = extract32(insn, 28, 1); 6666 int op2 = extract32(insn, 21, 4); 6667 int op3 = extract32(insn, 10, 6); 6668 6669 if (!op1) { 6670 if (op2 & 8) { 6671 if (op2 & 1) { 6672 /* Add/sub (extended register) */ 6673 disas_add_sub_ext_reg(s, insn); 6674 } else { 6675 /* Add/sub (shifted register) */ 6676 disas_add_sub_reg(s, insn); 6677 } 6678 } else { 6679 /* Logical (shifted register) */ 6680 disas_logic_reg(s, insn); 6681 } 6682 return; 6683 } 6684 6685 switch (op2) { 6686 case 0x0: 6687 switch (op3) { 6688 case 0x00: /* Add/subtract (with carry) */ 6689 disas_adc_sbc(s, insn); 6690 break; 6691 6692 case 0x01: /* Rotate right into flags */ 6693 case 0x21: 6694 disas_rotate_right_into_flags(s, insn); 6695 break; 6696 6697 case 0x02: /* Evaluate into flags */ 6698 case 0x12: 6699 case 0x22: 6700 case 0x32: 6701 disas_evaluate_into_flags(s, insn); 6702 break; 6703 6704 default: 6705 goto do_unallocated; 6706 } 6707 break; 6708 6709 case 0x2: /* Conditional compare */ 6710 disas_cc(s, insn); /* both imm and reg forms */ 6711 break; 6712 6713 case 0x4: /* Conditional select */ 6714 disas_cond_select(s, insn); 6715 break; 6716 6717 case 0x6: /* Data-processing */ 6718 if (op0) { /* (1 source) */ 6719 disas_data_proc_1src(s, insn); 6720 } else { /* (2 source) */ 6721 disas_data_proc_2src(s, insn); 6722 } 6723 break; 6724 case 0x8 ... 0xf: /* (3 source) */ 6725 disas_data_proc_3src(s, insn); 6726 break; 6727 6728 default: 6729 do_unallocated: 6730 unallocated_encoding(s); 6731 break; 6732 } 6733 } 6734 6735 static void handle_fp_compare(DisasContext *s, int size, 6736 unsigned int rn, unsigned int rm, 6737 bool cmp_with_zero, bool signal_all_nans) 6738 { 6739 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6740 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6741 6742 if (size == MO_64) { 6743 TCGv_i64 tcg_vn, tcg_vm; 6744 6745 tcg_vn = read_fp_dreg(s, rn); 6746 if (cmp_with_zero) { 6747 tcg_vm = tcg_constant_i64(0); 6748 } else { 6749 tcg_vm = read_fp_dreg(s, rm); 6750 } 6751 if (signal_all_nans) { 6752 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6753 } else { 6754 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6755 } 6756 } else { 6757 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6758 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6759 6760 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6761 if (cmp_with_zero) { 6762 tcg_gen_movi_i32(tcg_vm, 0); 6763 } else { 6764 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6765 } 6766 6767 switch (size) { 6768 case MO_32: 6769 if (signal_all_nans) { 6770 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6771 } else { 6772 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6773 } 6774 break; 6775 case MO_16: 6776 if (signal_all_nans) { 6777 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6778 } else { 6779 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6780 } 6781 break; 6782 default: 6783 g_assert_not_reached(); 6784 } 6785 } 6786 6787 gen_set_nzcv(tcg_flags); 6788 } 6789 6790 /* Floating point compare 6791 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6792 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6793 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6794 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6795 */ 6796 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6797 { 6798 unsigned int mos, type, rm, op, rn, opc, op2r; 6799 int size; 6800 6801 mos = extract32(insn, 29, 3); 6802 type = extract32(insn, 22, 2); 6803 rm = extract32(insn, 16, 5); 6804 op = extract32(insn, 14, 2); 6805 rn = extract32(insn, 5, 5); 6806 opc = extract32(insn, 3, 2); 6807 op2r = extract32(insn, 0, 3); 6808 6809 if (mos || op || op2r) { 6810 unallocated_encoding(s); 6811 return; 6812 } 6813 6814 switch (type) { 6815 case 0: 6816 size = MO_32; 6817 break; 6818 case 1: 6819 size = MO_64; 6820 break; 6821 case 3: 6822 size = MO_16; 6823 if (dc_isar_feature(aa64_fp16, s)) { 6824 break; 6825 } 6826 /* fallthru */ 6827 default: 6828 unallocated_encoding(s); 6829 return; 6830 } 6831 6832 if (!fp_access_check(s)) { 6833 return; 6834 } 6835 6836 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6837 } 6838 6839 /* Floating point conditional compare 6840 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6841 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6842 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6843 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6844 */ 6845 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6846 { 6847 unsigned int mos, type, rm, cond, rn, op, nzcv; 6848 TCGLabel *label_continue = NULL; 6849 int size; 6850 6851 mos = extract32(insn, 29, 3); 6852 type = extract32(insn, 22, 2); 6853 rm = extract32(insn, 16, 5); 6854 cond = extract32(insn, 12, 4); 6855 rn = extract32(insn, 5, 5); 6856 op = extract32(insn, 4, 1); 6857 nzcv = extract32(insn, 0, 4); 6858 6859 if (mos) { 6860 unallocated_encoding(s); 6861 return; 6862 } 6863 6864 switch (type) { 6865 case 0: 6866 size = MO_32; 6867 break; 6868 case 1: 6869 size = MO_64; 6870 break; 6871 case 3: 6872 size = MO_16; 6873 if (dc_isar_feature(aa64_fp16, s)) { 6874 break; 6875 } 6876 /* fallthru */ 6877 default: 6878 unallocated_encoding(s); 6879 return; 6880 } 6881 6882 if (!fp_access_check(s)) { 6883 return; 6884 } 6885 6886 if (cond < 0x0e) { /* not always */ 6887 TCGLabel *label_match = gen_new_label(); 6888 label_continue = gen_new_label(); 6889 arm_gen_test_cc(cond, label_match); 6890 /* nomatch: */ 6891 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6892 tcg_gen_br(label_continue); 6893 gen_set_label(label_match); 6894 } 6895 6896 handle_fp_compare(s, size, rn, rm, false, op); 6897 6898 if (cond < 0x0e) { 6899 gen_set_label(label_continue); 6900 } 6901 } 6902 6903 /* Floating point conditional select 6904 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6905 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6906 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6907 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6908 */ 6909 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6910 { 6911 unsigned int mos, type, rm, cond, rn, rd; 6912 TCGv_i64 t_true, t_false; 6913 DisasCompare64 c; 6914 MemOp sz; 6915 6916 mos = extract32(insn, 29, 3); 6917 type = extract32(insn, 22, 2); 6918 rm = extract32(insn, 16, 5); 6919 cond = extract32(insn, 12, 4); 6920 rn = extract32(insn, 5, 5); 6921 rd = extract32(insn, 0, 5); 6922 6923 if (mos) { 6924 unallocated_encoding(s); 6925 return; 6926 } 6927 6928 switch (type) { 6929 case 0: 6930 sz = MO_32; 6931 break; 6932 case 1: 6933 sz = MO_64; 6934 break; 6935 case 3: 6936 sz = MO_16; 6937 if (dc_isar_feature(aa64_fp16, s)) { 6938 break; 6939 } 6940 /* fallthru */ 6941 default: 6942 unallocated_encoding(s); 6943 return; 6944 } 6945 6946 if (!fp_access_check(s)) { 6947 return; 6948 } 6949 6950 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6951 t_true = tcg_temp_new_i64(); 6952 t_false = tcg_temp_new_i64(); 6953 read_vec_element(s, t_true, rn, 0, sz); 6954 read_vec_element(s, t_false, rm, 0, sz); 6955 6956 a64_test_cc(&c, cond); 6957 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6958 t_true, t_false); 6959 6960 /* Note that sregs & hregs write back zeros to the high bits, 6961 and we've already done the zero-extension. */ 6962 write_fp_dreg(s, rd, t_true); 6963 } 6964 6965 /* Floating-point data-processing (1 source) - half precision */ 6966 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6967 { 6968 TCGv_ptr fpst = NULL; 6969 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6970 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6971 6972 switch (opcode) { 6973 case 0x0: /* FMOV */ 6974 tcg_gen_mov_i32(tcg_res, tcg_op); 6975 break; 6976 case 0x1: /* FABS */ 6977 gen_vfp_absh(tcg_res, tcg_op); 6978 break; 6979 case 0x2: /* FNEG */ 6980 gen_vfp_negh(tcg_res, tcg_op); 6981 break; 6982 case 0x3: /* FSQRT */ 6983 fpst = fpstatus_ptr(FPST_FPCR_F16); 6984 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6985 break; 6986 case 0x8: /* FRINTN */ 6987 case 0x9: /* FRINTP */ 6988 case 0xa: /* FRINTM */ 6989 case 0xb: /* FRINTZ */ 6990 case 0xc: /* FRINTA */ 6991 { 6992 TCGv_i32 tcg_rmode; 6993 6994 fpst = fpstatus_ptr(FPST_FPCR_F16); 6995 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6996 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6997 gen_restore_rmode(tcg_rmode, fpst); 6998 break; 6999 } 7000 case 0xe: /* FRINTX */ 7001 fpst = fpstatus_ptr(FPST_FPCR_F16); 7002 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 7003 break; 7004 case 0xf: /* FRINTI */ 7005 fpst = fpstatus_ptr(FPST_FPCR_F16); 7006 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7007 break; 7008 default: 7009 g_assert_not_reached(); 7010 } 7011 7012 write_fp_sreg(s, rd, tcg_res); 7013 } 7014 7015 /* Floating-point data-processing (1 source) - single precision */ 7016 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 7017 { 7018 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 7019 TCGv_i32 tcg_op, tcg_res; 7020 TCGv_ptr fpst; 7021 int rmode = -1; 7022 7023 tcg_op = read_fp_sreg(s, rn); 7024 tcg_res = tcg_temp_new_i32(); 7025 7026 switch (opcode) { 7027 case 0x0: /* FMOV */ 7028 tcg_gen_mov_i32(tcg_res, tcg_op); 7029 goto done; 7030 case 0x1: /* FABS */ 7031 gen_vfp_abss(tcg_res, tcg_op); 7032 goto done; 7033 case 0x2: /* FNEG */ 7034 gen_vfp_negs(tcg_res, tcg_op); 7035 goto done; 7036 case 0x3: /* FSQRT */ 7037 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 7038 goto done; 7039 case 0x6: /* BFCVT */ 7040 gen_fpst = gen_helper_bfcvt; 7041 break; 7042 case 0x8: /* FRINTN */ 7043 case 0x9: /* FRINTP */ 7044 case 0xa: /* FRINTM */ 7045 case 0xb: /* FRINTZ */ 7046 case 0xc: /* FRINTA */ 7047 rmode = opcode & 7; 7048 gen_fpst = gen_helper_rints; 7049 break; 7050 case 0xe: /* FRINTX */ 7051 gen_fpst = gen_helper_rints_exact; 7052 break; 7053 case 0xf: /* FRINTI */ 7054 gen_fpst = gen_helper_rints; 7055 break; 7056 case 0x10: /* FRINT32Z */ 7057 rmode = FPROUNDING_ZERO; 7058 gen_fpst = gen_helper_frint32_s; 7059 break; 7060 case 0x11: /* FRINT32X */ 7061 gen_fpst = gen_helper_frint32_s; 7062 break; 7063 case 0x12: /* FRINT64Z */ 7064 rmode = FPROUNDING_ZERO; 7065 gen_fpst = gen_helper_frint64_s; 7066 break; 7067 case 0x13: /* FRINT64X */ 7068 gen_fpst = gen_helper_frint64_s; 7069 break; 7070 default: 7071 g_assert_not_reached(); 7072 } 7073 7074 fpst = fpstatus_ptr(FPST_FPCR); 7075 if (rmode >= 0) { 7076 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7077 gen_fpst(tcg_res, tcg_op, fpst); 7078 gen_restore_rmode(tcg_rmode, fpst); 7079 } else { 7080 gen_fpst(tcg_res, tcg_op, fpst); 7081 } 7082 7083 done: 7084 write_fp_sreg(s, rd, tcg_res); 7085 } 7086 7087 /* Floating-point data-processing (1 source) - double precision */ 7088 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 7089 { 7090 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 7091 TCGv_i64 tcg_op, tcg_res; 7092 TCGv_ptr fpst; 7093 int rmode = -1; 7094 7095 switch (opcode) { 7096 case 0x0: /* FMOV */ 7097 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 7098 return; 7099 } 7100 7101 tcg_op = read_fp_dreg(s, rn); 7102 tcg_res = tcg_temp_new_i64(); 7103 7104 switch (opcode) { 7105 case 0x1: /* FABS */ 7106 gen_vfp_absd(tcg_res, tcg_op); 7107 goto done; 7108 case 0x2: /* FNEG */ 7109 gen_vfp_negd(tcg_res, tcg_op); 7110 goto done; 7111 case 0x3: /* FSQRT */ 7112 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 7113 goto done; 7114 case 0x8: /* FRINTN */ 7115 case 0x9: /* FRINTP */ 7116 case 0xa: /* FRINTM */ 7117 case 0xb: /* FRINTZ */ 7118 case 0xc: /* FRINTA */ 7119 rmode = opcode & 7; 7120 gen_fpst = gen_helper_rintd; 7121 break; 7122 case 0xe: /* FRINTX */ 7123 gen_fpst = gen_helper_rintd_exact; 7124 break; 7125 case 0xf: /* FRINTI */ 7126 gen_fpst = gen_helper_rintd; 7127 break; 7128 case 0x10: /* FRINT32Z */ 7129 rmode = FPROUNDING_ZERO; 7130 gen_fpst = gen_helper_frint32_d; 7131 break; 7132 case 0x11: /* FRINT32X */ 7133 gen_fpst = gen_helper_frint32_d; 7134 break; 7135 case 0x12: /* FRINT64Z */ 7136 rmode = FPROUNDING_ZERO; 7137 gen_fpst = gen_helper_frint64_d; 7138 break; 7139 case 0x13: /* FRINT64X */ 7140 gen_fpst = gen_helper_frint64_d; 7141 break; 7142 default: 7143 g_assert_not_reached(); 7144 } 7145 7146 fpst = fpstatus_ptr(FPST_FPCR); 7147 if (rmode >= 0) { 7148 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7149 gen_fpst(tcg_res, tcg_op, fpst); 7150 gen_restore_rmode(tcg_rmode, fpst); 7151 } else { 7152 gen_fpst(tcg_res, tcg_op, fpst); 7153 } 7154 7155 done: 7156 write_fp_dreg(s, rd, tcg_res); 7157 } 7158 7159 static void handle_fp_fcvt(DisasContext *s, int opcode, 7160 int rd, int rn, int dtype, int ntype) 7161 { 7162 switch (ntype) { 7163 case 0x0: 7164 { 7165 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7166 if (dtype == 1) { 7167 /* Single to double */ 7168 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7169 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7170 write_fp_dreg(s, rd, tcg_rd); 7171 } else { 7172 /* Single to half */ 7173 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7174 TCGv_i32 ahp = get_ahp_flag(); 7175 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7176 7177 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7178 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7179 write_fp_sreg(s, rd, tcg_rd); 7180 } 7181 break; 7182 } 7183 case 0x1: 7184 { 7185 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7186 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7187 if (dtype == 0) { 7188 /* Double to single */ 7189 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7190 } else { 7191 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7192 TCGv_i32 ahp = get_ahp_flag(); 7193 /* Double to half */ 7194 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7195 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7196 } 7197 write_fp_sreg(s, rd, tcg_rd); 7198 break; 7199 } 7200 case 0x3: 7201 { 7202 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7203 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7204 TCGv_i32 tcg_ahp = get_ahp_flag(); 7205 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7206 if (dtype == 0) { 7207 /* Half to single */ 7208 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7209 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7210 write_fp_sreg(s, rd, tcg_rd); 7211 } else { 7212 /* Half to double */ 7213 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7214 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7215 write_fp_dreg(s, rd, tcg_rd); 7216 } 7217 break; 7218 } 7219 default: 7220 g_assert_not_reached(); 7221 } 7222 } 7223 7224 /* Floating point data-processing (1 source) 7225 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7226 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7227 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7228 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7229 */ 7230 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7231 { 7232 int mos = extract32(insn, 29, 3); 7233 int type = extract32(insn, 22, 2); 7234 int opcode = extract32(insn, 15, 6); 7235 int rn = extract32(insn, 5, 5); 7236 int rd = extract32(insn, 0, 5); 7237 7238 if (mos) { 7239 goto do_unallocated; 7240 } 7241 7242 switch (opcode) { 7243 case 0x4: case 0x5: case 0x7: 7244 { 7245 /* FCVT between half, single and double precision */ 7246 int dtype = extract32(opcode, 0, 2); 7247 if (type == 2 || dtype == type) { 7248 goto do_unallocated; 7249 } 7250 if (!fp_access_check(s)) { 7251 return; 7252 } 7253 7254 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7255 break; 7256 } 7257 7258 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7259 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7260 goto do_unallocated; 7261 } 7262 /* fall through */ 7263 case 0x0 ... 0x3: 7264 case 0x8 ... 0xc: 7265 case 0xe ... 0xf: 7266 /* 32-to-32 and 64-to-64 ops */ 7267 switch (type) { 7268 case 0: 7269 if (!fp_access_check(s)) { 7270 return; 7271 } 7272 handle_fp_1src_single(s, opcode, rd, rn); 7273 break; 7274 case 1: 7275 if (!fp_access_check(s)) { 7276 return; 7277 } 7278 handle_fp_1src_double(s, opcode, rd, rn); 7279 break; 7280 case 3: 7281 if (!dc_isar_feature(aa64_fp16, s)) { 7282 goto do_unallocated; 7283 } 7284 7285 if (!fp_access_check(s)) { 7286 return; 7287 } 7288 handle_fp_1src_half(s, opcode, rd, rn); 7289 break; 7290 default: 7291 goto do_unallocated; 7292 } 7293 break; 7294 7295 case 0x6: 7296 switch (type) { 7297 case 1: /* BFCVT */ 7298 if (!dc_isar_feature(aa64_bf16, s)) { 7299 goto do_unallocated; 7300 } 7301 if (!fp_access_check(s)) { 7302 return; 7303 } 7304 handle_fp_1src_single(s, opcode, rd, rn); 7305 break; 7306 default: 7307 goto do_unallocated; 7308 } 7309 break; 7310 7311 default: 7312 do_unallocated: 7313 unallocated_encoding(s); 7314 break; 7315 } 7316 } 7317 7318 /* Floating-point data-processing (3 source) - single precision */ 7319 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7320 int rd, int rn, int rm, int ra) 7321 { 7322 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7323 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7324 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7325 7326 tcg_op1 = read_fp_sreg(s, rn); 7327 tcg_op2 = read_fp_sreg(s, rm); 7328 tcg_op3 = read_fp_sreg(s, ra); 7329 7330 /* These are fused multiply-add, and must be done as one 7331 * floating point operation with no rounding between the 7332 * multiplication and addition steps. 7333 * NB that doing the negations here as separate steps is 7334 * correct : an input NaN should come out with its sign bit 7335 * flipped if it is a negated-input. 7336 */ 7337 if (o1 == true) { 7338 gen_vfp_negs(tcg_op3, tcg_op3); 7339 } 7340 7341 if (o0 != o1) { 7342 gen_vfp_negs(tcg_op1, tcg_op1); 7343 } 7344 7345 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7346 7347 write_fp_sreg(s, rd, tcg_res); 7348 } 7349 7350 /* Floating-point data-processing (3 source) - double precision */ 7351 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7352 int rd, int rn, int rm, int ra) 7353 { 7354 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7355 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7356 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7357 7358 tcg_op1 = read_fp_dreg(s, rn); 7359 tcg_op2 = read_fp_dreg(s, rm); 7360 tcg_op3 = read_fp_dreg(s, ra); 7361 7362 /* These are fused multiply-add, and must be done as one 7363 * floating point operation with no rounding between the 7364 * multiplication and addition steps. 7365 * NB that doing the negations here as separate steps is 7366 * correct : an input NaN should come out with its sign bit 7367 * flipped if it is a negated-input. 7368 */ 7369 if (o1 == true) { 7370 gen_vfp_negd(tcg_op3, tcg_op3); 7371 } 7372 7373 if (o0 != o1) { 7374 gen_vfp_negd(tcg_op1, tcg_op1); 7375 } 7376 7377 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7378 7379 write_fp_dreg(s, rd, tcg_res); 7380 } 7381 7382 /* Floating-point data-processing (3 source) - half precision */ 7383 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7384 int rd, int rn, int rm, int ra) 7385 { 7386 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7387 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7388 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7389 7390 tcg_op1 = read_fp_hreg(s, rn); 7391 tcg_op2 = read_fp_hreg(s, rm); 7392 tcg_op3 = read_fp_hreg(s, ra); 7393 7394 /* These are fused multiply-add, and must be done as one 7395 * floating point operation with no rounding between the 7396 * multiplication and addition steps. 7397 * NB that doing the negations here as separate steps is 7398 * correct : an input NaN should come out with its sign bit 7399 * flipped if it is a negated-input. 7400 */ 7401 if (o1 == true) { 7402 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7403 } 7404 7405 if (o0 != o1) { 7406 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7407 } 7408 7409 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7410 7411 write_fp_sreg(s, rd, tcg_res); 7412 } 7413 7414 /* Floating point data-processing (3 source) 7415 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7416 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7417 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7418 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7419 */ 7420 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7421 { 7422 int mos = extract32(insn, 29, 3); 7423 int type = extract32(insn, 22, 2); 7424 int rd = extract32(insn, 0, 5); 7425 int rn = extract32(insn, 5, 5); 7426 int ra = extract32(insn, 10, 5); 7427 int rm = extract32(insn, 16, 5); 7428 bool o0 = extract32(insn, 15, 1); 7429 bool o1 = extract32(insn, 21, 1); 7430 7431 if (mos) { 7432 unallocated_encoding(s); 7433 return; 7434 } 7435 7436 switch (type) { 7437 case 0: 7438 if (!fp_access_check(s)) { 7439 return; 7440 } 7441 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7442 break; 7443 case 1: 7444 if (!fp_access_check(s)) { 7445 return; 7446 } 7447 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7448 break; 7449 case 3: 7450 if (!dc_isar_feature(aa64_fp16, s)) { 7451 unallocated_encoding(s); 7452 return; 7453 } 7454 if (!fp_access_check(s)) { 7455 return; 7456 } 7457 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7458 break; 7459 default: 7460 unallocated_encoding(s); 7461 } 7462 } 7463 7464 /* Floating point immediate 7465 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7466 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7467 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7468 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7469 */ 7470 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7471 { 7472 int rd = extract32(insn, 0, 5); 7473 int imm5 = extract32(insn, 5, 5); 7474 int imm8 = extract32(insn, 13, 8); 7475 int type = extract32(insn, 22, 2); 7476 int mos = extract32(insn, 29, 3); 7477 uint64_t imm; 7478 MemOp sz; 7479 7480 if (mos || imm5) { 7481 unallocated_encoding(s); 7482 return; 7483 } 7484 7485 switch (type) { 7486 case 0: 7487 sz = MO_32; 7488 break; 7489 case 1: 7490 sz = MO_64; 7491 break; 7492 case 3: 7493 sz = MO_16; 7494 if (dc_isar_feature(aa64_fp16, s)) { 7495 break; 7496 } 7497 /* fallthru */ 7498 default: 7499 unallocated_encoding(s); 7500 return; 7501 } 7502 7503 if (!fp_access_check(s)) { 7504 return; 7505 } 7506 7507 imm = vfp_expand_imm(sz, imm8); 7508 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7509 } 7510 7511 /* Handle floating point <=> fixed point conversions. Note that we can 7512 * also deal with fp <=> integer conversions as a special case (scale == 64) 7513 * OPTME: consider handling that special case specially or at least skipping 7514 * the call to scalbn in the helpers for zero shifts. 7515 */ 7516 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7517 bool itof, int rmode, int scale, int sf, int type) 7518 { 7519 bool is_signed = !(opcode & 1); 7520 TCGv_ptr tcg_fpstatus; 7521 TCGv_i32 tcg_shift, tcg_single; 7522 TCGv_i64 tcg_double; 7523 7524 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7525 7526 tcg_shift = tcg_constant_i32(64 - scale); 7527 7528 if (itof) { 7529 TCGv_i64 tcg_int = cpu_reg(s, rn); 7530 if (!sf) { 7531 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7532 7533 if (is_signed) { 7534 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7535 } else { 7536 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7537 } 7538 7539 tcg_int = tcg_extend; 7540 } 7541 7542 switch (type) { 7543 case 1: /* float64 */ 7544 tcg_double = tcg_temp_new_i64(); 7545 if (is_signed) { 7546 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7547 tcg_shift, tcg_fpstatus); 7548 } else { 7549 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7550 tcg_shift, tcg_fpstatus); 7551 } 7552 write_fp_dreg(s, rd, tcg_double); 7553 break; 7554 7555 case 0: /* float32 */ 7556 tcg_single = tcg_temp_new_i32(); 7557 if (is_signed) { 7558 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7559 tcg_shift, tcg_fpstatus); 7560 } else { 7561 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7562 tcg_shift, tcg_fpstatus); 7563 } 7564 write_fp_sreg(s, rd, tcg_single); 7565 break; 7566 7567 case 3: /* float16 */ 7568 tcg_single = tcg_temp_new_i32(); 7569 if (is_signed) { 7570 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7571 tcg_shift, tcg_fpstatus); 7572 } else { 7573 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7574 tcg_shift, tcg_fpstatus); 7575 } 7576 write_fp_sreg(s, rd, tcg_single); 7577 break; 7578 7579 default: 7580 g_assert_not_reached(); 7581 } 7582 } else { 7583 TCGv_i64 tcg_int = cpu_reg(s, rd); 7584 TCGv_i32 tcg_rmode; 7585 7586 if (extract32(opcode, 2, 1)) { 7587 /* There are too many rounding modes to all fit into rmode, 7588 * so FCVTA[US] is a special case. 7589 */ 7590 rmode = FPROUNDING_TIEAWAY; 7591 } 7592 7593 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7594 7595 switch (type) { 7596 case 1: /* float64 */ 7597 tcg_double = read_fp_dreg(s, rn); 7598 if (is_signed) { 7599 if (!sf) { 7600 gen_helper_vfp_tosld(tcg_int, tcg_double, 7601 tcg_shift, tcg_fpstatus); 7602 } else { 7603 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7604 tcg_shift, tcg_fpstatus); 7605 } 7606 } else { 7607 if (!sf) { 7608 gen_helper_vfp_tould(tcg_int, tcg_double, 7609 tcg_shift, tcg_fpstatus); 7610 } else { 7611 gen_helper_vfp_touqd(tcg_int, tcg_double, 7612 tcg_shift, tcg_fpstatus); 7613 } 7614 } 7615 if (!sf) { 7616 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7617 } 7618 break; 7619 7620 case 0: /* float32 */ 7621 tcg_single = read_fp_sreg(s, rn); 7622 if (sf) { 7623 if (is_signed) { 7624 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7625 tcg_shift, tcg_fpstatus); 7626 } else { 7627 gen_helper_vfp_touqs(tcg_int, tcg_single, 7628 tcg_shift, tcg_fpstatus); 7629 } 7630 } else { 7631 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7632 if (is_signed) { 7633 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7634 tcg_shift, tcg_fpstatus); 7635 } else { 7636 gen_helper_vfp_touls(tcg_dest, tcg_single, 7637 tcg_shift, tcg_fpstatus); 7638 } 7639 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7640 } 7641 break; 7642 7643 case 3: /* float16 */ 7644 tcg_single = read_fp_sreg(s, rn); 7645 if (sf) { 7646 if (is_signed) { 7647 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7648 tcg_shift, tcg_fpstatus); 7649 } else { 7650 gen_helper_vfp_touqh(tcg_int, tcg_single, 7651 tcg_shift, tcg_fpstatus); 7652 } 7653 } else { 7654 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7655 if (is_signed) { 7656 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7657 tcg_shift, tcg_fpstatus); 7658 } else { 7659 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7660 tcg_shift, tcg_fpstatus); 7661 } 7662 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7663 } 7664 break; 7665 7666 default: 7667 g_assert_not_reached(); 7668 } 7669 7670 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7671 } 7672 } 7673 7674 /* Floating point <-> fixed point conversions 7675 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7676 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7677 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7678 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7679 */ 7680 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7681 { 7682 int rd = extract32(insn, 0, 5); 7683 int rn = extract32(insn, 5, 5); 7684 int scale = extract32(insn, 10, 6); 7685 int opcode = extract32(insn, 16, 3); 7686 int rmode = extract32(insn, 19, 2); 7687 int type = extract32(insn, 22, 2); 7688 bool sbit = extract32(insn, 29, 1); 7689 bool sf = extract32(insn, 31, 1); 7690 bool itof; 7691 7692 if (sbit || (!sf && scale < 32)) { 7693 unallocated_encoding(s); 7694 return; 7695 } 7696 7697 switch (type) { 7698 case 0: /* float32 */ 7699 case 1: /* float64 */ 7700 break; 7701 case 3: /* float16 */ 7702 if (dc_isar_feature(aa64_fp16, s)) { 7703 break; 7704 } 7705 /* fallthru */ 7706 default: 7707 unallocated_encoding(s); 7708 return; 7709 } 7710 7711 switch ((rmode << 3) | opcode) { 7712 case 0x2: /* SCVTF */ 7713 case 0x3: /* UCVTF */ 7714 itof = true; 7715 break; 7716 case 0x18: /* FCVTZS */ 7717 case 0x19: /* FCVTZU */ 7718 itof = false; 7719 break; 7720 default: 7721 unallocated_encoding(s); 7722 return; 7723 } 7724 7725 if (!fp_access_check(s)) { 7726 return; 7727 } 7728 7729 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7730 } 7731 7732 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7733 { 7734 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7735 * without conversion. 7736 */ 7737 7738 if (itof) { 7739 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7740 TCGv_i64 tmp; 7741 7742 switch (type) { 7743 case 0: 7744 /* 32 bit */ 7745 tmp = tcg_temp_new_i64(); 7746 tcg_gen_ext32u_i64(tmp, tcg_rn); 7747 write_fp_dreg(s, rd, tmp); 7748 break; 7749 case 1: 7750 /* 64 bit */ 7751 write_fp_dreg(s, rd, tcg_rn); 7752 break; 7753 case 2: 7754 /* 64 bit to top half. */ 7755 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7756 clear_vec_high(s, true, rd); 7757 break; 7758 case 3: 7759 /* 16 bit */ 7760 tmp = tcg_temp_new_i64(); 7761 tcg_gen_ext16u_i64(tmp, tcg_rn); 7762 write_fp_dreg(s, rd, tmp); 7763 break; 7764 default: 7765 g_assert_not_reached(); 7766 } 7767 } else { 7768 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7769 7770 switch (type) { 7771 case 0: 7772 /* 32 bit */ 7773 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7774 break; 7775 case 1: 7776 /* 64 bit */ 7777 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7778 break; 7779 case 2: 7780 /* 64 bits from top half */ 7781 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7782 break; 7783 case 3: 7784 /* 16 bit */ 7785 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7786 break; 7787 default: 7788 g_assert_not_reached(); 7789 } 7790 } 7791 } 7792 7793 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7794 { 7795 TCGv_i64 t = read_fp_dreg(s, rn); 7796 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7797 7798 gen_helper_fjcvtzs(t, t, fpstatus); 7799 7800 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7801 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7802 tcg_gen_movi_i32(cpu_CF, 0); 7803 tcg_gen_movi_i32(cpu_NF, 0); 7804 tcg_gen_movi_i32(cpu_VF, 0); 7805 } 7806 7807 /* Floating point <-> integer conversions 7808 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7809 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7810 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7811 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7812 */ 7813 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7814 { 7815 int rd = extract32(insn, 0, 5); 7816 int rn = extract32(insn, 5, 5); 7817 int opcode = extract32(insn, 16, 3); 7818 int rmode = extract32(insn, 19, 2); 7819 int type = extract32(insn, 22, 2); 7820 bool sbit = extract32(insn, 29, 1); 7821 bool sf = extract32(insn, 31, 1); 7822 bool itof = false; 7823 7824 if (sbit) { 7825 goto do_unallocated; 7826 } 7827 7828 switch (opcode) { 7829 case 2: /* SCVTF */ 7830 case 3: /* UCVTF */ 7831 itof = true; 7832 /* fallthru */ 7833 case 4: /* FCVTAS */ 7834 case 5: /* FCVTAU */ 7835 if (rmode != 0) { 7836 goto do_unallocated; 7837 } 7838 /* fallthru */ 7839 case 0: /* FCVT[NPMZ]S */ 7840 case 1: /* FCVT[NPMZ]U */ 7841 switch (type) { 7842 case 0: /* float32 */ 7843 case 1: /* float64 */ 7844 break; 7845 case 3: /* float16 */ 7846 if (!dc_isar_feature(aa64_fp16, s)) { 7847 goto do_unallocated; 7848 } 7849 break; 7850 default: 7851 goto do_unallocated; 7852 } 7853 if (!fp_access_check(s)) { 7854 return; 7855 } 7856 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7857 break; 7858 7859 default: 7860 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7861 case 0b01100110: /* FMOV half <-> 32-bit int */ 7862 case 0b01100111: 7863 case 0b11100110: /* FMOV half <-> 64-bit int */ 7864 case 0b11100111: 7865 if (!dc_isar_feature(aa64_fp16, s)) { 7866 goto do_unallocated; 7867 } 7868 /* fallthru */ 7869 case 0b00000110: /* FMOV 32-bit */ 7870 case 0b00000111: 7871 case 0b10100110: /* FMOV 64-bit */ 7872 case 0b10100111: 7873 case 0b11001110: /* FMOV top half of 128-bit */ 7874 case 0b11001111: 7875 if (!fp_access_check(s)) { 7876 return; 7877 } 7878 itof = opcode & 1; 7879 handle_fmov(s, rd, rn, type, itof); 7880 break; 7881 7882 case 0b00111110: /* FJCVTZS */ 7883 if (!dc_isar_feature(aa64_jscvt, s)) { 7884 goto do_unallocated; 7885 } else if (fp_access_check(s)) { 7886 handle_fjcvtzs(s, rd, rn); 7887 } 7888 break; 7889 7890 default: 7891 do_unallocated: 7892 unallocated_encoding(s); 7893 return; 7894 } 7895 break; 7896 } 7897 } 7898 7899 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7900 * 31 30 29 28 25 24 0 7901 * +---+---+---+---------+-----------------------------+ 7902 * | | 0 | | 1 1 1 1 | | 7903 * +---+---+---+---------+-----------------------------+ 7904 */ 7905 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7906 { 7907 if (extract32(insn, 24, 1)) { 7908 /* Floating point data-processing (3 source) */ 7909 disas_fp_3src(s, insn); 7910 } else if (extract32(insn, 21, 1) == 0) { 7911 /* Floating point to fixed point conversions */ 7912 disas_fp_fixed_conv(s, insn); 7913 } else { 7914 switch (extract32(insn, 10, 2)) { 7915 case 1: 7916 /* Floating point conditional compare */ 7917 disas_fp_ccomp(s, insn); 7918 break; 7919 case 2: 7920 /* Floating point data-processing (2 source) */ 7921 unallocated_encoding(s); /* in decodetree */ 7922 break; 7923 case 3: 7924 /* Floating point conditional select */ 7925 disas_fp_csel(s, insn); 7926 break; 7927 case 0: 7928 switch (ctz32(extract32(insn, 12, 4))) { 7929 case 0: /* [15:12] == xxx1 */ 7930 /* Floating point immediate */ 7931 disas_fp_imm(s, insn); 7932 break; 7933 case 1: /* [15:12] == xx10 */ 7934 /* Floating point compare */ 7935 disas_fp_compare(s, insn); 7936 break; 7937 case 2: /* [15:12] == x100 */ 7938 /* Floating point data-processing (1 source) */ 7939 disas_fp_1src(s, insn); 7940 break; 7941 case 3: /* [15:12] == 1000 */ 7942 unallocated_encoding(s); 7943 break; 7944 default: /* [15:12] == 0000 */ 7945 /* Floating point <-> integer conversions */ 7946 disas_fp_int_conv(s, insn); 7947 break; 7948 } 7949 break; 7950 } 7951 } 7952 } 7953 7954 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7955 int pos) 7956 { 7957 /* Extract 64 bits from the middle of two concatenated 64 bit 7958 * vector register slices left:right. The extracted bits start 7959 * at 'pos' bits into the right (least significant) side. 7960 * We return the result in tcg_right, and guarantee not to 7961 * trash tcg_left. 7962 */ 7963 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7964 assert(pos > 0 && pos < 64); 7965 7966 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7967 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7968 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7969 } 7970 7971 /* EXT 7972 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7973 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7974 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7975 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7976 */ 7977 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7978 { 7979 int is_q = extract32(insn, 30, 1); 7980 int op2 = extract32(insn, 22, 2); 7981 int imm4 = extract32(insn, 11, 4); 7982 int rm = extract32(insn, 16, 5); 7983 int rn = extract32(insn, 5, 5); 7984 int rd = extract32(insn, 0, 5); 7985 int pos = imm4 << 3; 7986 TCGv_i64 tcg_resl, tcg_resh; 7987 7988 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7989 unallocated_encoding(s); 7990 return; 7991 } 7992 7993 if (!fp_access_check(s)) { 7994 return; 7995 } 7996 7997 tcg_resh = tcg_temp_new_i64(); 7998 tcg_resl = tcg_temp_new_i64(); 7999 8000 /* Vd gets bits starting at pos bits into Vm:Vn. This is 8001 * either extracting 128 bits from a 128:128 concatenation, or 8002 * extracting 64 bits from a 64:64 concatenation. 8003 */ 8004 if (!is_q) { 8005 read_vec_element(s, tcg_resl, rn, 0, MO_64); 8006 if (pos != 0) { 8007 read_vec_element(s, tcg_resh, rm, 0, MO_64); 8008 do_ext64(s, tcg_resh, tcg_resl, pos); 8009 } 8010 } else { 8011 TCGv_i64 tcg_hh; 8012 typedef struct { 8013 int reg; 8014 int elt; 8015 } EltPosns; 8016 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 8017 EltPosns *elt = eltposns; 8018 8019 if (pos >= 64) { 8020 elt++; 8021 pos -= 64; 8022 } 8023 8024 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 8025 elt++; 8026 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 8027 elt++; 8028 if (pos != 0) { 8029 do_ext64(s, tcg_resh, tcg_resl, pos); 8030 tcg_hh = tcg_temp_new_i64(); 8031 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8032 do_ext64(s, tcg_hh, tcg_resh, pos); 8033 } 8034 } 8035 8036 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8037 if (is_q) { 8038 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8039 } 8040 clear_vec_high(s, is_q, rd); 8041 } 8042 8043 /* TBL/TBX 8044 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8045 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8046 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8047 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8048 */ 8049 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8050 { 8051 int op2 = extract32(insn, 22, 2); 8052 int is_q = extract32(insn, 30, 1); 8053 int rm = extract32(insn, 16, 5); 8054 int rn = extract32(insn, 5, 5); 8055 int rd = extract32(insn, 0, 5); 8056 int is_tbx = extract32(insn, 12, 1); 8057 int len = (extract32(insn, 13, 2) + 1) * 16; 8058 8059 if (op2 != 0) { 8060 unallocated_encoding(s); 8061 return; 8062 } 8063 8064 if (!fp_access_check(s)) { 8065 return; 8066 } 8067 8068 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8069 vec_full_reg_offset(s, rm), tcg_env, 8070 is_q ? 16 : 8, vec_full_reg_size(s), 8071 (len << 6) | (is_tbx << 5) | rn, 8072 gen_helper_simd_tblx); 8073 } 8074 8075 /* ZIP/UZP/TRN 8076 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8077 * +---+---+-------------+------+---+------+---+------------------+------+ 8078 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8079 * +---+---+-------------+------+---+------+---+------------------+------+ 8080 */ 8081 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8082 { 8083 int rd = extract32(insn, 0, 5); 8084 int rn = extract32(insn, 5, 5); 8085 int rm = extract32(insn, 16, 5); 8086 int size = extract32(insn, 22, 2); 8087 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8088 * bit 2 indicates 1 vs 2 variant of the insn. 8089 */ 8090 int opcode = extract32(insn, 12, 2); 8091 bool part = extract32(insn, 14, 1); 8092 bool is_q = extract32(insn, 30, 1); 8093 int esize = 8 << size; 8094 int i; 8095 int datasize = is_q ? 128 : 64; 8096 int elements = datasize / esize; 8097 TCGv_i64 tcg_res[2], tcg_ele; 8098 8099 if (opcode == 0 || (size == 3 && !is_q)) { 8100 unallocated_encoding(s); 8101 return; 8102 } 8103 8104 if (!fp_access_check(s)) { 8105 return; 8106 } 8107 8108 tcg_res[0] = tcg_temp_new_i64(); 8109 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 8110 tcg_ele = tcg_temp_new_i64(); 8111 8112 for (i = 0; i < elements; i++) { 8113 int o, w; 8114 8115 switch (opcode) { 8116 case 1: /* UZP1/2 */ 8117 { 8118 int midpoint = elements / 2; 8119 if (i < midpoint) { 8120 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8121 } else { 8122 read_vec_element(s, tcg_ele, rm, 8123 2 * (i - midpoint) + part, size); 8124 } 8125 break; 8126 } 8127 case 2: /* TRN1/2 */ 8128 if (i & 1) { 8129 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8130 } else { 8131 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8132 } 8133 break; 8134 case 3: /* ZIP1/2 */ 8135 { 8136 int base = part * elements / 2; 8137 if (i & 1) { 8138 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8139 } else { 8140 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8141 } 8142 break; 8143 } 8144 default: 8145 g_assert_not_reached(); 8146 } 8147 8148 w = (i * esize) / 64; 8149 o = (i * esize) % 64; 8150 if (o == 0) { 8151 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8152 } else { 8153 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8154 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8155 } 8156 } 8157 8158 for (i = 0; i <= is_q; ++i) { 8159 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8160 } 8161 clear_vec_high(s, is_q, rd); 8162 } 8163 8164 /* 8165 * do_reduction_op helper 8166 * 8167 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8168 * important for correct NaN propagation that we do these 8169 * operations in exactly the order specified by the pseudocode. 8170 * 8171 * This is a recursive function, TCG temps should be freed by the 8172 * calling function once it is done with the values. 8173 */ 8174 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8175 int esize, int size, int vmap, TCGv_ptr fpst) 8176 { 8177 if (esize == size) { 8178 int element; 8179 MemOp msize = esize == 16 ? MO_16 : MO_32; 8180 TCGv_i32 tcg_elem; 8181 8182 /* We should have one register left here */ 8183 assert(ctpop8(vmap) == 1); 8184 element = ctz32(vmap); 8185 assert(element < 8); 8186 8187 tcg_elem = tcg_temp_new_i32(); 8188 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8189 return tcg_elem; 8190 } else { 8191 int bits = size / 2; 8192 int shift = ctpop8(vmap) / 2; 8193 int vmap_lo = (vmap >> shift) & vmap; 8194 int vmap_hi = (vmap & ~vmap_lo); 8195 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8196 8197 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8198 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8199 tcg_res = tcg_temp_new_i32(); 8200 8201 switch (fpopcode) { 8202 case 0x0c: /* fmaxnmv half-precision */ 8203 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8204 break; 8205 case 0x0f: /* fmaxv half-precision */ 8206 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8207 break; 8208 case 0x1c: /* fminnmv half-precision */ 8209 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8210 break; 8211 case 0x1f: /* fminv half-precision */ 8212 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8213 break; 8214 case 0x2c: /* fmaxnmv */ 8215 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8216 break; 8217 case 0x2f: /* fmaxv */ 8218 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8219 break; 8220 case 0x3c: /* fminnmv */ 8221 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8222 break; 8223 case 0x3f: /* fminv */ 8224 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8225 break; 8226 default: 8227 g_assert_not_reached(); 8228 } 8229 return tcg_res; 8230 } 8231 } 8232 8233 /* AdvSIMD across lanes 8234 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8235 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8236 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8237 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8238 */ 8239 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8240 { 8241 int rd = extract32(insn, 0, 5); 8242 int rn = extract32(insn, 5, 5); 8243 int size = extract32(insn, 22, 2); 8244 int opcode = extract32(insn, 12, 5); 8245 bool is_q = extract32(insn, 30, 1); 8246 bool is_u = extract32(insn, 29, 1); 8247 bool is_fp = false; 8248 bool is_min = false; 8249 int esize; 8250 int elements; 8251 int i; 8252 TCGv_i64 tcg_res, tcg_elt; 8253 8254 switch (opcode) { 8255 case 0x1b: /* ADDV */ 8256 if (is_u) { 8257 unallocated_encoding(s); 8258 return; 8259 } 8260 /* fall through */ 8261 case 0x3: /* SADDLV, UADDLV */ 8262 case 0xa: /* SMAXV, UMAXV */ 8263 case 0x1a: /* SMINV, UMINV */ 8264 if (size == 3 || (size == 2 && !is_q)) { 8265 unallocated_encoding(s); 8266 return; 8267 } 8268 break; 8269 case 0xc: /* FMAXNMV, FMINNMV */ 8270 case 0xf: /* FMAXV, FMINV */ 8271 /* Bit 1 of size field encodes min vs max and the actual size 8272 * depends on the encoding of the U bit. If not set (and FP16 8273 * enabled) then we do half-precision float instead of single 8274 * precision. 8275 */ 8276 is_min = extract32(size, 1, 1); 8277 is_fp = true; 8278 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8279 size = 1; 8280 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8281 unallocated_encoding(s); 8282 return; 8283 } else { 8284 size = 2; 8285 } 8286 break; 8287 default: 8288 unallocated_encoding(s); 8289 return; 8290 } 8291 8292 if (!fp_access_check(s)) { 8293 return; 8294 } 8295 8296 esize = 8 << size; 8297 elements = (is_q ? 128 : 64) / esize; 8298 8299 tcg_res = tcg_temp_new_i64(); 8300 tcg_elt = tcg_temp_new_i64(); 8301 8302 /* These instructions operate across all lanes of a vector 8303 * to produce a single result. We can guarantee that a 64 8304 * bit intermediate is sufficient: 8305 * + for [US]ADDLV the maximum element size is 32 bits, and 8306 * the result type is 64 bits 8307 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8308 * same as the element size, which is 32 bits at most 8309 * For the integer operations we can choose to work at 64 8310 * or 32 bits and truncate at the end; for simplicity 8311 * we use 64 bits always. The floating point 8312 * ops do require 32 bit intermediates, though. 8313 */ 8314 if (!is_fp) { 8315 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8316 8317 for (i = 1; i < elements; i++) { 8318 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8319 8320 switch (opcode) { 8321 case 0x03: /* SADDLV / UADDLV */ 8322 case 0x1b: /* ADDV */ 8323 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8324 break; 8325 case 0x0a: /* SMAXV / UMAXV */ 8326 if (is_u) { 8327 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8328 } else { 8329 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8330 } 8331 break; 8332 case 0x1a: /* SMINV / UMINV */ 8333 if (is_u) { 8334 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8335 } else { 8336 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8337 } 8338 break; 8339 default: 8340 g_assert_not_reached(); 8341 } 8342 8343 } 8344 } else { 8345 /* Floating point vector reduction ops which work across 32 8346 * bit (single) or 16 bit (half-precision) intermediates. 8347 * Note that correct NaN propagation requires that we do these 8348 * operations in exactly the order specified by the pseudocode. 8349 */ 8350 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8351 int fpopcode = opcode | is_min << 4 | is_u << 5; 8352 int vmap = (1 << elements) - 1; 8353 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8354 (is_q ? 128 : 64), vmap, fpst); 8355 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8356 } 8357 8358 /* Now truncate the result to the width required for the final output */ 8359 if (opcode == 0x03) { 8360 /* SADDLV, UADDLV: result is 2*esize */ 8361 size++; 8362 } 8363 8364 switch (size) { 8365 case 0: 8366 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8367 break; 8368 case 1: 8369 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8370 break; 8371 case 2: 8372 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8373 break; 8374 case 3: 8375 break; 8376 default: 8377 g_assert_not_reached(); 8378 } 8379 8380 write_fp_dreg(s, rd, tcg_res); 8381 } 8382 8383 /* AdvSIMD modified immediate 8384 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8385 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8386 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8387 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8388 * 8389 * There are a number of operations that can be carried out here: 8390 * MOVI - move (shifted) imm into register 8391 * MVNI - move inverted (shifted) imm into register 8392 * ORR - bitwise OR of (shifted) imm with register 8393 * BIC - bitwise clear of (shifted) imm with register 8394 * With ARMv8.2 we also have: 8395 * FMOV half-precision 8396 */ 8397 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8398 { 8399 int rd = extract32(insn, 0, 5); 8400 int cmode = extract32(insn, 12, 4); 8401 int o2 = extract32(insn, 11, 1); 8402 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8403 bool is_neg = extract32(insn, 29, 1); 8404 bool is_q = extract32(insn, 30, 1); 8405 uint64_t imm = 0; 8406 8407 if (o2) { 8408 if (cmode != 0xf || is_neg) { 8409 unallocated_encoding(s); 8410 return; 8411 } 8412 /* FMOV (vector, immediate) - half-precision */ 8413 if (!dc_isar_feature(aa64_fp16, s)) { 8414 unallocated_encoding(s); 8415 return; 8416 } 8417 imm = vfp_expand_imm(MO_16, abcdefgh); 8418 /* now duplicate across the lanes */ 8419 imm = dup_const(MO_16, imm); 8420 } else { 8421 if (cmode == 0xf && is_neg && !is_q) { 8422 unallocated_encoding(s); 8423 return; 8424 } 8425 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8426 } 8427 8428 if (!fp_access_check(s)) { 8429 return; 8430 } 8431 8432 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8433 /* MOVI or MVNI, with MVNI negation handled above. */ 8434 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8435 vec_full_reg_size(s), imm); 8436 } else { 8437 /* ORR or BIC, with BIC negation to AND handled above. */ 8438 if (is_neg) { 8439 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8440 } else { 8441 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8442 } 8443 } 8444 } 8445 8446 /* 8447 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8448 * 8449 * This code is handles the common shifting code and is used by both 8450 * the vector and scalar code. 8451 */ 8452 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8453 TCGv_i64 tcg_rnd, bool accumulate, 8454 bool is_u, int size, int shift) 8455 { 8456 bool extended_result = false; 8457 bool round = tcg_rnd != NULL; 8458 int ext_lshift = 0; 8459 TCGv_i64 tcg_src_hi; 8460 8461 if (round && size == 3) { 8462 extended_result = true; 8463 ext_lshift = 64 - shift; 8464 tcg_src_hi = tcg_temp_new_i64(); 8465 } else if (shift == 64) { 8466 if (!accumulate && is_u) { 8467 /* result is zero */ 8468 tcg_gen_movi_i64(tcg_res, 0); 8469 return; 8470 } 8471 } 8472 8473 /* Deal with the rounding step */ 8474 if (round) { 8475 if (extended_result) { 8476 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8477 if (!is_u) { 8478 /* take care of sign extending tcg_res */ 8479 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8480 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8481 tcg_src, tcg_src_hi, 8482 tcg_rnd, tcg_zero); 8483 } else { 8484 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8485 tcg_src, tcg_zero, 8486 tcg_rnd, tcg_zero); 8487 } 8488 } else { 8489 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8490 } 8491 } 8492 8493 /* Now do the shift right */ 8494 if (round && extended_result) { 8495 /* extended case, >64 bit precision required */ 8496 if (ext_lshift == 0) { 8497 /* special case, only high bits matter */ 8498 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8499 } else { 8500 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8501 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8502 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8503 } 8504 } else { 8505 if (is_u) { 8506 if (shift == 64) { 8507 /* essentially shifting in 64 zeros */ 8508 tcg_gen_movi_i64(tcg_src, 0); 8509 } else { 8510 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8511 } 8512 } else { 8513 if (shift == 64) { 8514 /* effectively extending the sign-bit */ 8515 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8516 } else { 8517 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8518 } 8519 } 8520 } 8521 8522 if (accumulate) { 8523 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8524 } else { 8525 tcg_gen_mov_i64(tcg_res, tcg_src); 8526 } 8527 } 8528 8529 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8530 static void handle_scalar_simd_shri(DisasContext *s, 8531 bool is_u, int immh, int immb, 8532 int opcode, int rn, int rd) 8533 { 8534 const int size = 3; 8535 int immhb = immh << 3 | immb; 8536 int shift = 2 * (8 << size) - immhb; 8537 bool accumulate = false; 8538 bool round = false; 8539 bool insert = false; 8540 TCGv_i64 tcg_rn; 8541 TCGv_i64 tcg_rd; 8542 TCGv_i64 tcg_round; 8543 8544 if (!extract32(immh, 3, 1)) { 8545 unallocated_encoding(s); 8546 return; 8547 } 8548 8549 if (!fp_access_check(s)) { 8550 return; 8551 } 8552 8553 switch (opcode) { 8554 case 0x02: /* SSRA / USRA (accumulate) */ 8555 accumulate = true; 8556 break; 8557 case 0x04: /* SRSHR / URSHR (rounding) */ 8558 round = true; 8559 break; 8560 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8561 accumulate = round = true; 8562 break; 8563 case 0x08: /* SRI */ 8564 insert = true; 8565 break; 8566 } 8567 8568 if (round) { 8569 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8570 } else { 8571 tcg_round = NULL; 8572 } 8573 8574 tcg_rn = read_fp_dreg(s, rn); 8575 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8576 8577 if (insert) { 8578 /* shift count same as element size is valid but does nothing; 8579 * special case to avoid potential shift by 64. 8580 */ 8581 int esize = 8 << size; 8582 if (shift != esize) { 8583 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8584 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8585 } 8586 } else { 8587 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8588 accumulate, is_u, size, shift); 8589 } 8590 8591 write_fp_dreg(s, rd, tcg_rd); 8592 } 8593 8594 /* SHL/SLI - Scalar shift left */ 8595 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8596 int immh, int immb, int opcode, 8597 int rn, int rd) 8598 { 8599 int size = 32 - clz32(immh) - 1; 8600 int immhb = immh << 3 | immb; 8601 int shift = immhb - (8 << size); 8602 TCGv_i64 tcg_rn; 8603 TCGv_i64 tcg_rd; 8604 8605 if (!extract32(immh, 3, 1)) { 8606 unallocated_encoding(s); 8607 return; 8608 } 8609 8610 if (!fp_access_check(s)) { 8611 return; 8612 } 8613 8614 tcg_rn = read_fp_dreg(s, rn); 8615 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8616 8617 if (insert) { 8618 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8619 } else { 8620 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8621 } 8622 8623 write_fp_dreg(s, rd, tcg_rd); 8624 } 8625 8626 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8627 * (signed/unsigned) narrowing */ 8628 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8629 bool is_u_shift, bool is_u_narrow, 8630 int immh, int immb, int opcode, 8631 int rn, int rd) 8632 { 8633 int immhb = immh << 3 | immb; 8634 int size = 32 - clz32(immh) - 1; 8635 int esize = 8 << size; 8636 int shift = (2 * esize) - immhb; 8637 int elements = is_scalar ? 1 : (64 / esize); 8638 bool round = extract32(opcode, 0, 1); 8639 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8640 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8641 TCGv_i32 tcg_rd_narrowed; 8642 TCGv_i64 tcg_final; 8643 8644 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8645 { gen_helper_neon_narrow_sat_s8, 8646 gen_helper_neon_unarrow_sat8 }, 8647 { gen_helper_neon_narrow_sat_s16, 8648 gen_helper_neon_unarrow_sat16 }, 8649 { gen_helper_neon_narrow_sat_s32, 8650 gen_helper_neon_unarrow_sat32 }, 8651 { NULL, NULL }, 8652 }; 8653 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8654 gen_helper_neon_narrow_sat_u8, 8655 gen_helper_neon_narrow_sat_u16, 8656 gen_helper_neon_narrow_sat_u32, 8657 NULL 8658 }; 8659 NeonGenNarrowEnvFn *narrowfn; 8660 8661 int i; 8662 8663 assert(size < 4); 8664 8665 if (extract32(immh, 3, 1)) { 8666 unallocated_encoding(s); 8667 return; 8668 } 8669 8670 if (!fp_access_check(s)) { 8671 return; 8672 } 8673 8674 if (is_u_shift) { 8675 narrowfn = unsigned_narrow_fns[size]; 8676 } else { 8677 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8678 } 8679 8680 tcg_rn = tcg_temp_new_i64(); 8681 tcg_rd = tcg_temp_new_i64(); 8682 tcg_rd_narrowed = tcg_temp_new_i32(); 8683 tcg_final = tcg_temp_new_i64(); 8684 8685 if (round) { 8686 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8687 } else { 8688 tcg_round = NULL; 8689 } 8690 8691 for (i = 0; i < elements; i++) { 8692 read_vec_element(s, tcg_rn, rn, i, ldop); 8693 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8694 false, is_u_shift, size+1, shift); 8695 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8696 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8697 if (i == 0) { 8698 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8699 } else { 8700 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8701 } 8702 } 8703 8704 if (!is_q) { 8705 write_vec_element(s, tcg_final, rd, 0, MO_64); 8706 } else { 8707 write_vec_element(s, tcg_final, rd, 1, MO_64); 8708 } 8709 clear_vec_high(s, is_q, rd); 8710 } 8711 8712 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8713 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8714 bool src_unsigned, bool dst_unsigned, 8715 int immh, int immb, int rn, int rd) 8716 { 8717 int immhb = immh << 3 | immb; 8718 int size = 32 - clz32(immh) - 1; 8719 int shift = immhb - (8 << size); 8720 int pass; 8721 8722 assert(immh != 0); 8723 assert(!(scalar && is_q)); 8724 8725 if (!scalar) { 8726 if (!is_q && extract32(immh, 3, 1)) { 8727 unallocated_encoding(s); 8728 return; 8729 } 8730 8731 /* Since we use the variable-shift helpers we must 8732 * replicate the shift count into each element of 8733 * the tcg_shift value. 8734 */ 8735 switch (size) { 8736 case 0: 8737 shift |= shift << 8; 8738 /* fall through */ 8739 case 1: 8740 shift |= shift << 16; 8741 break; 8742 case 2: 8743 case 3: 8744 break; 8745 default: 8746 g_assert_not_reached(); 8747 } 8748 } 8749 8750 if (!fp_access_check(s)) { 8751 return; 8752 } 8753 8754 if (size == 3) { 8755 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8756 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8757 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8758 { NULL, gen_helper_neon_qshl_u64 }, 8759 }; 8760 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8761 int maxpass = is_q ? 2 : 1; 8762 8763 for (pass = 0; pass < maxpass; pass++) { 8764 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8765 8766 read_vec_element(s, tcg_op, rn, pass, MO_64); 8767 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8768 write_vec_element(s, tcg_op, rd, pass, MO_64); 8769 } 8770 clear_vec_high(s, is_q, rd); 8771 } else { 8772 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8773 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8774 { 8775 { gen_helper_neon_qshl_s8, 8776 gen_helper_neon_qshl_s16, 8777 gen_helper_neon_qshl_s32 }, 8778 { gen_helper_neon_qshlu_s8, 8779 gen_helper_neon_qshlu_s16, 8780 gen_helper_neon_qshlu_s32 } 8781 }, { 8782 { NULL, NULL, NULL }, 8783 { gen_helper_neon_qshl_u8, 8784 gen_helper_neon_qshl_u16, 8785 gen_helper_neon_qshl_u32 } 8786 } 8787 }; 8788 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8789 MemOp memop = scalar ? size : MO_32; 8790 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8791 8792 for (pass = 0; pass < maxpass; pass++) { 8793 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8794 8795 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8796 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8797 if (scalar) { 8798 switch (size) { 8799 case 0: 8800 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8801 break; 8802 case 1: 8803 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8804 break; 8805 case 2: 8806 break; 8807 default: 8808 g_assert_not_reached(); 8809 } 8810 write_fp_sreg(s, rd, tcg_op); 8811 } else { 8812 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8813 } 8814 } 8815 8816 if (!scalar) { 8817 clear_vec_high(s, is_q, rd); 8818 } 8819 } 8820 } 8821 8822 /* Common vector code for handling integer to FP conversion */ 8823 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8824 int elements, int is_signed, 8825 int fracbits, int size) 8826 { 8827 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8828 TCGv_i32 tcg_shift = NULL; 8829 8830 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8831 int pass; 8832 8833 if (fracbits || size == MO_64) { 8834 tcg_shift = tcg_constant_i32(fracbits); 8835 } 8836 8837 if (size == MO_64) { 8838 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8839 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8840 8841 for (pass = 0; pass < elements; pass++) { 8842 read_vec_element(s, tcg_int64, rn, pass, mop); 8843 8844 if (is_signed) { 8845 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8846 tcg_shift, tcg_fpst); 8847 } else { 8848 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8849 tcg_shift, tcg_fpst); 8850 } 8851 if (elements == 1) { 8852 write_fp_dreg(s, rd, tcg_double); 8853 } else { 8854 write_vec_element(s, tcg_double, rd, pass, MO_64); 8855 } 8856 } 8857 } else { 8858 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8859 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8860 8861 for (pass = 0; pass < elements; pass++) { 8862 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8863 8864 switch (size) { 8865 case MO_32: 8866 if (fracbits) { 8867 if (is_signed) { 8868 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8869 tcg_shift, tcg_fpst); 8870 } else { 8871 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8872 tcg_shift, tcg_fpst); 8873 } 8874 } else { 8875 if (is_signed) { 8876 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8877 } else { 8878 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8879 } 8880 } 8881 break; 8882 case MO_16: 8883 if (fracbits) { 8884 if (is_signed) { 8885 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8886 tcg_shift, tcg_fpst); 8887 } else { 8888 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8889 tcg_shift, tcg_fpst); 8890 } 8891 } else { 8892 if (is_signed) { 8893 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8894 } else { 8895 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8896 } 8897 } 8898 break; 8899 default: 8900 g_assert_not_reached(); 8901 } 8902 8903 if (elements == 1) { 8904 write_fp_sreg(s, rd, tcg_float); 8905 } else { 8906 write_vec_element_i32(s, tcg_float, rd, pass, size); 8907 } 8908 } 8909 } 8910 8911 clear_vec_high(s, elements << size == 16, rd); 8912 } 8913 8914 /* UCVTF/SCVTF - Integer to FP conversion */ 8915 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8916 bool is_q, bool is_u, 8917 int immh, int immb, int opcode, 8918 int rn, int rd) 8919 { 8920 int size, elements, fracbits; 8921 int immhb = immh << 3 | immb; 8922 8923 if (immh & 8) { 8924 size = MO_64; 8925 if (!is_scalar && !is_q) { 8926 unallocated_encoding(s); 8927 return; 8928 } 8929 } else if (immh & 4) { 8930 size = MO_32; 8931 } else if (immh & 2) { 8932 size = MO_16; 8933 if (!dc_isar_feature(aa64_fp16, s)) { 8934 unallocated_encoding(s); 8935 return; 8936 } 8937 } else { 8938 /* immh == 0 would be a failure of the decode logic */ 8939 g_assert(immh == 1); 8940 unallocated_encoding(s); 8941 return; 8942 } 8943 8944 if (is_scalar) { 8945 elements = 1; 8946 } else { 8947 elements = (8 << is_q) >> size; 8948 } 8949 fracbits = (16 << size) - immhb; 8950 8951 if (!fp_access_check(s)) { 8952 return; 8953 } 8954 8955 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8956 } 8957 8958 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8959 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8960 bool is_q, bool is_u, 8961 int immh, int immb, int rn, int rd) 8962 { 8963 int immhb = immh << 3 | immb; 8964 int pass, size, fracbits; 8965 TCGv_ptr tcg_fpstatus; 8966 TCGv_i32 tcg_rmode, tcg_shift; 8967 8968 if (immh & 0x8) { 8969 size = MO_64; 8970 if (!is_scalar && !is_q) { 8971 unallocated_encoding(s); 8972 return; 8973 } 8974 } else if (immh & 0x4) { 8975 size = MO_32; 8976 } else if (immh & 0x2) { 8977 size = MO_16; 8978 if (!dc_isar_feature(aa64_fp16, s)) { 8979 unallocated_encoding(s); 8980 return; 8981 } 8982 } else { 8983 /* Should have split out AdvSIMD modified immediate earlier. */ 8984 assert(immh == 1); 8985 unallocated_encoding(s); 8986 return; 8987 } 8988 8989 if (!fp_access_check(s)) { 8990 return; 8991 } 8992 8993 assert(!(is_scalar && is_q)); 8994 8995 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8996 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8997 fracbits = (16 << size) - immhb; 8998 tcg_shift = tcg_constant_i32(fracbits); 8999 9000 if (size == MO_64) { 9001 int maxpass = is_scalar ? 1 : 2; 9002 9003 for (pass = 0; pass < maxpass; pass++) { 9004 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9005 9006 read_vec_element(s, tcg_op, rn, pass, MO_64); 9007 if (is_u) { 9008 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9009 } else { 9010 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9011 } 9012 write_vec_element(s, tcg_op, rd, pass, MO_64); 9013 } 9014 clear_vec_high(s, is_q, rd); 9015 } else { 9016 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9017 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9018 9019 switch (size) { 9020 case MO_16: 9021 if (is_u) { 9022 fn = gen_helper_vfp_touhh; 9023 } else { 9024 fn = gen_helper_vfp_toshh; 9025 } 9026 break; 9027 case MO_32: 9028 if (is_u) { 9029 fn = gen_helper_vfp_touls; 9030 } else { 9031 fn = gen_helper_vfp_tosls; 9032 } 9033 break; 9034 default: 9035 g_assert_not_reached(); 9036 } 9037 9038 for (pass = 0; pass < maxpass; pass++) { 9039 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9040 9041 read_vec_element_i32(s, tcg_op, rn, pass, size); 9042 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9043 if (is_scalar) { 9044 if (size == MO_16 && !is_u) { 9045 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9046 } 9047 write_fp_sreg(s, rd, tcg_op); 9048 } else { 9049 write_vec_element_i32(s, tcg_op, rd, pass, size); 9050 } 9051 } 9052 if (!is_scalar) { 9053 clear_vec_high(s, is_q, rd); 9054 } 9055 } 9056 9057 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9058 } 9059 9060 /* AdvSIMD scalar shift by immediate 9061 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9062 * +-----+---+-------------+------+------+--------+---+------+------+ 9063 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9064 * +-----+---+-------------+------+------+--------+---+------+------+ 9065 * 9066 * This is the scalar version so it works on a fixed sized registers 9067 */ 9068 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9069 { 9070 int rd = extract32(insn, 0, 5); 9071 int rn = extract32(insn, 5, 5); 9072 int opcode = extract32(insn, 11, 5); 9073 int immb = extract32(insn, 16, 3); 9074 int immh = extract32(insn, 19, 4); 9075 bool is_u = extract32(insn, 29, 1); 9076 9077 if (immh == 0) { 9078 unallocated_encoding(s); 9079 return; 9080 } 9081 9082 switch (opcode) { 9083 case 0x08: /* SRI */ 9084 if (!is_u) { 9085 unallocated_encoding(s); 9086 return; 9087 } 9088 /* fall through */ 9089 case 0x00: /* SSHR / USHR */ 9090 case 0x02: /* SSRA / USRA */ 9091 case 0x04: /* SRSHR / URSHR */ 9092 case 0x06: /* SRSRA / URSRA */ 9093 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9094 break; 9095 case 0x0a: /* SHL / SLI */ 9096 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9097 break; 9098 case 0x1c: /* SCVTF, UCVTF */ 9099 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9100 opcode, rn, rd); 9101 break; 9102 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9103 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9104 if (!is_u) { 9105 unallocated_encoding(s); 9106 return; 9107 } 9108 handle_vec_simd_sqshrn(s, true, false, false, true, 9109 immh, immb, opcode, rn, rd); 9110 break; 9111 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9112 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9113 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9114 immh, immb, opcode, rn, rd); 9115 break; 9116 case 0xc: /* SQSHLU */ 9117 if (!is_u) { 9118 unallocated_encoding(s); 9119 return; 9120 } 9121 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9122 break; 9123 case 0xe: /* SQSHL, UQSHL */ 9124 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9125 break; 9126 case 0x1f: /* FCVTZS, FCVTZU */ 9127 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9128 break; 9129 default: 9130 unallocated_encoding(s); 9131 break; 9132 } 9133 } 9134 9135 /* AdvSIMD scalar three different 9136 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9137 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9138 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9139 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9140 */ 9141 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9142 { 9143 bool is_u = extract32(insn, 29, 1); 9144 int size = extract32(insn, 22, 2); 9145 int opcode = extract32(insn, 12, 4); 9146 int rm = extract32(insn, 16, 5); 9147 int rn = extract32(insn, 5, 5); 9148 int rd = extract32(insn, 0, 5); 9149 9150 if (is_u) { 9151 unallocated_encoding(s); 9152 return; 9153 } 9154 9155 switch (opcode) { 9156 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9157 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9158 case 0xd: /* SQDMULL, SQDMULL2 */ 9159 if (size == 0 || size == 3) { 9160 unallocated_encoding(s); 9161 return; 9162 } 9163 break; 9164 default: 9165 unallocated_encoding(s); 9166 return; 9167 } 9168 9169 if (!fp_access_check(s)) { 9170 return; 9171 } 9172 9173 if (size == 2) { 9174 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9175 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9176 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9177 9178 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9179 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9180 9181 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9182 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9183 9184 switch (opcode) { 9185 case 0xd: /* SQDMULL, SQDMULL2 */ 9186 break; 9187 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9188 tcg_gen_neg_i64(tcg_res, tcg_res); 9189 /* fall through */ 9190 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9191 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9192 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9193 tcg_res, tcg_op1); 9194 break; 9195 default: 9196 g_assert_not_reached(); 9197 } 9198 9199 write_fp_dreg(s, rd, tcg_res); 9200 } else { 9201 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9202 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9203 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9204 9205 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9206 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9207 9208 switch (opcode) { 9209 case 0xd: /* SQDMULL, SQDMULL2 */ 9210 break; 9211 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9212 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9213 /* fall through */ 9214 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9215 { 9216 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9217 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9218 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9219 tcg_res, tcg_op3); 9220 break; 9221 } 9222 default: 9223 g_assert_not_reached(); 9224 } 9225 9226 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9227 write_fp_dreg(s, rd, tcg_res); 9228 } 9229 } 9230 9231 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9232 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9233 { 9234 /* Handle 64x64->64 opcodes which are shared between the scalar 9235 * and vector 3-same groups. We cover every opcode where size == 3 9236 * is valid in either the three-reg-same (integer, not pairwise) 9237 * or scalar-three-reg-same groups. 9238 */ 9239 TCGCond cond; 9240 9241 switch (opcode) { 9242 case 0x1: /* SQADD */ 9243 if (u) { 9244 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9245 } else { 9246 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9247 } 9248 break; 9249 case 0x5: /* SQSUB */ 9250 if (u) { 9251 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9252 } else { 9253 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9254 } 9255 break; 9256 case 0x6: /* CMGT, CMHI */ 9257 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9258 do_cmop: 9259 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9260 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9261 break; 9262 case 0x7: /* CMGE, CMHS */ 9263 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9264 goto do_cmop; 9265 case 0x11: /* CMTST, CMEQ */ 9266 if (u) { 9267 cond = TCG_COND_EQ; 9268 goto do_cmop; 9269 } 9270 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9271 break; 9272 case 0x8: /* SSHL, USHL */ 9273 if (u) { 9274 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9275 } else { 9276 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9277 } 9278 break; 9279 case 0x9: /* SQSHL, UQSHL */ 9280 if (u) { 9281 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9282 } else { 9283 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9284 } 9285 break; 9286 case 0xa: /* SRSHL, URSHL */ 9287 if (u) { 9288 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9289 } else { 9290 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9291 } 9292 break; 9293 case 0xb: /* SQRSHL, UQRSHL */ 9294 if (u) { 9295 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9296 } else { 9297 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9298 } 9299 break; 9300 case 0x10: /* ADD, SUB */ 9301 if (u) { 9302 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9303 } else { 9304 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9305 } 9306 break; 9307 default: 9308 g_assert_not_reached(); 9309 } 9310 } 9311 9312 /* AdvSIMD scalar three same 9313 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9314 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9315 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9316 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9317 */ 9318 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9319 { 9320 int rd = extract32(insn, 0, 5); 9321 int rn = extract32(insn, 5, 5); 9322 int opcode = extract32(insn, 11, 5); 9323 int rm = extract32(insn, 16, 5); 9324 int size = extract32(insn, 22, 2); 9325 bool u = extract32(insn, 29, 1); 9326 TCGv_i64 tcg_rd; 9327 9328 switch (opcode) { 9329 case 0x1: /* SQADD, UQADD */ 9330 case 0x5: /* SQSUB, UQSUB */ 9331 case 0x9: /* SQSHL, UQSHL */ 9332 case 0xb: /* SQRSHL, UQRSHL */ 9333 break; 9334 case 0x8: /* SSHL, USHL */ 9335 case 0xa: /* SRSHL, URSHL */ 9336 case 0x6: /* CMGT, CMHI */ 9337 case 0x7: /* CMGE, CMHS */ 9338 case 0x11: /* CMTST, CMEQ */ 9339 case 0x10: /* ADD, SUB (vector) */ 9340 if (size != 3) { 9341 unallocated_encoding(s); 9342 return; 9343 } 9344 break; 9345 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9346 if (size != 1 && size != 2) { 9347 unallocated_encoding(s); 9348 return; 9349 } 9350 break; 9351 default: 9352 unallocated_encoding(s); 9353 return; 9354 } 9355 9356 if (!fp_access_check(s)) { 9357 return; 9358 } 9359 9360 tcg_rd = tcg_temp_new_i64(); 9361 9362 if (size == 3) { 9363 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9364 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9365 9366 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9367 } else { 9368 /* Do a single operation on the lowest element in the vector. 9369 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9370 * no side effects for all these operations. 9371 * OPTME: special-purpose helpers would avoid doing some 9372 * unnecessary work in the helper for the 8 and 16 bit cases. 9373 */ 9374 NeonGenTwoOpEnvFn *genenvfn; 9375 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9376 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9377 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9378 9379 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9380 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9381 9382 switch (opcode) { 9383 case 0x1: /* SQADD, UQADD */ 9384 { 9385 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9386 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9387 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9388 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9389 }; 9390 genenvfn = fns[size][u]; 9391 break; 9392 } 9393 case 0x5: /* SQSUB, UQSUB */ 9394 { 9395 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9396 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9397 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9398 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9399 }; 9400 genenvfn = fns[size][u]; 9401 break; 9402 } 9403 case 0x9: /* SQSHL, UQSHL */ 9404 { 9405 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9406 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9407 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9408 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9409 }; 9410 genenvfn = fns[size][u]; 9411 break; 9412 } 9413 case 0xb: /* SQRSHL, UQRSHL */ 9414 { 9415 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9416 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9417 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9418 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9419 }; 9420 genenvfn = fns[size][u]; 9421 break; 9422 } 9423 case 0x16: /* SQDMULH, SQRDMULH */ 9424 { 9425 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9426 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9427 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9428 }; 9429 assert(size == 1 || size == 2); 9430 genenvfn = fns[size - 1][u]; 9431 break; 9432 } 9433 default: 9434 g_assert_not_reached(); 9435 } 9436 9437 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9438 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9439 } 9440 9441 write_fp_dreg(s, rd, tcg_rd); 9442 } 9443 9444 /* AdvSIMD scalar three same extra 9445 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9446 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9447 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9448 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9449 */ 9450 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9451 uint32_t insn) 9452 { 9453 int rd = extract32(insn, 0, 5); 9454 int rn = extract32(insn, 5, 5); 9455 int opcode = extract32(insn, 11, 4); 9456 int rm = extract32(insn, 16, 5); 9457 int size = extract32(insn, 22, 2); 9458 bool u = extract32(insn, 29, 1); 9459 TCGv_i32 ele1, ele2, ele3; 9460 TCGv_i64 res; 9461 bool feature; 9462 9463 switch (u * 16 + opcode) { 9464 case 0x10: /* SQRDMLAH (vector) */ 9465 case 0x11: /* SQRDMLSH (vector) */ 9466 if (size != 1 && size != 2) { 9467 unallocated_encoding(s); 9468 return; 9469 } 9470 feature = dc_isar_feature(aa64_rdm, s); 9471 break; 9472 default: 9473 unallocated_encoding(s); 9474 return; 9475 } 9476 if (!feature) { 9477 unallocated_encoding(s); 9478 return; 9479 } 9480 if (!fp_access_check(s)) { 9481 return; 9482 } 9483 9484 /* Do a single operation on the lowest element in the vector. 9485 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9486 * with no side effects for all these operations. 9487 * OPTME: special-purpose helpers would avoid doing some 9488 * unnecessary work in the helper for the 16 bit cases. 9489 */ 9490 ele1 = tcg_temp_new_i32(); 9491 ele2 = tcg_temp_new_i32(); 9492 ele3 = tcg_temp_new_i32(); 9493 9494 read_vec_element_i32(s, ele1, rn, 0, size); 9495 read_vec_element_i32(s, ele2, rm, 0, size); 9496 read_vec_element_i32(s, ele3, rd, 0, size); 9497 9498 switch (opcode) { 9499 case 0x0: /* SQRDMLAH */ 9500 if (size == 1) { 9501 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9502 } else { 9503 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9504 } 9505 break; 9506 case 0x1: /* SQRDMLSH */ 9507 if (size == 1) { 9508 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9509 } else { 9510 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9511 } 9512 break; 9513 default: 9514 g_assert_not_reached(); 9515 } 9516 9517 res = tcg_temp_new_i64(); 9518 tcg_gen_extu_i32_i64(res, ele3); 9519 write_fp_dreg(s, rd, res); 9520 } 9521 9522 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9523 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9524 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9525 { 9526 /* Handle 64->64 opcodes which are shared between the scalar and 9527 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9528 * is valid in either group and also the double-precision fp ops. 9529 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9530 * requires them. 9531 */ 9532 TCGCond cond; 9533 9534 switch (opcode) { 9535 case 0x4: /* CLS, CLZ */ 9536 if (u) { 9537 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9538 } else { 9539 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9540 } 9541 break; 9542 case 0x5: /* NOT */ 9543 /* This opcode is shared with CNT and RBIT but we have earlier 9544 * enforced that size == 3 if and only if this is the NOT insn. 9545 */ 9546 tcg_gen_not_i64(tcg_rd, tcg_rn); 9547 break; 9548 case 0x7: /* SQABS, SQNEG */ 9549 if (u) { 9550 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9551 } else { 9552 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9553 } 9554 break; 9555 case 0xa: /* CMLT */ 9556 cond = TCG_COND_LT; 9557 do_cmop: 9558 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9559 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9560 break; 9561 case 0x8: /* CMGT, CMGE */ 9562 cond = u ? TCG_COND_GE : TCG_COND_GT; 9563 goto do_cmop; 9564 case 0x9: /* CMEQ, CMLE */ 9565 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9566 goto do_cmop; 9567 case 0xb: /* ABS, NEG */ 9568 if (u) { 9569 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9570 } else { 9571 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9572 } 9573 break; 9574 case 0x2f: /* FABS */ 9575 gen_vfp_absd(tcg_rd, tcg_rn); 9576 break; 9577 case 0x6f: /* FNEG */ 9578 gen_vfp_negd(tcg_rd, tcg_rn); 9579 break; 9580 case 0x7f: /* FSQRT */ 9581 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9582 break; 9583 case 0x1a: /* FCVTNS */ 9584 case 0x1b: /* FCVTMS */ 9585 case 0x1c: /* FCVTAS */ 9586 case 0x3a: /* FCVTPS */ 9587 case 0x3b: /* FCVTZS */ 9588 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9589 break; 9590 case 0x5a: /* FCVTNU */ 9591 case 0x5b: /* FCVTMU */ 9592 case 0x5c: /* FCVTAU */ 9593 case 0x7a: /* FCVTPU */ 9594 case 0x7b: /* FCVTZU */ 9595 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9596 break; 9597 case 0x18: /* FRINTN */ 9598 case 0x19: /* FRINTM */ 9599 case 0x38: /* FRINTP */ 9600 case 0x39: /* FRINTZ */ 9601 case 0x58: /* FRINTA */ 9602 case 0x79: /* FRINTI */ 9603 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9604 break; 9605 case 0x59: /* FRINTX */ 9606 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9607 break; 9608 case 0x1e: /* FRINT32Z */ 9609 case 0x5e: /* FRINT32X */ 9610 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9611 break; 9612 case 0x1f: /* FRINT64Z */ 9613 case 0x5f: /* FRINT64X */ 9614 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9615 break; 9616 default: 9617 g_assert_not_reached(); 9618 } 9619 } 9620 9621 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9622 bool is_scalar, bool is_u, bool is_q, 9623 int size, int rn, int rd) 9624 { 9625 bool is_double = (size == MO_64); 9626 TCGv_ptr fpst; 9627 9628 if (!fp_access_check(s)) { 9629 return; 9630 } 9631 9632 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9633 9634 if (is_double) { 9635 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9636 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9637 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9638 NeonGenTwoDoubleOpFn *genfn; 9639 bool swap = false; 9640 int pass; 9641 9642 switch (opcode) { 9643 case 0x2e: /* FCMLT (zero) */ 9644 swap = true; 9645 /* fallthrough */ 9646 case 0x2c: /* FCMGT (zero) */ 9647 genfn = gen_helper_neon_cgt_f64; 9648 break; 9649 case 0x2d: /* FCMEQ (zero) */ 9650 genfn = gen_helper_neon_ceq_f64; 9651 break; 9652 case 0x6d: /* FCMLE (zero) */ 9653 swap = true; 9654 /* fall through */ 9655 case 0x6c: /* FCMGE (zero) */ 9656 genfn = gen_helper_neon_cge_f64; 9657 break; 9658 default: 9659 g_assert_not_reached(); 9660 } 9661 9662 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9663 read_vec_element(s, tcg_op, rn, pass, MO_64); 9664 if (swap) { 9665 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9666 } else { 9667 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9668 } 9669 write_vec_element(s, tcg_res, rd, pass, MO_64); 9670 } 9671 9672 clear_vec_high(s, !is_scalar, rd); 9673 } else { 9674 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9675 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9676 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9677 NeonGenTwoSingleOpFn *genfn; 9678 bool swap = false; 9679 int pass, maxpasses; 9680 9681 if (size == MO_16) { 9682 switch (opcode) { 9683 case 0x2e: /* FCMLT (zero) */ 9684 swap = true; 9685 /* fall through */ 9686 case 0x2c: /* FCMGT (zero) */ 9687 genfn = gen_helper_advsimd_cgt_f16; 9688 break; 9689 case 0x2d: /* FCMEQ (zero) */ 9690 genfn = gen_helper_advsimd_ceq_f16; 9691 break; 9692 case 0x6d: /* FCMLE (zero) */ 9693 swap = true; 9694 /* fall through */ 9695 case 0x6c: /* FCMGE (zero) */ 9696 genfn = gen_helper_advsimd_cge_f16; 9697 break; 9698 default: 9699 g_assert_not_reached(); 9700 } 9701 } else { 9702 switch (opcode) { 9703 case 0x2e: /* FCMLT (zero) */ 9704 swap = true; 9705 /* fall through */ 9706 case 0x2c: /* FCMGT (zero) */ 9707 genfn = gen_helper_neon_cgt_f32; 9708 break; 9709 case 0x2d: /* FCMEQ (zero) */ 9710 genfn = gen_helper_neon_ceq_f32; 9711 break; 9712 case 0x6d: /* FCMLE (zero) */ 9713 swap = true; 9714 /* fall through */ 9715 case 0x6c: /* FCMGE (zero) */ 9716 genfn = gen_helper_neon_cge_f32; 9717 break; 9718 default: 9719 g_assert_not_reached(); 9720 } 9721 } 9722 9723 if (is_scalar) { 9724 maxpasses = 1; 9725 } else { 9726 int vector_size = 8 << is_q; 9727 maxpasses = vector_size >> size; 9728 } 9729 9730 for (pass = 0; pass < maxpasses; pass++) { 9731 read_vec_element_i32(s, tcg_op, rn, pass, size); 9732 if (swap) { 9733 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9734 } else { 9735 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9736 } 9737 if (is_scalar) { 9738 write_fp_sreg(s, rd, tcg_res); 9739 } else { 9740 write_vec_element_i32(s, tcg_res, rd, pass, size); 9741 } 9742 } 9743 9744 if (!is_scalar) { 9745 clear_vec_high(s, is_q, rd); 9746 } 9747 } 9748 } 9749 9750 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9751 bool is_scalar, bool is_u, bool is_q, 9752 int size, int rn, int rd) 9753 { 9754 bool is_double = (size == 3); 9755 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9756 9757 if (is_double) { 9758 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9759 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9760 int pass; 9761 9762 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9763 read_vec_element(s, tcg_op, rn, pass, MO_64); 9764 switch (opcode) { 9765 case 0x3d: /* FRECPE */ 9766 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9767 break; 9768 case 0x3f: /* FRECPX */ 9769 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9770 break; 9771 case 0x7d: /* FRSQRTE */ 9772 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9773 break; 9774 default: 9775 g_assert_not_reached(); 9776 } 9777 write_vec_element(s, tcg_res, rd, pass, MO_64); 9778 } 9779 clear_vec_high(s, !is_scalar, rd); 9780 } else { 9781 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9782 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9783 int pass, maxpasses; 9784 9785 if (is_scalar) { 9786 maxpasses = 1; 9787 } else { 9788 maxpasses = is_q ? 4 : 2; 9789 } 9790 9791 for (pass = 0; pass < maxpasses; pass++) { 9792 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9793 9794 switch (opcode) { 9795 case 0x3c: /* URECPE */ 9796 gen_helper_recpe_u32(tcg_res, tcg_op); 9797 break; 9798 case 0x3d: /* FRECPE */ 9799 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9800 break; 9801 case 0x3f: /* FRECPX */ 9802 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9803 break; 9804 case 0x7d: /* FRSQRTE */ 9805 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9806 break; 9807 default: 9808 g_assert_not_reached(); 9809 } 9810 9811 if (is_scalar) { 9812 write_fp_sreg(s, rd, tcg_res); 9813 } else { 9814 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9815 } 9816 } 9817 if (!is_scalar) { 9818 clear_vec_high(s, is_q, rd); 9819 } 9820 } 9821 } 9822 9823 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9824 int opcode, bool u, bool is_q, 9825 int size, int rn, int rd) 9826 { 9827 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9828 * in the source becomes a size element in the destination). 9829 */ 9830 int pass; 9831 TCGv_i32 tcg_res[2]; 9832 int destelt = is_q ? 2 : 0; 9833 int passes = scalar ? 1 : 2; 9834 9835 if (scalar) { 9836 tcg_res[1] = tcg_constant_i32(0); 9837 } 9838 9839 for (pass = 0; pass < passes; pass++) { 9840 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9841 NeonGenNarrowFn *genfn = NULL; 9842 NeonGenNarrowEnvFn *genenvfn = NULL; 9843 9844 if (scalar) { 9845 read_vec_element(s, tcg_op, rn, pass, size + 1); 9846 } else { 9847 read_vec_element(s, tcg_op, rn, pass, MO_64); 9848 } 9849 tcg_res[pass] = tcg_temp_new_i32(); 9850 9851 switch (opcode) { 9852 case 0x12: /* XTN, SQXTUN */ 9853 { 9854 static NeonGenNarrowFn * const xtnfns[3] = { 9855 gen_helper_neon_narrow_u8, 9856 gen_helper_neon_narrow_u16, 9857 tcg_gen_extrl_i64_i32, 9858 }; 9859 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9860 gen_helper_neon_unarrow_sat8, 9861 gen_helper_neon_unarrow_sat16, 9862 gen_helper_neon_unarrow_sat32, 9863 }; 9864 if (u) { 9865 genenvfn = sqxtunfns[size]; 9866 } else { 9867 genfn = xtnfns[size]; 9868 } 9869 break; 9870 } 9871 case 0x14: /* SQXTN, UQXTN */ 9872 { 9873 static NeonGenNarrowEnvFn * const fns[3][2] = { 9874 { gen_helper_neon_narrow_sat_s8, 9875 gen_helper_neon_narrow_sat_u8 }, 9876 { gen_helper_neon_narrow_sat_s16, 9877 gen_helper_neon_narrow_sat_u16 }, 9878 { gen_helper_neon_narrow_sat_s32, 9879 gen_helper_neon_narrow_sat_u32 }, 9880 }; 9881 genenvfn = fns[size][u]; 9882 break; 9883 } 9884 case 0x16: /* FCVTN, FCVTN2 */ 9885 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9886 if (size == 2) { 9887 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9888 } else { 9889 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9890 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9891 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9892 TCGv_i32 ahp = get_ahp_flag(); 9893 9894 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9895 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9896 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9897 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9898 } 9899 break; 9900 case 0x36: /* BFCVTN, BFCVTN2 */ 9901 { 9902 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9903 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9904 } 9905 break; 9906 case 0x56: /* FCVTXN, FCVTXN2 */ 9907 /* 64 bit to 32 bit float conversion 9908 * with von Neumann rounding (round to odd) 9909 */ 9910 assert(size == 2); 9911 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9912 break; 9913 default: 9914 g_assert_not_reached(); 9915 } 9916 9917 if (genfn) { 9918 genfn(tcg_res[pass], tcg_op); 9919 } else if (genenvfn) { 9920 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9921 } 9922 } 9923 9924 for (pass = 0; pass < 2; pass++) { 9925 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9926 } 9927 clear_vec_high(s, is_q, rd); 9928 } 9929 9930 /* Remaining saturating accumulating ops */ 9931 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9932 bool is_q, int size, int rn, int rd) 9933 { 9934 bool is_double = (size == 3); 9935 9936 if (is_double) { 9937 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9938 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9939 int pass; 9940 9941 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9942 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9943 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9944 9945 if (is_u) { /* USQADD */ 9946 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9947 } else { /* SUQADD */ 9948 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9949 } 9950 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9951 } 9952 clear_vec_high(s, !is_scalar, rd); 9953 } else { 9954 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9955 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9956 int pass, maxpasses; 9957 9958 if (is_scalar) { 9959 maxpasses = 1; 9960 } else { 9961 maxpasses = is_q ? 4 : 2; 9962 } 9963 9964 for (pass = 0; pass < maxpasses; pass++) { 9965 if (is_scalar) { 9966 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9967 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9968 } else { 9969 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9970 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9971 } 9972 9973 if (is_u) { /* USQADD */ 9974 switch (size) { 9975 case 0: 9976 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9977 break; 9978 case 1: 9979 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9980 break; 9981 case 2: 9982 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9983 break; 9984 default: 9985 g_assert_not_reached(); 9986 } 9987 } else { /* SUQADD */ 9988 switch (size) { 9989 case 0: 9990 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9991 break; 9992 case 1: 9993 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9994 break; 9995 case 2: 9996 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9997 break; 9998 default: 9999 g_assert_not_reached(); 10000 } 10001 } 10002 10003 if (is_scalar) { 10004 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10005 } 10006 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10007 } 10008 clear_vec_high(s, is_q, rd); 10009 } 10010 } 10011 10012 /* AdvSIMD scalar two reg misc 10013 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10014 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10015 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10016 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10017 */ 10018 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10019 { 10020 int rd = extract32(insn, 0, 5); 10021 int rn = extract32(insn, 5, 5); 10022 int opcode = extract32(insn, 12, 5); 10023 int size = extract32(insn, 22, 2); 10024 bool u = extract32(insn, 29, 1); 10025 bool is_fcvt = false; 10026 int rmode; 10027 TCGv_i32 tcg_rmode; 10028 TCGv_ptr tcg_fpstatus; 10029 10030 switch (opcode) { 10031 case 0x3: /* USQADD / SUQADD*/ 10032 if (!fp_access_check(s)) { 10033 return; 10034 } 10035 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10036 return; 10037 case 0x7: /* SQABS / SQNEG */ 10038 break; 10039 case 0xa: /* CMLT */ 10040 if (u) { 10041 unallocated_encoding(s); 10042 return; 10043 } 10044 /* fall through */ 10045 case 0x8: /* CMGT, CMGE */ 10046 case 0x9: /* CMEQ, CMLE */ 10047 case 0xb: /* ABS, NEG */ 10048 if (size != 3) { 10049 unallocated_encoding(s); 10050 return; 10051 } 10052 break; 10053 case 0x12: /* SQXTUN */ 10054 if (!u) { 10055 unallocated_encoding(s); 10056 return; 10057 } 10058 /* fall through */ 10059 case 0x14: /* SQXTN, UQXTN */ 10060 if (size == 3) { 10061 unallocated_encoding(s); 10062 return; 10063 } 10064 if (!fp_access_check(s)) { 10065 return; 10066 } 10067 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10068 return; 10069 case 0xc ... 0xf: 10070 case 0x16 ... 0x1d: 10071 case 0x1f: 10072 /* Floating point: U, size[1] and opcode indicate operation; 10073 * size[0] indicates single or double precision. 10074 */ 10075 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10076 size = extract32(size, 0, 1) ? 3 : 2; 10077 switch (opcode) { 10078 case 0x2c: /* FCMGT (zero) */ 10079 case 0x2d: /* FCMEQ (zero) */ 10080 case 0x2e: /* FCMLT (zero) */ 10081 case 0x6c: /* FCMGE (zero) */ 10082 case 0x6d: /* FCMLE (zero) */ 10083 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10084 return; 10085 case 0x1d: /* SCVTF */ 10086 case 0x5d: /* UCVTF */ 10087 { 10088 bool is_signed = (opcode == 0x1d); 10089 if (!fp_access_check(s)) { 10090 return; 10091 } 10092 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10093 return; 10094 } 10095 case 0x3d: /* FRECPE */ 10096 case 0x3f: /* FRECPX */ 10097 case 0x7d: /* FRSQRTE */ 10098 if (!fp_access_check(s)) { 10099 return; 10100 } 10101 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10102 return; 10103 case 0x1a: /* FCVTNS */ 10104 case 0x1b: /* FCVTMS */ 10105 case 0x3a: /* FCVTPS */ 10106 case 0x3b: /* FCVTZS */ 10107 case 0x5a: /* FCVTNU */ 10108 case 0x5b: /* FCVTMU */ 10109 case 0x7a: /* FCVTPU */ 10110 case 0x7b: /* FCVTZU */ 10111 is_fcvt = true; 10112 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10113 break; 10114 case 0x1c: /* FCVTAS */ 10115 case 0x5c: /* FCVTAU */ 10116 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10117 is_fcvt = true; 10118 rmode = FPROUNDING_TIEAWAY; 10119 break; 10120 case 0x56: /* FCVTXN, FCVTXN2 */ 10121 if (size == 2) { 10122 unallocated_encoding(s); 10123 return; 10124 } 10125 if (!fp_access_check(s)) { 10126 return; 10127 } 10128 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10129 return; 10130 default: 10131 unallocated_encoding(s); 10132 return; 10133 } 10134 break; 10135 default: 10136 unallocated_encoding(s); 10137 return; 10138 } 10139 10140 if (!fp_access_check(s)) { 10141 return; 10142 } 10143 10144 if (is_fcvt) { 10145 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10146 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10147 } else { 10148 tcg_fpstatus = NULL; 10149 tcg_rmode = NULL; 10150 } 10151 10152 if (size == 3) { 10153 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10154 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10155 10156 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10157 write_fp_dreg(s, rd, tcg_rd); 10158 } else { 10159 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10160 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10161 10162 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10163 10164 switch (opcode) { 10165 case 0x7: /* SQABS, SQNEG */ 10166 { 10167 NeonGenOneOpEnvFn *genfn; 10168 static NeonGenOneOpEnvFn * const fns[3][2] = { 10169 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10170 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10171 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10172 }; 10173 genfn = fns[size][u]; 10174 genfn(tcg_rd, tcg_env, tcg_rn); 10175 break; 10176 } 10177 case 0x1a: /* FCVTNS */ 10178 case 0x1b: /* FCVTMS */ 10179 case 0x1c: /* FCVTAS */ 10180 case 0x3a: /* FCVTPS */ 10181 case 0x3b: /* FCVTZS */ 10182 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10183 tcg_fpstatus); 10184 break; 10185 case 0x5a: /* FCVTNU */ 10186 case 0x5b: /* FCVTMU */ 10187 case 0x5c: /* FCVTAU */ 10188 case 0x7a: /* FCVTPU */ 10189 case 0x7b: /* FCVTZU */ 10190 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10191 tcg_fpstatus); 10192 break; 10193 default: 10194 g_assert_not_reached(); 10195 } 10196 10197 write_fp_sreg(s, rd, tcg_rd); 10198 } 10199 10200 if (is_fcvt) { 10201 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10202 } 10203 } 10204 10205 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10206 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10207 int immh, int immb, int opcode, int rn, int rd) 10208 { 10209 int size = 32 - clz32(immh) - 1; 10210 int immhb = immh << 3 | immb; 10211 int shift = 2 * (8 << size) - immhb; 10212 GVecGen2iFn *gvec_fn; 10213 10214 if (extract32(immh, 3, 1) && !is_q) { 10215 unallocated_encoding(s); 10216 return; 10217 } 10218 tcg_debug_assert(size <= 3); 10219 10220 if (!fp_access_check(s)) { 10221 return; 10222 } 10223 10224 switch (opcode) { 10225 case 0x02: /* SSRA / USRA (accumulate) */ 10226 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10227 break; 10228 10229 case 0x08: /* SRI */ 10230 gvec_fn = gen_gvec_sri; 10231 break; 10232 10233 case 0x00: /* SSHR / USHR */ 10234 if (is_u) { 10235 if (shift == 8 << size) { 10236 /* Shift count the same size as element size produces zero. */ 10237 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10238 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10239 return; 10240 } 10241 gvec_fn = tcg_gen_gvec_shri; 10242 } else { 10243 /* Shift count the same size as element size produces all sign. */ 10244 if (shift == 8 << size) { 10245 shift -= 1; 10246 } 10247 gvec_fn = tcg_gen_gvec_sari; 10248 } 10249 break; 10250 10251 case 0x04: /* SRSHR / URSHR (rounding) */ 10252 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10253 break; 10254 10255 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10256 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10257 break; 10258 10259 default: 10260 g_assert_not_reached(); 10261 } 10262 10263 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10264 } 10265 10266 /* SHL/SLI - Vector shift left */ 10267 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10268 int immh, int immb, int opcode, int rn, int rd) 10269 { 10270 int size = 32 - clz32(immh) - 1; 10271 int immhb = immh << 3 | immb; 10272 int shift = immhb - (8 << size); 10273 10274 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10275 assert(size >= 0 && size <= 3); 10276 10277 if (extract32(immh, 3, 1) && !is_q) { 10278 unallocated_encoding(s); 10279 return; 10280 } 10281 10282 if (!fp_access_check(s)) { 10283 return; 10284 } 10285 10286 if (insert) { 10287 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10288 } else { 10289 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10290 } 10291 } 10292 10293 /* USHLL/SHLL - Vector shift left with widening */ 10294 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10295 int immh, int immb, int opcode, int rn, int rd) 10296 { 10297 int size = 32 - clz32(immh) - 1; 10298 int immhb = immh << 3 | immb; 10299 int shift = immhb - (8 << size); 10300 int dsize = 64; 10301 int esize = 8 << size; 10302 int elements = dsize/esize; 10303 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10304 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10305 int i; 10306 10307 if (size >= 3) { 10308 unallocated_encoding(s); 10309 return; 10310 } 10311 10312 if (!fp_access_check(s)) { 10313 return; 10314 } 10315 10316 /* For the LL variants the store is larger than the load, 10317 * so if rd == rn we would overwrite parts of our input. 10318 * So load everything right now and use shifts in the main loop. 10319 */ 10320 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10321 10322 for (i = 0; i < elements; i++) { 10323 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10324 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10325 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10326 write_vec_element(s, tcg_rd, rd, i, size + 1); 10327 } 10328 } 10329 10330 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10331 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10332 int immh, int immb, int opcode, int rn, int rd) 10333 { 10334 int immhb = immh << 3 | immb; 10335 int size = 32 - clz32(immh) - 1; 10336 int dsize = 64; 10337 int esize = 8 << size; 10338 int elements = dsize/esize; 10339 int shift = (2 * esize) - immhb; 10340 bool round = extract32(opcode, 0, 1); 10341 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10342 TCGv_i64 tcg_round; 10343 int i; 10344 10345 if (extract32(immh, 3, 1)) { 10346 unallocated_encoding(s); 10347 return; 10348 } 10349 10350 if (!fp_access_check(s)) { 10351 return; 10352 } 10353 10354 tcg_rn = tcg_temp_new_i64(); 10355 tcg_rd = tcg_temp_new_i64(); 10356 tcg_final = tcg_temp_new_i64(); 10357 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10358 10359 if (round) { 10360 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10361 } else { 10362 tcg_round = NULL; 10363 } 10364 10365 for (i = 0; i < elements; i++) { 10366 read_vec_element(s, tcg_rn, rn, i, size+1); 10367 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10368 false, true, size+1, shift); 10369 10370 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10371 } 10372 10373 if (!is_q) { 10374 write_vec_element(s, tcg_final, rd, 0, MO_64); 10375 } else { 10376 write_vec_element(s, tcg_final, rd, 1, MO_64); 10377 } 10378 10379 clear_vec_high(s, is_q, rd); 10380 } 10381 10382 10383 /* AdvSIMD shift by immediate 10384 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10385 * +---+---+---+-------------+------+------+--------+---+------+------+ 10386 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10387 * +---+---+---+-------------+------+------+--------+---+------+------+ 10388 */ 10389 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10390 { 10391 int rd = extract32(insn, 0, 5); 10392 int rn = extract32(insn, 5, 5); 10393 int opcode = extract32(insn, 11, 5); 10394 int immb = extract32(insn, 16, 3); 10395 int immh = extract32(insn, 19, 4); 10396 bool is_u = extract32(insn, 29, 1); 10397 bool is_q = extract32(insn, 30, 1); 10398 10399 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10400 assert(immh != 0); 10401 10402 switch (opcode) { 10403 case 0x08: /* SRI */ 10404 if (!is_u) { 10405 unallocated_encoding(s); 10406 return; 10407 } 10408 /* fall through */ 10409 case 0x00: /* SSHR / USHR */ 10410 case 0x02: /* SSRA / USRA (accumulate) */ 10411 case 0x04: /* SRSHR / URSHR (rounding) */ 10412 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10413 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10414 break; 10415 case 0x0a: /* SHL / SLI */ 10416 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10417 break; 10418 case 0x10: /* SHRN */ 10419 case 0x11: /* RSHRN / SQRSHRUN */ 10420 if (is_u) { 10421 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10422 opcode, rn, rd); 10423 } else { 10424 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10425 } 10426 break; 10427 case 0x12: /* SQSHRN / UQSHRN */ 10428 case 0x13: /* SQRSHRN / UQRSHRN */ 10429 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10430 opcode, rn, rd); 10431 break; 10432 case 0x14: /* SSHLL / USHLL */ 10433 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10434 break; 10435 case 0x1c: /* SCVTF / UCVTF */ 10436 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10437 opcode, rn, rd); 10438 break; 10439 case 0xc: /* SQSHLU */ 10440 if (!is_u) { 10441 unallocated_encoding(s); 10442 return; 10443 } 10444 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10445 break; 10446 case 0xe: /* SQSHL, UQSHL */ 10447 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10448 break; 10449 case 0x1f: /* FCVTZS/ FCVTZU */ 10450 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10451 return; 10452 default: 10453 unallocated_encoding(s); 10454 return; 10455 } 10456 } 10457 10458 /* Generate code to do a "long" addition or subtraction, ie one done in 10459 * TCGv_i64 on vector lanes twice the width specified by size. 10460 */ 10461 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10462 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10463 { 10464 static NeonGenTwo64OpFn * const fns[3][2] = { 10465 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10466 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10467 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10468 }; 10469 NeonGenTwo64OpFn *genfn; 10470 assert(size < 3); 10471 10472 genfn = fns[size][is_sub]; 10473 genfn(tcg_res, tcg_op1, tcg_op2); 10474 } 10475 10476 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10477 int opcode, int rd, int rn, int rm) 10478 { 10479 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10480 TCGv_i64 tcg_res[2]; 10481 int pass, accop; 10482 10483 tcg_res[0] = tcg_temp_new_i64(); 10484 tcg_res[1] = tcg_temp_new_i64(); 10485 10486 /* Does this op do an adding accumulate, a subtracting accumulate, 10487 * or no accumulate at all? 10488 */ 10489 switch (opcode) { 10490 case 5: 10491 case 8: 10492 case 9: 10493 accop = 1; 10494 break; 10495 case 10: 10496 case 11: 10497 accop = -1; 10498 break; 10499 default: 10500 accop = 0; 10501 break; 10502 } 10503 10504 if (accop != 0) { 10505 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10506 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10507 } 10508 10509 /* size == 2 means two 32x32->64 operations; this is worth special 10510 * casing because we can generally handle it inline. 10511 */ 10512 if (size == 2) { 10513 for (pass = 0; pass < 2; pass++) { 10514 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10515 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10516 TCGv_i64 tcg_passres; 10517 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10518 10519 int elt = pass + is_q * 2; 10520 10521 read_vec_element(s, tcg_op1, rn, elt, memop); 10522 read_vec_element(s, tcg_op2, rm, elt, memop); 10523 10524 if (accop == 0) { 10525 tcg_passres = tcg_res[pass]; 10526 } else { 10527 tcg_passres = tcg_temp_new_i64(); 10528 } 10529 10530 switch (opcode) { 10531 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10532 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10533 break; 10534 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10535 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10536 break; 10537 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10538 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10539 { 10540 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10541 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10542 10543 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10544 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10545 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10546 tcg_passres, 10547 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10548 break; 10549 } 10550 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10551 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10552 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10553 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10554 break; 10555 case 9: /* SQDMLAL, SQDMLAL2 */ 10556 case 11: /* SQDMLSL, SQDMLSL2 */ 10557 case 13: /* SQDMULL, SQDMULL2 */ 10558 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10559 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10560 tcg_passres, tcg_passres); 10561 break; 10562 default: 10563 g_assert_not_reached(); 10564 } 10565 10566 if (opcode == 9 || opcode == 11) { 10567 /* saturating accumulate ops */ 10568 if (accop < 0) { 10569 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10570 } 10571 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10572 tcg_res[pass], tcg_passres); 10573 } else if (accop > 0) { 10574 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10575 } else if (accop < 0) { 10576 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10577 } 10578 } 10579 } else { 10580 /* size 0 or 1, generally helper functions */ 10581 for (pass = 0; pass < 2; pass++) { 10582 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10583 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10584 TCGv_i64 tcg_passres; 10585 int elt = pass + is_q * 2; 10586 10587 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10588 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10589 10590 if (accop == 0) { 10591 tcg_passres = tcg_res[pass]; 10592 } else { 10593 tcg_passres = tcg_temp_new_i64(); 10594 } 10595 10596 switch (opcode) { 10597 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10598 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10599 { 10600 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10601 static NeonGenWidenFn * const widenfns[2][2] = { 10602 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10603 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10604 }; 10605 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10606 10607 widenfn(tcg_op2_64, tcg_op2); 10608 widenfn(tcg_passres, tcg_op1); 10609 gen_neon_addl(size, (opcode == 2), tcg_passres, 10610 tcg_passres, tcg_op2_64); 10611 break; 10612 } 10613 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10614 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10615 if (size == 0) { 10616 if (is_u) { 10617 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10618 } else { 10619 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10620 } 10621 } else { 10622 if (is_u) { 10623 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10624 } else { 10625 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10626 } 10627 } 10628 break; 10629 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10630 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10631 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10632 if (size == 0) { 10633 if (is_u) { 10634 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10635 } else { 10636 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10637 } 10638 } else { 10639 if (is_u) { 10640 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10641 } else { 10642 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10643 } 10644 } 10645 break; 10646 case 9: /* SQDMLAL, SQDMLAL2 */ 10647 case 11: /* SQDMLSL, SQDMLSL2 */ 10648 case 13: /* SQDMULL, SQDMULL2 */ 10649 assert(size == 1); 10650 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10651 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10652 tcg_passres, tcg_passres); 10653 break; 10654 default: 10655 g_assert_not_reached(); 10656 } 10657 10658 if (accop != 0) { 10659 if (opcode == 9 || opcode == 11) { 10660 /* saturating accumulate ops */ 10661 if (accop < 0) { 10662 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10663 } 10664 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10665 tcg_res[pass], 10666 tcg_passres); 10667 } else { 10668 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10669 tcg_res[pass], tcg_passres); 10670 } 10671 } 10672 } 10673 } 10674 10675 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10676 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10677 } 10678 10679 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10680 int opcode, int rd, int rn, int rm) 10681 { 10682 TCGv_i64 tcg_res[2]; 10683 int part = is_q ? 2 : 0; 10684 int pass; 10685 10686 for (pass = 0; pass < 2; pass++) { 10687 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10688 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10689 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10690 static NeonGenWidenFn * const widenfns[3][2] = { 10691 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10692 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10693 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10694 }; 10695 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10696 10697 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10698 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10699 widenfn(tcg_op2_wide, tcg_op2); 10700 tcg_res[pass] = tcg_temp_new_i64(); 10701 gen_neon_addl(size, (opcode == 3), 10702 tcg_res[pass], tcg_op1, tcg_op2_wide); 10703 } 10704 10705 for (pass = 0; pass < 2; pass++) { 10706 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10707 } 10708 } 10709 10710 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10711 { 10712 tcg_gen_addi_i64(in, in, 1U << 31); 10713 tcg_gen_extrh_i64_i32(res, in); 10714 } 10715 10716 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10717 int opcode, int rd, int rn, int rm) 10718 { 10719 TCGv_i32 tcg_res[2]; 10720 int part = is_q ? 2 : 0; 10721 int pass; 10722 10723 for (pass = 0; pass < 2; pass++) { 10724 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10725 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10726 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10727 static NeonGenNarrowFn * const narrowfns[3][2] = { 10728 { gen_helper_neon_narrow_high_u8, 10729 gen_helper_neon_narrow_round_high_u8 }, 10730 { gen_helper_neon_narrow_high_u16, 10731 gen_helper_neon_narrow_round_high_u16 }, 10732 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10733 }; 10734 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10735 10736 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10737 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10738 10739 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10740 10741 tcg_res[pass] = tcg_temp_new_i32(); 10742 gennarrow(tcg_res[pass], tcg_wideres); 10743 } 10744 10745 for (pass = 0; pass < 2; pass++) { 10746 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10747 } 10748 clear_vec_high(s, is_q, rd); 10749 } 10750 10751 /* AdvSIMD three different 10752 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10753 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10754 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10755 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10756 */ 10757 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10758 { 10759 /* Instructions in this group fall into three basic classes 10760 * (in each case with the operation working on each element in 10761 * the input vectors): 10762 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10763 * 128 bit input) 10764 * (2) wide 64 x 128 -> 128 10765 * (3) narrowing 128 x 128 -> 64 10766 * Here we do initial decode, catch unallocated cases and 10767 * dispatch to separate functions for each class. 10768 */ 10769 int is_q = extract32(insn, 30, 1); 10770 int is_u = extract32(insn, 29, 1); 10771 int size = extract32(insn, 22, 2); 10772 int opcode = extract32(insn, 12, 4); 10773 int rm = extract32(insn, 16, 5); 10774 int rn = extract32(insn, 5, 5); 10775 int rd = extract32(insn, 0, 5); 10776 10777 switch (opcode) { 10778 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10779 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10780 /* 64 x 128 -> 128 */ 10781 if (size == 3) { 10782 unallocated_encoding(s); 10783 return; 10784 } 10785 if (!fp_access_check(s)) { 10786 return; 10787 } 10788 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10789 break; 10790 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10791 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10792 /* 128 x 128 -> 64 */ 10793 if (size == 3) { 10794 unallocated_encoding(s); 10795 return; 10796 } 10797 if (!fp_access_check(s)) { 10798 return; 10799 } 10800 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10801 break; 10802 case 14: /* PMULL, PMULL2 */ 10803 if (is_u) { 10804 unallocated_encoding(s); 10805 return; 10806 } 10807 switch (size) { 10808 case 0: /* PMULL.P8 */ 10809 if (!fp_access_check(s)) { 10810 return; 10811 } 10812 /* The Q field specifies lo/hi half input for this insn. */ 10813 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10814 gen_helper_neon_pmull_h); 10815 break; 10816 10817 case 3: /* PMULL.P64 */ 10818 if (!dc_isar_feature(aa64_pmull, s)) { 10819 unallocated_encoding(s); 10820 return; 10821 } 10822 if (!fp_access_check(s)) { 10823 return; 10824 } 10825 /* The Q field specifies lo/hi half input for this insn. */ 10826 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10827 gen_helper_gvec_pmull_q); 10828 break; 10829 10830 default: 10831 unallocated_encoding(s); 10832 break; 10833 } 10834 return; 10835 case 9: /* SQDMLAL, SQDMLAL2 */ 10836 case 11: /* SQDMLSL, SQDMLSL2 */ 10837 case 13: /* SQDMULL, SQDMULL2 */ 10838 if (is_u || size == 0) { 10839 unallocated_encoding(s); 10840 return; 10841 } 10842 /* fall through */ 10843 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10844 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10845 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10846 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10847 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10848 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10849 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10850 /* 64 x 64 -> 128 */ 10851 if (size == 3) { 10852 unallocated_encoding(s); 10853 return; 10854 } 10855 if (!fp_access_check(s)) { 10856 return; 10857 } 10858 10859 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10860 break; 10861 default: 10862 /* opcode 15 not allocated */ 10863 unallocated_encoding(s); 10864 break; 10865 } 10866 } 10867 10868 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10869 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10870 { 10871 int rd = extract32(insn, 0, 5); 10872 int rn = extract32(insn, 5, 5); 10873 int rm = extract32(insn, 16, 5); 10874 int size = extract32(insn, 22, 2); 10875 bool is_u = extract32(insn, 29, 1); 10876 bool is_q = extract32(insn, 30, 1); 10877 10878 if (!fp_access_check(s)) { 10879 return; 10880 } 10881 10882 switch (size + 4 * is_u) { 10883 case 0: /* AND */ 10884 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10885 return; 10886 case 1: /* BIC */ 10887 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10888 return; 10889 case 2: /* ORR */ 10890 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10891 return; 10892 case 3: /* ORN */ 10893 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10894 return; 10895 case 4: /* EOR */ 10896 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10897 return; 10898 10899 case 5: /* BSL bitwise select */ 10900 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10901 return; 10902 case 6: /* BIT, bitwise insert if true */ 10903 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10904 return; 10905 case 7: /* BIF, bitwise insert if false */ 10906 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10907 return; 10908 10909 default: 10910 g_assert_not_reached(); 10911 } 10912 } 10913 10914 /* Floating point op subgroup of C3.6.16. */ 10915 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10916 { 10917 /* For floating point ops, the U, size[1] and opcode bits 10918 * together indicate the operation. size[0] indicates single 10919 * or double. 10920 */ 10921 int fpopcode = extract32(insn, 11, 5) 10922 | (extract32(insn, 23, 1) << 5) 10923 | (extract32(insn, 29, 1) << 6); 10924 int is_q = extract32(insn, 30, 1); 10925 int size = extract32(insn, 22, 1); 10926 int rm = extract32(insn, 16, 5); 10927 int rn = extract32(insn, 5, 5); 10928 int rd = extract32(insn, 0, 5); 10929 10930 if (size == 1 && !is_q) { 10931 unallocated_encoding(s); 10932 return; 10933 } 10934 10935 switch (fpopcode) { 10936 case 0x1d: /* FMLAL */ 10937 case 0x3d: /* FMLSL */ 10938 case 0x59: /* FMLAL2 */ 10939 case 0x79: /* FMLSL2 */ 10940 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10941 unallocated_encoding(s); 10942 return; 10943 } 10944 if (fp_access_check(s)) { 10945 int is_s = extract32(insn, 23, 1); 10946 int is_2 = extract32(insn, 29, 1); 10947 int data = (is_2 << 1) | is_s; 10948 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10949 vec_full_reg_offset(s, rn), 10950 vec_full_reg_offset(s, rm), tcg_env, 10951 is_q ? 16 : 8, vec_full_reg_size(s), 10952 data, gen_helper_gvec_fmlal_a64); 10953 } 10954 return; 10955 10956 default: 10957 case 0x18: /* FMAXNM */ 10958 case 0x19: /* FMLA */ 10959 case 0x1a: /* FADD */ 10960 case 0x1b: /* FMULX */ 10961 case 0x1c: /* FCMEQ */ 10962 case 0x1e: /* FMAX */ 10963 case 0x1f: /* FRECPS */ 10964 case 0x38: /* FMINNM */ 10965 case 0x39: /* FMLS */ 10966 case 0x3a: /* FSUB */ 10967 case 0x3e: /* FMIN */ 10968 case 0x3f: /* FRSQRTS */ 10969 case 0x58: /* FMAXNMP */ 10970 case 0x5a: /* FADDP */ 10971 case 0x5b: /* FMUL */ 10972 case 0x5c: /* FCMGE */ 10973 case 0x5d: /* FACGE */ 10974 case 0x5e: /* FMAXP */ 10975 case 0x5f: /* FDIV */ 10976 case 0x78: /* FMINNMP */ 10977 case 0x7a: /* FABD */ 10978 case 0x7d: /* FACGT */ 10979 case 0x7c: /* FCMGT */ 10980 case 0x7e: /* FMINP */ 10981 unallocated_encoding(s); 10982 return; 10983 } 10984 } 10985 10986 /* Integer op subgroup of C3.6.16. */ 10987 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10988 { 10989 int is_q = extract32(insn, 30, 1); 10990 int u = extract32(insn, 29, 1); 10991 int size = extract32(insn, 22, 2); 10992 int opcode = extract32(insn, 11, 5); 10993 int rm = extract32(insn, 16, 5); 10994 int rn = extract32(insn, 5, 5); 10995 int rd = extract32(insn, 0, 5); 10996 int pass; 10997 TCGCond cond; 10998 10999 switch (opcode) { 11000 case 0x13: /* MUL, PMUL */ 11001 if (u && size != 0) { 11002 unallocated_encoding(s); 11003 return; 11004 } 11005 /* fall through */ 11006 case 0x0: /* SHADD, UHADD */ 11007 case 0x2: /* SRHADD, URHADD */ 11008 case 0x4: /* SHSUB, UHSUB */ 11009 case 0xc: /* SMAX, UMAX */ 11010 case 0xd: /* SMIN, UMIN */ 11011 case 0xe: /* SABD, UABD */ 11012 case 0xf: /* SABA, UABA */ 11013 case 0x12: /* MLA, MLS */ 11014 if (size == 3) { 11015 unallocated_encoding(s); 11016 return; 11017 } 11018 break; 11019 case 0x16: /* SQDMULH, SQRDMULH */ 11020 if (size == 0 || size == 3) { 11021 unallocated_encoding(s); 11022 return; 11023 } 11024 break; 11025 default: 11026 if (size == 3 && !is_q) { 11027 unallocated_encoding(s); 11028 return; 11029 } 11030 break; 11031 } 11032 11033 if (!fp_access_check(s)) { 11034 return; 11035 } 11036 11037 switch (opcode) { 11038 case 0x01: /* SQADD, UQADD */ 11039 if (u) { 11040 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11041 } else { 11042 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11043 } 11044 return; 11045 case 0x05: /* SQSUB, UQSUB */ 11046 if (u) { 11047 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11048 } else { 11049 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11050 } 11051 return; 11052 case 0x08: /* SSHL, USHL */ 11053 if (u) { 11054 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11055 } else { 11056 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11057 } 11058 return; 11059 case 0x0c: /* SMAX, UMAX */ 11060 if (u) { 11061 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11062 } else { 11063 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11064 } 11065 return; 11066 case 0x0d: /* SMIN, UMIN */ 11067 if (u) { 11068 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11069 } else { 11070 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11071 } 11072 return; 11073 case 0xe: /* SABD, UABD */ 11074 if (u) { 11075 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11076 } else { 11077 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11078 } 11079 return; 11080 case 0xf: /* SABA, UABA */ 11081 if (u) { 11082 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11083 } else { 11084 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11085 } 11086 return; 11087 case 0x10: /* ADD, SUB */ 11088 if (u) { 11089 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11090 } else { 11091 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11092 } 11093 return; 11094 case 0x13: /* MUL, PMUL */ 11095 if (!u) { /* MUL */ 11096 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11097 } else { /* PMUL */ 11098 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11099 } 11100 return; 11101 case 0x12: /* MLA, MLS */ 11102 if (u) { 11103 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11104 } else { 11105 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11106 } 11107 return; 11108 case 0x16: /* SQDMULH, SQRDMULH */ 11109 { 11110 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11111 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11112 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11113 }; 11114 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11115 } 11116 return; 11117 case 0x11: 11118 if (!u) { /* CMTST */ 11119 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11120 return; 11121 } 11122 /* else CMEQ */ 11123 cond = TCG_COND_EQ; 11124 goto do_gvec_cmp; 11125 case 0x06: /* CMGT, CMHI */ 11126 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11127 goto do_gvec_cmp; 11128 case 0x07: /* CMGE, CMHS */ 11129 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11130 do_gvec_cmp: 11131 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11132 vec_full_reg_offset(s, rn), 11133 vec_full_reg_offset(s, rm), 11134 is_q ? 16 : 8, vec_full_reg_size(s)); 11135 return; 11136 } 11137 11138 if (size == 3) { 11139 assert(is_q); 11140 for (pass = 0; pass < 2; pass++) { 11141 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11142 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11143 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11144 11145 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11146 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11147 11148 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11149 11150 write_vec_element(s, tcg_res, rd, pass, MO_64); 11151 } 11152 } else { 11153 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11154 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11155 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11156 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11157 NeonGenTwoOpFn *genfn = NULL; 11158 NeonGenTwoOpEnvFn *genenvfn = NULL; 11159 11160 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11161 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11162 11163 switch (opcode) { 11164 case 0x0: /* SHADD, UHADD */ 11165 { 11166 static NeonGenTwoOpFn * const fns[3][2] = { 11167 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11168 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11169 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11170 }; 11171 genfn = fns[size][u]; 11172 break; 11173 } 11174 case 0x2: /* SRHADD, URHADD */ 11175 { 11176 static NeonGenTwoOpFn * const fns[3][2] = { 11177 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11178 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11179 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11180 }; 11181 genfn = fns[size][u]; 11182 break; 11183 } 11184 case 0x4: /* SHSUB, UHSUB */ 11185 { 11186 static NeonGenTwoOpFn * const fns[3][2] = { 11187 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11188 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11189 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11190 }; 11191 genfn = fns[size][u]; 11192 break; 11193 } 11194 case 0x9: /* SQSHL, UQSHL */ 11195 { 11196 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11197 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11198 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11199 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11200 }; 11201 genenvfn = fns[size][u]; 11202 break; 11203 } 11204 case 0xa: /* SRSHL, URSHL */ 11205 { 11206 static NeonGenTwoOpFn * const fns[3][2] = { 11207 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11208 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11209 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11210 }; 11211 genfn = fns[size][u]; 11212 break; 11213 } 11214 case 0xb: /* SQRSHL, UQRSHL */ 11215 { 11216 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11217 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11218 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11219 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11220 }; 11221 genenvfn = fns[size][u]; 11222 break; 11223 } 11224 default: 11225 g_assert_not_reached(); 11226 } 11227 11228 if (genenvfn) { 11229 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11230 } else { 11231 genfn(tcg_res, tcg_op1, tcg_op2); 11232 } 11233 11234 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11235 } 11236 } 11237 clear_vec_high(s, is_q, rd); 11238 } 11239 11240 /* AdvSIMD three same 11241 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11242 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11243 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11244 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11245 */ 11246 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11247 { 11248 int opcode = extract32(insn, 11, 5); 11249 11250 switch (opcode) { 11251 case 0x3: /* logic ops */ 11252 disas_simd_3same_logic(s, insn); 11253 break; 11254 case 0x18 ... 0x31: 11255 /* floating point ops, sz[1] and U are part of opcode */ 11256 disas_simd_3same_float(s, insn); 11257 break; 11258 default: 11259 disas_simd_3same_int(s, insn); 11260 break; 11261 case 0x14: /* SMAXP, UMAXP */ 11262 case 0x15: /* SMINP, UMINP */ 11263 case 0x17: /* ADDP */ 11264 unallocated_encoding(s); 11265 break; 11266 } 11267 } 11268 11269 /* AdvSIMD three same extra 11270 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11271 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11272 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11273 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11274 */ 11275 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11276 { 11277 int rd = extract32(insn, 0, 5); 11278 int rn = extract32(insn, 5, 5); 11279 int opcode = extract32(insn, 11, 4); 11280 int rm = extract32(insn, 16, 5); 11281 int size = extract32(insn, 22, 2); 11282 bool u = extract32(insn, 29, 1); 11283 bool is_q = extract32(insn, 30, 1); 11284 bool feature; 11285 int rot; 11286 11287 switch (u * 16 + opcode) { 11288 case 0x10: /* SQRDMLAH (vector) */ 11289 case 0x11: /* SQRDMLSH (vector) */ 11290 if (size != 1 && size != 2) { 11291 unallocated_encoding(s); 11292 return; 11293 } 11294 feature = dc_isar_feature(aa64_rdm, s); 11295 break; 11296 case 0x02: /* SDOT (vector) */ 11297 case 0x12: /* UDOT (vector) */ 11298 if (size != MO_32) { 11299 unallocated_encoding(s); 11300 return; 11301 } 11302 feature = dc_isar_feature(aa64_dp, s); 11303 break; 11304 case 0x03: /* USDOT */ 11305 if (size != MO_32) { 11306 unallocated_encoding(s); 11307 return; 11308 } 11309 feature = dc_isar_feature(aa64_i8mm, s); 11310 break; 11311 case 0x04: /* SMMLA */ 11312 case 0x14: /* UMMLA */ 11313 case 0x05: /* USMMLA */ 11314 if (!is_q || size != MO_32) { 11315 unallocated_encoding(s); 11316 return; 11317 } 11318 feature = dc_isar_feature(aa64_i8mm, s); 11319 break; 11320 case 0x18: /* FCMLA, #0 */ 11321 case 0x19: /* FCMLA, #90 */ 11322 case 0x1a: /* FCMLA, #180 */ 11323 case 0x1b: /* FCMLA, #270 */ 11324 case 0x1c: /* FCADD, #90 */ 11325 case 0x1e: /* FCADD, #270 */ 11326 if (size == 0 11327 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11328 || (size == 3 && !is_q)) { 11329 unallocated_encoding(s); 11330 return; 11331 } 11332 feature = dc_isar_feature(aa64_fcma, s); 11333 break; 11334 case 0x1d: /* BFMMLA */ 11335 if (size != MO_16 || !is_q) { 11336 unallocated_encoding(s); 11337 return; 11338 } 11339 feature = dc_isar_feature(aa64_bf16, s); 11340 break; 11341 case 0x1f: 11342 switch (size) { 11343 case 1: /* BFDOT */ 11344 case 3: /* BFMLAL{B,T} */ 11345 feature = dc_isar_feature(aa64_bf16, s); 11346 break; 11347 default: 11348 unallocated_encoding(s); 11349 return; 11350 } 11351 break; 11352 default: 11353 unallocated_encoding(s); 11354 return; 11355 } 11356 if (!feature) { 11357 unallocated_encoding(s); 11358 return; 11359 } 11360 if (!fp_access_check(s)) { 11361 return; 11362 } 11363 11364 switch (opcode) { 11365 case 0x0: /* SQRDMLAH (vector) */ 11366 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11367 return; 11368 11369 case 0x1: /* SQRDMLSH (vector) */ 11370 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11371 return; 11372 11373 case 0x2: /* SDOT / UDOT */ 11374 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11375 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11376 return; 11377 11378 case 0x3: /* USDOT */ 11379 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11380 return; 11381 11382 case 0x04: /* SMMLA, UMMLA */ 11383 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11384 u ? gen_helper_gvec_ummla_b 11385 : gen_helper_gvec_smmla_b); 11386 return; 11387 case 0x05: /* USMMLA */ 11388 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11389 return; 11390 11391 case 0x8: /* FCMLA, #0 */ 11392 case 0x9: /* FCMLA, #90 */ 11393 case 0xa: /* FCMLA, #180 */ 11394 case 0xb: /* FCMLA, #270 */ 11395 rot = extract32(opcode, 0, 2); 11396 switch (size) { 11397 case 1: 11398 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11399 gen_helper_gvec_fcmlah); 11400 break; 11401 case 2: 11402 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11403 gen_helper_gvec_fcmlas); 11404 break; 11405 case 3: 11406 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11407 gen_helper_gvec_fcmlad); 11408 break; 11409 default: 11410 g_assert_not_reached(); 11411 } 11412 return; 11413 11414 case 0xc: /* FCADD, #90 */ 11415 case 0xe: /* FCADD, #270 */ 11416 rot = extract32(opcode, 1, 1); 11417 switch (size) { 11418 case 1: 11419 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11420 gen_helper_gvec_fcaddh); 11421 break; 11422 case 2: 11423 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11424 gen_helper_gvec_fcadds); 11425 break; 11426 case 3: 11427 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11428 gen_helper_gvec_fcaddd); 11429 break; 11430 default: 11431 g_assert_not_reached(); 11432 } 11433 return; 11434 11435 case 0xd: /* BFMMLA */ 11436 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11437 return; 11438 case 0xf: 11439 switch (size) { 11440 case 1: /* BFDOT */ 11441 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11442 break; 11443 case 3: /* BFMLAL{B,T} */ 11444 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11445 gen_helper_gvec_bfmlal); 11446 break; 11447 default: 11448 g_assert_not_reached(); 11449 } 11450 return; 11451 11452 default: 11453 g_assert_not_reached(); 11454 } 11455 } 11456 11457 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11458 int size, int rn, int rd) 11459 { 11460 /* Handle 2-reg-misc ops which are widening (so each size element 11461 * in the source becomes a 2*size element in the destination. 11462 * The only instruction like this is FCVTL. 11463 */ 11464 int pass; 11465 11466 if (size == 3) { 11467 /* 32 -> 64 bit fp conversion */ 11468 TCGv_i64 tcg_res[2]; 11469 int srcelt = is_q ? 2 : 0; 11470 11471 for (pass = 0; pass < 2; pass++) { 11472 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11473 tcg_res[pass] = tcg_temp_new_i64(); 11474 11475 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11476 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11477 } 11478 for (pass = 0; pass < 2; pass++) { 11479 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11480 } 11481 } else { 11482 /* 16 -> 32 bit fp conversion */ 11483 int srcelt = is_q ? 4 : 0; 11484 TCGv_i32 tcg_res[4]; 11485 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11486 TCGv_i32 ahp = get_ahp_flag(); 11487 11488 for (pass = 0; pass < 4; pass++) { 11489 tcg_res[pass] = tcg_temp_new_i32(); 11490 11491 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11492 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11493 fpst, ahp); 11494 } 11495 for (pass = 0; pass < 4; pass++) { 11496 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11497 } 11498 } 11499 } 11500 11501 static void handle_rev(DisasContext *s, int opcode, bool u, 11502 bool is_q, int size, int rn, int rd) 11503 { 11504 int op = (opcode << 1) | u; 11505 int opsz = op + size; 11506 int grp_size = 3 - opsz; 11507 int dsize = is_q ? 128 : 64; 11508 int i; 11509 11510 if (opsz >= 3) { 11511 unallocated_encoding(s); 11512 return; 11513 } 11514 11515 if (!fp_access_check(s)) { 11516 return; 11517 } 11518 11519 if (size == 0) { 11520 /* Special case bytes, use bswap op on each group of elements */ 11521 int groups = dsize / (8 << grp_size); 11522 11523 for (i = 0; i < groups; i++) { 11524 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11525 11526 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11527 switch (grp_size) { 11528 case MO_16: 11529 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11530 break; 11531 case MO_32: 11532 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11533 break; 11534 case MO_64: 11535 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11536 break; 11537 default: 11538 g_assert_not_reached(); 11539 } 11540 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11541 } 11542 clear_vec_high(s, is_q, rd); 11543 } else { 11544 int revmask = (1 << grp_size) - 1; 11545 int esize = 8 << size; 11546 int elements = dsize / esize; 11547 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11548 TCGv_i64 tcg_rd[2]; 11549 11550 for (i = 0; i < 2; i++) { 11551 tcg_rd[i] = tcg_temp_new_i64(); 11552 tcg_gen_movi_i64(tcg_rd[i], 0); 11553 } 11554 11555 for (i = 0; i < elements; i++) { 11556 int e_rev = (i & 0xf) ^ revmask; 11557 int w = (e_rev * esize) / 64; 11558 int o = (e_rev * esize) % 64; 11559 11560 read_vec_element(s, tcg_rn, rn, i, size); 11561 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11562 } 11563 11564 for (i = 0; i < 2; i++) { 11565 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11566 } 11567 clear_vec_high(s, true, rd); 11568 } 11569 } 11570 11571 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11572 bool is_q, int size, int rn, int rd) 11573 { 11574 /* Implement the pairwise operations from 2-misc: 11575 * SADDLP, UADDLP, SADALP, UADALP. 11576 * These all add pairs of elements in the input to produce a 11577 * double-width result element in the output (possibly accumulating). 11578 */ 11579 bool accum = (opcode == 0x6); 11580 int maxpass = is_q ? 2 : 1; 11581 int pass; 11582 TCGv_i64 tcg_res[2]; 11583 11584 if (size == 2) { 11585 /* 32 + 32 -> 64 op */ 11586 MemOp memop = size + (u ? 0 : MO_SIGN); 11587 11588 for (pass = 0; pass < maxpass; pass++) { 11589 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11590 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11591 11592 tcg_res[pass] = tcg_temp_new_i64(); 11593 11594 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11595 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11596 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11597 if (accum) { 11598 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11599 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11600 } 11601 } 11602 } else { 11603 for (pass = 0; pass < maxpass; pass++) { 11604 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11605 NeonGenOne64OpFn *genfn; 11606 static NeonGenOne64OpFn * const fns[2][2] = { 11607 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11608 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11609 }; 11610 11611 genfn = fns[size][u]; 11612 11613 tcg_res[pass] = tcg_temp_new_i64(); 11614 11615 read_vec_element(s, tcg_op, rn, pass, MO_64); 11616 genfn(tcg_res[pass], tcg_op); 11617 11618 if (accum) { 11619 read_vec_element(s, tcg_op, rd, pass, MO_64); 11620 if (size == 0) { 11621 gen_helper_neon_addl_u16(tcg_res[pass], 11622 tcg_res[pass], tcg_op); 11623 } else { 11624 gen_helper_neon_addl_u32(tcg_res[pass], 11625 tcg_res[pass], tcg_op); 11626 } 11627 } 11628 } 11629 } 11630 if (!is_q) { 11631 tcg_res[1] = tcg_constant_i64(0); 11632 } 11633 for (pass = 0; pass < 2; pass++) { 11634 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11635 } 11636 } 11637 11638 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11639 { 11640 /* Implement SHLL and SHLL2 */ 11641 int pass; 11642 int part = is_q ? 2 : 0; 11643 TCGv_i64 tcg_res[2]; 11644 11645 for (pass = 0; pass < 2; pass++) { 11646 static NeonGenWidenFn * const widenfns[3] = { 11647 gen_helper_neon_widen_u8, 11648 gen_helper_neon_widen_u16, 11649 tcg_gen_extu_i32_i64, 11650 }; 11651 NeonGenWidenFn *widenfn = widenfns[size]; 11652 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11653 11654 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11655 tcg_res[pass] = tcg_temp_new_i64(); 11656 widenfn(tcg_res[pass], tcg_op); 11657 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11658 } 11659 11660 for (pass = 0; pass < 2; pass++) { 11661 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11662 } 11663 } 11664 11665 /* AdvSIMD two reg misc 11666 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11667 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11668 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11669 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11670 */ 11671 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11672 { 11673 int size = extract32(insn, 22, 2); 11674 int opcode = extract32(insn, 12, 5); 11675 bool u = extract32(insn, 29, 1); 11676 bool is_q = extract32(insn, 30, 1); 11677 int rn = extract32(insn, 5, 5); 11678 int rd = extract32(insn, 0, 5); 11679 bool need_fpstatus = false; 11680 int rmode = -1; 11681 TCGv_i32 tcg_rmode; 11682 TCGv_ptr tcg_fpstatus; 11683 11684 switch (opcode) { 11685 case 0x0: /* REV64, REV32 */ 11686 case 0x1: /* REV16 */ 11687 handle_rev(s, opcode, u, is_q, size, rn, rd); 11688 return; 11689 case 0x5: /* CNT, NOT, RBIT */ 11690 if (u && size == 0) { 11691 /* NOT */ 11692 break; 11693 } else if (u && size == 1) { 11694 /* RBIT */ 11695 break; 11696 } else if (!u && size == 0) { 11697 /* CNT */ 11698 break; 11699 } 11700 unallocated_encoding(s); 11701 return; 11702 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11703 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11704 if (size == 3) { 11705 unallocated_encoding(s); 11706 return; 11707 } 11708 if (!fp_access_check(s)) { 11709 return; 11710 } 11711 11712 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11713 return; 11714 case 0x4: /* CLS, CLZ */ 11715 if (size == 3) { 11716 unallocated_encoding(s); 11717 return; 11718 } 11719 break; 11720 case 0x2: /* SADDLP, UADDLP */ 11721 case 0x6: /* SADALP, UADALP */ 11722 if (size == 3) { 11723 unallocated_encoding(s); 11724 return; 11725 } 11726 if (!fp_access_check(s)) { 11727 return; 11728 } 11729 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11730 return; 11731 case 0x13: /* SHLL, SHLL2 */ 11732 if (u == 0 || size == 3) { 11733 unallocated_encoding(s); 11734 return; 11735 } 11736 if (!fp_access_check(s)) { 11737 return; 11738 } 11739 handle_shll(s, is_q, size, rn, rd); 11740 return; 11741 case 0xa: /* CMLT */ 11742 if (u == 1) { 11743 unallocated_encoding(s); 11744 return; 11745 } 11746 /* fall through */ 11747 case 0x8: /* CMGT, CMGE */ 11748 case 0x9: /* CMEQ, CMLE */ 11749 case 0xb: /* ABS, NEG */ 11750 if (size == 3 && !is_q) { 11751 unallocated_encoding(s); 11752 return; 11753 } 11754 break; 11755 case 0x3: /* SUQADD, USQADD */ 11756 if (size == 3 && !is_q) { 11757 unallocated_encoding(s); 11758 return; 11759 } 11760 if (!fp_access_check(s)) { 11761 return; 11762 } 11763 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11764 return; 11765 case 0x7: /* SQABS, SQNEG */ 11766 if (size == 3 && !is_q) { 11767 unallocated_encoding(s); 11768 return; 11769 } 11770 break; 11771 case 0xc ... 0xf: 11772 case 0x16 ... 0x1f: 11773 { 11774 /* Floating point: U, size[1] and opcode indicate operation; 11775 * size[0] indicates single or double precision. 11776 */ 11777 int is_double = extract32(size, 0, 1); 11778 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11779 size = is_double ? 3 : 2; 11780 switch (opcode) { 11781 case 0x2f: /* FABS */ 11782 case 0x6f: /* FNEG */ 11783 if (size == 3 && !is_q) { 11784 unallocated_encoding(s); 11785 return; 11786 } 11787 break; 11788 case 0x1d: /* SCVTF */ 11789 case 0x5d: /* UCVTF */ 11790 { 11791 bool is_signed = (opcode == 0x1d) ? true : false; 11792 int elements = is_double ? 2 : is_q ? 4 : 2; 11793 if (is_double && !is_q) { 11794 unallocated_encoding(s); 11795 return; 11796 } 11797 if (!fp_access_check(s)) { 11798 return; 11799 } 11800 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11801 return; 11802 } 11803 case 0x2c: /* FCMGT (zero) */ 11804 case 0x2d: /* FCMEQ (zero) */ 11805 case 0x2e: /* FCMLT (zero) */ 11806 case 0x6c: /* FCMGE (zero) */ 11807 case 0x6d: /* FCMLE (zero) */ 11808 if (size == 3 && !is_q) { 11809 unallocated_encoding(s); 11810 return; 11811 } 11812 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11813 return; 11814 case 0x7f: /* FSQRT */ 11815 if (size == 3 && !is_q) { 11816 unallocated_encoding(s); 11817 return; 11818 } 11819 break; 11820 case 0x1a: /* FCVTNS */ 11821 case 0x1b: /* FCVTMS */ 11822 case 0x3a: /* FCVTPS */ 11823 case 0x3b: /* FCVTZS */ 11824 case 0x5a: /* FCVTNU */ 11825 case 0x5b: /* FCVTMU */ 11826 case 0x7a: /* FCVTPU */ 11827 case 0x7b: /* FCVTZU */ 11828 need_fpstatus = true; 11829 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11830 if (size == 3 && !is_q) { 11831 unallocated_encoding(s); 11832 return; 11833 } 11834 break; 11835 case 0x5c: /* FCVTAU */ 11836 case 0x1c: /* FCVTAS */ 11837 need_fpstatus = true; 11838 rmode = FPROUNDING_TIEAWAY; 11839 if (size == 3 && !is_q) { 11840 unallocated_encoding(s); 11841 return; 11842 } 11843 break; 11844 case 0x3c: /* URECPE */ 11845 if (size == 3) { 11846 unallocated_encoding(s); 11847 return; 11848 } 11849 /* fall through */ 11850 case 0x3d: /* FRECPE */ 11851 case 0x7d: /* FRSQRTE */ 11852 if (size == 3 && !is_q) { 11853 unallocated_encoding(s); 11854 return; 11855 } 11856 if (!fp_access_check(s)) { 11857 return; 11858 } 11859 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11860 return; 11861 case 0x56: /* FCVTXN, FCVTXN2 */ 11862 if (size == 2) { 11863 unallocated_encoding(s); 11864 return; 11865 } 11866 /* fall through */ 11867 case 0x16: /* FCVTN, FCVTN2 */ 11868 /* handle_2misc_narrow does a 2*size -> size operation, but these 11869 * instructions encode the source size rather than dest size. 11870 */ 11871 if (!fp_access_check(s)) { 11872 return; 11873 } 11874 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11875 return; 11876 case 0x36: /* BFCVTN, BFCVTN2 */ 11877 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11878 unallocated_encoding(s); 11879 return; 11880 } 11881 if (!fp_access_check(s)) { 11882 return; 11883 } 11884 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11885 return; 11886 case 0x17: /* FCVTL, FCVTL2 */ 11887 if (!fp_access_check(s)) { 11888 return; 11889 } 11890 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11891 return; 11892 case 0x18: /* FRINTN */ 11893 case 0x19: /* FRINTM */ 11894 case 0x38: /* FRINTP */ 11895 case 0x39: /* FRINTZ */ 11896 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11897 /* fall through */ 11898 case 0x59: /* FRINTX */ 11899 case 0x79: /* FRINTI */ 11900 need_fpstatus = true; 11901 if (size == 3 && !is_q) { 11902 unallocated_encoding(s); 11903 return; 11904 } 11905 break; 11906 case 0x58: /* FRINTA */ 11907 rmode = FPROUNDING_TIEAWAY; 11908 need_fpstatus = true; 11909 if (size == 3 && !is_q) { 11910 unallocated_encoding(s); 11911 return; 11912 } 11913 break; 11914 case 0x7c: /* URSQRTE */ 11915 if (size == 3) { 11916 unallocated_encoding(s); 11917 return; 11918 } 11919 break; 11920 case 0x1e: /* FRINT32Z */ 11921 case 0x1f: /* FRINT64Z */ 11922 rmode = FPROUNDING_ZERO; 11923 /* fall through */ 11924 case 0x5e: /* FRINT32X */ 11925 case 0x5f: /* FRINT64X */ 11926 need_fpstatus = true; 11927 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 11928 unallocated_encoding(s); 11929 return; 11930 } 11931 break; 11932 default: 11933 unallocated_encoding(s); 11934 return; 11935 } 11936 break; 11937 } 11938 default: 11939 unallocated_encoding(s); 11940 return; 11941 } 11942 11943 if (!fp_access_check(s)) { 11944 return; 11945 } 11946 11947 if (need_fpstatus || rmode >= 0) { 11948 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 11949 } else { 11950 tcg_fpstatus = NULL; 11951 } 11952 if (rmode >= 0) { 11953 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11954 } else { 11955 tcg_rmode = NULL; 11956 } 11957 11958 switch (opcode) { 11959 case 0x5: 11960 if (u && size == 0) { /* NOT */ 11961 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 11962 return; 11963 } 11964 break; 11965 case 0x8: /* CMGT, CMGE */ 11966 if (u) { 11967 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 11968 } else { 11969 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 11970 } 11971 return; 11972 case 0x9: /* CMEQ, CMLE */ 11973 if (u) { 11974 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 11975 } else { 11976 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 11977 } 11978 return; 11979 case 0xa: /* CMLT */ 11980 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 11981 return; 11982 case 0xb: 11983 if (u) { /* ABS, NEG */ 11984 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 11985 } else { 11986 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 11987 } 11988 return; 11989 } 11990 11991 if (size == 3) { 11992 /* All 64-bit element operations can be shared with scalar 2misc */ 11993 int pass; 11994 11995 /* Coverity claims (size == 3 && !is_q) has been eliminated 11996 * from all paths leading to here. 11997 */ 11998 tcg_debug_assert(is_q); 11999 for (pass = 0; pass < 2; pass++) { 12000 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12001 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12002 12003 read_vec_element(s, tcg_op, rn, pass, MO_64); 12004 12005 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12006 tcg_rmode, tcg_fpstatus); 12007 12008 write_vec_element(s, tcg_res, rd, pass, MO_64); 12009 } 12010 } else { 12011 int pass; 12012 12013 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12014 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12015 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12016 12017 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12018 12019 if (size == 2) { 12020 /* Special cases for 32 bit elements */ 12021 switch (opcode) { 12022 case 0x4: /* CLS */ 12023 if (u) { 12024 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12025 } else { 12026 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12027 } 12028 break; 12029 case 0x7: /* SQABS, SQNEG */ 12030 if (u) { 12031 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12032 } else { 12033 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12034 } 12035 break; 12036 case 0x2f: /* FABS */ 12037 gen_vfp_abss(tcg_res, tcg_op); 12038 break; 12039 case 0x6f: /* FNEG */ 12040 gen_vfp_negs(tcg_res, tcg_op); 12041 break; 12042 case 0x7f: /* FSQRT */ 12043 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12044 break; 12045 case 0x1a: /* FCVTNS */ 12046 case 0x1b: /* FCVTMS */ 12047 case 0x1c: /* FCVTAS */ 12048 case 0x3a: /* FCVTPS */ 12049 case 0x3b: /* FCVTZS */ 12050 gen_helper_vfp_tosls(tcg_res, tcg_op, 12051 tcg_constant_i32(0), tcg_fpstatus); 12052 break; 12053 case 0x5a: /* FCVTNU */ 12054 case 0x5b: /* FCVTMU */ 12055 case 0x5c: /* FCVTAU */ 12056 case 0x7a: /* FCVTPU */ 12057 case 0x7b: /* FCVTZU */ 12058 gen_helper_vfp_touls(tcg_res, tcg_op, 12059 tcg_constant_i32(0), tcg_fpstatus); 12060 break; 12061 case 0x18: /* FRINTN */ 12062 case 0x19: /* FRINTM */ 12063 case 0x38: /* FRINTP */ 12064 case 0x39: /* FRINTZ */ 12065 case 0x58: /* FRINTA */ 12066 case 0x79: /* FRINTI */ 12067 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12068 break; 12069 case 0x59: /* FRINTX */ 12070 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12071 break; 12072 case 0x7c: /* URSQRTE */ 12073 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12074 break; 12075 case 0x1e: /* FRINT32Z */ 12076 case 0x5e: /* FRINT32X */ 12077 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12078 break; 12079 case 0x1f: /* FRINT64Z */ 12080 case 0x5f: /* FRINT64X */ 12081 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12082 break; 12083 default: 12084 g_assert_not_reached(); 12085 } 12086 } else { 12087 /* Use helpers for 8 and 16 bit elements */ 12088 switch (opcode) { 12089 case 0x5: /* CNT, RBIT */ 12090 /* For these two insns size is part of the opcode specifier 12091 * (handled earlier); they always operate on byte elements. 12092 */ 12093 if (u) { 12094 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12095 } else { 12096 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12097 } 12098 break; 12099 case 0x7: /* SQABS, SQNEG */ 12100 { 12101 NeonGenOneOpEnvFn *genfn; 12102 static NeonGenOneOpEnvFn * const fns[2][2] = { 12103 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12104 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12105 }; 12106 genfn = fns[size][u]; 12107 genfn(tcg_res, tcg_env, tcg_op); 12108 break; 12109 } 12110 case 0x4: /* CLS, CLZ */ 12111 if (u) { 12112 if (size == 0) { 12113 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12114 } else { 12115 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12116 } 12117 } else { 12118 if (size == 0) { 12119 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12120 } else { 12121 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12122 } 12123 } 12124 break; 12125 default: 12126 g_assert_not_reached(); 12127 } 12128 } 12129 12130 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12131 } 12132 } 12133 clear_vec_high(s, is_q, rd); 12134 12135 if (tcg_rmode) { 12136 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12137 } 12138 } 12139 12140 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12141 * 12142 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12143 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12144 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12145 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12146 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12147 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12148 * 12149 * This actually covers two groups where scalar access is governed by 12150 * bit 28. A bunch of the instructions (float to integral) only exist 12151 * in the vector form and are un-allocated for the scalar decode. Also 12152 * in the scalar decode Q is always 1. 12153 */ 12154 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12155 { 12156 int fpop, opcode, a, u; 12157 int rn, rd; 12158 bool is_q; 12159 bool is_scalar; 12160 bool only_in_vector = false; 12161 12162 int pass; 12163 TCGv_i32 tcg_rmode = NULL; 12164 TCGv_ptr tcg_fpstatus = NULL; 12165 bool need_fpst = true; 12166 int rmode = -1; 12167 12168 if (!dc_isar_feature(aa64_fp16, s)) { 12169 unallocated_encoding(s); 12170 return; 12171 } 12172 12173 rd = extract32(insn, 0, 5); 12174 rn = extract32(insn, 5, 5); 12175 12176 a = extract32(insn, 23, 1); 12177 u = extract32(insn, 29, 1); 12178 is_scalar = extract32(insn, 28, 1); 12179 is_q = extract32(insn, 30, 1); 12180 12181 opcode = extract32(insn, 12, 5); 12182 fpop = deposit32(opcode, 5, 1, a); 12183 fpop = deposit32(fpop, 6, 1, u); 12184 12185 switch (fpop) { 12186 case 0x1d: /* SCVTF */ 12187 case 0x5d: /* UCVTF */ 12188 { 12189 int elements; 12190 12191 if (is_scalar) { 12192 elements = 1; 12193 } else { 12194 elements = (is_q ? 8 : 4); 12195 } 12196 12197 if (!fp_access_check(s)) { 12198 return; 12199 } 12200 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12201 return; 12202 } 12203 break; 12204 case 0x2c: /* FCMGT (zero) */ 12205 case 0x2d: /* FCMEQ (zero) */ 12206 case 0x2e: /* FCMLT (zero) */ 12207 case 0x6c: /* FCMGE (zero) */ 12208 case 0x6d: /* FCMLE (zero) */ 12209 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12210 return; 12211 case 0x3d: /* FRECPE */ 12212 case 0x3f: /* FRECPX */ 12213 break; 12214 case 0x18: /* FRINTN */ 12215 only_in_vector = true; 12216 rmode = FPROUNDING_TIEEVEN; 12217 break; 12218 case 0x19: /* FRINTM */ 12219 only_in_vector = true; 12220 rmode = FPROUNDING_NEGINF; 12221 break; 12222 case 0x38: /* FRINTP */ 12223 only_in_vector = true; 12224 rmode = FPROUNDING_POSINF; 12225 break; 12226 case 0x39: /* FRINTZ */ 12227 only_in_vector = true; 12228 rmode = FPROUNDING_ZERO; 12229 break; 12230 case 0x58: /* FRINTA */ 12231 only_in_vector = true; 12232 rmode = FPROUNDING_TIEAWAY; 12233 break; 12234 case 0x59: /* FRINTX */ 12235 case 0x79: /* FRINTI */ 12236 only_in_vector = true; 12237 /* current rounding mode */ 12238 break; 12239 case 0x1a: /* FCVTNS */ 12240 rmode = FPROUNDING_TIEEVEN; 12241 break; 12242 case 0x1b: /* FCVTMS */ 12243 rmode = FPROUNDING_NEGINF; 12244 break; 12245 case 0x1c: /* FCVTAS */ 12246 rmode = FPROUNDING_TIEAWAY; 12247 break; 12248 case 0x3a: /* FCVTPS */ 12249 rmode = FPROUNDING_POSINF; 12250 break; 12251 case 0x3b: /* FCVTZS */ 12252 rmode = FPROUNDING_ZERO; 12253 break; 12254 case 0x5a: /* FCVTNU */ 12255 rmode = FPROUNDING_TIEEVEN; 12256 break; 12257 case 0x5b: /* FCVTMU */ 12258 rmode = FPROUNDING_NEGINF; 12259 break; 12260 case 0x5c: /* FCVTAU */ 12261 rmode = FPROUNDING_TIEAWAY; 12262 break; 12263 case 0x7a: /* FCVTPU */ 12264 rmode = FPROUNDING_POSINF; 12265 break; 12266 case 0x7b: /* FCVTZU */ 12267 rmode = FPROUNDING_ZERO; 12268 break; 12269 case 0x2f: /* FABS */ 12270 case 0x6f: /* FNEG */ 12271 need_fpst = false; 12272 break; 12273 case 0x7d: /* FRSQRTE */ 12274 case 0x7f: /* FSQRT (vector) */ 12275 break; 12276 default: 12277 unallocated_encoding(s); 12278 return; 12279 } 12280 12281 12282 /* Check additional constraints for the scalar encoding */ 12283 if (is_scalar) { 12284 if (!is_q) { 12285 unallocated_encoding(s); 12286 return; 12287 } 12288 /* FRINTxx is only in the vector form */ 12289 if (only_in_vector) { 12290 unallocated_encoding(s); 12291 return; 12292 } 12293 } 12294 12295 if (!fp_access_check(s)) { 12296 return; 12297 } 12298 12299 if (rmode >= 0 || need_fpst) { 12300 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12301 } 12302 12303 if (rmode >= 0) { 12304 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12305 } 12306 12307 if (is_scalar) { 12308 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12309 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12310 12311 switch (fpop) { 12312 case 0x1a: /* FCVTNS */ 12313 case 0x1b: /* FCVTMS */ 12314 case 0x1c: /* FCVTAS */ 12315 case 0x3a: /* FCVTPS */ 12316 case 0x3b: /* FCVTZS */ 12317 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12318 break; 12319 case 0x3d: /* FRECPE */ 12320 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12321 break; 12322 case 0x3f: /* FRECPX */ 12323 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12324 break; 12325 case 0x5a: /* FCVTNU */ 12326 case 0x5b: /* FCVTMU */ 12327 case 0x5c: /* FCVTAU */ 12328 case 0x7a: /* FCVTPU */ 12329 case 0x7b: /* FCVTZU */ 12330 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12331 break; 12332 case 0x6f: /* FNEG */ 12333 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12334 break; 12335 case 0x7d: /* FRSQRTE */ 12336 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12337 break; 12338 default: 12339 g_assert_not_reached(); 12340 } 12341 12342 /* limit any sign extension going on */ 12343 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12344 write_fp_sreg(s, rd, tcg_res); 12345 } else { 12346 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12347 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12348 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12349 12350 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12351 12352 switch (fpop) { 12353 case 0x1a: /* FCVTNS */ 12354 case 0x1b: /* FCVTMS */ 12355 case 0x1c: /* FCVTAS */ 12356 case 0x3a: /* FCVTPS */ 12357 case 0x3b: /* FCVTZS */ 12358 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12359 break; 12360 case 0x3d: /* FRECPE */ 12361 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12362 break; 12363 case 0x5a: /* FCVTNU */ 12364 case 0x5b: /* FCVTMU */ 12365 case 0x5c: /* FCVTAU */ 12366 case 0x7a: /* FCVTPU */ 12367 case 0x7b: /* FCVTZU */ 12368 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12369 break; 12370 case 0x18: /* FRINTN */ 12371 case 0x19: /* FRINTM */ 12372 case 0x38: /* FRINTP */ 12373 case 0x39: /* FRINTZ */ 12374 case 0x58: /* FRINTA */ 12375 case 0x79: /* FRINTI */ 12376 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12377 break; 12378 case 0x59: /* FRINTX */ 12379 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12380 break; 12381 case 0x2f: /* FABS */ 12382 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12383 break; 12384 case 0x6f: /* FNEG */ 12385 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12386 break; 12387 case 0x7d: /* FRSQRTE */ 12388 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12389 break; 12390 case 0x7f: /* FSQRT */ 12391 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12392 break; 12393 default: 12394 g_assert_not_reached(); 12395 } 12396 12397 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12398 } 12399 12400 clear_vec_high(s, is_q, rd); 12401 } 12402 12403 if (tcg_rmode) { 12404 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12405 } 12406 } 12407 12408 /* AdvSIMD scalar x indexed element 12409 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12410 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12411 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12412 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12413 * AdvSIMD vector x indexed element 12414 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12415 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12416 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12417 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12418 */ 12419 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12420 { 12421 /* This encoding has two kinds of instruction: 12422 * normal, where we perform elt x idxelt => elt for each 12423 * element in the vector 12424 * long, where we perform elt x idxelt and generate a result of 12425 * double the width of the input element 12426 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12427 */ 12428 bool is_scalar = extract32(insn, 28, 1); 12429 bool is_q = extract32(insn, 30, 1); 12430 bool u = extract32(insn, 29, 1); 12431 int size = extract32(insn, 22, 2); 12432 int l = extract32(insn, 21, 1); 12433 int m = extract32(insn, 20, 1); 12434 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12435 int rm = extract32(insn, 16, 4); 12436 int opcode = extract32(insn, 12, 4); 12437 int h = extract32(insn, 11, 1); 12438 int rn = extract32(insn, 5, 5); 12439 int rd = extract32(insn, 0, 5); 12440 bool is_long = false; 12441 int is_fp = 0; 12442 bool is_fp16 = false; 12443 int index; 12444 TCGv_ptr fpst; 12445 12446 switch (16 * u + opcode) { 12447 case 0x08: /* MUL */ 12448 case 0x10: /* MLA */ 12449 case 0x14: /* MLS */ 12450 if (is_scalar) { 12451 unallocated_encoding(s); 12452 return; 12453 } 12454 break; 12455 case 0x02: /* SMLAL, SMLAL2 */ 12456 case 0x12: /* UMLAL, UMLAL2 */ 12457 case 0x06: /* SMLSL, SMLSL2 */ 12458 case 0x16: /* UMLSL, UMLSL2 */ 12459 case 0x0a: /* SMULL, SMULL2 */ 12460 case 0x1a: /* UMULL, UMULL2 */ 12461 if (is_scalar) { 12462 unallocated_encoding(s); 12463 return; 12464 } 12465 is_long = true; 12466 break; 12467 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12468 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12469 case 0x0b: /* SQDMULL, SQDMULL2 */ 12470 is_long = true; 12471 break; 12472 case 0x0c: /* SQDMULH */ 12473 case 0x0d: /* SQRDMULH */ 12474 break; 12475 case 0x1d: /* SQRDMLAH */ 12476 case 0x1f: /* SQRDMLSH */ 12477 if (!dc_isar_feature(aa64_rdm, s)) { 12478 unallocated_encoding(s); 12479 return; 12480 } 12481 break; 12482 case 0x0e: /* SDOT */ 12483 case 0x1e: /* UDOT */ 12484 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12485 unallocated_encoding(s); 12486 return; 12487 } 12488 break; 12489 case 0x0f: 12490 switch (size) { 12491 case 0: /* SUDOT */ 12492 case 2: /* USDOT */ 12493 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12494 unallocated_encoding(s); 12495 return; 12496 } 12497 size = MO_32; 12498 break; 12499 case 1: /* BFDOT */ 12500 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12501 unallocated_encoding(s); 12502 return; 12503 } 12504 size = MO_32; 12505 break; 12506 case 3: /* BFMLAL{B,T} */ 12507 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12508 unallocated_encoding(s); 12509 return; 12510 } 12511 /* can't set is_fp without other incorrect size checks */ 12512 size = MO_16; 12513 break; 12514 default: 12515 unallocated_encoding(s); 12516 return; 12517 } 12518 break; 12519 case 0x11: /* FCMLA #0 */ 12520 case 0x13: /* FCMLA #90 */ 12521 case 0x15: /* FCMLA #180 */ 12522 case 0x17: /* FCMLA #270 */ 12523 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12524 unallocated_encoding(s); 12525 return; 12526 } 12527 is_fp = 2; 12528 break; 12529 case 0x00: /* FMLAL */ 12530 case 0x04: /* FMLSL */ 12531 case 0x18: /* FMLAL2 */ 12532 case 0x1c: /* FMLSL2 */ 12533 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12534 unallocated_encoding(s); 12535 return; 12536 } 12537 size = MO_16; 12538 /* is_fp, but we pass tcg_env not fp_status. */ 12539 break; 12540 default: 12541 case 0x01: /* FMLA */ 12542 case 0x05: /* FMLS */ 12543 case 0x09: /* FMUL */ 12544 case 0x19: /* FMULX */ 12545 unallocated_encoding(s); 12546 return; 12547 } 12548 12549 switch (is_fp) { 12550 case 1: /* normal fp */ 12551 unallocated_encoding(s); /* in decodetree */ 12552 return; 12553 12554 case 2: /* complex fp */ 12555 /* Each indexable element is a complex pair. */ 12556 size += 1; 12557 switch (size) { 12558 case MO_32: 12559 if (h && !is_q) { 12560 unallocated_encoding(s); 12561 return; 12562 } 12563 is_fp16 = true; 12564 break; 12565 case MO_64: 12566 break; 12567 default: 12568 unallocated_encoding(s); 12569 return; 12570 } 12571 break; 12572 12573 default: /* integer */ 12574 switch (size) { 12575 case MO_8: 12576 case MO_64: 12577 unallocated_encoding(s); 12578 return; 12579 } 12580 break; 12581 } 12582 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12583 unallocated_encoding(s); 12584 return; 12585 } 12586 12587 /* Given MemOp size, adjust register and indexing. */ 12588 switch (size) { 12589 case MO_16: 12590 index = h << 2 | l << 1 | m; 12591 break; 12592 case MO_32: 12593 index = h << 1 | l; 12594 rm |= m << 4; 12595 break; 12596 case MO_64: 12597 if (l || !is_q) { 12598 unallocated_encoding(s); 12599 return; 12600 } 12601 index = h; 12602 rm |= m << 4; 12603 break; 12604 default: 12605 g_assert_not_reached(); 12606 } 12607 12608 if (!fp_access_check(s)) { 12609 return; 12610 } 12611 12612 if (is_fp) { 12613 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12614 } else { 12615 fpst = NULL; 12616 } 12617 12618 switch (16 * u + opcode) { 12619 case 0x0e: /* SDOT */ 12620 case 0x1e: /* UDOT */ 12621 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12622 u ? gen_helper_gvec_udot_idx_b 12623 : gen_helper_gvec_sdot_idx_b); 12624 return; 12625 case 0x0f: 12626 switch (extract32(insn, 22, 2)) { 12627 case 0: /* SUDOT */ 12628 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12629 gen_helper_gvec_sudot_idx_b); 12630 return; 12631 case 1: /* BFDOT */ 12632 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12633 gen_helper_gvec_bfdot_idx); 12634 return; 12635 case 2: /* USDOT */ 12636 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12637 gen_helper_gvec_usdot_idx_b); 12638 return; 12639 case 3: /* BFMLAL{B,T} */ 12640 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12641 gen_helper_gvec_bfmlal_idx); 12642 return; 12643 } 12644 g_assert_not_reached(); 12645 case 0x11: /* FCMLA #0 */ 12646 case 0x13: /* FCMLA #90 */ 12647 case 0x15: /* FCMLA #180 */ 12648 case 0x17: /* FCMLA #270 */ 12649 { 12650 int rot = extract32(insn, 13, 2); 12651 int data = (index << 2) | rot; 12652 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12653 vec_full_reg_offset(s, rn), 12654 vec_full_reg_offset(s, rm), 12655 vec_full_reg_offset(s, rd), fpst, 12656 is_q ? 16 : 8, vec_full_reg_size(s), data, 12657 size == MO_64 12658 ? gen_helper_gvec_fcmlas_idx 12659 : gen_helper_gvec_fcmlah_idx); 12660 } 12661 return; 12662 12663 case 0x00: /* FMLAL */ 12664 case 0x04: /* FMLSL */ 12665 case 0x18: /* FMLAL2 */ 12666 case 0x1c: /* FMLSL2 */ 12667 { 12668 int is_s = extract32(opcode, 2, 1); 12669 int is_2 = u; 12670 int data = (index << 2) | (is_2 << 1) | is_s; 12671 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12672 vec_full_reg_offset(s, rn), 12673 vec_full_reg_offset(s, rm), tcg_env, 12674 is_q ? 16 : 8, vec_full_reg_size(s), 12675 data, gen_helper_gvec_fmlal_idx_a64); 12676 } 12677 return; 12678 12679 case 0x08: /* MUL */ 12680 if (!is_long && !is_scalar) { 12681 static gen_helper_gvec_3 * const fns[3] = { 12682 gen_helper_gvec_mul_idx_h, 12683 gen_helper_gvec_mul_idx_s, 12684 gen_helper_gvec_mul_idx_d, 12685 }; 12686 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12687 vec_full_reg_offset(s, rn), 12688 vec_full_reg_offset(s, rm), 12689 is_q ? 16 : 8, vec_full_reg_size(s), 12690 index, fns[size - 1]); 12691 return; 12692 } 12693 break; 12694 12695 case 0x10: /* MLA */ 12696 if (!is_long && !is_scalar) { 12697 static gen_helper_gvec_4 * const fns[3] = { 12698 gen_helper_gvec_mla_idx_h, 12699 gen_helper_gvec_mla_idx_s, 12700 gen_helper_gvec_mla_idx_d, 12701 }; 12702 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12703 vec_full_reg_offset(s, rn), 12704 vec_full_reg_offset(s, rm), 12705 vec_full_reg_offset(s, rd), 12706 is_q ? 16 : 8, vec_full_reg_size(s), 12707 index, fns[size - 1]); 12708 return; 12709 } 12710 break; 12711 12712 case 0x14: /* MLS */ 12713 if (!is_long && !is_scalar) { 12714 static gen_helper_gvec_4 * const fns[3] = { 12715 gen_helper_gvec_mls_idx_h, 12716 gen_helper_gvec_mls_idx_s, 12717 gen_helper_gvec_mls_idx_d, 12718 }; 12719 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12720 vec_full_reg_offset(s, rn), 12721 vec_full_reg_offset(s, rm), 12722 vec_full_reg_offset(s, rd), 12723 is_q ? 16 : 8, vec_full_reg_size(s), 12724 index, fns[size - 1]); 12725 return; 12726 } 12727 break; 12728 } 12729 12730 if (size == 3) { 12731 g_assert_not_reached(); 12732 } else if (!is_long) { 12733 /* 32 bit floating point, or 16 or 32 bit integer. 12734 * For the 16 bit scalar case we use the usual Neon helpers and 12735 * rely on the fact that 0 op 0 == 0 with no side effects. 12736 */ 12737 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12738 int pass, maxpasses; 12739 12740 if (is_scalar) { 12741 maxpasses = 1; 12742 } else { 12743 maxpasses = is_q ? 4 : 2; 12744 } 12745 12746 read_vec_element_i32(s, tcg_idx, rm, index, size); 12747 12748 if (size == 1 && !is_scalar) { 12749 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12750 * the index into both halves of the 32 bit tcg_idx and then use 12751 * the usual Neon helpers. 12752 */ 12753 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12754 } 12755 12756 for (pass = 0; pass < maxpasses; pass++) { 12757 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12758 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12759 12760 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12761 12762 switch (16 * u + opcode) { 12763 case 0x08: /* MUL */ 12764 case 0x10: /* MLA */ 12765 case 0x14: /* MLS */ 12766 { 12767 static NeonGenTwoOpFn * const fns[2][2] = { 12768 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12769 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12770 }; 12771 NeonGenTwoOpFn *genfn; 12772 bool is_sub = opcode == 0x4; 12773 12774 if (size == 1) { 12775 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12776 } else { 12777 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12778 } 12779 if (opcode == 0x8) { 12780 break; 12781 } 12782 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12783 genfn = fns[size - 1][is_sub]; 12784 genfn(tcg_res, tcg_op, tcg_res); 12785 break; 12786 } 12787 case 0x0c: /* SQDMULH */ 12788 if (size == 1) { 12789 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 12790 tcg_op, tcg_idx); 12791 } else { 12792 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 12793 tcg_op, tcg_idx); 12794 } 12795 break; 12796 case 0x0d: /* SQRDMULH */ 12797 if (size == 1) { 12798 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 12799 tcg_op, tcg_idx); 12800 } else { 12801 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 12802 tcg_op, tcg_idx); 12803 } 12804 break; 12805 case 0x1d: /* SQRDMLAH */ 12806 read_vec_element_i32(s, tcg_res, rd, pass, 12807 is_scalar ? size : MO_32); 12808 if (size == 1) { 12809 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 12810 tcg_op, tcg_idx, tcg_res); 12811 } else { 12812 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 12813 tcg_op, tcg_idx, tcg_res); 12814 } 12815 break; 12816 case 0x1f: /* SQRDMLSH */ 12817 read_vec_element_i32(s, tcg_res, rd, pass, 12818 is_scalar ? size : MO_32); 12819 if (size == 1) { 12820 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 12821 tcg_op, tcg_idx, tcg_res); 12822 } else { 12823 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 12824 tcg_op, tcg_idx, tcg_res); 12825 } 12826 break; 12827 default: 12828 case 0x01: /* FMLA */ 12829 case 0x05: /* FMLS */ 12830 case 0x09: /* FMUL */ 12831 case 0x19: /* FMULX */ 12832 g_assert_not_reached(); 12833 } 12834 12835 if (is_scalar) { 12836 write_fp_sreg(s, rd, tcg_res); 12837 } else { 12838 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12839 } 12840 } 12841 12842 clear_vec_high(s, is_q, rd); 12843 } else { 12844 /* long ops: 16x16->32 or 32x32->64 */ 12845 TCGv_i64 tcg_res[2]; 12846 int pass; 12847 bool satop = extract32(opcode, 0, 1); 12848 MemOp memop = MO_32; 12849 12850 if (satop || !u) { 12851 memop |= MO_SIGN; 12852 } 12853 12854 if (size == 2) { 12855 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12856 12857 read_vec_element(s, tcg_idx, rm, index, memop); 12858 12859 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12860 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12861 TCGv_i64 tcg_passres; 12862 int passelt; 12863 12864 if (is_scalar) { 12865 passelt = 0; 12866 } else { 12867 passelt = pass + (is_q * 2); 12868 } 12869 12870 read_vec_element(s, tcg_op, rn, passelt, memop); 12871 12872 tcg_res[pass] = tcg_temp_new_i64(); 12873 12874 if (opcode == 0xa || opcode == 0xb) { 12875 /* Non-accumulating ops */ 12876 tcg_passres = tcg_res[pass]; 12877 } else { 12878 tcg_passres = tcg_temp_new_i64(); 12879 } 12880 12881 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 12882 12883 if (satop) { 12884 /* saturating, doubling */ 12885 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 12886 tcg_passres, tcg_passres); 12887 } 12888 12889 if (opcode == 0xa || opcode == 0xb) { 12890 continue; 12891 } 12892 12893 /* Accumulating op: handle accumulate step */ 12894 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12895 12896 switch (opcode) { 12897 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12898 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12899 break; 12900 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12901 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12902 break; 12903 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12904 tcg_gen_neg_i64(tcg_passres, tcg_passres); 12905 /* fall through */ 12906 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12907 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 12908 tcg_res[pass], 12909 tcg_passres); 12910 break; 12911 default: 12912 g_assert_not_reached(); 12913 } 12914 } 12915 12916 clear_vec_high(s, !is_scalar, rd); 12917 } else { 12918 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12919 12920 assert(size == 1); 12921 read_vec_element_i32(s, tcg_idx, rm, index, size); 12922 12923 if (!is_scalar) { 12924 /* The simplest way to handle the 16x16 indexed ops is to 12925 * duplicate the index into both halves of the 32 bit tcg_idx 12926 * and then use the usual Neon helpers. 12927 */ 12928 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12929 } 12930 12931 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12932 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12933 TCGv_i64 tcg_passres; 12934 12935 if (is_scalar) { 12936 read_vec_element_i32(s, tcg_op, rn, pass, size); 12937 } else { 12938 read_vec_element_i32(s, tcg_op, rn, 12939 pass + (is_q * 2), MO_32); 12940 } 12941 12942 tcg_res[pass] = tcg_temp_new_i64(); 12943 12944 if (opcode == 0xa || opcode == 0xb) { 12945 /* Non-accumulating ops */ 12946 tcg_passres = tcg_res[pass]; 12947 } else { 12948 tcg_passres = tcg_temp_new_i64(); 12949 } 12950 12951 if (memop & MO_SIGN) { 12952 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 12953 } else { 12954 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 12955 } 12956 if (satop) { 12957 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 12958 tcg_passres, tcg_passres); 12959 } 12960 12961 if (opcode == 0xa || opcode == 0xb) { 12962 continue; 12963 } 12964 12965 /* Accumulating op: handle accumulate step */ 12966 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12967 12968 switch (opcode) { 12969 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12970 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 12971 tcg_passres); 12972 break; 12973 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12974 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 12975 tcg_passres); 12976 break; 12977 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12978 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 12979 /* fall through */ 12980 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12981 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 12982 tcg_res[pass], 12983 tcg_passres); 12984 break; 12985 default: 12986 g_assert_not_reached(); 12987 } 12988 } 12989 12990 if (is_scalar) { 12991 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 12992 } 12993 } 12994 12995 if (is_scalar) { 12996 tcg_res[1] = tcg_constant_i64(0); 12997 } 12998 12999 for (pass = 0; pass < 2; pass++) { 13000 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13001 } 13002 } 13003 } 13004 13005 /* C3.6 Data processing - SIMD, inc Crypto 13006 * 13007 * As the decode gets a little complex we are using a table based 13008 * approach for this part of the decode. 13009 */ 13010 static const AArch64DecodeTable data_proc_simd[] = { 13011 /* pattern , mask , fn */ 13012 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13013 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13014 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13015 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13016 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13017 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13018 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13019 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13020 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13021 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13022 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13023 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13024 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13025 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13026 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13027 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13028 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13029 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13030 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13031 { 0x00000000, 0x00000000, NULL } 13032 }; 13033 13034 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13035 { 13036 /* Note that this is called with all non-FP cases from 13037 * table C3-6 so it must UNDEF for entries not specifically 13038 * allocated to instructions in that table. 13039 */ 13040 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13041 if (fn) { 13042 fn(s, insn); 13043 } else { 13044 unallocated_encoding(s); 13045 } 13046 } 13047 13048 /* C3.6 Data processing - SIMD and floating point */ 13049 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13050 { 13051 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13052 disas_data_proc_fp(s, insn); 13053 } else { 13054 /* SIMD, including crypto */ 13055 disas_data_proc_simd(s, insn); 13056 } 13057 } 13058 13059 static bool trans_OK(DisasContext *s, arg_OK *a) 13060 { 13061 return true; 13062 } 13063 13064 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13065 { 13066 s->is_nonstreaming = true; 13067 return true; 13068 } 13069 13070 /** 13071 * is_guarded_page: 13072 * @env: The cpu environment 13073 * @s: The DisasContext 13074 * 13075 * Return true if the page is guarded. 13076 */ 13077 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13078 { 13079 uint64_t addr = s->base.pc_first; 13080 #ifdef CONFIG_USER_ONLY 13081 return page_get_flags(addr) & PAGE_BTI; 13082 #else 13083 CPUTLBEntryFull *full; 13084 void *host; 13085 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13086 int flags; 13087 13088 /* 13089 * We test this immediately after reading an insn, which means 13090 * that the TLB entry must be present and valid, and thus this 13091 * access will never raise an exception. 13092 */ 13093 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13094 false, &host, &full, 0); 13095 assert(!(flags & TLB_INVALID_MASK)); 13096 13097 return full->extra.arm.guarded; 13098 #endif 13099 } 13100 13101 /** 13102 * btype_destination_ok: 13103 * @insn: The instruction at the branch destination 13104 * @bt: SCTLR_ELx.BT 13105 * @btype: PSTATE.BTYPE, and is non-zero 13106 * 13107 * On a guarded page, there are a limited number of insns 13108 * that may be present at the branch target: 13109 * - branch target identifiers, 13110 * - paciasp, pacibsp, 13111 * - BRK insn 13112 * - HLT insn 13113 * Anything else causes a Branch Target Exception. 13114 * 13115 * Return true if the branch is compatible, false to raise BTITRAP. 13116 */ 13117 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13118 { 13119 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13120 /* HINT space */ 13121 switch (extract32(insn, 5, 7)) { 13122 case 0b011001: /* PACIASP */ 13123 case 0b011011: /* PACIBSP */ 13124 /* 13125 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13126 * with btype == 3. Otherwise all btype are ok. 13127 */ 13128 return !bt || btype != 3; 13129 case 0b100000: /* BTI */ 13130 /* Not compatible with any btype. */ 13131 return false; 13132 case 0b100010: /* BTI c */ 13133 /* Not compatible with btype == 3 */ 13134 return btype != 3; 13135 case 0b100100: /* BTI j */ 13136 /* Not compatible with btype == 2 */ 13137 return btype != 2; 13138 case 0b100110: /* BTI jc */ 13139 /* Compatible with any btype. */ 13140 return true; 13141 } 13142 } else { 13143 switch (insn & 0xffe0001fu) { 13144 case 0xd4200000u: /* BRK */ 13145 case 0xd4400000u: /* HLT */ 13146 /* Give priority to the breakpoint exception. */ 13147 return true; 13148 } 13149 } 13150 return false; 13151 } 13152 13153 /* C3.1 A64 instruction index by encoding */ 13154 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13155 { 13156 switch (extract32(insn, 25, 4)) { 13157 case 0x5: 13158 case 0xd: /* Data processing - register */ 13159 disas_data_proc_reg(s, insn); 13160 break; 13161 case 0x7: 13162 case 0xf: /* Data processing - SIMD and floating point */ 13163 disas_data_proc_simd_fp(s, insn); 13164 break; 13165 default: 13166 unallocated_encoding(s); 13167 break; 13168 } 13169 } 13170 13171 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13172 CPUState *cpu) 13173 { 13174 DisasContext *dc = container_of(dcbase, DisasContext, base); 13175 CPUARMState *env = cpu_env(cpu); 13176 ARMCPU *arm_cpu = env_archcpu(env); 13177 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13178 int bound, core_mmu_idx; 13179 13180 dc->isar = &arm_cpu->isar; 13181 dc->condjmp = 0; 13182 dc->pc_save = dc->base.pc_first; 13183 dc->aarch64 = true; 13184 dc->thumb = false; 13185 dc->sctlr_b = 0; 13186 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13187 dc->condexec_mask = 0; 13188 dc->condexec_cond = 0; 13189 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13190 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13191 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13192 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13193 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13194 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13195 #if !defined(CONFIG_USER_ONLY) 13196 dc->user = (dc->current_el == 0); 13197 #endif 13198 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13199 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13200 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13201 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13202 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13203 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13204 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13205 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13206 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13207 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13208 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13209 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13210 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13211 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13212 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13213 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13214 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13215 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13216 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13217 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13218 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13219 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13220 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13221 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13222 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13223 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13224 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13225 dc->vec_len = 0; 13226 dc->vec_stride = 0; 13227 dc->cp_regs = arm_cpu->cp_regs; 13228 dc->features = env->features; 13229 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13230 dc->gm_blocksize = arm_cpu->gm_blocksize; 13231 13232 #ifdef CONFIG_USER_ONLY 13233 /* In sve_probe_page, we assume TBI is enabled. */ 13234 tcg_debug_assert(dc->tbid & 1); 13235 #endif 13236 13237 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13238 13239 /* Single step state. The code-generation logic here is: 13240 * SS_ACTIVE == 0: 13241 * generate code with no special handling for single-stepping (except 13242 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13243 * this happens anyway because those changes are all system register or 13244 * PSTATE writes). 13245 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13246 * emit code for one insn 13247 * emit code to clear PSTATE.SS 13248 * emit code to generate software step exception for completed step 13249 * end TB (as usual for having generated an exception) 13250 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13251 * emit code to generate a software step exception 13252 * end the TB 13253 */ 13254 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13255 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13256 dc->is_ldex = false; 13257 13258 /* Bound the number of insns to execute to those left on the page. */ 13259 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13260 13261 /* If architectural single step active, limit to 1. */ 13262 if (dc->ss_active) { 13263 bound = 1; 13264 } 13265 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13266 } 13267 13268 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13269 { 13270 } 13271 13272 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13273 { 13274 DisasContext *dc = container_of(dcbase, DisasContext, base); 13275 target_ulong pc_arg = dc->base.pc_next; 13276 13277 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13278 pc_arg &= ~TARGET_PAGE_MASK; 13279 } 13280 tcg_gen_insn_start(pc_arg, 0, 0); 13281 dc->insn_start_updated = false; 13282 } 13283 13284 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13285 { 13286 DisasContext *s = container_of(dcbase, DisasContext, base); 13287 CPUARMState *env = cpu_env(cpu); 13288 uint64_t pc = s->base.pc_next; 13289 uint32_t insn; 13290 13291 /* Singlestep exceptions have the highest priority. */ 13292 if (s->ss_active && !s->pstate_ss) { 13293 /* Singlestep state is Active-pending. 13294 * If we're in this state at the start of a TB then either 13295 * a) we just took an exception to an EL which is being debugged 13296 * and this is the first insn in the exception handler 13297 * b) debug exceptions were masked and we just unmasked them 13298 * without changing EL (eg by clearing PSTATE.D) 13299 * In either case we're going to take a swstep exception in the 13300 * "did not step an insn" case, and so the syndrome ISV and EX 13301 * bits should be zero. 13302 */ 13303 assert(s->base.num_insns == 1); 13304 gen_swstep_exception(s, 0, 0); 13305 s->base.is_jmp = DISAS_NORETURN; 13306 s->base.pc_next = pc + 4; 13307 return; 13308 } 13309 13310 if (pc & 3) { 13311 /* 13312 * PC alignment fault. This has priority over the instruction abort 13313 * that we would receive from a translation fault via arm_ldl_code. 13314 * This should only be possible after an indirect branch, at the 13315 * start of the TB. 13316 */ 13317 assert(s->base.num_insns == 1); 13318 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13319 s->base.is_jmp = DISAS_NORETURN; 13320 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13321 return; 13322 } 13323 13324 s->pc_curr = pc; 13325 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13326 s->insn = insn; 13327 s->base.pc_next = pc + 4; 13328 13329 s->fp_access_checked = false; 13330 s->sve_access_checked = false; 13331 13332 if (s->pstate_il) { 13333 /* 13334 * Illegal execution state. This has priority over BTI 13335 * exceptions, but comes after instruction abort exceptions. 13336 */ 13337 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13338 return; 13339 } 13340 13341 if (dc_isar_feature(aa64_bti, s)) { 13342 if (s->base.num_insns == 1) { 13343 /* 13344 * At the first insn of the TB, compute s->guarded_page. 13345 * We delayed computing this until successfully reading 13346 * the first insn of the TB, above. This (mostly) ensures 13347 * that the softmmu tlb entry has been populated, and the 13348 * page table GP bit is available. 13349 * 13350 * Note that we need to compute this even if btype == 0, 13351 * because this value is used for BR instructions later 13352 * where ENV is not available. 13353 */ 13354 s->guarded_page = is_guarded_page(env, s); 13355 13356 /* First insn can have btype set to non-zero. */ 13357 tcg_debug_assert(s->btype >= 0); 13358 13359 /* 13360 * Note that the Branch Target Exception has fairly high 13361 * priority -- below debugging exceptions but above most 13362 * everything else. This allows us to handle this now 13363 * instead of waiting until the insn is otherwise decoded. 13364 */ 13365 if (s->btype != 0 13366 && s->guarded_page 13367 && !btype_destination_ok(insn, s->bt, s->btype)) { 13368 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13369 return; 13370 } 13371 } else { 13372 /* Not the first insn: btype must be 0. */ 13373 tcg_debug_assert(s->btype == 0); 13374 } 13375 } 13376 13377 s->is_nonstreaming = false; 13378 if (s->sme_trap_nonstreaming) { 13379 disas_sme_fa64(s, insn); 13380 } 13381 13382 if (!disas_a64(s, insn) && 13383 !disas_sme(s, insn) && 13384 !disas_sve(s, insn)) { 13385 disas_a64_legacy(s, insn); 13386 } 13387 13388 /* 13389 * After execution of most insns, btype is reset to 0. 13390 * Note that we set btype == -1 when the insn sets btype. 13391 */ 13392 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13393 reset_btype(s); 13394 } 13395 } 13396 13397 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13398 { 13399 DisasContext *dc = container_of(dcbase, DisasContext, base); 13400 13401 if (unlikely(dc->ss_active)) { 13402 /* Note that this means single stepping WFI doesn't halt the CPU. 13403 * For conditional branch insns this is harmless unreachable code as 13404 * gen_goto_tb() has already handled emitting the debug exception 13405 * (and thus a tb-jump is not possible when singlestepping). 13406 */ 13407 switch (dc->base.is_jmp) { 13408 default: 13409 gen_a64_update_pc(dc, 4); 13410 /* fall through */ 13411 case DISAS_EXIT: 13412 case DISAS_JUMP: 13413 gen_step_complete_exception(dc); 13414 break; 13415 case DISAS_NORETURN: 13416 break; 13417 } 13418 } else { 13419 switch (dc->base.is_jmp) { 13420 case DISAS_NEXT: 13421 case DISAS_TOO_MANY: 13422 gen_goto_tb(dc, 1, 4); 13423 break; 13424 default: 13425 case DISAS_UPDATE_EXIT: 13426 gen_a64_update_pc(dc, 4); 13427 /* fall through */ 13428 case DISAS_EXIT: 13429 tcg_gen_exit_tb(NULL, 0); 13430 break; 13431 case DISAS_UPDATE_NOCHAIN: 13432 gen_a64_update_pc(dc, 4); 13433 /* fall through */ 13434 case DISAS_JUMP: 13435 tcg_gen_lookup_and_goto_ptr(); 13436 break; 13437 case DISAS_NORETURN: 13438 case DISAS_SWI: 13439 break; 13440 case DISAS_WFE: 13441 gen_a64_update_pc(dc, 4); 13442 gen_helper_wfe(tcg_env); 13443 break; 13444 case DISAS_YIELD: 13445 gen_a64_update_pc(dc, 4); 13446 gen_helper_yield(tcg_env); 13447 break; 13448 case DISAS_WFI: 13449 /* 13450 * This is a special case because we don't want to just halt 13451 * the CPU if trying to debug across a WFI. 13452 */ 13453 gen_a64_update_pc(dc, 4); 13454 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13455 /* 13456 * The helper doesn't necessarily throw an exception, but we 13457 * must go back to the main loop to check for interrupts anyway. 13458 */ 13459 tcg_gen_exit_tb(NULL, 0); 13460 break; 13461 } 13462 } 13463 } 13464 13465 const TranslatorOps aarch64_translator_ops = { 13466 .init_disas_context = aarch64_tr_init_disas_context, 13467 .tb_start = aarch64_tr_tb_start, 13468 .insn_start = aarch64_tr_insn_start, 13469 .translate_insn = aarch64_tr_translate_insn, 13470 .tb_stop = aarch64_tr_tb_stop, 13471 }; 13472