xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 2503e60d)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30 #include "semihosting/semihost.h"
31 #include "exec/gen-icount.h"
32 #include "exec/helper-proto.h"
33 #include "exec/helper-gen.h"
34 #include "exec/log.h"
35 #include "cpregs.h"
36 #include "translate-a64.h"
37 #include "qemu/atomic128.h"
38 
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
41 
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
44 
45 static const char *regnames[] = {
46     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
47     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
48     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
49     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
50 };
51 
52 enum a64_shift_type {
53     A64_SHIFT_TYPE_LSL = 0,
54     A64_SHIFT_TYPE_LSR = 1,
55     A64_SHIFT_TYPE_ASR = 2,
56     A64_SHIFT_TYPE_ROR = 3
57 };
58 
59 /* Table based decoder typedefs - used when the relevant bits for decode
60  * are too awkwardly scattered across the instruction (eg SIMD).
61  */
62 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
63 
64 typedef struct AArch64DecodeTable {
65     uint32_t pattern;
66     uint32_t mask;
67     AArch64DecodeFn *disas_fn;
68 } AArch64DecodeTable;
69 
70 /* initialize TCG globals.  */
71 void a64_translate_init(void)
72 {
73     int i;
74 
75     cpu_pc = tcg_global_mem_new_i64(cpu_env,
76                                     offsetof(CPUARMState, pc),
77                                     "pc");
78     for (i = 0; i < 32; i++) {
79         cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
80                                           offsetof(CPUARMState, xregs[i]),
81                                           regnames[i]);
82     }
83 
84     cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
85         offsetof(CPUARMState, exclusive_high), "exclusive_high");
86 }
87 
88 /*
89  * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
90  */
91 static int get_a64_user_mem_index(DisasContext *s)
92 {
93     /*
94      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
95      * which is the usual mmu_idx for this cpu state.
96      */
97     ARMMMUIdx useridx = s->mmu_idx;
98 
99     if (s->unpriv) {
100         /*
101          * We have pre-computed the condition for AccType_UNPRIV.
102          * Therefore we should never get here with a mmu_idx for
103          * which we do not know the corresponding user mmu_idx.
104          */
105         switch (useridx) {
106         case ARMMMUIdx_E10_1:
107         case ARMMMUIdx_E10_1_PAN:
108             useridx = ARMMMUIdx_E10_0;
109             break;
110         case ARMMMUIdx_E20_2:
111         case ARMMMUIdx_E20_2_PAN:
112             useridx = ARMMMUIdx_E20_0;
113             break;
114         default:
115             g_assert_not_reached();
116         }
117     }
118     return arm_to_core_mmu_idx(useridx);
119 }
120 
121 static void set_btype_raw(int val)
122 {
123     tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
124                    offsetof(CPUARMState, btype));
125 }
126 
127 static void set_btype(DisasContext *s, int val)
128 {
129     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
130     tcg_debug_assert(val >= 1 && val <= 3);
131     set_btype_raw(val);
132     s->btype = -1;
133 }
134 
135 static void reset_btype(DisasContext *s)
136 {
137     if (s->btype != 0) {
138         set_btype_raw(0);
139         s->btype = 0;
140     }
141 }
142 
143 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
144 {
145     assert(s->pc_save != -1);
146     if (tb_cflags(s->base.tb) & CF_PCREL) {
147         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
148     } else {
149         tcg_gen_movi_i64(dest, s->pc_curr + diff);
150     }
151 }
152 
153 void gen_a64_update_pc(DisasContext *s, target_long diff)
154 {
155     gen_pc_plus_diff(s, cpu_pc, diff);
156     s->pc_save = s->pc_curr + diff;
157 }
158 
159 /*
160  * Handle Top Byte Ignore (TBI) bits.
161  *
162  * If address tagging is enabled via the TCR TBI bits:
163  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
164  *    then the address is zero-extended, clearing bits [63:56]
165  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
166  *    and TBI1 controls addressses with bit 55 == 1.
167  *    If the appropriate TBI bit is set for the address then
168  *    the address is sign-extended from bit 55 into bits [63:56]
169  *
170  * Here We have concatenated TBI{1,0} into tbi.
171  */
172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
173                                 TCGv_i64 src, int tbi)
174 {
175     if (tbi == 0) {
176         /* Load unmodified address */
177         tcg_gen_mov_i64(dst, src);
178     } else if (!regime_has_2_ranges(s->mmu_idx)) {
179         /* Force tag byte to all zero */
180         tcg_gen_extract_i64(dst, src, 0, 56);
181     } else {
182         /* Sign-extend from bit 55.  */
183         tcg_gen_sextract_i64(dst, src, 0, 56);
184 
185         switch (tbi) {
186         case 1:
187             /* tbi0 but !tbi1: only use the extension if positive */
188             tcg_gen_and_i64(dst, dst, src);
189             break;
190         case 2:
191             /* !tbi0 but tbi1: only use the extension if negative */
192             tcg_gen_or_i64(dst, dst, src);
193             break;
194         case 3:
195             /* tbi0 and tbi1: always use the extension */
196             break;
197         default:
198             g_assert_not_reached();
199         }
200     }
201 }
202 
203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
204 {
205     /*
206      * If address tagging is enabled for instructions via the TCR TBI bits,
207      * then loading an address into the PC will clear out any tag.
208      */
209     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
210     s->pc_save = -1;
211 }
212 
213 /*
214  * Handle MTE and/or TBI.
215  *
216  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
217  * for the tag to be present in the FAR_ELx register.  But for user-only
218  * mode we do not have a TLB with which to implement this, so we must
219  * remove the top byte now.
220  *
221  * Always return a fresh temporary that we can increment independently
222  * of the write-back address.
223  */
224 
225 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
226 {
227     TCGv_i64 clean = tcg_temp_new_i64();
228 #ifdef CONFIG_USER_ONLY
229     gen_top_byte_ignore(s, clean, addr, s->tbid);
230 #else
231     tcg_gen_mov_i64(clean, addr);
232 #endif
233     return clean;
234 }
235 
236 /* Insert a zero tag into src, with the result at dst. */
237 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
238 {
239     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
240 }
241 
242 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
243                              MMUAccessType acc, int log2_size)
244 {
245     gen_helper_probe_access(cpu_env, ptr,
246                             tcg_constant_i32(acc),
247                             tcg_constant_i32(get_mem_index(s)),
248                             tcg_constant_i32(1 << log2_size));
249 }
250 
251 /*
252  * For MTE, check a single logical or atomic access.  This probes a single
253  * address, the exact one specified.  The size and alignment of the access
254  * is not relevant to MTE, per se, but watchpoints do require the size,
255  * and we want to recognize those before making any other changes to state.
256  */
257 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
258                                       bool is_write, bool tag_checked,
259                                       int log2_size, bool is_unpriv,
260                                       int core_idx)
261 {
262     if (tag_checked && s->mte_active[is_unpriv]) {
263         TCGv_i64 ret;
264         int desc = 0;
265 
266         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
267         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
268         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
269         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
270         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
271 
272         ret = tcg_temp_new_i64();
273         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
274 
275         return ret;
276     }
277     return clean_data_tbi(s, addr);
278 }
279 
280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
281                         bool tag_checked, int log2_size)
282 {
283     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
284                                  false, get_mem_index(s));
285 }
286 
287 /*
288  * For MTE, check multiple logical sequential accesses.
289  */
290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
291                         bool tag_checked, int size)
292 {
293     if (tag_checked && s->mte_active[0]) {
294         TCGv_i64 ret;
295         int desc = 0;
296 
297         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
298         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
299         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
300         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
301         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
302 
303         ret = tcg_temp_new_i64();
304         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
305 
306         return ret;
307     }
308     return clean_data_tbi(s, addr);
309 }
310 
311 typedef struct DisasCompare64 {
312     TCGCond cond;
313     TCGv_i64 value;
314 } DisasCompare64;
315 
316 static void a64_test_cc(DisasCompare64 *c64, int cc)
317 {
318     DisasCompare c32;
319 
320     arm_test_cc(&c32, cc);
321 
322     /*
323      * Sign-extend the 32-bit value so that the GE/LT comparisons work
324      * properly.  The NE/EQ comparisons are also fine with this choice.
325       */
326     c64->cond = c32.cond;
327     c64->value = tcg_temp_new_i64();
328     tcg_gen_ext_i32_i64(c64->value, c32.value);
329 }
330 
331 static void gen_rebuild_hflags(DisasContext *s)
332 {
333     gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
334 }
335 
336 static void gen_exception_internal(int excp)
337 {
338     assert(excp_is_internal(excp));
339     gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
340 }
341 
342 static void gen_exception_internal_insn(DisasContext *s, int excp)
343 {
344     gen_a64_update_pc(s, 0);
345     gen_exception_internal(excp);
346     s->base.is_jmp = DISAS_NORETURN;
347 }
348 
349 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
350 {
351     gen_a64_update_pc(s, 0);
352     gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
353     s->base.is_jmp = DISAS_NORETURN;
354 }
355 
356 static void gen_step_complete_exception(DisasContext *s)
357 {
358     /* We just completed step of an insn. Move from Active-not-pending
359      * to Active-pending, and then also take the swstep exception.
360      * This corresponds to making the (IMPDEF) choice to prioritize
361      * swstep exceptions over asynchronous exceptions taken to an exception
362      * level where debug is disabled. This choice has the advantage that
363      * we do not need to maintain internal state corresponding to the
364      * ISV/EX syndrome bits between completion of the step and generation
365      * of the exception, and our syndrome information is always correct.
366      */
367     gen_ss_advance(s);
368     gen_swstep_exception(s, 1, s->is_ldex);
369     s->base.is_jmp = DISAS_NORETURN;
370 }
371 
372 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
373 {
374     if (s->ss_active) {
375         return false;
376     }
377     return translator_use_goto_tb(&s->base, dest);
378 }
379 
380 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
381 {
382     if (use_goto_tb(s, s->pc_curr + diff)) {
383         /*
384          * For pcrel, the pc must always be up-to-date on entry to
385          * the linked TB, so that it can use simple additions for all
386          * further adjustments.  For !pcrel, the linked TB is compiled
387          * to know its full virtual address, so we can delay the
388          * update to pc to the unlinked path.  A long chain of links
389          * can thus avoid many updates to the PC.
390          */
391         if (tb_cflags(s->base.tb) & CF_PCREL) {
392             gen_a64_update_pc(s, diff);
393             tcg_gen_goto_tb(n);
394         } else {
395             tcg_gen_goto_tb(n);
396             gen_a64_update_pc(s, diff);
397         }
398         tcg_gen_exit_tb(s->base.tb, n);
399         s->base.is_jmp = DISAS_NORETURN;
400     } else {
401         gen_a64_update_pc(s, diff);
402         if (s->ss_active) {
403             gen_step_complete_exception(s);
404         } else {
405             tcg_gen_lookup_and_goto_ptr();
406             s->base.is_jmp = DISAS_NORETURN;
407         }
408     }
409 }
410 
411 /*
412  * Register access functions
413  *
414  * These functions are used for directly accessing a register in where
415  * changes to the final register value are likely to be made. If you
416  * need to use a register for temporary calculation (e.g. index type
417  * operations) use the read_* form.
418  *
419  * B1.2.1 Register mappings
420  *
421  * In instruction register encoding 31 can refer to ZR (zero register) or
422  * the SP (stack pointer) depending on context. In QEMU's case we map SP
423  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
424  * This is the point of the _sp forms.
425  */
426 TCGv_i64 cpu_reg(DisasContext *s, int reg)
427 {
428     if (reg == 31) {
429         TCGv_i64 t = tcg_temp_new_i64();
430         tcg_gen_movi_i64(t, 0);
431         return t;
432     } else {
433         return cpu_X[reg];
434     }
435 }
436 
437 /* register access for when 31 == SP */
438 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
439 {
440     return cpu_X[reg];
441 }
442 
443 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
444  * representing the register contents. This TCGv is an auto-freed
445  * temporary so it need not be explicitly freed, and may be modified.
446  */
447 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
448 {
449     TCGv_i64 v = tcg_temp_new_i64();
450     if (reg != 31) {
451         if (sf) {
452             tcg_gen_mov_i64(v, cpu_X[reg]);
453         } else {
454             tcg_gen_ext32u_i64(v, cpu_X[reg]);
455         }
456     } else {
457         tcg_gen_movi_i64(v, 0);
458     }
459     return v;
460 }
461 
462 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
463 {
464     TCGv_i64 v = tcg_temp_new_i64();
465     if (sf) {
466         tcg_gen_mov_i64(v, cpu_X[reg]);
467     } else {
468         tcg_gen_ext32u_i64(v, cpu_X[reg]);
469     }
470     return v;
471 }
472 
473 /* Return the offset into CPUARMState of a slice (from
474  * the least significant end) of FP register Qn (ie
475  * Dn, Sn, Hn or Bn).
476  * (Note that this is not the same mapping as for A32; see cpu.h)
477  */
478 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
479 {
480     return vec_reg_offset(s, regno, 0, size);
481 }
482 
483 /* Offset of the high half of the 128 bit vector Qn */
484 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
485 {
486     return vec_reg_offset(s, regno, 1, MO_64);
487 }
488 
489 /* Convenience accessors for reading and writing single and double
490  * FP registers. Writing clears the upper parts of the associated
491  * 128 bit vector register, as required by the architecture.
492  * Note that unlike the GP register accessors, the values returned
493  * by the read functions must be manually freed.
494  */
495 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
496 {
497     TCGv_i64 v = tcg_temp_new_i64();
498 
499     tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
500     return v;
501 }
502 
503 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
504 {
505     TCGv_i32 v = tcg_temp_new_i32();
506 
507     tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
508     return v;
509 }
510 
511 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
512 {
513     TCGv_i32 v = tcg_temp_new_i32();
514 
515     tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
516     return v;
517 }
518 
519 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
520  * If SVE is not enabled, then there are only 128 bits in the vector.
521  */
522 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
523 {
524     unsigned ofs = fp_reg_offset(s, rd, MO_64);
525     unsigned vsz = vec_full_reg_size(s);
526 
527     /* Nop move, with side effect of clearing the tail. */
528     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
529 }
530 
531 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
532 {
533     unsigned ofs = fp_reg_offset(s, reg, MO_64);
534 
535     tcg_gen_st_i64(v, cpu_env, ofs);
536     clear_vec_high(s, false, reg);
537 }
538 
539 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
540 {
541     TCGv_i64 tmp = tcg_temp_new_i64();
542 
543     tcg_gen_extu_i32_i64(tmp, v);
544     write_fp_dreg(s, reg, tmp);
545     tcg_temp_free_i64(tmp);
546 }
547 
548 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
549 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
550                          GVecGen2Fn *gvec_fn, int vece)
551 {
552     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
553             is_q ? 16 : 8, vec_full_reg_size(s));
554 }
555 
556 /* Expand a 2-operand + immediate AdvSIMD vector operation using
557  * an expander function.
558  */
559 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
560                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
561 {
562     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
563             imm, is_q ? 16 : 8, vec_full_reg_size(s));
564 }
565 
566 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
567 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
568                          GVecGen3Fn *gvec_fn, int vece)
569 {
570     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
571             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
572 }
573 
574 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
575 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
576                          int rx, GVecGen4Fn *gvec_fn, int vece)
577 {
578     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
579             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
580             is_q ? 16 : 8, vec_full_reg_size(s));
581 }
582 
583 /* Expand a 2-operand operation using an out-of-line helper.  */
584 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
585                              int rn, int data, gen_helper_gvec_2 *fn)
586 {
587     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
588                        vec_full_reg_offset(s, rn),
589                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
590 }
591 
592 /* Expand a 3-operand operation using an out-of-line helper.  */
593 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
594                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
595 {
596     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
597                        vec_full_reg_offset(s, rn),
598                        vec_full_reg_offset(s, rm),
599                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
600 }
601 
602 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
603  * an out-of-line helper.
604  */
605 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
606                               int rm, bool is_fp16, int data,
607                               gen_helper_gvec_3_ptr *fn)
608 {
609     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
610     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
611                        vec_full_reg_offset(s, rn),
612                        vec_full_reg_offset(s, rm), fpst,
613                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
614     tcg_temp_free_ptr(fpst);
615 }
616 
617 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
618 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
619                             int rm, gen_helper_gvec_3_ptr *fn)
620 {
621     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
622 
623     tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
624     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
625                        vec_full_reg_offset(s, rn),
626                        vec_full_reg_offset(s, rm), qc_ptr,
627                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
628     tcg_temp_free_ptr(qc_ptr);
629 }
630 
631 /* Expand a 4-operand operation using an out-of-line helper.  */
632 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
633                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
634 {
635     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
636                        vec_full_reg_offset(s, rn),
637                        vec_full_reg_offset(s, rm),
638                        vec_full_reg_offset(s, ra),
639                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
640 }
641 
642 /*
643  * Expand a 4-operand + fpstatus pointer + simd data value operation using
644  * an out-of-line helper.
645  */
646 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
647                               int rm, int ra, bool is_fp16, int data,
648                               gen_helper_gvec_4_ptr *fn)
649 {
650     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
651     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
652                        vec_full_reg_offset(s, rn),
653                        vec_full_reg_offset(s, rm),
654                        vec_full_reg_offset(s, ra), fpst,
655                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
656     tcg_temp_free_ptr(fpst);
657 }
658 
659 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
660  * than the 32 bit equivalent.
661  */
662 static inline void gen_set_NZ64(TCGv_i64 result)
663 {
664     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
665     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
666 }
667 
668 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
669 static inline void gen_logic_CC(int sf, TCGv_i64 result)
670 {
671     if (sf) {
672         gen_set_NZ64(result);
673     } else {
674         tcg_gen_extrl_i64_i32(cpu_ZF, result);
675         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
676     }
677     tcg_gen_movi_i32(cpu_CF, 0);
678     tcg_gen_movi_i32(cpu_VF, 0);
679 }
680 
681 /* dest = T0 + T1; compute C, N, V and Z flags */
682 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
683 {
684     if (sf) {
685         TCGv_i64 result, flag, tmp;
686         result = tcg_temp_new_i64();
687         flag = tcg_temp_new_i64();
688         tmp = tcg_temp_new_i64();
689 
690         tcg_gen_movi_i64(tmp, 0);
691         tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
692 
693         tcg_gen_extrl_i64_i32(cpu_CF, flag);
694 
695         gen_set_NZ64(result);
696 
697         tcg_gen_xor_i64(flag, result, t0);
698         tcg_gen_xor_i64(tmp, t0, t1);
699         tcg_gen_andc_i64(flag, flag, tmp);
700         tcg_temp_free_i64(tmp);
701         tcg_gen_extrh_i64_i32(cpu_VF, flag);
702 
703         tcg_gen_mov_i64(dest, result);
704         tcg_temp_free_i64(result);
705         tcg_temp_free_i64(flag);
706     } else {
707         /* 32 bit arithmetic */
708         TCGv_i32 t0_32 = tcg_temp_new_i32();
709         TCGv_i32 t1_32 = tcg_temp_new_i32();
710         TCGv_i32 tmp = tcg_temp_new_i32();
711 
712         tcg_gen_movi_i32(tmp, 0);
713         tcg_gen_extrl_i64_i32(t0_32, t0);
714         tcg_gen_extrl_i64_i32(t1_32, t1);
715         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
716         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
717         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
718         tcg_gen_xor_i32(tmp, t0_32, t1_32);
719         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
720         tcg_gen_extu_i32_i64(dest, cpu_NF);
721 
722         tcg_temp_free_i32(tmp);
723         tcg_temp_free_i32(t0_32);
724         tcg_temp_free_i32(t1_32);
725     }
726 }
727 
728 /* dest = T0 - T1; compute C, N, V and Z flags */
729 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
730 {
731     if (sf) {
732         /* 64 bit arithmetic */
733         TCGv_i64 result, flag, tmp;
734 
735         result = tcg_temp_new_i64();
736         flag = tcg_temp_new_i64();
737         tcg_gen_sub_i64(result, t0, t1);
738 
739         gen_set_NZ64(result);
740 
741         tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
742         tcg_gen_extrl_i64_i32(cpu_CF, flag);
743 
744         tcg_gen_xor_i64(flag, result, t0);
745         tmp = tcg_temp_new_i64();
746         tcg_gen_xor_i64(tmp, t0, t1);
747         tcg_gen_and_i64(flag, flag, tmp);
748         tcg_temp_free_i64(tmp);
749         tcg_gen_extrh_i64_i32(cpu_VF, flag);
750         tcg_gen_mov_i64(dest, result);
751         tcg_temp_free_i64(flag);
752         tcg_temp_free_i64(result);
753     } else {
754         /* 32 bit arithmetic */
755         TCGv_i32 t0_32 = tcg_temp_new_i32();
756         TCGv_i32 t1_32 = tcg_temp_new_i32();
757         TCGv_i32 tmp;
758 
759         tcg_gen_extrl_i64_i32(t0_32, t0);
760         tcg_gen_extrl_i64_i32(t1_32, t1);
761         tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
762         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
763         tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
764         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
765         tmp = tcg_temp_new_i32();
766         tcg_gen_xor_i32(tmp, t0_32, t1_32);
767         tcg_temp_free_i32(t0_32);
768         tcg_temp_free_i32(t1_32);
769         tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
770         tcg_temp_free_i32(tmp);
771         tcg_gen_extu_i32_i64(dest, cpu_NF);
772     }
773 }
774 
775 /* dest = T0 + T1 + CF; do not compute flags. */
776 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
777 {
778     TCGv_i64 flag = tcg_temp_new_i64();
779     tcg_gen_extu_i32_i64(flag, cpu_CF);
780     tcg_gen_add_i64(dest, t0, t1);
781     tcg_gen_add_i64(dest, dest, flag);
782     tcg_temp_free_i64(flag);
783 
784     if (!sf) {
785         tcg_gen_ext32u_i64(dest, dest);
786     }
787 }
788 
789 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
790 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     if (sf) {
793         TCGv_i64 result = tcg_temp_new_i64();
794         TCGv_i64 cf_64 = tcg_temp_new_i64();
795         TCGv_i64 vf_64 = tcg_temp_new_i64();
796         TCGv_i64 tmp = tcg_temp_new_i64();
797         TCGv_i64 zero = tcg_constant_i64(0);
798 
799         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
800         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
801         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
802         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
803         gen_set_NZ64(result);
804 
805         tcg_gen_xor_i64(vf_64, result, t0);
806         tcg_gen_xor_i64(tmp, t0, t1);
807         tcg_gen_andc_i64(vf_64, vf_64, tmp);
808         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
809 
810         tcg_gen_mov_i64(dest, result);
811 
812         tcg_temp_free_i64(tmp);
813         tcg_temp_free_i64(vf_64);
814         tcg_temp_free_i64(cf_64);
815         tcg_temp_free_i64(result);
816     } else {
817         TCGv_i32 t0_32 = tcg_temp_new_i32();
818         TCGv_i32 t1_32 = tcg_temp_new_i32();
819         TCGv_i32 tmp = tcg_temp_new_i32();
820         TCGv_i32 zero = tcg_constant_i32(0);
821 
822         tcg_gen_extrl_i64_i32(t0_32, t0);
823         tcg_gen_extrl_i64_i32(t1_32, t1);
824         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
825         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
826 
827         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
828         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
829         tcg_gen_xor_i32(tmp, t0_32, t1_32);
830         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
831         tcg_gen_extu_i32_i64(dest, cpu_NF);
832 
833         tcg_temp_free_i32(tmp);
834         tcg_temp_free_i32(t1_32);
835         tcg_temp_free_i32(t0_32);
836     }
837 }
838 
839 /*
840  * Load/Store generators
841  */
842 
843 /*
844  * Store from GPR register to memory.
845  */
846 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
847                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
848                              bool iss_valid,
849                              unsigned int iss_srt,
850                              bool iss_sf, bool iss_ar)
851 {
852     memop = finalize_memop(s, memop);
853     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
854 
855     if (iss_valid) {
856         uint32_t syn;
857 
858         syn = syn_data_abort_with_iss(0,
859                                       (memop & MO_SIZE),
860                                       false,
861                                       iss_srt,
862                                       iss_sf,
863                                       iss_ar,
864                                       0, 0, 0, 0, 0, false);
865         disas_set_insn_syndrome(s, syn);
866     }
867 }
868 
869 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
870                       TCGv_i64 tcg_addr, MemOp memop,
871                       bool iss_valid,
872                       unsigned int iss_srt,
873                       bool iss_sf, bool iss_ar)
874 {
875     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
876                      iss_valid, iss_srt, iss_sf, iss_ar);
877 }
878 
879 /*
880  * Load from memory to GPR register
881  */
882 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
883                              MemOp memop, bool extend, int memidx,
884                              bool iss_valid, unsigned int iss_srt,
885                              bool iss_sf, bool iss_ar)
886 {
887     memop = finalize_memop(s, memop);
888     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
889 
890     if (extend && (memop & MO_SIGN)) {
891         g_assert((memop & MO_SIZE) <= MO_32);
892         tcg_gen_ext32u_i64(dest, dest);
893     }
894 
895     if (iss_valid) {
896         uint32_t syn;
897 
898         syn = syn_data_abort_with_iss(0,
899                                       (memop & MO_SIZE),
900                                       (memop & MO_SIGN) != 0,
901                                       iss_srt,
902                                       iss_sf,
903                                       iss_ar,
904                                       0, 0, 0, 0, 0, false);
905         disas_set_insn_syndrome(s, syn);
906     }
907 }
908 
909 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
910                       MemOp memop, bool extend,
911                       bool iss_valid, unsigned int iss_srt,
912                       bool iss_sf, bool iss_ar)
913 {
914     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
915                      iss_valid, iss_srt, iss_sf, iss_ar);
916 }
917 
918 /*
919  * Store from FP register to memory
920  */
921 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
922 {
923     /* This writes the bottom N bits of a 128 bit wide vector to memory */
924     TCGv_i64 tmplo = tcg_temp_new_i64();
925     MemOp mop;
926 
927     tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
928 
929     if (size < 4) {
930         mop = finalize_memop(s, size);
931         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
932     } else {
933         bool be = s->be_data == MO_BE;
934         TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
935         TCGv_i64 tmphi = tcg_temp_new_i64();
936 
937         tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
938 
939         mop = s->be_data | MO_UQ;
940         tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
941                             mop | (s->align_mem ? MO_ALIGN_16 : 0));
942         tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
943         tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr,
944                             get_mem_index(s), mop);
945 
946         tcg_temp_free_i64(tcg_hiaddr);
947         tcg_temp_free_i64(tmphi);
948     }
949 
950     tcg_temp_free_i64(tmplo);
951 }
952 
953 /*
954  * Load from memory to FP register
955  */
956 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
957 {
958     /* This always zero-extends and writes to a full 128 bit wide vector */
959     TCGv_i64 tmplo = tcg_temp_new_i64();
960     TCGv_i64 tmphi = NULL;
961     MemOp mop;
962 
963     if (size < 4) {
964         mop = finalize_memop(s, size);
965         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
966     } else {
967         bool be = s->be_data == MO_BE;
968         TCGv_i64 tcg_hiaddr;
969 
970         tmphi = tcg_temp_new_i64();
971         tcg_hiaddr = tcg_temp_new_i64();
972 
973         mop = s->be_data | MO_UQ;
974         tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
975                             mop | (s->align_mem ? MO_ALIGN_16 : 0));
976         tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
977         tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr,
978                             get_mem_index(s), mop);
979         tcg_temp_free_i64(tcg_hiaddr);
980     }
981 
982     tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
983     tcg_temp_free_i64(tmplo);
984 
985     if (tmphi) {
986         tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
987         tcg_temp_free_i64(tmphi);
988     }
989     clear_vec_high(s, tmphi != NULL, destidx);
990 }
991 
992 /*
993  * Vector load/store helpers.
994  *
995  * The principal difference between this and a FP load is that we don't
996  * zero extend as we are filling a partial chunk of the vector register.
997  * These functions don't support 128 bit loads/stores, which would be
998  * normal load/store operations.
999  *
1000  * The _i32 versions are useful when operating on 32 bit quantities
1001  * (eg for floating point single or using Neon helper functions).
1002  */
1003 
1004 /* Get value of an element within a vector register */
1005 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1006                              int element, MemOp memop)
1007 {
1008     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1009     switch ((unsigned)memop) {
1010     case MO_8:
1011         tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1012         break;
1013     case MO_16:
1014         tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1015         break;
1016     case MO_32:
1017         tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1018         break;
1019     case MO_8|MO_SIGN:
1020         tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1021         break;
1022     case MO_16|MO_SIGN:
1023         tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1024         break;
1025     case MO_32|MO_SIGN:
1026         tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1027         break;
1028     case MO_64:
1029     case MO_64|MO_SIGN:
1030         tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1031         break;
1032     default:
1033         g_assert_not_reached();
1034     }
1035 }
1036 
1037 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1038                                  int element, MemOp memop)
1039 {
1040     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1041     switch (memop) {
1042     case MO_8:
1043         tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1044         break;
1045     case MO_16:
1046         tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1047         break;
1048     case MO_8|MO_SIGN:
1049         tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1050         break;
1051     case MO_16|MO_SIGN:
1052         tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1053         break;
1054     case MO_32:
1055     case MO_32|MO_SIGN:
1056         tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1057         break;
1058     default:
1059         g_assert_not_reached();
1060     }
1061 }
1062 
1063 /* Set value of an element within a vector register */
1064 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1065                               int element, MemOp memop)
1066 {
1067     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1068     switch (memop) {
1069     case MO_8:
1070         tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1071         break;
1072     case MO_16:
1073         tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1074         break;
1075     case MO_32:
1076         tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1077         break;
1078     case MO_64:
1079         tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1080         break;
1081     default:
1082         g_assert_not_reached();
1083     }
1084 }
1085 
1086 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1087                                   int destidx, int element, MemOp memop)
1088 {
1089     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1090     switch (memop) {
1091     case MO_8:
1092         tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1093         break;
1094     case MO_16:
1095         tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1096         break;
1097     case MO_32:
1098         tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1099         break;
1100     default:
1101         g_assert_not_reached();
1102     }
1103 }
1104 
1105 /* Store from vector register to memory */
1106 static void do_vec_st(DisasContext *s, int srcidx, int element,
1107                       TCGv_i64 tcg_addr, MemOp mop)
1108 {
1109     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1110 
1111     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1112     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1113 
1114     tcg_temp_free_i64(tcg_tmp);
1115 }
1116 
1117 /* Load from memory to vector register */
1118 static void do_vec_ld(DisasContext *s, int destidx, int element,
1119                       TCGv_i64 tcg_addr, MemOp mop)
1120 {
1121     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1122 
1123     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1124     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1125 
1126     tcg_temp_free_i64(tcg_tmp);
1127 }
1128 
1129 /* Check that FP/Neon access is enabled. If it is, return
1130  * true. If not, emit code to generate an appropriate exception,
1131  * and return false; the caller should not emit any code for
1132  * the instruction. Note that this check must happen after all
1133  * unallocated-encoding checks (otherwise the syndrome information
1134  * for the resulting exception will be incorrect).
1135  */
1136 static bool fp_access_check_only(DisasContext *s)
1137 {
1138     if (s->fp_excp_el) {
1139         assert(!s->fp_access_checked);
1140         s->fp_access_checked = true;
1141 
1142         gen_exception_insn_el(s, 0, EXCP_UDEF,
1143                               syn_fp_access_trap(1, 0xe, false, 0),
1144                               s->fp_excp_el);
1145         return false;
1146     }
1147     s->fp_access_checked = true;
1148     return true;
1149 }
1150 
1151 static bool fp_access_check(DisasContext *s)
1152 {
1153     if (!fp_access_check_only(s)) {
1154         return false;
1155     }
1156     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1157         gen_exception_insn(s, 0, EXCP_UDEF,
1158                            syn_smetrap(SME_ET_Streaming, false));
1159         return false;
1160     }
1161     return true;
1162 }
1163 
1164 /*
1165  * Check that SVE access is enabled.  If it is, return true.
1166  * If not, emit code to generate an appropriate exception and return false.
1167  * This function corresponds to CheckSVEEnabled().
1168  */
1169 bool sve_access_check(DisasContext *s)
1170 {
1171     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1172         assert(dc_isar_feature(aa64_sme, s));
1173         if (!sme_sm_enabled_check(s)) {
1174             goto fail_exit;
1175         }
1176     } else if (s->sve_excp_el) {
1177         gen_exception_insn_el(s, 0, EXCP_UDEF,
1178                               syn_sve_access_trap(), s->sve_excp_el);
1179         goto fail_exit;
1180     }
1181     s->sve_access_checked = true;
1182     return fp_access_check(s);
1183 
1184  fail_exit:
1185     /* Assert that we only raise one exception per instruction. */
1186     assert(!s->sve_access_checked);
1187     s->sve_access_checked = true;
1188     return false;
1189 }
1190 
1191 /*
1192  * Check that SME access is enabled, raise an exception if not.
1193  * Note that this function corresponds to CheckSMEAccess and is
1194  * only used directly for cpregs.
1195  */
1196 static bool sme_access_check(DisasContext *s)
1197 {
1198     if (s->sme_excp_el) {
1199         gen_exception_insn_el(s, 0, EXCP_UDEF,
1200                               syn_smetrap(SME_ET_AccessTrap, false),
1201                               s->sme_excp_el);
1202         return false;
1203     }
1204     return true;
1205 }
1206 
1207 /* This function corresponds to CheckSMEEnabled. */
1208 bool sme_enabled_check(DisasContext *s)
1209 {
1210     /*
1211      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1212      * to be zero when fp_excp_el has priority.  This is because we need
1213      * sme_excp_el by itself for cpregs access checks.
1214      */
1215     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1216         s->fp_access_checked = true;
1217         return sme_access_check(s);
1218     }
1219     return fp_access_check_only(s);
1220 }
1221 
1222 /* Common subroutine for CheckSMEAnd*Enabled. */
1223 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1224 {
1225     if (!sme_enabled_check(s)) {
1226         return false;
1227     }
1228     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1229         gen_exception_insn(s, 0, EXCP_UDEF,
1230                            syn_smetrap(SME_ET_NotStreaming, false));
1231         return false;
1232     }
1233     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1234         gen_exception_insn(s, 0, EXCP_UDEF,
1235                            syn_smetrap(SME_ET_InactiveZA, false));
1236         return false;
1237     }
1238     return true;
1239 }
1240 
1241 /*
1242  * This utility function is for doing register extension with an
1243  * optional shift. You will likely want to pass a temporary for the
1244  * destination register. See DecodeRegExtend() in the ARM ARM.
1245  */
1246 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1247                               int option, unsigned int shift)
1248 {
1249     int extsize = extract32(option, 0, 2);
1250     bool is_signed = extract32(option, 2, 1);
1251 
1252     if (is_signed) {
1253         switch (extsize) {
1254         case 0:
1255             tcg_gen_ext8s_i64(tcg_out, tcg_in);
1256             break;
1257         case 1:
1258             tcg_gen_ext16s_i64(tcg_out, tcg_in);
1259             break;
1260         case 2:
1261             tcg_gen_ext32s_i64(tcg_out, tcg_in);
1262             break;
1263         case 3:
1264             tcg_gen_mov_i64(tcg_out, tcg_in);
1265             break;
1266         }
1267     } else {
1268         switch (extsize) {
1269         case 0:
1270             tcg_gen_ext8u_i64(tcg_out, tcg_in);
1271             break;
1272         case 1:
1273             tcg_gen_ext16u_i64(tcg_out, tcg_in);
1274             break;
1275         case 2:
1276             tcg_gen_ext32u_i64(tcg_out, tcg_in);
1277             break;
1278         case 3:
1279             tcg_gen_mov_i64(tcg_out, tcg_in);
1280             break;
1281         }
1282     }
1283 
1284     if (shift) {
1285         tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1286     }
1287 }
1288 
1289 static inline void gen_check_sp_alignment(DisasContext *s)
1290 {
1291     /* The AArch64 architecture mandates that (if enabled via PSTATE
1292      * or SCTLR bits) there is a check that SP is 16-aligned on every
1293      * SP-relative load or store (with an exception generated if it is not).
1294      * In line with general QEMU practice regarding misaligned accesses,
1295      * we omit these checks for the sake of guest program performance.
1296      * This function is provided as a hook so we can more easily add these
1297      * checks in future (possibly as a "favour catching guest program bugs
1298      * over speed" user selectable option).
1299      */
1300 }
1301 
1302 /*
1303  * This provides a simple table based table lookup decoder. It is
1304  * intended to be used when the relevant bits for decode are too
1305  * awkwardly placed and switch/if based logic would be confusing and
1306  * deeply nested. Since it's a linear search through the table, tables
1307  * should be kept small.
1308  *
1309  * It returns the first handler where insn & mask == pattern, or
1310  * NULL if there is no match.
1311  * The table is terminated by an empty mask (i.e. 0)
1312  */
1313 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1314                                                uint32_t insn)
1315 {
1316     const AArch64DecodeTable *tptr = table;
1317 
1318     while (tptr->mask) {
1319         if ((insn & tptr->mask) == tptr->pattern) {
1320             return tptr->disas_fn;
1321         }
1322         tptr++;
1323     }
1324     return NULL;
1325 }
1326 
1327 /*
1328  * The instruction disassembly implemented here matches
1329  * the instruction encoding classifications in chapter C4
1330  * of the ARM Architecture Reference Manual (DDI0487B_a);
1331  * classification names and decode diagrams here should generally
1332  * match up with those in the manual.
1333  */
1334 
1335 /* Unconditional branch (immediate)
1336  *   31  30       26 25                                  0
1337  * +----+-----------+-------------------------------------+
1338  * | op | 0 0 1 0 1 |                 imm26               |
1339  * +----+-----------+-------------------------------------+
1340  */
1341 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1342 {
1343     int64_t diff = sextract32(insn, 0, 26) * 4;
1344 
1345     if (insn & (1U << 31)) {
1346         /* BL Branch with link */
1347         gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1348     }
1349 
1350     /* B Branch / BL Branch with link */
1351     reset_btype(s);
1352     gen_goto_tb(s, 0, diff);
1353 }
1354 
1355 /* Compare and branch (immediate)
1356  *   31  30         25  24  23                  5 4      0
1357  * +----+-------------+----+---------------------+--------+
1358  * | sf | 0 1 1 0 1 0 | op |         imm19       |   Rt   |
1359  * +----+-------------+----+---------------------+--------+
1360  */
1361 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1362 {
1363     unsigned int sf, op, rt;
1364     int64_t diff;
1365     DisasLabel match;
1366     TCGv_i64 tcg_cmp;
1367 
1368     sf = extract32(insn, 31, 1);
1369     op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1370     rt = extract32(insn, 0, 5);
1371     diff = sextract32(insn, 5, 19) * 4;
1372 
1373     tcg_cmp = read_cpu_reg(s, rt, sf);
1374     reset_btype(s);
1375 
1376     match = gen_disas_label(s);
1377     tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1378                         tcg_cmp, 0, match.label);
1379     gen_goto_tb(s, 0, 4);
1380     set_disas_label(s, match);
1381     gen_goto_tb(s, 1, diff);
1382 }
1383 
1384 /* Test and branch (immediate)
1385  *   31  30         25  24  23   19 18          5 4    0
1386  * +----+-------------+----+-------+-------------+------+
1387  * | b5 | 0 1 1 0 1 1 | op |  b40  |    imm14    |  Rt  |
1388  * +----+-------------+----+-------+-------------+------+
1389  */
1390 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1391 {
1392     unsigned int bit_pos, op, rt;
1393     int64_t diff;
1394     DisasLabel match;
1395     TCGv_i64 tcg_cmp;
1396 
1397     bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1398     op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1399     diff = sextract32(insn, 5, 14) * 4;
1400     rt = extract32(insn, 0, 5);
1401 
1402     tcg_cmp = tcg_temp_new_i64();
1403     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1404 
1405     reset_btype(s);
1406 
1407     match = gen_disas_label(s);
1408     tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1409                         tcg_cmp, 0, match.label);
1410     tcg_temp_free_i64(tcg_cmp);
1411     gen_goto_tb(s, 0, 4);
1412     set_disas_label(s, match);
1413     gen_goto_tb(s, 1, diff);
1414 }
1415 
1416 /* Conditional branch (immediate)
1417  *  31           25  24  23                  5   4  3    0
1418  * +---------------+----+---------------------+----+------+
1419  * | 0 1 0 1 0 1 0 | o1 |         imm19       | o0 | cond |
1420  * +---------------+----+---------------------+----+------+
1421  */
1422 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1423 {
1424     unsigned int cond;
1425     int64_t diff;
1426 
1427     if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1428         unallocated_encoding(s);
1429         return;
1430     }
1431     diff = sextract32(insn, 5, 19) * 4;
1432     cond = extract32(insn, 0, 4);
1433 
1434     reset_btype(s);
1435     if (cond < 0x0e) {
1436         /* genuinely conditional branches */
1437         DisasLabel match = gen_disas_label(s);
1438         arm_gen_test_cc(cond, match.label);
1439         gen_goto_tb(s, 0, 4);
1440         set_disas_label(s, match);
1441         gen_goto_tb(s, 1, diff);
1442     } else {
1443         /* 0xe and 0xf are both "always" conditions */
1444         gen_goto_tb(s, 0, diff);
1445     }
1446 }
1447 
1448 /* HINT instruction group, including various allocated HINTs */
1449 static void handle_hint(DisasContext *s, uint32_t insn,
1450                         unsigned int op1, unsigned int op2, unsigned int crm)
1451 {
1452     unsigned int selector = crm << 3 | op2;
1453 
1454     if (op1 != 3) {
1455         unallocated_encoding(s);
1456         return;
1457     }
1458 
1459     switch (selector) {
1460     case 0b00000: /* NOP */
1461         break;
1462     case 0b00011: /* WFI */
1463         s->base.is_jmp = DISAS_WFI;
1464         break;
1465     case 0b00001: /* YIELD */
1466         /* When running in MTTCG we don't generate jumps to the yield and
1467          * WFE helpers as it won't affect the scheduling of other vCPUs.
1468          * If we wanted to more completely model WFE/SEV so we don't busy
1469          * spin unnecessarily we would need to do something more involved.
1470          */
1471         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1472             s->base.is_jmp = DISAS_YIELD;
1473         }
1474         break;
1475     case 0b00010: /* WFE */
1476         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1477             s->base.is_jmp = DISAS_WFE;
1478         }
1479         break;
1480     case 0b00100: /* SEV */
1481     case 0b00101: /* SEVL */
1482     case 0b00110: /* DGH */
1483         /* we treat all as NOP at least for now */
1484         break;
1485     case 0b00111: /* XPACLRI */
1486         if (s->pauth_active) {
1487             gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1488         }
1489         break;
1490     case 0b01000: /* PACIA1716 */
1491         if (s->pauth_active) {
1492             gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1493         }
1494         break;
1495     case 0b01010: /* PACIB1716 */
1496         if (s->pauth_active) {
1497             gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1498         }
1499         break;
1500     case 0b01100: /* AUTIA1716 */
1501         if (s->pauth_active) {
1502             gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1503         }
1504         break;
1505     case 0b01110: /* AUTIB1716 */
1506         if (s->pauth_active) {
1507             gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1508         }
1509         break;
1510     case 0b10000: /* ESB */
1511         /* Without RAS, we must implement this as NOP. */
1512         if (dc_isar_feature(aa64_ras, s)) {
1513             /*
1514              * QEMU does not have a source of physical SErrors,
1515              * so we are only concerned with virtual SErrors.
1516              * The pseudocode in the ARM for this case is
1517              *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1518              *      AArch64.vESBOperation();
1519              * Most of the condition can be evaluated at translation time.
1520              * Test for EL2 present, and defer test for SEL2 to runtime.
1521              */
1522             if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1523                 gen_helper_vesb(cpu_env);
1524             }
1525         }
1526         break;
1527     case 0b11000: /* PACIAZ */
1528         if (s->pauth_active) {
1529             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1530                              tcg_constant_i64(0));
1531         }
1532         break;
1533     case 0b11001: /* PACIASP */
1534         if (s->pauth_active) {
1535             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1536         }
1537         break;
1538     case 0b11010: /* PACIBZ */
1539         if (s->pauth_active) {
1540             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1541                              tcg_constant_i64(0));
1542         }
1543         break;
1544     case 0b11011: /* PACIBSP */
1545         if (s->pauth_active) {
1546             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1547         }
1548         break;
1549     case 0b11100: /* AUTIAZ */
1550         if (s->pauth_active) {
1551             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1552                              tcg_constant_i64(0));
1553         }
1554         break;
1555     case 0b11101: /* AUTIASP */
1556         if (s->pauth_active) {
1557             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1558         }
1559         break;
1560     case 0b11110: /* AUTIBZ */
1561         if (s->pauth_active) {
1562             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1563                              tcg_constant_i64(0));
1564         }
1565         break;
1566     case 0b11111: /* AUTIBSP */
1567         if (s->pauth_active) {
1568             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1569         }
1570         break;
1571     default:
1572         /* default specified as NOP equivalent */
1573         break;
1574     }
1575 }
1576 
1577 static void gen_clrex(DisasContext *s, uint32_t insn)
1578 {
1579     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1580 }
1581 
1582 /* CLREX, DSB, DMB, ISB */
1583 static void handle_sync(DisasContext *s, uint32_t insn,
1584                         unsigned int op1, unsigned int op2, unsigned int crm)
1585 {
1586     TCGBar bar;
1587 
1588     if (op1 != 3) {
1589         unallocated_encoding(s);
1590         return;
1591     }
1592 
1593     switch (op2) {
1594     case 2: /* CLREX */
1595         gen_clrex(s, insn);
1596         return;
1597     case 4: /* DSB */
1598     case 5: /* DMB */
1599         switch (crm & 3) {
1600         case 1: /* MBReqTypes_Reads */
1601             bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1602             break;
1603         case 2: /* MBReqTypes_Writes */
1604             bar = TCG_BAR_SC | TCG_MO_ST_ST;
1605             break;
1606         default: /* MBReqTypes_All */
1607             bar = TCG_BAR_SC | TCG_MO_ALL;
1608             break;
1609         }
1610         tcg_gen_mb(bar);
1611         return;
1612     case 6: /* ISB */
1613         /* We need to break the TB after this insn to execute
1614          * a self-modified code correctly and also to take
1615          * any pending interrupts immediately.
1616          */
1617         reset_btype(s);
1618         gen_goto_tb(s, 0, 4);
1619         return;
1620 
1621     case 7: /* SB */
1622         if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1623             goto do_unallocated;
1624         }
1625         /*
1626          * TODO: There is no speculation barrier opcode for TCG;
1627          * MB and end the TB instead.
1628          */
1629         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1630         gen_goto_tb(s, 0, 4);
1631         return;
1632 
1633     default:
1634     do_unallocated:
1635         unallocated_encoding(s);
1636         return;
1637     }
1638 }
1639 
1640 static void gen_xaflag(void)
1641 {
1642     TCGv_i32 z = tcg_temp_new_i32();
1643 
1644     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1645 
1646     /*
1647      * (!C & !Z) << 31
1648      * (!(C | Z)) << 31
1649      * ~((C | Z) << 31)
1650      * ~-(C | Z)
1651      * (C | Z) - 1
1652      */
1653     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1654     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1655 
1656     /* !(Z & C) */
1657     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1658     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1659 
1660     /* (!C & Z) << 31 -> -(Z & ~C) */
1661     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1662     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1663 
1664     /* C | Z */
1665     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1666 
1667     tcg_temp_free_i32(z);
1668 }
1669 
1670 static void gen_axflag(void)
1671 {
1672     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1673     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1674 
1675     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1676     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1677 
1678     tcg_gen_movi_i32(cpu_NF, 0);
1679     tcg_gen_movi_i32(cpu_VF, 0);
1680 }
1681 
1682 /* MSR (immediate) - move immediate to processor state field */
1683 static void handle_msr_i(DisasContext *s, uint32_t insn,
1684                          unsigned int op1, unsigned int op2, unsigned int crm)
1685 {
1686     int op = op1 << 3 | op2;
1687 
1688     /* End the TB by default, chaining is ok.  */
1689     s->base.is_jmp = DISAS_TOO_MANY;
1690 
1691     switch (op) {
1692     case 0x00: /* CFINV */
1693         if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1694             goto do_unallocated;
1695         }
1696         tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1697         s->base.is_jmp = DISAS_NEXT;
1698         break;
1699 
1700     case 0x01: /* XAFlag */
1701         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1702             goto do_unallocated;
1703         }
1704         gen_xaflag();
1705         s->base.is_jmp = DISAS_NEXT;
1706         break;
1707 
1708     case 0x02: /* AXFlag */
1709         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1710             goto do_unallocated;
1711         }
1712         gen_axflag();
1713         s->base.is_jmp = DISAS_NEXT;
1714         break;
1715 
1716     case 0x03: /* UAO */
1717         if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1718             goto do_unallocated;
1719         }
1720         if (crm & 1) {
1721             set_pstate_bits(PSTATE_UAO);
1722         } else {
1723             clear_pstate_bits(PSTATE_UAO);
1724         }
1725         gen_rebuild_hflags(s);
1726         break;
1727 
1728     case 0x04: /* PAN */
1729         if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1730             goto do_unallocated;
1731         }
1732         if (crm & 1) {
1733             set_pstate_bits(PSTATE_PAN);
1734         } else {
1735             clear_pstate_bits(PSTATE_PAN);
1736         }
1737         gen_rebuild_hflags(s);
1738         break;
1739 
1740     case 0x05: /* SPSel */
1741         if (s->current_el == 0) {
1742             goto do_unallocated;
1743         }
1744         gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1745         break;
1746 
1747     case 0x19: /* SSBS */
1748         if (!dc_isar_feature(aa64_ssbs, s)) {
1749             goto do_unallocated;
1750         }
1751         if (crm & 1) {
1752             set_pstate_bits(PSTATE_SSBS);
1753         } else {
1754             clear_pstate_bits(PSTATE_SSBS);
1755         }
1756         /* Don't need to rebuild hflags since SSBS is a nop */
1757         break;
1758 
1759     case 0x1a: /* DIT */
1760         if (!dc_isar_feature(aa64_dit, s)) {
1761             goto do_unallocated;
1762         }
1763         if (crm & 1) {
1764             set_pstate_bits(PSTATE_DIT);
1765         } else {
1766             clear_pstate_bits(PSTATE_DIT);
1767         }
1768         /* There's no need to rebuild hflags because DIT is a nop */
1769         break;
1770 
1771     case 0x1e: /* DAIFSet */
1772         gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1773         break;
1774 
1775     case 0x1f: /* DAIFClear */
1776         gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1777         /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs.  */
1778         s->base.is_jmp = DISAS_UPDATE_EXIT;
1779         break;
1780 
1781     case 0x1c: /* TCO */
1782         if (dc_isar_feature(aa64_mte, s)) {
1783             /* Full MTE is enabled -- set the TCO bit as directed. */
1784             if (crm & 1) {
1785                 set_pstate_bits(PSTATE_TCO);
1786             } else {
1787                 clear_pstate_bits(PSTATE_TCO);
1788             }
1789             gen_rebuild_hflags(s);
1790             /* Many factors, including TCO, go into MTE_ACTIVE. */
1791             s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1792         } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1793             /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
1794             s->base.is_jmp = DISAS_NEXT;
1795         } else {
1796             goto do_unallocated;
1797         }
1798         break;
1799 
1800     case 0x1b: /* SVCR* */
1801         if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1802             goto do_unallocated;
1803         }
1804         if (sme_access_check(s)) {
1805             int old = s->pstate_sm | (s->pstate_za << 1);
1806             int new = (crm & 1) * 3;
1807             int msk = (crm >> 1) & 3;
1808 
1809             if ((old ^ new) & msk) {
1810                 /* At least one bit changes. */
1811                 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
1812                                     tcg_constant_i32(msk));
1813             } else {
1814                 s->base.is_jmp = DISAS_NEXT;
1815             }
1816         }
1817         break;
1818 
1819     default:
1820     do_unallocated:
1821         unallocated_encoding(s);
1822         return;
1823     }
1824 }
1825 
1826 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1827 {
1828     TCGv_i32 tmp = tcg_temp_new_i32();
1829     TCGv_i32 nzcv = tcg_temp_new_i32();
1830 
1831     /* build bit 31, N */
1832     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1833     /* build bit 30, Z */
1834     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1835     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1836     /* build bit 29, C */
1837     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1838     /* build bit 28, V */
1839     tcg_gen_shri_i32(tmp, cpu_VF, 31);
1840     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1841     /* generate result */
1842     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1843 
1844     tcg_temp_free_i32(nzcv);
1845     tcg_temp_free_i32(tmp);
1846 }
1847 
1848 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1849 {
1850     TCGv_i32 nzcv = tcg_temp_new_i32();
1851 
1852     /* take NZCV from R[t] */
1853     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1854 
1855     /* bit 31, N */
1856     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1857     /* bit 30, Z */
1858     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1859     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1860     /* bit 29, C */
1861     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1862     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1863     /* bit 28, V */
1864     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1865     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1866     tcg_temp_free_i32(nzcv);
1867 }
1868 
1869 static void gen_sysreg_undef(DisasContext *s, bool isread,
1870                              uint8_t op0, uint8_t op1, uint8_t op2,
1871                              uint8_t crn, uint8_t crm, uint8_t rt)
1872 {
1873     /*
1874      * Generate code to emit an UNDEF with correct syndrome
1875      * information for a failed system register access.
1876      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
1877      * but if FEAT_IDST is implemented then read accesses to registers
1878      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
1879      * syndrome.
1880      */
1881     uint32_t syndrome;
1882 
1883     if (isread && dc_isar_feature(aa64_ids, s) &&
1884         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
1885         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1886     } else {
1887         syndrome = syn_uncategorized();
1888     }
1889     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
1890 }
1891 
1892 /* MRS - move from system register
1893  * MSR (register) - move to system register
1894  * SYS
1895  * SYSL
1896  * These are all essentially the same insn in 'read' and 'write'
1897  * versions, with varying op0 fields.
1898  */
1899 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1900                        unsigned int op0, unsigned int op1, unsigned int op2,
1901                        unsigned int crn, unsigned int crm, unsigned int rt)
1902 {
1903     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1904                                       crn, crm, op0, op1, op2);
1905     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
1906     TCGv_ptr tcg_ri = NULL;
1907     TCGv_i64 tcg_rt;
1908 
1909     if (!ri) {
1910         /* Unknown register; this might be a guest error or a QEMU
1911          * unimplemented feature.
1912          */
1913         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1914                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1915                       isread ? "read" : "write", op0, op1, crn, crm, op2);
1916         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1917         return;
1918     }
1919 
1920     /* Check access permissions */
1921     if (!cp_access_ok(s->current_el, ri, isread)) {
1922         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1923         return;
1924     }
1925 
1926     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
1927         /* Emit code to perform further access permissions checks at
1928          * runtime; this may result in an exception.
1929          */
1930         uint32_t syndrome;
1931 
1932         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1933         gen_a64_update_pc(s, 0);
1934         tcg_ri = tcg_temp_new_ptr();
1935         gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
1936                                        tcg_constant_i32(key),
1937                                        tcg_constant_i32(syndrome),
1938                                        tcg_constant_i32(isread));
1939     } else if (ri->type & ARM_CP_RAISES_EXC) {
1940         /*
1941          * The readfn or writefn might raise an exception;
1942          * synchronize the CPU state in case it does.
1943          */
1944         gen_a64_update_pc(s, 0);
1945     }
1946 
1947     /* Handle special cases first */
1948     switch (ri->type & ARM_CP_SPECIAL_MASK) {
1949     case 0:
1950         break;
1951     case ARM_CP_NOP:
1952         goto exit;
1953     case ARM_CP_NZCV:
1954         tcg_rt = cpu_reg(s, rt);
1955         if (isread) {
1956             gen_get_nzcv(tcg_rt);
1957         } else {
1958             gen_set_nzcv(tcg_rt);
1959         }
1960         goto exit;
1961     case ARM_CP_CURRENTEL:
1962         /* Reads as current EL value from pstate, which is
1963          * guaranteed to be constant by the tb flags.
1964          */
1965         tcg_rt = cpu_reg(s, rt);
1966         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1967         goto exit;
1968     case ARM_CP_DC_ZVA:
1969         /* Writes clear the aligned block of memory which rt points into. */
1970         if (s->mte_active[0]) {
1971             int desc = 0;
1972 
1973             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
1974             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
1975             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
1976 
1977             tcg_rt = tcg_temp_new_i64();
1978             gen_helper_mte_check_zva(tcg_rt, cpu_env,
1979                                      tcg_constant_i32(desc), cpu_reg(s, rt));
1980         } else {
1981             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1982         }
1983         gen_helper_dc_zva(cpu_env, tcg_rt);
1984         goto exit;
1985     case ARM_CP_DC_GVA:
1986         {
1987             TCGv_i64 clean_addr, tag;
1988 
1989             /*
1990              * DC_GVA, like DC_ZVA, requires that we supply the original
1991              * pointer for an invalid page.  Probe that address first.
1992              */
1993             tcg_rt = cpu_reg(s, rt);
1994             clean_addr = clean_data_tbi(s, tcg_rt);
1995             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
1996 
1997             if (s->ata) {
1998                 /* Extract the tag from the register to match STZGM.  */
1999                 tag = tcg_temp_new_i64();
2000                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2001                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2002                 tcg_temp_free_i64(tag);
2003             }
2004         }
2005         goto exit;
2006     case ARM_CP_DC_GZVA:
2007         {
2008             TCGv_i64 clean_addr, tag;
2009 
2010             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2011             tcg_rt = cpu_reg(s, rt);
2012             clean_addr = clean_data_tbi(s, tcg_rt);
2013             gen_helper_dc_zva(cpu_env, clean_addr);
2014 
2015             if (s->ata) {
2016                 /* Extract the tag from the register to match STZGM.  */
2017                 tag = tcg_temp_new_i64();
2018                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2019                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2020                 tcg_temp_free_i64(tag);
2021             }
2022         }
2023         goto exit;
2024     default:
2025         g_assert_not_reached();
2026     }
2027     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2028         goto exit;
2029     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2030         goto exit;
2031     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2032         goto exit;
2033     }
2034 
2035     if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2036         gen_io_start();
2037     }
2038 
2039     tcg_rt = cpu_reg(s, rt);
2040 
2041     if (isread) {
2042         if (ri->type & ARM_CP_CONST) {
2043             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2044         } else if (ri->readfn) {
2045             if (!tcg_ri) {
2046                 tcg_ri = gen_lookup_cp_reg(key);
2047             }
2048             gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2049         } else {
2050             tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2051         }
2052     } else {
2053         if (ri->type & ARM_CP_CONST) {
2054             /* If not forbidden by access permissions, treat as WI */
2055             goto exit;
2056         } else if (ri->writefn) {
2057             if (!tcg_ri) {
2058                 tcg_ri = gen_lookup_cp_reg(key);
2059             }
2060             gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2061         } else {
2062             tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2063         }
2064     }
2065 
2066     if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2067         /* I/O operations must end the TB here (whether read or write) */
2068         s->base.is_jmp = DISAS_UPDATE_EXIT;
2069     }
2070     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2071         /*
2072          * A write to any coprocessor regiser that ends a TB
2073          * must rebuild the hflags for the next TB.
2074          */
2075         gen_rebuild_hflags(s);
2076         /*
2077          * We default to ending the TB on a coprocessor register write,
2078          * but allow this to be suppressed by the register definition
2079          * (usually only necessary to work around guest bugs).
2080          */
2081         s->base.is_jmp = DISAS_UPDATE_EXIT;
2082     }
2083 
2084  exit:
2085     if (tcg_ri) {
2086         tcg_temp_free_ptr(tcg_ri);
2087     }
2088 }
2089 
2090 /* System
2091  *  31                 22 21  20 19 18 16 15   12 11    8 7   5 4    0
2092  * +---------------------+---+-----+-----+-------+-------+-----+------+
2093  * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 |  CRn  |  CRm  | op2 |  Rt  |
2094  * +---------------------+---+-----+-----+-------+-------+-----+------+
2095  */
2096 static void disas_system(DisasContext *s, uint32_t insn)
2097 {
2098     unsigned int l, op0, op1, crn, crm, op2, rt;
2099     l = extract32(insn, 21, 1);
2100     op0 = extract32(insn, 19, 2);
2101     op1 = extract32(insn, 16, 3);
2102     crn = extract32(insn, 12, 4);
2103     crm = extract32(insn, 8, 4);
2104     op2 = extract32(insn, 5, 3);
2105     rt = extract32(insn, 0, 5);
2106 
2107     if (op0 == 0) {
2108         if (l || rt != 31) {
2109             unallocated_encoding(s);
2110             return;
2111         }
2112         switch (crn) {
2113         case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2114             handle_hint(s, insn, op1, op2, crm);
2115             break;
2116         case 3: /* CLREX, DSB, DMB, ISB */
2117             handle_sync(s, insn, op1, op2, crm);
2118             break;
2119         case 4: /* MSR (immediate) */
2120             handle_msr_i(s, insn, op1, op2, crm);
2121             break;
2122         default:
2123             unallocated_encoding(s);
2124             break;
2125         }
2126         return;
2127     }
2128     handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2129 }
2130 
2131 /* Exception generation
2132  *
2133  *  31             24 23 21 20                     5 4   2 1  0
2134  * +-----------------+-----+------------------------+-----+----+
2135  * | 1 1 0 1 0 1 0 0 | opc |          imm16         | op2 | LL |
2136  * +-----------------------+------------------------+----------+
2137  */
2138 static void disas_exc(DisasContext *s, uint32_t insn)
2139 {
2140     int opc = extract32(insn, 21, 3);
2141     int op2_ll = extract32(insn, 0, 5);
2142     int imm16 = extract32(insn, 5, 16);
2143     uint32_t syndrome;
2144 
2145     switch (opc) {
2146     case 0:
2147         /* For SVC, HVC and SMC we advance the single-step state
2148          * machine before taking the exception. This is architecturally
2149          * mandated, to ensure that single-stepping a system call
2150          * instruction works properly.
2151          */
2152         switch (op2_ll) {
2153         case 1:                                                     /* SVC */
2154             syndrome = syn_aa64_svc(imm16);
2155             if (s->fgt_svc) {
2156                 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2157                 break;
2158             }
2159             gen_ss_advance(s);
2160             gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2161             break;
2162         case 2:                                                     /* HVC */
2163             if (s->current_el == 0) {
2164                 unallocated_encoding(s);
2165                 break;
2166             }
2167             /* The pre HVC helper handles cases when HVC gets trapped
2168              * as an undefined insn by runtime configuration.
2169              */
2170             gen_a64_update_pc(s, 0);
2171             gen_helper_pre_hvc(cpu_env);
2172             gen_ss_advance(s);
2173             gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2174             break;
2175         case 3:                                                     /* SMC */
2176             if (s->current_el == 0) {
2177                 unallocated_encoding(s);
2178                 break;
2179             }
2180             gen_a64_update_pc(s, 0);
2181             gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2182             gen_ss_advance(s);
2183             gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2184             break;
2185         default:
2186             unallocated_encoding(s);
2187             break;
2188         }
2189         break;
2190     case 1:
2191         if (op2_ll != 0) {
2192             unallocated_encoding(s);
2193             break;
2194         }
2195         /* BRK */
2196         gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2197         break;
2198     case 2:
2199         if (op2_ll != 0) {
2200             unallocated_encoding(s);
2201             break;
2202         }
2203         /* HLT. This has two purposes.
2204          * Architecturally, it is an external halting debug instruction.
2205          * Since QEMU doesn't implement external debug, we treat this as
2206          * it is required for halting debug disabled: it will UNDEF.
2207          * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2208          */
2209         if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2210             gen_exception_internal_insn(s, EXCP_SEMIHOST);
2211         } else {
2212             unallocated_encoding(s);
2213         }
2214         break;
2215     case 5:
2216         if (op2_ll < 1 || op2_ll > 3) {
2217             unallocated_encoding(s);
2218             break;
2219         }
2220         /* DCPS1, DCPS2, DCPS3 */
2221         unallocated_encoding(s);
2222         break;
2223     default:
2224         unallocated_encoding(s);
2225         break;
2226     }
2227 }
2228 
2229 /* Unconditional branch (register)
2230  *  31           25 24   21 20   16 15   10 9    5 4     0
2231  * +---------------+-------+-------+-------+------+-------+
2232  * | 1 1 0 1 0 1 1 |  opc  |  op2  |  op3  |  Rn  |  op4  |
2233  * +---------------+-------+-------+-------+------+-------+
2234  */
2235 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2236 {
2237     unsigned int opc, op2, op3, rn, op4;
2238     unsigned btype_mod = 2;   /* 0: BR, 1: BLR, 2: other */
2239     TCGv_i64 dst;
2240     TCGv_i64 modifier;
2241 
2242     opc = extract32(insn, 21, 4);
2243     op2 = extract32(insn, 16, 5);
2244     op3 = extract32(insn, 10, 6);
2245     rn = extract32(insn, 5, 5);
2246     op4 = extract32(insn, 0, 5);
2247 
2248     if (op2 != 0x1f) {
2249         goto do_unallocated;
2250     }
2251 
2252     switch (opc) {
2253     case 0: /* BR */
2254     case 1: /* BLR */
2255     case 2: /* RET */
2256         btype_mod = opc;
2257         switch (op3) {
2258         case 0:
2259             /* BR, BLR, RET */
2260             if (op4 != 0) {
2261                 goto do_unallocated;
2262             }
2263             dst = cpu_reg(s, rn);
2264             break;
2265 
2266         case 2:
2267         case 3:
2268             if (!dc_isar_feature(aa64_pauth, s)) {
2269                 goto do_unallocated;
2270             }
2271             if (opc == 2) {
2272                 /* RETAA, RETAB */
2273                 if (rn != 0x1f || op4 != 0x1f) {
2274                     goto do_unallocated;
2275                 }
2276                 rn = 30;
2277                 modifier = cpu_X[31];
2278             } else {
2279                 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2280                 if (op4 != 0x1f) {
2281                     goto do_unallocated;
2282                 }
2283                 modifier = tcg_constant_i64(0);
2284             }
2285             if (s->pauth_active) {
2286                 dst = tcg_temp_new_i64();
2287                 if (op3 == 2) {
2288                     gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2289                 } else {
2290                     gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2291                 }
2292             } else {
2293                 dst = cpu_reg(s, rn);
2294             }
2295             break;
2296 
2297         default:
2298             goto do_unallocated;
2299         }
2300         /* BLR also needs to load return address */
2301         if (opc == 1) {
2302             TCGv_i64 lr = cpu_reg(s, 30);
2303             if (dst == lr) {
2304                 TCGv_i64 tmp = tcg_temp_new_i64();
2305                 tcg_gen_mov_i64(tmp, dst);
2306                 dst = tmp;
2307             }
2308             gen_pc_plus_diff(s, lr, curr_insn_len(s));
2309         }
2310         gen_a64_set_pc(s, dst);
2311         break;
2312 
2313     case 8: /* BRAA */
2314     case 9: /* BLRAA */
2315         if (!dc_isar_feature(aa64_pauth, s)) {
2316             goto do_unallocated;
2317         }
2318         if ((op3 & ~1) != 2) {
2319             goto do_unallocated;
2320         }
2321         btype_mod = opc & 1;
2322         if (s->pauth_active) {
2323             dst = tcg_temp_new_i64();
2324             modifier = cpu_reg_sp(s, op4);
2325             if (op3 == 2) {
2326                 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2327             } else {
2328                 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2329             }
2330         } else {
2331             dst = cpu_reg(s, rn);
2332         }
2333         /* BLRAA also needs to load return address */
2334         if (opc == 9) {
2335             TCGv_i64 lr = cpu_reg(s, 30);
2336             if (dst == lr) {
2337                 TCGv_i64 tmp = tcg_temp_new_i64();
2338                 tcg_gen_mov_i64(tmp, dst);
2339                 dst = tmp;
2340             }
2341             gen_pc_plus_diff(s, lr, curr_insn_len(s));
2342         }
2343         gen_a64_set_pc(s, dst);
2344         break;
2345 
2346     case 4: /* ERET */
2347         if (s->current_el == 0) {
2348             goto do_unallocated;
2349         }
2350         switch (op3) {
2351         case 0: /* ERET */
2352             if (op4 != 0) {
2353                 goto do_unallocated;
2354             }
2355             if (s->fgt_eret) {
2356                 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2357                 return;
2358             }
2359             dst = tcg_temp_new_i64();
2360             tcg_gen_ld_i64(dst, cpu_env,
2361                            offsetof(CPUARMState, elr_el[s->current_el]));
2362             break;
2363 
2364         case 2: /* ERETAA */
2365         case 3: /* ERETAB */
2366             if (!dc_isar_feature(aa64_pauth, s)) {
2367                 goto do_unallocated;
2368             }
2369             if (rn != 0x1f || op4 != 0x1f) {
2370                 goto do_unallocated;
2371             }
2372             /* The FGT trap takes precedence over an auth trap. */
2373             if (s->fgt_eret) {
2374                 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2375                 return;
2376             }
2377             dst = tcg_temp_new_i64();
2378             tcg_gen_ld_i64(dst, cpu_env,
2379                            offsetof(CPUARMState, elr_el[s->current_el]));
2380             if (s->pauth_active) {
2381                 modifier = cpu_X[31];
2382                 if (op3 == 2) {
2383                     gen_helper_autia(dst, cpu_env, dst, modifier);
2384                 } else {
2385                     gen_helper_autib(dst, cpu_env, dst, modifier);
2386                 }
2387             }
2388             break;
2389 
2390         default:
2391             goto do_unallocated;
2392         }
2393         if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2394             gen_io_start();
2395         }
2396 
2397         gen_helper_exception_return(cpu_env, dst);
2398         tcg_temp_free_i64(dst);
2399         /* Must exit loop to check un-masked IRQs */
2400         s->base.is_jmp = DISAS_EXIT;
2401         return;
2402 
2403     case 5: /* DRPS */
2404         if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2405             goto do_unallocated;
2406         } else {
2407             unallocated_encoding(s);
2408         }
2409         return;
2410 
2411     default:
2412     do_unallocated:
2413         unallocated_encoding(s);
2414         return;
2415     }
2416 
2417     switch (btype_mod) {
2418     case 0: /* BR */
2419         if (dc_isar_feature(aa64_bti, s)) {
2420             /* BR to {x16,x17} or !guard -> 1, else 3.  */
2421             set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2422         }
2423         break;
2424 
2425     case 1: /* BLR */
2426         if (dc_isar_feature(aa64_bti, s)) {
2427             /* BLR sets BTYPE to 2, regardless of source guarded page.  */
2428             set_btype(s, 2);
2429         }
2430         break;
2431 
2432     default: /* RET or none of the above.  */
2433         /* BTYPE will be set to 0 by normal end-of-insn processing.  */
2434         break;
2435     }
2436 
2437     s->base.is_jmp = DISAS_JUMP;
2438 }
2439 
2440 /* Branches, exception generating and system instructions */
2441 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2442 {
2443     switch (extract32(insn, 25, 7)) {
2444     case 0x0a: case 0x0b:
2445     case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2446         disas_uncond_b_imm(s, insn);
2447         break;
2448     case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2449         disas_comp_b_imm(s, insn);
2450         break;
2451     case 0x1b: case 0x5b: /* Test & branch (immediate) */
2452         disas_test_b_imm(s, insn);
2453         break;
2454     case 0x2a: /* Conditional branch (immediate) */
2455         disas_cond_b_imm(s, insn);
2456         break;
2457     case 0x6a: /* Exception generation / System */
2458         if (insn & (1 << 24)) {
2459             if (extract32(insn, 22, 2) == 0) {
2460                 disas_system(s, insn);
2461             } else {
2462                 unallocated_encoding(s);
2463             }
2464         } else {
2465             disas_exc(s, insn);
2466         }
2467         break;
2468     case 0x6b: /* Unconditional branch (register) */
2469         disas_uncond_b_reg(s, insn);
2470         break;
2471     default:
2472         unallocated_encoding(s);
2473         break;
2474     }
2475 }
2476 
2477 /*
2478  * Load/Store exclusive instructions are implemented by remembering
2479  * the value/address loaded, and seeing if these are the same
2480  * when the store is performed. This is not actually the architecturally
2481  * mandated semantics, but it works for typical guest code sequences
2482  * and avoids having to monitor regular stores.
2483  *
2484  * The store exclusive uses the atomic cmpxchg primitives to avoid
2485  * races in multi-threaded linux-user and when MTTCG softmmu is
2486  * enabled.
2487  */
2488 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2489                                TCGv_i64 addr, int size, bool is_pair)
2490 {
2491     int idx = get_mem_index(s);
2492     MemOp memop = s->be_data;
2493 
2494     g_assert(size <= 3);
2495     if (is_pair) {
2496         g_assert(size >= 2);
2497         if (size == 2) {
2498             /* The pair must be single-copy atomic for the doubleword.  */
2499             memop |= MO_64 | MO_ALIGN;
2500             tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2501             if (s->be_data == MO_LE) {
2502                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2503                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2504             } else {
2505                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2506                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2507             }
2508         } else {
2509             /* The pair must be single-copy atomic for *each* doubleword, not
2510                the entire quadword, however it must be quadword aligned.  */
2511             memop |= MO_64;
2512             tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2513                                 memop | MO_ALIGN_16);
2514 
2515             TCGv_i64 addr2 = tcg_temp_new_i64();
2516             tcg_gen_addi_i64(addr2, addr, 8);
2517             tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2518             tcg_temp_free_i64(addr2);
2519 
2520             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2521             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2522         }
2523     } else {
2524         memop |= size | MO_ALIGN;
2525         tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2526         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2527     }
2528     tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2529 }
2530 
2531 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2532                                 TCGv_i64 addr, int size, int is_pair)
2533 {
2534     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2535      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2536      *     [addr] = {Rt};
2537      *     if (is_pair) {
2538      *         [addr + datasize] = {Rt2};
2539      *     }
2540      *     {Rd} = 0;
2541      * } else {
2542      *     {Rd} = 1;
2543      * }
2544      * env->exclusive_addr = -1;
2545      */
2546     TCGLabel *fail_label = gen_new_label();
2547     TCGLabel *done_label = gen_new_label();
2548     TCGv_i64 tmp;
2549 
2550     tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2551 
2552     tmp = tcg_temp_new_i64();
2553     if (is_pair) {
2554         if (size == 2) {
2555             if (s->be_data == MO_LE) {
2556                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2557             } else {
2558                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2559             }
2560             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2561                                        cpu_exclusive_val, tmp,
2562                                        get_mem_index(s),
2563                                        MO_64 | MO_ALIGN | s->be_data);
2564             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2565         } else {
2566             TCGv_i128 t16 = tcg_temp_new_i128();
2567             TCGv_i128 c16 = tcg_temp_new_i128();
2568             TCGv_i64 a, b;
2569 
2570             if (s->be_data == MO_LE) {
2571                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2572                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2573                                         cpu_exclusive_high);
2574             } else {
2575                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2576                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2577                                         cpu_exclusive_val);
2578             }
2579 
2580             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2581                                         get_mem_index(s),
2582                                         MO_128 | MO_ALIGN | s->be_data);
2583             tcg_temp_free_i128(c16);
2584 
2585             a = tcg_temp_new_i64();
2586             b = tcg_temp_new_i64();
2587             if (s->be_data == MO_LE) {
2588                 tcg_gen_extr_i128_i64(a, b, t16);
2589             } else {
2590                 tcg_gen_extr_i128_i64(b, a, t16);
2591             }
2592 
2593             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2594             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2595             tcg_gen_or_i64(tmp, a, b);
2596             tcg_temp_free_i64(a);
2597             tcg_temp_free_i64(b);
2598             tcg_temp_free_i128(t16);
2599 
2600             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2601         }
2602     } else {
2603         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2604                                    cpu_reg(s, rt), get_mem_index(s),
2605                                    size | MO_ALIGN | s->be_data);
2606         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2607     }
2608     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2609     tcg_temp_free_i64(tmp);
2610     tcg_gen_br(done_label);
2611 
2612     gen_set_label(fail_label);
2613     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2614     gen_set_label(done_label);
2615     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2616 }
2617 
2618 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2619                                  int rn, int size)
2620 {
2621     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2622     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2623     int memidx = get_mem_index(s);
2624     TCGv_i64 clean_addr;
2625 
2626     if (rn == 31) {
2627         gen_check_sp_alignment(s);
2628     }
2629     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2630     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2631                                size | MO_ALIGN | s->be_data);
2632 }
2633 
2634 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2635                                       int rn, int size)
2636 {
2637     TCGv_i64 s1 = cpu_reg(s, rs);
2638     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2639     TCGv_i64 t1 = cpu_reg(s, rt);
2640     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2641     TCGv_i64 clean_addr;
2642     int memidx = get_mem_index(s);
2643 
2644     if (rn == 31) {
2645         gen_check_sp_alignment(s);
2646     }
2647 
2648     /* This is a single atomic access, despite the "pair". */
2649     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2650 
2651     if (size == 2) {
2652         TCGv_i64 cmp = tcg_temp_new_i64();
2653         TCGv_i64 val = tcg_temp_new_i64();
2654 
2655         if (s->be_data == MO_LE) {
2656             tcg_gen_concat32_i64(val, t1, t2);
2657             tcg_gen_concat32_i64(cmp, s1, s2);
2658         } else {
2659             tcg_gen_concat32_i64(val, t2, t1);
2660             tcg_gen_concat32_i64(cmp, s2, s1);
2661         }
2662 
2663         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2664                                    MO_64 | MO_ALIGN | s->be_data);
2665         tcg_temp_free_i64(val);
2666 
2667         if (s->be_data == MO_LE) {
2668             tcg_gen_extr32_i64(s1, s2, cmp);
2669         } else {
2670             tcg_gen_extr32_i64(s2, s1, cmp);
2671         }
2672         tcg_temp_free_i64(cmp);
2673     } else {
2674         TCGv_i128 cmp = tcg_temp_new_i128();
2675         TCGv_i128 val = tcg_temp_new_i128();
2676 
2677         if (s->be_data == MO_LE) {
2678             tcg_gen_concat_i64_i128(val, t1, t2);
2679             tcg_gen_concat_i64_i128(cmp, s1, s2);
2680         } else {
2681             tcg_gen_concat_i64_i128(val, t2, t1);
2682             tcg_gen_concat_i64_i128(cmp, s2, s1);
2683         }
2684 
2685         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx,
2686                                     MO_128 | MO_ALIGN | s->be_data);
2687         tcg_temp_free_i128(val);
2688 
2689         if (s->be_data == MO_LE) {
2690             tcg_gen_extr_i128_i64(s1, s2, cmp);
2691         } else {
2692             tcg_gen_extr_i128_i64(s2, s1, cmp);
2693         }
2694         tcg_temp_free_i128(cmp);
2695     }
2696 }
2697 
2698 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2699  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2700  */
2701 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2702 {
2703     int opc0 = extract32(opc, 0, 1);
2704     int regsize;
2705 
2706     if (is_signed) {
2707         regsize = opc0 ? 32 : 64;
2708     } else {
2709         regsize = size == 3 ? 64 : 32;
2710     }
2711     return regsize == 64;
2712 }
2713 
2714 /* Load/store exclusive
2715  *
2716  *  31 30 29         24  23  22   21  20  16  15  14   10 9    5 4    0
2717  * +-----+-------------+----+---+----+------+----+-------+------+------+
2718  * | sz  | 0 0 1 0 0 0 | o2 | L | o1 |  Rs  | o0 |  Rt2  |  Rn  | Rt   |
2719  * +-----+-------------+----+---+----+------+----+-------+------+------+
2720  *
2721  *  sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2722  *   L: 0 -> store, 1 -> load
2723  *  o2: 0 -> exclusive, 1 -> not
2724  *  o1: 0 -> single register, 1 -> register pair
2725  *  o0: 1 -> load-acquire/store-release, 0 -> not
2726  */
2727 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2728 {
2729     int rt = extract32(insn, 0, 5);
2730     int rn = extract32(insn, 5, 5);
2731     int rt2 = extract32(insn, 10, 5);
2732     int rs = extract32(insn, 16, 5);
2733     int is_lasr = extract32(insn, 15, 1);
2734     int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2735     int size = extract32(insn, 30, 2);
2736     TCGv_i64 clean_addr;
2737 
2738     switch (o2_L_o1_o0) {
2739     case 0x0: /* STXR */
2740     case 0x1: /* STLXR */
2741         if (rn == 31) {
2742             gen_check_sp_alignment(s);
2743         }
2744         if (is_lasr) {
2745             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2746         }
2747         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2748                                     true, rn != 31, size);
2749         gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2750         return;
2751 
2752     case 0x4: /* LDXR */
2753     case 0x5: /* LDAXR */
2754         if (rn == 31) {
2755             gen_check_sp_alignment(s);
2756         }
2757         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2758                                     false, rn != 31, size);
2759         s->is_ldex = true;
2760         gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2761         if (is_lasr) {
2762             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2763         }
2764         return;
2765 
2766     case 0x8: /* STLLR */
2767         if (!dc_isar_feature(aa64_lor, s)) {
2768             break;
2769         }
2770         /* StoreLORelease is the same as Store-Release for QEMU.  */
2771         /* fall through */
2772     case 0x9: /* STLR */
2773         /* Generate ISS for non-exclusive accesses including LASR.  */
2774         if (rn == 31) {
2775             gen_check_sp_alignment(s);
2776         }
2777         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2778         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2779                                     true, rn != 31, size);
2780         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2781         do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2782                   disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2783         return;
2784 
2785     case 0xc: /* LDLAR */
2786         if (!dc_isar_feature(aa64_lor, s)) {
2787             break;
2788         }
2789         /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2790         /* fall through */
2791     case 0xd: /* LDAR */
2792         /* Generate ISS for non-exclusive accesses including LASR.  */
2793         if (rn == 31) {
2794             gen_check_sp_alignment(s);
2795         }
2796         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2797                                     false, rn != 31, size);
2798         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2799         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2800                   rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2801         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2802         return;
2803 
2804     case 0x2: case 0x3: /* CASP / STXP */
2805         if (size & 2) { /* STXP / STLXP */
2806             if (rn == 31) {
2807                 gen_check_sp_alignment(s);
2808             }
2809             if (is_lasr) {
2810                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2811             }
2812             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2813                                         true, rn != 31, size);
2814             gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2815             return;
2816         }
2817         if (rt2 == 31
2818             && ((rt | rs) & 1) == 0
2819             && dc_isar_feature(aa64_atomics, s)) {
2820             /* CASP / CASPL */
2821             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2822             return;
2823         }
2824         break;
2825 
2826     case 0x6: case 0x7: /* CASPA / LDXP */
2827         if (size & 2) { /* LDXP / LDAXP */
2828             if (rn == 31) {
2829                 gen_check_sp_alignment(s);
2830             }
2831             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2832                                         false, rn != 31, size);
2833             s->is_ldex = true;
2834             gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2835             if (is_lasr) {
2836                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2837             }
2838             return;
2839         }
2840         if (rt2 == 31
2841             && ((rt | rs) & 1) == 0
2842             && dc_isar_feature(aa64_atomics, s)) {
2843             /* CASPA / CASPAL */
2844             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2845             return;
2846         }
2847         break;
2848 
2849     case 0xa: /* CAS */
2850     case 0xb: /* CASL */
2851     case 0xe: /* CASA */
2852     case 0xf: /* CASAL */
2853         if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2854             gen_compare_and_swap(s, rs, rt, rn, size);
2855             return;
2856         }
2857         break;
2858     }
2859     unallocated_encoding(s);
2860 }
2861 
2862 /*
2863  * Load register (literal)
2864  *
2865  *  31 30 29   27  26 25 24 23                5 4     0
2866  * +-----+-------+---+-----+-------------------+-------+
2867  * | opc | 0 1 1 | V | 0 0 |     imm19         |  Rt   |
2868  * +-----+-------+---+-----+-------------------+-------+
2869  *
2870  * V: 1 -> vector (simd/fp)
2871  * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2872  *                   10-> 32 bit signed, 11 -> prefetch
2873  * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2874  */
2875 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2876 {
2877     int rt = extract32(insn, 0, 5);
2878     int64_t imm = sextract32(insn, 5, 19) << 2;
2879     bool is_vector = extract32(insn, 26, 1);
2880     int opc = extract32(insn, 30, 2);
2881     bool is_signed = false;
2882     int size = 2;
2883     TCGv_i64 tcg_rt, clean_addr;
2884 
2885     if (is_vector) {
2886         if (opc == 3) {
2887             unallocated_encoding(s);
2888             return;
2889         }
2890         size = 2 + opc;
2891         if (!fp_access_check(s)) {
2892             return;
2893         }
2894     } else {
2895         if (opc == 3) {
2896             /* PRFM (literal) : prefetch */
2897             return;
2898         }
2899         size = 2 + extract32(opc, 0, 1);
2900         is_signed = extract32(opc, 1, 1);
2901     }
2902 
2903     tcg_rt = cpu_reg(s, rt);
2904 
2905     clean_addr = tcg_temp_new_i64();
2906     gen_pc_plus_diff(s, clean_addr, imm);
2907     if (is_vector) {
2908         do_fp_ld(s, rt, clean_addr, size);
2909     } else {
2910         /* Only unsigned 32bit loads target 32bit registers.  */
2911         bool iss_sf = opc != 0;
2912 
2913         do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2914                   false, true, rt, iss_sf, false);
2915     }
2916 }
2917 
2918 /*
2919  * LDNP (Load Pair - non-temporal hint)
2920  * LDP (Load Pair - non vector)
2921  * LDPSW (Load Pair Signed Word - non vector)
2922  * STNP (Store Pair - non-temporal hint)
2923  * STP (Store Pair - non vector)
2924  * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2925  * LDP (Load Pair of SIMD&FP)
2926  * STNP (Store Pair of SIMD&FP - non-temporal hint)
2927  * STP (Store Pair of SIMD&FP)
2928  *
2929  *  31 30 29   27  26  25 24   23  22 21   15 14   10 9    5 4    0
2930  * +-----+-------+---+---+-------+---+-----------------------------+
2931  * | opc | 1 0 1 | V | 0 | index | L |  imm7 |  Rt2  |  Rn  | Rt   |
2932  * +-----+-------+---+---+-------+---+-------+-------+------+------+
2933  *
2934  * opc: LDP/STP/LDNP/STNP        00 -> 32 bit, 10 -> 64 bit
2935  *      LDPSW/STGP               01
2936  *      LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2937  *   V: 0 -> GPR, 1 -> Vector
2938  * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2939  *      10 -> signed offset, 11 -> pre-index
2940  *   L: 0 -> Store 1 -> Load
2941  *
2942  * Rt, Rt2 = GPR or SIMD registers to be stored
2943  * Rn = general purpose register containing address
2944  * imm7 = signed offset (multiple of 4 or 8 depending on size)
2945  */
2946 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2947 {
2948     int rt = extract32(insn, 0, 5);
2949     int rn = extract32(insn, 5, 5);
2950     int rt2 = extract32(insn, 10, 5);
2951     uint64_t offset = sextract64(insn, 15, 7);
2952     int index = extract32(insn, 23, 2);
2953     bool is_vector = extract32(insn, 26, 1);
2954     bool is_load = extract32(insn, 22, 1);
2955     int opc = extract32(insn, 30, 2);
2956 
2957     bool is_signed = false;
2958     bool postindex = false;
2959     bool wback = false;
2960     bool set_tag = false;
2961 
2962     TCGv_i64 clean_addr, dirty_addr;
2963 
2964     int size;
2965 
2966     if (opc == 3) {
2967         unallocated_encoding(s);
2968         return;
2969     }
2970 
2971     if (is_vector) {
2972         size = 2 + opc;
2973     } else if (opc == 1 && !is_load) {
2974         /* STGP */
2975         if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2976             unallocated_encoding(s);
2977             return;
2978         }
2979         size = 3;
2980         set_tag = true;
2981     } else {
2982         size = 2 + extract32(opc, 1, 1);
2983         is_signed = extract32(opc, 0, 1);
2984         if (!is_load && is_signed) {
2985             unallocated_encoding(s);
2986             return;
2987         }
2988     }
2989 
2990     switch (index) {
2991     case 1: /* post-index */
2992         postindex = true;
2993         wback = true;
2994         break;
2995     case 0:
2996         /* signed offset with "non-temporal" hint. Since we don't emulate
2997          * caches we don't care about hints to the cache system about
2998          * data access patterns, and handle this identically to plain
2999          * signed offset.
3000          */
3001         if (is_signed) {
3002             /* There is no non-temporal-hint version of LDPSW */
3003             unallocated_encoding(s);
3004             return;
3005         }
3006         postindex = false;
3007         break;
3008     case 2: /* signed offset, rn not updated */
3009         postindex = false;
3010         break;
3011     case 3: /* pre-index */
3012         postindex = false;
3013         wback = true;
3014         break;
3015     }
3016 
3017     if (is_vector && !fp_access_check(s)) {
3018         return;
3019     }
3020 
3021     offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
3022 
3023     if (rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3028     if (!postindex) {
3029         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3030     }
3031 
3032     if (set_tag) {
3033         if (!s->ata) {
3034             /*
3035              * TODO: We could rely on the stores below, at least for
3036              * system mode, if we arrange to add MO_ALIGN_16.
3037              */
3038             gen_helper_stg_stub(cpu_env, dirty_addr);
3039         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3040             gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
3041         } else {
3042             gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
3043         }
3044     }
3045 
3046     clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
3047                                 (wback || rn != 31) && !set_tag, 2 << size);
3048 
3049     if (is_vector) {
3050         if (is_load) {
3051             do_fp_ld(s, rt, clean_addr, size);
3052         } else {
3053             do_fp_st(s, rt, clean_addr, size);
3054         }
3055         tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3056         if (is_load) {
3057             do_fp_ld(s, rt2, clean_addr, size);
3058         } else {
3059             do_fp_st(s, rt2, clean_addr, size);
3060         }
3061     } else {
3062         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3063         TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
3064 
3065         if (is_load) {
3066             TCGv_i64 tmp = tcg_temp_new_i64();
3067 
3068             /* Do not modify tcg_rt before recognizing any exception
3069              * from the second load.
3070              */
3071             do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
3072                       false, false, 0, false, false);
3073             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3074             do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
3075                       false, false, 0, false, false);
3076 
3077             tcg_gen_mov_i64(tcg_rt, tmp);
3078             tcg_temp_free_i64(tmp);
3079         } else {
3080             do_gpr_st(s, tcg_rt, clean_addr, size,
3081                       false, 0, false, false);
3082             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3083             do_gpr_st(s, tcg_rt2, clean_addr, size,
3084                       false, 0, false, false);
3085         }
3086     }
3087 
3088     if (wback) {
3089         if (postindex) {
3090             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3091         }
3092         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3093     }
3094 }
3095 
3096 /*
3097  * Load/store (immediate post-indexed)
3098  * Load/store (immediate pre-indexed)
3099  * Load/store (unscaled immediate)
3100  *
3101  * 31 30 29   27  26 25 24 23 22 21  20    12 11 10 9    5 4    0
3102  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3103  * |size| 1 1 1 | V | 0 0 | opc | 0 |  imm9  | idx |  Rn  |  Rt  |
3104  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3105  *
3106  * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3107          10 -> unprivileged
3108  * V = 0 -> non-vector
3109  * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3110  * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3111  */
3112 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3113                                 int opc,
3114                                 int size,
3115                                 int rt,
3116                                 bool is_vector)
3117 {
3118     int rn = extract32(insn, 5, 5);
3119     int imm9 = sextract32(insn, 12, 9);
3120     int idx = extract32(insn, 10, 2);
3121     bool is_signed = false;
3122     bool is_store = false;
3123     bool is_extended = false;
3124     bool is_unpriv = (idx == 2);
3125     bool iss_valid;
3126     bool post_index;
3127     bool writeback;
3128     int memidx;
3129 
3130     TCGv_i64 clean_addr, dirty_addr;
3131 
3132     if (is_vector) {
3133         size |= (opc & 2) << 1;
3134         if (size > 4 || is_unpriv) {
3135             unallocated_encoding(s);
3136             return;
3137         }
3138         is_store = ((opc & 1) == 0);
3139         if (!fp_access_check(s)) {
3140             return;
3141         }
3142     } else {
3143         if (size == 3 && opc == 2) {
3144             /* PRFM - prefetch */
3145             if (idx != 0) {
3146                 unallocated_encoding(s);
3147                 return;
3148             }
3149             return;
3150         }
3151         if (opc == 3 && size > 1) {
3152             unallocated_encoding(s);
3153             return;
3154         }
3155         is_store = (opc == 0);
3156         is_signed = extract32(opc, 1, 1);
3157         is_extended = (size < 3) && extract32(opc, 0, 1);
3158     }
3159 
3160     switch (idx) {
3161     case 0:
3162     case 2:
3163         post_index = false;
3164         writeback = false;
3165         break;
3166     case 1:
3167         post_index = true;
3168         writeback = true;
3169         break;
3170     case 3:
3171         post_index = false;
3172         writeback = true;
3173         break;
3174     default:
3175         g_assert_not_reached();
3176     }
3177 
3178     iss_valid = !is_vector && !writeback;
3179 
3180     if (rn == 31) {
3181         gen_check_sp_alignment(s);
3182     }
3183 
3184     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3185     if (!post_index) {
3186         tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3187     }
3188 
3189     memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3190     clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3191                                        writeback || rn != 31,
3192                                        size, is_unpriv, memidx);
3193 
3194     if (is_vector) {
3195         if (is_store) {
3196             do_fp_st(s, rt, clean_addr, size);
3197         } else {
3198             do_fp_ld(s, rt, clean_addr, size);
3199         }
3200     } else {
3201         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3202         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3203 
3204         if (is_store) {
3205             do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3206                              iss_valid, rt, iss_sf, false);
3207         } else {
3208             do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3209                              is_extended, memidx,
3210                              iss_valid, rt, iss_sf, false);
3211         }
3212     }
3213 
3214     if (writeback) {
3215         TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3216         if (post_index) {
3217             tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3218         }
3219         tcg_gen_mov_i64(tcg_rn, dirty_addr);
3220     }
3221 }
3222 
3223 /*
3224  * Load/store (register offset)
3225  *
3226  * 31 30 29   27  26 25 24 23 22 21  20  16 15 13 12 11 10 9  5 4  0
3227  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3228  * |size| 1 1 1 | V | 0 0 | opc | 1 |  Rm  | opt | S| 1 0 | Rn | Rt |
3229  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3230  *
3231  * For non-vector:
3232  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3233  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3234  * For vector:
3235  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3236  *   opc<0>: 0 -> store, 1 -> load
3237  * V: 1 -> vector/simd
3238  * opt: extend encoding (see DecodeRegExtend)
3239  * S: if S=1 then scale (essentially index by sizeof(size))
3240  * Rt: register to transfer into/out of
3241  * Rn: address register or SP for base
3242  * Rm: offset register or ZR for offset
3243  */
3244 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3245                                    int opc,
3246                                    int size,
3247                                    int rt,
3248                                    bool is_vector)
3249 {
3250     int rn = extract32(insn, 5, 5);
3251     int shift = extract32(insn, 12, 1);
3252     int rm = extract32(insn, 16, 5);
3253     int opt = extract32(insn, 13, 3);
3254     bool is_signed = false;
3255     bool is_store = false;
3256     bool is_extended = false;
3257 
3258     TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3259 
3260     if (extract32(opt, 1, 1) == 0) {
3261         unallocated_encoding(s);
3262         return;
3263     }
3264 
3265     if (is_vector) {
3266         size |= (opc & 2) << 1;
3267         if (size > 4) {
3268             unallocated_encoding(s);
3269             return;
3270         }
3271         is_store = !extract32(opc, 0, 1);
3272         if (!fp_access_check(s)) {
3273             return;
3274         }
3275     } else {
3276         if (size == 3 && opc == 2) {
3277             /* PRFM - prefetch */
3278             return;
3279         }
3280         if (opc == 3 && size > 1) {
3281             unallocated_encoding(s);
3282             return;
3283         }
3284         is_store = (opc == 0);
3285         is_signed = extract32(opc, 1, 1);
3286         is_extended = (size < 3) && extract32(opc, 0, 1);
3287     }
3288 
3289     if (rn == 31) {
3290         gen_check_sp_alignment(s);
3291     }
3292     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3293 
3294     tcg_rm = read_cpu_reg(s, rm, 1);
3295     ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3296 
3297     tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3298     clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3299 
3300     if (is_vector) {
3301         if (is_store) {
3302             do_fp_st(s, rt, clean_addr, size);
3303         } else {
3304             do_fp_ld(s, rt, clean_addr, size);
3305         }
3306     } else {
3307         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3308         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3309         if (is_store) {
3310             do_gpr_st(s, tcg_rt, clean_addr, size,
3311                       true, rt, iss_sf, false);
3312         } else {
3313             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3314                       is_extended, true, rt, iss_sf, false);
3315         }
3316     }
3317 }
3318 
3319 /*
3320  * Load/store (unsigned immediate)
3321  *
3322  * 31 30 29   27  26 25 24 23 22 21        10 9     5
3323  * +----+-------+---+-----+-----+------------+-------+------+
3324  * |size| 1 1 1 | V | 0 1 | opc |   imm12    |  Rn   |  Rt  |
3325  * +----+-------+---+-----+-----+------------+-------+------+
3326  *
3327  * For non-vector:
3328  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3329  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3330  * For vector:
3331  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3332  *   opc<0>: 0 -> store, 1 -> load
3333  * Rn: base address register (inc SP)
3334  * Rt: target register
3335  */
3336 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3337                                         int opc,
3338                                         int size,
3339                                         int rt,
3340                                         bool is_vector)
3341 {
3342     int rn = extract32(insn, 5, 5);
3343     unsigned int imm12 = extract32(insn, 10, 12);
3344     unsigned int offset;
3345 
3346     TCGv_i64 clean_addr, dirty_addr;
3347 
3348     bool is_store;
3349     bool is_signed = false;
3350     bool is_extended = false;
3351 
3352     if (is_vector) {
3353         size |= (opc & 2) << 1;
3354         if (size > 4) {
3355             unallocated_encoding(s);
3356             return;
3357         }
3358         is_store = !extract32(opc, 0, 1);
3359         if (!fp_access_check(s)) {
3360             return;
3361         }
3362     } else {
3363         if (size == 3 && opc == 2) {
3364             /* PRFM - prefetch */
3365             return;
3366         }
3367         if (opc == 3 && size > 1) {
3368             unallocated_encoding(s);
3369             return;
3370         }
3371         is_store = (opc == 0);
3372         is_signed = extract32(opc, 1, 1);
3373         is_extended = (size < 3) && extract32(opc, 0, 1);
3374     }
3375 
3376     if (rn == 31) {
3377         gen_check_sp_alignment(s);
3378     }
3379     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3380     offset = imm12 << size;
3381     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3382     clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3383 
3384     if (is_vector) {
3385         if (is_store) {
3386             do_fp_st(s, rt, clean_addr, size);
3387         } else {
3388             do_fp_ld(s, rt, clean_addr, size);
3389         }
3390     } else {
3391         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3392         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3393         if (is_store) {
3394             do_gpr_st(s, tcg_rt, clean_addr, size,
3395                       true, rt, iss_sf, false);
3396         } else {
3397             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3398                       is_extended, true, rt, iss_sf, false);
3399         }
3400     }
3401 }
3402 
3403 /* Atomic memory operations
3404  *
3405  *  31  30      27  26    24    22  21   16   15    12    10    5     0
3406  * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3407  * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn |  Rt |
3408  * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3409  *
3410  * Rt: the result register
3411  * Rn: base address or SP
3412  * Rs: the source register for the operation
3413  * V: vector flag (always 0 as of v8.3)
3414  * A: acquire flag
3415  * R: release flag
3416  */
3417 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3418                               int size, int rt, bool is_vector)
3419 {
3420     int rs = extract32(insn, 16, 5);
3421     int rn = extract32(insn, 5, 5);
3422     int o3_opc = extract32(insn, 12, 4);
3423     bool r = extract32(insn, 22, 1);
3424     bool a = extract32(insn, 23, 1);
3425     TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3426     AtomicThreeOpFn *fn = NULL;
3427     MemOp mop = s->be_data | size | MO_ALIGN;
3428 
3429     if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3430         unallocated_encoding(s);
3431         return;
3432     }
3433     switch (o3_opc) {
3434     case 000: /* LDADD */
3435         fn = tcg_gen_atomic_fetch_add_i64;
3436         break;
3437     case 001: /* LDCLR */
3438         fn = tcg_gen_atomic_fetch_and_i64;
3439         break;
3440     case 002: /* LDEOR */
3441         fn = tcg_gen_atomic_fetch_xor_i64;
3442         break;
3443     case 003: /* LDSET */
3444         fn = tcg_gen_atomic_fetch_or_i64;
3445         break;
3446     case 004: /* LDSMAX */
3447         fn = tcg_gen_atomic_fetch_smax_i64;
3448         mop |= MO_SIGN;
3449         break;
3450     case 005: /* LDSMIN */
3451         fn = tcg_gen_atomic_fetch_smin_i64;
3452         mop |= MO_SIGN;
3453         break;
3454     case 006: /* LDUMAX */
3455         fn = tcg_gen_atomic_fetch_umax_i64;
3456         break;
3457     case 007: /* LDUMIN */
3458         fn = tcg_gen_atomic_fetch_umin_i64;
3459         break;
3460     case 010: /* SWP */
3461         fn = tcg_gen_atomic_xchg_i64;
3462         break;
3463     case 014: /* LDAPR, LDAPRH, LDAPRB */
3464         if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3465             rs != 31 || a != 1 || r != 0) {
3466             unallocated_encoding(s);
3467             return;
3468         }
3469         break;
3470     default:
3471         unallocated_encoding(s);
3472         return;
3473     }
3474 
3475     if (rn == 31) {
3476         gen_check_sp_alignment(s);
3477     }
3478     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3479 
3480     if (o3_opc == 014) {
3481         /*
3482          * LDAPR* are a special case because they are a simple load, not a
3483          * fetch-and-do-something op.
3484          * The architectural consistency requirements here are weaker than
3485          * full load-acquire (we only need "load-acquire processor consistent"),
3486          * but we choose to implement them as full LDAQ.
3487          */
3488         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3489                   true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3490         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3491         return;
3492     }
3493 
3494     tcg_rs = read_cpu_reg(s, rs, true);
3495     tcg_rt = cpu_reg(s, rt);
3496 
3497     if (o3_opc == 1) { /* LDCLR */
3498         tcg_gen_not_i64(tcg_rs, tcg_rs);
3499     }
3500 
3501     /* The tcg atomic primitives are all full barriers.  Therefore we
3502      * can ignore the Acquire and Release bits of this instruction.
3503      */
3504     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3505 
3506     if ((mop & MO_SIGN) && size != MO_64) {
3507         tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3508     }
3509 }
3510 
3511 /*
3512  * PAC memory operations
3513  *
3514  *  31  30      27  26    24    22  21       12  11  10    5     0
3515  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3516  * | size | 1 1 1 | V | 0 0 | M S | 1 |  imm9  | W | 1 | Rn |  Rt |
3517  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3518  *
3519  * Rt: the result register
3520  * Rn: base address or SP
3521  * V: vector flag (always 0 as of v8.3)
3522  * M: clear for key DA, set for key DB
3523  * W: pre-indexing flag
3524  * S: sign for imm9.
3525  */
3526 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3527                            int size, int rt, bool is_vector)
3528 {
3529     int rn = extract32(insn, 5, 5);
3530     bool is_wback = extract32(insn, 11, 1);
3531     bool use_key_a = !extract32(insn, 23, 1);
3532     int offset;
3533     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3534 
3535     if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3536         unallocated_encoding(s);
3537         return;
3538     }
3539 
3540     if (rn == 31) {
3541         gen_check_sp_alignment(s);
3542     }
3543     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3544 
3545     if (s->pauth_active) {
3546         if (use_key_a) {
3547             gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3548                              tcg_constant_i64(0));
3549         } else {
3550             gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3551                              tcg_constant_i64(0));
3552         }
3553     }
3554 
3555     /* Form the 10-bit signed, scaled offset.  */
3556     offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3557     offset = sextract32(offset << size, 0, 10 + size);
3558     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3559 
3560     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3561     clean_addr = gen_mte_check1(s, dirty_addr, false,
3562                                 is_wback || rn != 31, size);
3563 
3564     tcg_rt = cpu_reg(s, rt);
3565     do_gpr_ld(s, tcg_rt, clean_addr, size,
3566               /* extend */ false, /* iss_valid */ !is_wback,
3567               /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3568 
3569     if (is_wback) {
3570         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3571     }
3572 }
3573 
3574 /*
3575  * LDAPR/STLR (unscaled immediate)
3576  *
3577  *  31  30            24    22  21       12    10    5     0
3578  * +------+-------------+-----+---+--------+-----+----+-----+
3579  * | size | 0 1 1 0 0 1 | opc | 0 |  imm9  | 0 0 | Rn |  Rt |
3580  * +------+-------------+-----+---+--------+-----+----+-----+
3581  *
3582  * Rt: source or destination register
3583  * Rn: base register
3584  * imm9: unscaled immediate offset
3585  * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3586  * size: size of load/store
3587  */
3588 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3589 {
3590     int rt = extract32(insn, 0, 5);
3591     int rn = extract32(insn, 5, 5);
3592     int offset = sextract32(insn, 12, 9);
3593     int opc = extract32(insn, 22, 2);
3594     int size = extract32(insn, 30, 2);
3595     TCGv_i64 clean_addr, dirty_addr;
3596     bool is_store = false;
3597     bool extend = false;
3598     bool iss_sf;
3599     MemOp mop;
3600 
3601     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3602         unallocated_encoding(s);
3603         return;
3604     }
3605 
3606     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3607     mop = size | MO_ALIGN;
3608 
3609     switch (opc) {
3610     case 0: /* STLURB */
3611         is_store = true;
3612         break;
3613     case 1: /* LDAPUR* */
3614         break;
3615     case 2: /* LDAPURS* 64-bit variant */
3616         if (size == 3) {
3617             unallocated_encoding(s);
3618             return;
3619         }
3620         mop |= MO_SIGN;
3621         break;
3622     case 3: /* LDAPURS* 32-bit variant */
3623         if (size > 1) {
3624             unallocated_encoding(s);
3625             return;
3626         }
3627         mop |= MO_SIGN;
3628         extend = true; /* zero-extend 32->64 after signed load */
3629         break;
3630     default:
3631         g_assert_not_reached();
3632     }
3633 
3634     iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3635 
3636     if (rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3641     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3642     clean_addr = clean_data_tbi(s, dirty_addr);
3643 
3644     if (is_store) {
3645         /* Store-Release semantics */
3646         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3647         do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3648     } else {
3649         /*
3650          * Load-AcquirePC semantics; we implement as the slightly more
3651          * restrictive Load-Acquire.
3652          */
3653         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3654                   extend, true, rt, iss_sf, true);
3655         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3656     }
3657 }
3658 
3659 /* Load/store register (all forms) */
3660 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3661 {
3662     int rt = extract32(insn, 0, 5);
3663     int opc = extract32(insn, 22, 2);
3664     bool is_vector = extract32(insn, 26, 1);
3665     int size = extract32(insn, 30, 2);
3666 
3667     switch (extract32(insn, 24, 2)) {
3668     case 0:
3669         if (extract32(insn, 21, 1) == 0) {
3670             /* Load/store register (unscaled immediate)
3671              * Load/store immediate pre/post-indexed
3672              * Load/store register unprivileged
3673              */
3674             disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3675             return;
3676         }
3677         switch (extract32(insn, 10, 2)) {
3678         case 0:
3679             disas_ldst_atomic(s, insn, size, rt, is_vector);
3680             return;
3681         case 2:
3682             disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3683             return;
3684         default:
3685             disas_ldst_pac(s, insn, size, rt, is_vector);
3686             return;
3687         }
3688         break;
3689     case 1:
3690         disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3691         return;
3692     }
3693     unallocated_encoding(s);
3694 }
3695 
3696 /* AdvSIMD load/store multiple structures
3697  *
3698  *  31  30  29           23 22  21         16 15    12 11  10 9    5 4    0
3699  * +---+---+---------------+---+-------------+--------+------+------+------+
3700  * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size |  Rn  |  Rt  |
3701  * +---+---+---------------+---+-------------+--------+------+------+------+
3702  *
3703  * AdvSIMD load/store multiple structures (post-indexed)
3704  *
3705  *  31  30  29           23 22  21  20     16 15    12 11  10 9    5 4    0
3706  * +---+---+---------------+---+---+---------+--------+------+------+------+
3707  * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 |   Rm    | opcode | size |  Rn  |  Rt  |
3708  * +---+---+---------------+---+---+---------+--------+------+------+------+
3709  *
3710  * Rt: first (or only) SIMD&FP register to be transferred
3711  * Rn: base address or SP
3712  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3713  */
3714 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3715 {
3716     int rt = extract32(insn, 0, 5);
3717     int rn = extract32(insn, 5, 5);
3718     int rm = extract32(insn, 16, 5);
3719     int size = extract32(insn, 10, 2);
3720     int opcode = extract32(insn, 12, 4);
3721     bool is_store = !extract32(insn, 22, 1);
3722     bool is_postidx = extract32(insn, 23, 1);
3723     bool is_q = extract32(insn, 30, 1);
3724     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3725     MemOp endian, align, mop;
3726 
3727     int total;    /* total bytes */
3728     int elements; /* elements per vector */
3729     int rpt;    /* num iterations */
3730     int selem;  /* structure elements */
3731     int r;
3732 
3733     if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3734         unallocated_encoding(s);
3735         return;
3736     }
3737 
3738     if (!is_postidx && rm != 0) {
3739         unallocated_encoding(s);
3740         return;
3741     }
3742 
3743     /* From the shared decode logic */
3744     switch (opcode) {
3745     case 0x0:
3746         rpt = 1;
3747         selem = 4;
3748         break;
3749     case 0x2:
3750         rpt = 4;
3751         selem = 1;
3752         break;
3753     case 0x4:
3754         rpt = 1;
3755         selem = 3;
3756         break;
3757     case 0x6:
3758         rpt = 3;
3759         selem = 1;
3760         break;
3761     case 0x7:
3762         rpt = 1;
3763         selem = 1;
3764         break;
3765     case 0x8:
3766         rpt = 1;
3767         selem = 2;
3768         break;
3769     case 0xa:
3770         rpt = 2;
3771         selem = 1;
3772         break;
3773     default:
3774         unallocated_encoding(s);
3775         return;
3776     }
3777 
3778     if (size == 3 && !is_q && selem != 1) {
3779         /* reserved */
3780         unallocated_encoding(s);
3781         return;
3782     }
3783 
3784     if (!fp_access_check(s)) {
3785         return;
3786     }
3787 
3788     if (rn == 31) {
3789         gen_check_sp_alignment(s);
3790     }
3791 
3792     /* For our purposes, bytes are always little-endian.  */
3793     endian = s->be_data;
3794     if (size == 0) {
3795         endian = MO_LE;
3796     }
3797 
3798     total = rpt * selem * (is_q ? 16 : 8);
3799     tcg_rn = cpu_reg_sp(s, rn);
3800 
3801     /*
3802      * Issue the MTE check vs the logical repeat count, before we
3803      * promote consecutive little-endian elements below.
3804      */
3805     clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3806                                 total);
3807 
3808     /*
3809      * Consecutive little-endian elements from a single register
3810      * can be promoted to a larger little-endian operation.
3811      */
3812     align = MO_ALIGN;
3813     if (selem == 1 && endian == MO_LE) {
3814         align = pow2_align(size);
3815         size = 3;
3816     }
3817     if (!s->align_mem) {
3818         align = 0;
3819     }
3820     mop = endian | size | align;
3821 
3822     elements = (is_q ? 16 : 8) >> size;
3823     tcg_ebytes = tcg_constant_i64(1 << size);
3824     for (r = 0; r < rpt; r++) {
3825         int e;
3826         for (e = 0; e < elements; e++) {
3827             int xs;
3828             for (xs = 0; xs < selem; xs++) {
3829                 int tt = (rt + r + xs) % 32;
3830                 if (is_store) {
3831                     do_vec_st(s, tt, e, clean_addr, mop);
3832                 } else {
3833                     do_vec_ld(s, tt, e, clean_addr, mop);
3834                 }
3835                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3836             }
3837         }
3838     }
3839 
3840     if (!is_store) {
3841         /* For non-quad operations, setting a slice of the low
3842          * 64 bits of the register clears the high 64 bits (in
3843          * the ARM ARM pseudocode this is implicit in the fact
3844          * that 'rval' is a 64 bit wide variable).
3845          * For quad operations, we might still need to zero the
3846          * high bits of SVE.
3847          */
3848         for (r = 0; r < rpt * selem; r++) {
3849             int tt = (rt + r) % 32;
3850             clear_vec_high(s, is_q, tt);
3851         }
3852     }
3853 
3854     if (is_postidx) {
3855         if (rm == 31) {
3856             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3857         } else {
3858             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3859         }
3860     }
3861 }
3862 
3863 /* AdvSIMD load/store single structure
3864  *
3865  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3866  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3867  * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size |  Rn  |  Rt  |
3868  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3869  *
3870  * AdvSIMD load/store single structure (post-indexed)
3871  *
3872  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3873  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3874  * | 0 | Q | 0 0 1 1 0 1 1 | L R |     Rm    | opc | S | size |  Rn  |  Rt  |
3875  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3876  *
3877  * Rt: first (or only) SIMD&FP register to be transferred
3878  * Rn: base address or SP
3879  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3880  * index = encoded in Q:S:size dependent on size
3881  *
3882  * lane_size = encoded in R, opc
3883  * transfer width = encoded in opc, S, size
3884  */
3885 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3886 {
3887     int rt = extract32(insn, 0, 5);
3888     int rn = extract32(insn, 5, 5);
3889     int rm = extract32(insn, 16, 5);
3890     int size = extract32(insn, 10, 2);
3891     int S = extract32(insn, 12, 1);
3892     int opc = extract32(insn, 13, 3);
3893     int R = extract32(insn, 21, 1);
3894     int is_load = extract32(insn, 22, 1);
3895     int is_postidx = extract32(insn, 23, 1);
3896     int is_q = extract32(insn, 30, 1);
3897 
3898     int scale = extract32(opc, 1, 2);
3899     int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3900     bool replicate = false;
3901     int index = is_q << 3 | S << 2 | size;
3902     int xs, total;
3903     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3904     MemOp mop;
3905 
3906     if (extract32(insn, 31, 1)) {
3907         unallocated_encoding(s);
3908         return;
3909     }
3910     if (!is_postidx && rm != 0) {
3911         unallocated_encoding(s);
3912         return;
3913     }
3914 
3915     switch (scale) {
3916     case 3:
3917         if (!is_load || S) {
3918             unallocated_encoding(s);
3919             return;
3920         }
3921         scale = size;
3922         replicate = true;
3923         break;
3924     case 0:
3925         break;
3926     case 1:
3927         if (extract32(size, 0, 1)) {
3928             unallocated_encoding(s);
3929             return;
3930         }
3931         index >>= 1;
3932         break;
3933     case 2:
3934         if (extract32(size, 1, 1)) {
3935             unallocated_encoding(s);
3936             return;
3937         }
3938         if (!extract32(size, 0, 1)) {
3939             index >>= 2;
3940         } else {
3941             if (S) {
3942                 unallocated_encoding(s);
3943                 return;
3944             }
3945             index >>= 3;
3946             scale = 3;
3947         }
3948         break;
3949     default:
3950         g_assert_not_reached();
3951     }
3952 
3953     if (!fp_access_check(s)) {
3954         return;
3955     }
3956 
3957     if (rn == 31) {
3958         gen_check_sp_alignment(s);
3959     }
3960 
3961     total = selem << scale;
3962     tcg_rn = cpu_reg_sp(s, rn);
3963 
3964     clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3965                                 total);
3966     mop = finalize_memop(s, scale);
3967 
3968     tcg_ebytes = tcg_constant_i64(1 << scale);
3969     for (xs = 0; xs < selem; xs++) {
3970         if (replicate) {
3971             /* Load and replicate to all elements */
3972             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3973 
3974             tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3975             tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3976                                  (is_q + 1) * 8, vec_full_reg_size(s),
3977                                  tcg_tmp);
3978             tcg_temp_free_i64(tcg_tmp);
3979         } else {
3980             /* Load/store one element per register */
3981             if (is_load) {
3982                 do_vec_ld(s, rt, index, clean_addr, mop);
3983             } else {
3984                 do_vec_st(s, rt, index, clean_addr, mop);
3985             }
3986         }
3987         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3988         rt = (rt + 1) % 32;
3989     }
3990 
3991     if (is_postidx) {
3992         if (rm == 31) {
3993             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3994         } else {
3995             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3996         }
3997     }
3998 }
3999 
4000 /*
4001  * Load/Store memory tags
4002  *
4003  *  31 30 29         24     22  21     12    10      5      0
4004  * +-----+-------------+-----+---+------+-----+------+------+
4005  * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 |  Rn  |  Rt  |
4006  * +-----+-------------+-----+---+------+-----+------+------+
4007  */
4008 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
4009 {
4010     int rt = extract32(insn, 0, 5);
4011     int rn = extract32(insn, 5, 5);
4012     uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
4013     int op2 = extract32(insn, 10, 2);
4014     int op1 = extract32(insn, 22, 2);
4015     bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
4016     int index = 0;
4017     TCGv_i64 addr, clean_addr, tcg_rt;
4018 
4019     /* We checked insn bits [29:24,21] in the caller.  */
4020     if (extract32(insn, 30, 2) != 3) {
4021         goto do_unallocated;
4022     }
4023 
4024     /*
4025      * @index is a tri-state variable which has 3 states:
4026      * < 0 : post-index, writeback
4027      * = 0 : signed offset
4028      * > 0 : pre-index, writeback
4029      */
4030     switch (op1) {
4031     case 0:
4032         if (op2 != 0) {
4033             /* STG */
4034             index = op2 - 2;
4035         } else {
4036             /* STZGM */
4037             if (s->current_el == 0 || offset != 0) {
4038                 goto do_unallocated;
4039             }
4040             is_mult = is_zero = true;
4041         }
4042         break;
4043     case 1:
4044         if (op2 != 0) {
4045             /* STZG */
4046             is_zero = true;
4047             index = op2 - 2;
4048         } else {
4049             /* LDG */
4050             is_load = true;
4051         }
4052         break;
4053     case 2:
4054         if (op2 != 0) {
4055             /* ST2G */
4056             is_pair = true;
4057             index = op2 - 2;
4058         } else {
4059             /* STGM */
4060             if (s->current_el == 0 || offset != 0) {
4061                 goto do_unallocated;
4062             }
4063             is_mult = true;
4064         }
4065         break;
4066     case 3:
4067         if (op2 != 0) {
4068             /* STZ2G */
4069             is_pair = is_zero = true;
4070             index = op2 - 2;
4071         } else {
4072             /* LDGM */
4073             if (s->current_el == 0 || offset != 0) {
4074                 goto do_unallocated;
4075             }
4076             is_mult = is_load = true;
4077         }
4078         break;
4079 
4080     default:
4081     do_unallocated:
4082         unallocated_encoding(s);
4083         return;
4084     }
4085 
4086     if (is_mult
4087         ? !dc_isar_feature(aa64_mte, s)
4088         : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4089         goto do_unallocated;
4090     }
4091 
4092     if (rn == 31) {
4093         gen_check_sp_alignment(s);
4094     }
4095 
4096     addr = read_cpu_reg_sp(s, rn, true);
4097     if (index >= 0) {
4098         /* pre-index or signed offset */
4099         tcg_gen_addi_i64(addr, addr, offset);
4100     }
4101 
4102     if (is_mult) {
4103         tcg_rt = cpu_reg(s, rt);
4104 
4105         if (is_zero) {
4106             int size = 4 << s->dcz_blocksize;
4107 
4108             if (s->ata) {
4109                 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4110             }
4111             /*
4112              * The non-tags portion of STZGM is mostly like DC_ZVA,
4113              * except the alignment happens before the access.
4114              */
4115             clean_addr = clean_data_tbi(s, addr);
4116             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4117             gen_helper_dc_zva(cpu_env, clean_addr);
4118         } else if (s->ata) {
4119             if (is_load) {
4120                 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4121             } else {
4122                 gen_helper_stgm(cpu_env, addr, tcg_rt);
4123             }
4124         } else {
4125             MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4126             int size = 4 << GMID_EL1_BS;
4127 
4128             clean_addr = clean_data_tbi(s, addr);
4129             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4130             gen_probe_access(s, clean_addr, acc, size);
4131 
4132             if (is_load) {
4133                 /* The result tags are zeros.  */
4134                 tcg_gen_movi_i64(tcg_rt, 0);
4135             }
4136         }
4137         return;
4138     }
4139 
4140     if (is_load) {
4141         tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4142         tcg_rt = cpu_reg(s, rt);
4143         if (s->ata) {
4144             gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4145         } else {
4146             clean_addr = clean_data_tbi(s, addr);
4147             gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4148             gen_address_with_allocation_tag0(tcg_rt, addr);
4149         }
4150     } else {
4151         tcg_rt = cpu_reg_sp(s, rt);
4152         if (!s->ata) {
4153             /*
4154              * For STG and ST2G, we need to check alignment and probe memory.
4155              * TODO: For STZG and STZ2G, we could rely on the stores below,
4156              * at least for system mode; user-only won't enforce alignment.
4157              */
4158             if (is_pair) {
4159                 gen_helper_st2g_stub(cpu_env, addr);
4160             } else {
4161                 gen_helper_stg_stub(cpu_env, addr);
4162             }
4163         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4164             if (is_pair) {
4165                 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4166             } else {
4167                 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4168             }
4169         } else {
4170             if (is_pair) {
4171                 gen_helper_st2g(cpu_env, addr, tcg_rt);
4172             } else {
4173                 gen_helper_stg(cpu_env, addr, tcg_rt);
4174             }
4175         }
4176     }
4177 
4178     if (is_zero) {
4179         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4180         TCGv_i64 tcg_zero = tcg_constant_i64(0);
4181         int mem_index = get_mem_index(s);
4182         int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4183 
4184         tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4185                             MO_UQ | MO_ALIGN_16);
4186         for (i = 8; i < n; i += 8) {
4187             tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4188             tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ);
4189         }
4190     }
4191 
4192     if (index != 0) {
4193         /* pre-index or post-index */
4194         if (index < 0) {
4195             /* post-index */
4196             tcg_gen_addi_i64(addr, addr, offset);
4197         }
4198         tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4199     }
4200 }
4201 
4202 /* Loads and stores */
4203 static void disas_ldst(DisasContext *s, uint32_t insn)
4204 {
4205     switch (extract32(insn, 24, 6)) {
4206     case 0x08: /* Load/store exclusive */
4207         disas_ldst_excl(s, insn);
4208         break;
4209     case 0x18: case 0x1c: /* Load register (literal) */
4210         disas_ld_lit(s, insn);
4211         break;
4212     case 0x28: case 0x29:
4213     case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4214         disas_ldst_pair(s, insn);
4215         break;
4216     case 0x38: case 0x39:
4217     case 0x3c: case 0x3d: /* Load/store register (all forms) */
4218         disas_ldst_reg(s, insn);
4219         break;
4220     case 0x0c: /* AdvSIMD load/store multiple structures */
4221         disas_ldst_multiple_struct(s, insn);
4222         break;
4223     case 0x0d: /* AdvSIMD load/store single structure */
4224         disas_ldst_single_struct(s, insn);
4225         break;
4226     case 0x19:
4227         if (extract32(insn, 21, 1) != 0) {
4228             disas_ldst_tag(s, insn);
4229         } else if (extract32(insn, 10, 2) == 0) {
4230             disas_ldst_ldapr_stlr(s, insn);
4231         } else {
4232             unallocated_encoding(s);
4233         }
4234         break;
4235     default:
4236         unallocated_encoding(s);
4237         break;
4238     }
4239 }
4240 
4241 /* PC-rel. addressing
4242  *   31  30   29 28       24 23                5 4    0
4243  * +----+-------+-----------+-------------------+------+
4244  * | op | immlo | 1 0 0 0 0 |       immhi       |  Rd  |
4245  * +----+-------+-----------+-------------------+------+
4246  */
4247 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4248 {
4249     unsigned int page, rd;
4250     int64_t offset;
4251 
4252     page = extract32(insn, 31, 1);
4253     /* SignExtend(immhi:immlo) -> offset */
4254     offset = sextract64(insn, 5, 19);
4255     offset = offset << 2 | extract32(insn, 29, 2);
4256     rd = extract32(insn, 0, 5);
4257 
4258     if (page) {
4259         /* ADRP (page based) */
4260         offset <<= 12;
4261         /* The page offset is ok for CF_PCREL. */
4262         offset -= s->pc_curr & 0xfff;
4263     }
4264 
4265     gen_pc_plus_diff(s, cpu_reg(s, rd), offset);
4266 }
4267 
4268 /*
4269  * Add/subtract (immediate)
4270  *
4271  *  31 30 29 28         23 22 21         10 9   5 4   0
4272  * +--+--+--+-------------+--+-------------+-----+-----+
4273  * |sf|op| S| 1 0 0 0 1 0 |sh|    imm12    |  Rn | Rd  |
4274  * +--+--+--+-------------+--+-------------+-----+-----+
4275  *
4276  *    sf: 0 -> 32bit, 1 -> 64bit
4277  *    op: 0 -> add  , 1 -> sub
4278  *     S: 1 -> set flags
4279  *    sh: 1 -> LSL imm by 12
4280  */
4281 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4282 {
4283     int rd = extract32(insn, 0, 5);
4284     int rn = extract32(insn, 5, 5);
4285     uint64_t imm = extract32(insn, 10, 12);
4286     bool shift = extract32(insn, 22, 1);
4287     bool setflags = extract32(insn, 29, 1);
4288     bool sub_op = extract32(insn, 30, 1);
4289     bool is_64bit = extract32(insn, 31, 1);
4290 
4291     TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4292     TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4293     TCGv_i64 tcg_result;
4294 
4295     if (shift) {
4296         imm <<= 12;
4297     }
4298 
4299     tcg_result = tcg_temp_new_i64();
4300     if (!setflags) {
4301         if (sub_op) {
4302             tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4303         } else {
4304             tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4305         }
4306     } else {
4307         TCGv_i64 tcg_imm = tcg_constant_i64(imm);
4308         if (sub_op) {
4309             gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4310         } else {
4311             gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4312         }
4313     }
4314 
4315     if (is_64bit) {
4316         tcg_gen_mov_i64(tcg_rd, tcg_result);
4317     } else {
4318         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4319     }
4320 
4321     tcg_temp_free_i64(tcg_result);
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate, with tags)
4326  *
4327  *  31 30 29 28         23 22 21     16 14      10 9   5 4   0
4328  * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4329  * |sf|op| S| 1 0 0 0 1 1 |o2|  uimm6  |o3| uimm4 |  Rn | Rd  |
4330  * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4331  *
4332  *    op: 0 -> add, 1 -> sub
4333  */
4334 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4335 {
4336     int rd = extract32(insn, 0, 5);
4337     int rn = extract32(insn, 5, 5);
4338     int uimm4 = extract32(insn, 10, 4);
4339     int uimm6 = extract32(insn, 16, 6);
4340     bool sub_op = extract32(insn, 30, 1);
4341     TCGv_i64 tcg_rn, tcg_rd;
4342     int imm;
4343 
4344     /* Test all of sf=1, S=0, o2=0, o3=0.  */
4345     if ((insn & 0xa040c000u) != 0x80000000u ||
4346         !dc_isar_feature(aa64_mte_insn_reg, s)) {
4347         unallocated_encoding(s);
4348         return;
4349     }
4350 
4351     imm = uimm6 << LOG2_TAG_GRANULE;
4352     if (sub_op) {
4353         imm = -imm;
4354     }
4355 
4356     tcg_rn = cpu_reg_sp(s, rn);
4357     tcg_rd = cpu_reg_sp(s, rd);
4358 
4359     if (s->ata) {
4360         gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4361                            tcg_constant_i32(imm),
4362                            tcg_constant_i32(uimm4));
4363     } else {
4364         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4365         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4366     }
4367 }
4368 
4369 /* The input should be a value in the bottom e bits (with higher
4370  * bits zero); returns that value replicated into every element
4371  * of size e in a 64 bit integer.
4372  */
4373 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4374 {
4375     assert(e != 0);
4376     while (e < 64) {
4377         mask |= mask << e;
4378         e *= 2;
4379     }
4380     return mask;
4381 }
4382 
4383 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4384 static inline uint64_t bitmask64(unsigned int length)
4385 {
4386     assert(length > 0 && length <= 64);
4387     return ~0ULL >> (64 - length);
4388 }
4389 
4390 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4391  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4392  * value (ie should cause a guest UNDEF exception), and true if they are
4393  * valid, in which case the decoded bit pattern is written to result.
4394  */
4395 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4396                             unsigned int imms, unsigned int immr)
4397 {
4398     uint64_t mask;
4399     unsigned e, levels, s, r;
4400     int len;
4401 
4402     assert(immn < 2 && imms < 64 && immr < 64);
4403 
4404     /* The bit patterns we create here are 64 bit patterns which
4405      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4406      * 64 bits each. Each element contains the same value: a run
4407      * of between 1 and e-1 non-zero bits, rotated within the
4408      * element by between 0 and e-1 bits.
4409      *
4410      * The element size and run length are encoded into immn (1 bit)
4411      * and imms (6 bits) as follows:
4412      * 64 bit elements: immn = 1, imms = <length of run - 1>
4413      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4414      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4415      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4416      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4417      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4418      * Notice that immn = 0, imms = 11111x is the only combination
4419      * not covered by one of the above options; this is reserved.
4420      * Further, <length of run - 1> all-ones is a reserved pattern.
4421      *
4422      * In all cases the rotation is by immr % e (and immr is 6 bits).
4423      */
4424 
4425     /* First determine the element size */
4426     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4427     if (len < 1) {
4428         /* This is the immn == 0, imms == 0x11111x case */
4429         return false;
4430     }
4431     e = 1 << len;
4432 
4433     levels = e - 1;
4434     s = imms & levels;
4435     r = immr & levels;
4436 
4437     if (s == levels) {
4438         /* <length of run - 1> mustn't be all-ones. */
4439         return false;
4440     }
4441 
4442     /* Create the value of one element: s+1 set bits rotated
4443      * by r within the element (which is e bits wide)...
4444      */
4445     mask = bitmask64(s + 1);
4446     if (r) {
4447         mask = (mask >> r) | (mask << (e - r));
4448         mask &= bitmask64(e);
4449     }
4450     /* ...then replicate the element over the whole 64 bit value */
4451     mask = bitfield_replicate(mask, e);
4452     *result = mask;
4453     return true;
4454 }
4455 
4456 /* Logical (immediate)
4457  *   31  30 29 28         23 22  21  16 15  10 9    5 4    0
4458  * +----+-----+-------------+---+------+------+------+------+
4459  * | sf | opc | 1 0 0 1 0 0 | N | immr | imms |  Rn  |  Rd  |
4460  * +----+-----+-------------+---+------+------+------+------+
4461  */
4462 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4463 {
4464     unsigned int sf, opc, is_n, immr, imms, rn, rd;
4465     TCGv_i64 tcg_rd, tcg_rn;
4466     uint64_t wmask;
4467     bool is_and = false;
4468 
4469     sf = extract32(insn, 31, 1);
4470     opc = extract32(insn, 29, 2);
4471     is_n = extract32(insn, 22, 1);
4472     immr = extract32(insn, 16, 6);
4473     imms = extract32(insn, 10, 6);
4474     rn = extract32(insn, 5, 5);
4475     rd = extract32(insn, 0, 5);
4476 
4477     if (!sf && is_n) {
4478         unallocated_encoding(s);
4479         return;
4480     }
4481 
4482     if (opc == 0x3) { /* ANDS */
4483         tcg_rd = cpu_reg(s, rd);
4484     } else {
4485         tcg_rd = cpu_reg_sp(s, rd);
4486     }
4487     tcg_rn = cpu_reg(s, rn);
4488 
4489     if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4490         /* some immediate field values are reserved */
4491         unallocated_encoding(s);
4492         return;
4493     }
4494 
4495     if (!sf) {
4496         wmask &= 0xffffffff;
4497     }
4498 
4499     switch (opc) {
4500     case 0x3: /* ANDS */
4501     case 0x0: /* AND */
4502         tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4503         is_and = true;
4504         break;
4505     case 0x1: /* ORR */
4506         tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4507         break;
4508     case 0x2: /* EOR */
4509         tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4510         break;
4511     default:
4512         assert(FALSE); /* must handle all above */
4513         break;
4514     }
4515 
4516     if (!sf && !is_and) {
4517         /* zero extend final result; we know we can skip this for AND
4518          * since the immediate had the high 32 bits clear.
4519          */
4520         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4521     }
4522 
4523     if (opc == 3) { /* ANDS */
4524         gen_logic_CC(sf, tcg_rd);
4525     }
4526 }
4527 
4528 /*
4529  * Move wide (immediate)
4530  *
4531  *  31 30 29 28         23 22 21 20             5 4    0
4532  * +--+-----+-------------+-----+----------------+------+
4533  * |sf| opc | 1 0 0 1 0 1 |  hw |  imm16         |  Rd  |
4534  * +--+-----+-------------+-----+----------------+------+
4535  *
4536  * sf: 0 -> 32 bit, 1 -> 64 bit
4537  * opc: 00 -> N, 10 -> Z, 11 -> K
4538  * hw: shift/16 (0,16, and sf only 32, 48)
4539  */
4540 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4541 {
4542     int rd = extract32(insn, 0, 5);
4543     uint64_t imm = extract32(insn, 5, 16);
4544     int sf = extract32(insn, 31, 1);
4545     int opc = extract32(insn, 29, 2);
4546     int pos = extract32(insn, 21, 2) << 4;
4547     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4548 
4549     if (!sf && (pos >= 32)) {
4550         unallocated_encoding(s);
4551         return;
4552     }
4553 
4554     switch (opc) {
4555     case 0: /* MOVN */
4556     case 2: /* MOVZ */
4557         imm <<= pos;
4558         if (opc == 0) {
4559             imm = ~imm;
4560         }
4561         if (!sf) {
4562             imm &= 0xffffffffu;
4563         }
4564         tcg_gen_movi_i64(tcg_rd, imm);
4565         break;
4566     case 3: /* MOVK */
4567         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16);
4568         if (!sf) {
4569             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4570         }
4571         break;
4572     default:
4573         unallocated_encoding(s);
4574         break;
4575     }
4576 }
4577 
4578 /* Bitfield
4579  *   31  30 29 28         23 22  21  16 15  10 9    5 4    0
4580  * +----+-----+-------------+---+------+------+------+------+
4581  * | sf | opc | 1 0 0 1 1 0 | N | immr | imms |  Rn  |  Rd  |
4582  * +----+-----+-------------+---+------+------+------+------+
4583  */
4584 static void disas_bitfield(DisasContext *s, uint32_t insn)
4585 {
4586     unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4587     TCGv_i64 tcg_rd, tcg_tmp;
4588 
4589     sf = extract32(insn, 31, 1);
4590     opc = extract32(insn, 29, 2);
4591     n = extract32(insn, 22, 1);
4592     ri = extract32(insn, 16, 6);
4593     si = extract32(insn, 10, 6);
4594     rn = extract32(insn, 5, 5);
4595     rd = extract32(insn, 0, 5);
4596     bitsize = sf ? 64 : 32;
4597 
4598     if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4599         unallocated_encoding(s);
4600         return;
4601     }
4602 
4603     tcg_rd = cpu_reg(s, rd);
4604 
4605     /* Suppress the zero-extend for !sf.  Since RI and SI are constrained
4606        to be smaller than bitsize, we'll never reference data outside the
4607        low 32-bits anyway.  */
4608     tcg_tmp = read_cpu_reg(s, rn, 1);
4609 
4610     /* Recognize simple(r) extractions.  */
4611     if (si >= ri) {
4612         /* Wd<s-r:0> = Wn<s:r> */
4613         len = (si - ri) + 1;
4614         if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4615             tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4616             goto done;
4617         } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4618             tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4619             return;
4620         }
4621         /* opc == 1, BFXIL fall through to deposit */
4622         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4623         pos = 0;
4624     } else {
4625         /* Handle the ri > si case with a deposit
4626          * Wd<32+s-r,32-r> = Wn<s:0>
4627          */
4628         len = si + 1;
4629         pos = (bitsize - ri) & (bitsize - 1);
4630     }
4631 
4632     if (opc == 0 && len < ri) {
4633         /* SBFM: sign extend the destination field from len to fill
4634            the balance of the word.  Let the deposit below insert all
4635            of those sign bits.  */
4636         tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4637         len = ri;
4638     }
4639 
4640     if (opc == 1) { /* BFM, BFXIL */
4641         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4642     } else {
4643         /* SBFM or UBFM: We start with zero, and we haven't modified
4644            any bits outside bitsize, therefore the zero-extension
4645            below is unneeded.  */
4646         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4647         return;
4648     }
4649 
4650  done:
4651     if (!sf) { /* zero extend final result */
4652         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4653     }
4654 }
4655 
4656 /* Extract
4657  *   31  30  29 28         23 22   21  20  16 15    10 9    5 4    0
4658  * +----+------+-------------+---+----+------+--------+------+------+
4659  * | sf | op21 | 1 0 0 1 1 1 | N | o0 |  Rm  |  imms  |  Rn  |  Rd  |
4660  * +----+------+-------------+---+----+------+--------+------+------+
4661  */
4662 static void disas_extract(DisasContext *s, uint32_t insn)
4663 {
4664     unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4665 
4666     sf = extract32(insn, 31, 1);
4667     n = extract32(insn, 22, 1);
4668     rm = extract32(insn, 16, 5);
4669     imm = extract32(insn, 10, 6);
4670     rn = extract32(insn, 5, 5);
4671     rd = extract32(insn, 0, 5);
4672     op21 = extract32(insn, 29, 2);
4673     op0 = extract32(insn, 21, 1);
4674     bitsize = sf ? 64 : 32;
4675 
4676     if (sf != n || op21 || op0 || imm >= bitsize) {
4677         unallocated_encoding(s);
4678     } else {
4679         TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4680 
4681         tcg_rd = cpu_reg(s, rd);
4682 
4683         if (unlikely(imm == 0)) {
4684             /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4685              * so an extract from bit 0 is a special case.
4686              */
4687             if (sf) {
4688                 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4689             } else {
4690                 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4691             }
4692         } else {
4693             tcg_rm = cpu_reg(s, rm);
4694             tcg_rn = cpu_reg(s, rn);
4695 
4696             if (sf) {
4697                 /* Specialization to ROR happens in EXTRACT2.  */
4698                 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4699             } else {
4700                 TCGv_i32 t0 = tcg_temp_new_i32();
4701 
4702                 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4703                 if (rm == rn) {
4704                     tcg_gen_rotri_i32(t0, t0, imm);
4705                 } else {
4706                     TCGv_i32 t1 = tcg_temp_new_i32();
4707                     tcg_gen_extrl_i64_i32(t1, tcg_rn);
4708                     tcg_gen_extract2_i32(t0, t0, t1, imm);
4709                     tcg_temp_free_i32(t1);
4710                 }
4711                 tcg_gen_extu_i32_i64(tcg_rd, t0);
4712                 tcg_temp_free_i32(t0);
4713             }
4714         }
4715     }
4716 }
4717 
4718 /* Data processing - immediate */
4719 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4720 {
4721     switch (extract32(insn, 23, 6)) {
4722     case 0x20: case 0x21: /* PC-rel. addressing */
4723         disas_pc_rel_adr(s, insn);
4724         break;
4725     case 0x22: /* Add/subtract (immediate) */
4726         disas_add_sub_imm(s, insn);
4727         break;
4728     case 0x23: /* Add/subtract (immediate, with tags) */
4729         disas_add_sub_imm_with_tags(s, insn);
4730         break;
4731     case 0x24: /* Logical (immediate) */
4732         disas_logic_imm(s, insn);
4733         break;
4734     case 0x25: /* Move wide (immediate) */
4735         disas_movw_imm(s, insn);
4736         break;
4737     case 0x26: /* Bitfield */
4738         disas_bitfield(s, insn);
4739         break;
4740     case 0x27: /* Extract */
4741         disas_extract(s, insn);
4742         break;
4743     default:
4744         unallocated_encoding(s);
4745         break;
4746     }
4747 }
4748 
4749 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4750  * Note that it is the caller's responsibility to ensure that the
4751  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4752  * mandated semantics for out of range shifts.
4753  */
4754 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4755                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4756 {
4757     switch (shift_type) {
4758     case A64_SHIFT_TYPE_LSL:
4759         tcg_gen_shl_i64(dst, src, shift_amount);
4760         break;
4761     case A64_SHIFT_TYPE_LSR:
4762         tcg_gen_shr_i64(dst, src, shift_amount);
4763         break;
4764     case A64_SHIFT_TYPE_ASR:
4765         if (!sf) {
4766             tcg_gen_ext32s_i64(dst, src);
4767         }
4768         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4769         break;
4770     case A64_SHIFT_TYPE_ROR:
4771         if (sf) {
4772             tcg_gen_rotr_i64(dst, src, shift_amount);
4773         } else {
4774             TCGv_i32 t0, t1;
4775             t0 = tcg_temp_new_i32();
4776             t1 = tcg_temp_new_i32();
4777             tcg_gen_extrl_i64_i32(t0, src);
4778             tcg_gen_extrl_i64_i32(t1, shift_amount);
4779             tcg_gen_rotr_i32(t0, t0, t1);
4780             tcg_gen_extu_i32_i64(dst, t0);
4781             tcg_temp_free_i32(t0);
4782             tcg_temp_free_i32(t1);
4783         }
4784         break;
4785     default:
4786         assert(FALSE); /* all shift types should be handled */
4787         break;
4788     }
4789 
4790     if (!sf) { /* zero extend final result */
4791         tcg_gen_ext32u_i64(dst, dst);
4792     }
4793 }
4794 
4795 /* Shift a TCGv src by immediate, put result in dst.
4796  * The shift amount must be in range (this should always be true as the
4797  * relevant instructions will UNDEF on bad shift immediates).
4798  */
4799 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4800                           enum a64_shift_type shift_type, unsigned int shift_i)
4801 {
4802     assert(shift_i < (sf ? 64 : 32));
4803 
4804     if (shift_i == 0) {
4805         tcg_gen_mov_i64(dst, src);
4806     } else {
4807         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4808     }
4809 }
4810 
4811 /* Logical (shifted register)
4812  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4813  * +----+-----+-----------+-------+---+------+--------+------+------+
4814  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4815  * +----+-----+-----------+-------+---+------+--------+------+------+
4816  */
4817 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4818 {
4819     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4820     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4821 
4822     sf = extract32(insn, 31, 1);
4823     opc = extract32(insn, 29, 2);
4824     shift_type = extract32(insn, 22, 2);
4825     invert = extract32(insn, 21, 1);
4826     rm = extract32(insn, 16, 5);
4827     shift_amount = extract32(insn, 10, 6);
4828     rn = extract32(insn, 5, 5);
4829     rd = extract32(insn, 0, 5);
4830 
4831     if (!sf && (shift_amount & (1 << 5))) {
4832         unallocated_encoding(s);
4833         return;
4834     }
4835 
4836     tcg_rd = cpu_reg(s, rd);
4837 
4838     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4839         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4840          * register-register MOV and MVN, so it is worth special casing.
4841          */
4842         tcg_rm = cpu_reg(s, rm);
4843         if (invert) {
4844             tcg_gen_not_i64(tcg_rd, tcg_rm);
4845             if (!sf) {
4846                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847             }
4848         } else {
4849             if (sf) {
4850                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4851             } else {
4852                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4853             }
4854         }
4855         return;
4856     }
4857 
4858     tcg_rm = read_cpu_reg(s, rm, sf);
4859 
4860     if (shift_amount) {
4861         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4862     }
4863 
4864     tcg_rn = cpu_reg(s, rn);
4865 
4866     switch (opc | (invert << 2)) {
4867     case 0: /* AND */
4868     case 3: /* ANDS */
4869         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4870         break;
4871     case 1: /* ORR */
4872         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4873         break;
4874     case 2: /* EOR */
4875         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4876         break;
4877     case 4: /* BIC */
4878     case 7: /* BICS */
4879         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4880         break;
4881     case 5: /* ORN */
4882         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4883         break;
4884     case 6: /* EON */
4885         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4886         break;
4887     default:
4888         assert(FALSE);
4889         break;
4890     }
4891 
4892     if (!sf) {
4893         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4894     }
4895 
4896     if (opc == 3) {
4897         gen_logic_CC(sf, tcg_rd);
4898     }
4899 }
4900 
4901 /*
4902  * Add/subtract (extended register)
4903  *
4904  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4905  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4906  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4907  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4908  *
4909  *  sf: 0 -> 32bit, 1 -> 64bit
4910  *  op: 0 -> add  , 1 -> sub
4911  *   S: 1 -> set flags
4912  * opt: 00
4913  * option: extension type (see DecodeRegExtend)
4914  * imm3: optional shift to Rm
4915  *
4916  * Rd = Rn + LSL(extend(Rm), amount)
4917  */
4918 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4919 {
4920     int rd = extract32(insn, 0, 5);
4921     int rn = extract32(insn, 5, 5);
4922     int imm3 = extract32(insn, 10, 3);
4923     int option = extract32(insn, 13, 3);
4924     int rm = extract32(insn, 16, 5);
4925     int opt = extract32(insn, 22, 2);
4926     bool setflags = extract32(insn, 29, 1);
4927     bool sub_op = extract32(insn, 30, 1);
4928     bool sf = extract32(insn, 31, 1);
4929 
4930     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4931     TCGv_i64 tcg_rd;
4932     TCGv_i64 tcg_result;
4933 
4934     if (imm3 > 4 || opt != 0) {
4935         unallocated_encoding(s);
4936         return;
4937     }
4938 
4939     /* non-flag setting ops may use SP */
4940     if (!setflags) {
4941         tcg_rd = cpu_reg_sp(s, rd);
4942     } else {
4943         tcg_rd = cpu_reg(s, rd);
4944     }
4945     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4946 
4947     tcg_rm = read_cpu_reg(s, rm, sf);
4948     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4949 
4950     tcg_result = tcg_temp_new_i64();
4951 
4952     if (!setflags) {
4953         if (sub_op) {
4954             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4955         } else {
4956             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4957         }
4958     } else {
4959         if (sub_op) {
4960             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4961         } else {
4962             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4963         }
4964     }
4965 
4966     if (sf) {
4967         tcg_gen_mov_i64(tcg_rd, tcg_result);
4968     } else {
4969         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4970     }
4971 
4972     tcg_temp_free_i64(tcg_result);
4973 }
4974 
4975 /*
4976  * Add/subtract (shifted register)
4977  *
4978  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4979  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4980  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4981  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4982  *
4983  *    sf: 0 -> 32bit, 1 -> 64bit
4984  *    op: 0 -> add  , 1 -> sub
4985  *     S: 1 -> set flags
4986  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4987  *  imm6: Shift amount to apply to Rm before the add/sub
4988  */
4989 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4990 {
4991     int rd = extract32(insn, 0, 5);
4992     int rn = extract32(insn, 5, 5);
4993     int imm6 = extract32(insn, 10, 6);
4994     int rm = extract32(insn, 16, 5);
4995     int shift_type = extract32(insn, 22, 2);
4996     bool setflags = extract32(insn, 29, 1);
4997     bool sub_op = extract32(insn, 30, 1);
4998     bool sf = extract32(insn, 31, 1);
4999 
5000     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5001     TCGv_i64 tcg_rn, tcg_rm;
5002     TCGv_i64 tcg_result;
5003 
5004     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5005         unallocated_encoding(s);
5006         return;
5007     }
5008 
5009     tcg_rn = read_cpu_reg(s, rn, sf);
5010     tcg_rm = read_cpu_reg(s, rm, sf);
5011 
5012     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5013 
5014     tcg_result = tcg_temp_new_i64();
5015 
5016     if (!setflags) {
5017         if (sub_op) {
5018             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5019         } else {
5020             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5021         }
5022     } else {
5023         if (sub_op) {
5024             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5025         } else {
5026             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5027         }
5028     }
5029 
5030     if (sf) {
5031         tcg_gen_mov_i64(tcg_rd, tcg_result);
5032     } else {
5033         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5034     }
5035 
5036     tcg_temp_free_i64(tcg_result);
5037 }
5038 
5039 /* Data-processing (3 source)
5040  *
5041  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5042  *  +--+------+-----------+------+------+----+------+------+------+
5043  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5044  *  +--+------+-----------+------+------+----+------+------+------+
5045  */
5046 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5047 {
5048     int rd = extract32(insn, 0, 5);
5049     int rn = extract32(insn, 5, 5);
5050     int ra = extract32(insn, 10, 5);
5051     int rm = extract32(insn, 16, 5);
5052     int op_id = (extract32(insn, 29, 3) << 4) |
5053         (extract32(insn, 21, 3) << 1) |
5054         extract32(insn, 15, 1);
5055     bool sf = extract32(insn, 31, 1);
5056     bool is_sub = extract32(op_id, 0, 1);
5057     bool is_high = extract32(op_id, 2, 1);
5058     bool is_signed = false;
5059     TCGv_i64 tcg_op1;
5060     TCGv_i64 tcg_op2;
5061     TCGv_i64 tcg_tmp;
5062 
5063     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5064     switch (op_id) {
5065     case 0x42: /* SMADDL */
5066     case 0x43: /* SMSUBL */
5067     case 0x44: /* SMULH */
5068         is_signed = true;
5069         break;
5070     case 0x0: /* MADD (32bit) */
5071     case 0x1: /* MSUB (32bit) */
5072     case 0x40: /* MADD (64bit) */
5073     case 0x41: /* MSUB (64bit) */
5074     case 0x4a: /* UMADDL */
5075     case 0x4b: /* UMSUBL */
5076     case 0x4c: /* UMULH */
5077         break;
5078     default:
5079         unallocated_encoding(s);
5080         return;
5081     }
5082 
5083     if (is_high) {
5084         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5085         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5086         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5087         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5088 
5089         if (is_signed) {
5090             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5091         } else {
5092             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5093         }
5094 
5095         tcg_temp_free_i64(low_bits);
5096         return;
5097     }
5098 
5099     tcg_op1 = tcg_temp_new_i64();
5100     tcg_op2 = tcg_temp_new_i64();
5101     tcg_tmp = tcg_temp_new_i64();
5102 
5103     if (op_id < 0x42) {
5104         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5105         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5106     } else {
5107         if (is_signed) {
5108             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5109             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5110         } else {
5111             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5112             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5113         }
5114     }
5115 
5116     if (ra == 31 && !is_sub) {
5117         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5118         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5119     } else {
5120         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5121         if (is_sub) {
5122             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5123         } else {
5124             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5125         }
5126     }
5127 
5128     if (!sf) {
5129         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5130     }
5131 
5132     tcg_temp_free_i64(tcg_op1);
5133     tcg_temp_free_i64(tcg_op2);
5134     tcg_temp_free_i64(tcg_tmp);
5135 }
5136 
5137 /* Add/subtract (with carry)
5138  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5139  * +--+--+--+------------------------+------+-------------+------+-----+
5140  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5141  * +--+--+--+------------------------+------+-------------+------+-----+
5142  */
5143 
5144 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5145 {
5146     unsigned int sf, op, setflags, rm, rn, rd;
5147     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5148 
5149     sf = extract32(insn, 31, 1);
5150     op = extract32(insn, 30, 1);
5151     setflags = extract32(insn, 29, 1);
5152     rm = extract32(insn, 16, 5);
5153     rn = extract32(insn, 5, 5);
5154     rd = extract32(insn, 0, 5);
5155 
5156     tcg_rd = cpu_reg(s, rd);
5157     tcg_rn = cpu_reg(s, rn);
5158 
5159     if (op) {
5160         tcg_y = tcg_temp_new_i64();
5161         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5162     } else {
5163         tcg_y = cpu_reg(s, rm);
5164     }
5165 
5166     if (setflags) {
5167         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5168     } else {
5169         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5170     }
5171 }
5172 
5173 /*
5174  * Rotate right into flags
5175  *  31 30 29                21       15          10      5  4      0
5176  * +--+--+--+-----------------+--------+-----------+------+--+------+
5177  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5178  * +--+--+--+-----------------+--------+-----------+------+--+------+
5179  */
5180 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5181 {
5182     int mask = extract32(insn, 0, 4);
5183     int o2 = extract32(insn, 4, 1);
5184     int rn = extract32(insn, 5, 5);
5185     int imm6 = extract32(insn, 15, 6);
5186     int sf_op_s = extract32(insn, 29, 3);
5187     TCGv_i64 tcg_rn;
5188     TCGv_i32 nzcv;
5189 
5190     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5191         unallocated_encoding(s);
5192         return;
5193     }
5194 
5195     tcg_rn = read_cpu_reg(s, rn, 1);
5196     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5197 
5198     nzcv = tcg_temp_new_i32();
5199     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5200 
5201     if (mask & 8) { /* N */
5202         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5203     }
5204     if (mask & 4) { /* Z */
5205         tcg_gen_not_i32(cpu_ZF, nzcv);
5206         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5207     }
5208     if (mask & 2) { /* C */
5209         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5210     }
5211     if (mask & 1) { /* V */
5212         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5213     }
5214 
5215     tcg_temp_free_i32(nzcv);
5216 }
5217 
5218 /*
5219  * Evaluate into flags
5220  *  31 30 29                21        15   14        10      5  4      0
5221  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5222  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5223  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5224  */
5225 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5226 {
5227     int o3_mask = extract32(insn, 0, 5);
5228     int rn = extract32(insn, 5, 5);
5229     int o2 = extract32(insn, 15, 6);
5230     int sz = extract32(insn, 14, 1);
5231     int sf_op_s = extract32(insn, 29, 3);
5232     TCGv_i32 tmp;
5233     int shift;
5234 
5235     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5236         !dc_isar_feature(aa64_condm_4, s)) {
5237         unallocated_encoding(s);
5238         return;
5239     }
5240     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5241 
5242     tmp = tcg_temp_new_i32();
5243     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5244     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5245     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5246     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5247     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5248     tcg_temp_free_i32(tmp);
5249 }
5250 
5251 /* Conditional compare (immediate / register)
5252  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5253  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5254  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5255  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5256  *        [1]                             y                [0]       [0]
5257  */
5258 static void disas_cc(DisasContext *s, uint32_t insn)
5259 {
5260     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5261     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5262     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5263     DisasCompare c;
5264 
5265     if (!extract32(insn, 29, 1)) {
5266         unallocated_encoding(s);
5267         return;
5268     }
5269     if (insn & (1 << 10 | 1 << 4)) {
5270         unallocated_encoding(s);
5271         return;
5272     }
5273     sf = extract32(insn, 31, 1);
5274     op = extract32(insn, 30, 1);
5275     is_imm = extract32(insn, 11, 1);
5276     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5277     cond = extract32(insn, 12, 4);
5278     rn = extract32(insn, 5, 5);
5279     nzcv = extract32(insn, 0, 4);
5280 
5281     /* Set T0 = !COND.  */
5282     tcg_t0 = tcg_temp_new_i32();
5283     arm_test_cc(&c, cond);
5284     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5285 
5286     /* Load the arguments for the new comparison.  */
5287     if (is_imm) {
5288         tcg_y = tcg_temp_new_i64();
5289         tcg_gen_movi_i64(tcg_y, y);
5290     } else {
5291         tcg_y = cpu_reg(s, y);
5292     }
5293     tcg_rn = cpu_reg(s, rn);
5294 
5295     /* Set the flags for the new comparison.  */
5296     tcg_tmp = tcg_temp_new_i64();
5297     if (op) {
5298         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5299     } else {
5300         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5301     }
5302     tcg_temp_free_i64(tcg_tmp);
5303 
5304     /* If COND was false, force the flags to #nzcv.  Compute two masks
5305      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5306      * For tcg hosts that support ANDC, we can make do with just T1.
5307      * In either case, allow the tcg optimizer to delete any unused mask.
5308      */
5309     tcg_t1 = tcg_temp_new_i32();
5310     tcg_t2 = tcg_temp_new_i32();
5311     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5312     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5313 
5314     if (nzcv & 8) { /* N */
5315         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5316     } else {
5317         if (TCG_TARGET_HAS_andc_i32) {
5318             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5319         } else {
5320             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5321         }
5322     }
5323     if (nzcv & 4) { /* Z */
5324         if (TCG_TARGET_HAS_andc_i32) {
5325             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5326         } else {
5327             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5328         }
5329     } else {
5330         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5331     }
5332     if (nzcv & 2) { /* C */
5333         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5334     } else {
5335         if (TCG_TARGET_HAS_andc_i32) {
5336             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5337         } else {
5338             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5339         }
5340     }
5341     if (nzcv & 1) { /* V */
5342         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5343     } else {
5344         if (TCG_TARGET_HAS_andc_i32) {
5345             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5346         } else {
5347             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5348         }
5349     }
5350     tcg_temp_free_i32(tcg_t0);
5351     tcg_temp_free_i32(tcg_t1);
5352     tcg_temp_free_i32(tcg_t2);
5353 }
5354 
5355 /* Conditional select
5356  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5357  * +----+----+---+-----------------+------+------+-----+------+------+
5358  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5359  * +----+----+---+-----------------+------+------+-----+------+------+
5360  */
5361 static void disas_cond_select(DisasContext *s, uint32_t insn)
5362 {
5363     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5364     TCGv_i64 tcg_rd, zero;
5365     DisasCompare64 c;
5366 
5367     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5368         /* S == 1 or op2<1> == 1 */
5369         unallocated_encoding(s);
5370         return;
5371     }
5372     sf = extract32(insn, 31, 1);
5373     else_inv = extract32(insn, 30, 1);
5374     rm = extract32(insn, 16, 5);
5375     cond = extract32(insn, 12, 4);
5376     else_inc = extract32(insn, 10, 1);
5377     rn = extract32(insn, 5, 5);
5378     rd = extract32(insn, 0, 5);
5379 
5380     tcg_rd = cpu_reg(s, rd);
5381 
5382     a64_test_cc(&c, cond);
5383     zero = tcg_constant_i64(0);
5384 
5385     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5386         /* CSET & CSETM.  */
5387         tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5388         if (else_inv) {
5389             tcg_gen_neg_i64(tcg_rd, tcg_rd);
5390         }
5391     } else {
5392         TCGv_i64 t_true = cpu_reg(s, rn);
5393         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5394         if (else_inv && else_inc) {
5395             tcg_gen_neg_i64(t_false, t_false);
5396         } else if (else_inv) {
5397             tcg_gen_not_i64(t_false, t_false);
5398         } else if (else_inc) {
5399             tcg_gen_addi_i64(t_false, t_false, 1);
5400         }
5401         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5402     }
5403 
5404     if (!sf) {
5405         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5406     }
5407 }
5408 
5409 static void handle_clz(DisasContext *s, unsigned int sf,
5410                        unsigned int rn, unsigned int rd)
5411 {
5412     TCGv_i64 tcg_rd, tcg_rn;
5413     tcg_rd = cpu_reg(s, rd);
5414     tcg_rn = cpu_reg(s, rn);
5415 
5416     if (sf) {
5417         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5418     } else {
5419         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5420         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5421         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5422         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5423         tcg_temp_free_i32(tcg_tmp32);
5424     }
5425 }
5426 
5427 static void handle_cls(DisasContext *s, unsigned int sf,
5428                        unsigned int rn, unsigned int rd)
5429 {
5430     TCGv_i64 tcg_rd, tcg_rn;
5431     tcg_rd = cpu_reg(s, rd);
5432     tcg_rn = cpu_reg(s, rn);
5433 
5434     if (sf) {
5435         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5436     } else {
5437         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5438         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5439         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5440         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5441         tcg_temp_free_i32(tcg_tmp32);
5442     }
5443 }
5444 
5445 static void handle_rbit(DisasContext *s, unsigned int sf,
5446                         unsigned int rn, unsigned int rd)
5447 {
5448     TCGv_i64 tcg_rd, tcg_rn;
5449     tcg_rd = cpu_reg(s, rd);
5450     tcg_rn = cpu_reg(s, rn);
5451 
5452     if (sf) {
5453         gen_helper_rbit64(tcg_rd, tcg_rn);
5454     } else {
5455         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5456         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5457         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5458         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5459         tcg_temp_free_i32(tcg_tmp32);
5460     }
5461 }
5462 
5463 /* REV with sf==1, opcode==3 ("REV64") */
5464 static void handle_rev64(DisasContext *s, unsigned int sf,
5465                          unsigned int rn, unsigned int rd)
5466 {
5467     if (!sf) {
5468         unallocated_encoding(s);
5469         return;
5470     }
5471     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5472 }
5473 
5474 /* REV with sf==0, opcode==2
5475  * REV32 (sf==1, opcode==2)
5476  */
5477 static void handle_rev32(DisasContext *s, unsigned int sf,
5478                          unsigned int rn, unsigned int rd)
5479 {
5480     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5481     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5482 
5483     if (sf) {
5484         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5485         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5486     } else {
5487         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5488     }
5489 }
5490 
5491 /* REV16 (opcode==1) */
5492 static void handle_rev16(DisasContext *s, unsigned int sf,
5493                          unsigned int rn, unsigned int rd)
5494 {
5495     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5496     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5497     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5498     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5499 
5500     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5501     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5502     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5503     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5504     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5505 
5506     tcg_temp_free_i64(tcg_tmp);
5507 }
5508 
5509 /* Data-processing (1 source)
5510  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5511  * +----+---+---+-----------------+---------+--------+------+------+
5512  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5513  * +----+---+---+-----------------+---------+--------+------+------+
5514  */
5515 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5516 {
5517     unsigned int sf, opcode, opcode2, rn, rd;
5518     TCGv_i64 tcg_rd;
5519 
5520     if (extract32(insn, 29, 1)) {
5521         unallocated_encoding(s);
5522         return;
5523     }
5524 
5525     sf = extract32(insn, 31, 1);
5526     opcode = extract32(insn, 10, 6);
5527     opcode2 = extract32(insn, 16, 5);
5528     rn = extract32(insn, 5, 5);
5529     rd = extract32(insn, 0, 5);
5530 
5531 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5532 
5533     switch (MAP(sf, opcode2, opcode)) {
5534     case MAP(0, 0x00, 0x00): /* RBIT */
5535     case MAP(1, 0x00, 0x00):
5536         handle_rbit(s, sf, rn, rd);
5537         break;
5538     case MAP(0, 0x00, 0x01): /* REV16 */
5539     case MAP(1, 0x00, 0x01):
5540         handle_rev16(s, sf, rn, rd);
5541         break;
5542     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5543     case MAP(1, 0x00, 0x02):
5544         handle_rev32(s, sf, rn, rd);
5545         break;
5546     case MAP(1, 0x00, 0x03): /* REV64 */
5547         handle_rev64(s, sf, rn, rd);
5548         break;
5549     case MAP(0, 0x00, 0x04): /* CLZ */
5550     case MAP(1, 0x00, 0x04):
5551         handle_clz(s, sf, rn, rd);
5552         break;
5553     case MAP(0, 0x00, 0x05): /* CLS */
5554     case MAP(1, 0x00, 0x05):
5555         handle_cls(s, sf, rn, rd);
5556         break;
5557     case MAP(1, 0x01, 0x00): /* PACIA */
5558         if (s->pauth_active) {
5559             tcg_rd = cpu_reg(s, rd);
5560             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5561         } else if (!dc_isar_feature(aa64_pauth, s)) {
5562             goto do_unallocated;
5563         }
5564         break;
5565     case MAP(1, 0x01, 0x01): /* PACIB */
5566         if (s->pauth_active) {
5567             tcg_rd = cpu_reg(s, rd);
5568             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5569         } else if (!dc_isar_feature(aa64_pauth, s)) {
5570             goto do_unallocated;
5571         }
5572         break;
5573     case MAP(1, 0x01, 0x02): /* PACDA */
5574         if (s->pauth_active) {
5575             tcg_rd = cpu_reg(s, rd);
5576             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5577         } else if (!dc_isar_feature(aa64_pauth, s)) {
5578             goto do_unallocated;
5579         }
5580         break;
5581     case MAP(1, 0x01, 0x03): /* PACDB */
5582         if (s->pauth_active) {
5583             tcg_rd = cpu_reg(s, rd);
5584             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5585         } else if (!dc_isar_feature(aa64_pauth, s)) {
5586             goto do_unallocated;
5587         }
5588         break;
5589     case MAP(1, 0x01, 0x04): /* AUTIA */
5590         if (s->pauth_active) {
5591             tcg_rd = cpu_reg(s, rd);
5592             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5593         } else if (!dc_isar_feature(aa64_pauth, s)) {
5594             goto do_unallocated;
5595         }
5596         break;
5597     case MAP(1, 0x01, 0x05): /* AUTIB */
5598         if (s->pauth_active) {
5599             tcg_rd = cpu_reg(s, rd);
5600             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5601         } else if (!dc_isar_feature(aa64_pauth, s)) {
5602             goto do_unallocated;
5603         }
5604         break;
5605     case MAP(1, 0x01, 0x06): /* AUTDA */
5606         if (s->pauth_active) {
5607             tcg_rd = cpu_reg(s, rd);
5608             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5609         } else if (!dc_isar_feature(aa64_pauth, s)) {
5610             goto do_unallocated;
5611         }
5612         break;
5613     case MAP(1, 0x01, 0x07): /* AUTDB */
5614         if (s->pauth_active) {
5615             tcg_rd = cpu_reg(s, rd);
5616             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5617         } else if (!dc_isar_feature(aa64_pauth, s)) {
5618             goto do_unallocated;
5619         }
5620         break;
5621     case MAP(1, 0x01, 0x08): /* PACIZA */
5622         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5623             goto do_unallocated;
5624         } else if (s->pauth_active) {
5625             tcg_rd = cpu_reg(s, rd);
5626             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5627         }
5628         break;
5629     case MAP(1, 0x01, 0x09): /* PACIZB */
5630         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5631             goto do_unallocated;
5632         } else if (s->pauth_active) {
5633             tcg_rd = cpu_reg(s, rd);
5634             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5635         }
5636         break;
5637     case MAP(1, 0x01, 0x0a): /* PACDZA */
5638         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5639             goto do_unallocated;
5640         } else if (s->pauth_active) {
5641             tcg_rd = cpu_reg(s, rd);
5642             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5643         }
5644         break;
5645     case MAP(1, 0x01, 0x0b): /* PACDZB */
5646         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5647             goto do_unallocated;
5648         } else if (s->pauth_active) {
5649             tcg_rd = cpu_reg(s, rd);
5650             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5651         }
5652         break;
5653     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5654         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5655             goto do_unallocated;
5656         } else if (s->pauth_active) {
5657             tcg_rd = cpu_reg(s, rd);
5658             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5659         }
5660         break;
5661     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5662         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5663             goto do_unallocated;
5664         } else if (s->pauth_active) {
5665             tcg_rd = cpu_reg(s, rd);
5666             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5667         }
5668         break;
5669     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5670         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5671             goto do_unallocated;
5672         } else if (s->pauth_active) {
5673             tcg_rd = cpu_reg(s, rd);
5674             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5675         }
5676         break;
5677     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5678         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5679             goto do_unallocated;
5680         } else if (s->pauth_active) {
5681             tcg_rd = cpu_reg(s, rd);
5682             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5683         }
5684         break;
5685     case MAP(1, 0x01, 0x10): /* XPACI */
5686         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5687             goto do_unallocated;
5688         } else if (s->pauth_active) {
5689             tcg_rd = cpu_reg(s, rd);
5690             gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5691         }
5692         break;
5693     case MAP(1, 0x01, 0x11): /* XPACD */
5694         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5695             goto do_unallocated;
5696         } else if (s->pauth_active) {
5697             tcg_rd = cpu_reg(s, rd);
5698             gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5699         }
5700         break;
5701     default:
5702     do_unallocated:
5703         unallocated_encoding(s);
5704         break;
5705     }
5706 
5707 #undef MAP
5708 }
5709 
5710 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5711                        unsigned int rm, unsigned int rn, unsigned int rd)
5712 {
5713     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5714     tcg_rd = cpu_reg(s, rd);
5715 
5716     if (!sf && is_signed) {
5717         tcg_n = tcg_temp_new_i64();
5718         tcg_m = tcg_temp_new_i64();
5719         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5720         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5721     } else {
5722         tcg_n = read_cpu_reg(s, rn, sf);
5723         tcg_m = read_cpu_reg(s, rm, sf);
5724     }
5725 
5726     if (is_signed) {
5727         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5728     } else {
5729         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5730     }
5731 
5732     if (!sf) { /* zero extend final result */
5733         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5734     }
5735 }
5736 
5737 /* LSLV, LSRV, ASRV, RORV */
5738 static void handle_shift_reg(DisasContext *s,
5739                              enum a64_shift_type shift_type, unsigned int sf,
5740                              unsigned int rm, unsigned int rn, unsigned int rd)
5741 {
5742     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5743     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5744     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5745 
5746     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5747     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5748     tcg_temp_free_i64(tcg_shift);
5749 }
5750 
5751 /* CRC32[BHWX], CRC32C[BHWX] */
5752 static void handle_crc32(DisasContext *s,
5753                          unsigned int sf, unsigned int sz, bool crc32c,
5754                          unsigned int rm, unsigned int rn, unsigned int rd)
5755 {
5756     TCGv_i64 tcg_acc, tcg_val;
5757     TCGv_i32 tcg_bytes;
5758 
5759     if (!dc_isar_feature(aa64_crc32, s)
5760         || (sf == 1 && sz != 3)
5761         || (sf == 0 && sz == 3)) {
5762         unallocated_encoding(s);
5763         return;
5764     }
5765 
5766     if (sz == 3) {
5767         tcg_val = cpu_reg(s, rm);
5768     } else {
5769         uint64_t mask;
5770         switch (sz) {
5771         case 0:
5772             mask = 0xFF;
5773             break;
5774         case 1:
5775             mask = 0xFFFF;
5776             break;
5777         case 2:
5778             mask = 0xFFFFFFFF;
5779             break;
5780         default:
5781             g_assert_not_reached();
5782         }
5783         tcg_val = tcg_temp_new_i64();
5784         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5785     }
5786 
5787     tcg_acc = cpu_reg(s, rn);
5788     tcg_bytes = tcg_constant_i32(1 << sz);
5789 
5790     if (crc32c) {
5791         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5792     } else {
5793         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5794     }
5795 }
5796 
5797 /* Data-processing (2 source)
5798  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5799  * +----+---+---+-----------------+------+--------+------+------+
5800  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5801  * +----+---+---+-----------------+------+--------+------+------+
5802  */
5803 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5804 {
5805     unsigned int sf, rm, opcode, rn, rd, setflag;
5806     sf = extract32(insn, 31, 1);
5807     setflag = extract32(insn, 29, 1);
5808     rm = extract32(insn, 16, 5);
5809     opcode = extract32(insn, 10, 6);
5810     rn = extract32(insn, 5, 5);
5811     rd = extract32(insn, 0, 5);
5812 
5813     if (setflag && opcode != 0) {
5814         unallocated_encoding(s);
5815         return;
5816     }
5817 
5818     switch (opcode) {
5819     case 0: /* SUBP(S) */
5820         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5821             goto do_unallocated;
5822         } else {
5823             TCGv_i64 tcg_n, tcg_m, tcg_d;
5824 
5825             tcg_n = read_cpu_reg_sp(s, rn, true);
5826             tcg_m = read_cpu_reg_sp(s, rm, true);
5827             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5828             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5829             tcg_d = cpu_reg(s, rd);
5830 
5831             if (setflag) {
5832                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5833             } else {
5834                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5835             }
5836         }
5837         break;
5838     case 2: /* UDIV */
5839         handle_div(s, false, sf, rm, rn, rd);
5840         break;
5841     case 3: /* SDIV */
5842         handle_div(s, true, sf, rm, rn, rd);
5843         break;
5844     case 4: /* IRG */
5845         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5846             goto do_unallocated;
5847         }
5848         if (s->ata) {
5849             gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5850                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5851         } else {
5852             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5853                                              cpu_reg_sp(s, rn));
5854         }
5855         break;
5856     case 5: /* GMI */
5857         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5858             goto do_unallocated;
5859         } else {
5860             TCGv_i64 t = tcg_temp_new_i64();
5861 
5862             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5863             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5864             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5865 
5866             tcg_temp_free_i64(t);
5867         }
5868         break;
5869     case 8: /* LSLV */
5870         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5871         break;
5872     case 9: /* LSRV */
5873         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5874         break;
5875     case 10: /* ASRV */
5876         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5877         break;
5878     case 11: /* RORV */
5879         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5880         break;
5881     case 12: /* PACGA */
5882         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5883             goto do_unallocated;
5884         }
5885         gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5886                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5887         break;
5888     case 16:
5889     case 17:
5890     case 18:
5891     case 19:
5892     case 20:
5893     case 21:
5894     case 22:
5895     case 23: /* CRC32 */
5896     {
5897         int sz = extract32(opcode, 0, 2);
5898         bool crc32c = extract32(opcode, 2, 1);
5899         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5900         break;
5901     }
5902     default:
5903     do_unallocated:
5904         unallocated_encoding(s);
5905         break;
5906     }
5907 }
5908 
5909 /*
5910  * Data processing - register
5911  *  31  30 29  28      25    21  20  16      10         0
5912  * +--+---+--+---+-------+-----+-------+-------+---------+
5913  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5914  * +--+---+--+---+-------+-----+-------+-------+---------+
5915  */
5916 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5917 {
5918     int op0 = extract32(insn, 30, 1);
5919     int op1 = extract32(insn, 28, 1);
5920     int op2 = extract32(insn, 21, 4);
5921     int op3 = extract32(insn, 10, 6);
5922 
5923     if (!op1) {
5924         if (op2 & 8) {
5925             if (op2 & 1) {
5926                 /* Add/sub (extended register) */
5927                 disas_add_sub_ext_reg(s, insn);
5928             } else {
5929                 /* Add/sub (shifted register) */
5930                 disas_add_sub_reg(s, insn);
5931             }
5932         } else {
5933             /* Logical (shifted register) */
5934             disas_logic_reg(s, insn);
5935         }
5936         return;
5937     }
5938 
5939     switch (op2) {
5940     case 0x0:
5941         switch (op3) {
5942         case 0x00: /* Add/subtract (with carry) */
5943             disas_adc_sbc(s, insn);
5944             break;
5945 
5946         case 0x01: /* Rotate right into flags */
5947         case 0x21:
5948             disas_rotate_right_into_flags(s, insn);
5949             break;
5950 
5951         case 0x02: /* Evaluate into flags */
5952         case 0x12:
5953         case 0x22:
5954         case 0x32:
5955             disas_evaluate_into_flags(s, insn);
5956             break;
5957 
5958         default:
5959             goto do_unallocated;
5960         }
5961         break;
5962 
5963     case 0x2: /* Conditional compare */
5964         disas_cc(s, insn); /* both imm and reg forms */
5965         break;
5966 
5967     case 0x4: /* Conditional select */
5968         disas_cond_select(s, insn);
5969         break;
5970 
5971     case 0x6: /* Data-processing */
5972         if (op0) {    /* (1 source) */
5973             disas_data_proc_1src(s, insn);
5974         } else {      /* (2 source) */
5975             disas_data_proc_2src(s, insn);
5976         }
5977         break;
5978     case 0x8 ... 0xf: /* (3 source) */
5979         disas_data_proc_3src(s, insn);
5980         break;
5981 
5982     default:
5983     do_unallocated:
5984         unallocated_encoding(s);
5985         break;
5986     }
5987 }
5988 
5989 static void handle_fp_compare(DisasContext *s, int size,
5990                               unsigned int rn, unsigned int rm,
5991                               bool cmp_with_zero, bool signal_all_nans)
5992 {
5993     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5994     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5995 
5996     if (size == MO_64) {
5997         TCGv_i64 tcg_vn, tcg_vm;
5998 
5999         tcg_vn = read_fp_dreg(s, rn);
6000         if (cmp_with_zero) {
6001             tcg_vm = tcg_constant_i64(0);
6002         } else {
6003             tcg_vm = read_fp_dreg(s, rm);
6004         }
6005         if (signal_all_nans) {
6006             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6007         } else {
6008             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6009         }
6010         tcg_temp_free_i64(tcg_vn);
6011         tcg_temp_free_i64(tcg_vm);
6012     } else {
6013         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6014         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6015 
6016         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6017         if (cmp_with_zero) {
6018             tcg_gen_movi_i32(tcg_vm, 0);
6019         } else {
6020             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6021         }
6022 
6023         switch (size) {
6024         case MO_32:
6025             if (signal_all_nans) {
6026                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6027             } else {
6028                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6029             }
6030             break;
6031         case MO_16:
6032             if (signal_all_nans) {
6033                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6034             } else {
6035                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6036             }
6037             break;
6038         default:
6039             g_assert_not_reached();
6040         }
6041 
6042         tcg_temp_free_i32(tcg_vn);
6043         tcg_temp_free_i32(tcg_vm);
6044     }
6045 
6046     tcg_temp_free_ptr(fpst);
6047 
6048     gen_set_nzcv(tcg_flags);
6049 
6050     tcg_temp_free_i64(tcg_flags);
6051 }
6052 
6053 /* Floating point compare
6054  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6055  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6056  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6057  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6058  */
6059 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6060 {
6061     unsigned int mos, type, rm, op, rn, opc, op2r;
6062     int size;
6063 
6064     mos = extract32(insn, 29, 3);
6065     type = extract32(insn, 22, 2);
6066     rm = extract32(insn, 16, 5);
6067     op = extract32(insn, 14, 2);
6068     rn = extract32(insn, 5, 5);
6069     opc = extract32(insn, 3, 2);
6070     op2r = extract32(insn, 0, 3);
6071 
6072     if (mos || op || op2r) {
6073         unallocated_encoding(s);
6074         return;
6075     }
6076 
6077     switch (type) {
6078     case 0:
6079         size = MO_32;
6080         break;
6081     case 1:
6082         size = MO_64;
6083         break;
6084     case 3:
6085         size = MO_16;
6086         if (dc_isar_feature(aa64_fp16, s)) {
6087             break;
6088         }
6089         /* fallthru */
6090     default:
6091         unallocated_encoding(s);
6092         return;
6093     }
6094 
6095     if (!fp_access_check(s)) {
6096         return;
6097     }
6098 
6099     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6100 }
6101 
6102 /* Floating point conditional compare
6103  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6104  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6105  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6106  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6107  */
6108 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6109 {
6110     unsigned int mos, type, rm, cond, rn, op, nzcv;
6111     TCGLabel *label_continue = NULL;
6112     int size;
6113 
6114     mos = extract32(insn, 29, 3);
6115     type = extract32(insn, 22, 2);
6116     rm = extract32(insn, 16, 5);
6117     cond = extract32(insn, 12, 4);
6118     rn = extract32(insn, 5, 5);
6119     op = extract32(insn, 4, 1);
6120     nzcv = extract32(insn, 0, 4);
6121 
6122     if (mos) {
6123         unallocated_encoding(s);
6124         return;
6125     }
6126 
6127     switch (type) {
6128     case 0:
6129         size = MO_32;
6130         break;
6131     case 1:
6132         size = MO_64;
6133         break;
6134     case 3:
6135         size = MO_16;
6136         if (dc_isar_feature(aa64_fp16, s)) {
6137             break;
6138         }
6139         /* fallthru */
6140     default:
6141         unallocated_encoding(s);
6142         return;
6143     }
6144 
6145     if (!fp_access_check(s)) {
6146         return;
6147     }
6148 
6149     if (cond < 0x0e) { /* not always */
6150         TCGLabel *label_match = gen_new_label();
6151         label_continue = gen_new_label();
6152         arm_gen_test_cc(cond, label_match);
6153         /* nomatch: */
6154         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6155         tcg_gen_br(label_continue);
6156         gen_set_label(label_match);
6157     }
6158 
6159     handle_fp_compare(s, size, rn, rm, false, op);
6160 
6161     if (cond < 0x0e) {
6162         gen_set_label(label_continue);
6163     }
6164 }
6165 
6166 /* Floating point conditional select
6167  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6168  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6169  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6170  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6171  */
6172 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6173 {
6174     unsigned int mos, type, rm, cond, rn, rd;
6175     TCGv_i64 t_true, t_false;
6176     DisasCompare64 c;
6177     MemOp sz;
6178 
6179     mos = extract32(insn, 29, 3);
6180     type = extract32(insn, 22, 2);
6181     rm = extract32(insn, 16, 5);
6182     cond = extract32(insn, 12, 4);
6183     rn = extract32(insn, 5, 5);
6184     rd = extract32(insn, 0, 5);
6185 
6186     if (mos) {
6187         unallocated_encoding(s);
6188         return;
6189     }
6190 
6191     switch (type) {
6192     case 0:
6193         sz = MO_32;
6194         break;
6195     case 1:
6196         sz = MO_64;
6197         break;
6198     case 3:
6199         sz = MO_16;
6200         if (dc_isar_feature(aa64_fp16, s)) {
6201             break;
6202         }
6203         /* fallthru */
6204     default:
6205         unallocated_encoding(s);
6206         return;
6207     }
6208 
6209     if (!fp_access_check(s)) {
6210         return;
6211     }
6212 
6213     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6214     t_true = tcg_temp_new_i64();
6215     t_false = tcg_temp_new_i64();
6216     read_vec_element(s, t_true, rn, 0, sz);
6217     read_vec_element(s, t_false, rm, 0, sz);
6218 
6219     a64_test_cc(&c, cond);
6220     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6221                         t_true, t_false);
6222     tcg_temp_free_i64(t_false);
6223 
6224     /* Note that sregs & hregs write back zeros to the high bits,
6225        and we've already done the zero-extension.  */
6226     write_fp_dreg(s, rd, t_true);
6227     tcg_temp_free_i64(t_true);
6228 }
6229 
6230 /* Floating-point data-processing (1 source) - half precision */
6231 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6232 {
6233     TCGv_ptr fpst = NULL;
6234     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6235     TCGv_i32 tcg_res = tcg_temp_new_i32();
6236 
6237     switch (opcode) {
6238     case 0x0: /* FMOV */
6239         tcg_gen_mov_i32(tcg_res, tcg_op);
6240         break;
6241     case 0x1: /* FABS */
6242         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6243         break;
6244     case 0x2: /* FNEG */
6245         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6246         break;
6247     case 0x3: /* FSQRT */
6248         fpst = fpstatus_ptr(FPST_FPCR_F16);
6249         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6250         break;
6251     case 0x8: /* FRINTN */
6252     case 0x9: /* FRINTP */
6253     case 0xa: /* FRINTM */
6254     case 0xb: /* FRINTZ */
6255     case 0xc: /* FRINTA */
6256     {
6257         TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
6258         fpst = fpstatus_ptr(FPST_FPCR_F16);
6259 
6260         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6261         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6262 
6263         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6264         tcg_temp_free_i32(tcg_rmode);
6265         break;
6266     }
6267     case 0xe: /* FRINTX */
6268         fpst = fpstatus_ptr(FPST_FPCR_F16);
6269         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6270         break;
6271     case 0xf: /* FRINTI */
6272         fpst = fpstatus_ptr(FPST_FPCR_F16);
6273         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6274         break;
6275     default:
6276         g_assert_not_reached();
6277     }
6278 
6279     write_fp_sreg(s, rd, tcg_res);
6280 
6281     if (fpst) {
6282         tcg_temp_free_ptr(fpst);
6283     }
6284     tcg_temp_free_i32(tcg_op);
6285     tcg_temp_free_i32(tcg_res);
6286 }
6287 
6288 /* Floating-point data-processing (1 source) - single precision */
6289 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6290 {
6291     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6292     TCGv_i32 tcg_op, tcg_res;
6293     TCGv_ptr fpst;
6294     int rmode = -1;
6295 
6296     tcg_op = read_fp_sreg(s, rn);
6297     tcg_res = tcg_temp_new_i32();
6298 
6299     switch (opcode) {
6300     case 0x0: /* FMOV */
6301         tcg_gen_mov_i32(tcg_res, tcg_op);
6302         goto done;
6303     case 0x1: /* FABS */
6304         gen_helper_vfp_abss(tcg_res, tcg_op);
6305         goto done;
6306     case 0x2: /* FNEG */
6307         gen_helper_vfp_negs(tcg_res, tcg_op);
6308         goto done;
6309     case 0x3: /* FSQRT */
6310         gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6311         goto done;
6312     case 0x6: /* BFCVT */
6313         gen_fpst = gen_helper_bfcvt;
6314         break;
6315     case 0x8: /* FRINTN */
6316     case 0x9: /* FRINTP */
6317     case 0xa: /* FRINTM */
6318     case 0xb: /* FRINTZ */
6319     case 0xc: /* FRINTA */
6320         rmode = arm_rmode_to_sf(opcode & 7);
6321         gen_fpst = gen_helper_rints;
6322         break;
6323     case 0xe: /* FRINTX */
6324         gen_fpst = gen_helper_rints_exact;
6325         break;
6326     case 0xf: /* FRINTI */
6327         gen_fpst = gen_helper_rints;
6328         break;
6329     case 0x10: /* FRINT32Z */
6330         rmode = float_round_to_zero;
6331         gen_fpst = gen_helper_frint32_s;
6332         break;
6333     case 0x11: /* FRINT32X */
6334         gen_fpst = gen_helper_frint32_s;
6335         break;
6336     case 0x12: /* FRINT64Z */
6337         rmode = float_round_to_zero;
6338         gen_fpst = gen_helper_frint64_s;
6339         break;
6340     case 0x13: /* FRINT64X */
6341         gen_fpst = gen_helper_frint64_s;
6342         break;
6343     default:
6344         g_assert_not_reached();
6345     }
6346 
6347     fpst = fpstatus_ptr(FPST_FPCR);
6348     if (rmode >= 0) {
6349         TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6350         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6351         gen_fpst(tcg_res, tcg_op, fpst);
6352         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6353         tcg_temp_free_i32(tcg_rmode);
6354     } else {
6355         gen_fpst(tcg_res, tcg_op, fpst);
6356     }
6357     tcg_temp_free_ptr(fpst);
6358 
6359  done:
6360     write_fp_sreg(s, rd, tcg_res);
6361     tcg_temp_free_i32(tcg_op);
6362     tcg_temp_free_i32(tcg_res);
6363 }
6364 
6365 /* Floating-point data-processing (1 source) - double precision */
6366 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6367 {
6368     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6369     TCGv_i64 tcg_op, tcg_res;
6370     TCGv_ptr fpst;
6371     int rmode = -1;
6372 
6373     switch (opcode) {
6374     case 0x0: /* FMOV */
6375         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6376         return;
6377     }
6378 
6379     tcg_op = read_fp_dreg(s, rn);
6380     tcg_res = tcg_temp_new_i64();
6381 
6382     switch (opcode) {
6383     case 0x1: /* FABS */
6384         gen_helper_vfp_absd(tcg_res, tcg_op);
6385         goto done;
6386     case 0x2: /* FNEG */
6387         gen_helper_vfp_negd(tcg_res, tcg_op);
6388         goto done;
6389     case 0x3: /* FSQRT */
6390         gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6391         goto done;
6392     case 0x8: /* FRINTN */
6393     case 0x9: /* FRINTP */
6394     case 0xa: /* FRINTM */
6395     case 0xb: /* FRINTZ */
6396     case 0xc: /* FRINTA */
6397         rmode = arm_rmode_to_sf(opcode & 7);
6398         gen_fpst = gen_helper_rintd;
6399         break;
6400     case 0xe: /* FRINTX */
6401         gen_fpst = gen_helper_rintd_exact;
6402         break;
6403     case 0xf: /* FRINTI */
6404         gen_fpst = gen_helper_rintd;
6405         break;
6406     case 0x10: /* FRINT32Z */
6407         rmode = float_round_to_zero;
6408         gen_fpst = gen_helper_frint32_d;
6409         break;
6410     case 0x11: /* FRINT32X */
6411         gen_fpst = gen_helper_frint32_d;
6412         break;
6413     case 0x12: /* FRINT64Z */
6414         rmode = float_round_to_zero;
6415         gen_fpst = gen_helper_frint64_d;
6416         break;
6417     case 0x13: /* FRINT64X */
6418         gen_fpst = gen_helper_frint64_d;
6419         break;
6420     default:
6421         g_assert_not_reached();
6422     }
6423 
6424     fpst = fpstatus_ptr(FPST_FPCR);
6425     if (rmode >= 0) {
6426         TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6427         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6428         gen_fpst(tcg_res, tcg_op, fpst);
6429         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6430         tcg_temp_free_i32(tcg_rmode);
6431     } else {
6432         gen_fpst(tcg_res, tcg_op, fpst);
6433     }
6434     tcg_temp_free_ptr(fpst);
6435 
6436  done:
6437     write_fp_dreg(s, rd, tcg_res);
6438     tcg_temp_free_i64(tcg_op);
6439     tcg_temp_free_i64(tcg_res);
6440 }
6441 
6442 static void handle_fp_fcvt(DisasContext *s, int opcode,
6443                            int rd, int rn, int dtype, int ntype)
6444 {
6445     switch (ntype) {
6446     case 0x0:
6447     {
6448         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6449         if (dtype == 1) {
6450             /* Single to double */
6451             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6452             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6453             write_fp_dreg(s, rd, tcg_rd);
6454             tcg_temp_free_i64(tcg_rd);
6455         } else {
6456             /* Single to half */
6457             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6458             TCGv_i32 ahp = get_ahp_flag();
6459             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6460 
6461             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6462             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6463             write_fp_sreg(s, rd, tcg_rd);
6464             tcg_temp_free_i32(tcg_rd);
6465             tcg_temp_free_i32(ahp);
6466             tcg_temp_free_ptr(fpst);
6467         }
6468         tcg_temp_free_i32(tcg_rn);
6469         break;
6470     }
6471     case 0x1:
6472     {
6473         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6474         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6475         if (dtype == 0) {
6476             /* Double to single */
6477             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6478         } else {
6479             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6480             TCGv_i32 ahp = get_ahp_flag();
6481             /* Double to half */
6482             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6483             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6484             tcg_temp_free_ptr(fpst);
6485             tcg_temp_free_i32(ahp);
6486         }
6487         write_fp_sreg(s, rd, tcg_rd);
6488         tcg_temp_free_i32(tcg_rd);
6489         tcg_temp_free_i64(tcg_rn);
6490         break;
6491     }
6492     case 0x3:
6493     {
6494         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6495         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6496         TCGv_i32 tcg_ahp = get_ahp_flag();
6497         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6498         if (dtype == 0) {
6499             /* Half to single */
6500             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6501             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6502             write_fp_sreg(s, rd, tcg_rd);
6503             tcg_temp_free_i32(tcg_rd);
6504         } else {
6505             /* Half to double */
6506             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6507             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6508             write_fp_dreg(s, rd, tcg_rd);
6509             tcg_temp_free_i64(tcg_rd);
6510         }
6511         tcg_temp_free_i32(tcg_rn);
6512         tcg_temp_free_ptr(tcg_fpst);
6513         tcg_temp_free_i32(tcg_ahp);
6514         break;
6515     }
6516     default:
6517         g_assert_not_reached();
6518     }
6519 }
6520 
6521 /* Floating point data-processing (1 source)
6522  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6523  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6524  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6525  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6526  */
6527 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6528 {
6529     int mos = extract32(insn, 29, 3);
6530     int type = extract32(insn, 22, 2);
6531     int opcode = extract32(insn, 15, 6);
6532     int rn = extract32(insn, 5, 5);
6533     int rd = extract32(insn, 0, 5);
6534 
6535     if (mos) {
6536         goto do_unallocated;
6537     }
6538 
6539     switch (opcode) {
6540     case 0x4: case 0x5: case 0x7:
6541     {
6542         /* FCVT between half, single and double precision */
6543         int dtype = extract32(opcode, 0, 2);
6544         if (type == 2 || dtype == type) {
6545             goto do_unallocated;
6546         }
6547         if (!fp_access_check(s)) {
6548             return;
6549         }
6550 
6551         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6552         break;
6553     }
6554 
6555     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6556         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6557             goto do_unallocated;
6558         }
6559         /* fall through */
6560     case 0x0 ... 0x3:
6561     case 0x8 ... 0xc:
6562     case 0xe ... 0xf:
6563         /* 32-to-32 and 64-to-64 ops */
6564         switch (type) {
6565         case 0:
6566             if (!fp_access_check(s)) {
6567                 return;
6568             }
6569             handle_fp_1src_single(s, opcode, rd, rn);
6570             break;
6571         case 1:
6572             if (!fp_access_check(s)) {
6573                 return;
6574             }
6575             handle_fp_1src_double(s, opcode, rd, rn);
6576             break;
6577         case 3:
6578             if (!dc_isar_feature(aa64_fp16, s)) {
6579                 goto do_unallocated;
6580             }
6581 
6582             if (!fp_access_check(s)) {
6583                 return;
6584             }
6585             handle_fp_1src_half(s, opcode, rd, rn);
6586             break;
6587         default:
6588             goto do_unallocated;
6589         }
6590         break;
6591 
6592     case 0x6:
6593         switch (type) {
6594         case 1: /* BFCVT */
6595             if (!dc_isar_feature(aa64_bf16, s)) {
6596                 goto do_unallocated;
6597             }
6598             if (!fp_access_check(s)) {
6599                 return;
6600             }
6601             handle_fp_1src_single(s, opcode, rd, rn);
6602             break;
6603         default:
6604             goto do_unallocated;
6605         }
6606         break;
6607 
6608     default:
6609     do_unallocated:
6610         unallocated_encoding(s);
6611         break;
6612     }
6613 }
6614 
6615 /* Floating-point data-processing (2 source) - single precision */
6616 static void handle_fp_2src_single(DisasContext *s, int opcode,
6617                                   int rd, int rn, int rm)
6618 {
6619     TCGv_i32 tcg_op1;
6620     TCGv_i32 tcg_op2;
6621     TCGv_i32 tcg_res;
6622     TCGv_ptr fpst;
6623 
6624     tcg_res = tcg_temp_new_i32();
6625     fpst = fpstatus_ptr(FPST_FPCR);
6626     tcg_op1 = read_fp_sreg(s, rn);
6627     tcg_op2 = read_fp_sreg(s, rm);
6628 
6629     switch (opcode) {
6630     case 0x0: /* FMUL */
6631         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6632         break;
6633     case 0x1: /* FDIV */
6634         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6635         break;
6636     case 0x2: /* FADD */
6637         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6638         break;
6639     case 0x3: /* FSUB */
6640         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6641         break;
6642     case 0x4: /* FMAX */
6643         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6644         break;
6645     case 0x5: /* FMIN */
6646         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6647         break;
6648     case 0x6: /* FMAXNM */
6649         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6650         break;
6651     case 0x7: /* FMINNM */
6652         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6653         break;
6654     case 0x8: /* FNMUL */
6655         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6656         gen_helper_vfp_negs(tcg_res, tcg_res);
6657         break;
6658     }
6659 
6660     write_fp_sreg(s, rd, tcg_res);
6661 
6662     tcg_temp_free_ptr(fpst);
6663     tcg_temp_free_i32(tcg_op1);
6664     tcg_temp_free_i32(tcg_op2);
6665     tcg_temp_free_i32(tcg_res);
6666 }
6667 
6668 /* Floating-point data-processing (2 source) - double precision */
6669 static void handle_fp_2src_double(DisasContext *s, int opcode,
6670                                   int rd, int rn, int rm)
6671 {
6672     TCGv_i64 tcg_op1;
6673     TCGv_i64 tcg_op2;
6674     TCGv_i64 tcg_res;
6675     TCGv_ptr fpst;
6676 
6677     tcg_res = tcg_temp_new_i64();
6678     fpst = fpstatus_ptr(FPST_FPCR);
6679     tcg_op1 = read_fp_dreg(s, rn);
6680     tcg_op2 = read_fp_dreg(s, rm);
6681 
6682     switch (opcode) {
6683     case 0x0: /* FMUL */
6684         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6685         break;
6686     case 0x1: /* FDIV */
6687         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6688         break;
6689     case 0x2: /* FADD */
6690         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6691         break;
6692     case 0x3: /* FSUB */
6693         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6694         break;
6695     case 0x4: /* FMAX */
6696         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6697         break;
6698     case 0x5: /* FMIN */
6699         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6700         break;
6701     case 0x6: /* FMAXNM */
6702         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6703         break;
6704     case 0x7: /* FMINNM */
6705         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6706         break;
6707     case 0x8: /* FNMUL */
6708         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6709         gen_helper_vfp_negd(tcg_res, tcg_res);
6710         break;
6711     }
6712 
6713     write_fp_dreg(s, rd, tcg_res);
6714 
6715     tcg_temp_free_ptr(fpst);
6716     tcg_temp_free_i64(tcg_op1);
6717     tcg_temp_free_i64(tcg_op2);
6718     tcg_temp_free_i64(tcg_res);
6719 }
6720 
6721 /* Floating-point data-processing (2 source) - half precision */
6722 static void handle_fp_2src_half(DisasContext *s, int opcode,
6723                                 int rd, int rn, int rm)
6724 {
6725     TCGv_i32 tcg_op1;
6726     TCGv_i32 tcg_op2;
6727     TCGv_i32 tcg_res;
6728     TCGv_ptr fpst;
6729 
6730     tcg_res = tcg_temp_new_i32();
6731     fpst = fpstatus_ptr(FPST_FPCR_F16);
6732     tcg_op1 = read_fp_hreg(s, rn);
6733     tcg_op2 = read_fp_hreg(s, rm);
6734 
6735     switch (opcode) {
6736     case 0x0: /* FMUL */
6737         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6738         break;
6739     case 0x1: /* FDIV */
6740         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6741         break;
6742     case 0x2: /* FADD */
6743         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6744         break;
6745     case 0x3: /* FSUB */
6746         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6747         break;
6748     case 0x4: /* FMAX */
6749         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6750         break;
6751     case 0x5: /* FMIN */
6752         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6753         break;
6754     case 0x6: /* FMAXNM */
6755         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6756         break;
6757     case 0x7: /* FMINNM */
6758         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6759         break;
6760     case 0x8: /* FNMUL */
6761         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6762         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6763         break;
6764     default:
6765         g_assert_not_reached();
6766     }
6767 
6768     write_fp_sreg(s, rd, tcg_res);
6769 
6770     tcg_temp_free_ptr(fpst);
6771     tcg_temp_free_i32(tcg_op1);
6772     tcg_temp_free_i32(tcg_op2);
6773     tcg_temp_free_i32(tcg_res);
6774 }
6775 
6776 /* Floating point data-processing (2 source)
6777  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6778  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6779  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6780  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6781  */
6782 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6783 {
6784     int mos = extract32(insn, 29, 3);
6785     int type = extract32(insn, 22, 2);
6786     int rd = extract32(insn, 0, 5);
6787     int rn = extract32(insn, 5, 5);
6788     int rm = extract32(insn, 16, 5);
6789     int opcode = extract32(insn, 12, 4);
6790 
6791     if (opcode > 8 || mos) {
6792         unallocated_encoding(s);
6793         return;
6794     }
6795 
6796     switch (type) {
6797     case 0:
6798         if (!fp_access_check(s)) {
6799             return;
6800         }
6801         handle_fp_2src_single(s, opcode, rd, rn, rm);
6802         break;
6803     case 1:
6804         if (!fp_access_check(s)) {
6805             return;
6806         }
6807         handle_fp_2src_double(s, opcode, rd, rn, rm);
6808         break;
6809     case 3:
6810         if (!dc_isar_feature(aa64_fp16, s)) {
6811             unallocated_encoding(s);
6812             return;
6813         }
6814         if (!fp_access_check(s)) {
6815             return;
6816         }
6817         handle_fp_2src_half(s, opcode, rd, rn, rm);
6818         break;
6819     default:
6820         unallocated_encoding(s);
6821     }
6822 }
6823 
6824 /* Floating-point data-processing (3 source) - single precision */
6825 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6826                                   int rd, int rn, int rm, int ra)
6827 {
6828     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6829     TCGv_i32 tcg_res = tcg_temp_new_i32();
6830     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6831 
6832     tcg_op1 = read_fp_sreg(s, rn);
6833     tcg_op2 = read_fp_sreg(s, rm);
6834     tcg_op3 = read_fp_sreg(s, ra);
6835 
6836     /* These are fused multiply-add, and must be done as one
6837      * floating point operation with no rounding between the
6838      * multiplication and addition steps.
6839      * NB that doing the negations here as separate steps is
6840      * correct : an input NaN should come out with its sign bit
6841      * flipped if it is a negated-input.
6842      */
6843     if (o1 == true) {
6844         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6845     }
6846 
6847     if (o0 != o1) {
6848         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6849     }
6850 
6851     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6852 
6853     write_fp_sreg(s, rd, tcg_res);
6854 
6855     tcg_temp_free_ptr(fpst);
6856     tcg_temp_free_i32(tcg_op1);
6857     tcg_temp_free_i32(tcg_op2);
6858     tcg_temp_free_i32(tcg_op3);
6859     tcg_temp_free_i32(tcg_res);
6860 }
6861 
6862 /* Floating-point data-processing (3 source) - double precision */
6863 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6864                                   int rd, int rn, int rm, int ra)
6865 {
6866     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6867     TCGv_i64 tcg_res = tcg_temp_new_i64();
6868     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6869 
6870     tcg_op1 = read_fp_dreg(s, rn);
6871     tcg_op2 = read_fp_dreg(s, rm);
6872     tcg_op3 = read_fp_dreg(s, ra);
6873 
6874     /* These are fused multiply-add, and must be done as one
6875      * floating point operation with no rounding between the
6876      * multiplication and addition steps.
6877      * NB that doing the negations here as separate steps is
6878      * correct : an input NaN should come out with its sign bit
6879      * flipped if it is a negated-input.
6880      */
6881     if (o1 == true) {
6882         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6883     }
6884 
6885     if (o0 != o1) {
6886         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6887     }
6888 
6889     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6890 
6891     write_fp_dreg(s, rd, tcg_res);
6892 
6893     tcg_temp_free_ptr(fpst);
6894     tcg_temp_free_i64(tcg_op1);
6895     tcg_temp_free_i64(tcg_op2);
6896     tcg_temp_free_i64(tcg_op3);
6897     tcg_temp_free_i64(tcg_res);
6898 }
6899 
6900 /* Floating-point data-processing (3 source) - half precision */
6901 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6902                                 int rd, int rn, int rm, int ra)
6903 {
6904     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6905     TCGv_i32 tcg_res = tcg_temp_new_i32();
6906     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6907 
6908     tcg_op1 = read_fp_hreg(s, rn);
6909     tcg_op2 = read_fp_hreg(s, rm);
6910     tcg_op3 = read_fp_hreg(s, ra);
6911 
6912     /* These are fused multiply-add, and must be done as one
6913      * floating point operation with no rounding between the
6914      * multiplication and addition steps.
6915      * NB that doing the negations here as separate steps is
6916      * correct : an input NaN should come out with its sign bit
6917      * flipped if it is a negated-input.
6918      */
6919     if (o1 == true) {
6920         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6921     }
6922 
6923     if (o0 != o1) {
6924         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6925     }
6926 
6927     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6928 
6929     write_fp_sreg(s, rd, tcg_res);
6930 
6931     tcg_temp_free_ptr(fpst);
6932     tcg_temp_free_i32(tcg_op1);
6933     tcg_temp_free_i32(tcg_op2);
6934     tcg_temp_free_i32(tcg_op3);
6935     tcg_temp_free_i32(tcg_res);
6936 }
6937 
6938 /* Floating point data-processing (3 source)
6939  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6940  * +---+---+---+-----------+------+----+------+----+------+------+------+
6941  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6942  * +---+---+---+-----------+------+----+------+----+------+------+------+
6943  */
6944 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6945 {
6946     int mos = extract32(insn, 29, 3);
6947     int type = extract32(insn, 22, 2);
6948     int rd = extract32(insn, 0, 5);
6949     int rn = extract32(insn, 5, 5);
6950     int ra = extract32(insn, 10, 5);
6951     int rm = extract32(insn, 16, 5);
6952     bool o0 = extract32(insn, 15, 1);
6953     bool o1 = extract32(insn, 21, 1);
6954 
6955     if (mos) {
6956         unallocated_encoding(s);
6957         return;
6958     }
6959 
6960     switch (type) {
6961     case 0:
6962         if (!fp_access_check(s)) {
6963             return;
6964         }
6965         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6966         break;
6967     case 1:
6968         if (!fp_access_check(s)) {
6969             return;
6970         }
6971         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6972         break;
6973     case 3:
6974         if (!dc_isar_feature(aa64_fp16, s)) {
6975             unallocated_encoding(s);
6976             return;
6977         }
6978         if (!fp_access_check(s)) {
6979             return;
6980         }
6981         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6982         break;
6983     default:
6984         unallocated_encoding(s);
6985     }
6986 }
6987 
6988 /* Floating point immediate
6989  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6990  * +---+---+---+-----------+------+---+------------+-------+------+------+
6991  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6992  * +---+---+---+-----------+------+---+------------+-------+------+------+
6993  */
6994 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6995 {
6996     int rd = extract32(insn, 0, 5);
6997     int imm5 = extract32(insn, 5, 5);
6998     int imm8 = extract32(insn, 13, 8);
6999     int type = extract32(insn, 22, 2);
7000     int mos = extract32(insn, 29, 3);
7001     uint64_t imm;
7002     MemOp sz;
7003 
7004     if (mos || imm5) {
7005         unallocated_encoding(s);
7006         return;
7007     }
7008 
7009     switch (type) {
7010     case 0:
7011         sz = MO_32;
7012         break;
7013     case 1:
7014         sz = MO_64;
7015         break;
7016     case 3:
7017         sz = MO_16;
7018         if (dc_isar_feature(aa64_fp16, s)) {
7019             break;
7020         }
7021         /* fallthru */
7022     default:
7023         unallocated_encoding(s);
7024         return;
7025     }
7026 
7027     if (!fp_access_check(s)) {
7028         return;
7029     }
7030 
7031     imm = vfp_expand_imm(sz, imm8);
7032     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7033 }
7034 
7035 /* Handle floating point <=> fixed point conversions. Note that we can
7036  * also deal with fp <=> integer conversions as a special case (scale == 64)
7037  * OPTME: consider handling that special case specially or at least skipping
7038  * the call to scalbn in the helpers for zero shifts.
7039  */
7040 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7041                            bool itof, int rmode, int scale, int sf, int type)
7042 {
7043     bool is_signed = !(opcode & 1);
7044     TCGv_ptr tcg_fpstatus;
7045     TCGv_i32 tcg_shift, tcg_single;
7046     TCGv_i64 tcg_double;
7047 
7048     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7049 
7050     tcg_shift = tcg_constant_i32(64 - scale);
7051 
7052     if (itof) {
7053         TCGv_i64 tcg_int = cpu_reg(s, rn);
7054         if (!sf) {
7055             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7056 
7057             if (is_signed) {
7058                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7059             } else {
7060                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7061             }
7062 
7063             tcg_int = tcg_extend;
7064         }
7065 
7066         switch (type) {
7067         case 1: /* float64 */
7068             tcg_double = tcg_temp_new_i64();
7069             if (is_signed) {
7070                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7071                                      tcg_shift, tcg_fpstatus);
7072             } else {
7073                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7074                                      tcg_shift, tcg_fpstatus);
7075             }
7076             write_fp_dreg(s, rd, tcg_double);
7077             tcg_temp_free_i64(tcg_double);
7078             break;
7079 
7080         case 0: /* float32 */
7081             tcg_single = tcg_temp_new_i32();
7082             if (is_signed) {
7083                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7084                                      tcg_shift, tcg_fpstatus);
7085             } else {
7086                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7087                                      tcg_shift, tcg_fpstatus);
7088             }
7089             write_fp_sreg(s, rd, tcg_single);
7090             tcg_temp_free_i32(tcg_single);
7091             break;
7092 
7093         case 3: /* float16 */
7094             tcg_single = tcg_temp_new_i32();
7095             if (is_signed) {
7096                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7097                                      tcg_shift, tcg_fpstatus);
7098             } else {
7099                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7100                                      tcg_shift, tcg_fpstatus);
7101             }
7102             write_fp_sreg(s, rd, tcg_single);
7103             tcg_temp_free_i32(tcg_single);
7104             break;
7105 
7106         default:
7107             g_assert_not_reached();
7108         }
7109     } else {
7110         TCGv_i64 tcg_int = cpu_reg(s, rd);
7111         TCGv_i32 tcg_rmode;
7112 
7113         if (extract32(opcode, 2, 1)) {
7114             /* There are too many rounding modes to all fit into rmode,
7115              * so FCVTA[US] is a special case.
7116              */
7117             rmode = FPROUNDING_TIEAWAY;
7118         }
7119 
7120         tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
7121 
7122         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7123 
7124         switch (type) {
7125         case 1: /* float64 */
7126             tcg_double = read_fp_dreg(s, rn);
7127             if (is_signed) {
7128                 if (!sf) {
7129                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7130                                          tcg_shift, tcg_fpstatus);
7131                 } else {
7132                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7133                                          tcg_shift, tcg_fpstatus);
7134                 }
7135             } else {
7136                 if (!sf) {
7137                     gen_helper_vfp_tould(tcg_int, tcg_double,
7138                                          tcg_shift, tcg_fpstatus);
7139                 } else {
7140                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7141                                          tcg_shift, tcg_fpstatus);
7142                 }
7143             }
7144             if (!sf) {
7145                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7146             }
7147             tcg_temp_free_i64(tcg_double);
7148             break;
7149 
7150         case 0: /* float32 */
7151             tcg_single = read_fp_sreg(s, rn);
7152             if (sf) {
7153                 if (is_signed) {
7154                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7155                                          tcg_shift, tcg_fpstatus);
7156                 } else {
7157                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7158                                          tcg_shift, tcg_fpstatus);
7159                 }
7160             } else {
7161                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7162                 if (is_signed) {
7163                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7164                                          tcg_shift, tcg_fpstatus);
7165                 } else {
7166                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7167                                          tcg_shift, tcg_fpstatus);
7168                 }
7169                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7170                 tcg_temp_free_i32(tcg_dest);
7171             }
7172             tcg_temp_free_i32(tcg_single);
7173             break;
7174 
7175         case 3: /* float16 */
7176             tcg_single = read_fp_sreg(s, rn);
7177             if (sf) {
7178                 if (is_signed) {
7179                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7180                                          tcg_shift, tcg_fpstatus);
7181                 } else {
7182                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7183                                          tcg_shift, tcg_fpstatus);
7184                 }
7185             } else {
7186                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7187                 if (is_signed) {
7188                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7189                                          tcg_shift, tcg_fpstatus);
7190                 } else {
7191                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7192                                          tcg_shift, tcg_fpstatus);
7193                 }
7194                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7195                 tcg_temp_free_i32(tcg_dest);
7196             }
7197             tcg_temp_free_i32(tcg_single);
7198             break;
7199 
7200         default:
7201             g_assert_not_reached();
7202         }
7203 
7204         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7205         tcg_temp_free_i32(tcg_rmode);
7206     }
7207 
7208     tcg_temp_free_ptr(tcg_fpstatus);
7209 }
7210 
7211 /* Floating point <-> fixed point conversions
7212  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7213  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7214  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7215  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7216  */
7217 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7218 {
7219     int rd = extract32(insn, 0, 5);
7220     int rn = extract32(insn, 5, 5);
7221     int scale = extract32(insn, 10, 6);
7222     int opcode = extract32(insn, 16, 3);
7223     int rmode = extract32(insn, 19, 2);
7224     int type = extract32(insn, 22, 2);
7225     bool sbit = extract32(insn, 29, 1);
7226     bool sf = extract32(insn, 31, 1);
7227     bool itof;
7228 
7229     if (sbit || (!sf && scale < 32)) {
7230         unallocated_encoding(s);
7231         return;
7232     }
7233 
7234     switch (type) {
7235     case 0: /* float32 */
7236     case 1: /* float64 */
7237         break;
7238     case 3: /* float16 */
7239         if (dc_isar_feature(aa64_fp16, s)) {
7240             break;
7241         }
7242         /* fallthru */
7243     default:
7244         unallocated_encoding(s);
7245         return;
7246     }
7247 
7248     switch ((rmode << 3) | opcode) {
7249     case 0x2: /* SCVTF */
7250     case 0x3: /* UCVTF */
7251         itof = true;
7252         break;
7253     case 0x18: /* FCVTZS */
7254     case 0x19: /* FCVTZU */
7255         itof = false;
7256         break;
7257     default:
7258         unallocated_encoding(s);
7259         return;
7260     }
7261 
7262     if (!fp_access_check(s)) {
7263         return;
7264     }
7265 
7266     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7267 }
7268 
7269 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7270 {
7271     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7272      * without conversion.
7273      */
7274 
7275     if (itof) {
7276         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7277         TCGv_i64 tmp;
7278 
7279         switch (type) {
7280         case 0:
7281             /* 32 bit */
7282             tmp = tcg_temp_new_i64();
7283             tcg_gen_ext32u_i64(tmp, tcg_rn);
7284             write_fp_dreg(s, rd, tmp);
7285             tcg_temp_free_i64(tmp);
7286             break;
7287         case 1:
7288             /* 64 bit */
7289             write_fp_dreg(s, rd, tcg_rn);
7290             break;
7291         case 2:
7292             /* 64 bit to top half. */
7293             tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7294             clear_vec_high(s, true, rd);
7295             break;
7296         case 3:
7297             /* 16 bit */
7298             tmp = tcg_temp_new_i64();
7299             tcg_gen_ext16u_i64(tmp, tcg_rn);
7300             write_fp_dreg(s, rd, tmp);
7301             tcg_temp_free_i64(tmp);
7302             break;
7303         default:
7304             g_assert_not_reached();
7305         }
7306     } else {
7307         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7308 
7309         switch (type) {
7310         case 0:
7311             /* 32 bit */
7312             tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7313             break;
7314         case 1:
7315             /* 64 bit */
7316             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7317             break;
7318         case 2:
7319             /* 64 bits from top half */
7320             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7321             break;
7322         case 3:
7323             /* 16 bit */
7324             tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7325             break;
7326         default:
7327             g_assert_not_reached();
7328         }
7329     }
7330 }
7331 
7332 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7333 {
7334     TCGv_i64 t = read_fp_dreg(s, rn);
7335     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7336 
7337     gen_helper_fjcvtzs(t, t, fpstatus);
7338 
7339     tcg_temp_free_ptr(fpstatus);
7340 
7341     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7342     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7343     tcg_gen_movi_i32(cpu_CF, 0);
7344     tcg_gen_movi_i32(cpu_NF, 0);
7345     tcg_gen_movi_i32(cpu_VF, 0);
7346 
7347     tcg_temp_free_i64(t);
7348 }
7349 
7350 /* Floating point <-> integer conversions
7351  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7352  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7353  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7354  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7355  */
7356 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7357 {
7358     int rd = extract32(insn, 0, 5);
7359     int rn = extract32(insn, 5, 5);
7360     int opcode = extract32(insn, 16, 3);
7361     int rmode = extract32(insn, 19, 2);
7362     int type = extract32(insn, 22, 2);
7363     bool sbit = extract32(insn, 29, 1);
7364     bool sf = extract32(insn, 31, 1);
7365     bool itof = false;
7366 
7367     if (sbit) {
7368         goto do_unallocated;
7369     }
7370 
7371     switch (opcode) {
7372     case 2: /* SCVTF */
7373     case 3: /* UCVTF */
7374         itof = true;
7375         /* fallthru */
7376     case 4: /* FCVTAS */
7377     case 5: /* FCVTAU */
7378         if (rmode != 0) {
7379             goto do_unallocated;
7380         }
7381         /* fallthru */
7382     case 0: /* FCVT[NPMZ]S */
7383     case 1: /* FCVT[NPMZ]U */
7384         switch (type) {
7385         case 0: /* float32 */
7386         case 1: /* float64 */
7387             break;
7388         case 3: /* float16 */
7389             if (!dc_isar_feature(aa64_fp16, s)) {
7390                 goto do_unallocated;
7391             }
7392             break;
7393         default:
7394             goto do_unallocated;
7395         }
7396         if (!fp_access_check(s)) {
7397             return;
7398         }
7399         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7400         break;
7401 
7402     default:
7403         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7404         case 0b01100110: /* FMOV half <-> 32-bit int */
7405         case 0b01100111:
7406         case 0b11100110: /* FMOV half <-> 64-bit int */
7407         case 0b11100111:
7408             if (!dc_isar_feature(aa64_fp16, s)) {
7409                 goto do_unallocated;
7410             }
7411             /* fallthru */
7412         case 0b00000110: /* FMOV 32-bit */
7413         case 0b00000111:
7414         case 0b10100110: /* FMOV 64-bit */
7415         case 0b10100111:
7416         case 0b11001110: /* FMOV top half of 128-bit */
7417         case 0b11001111:
7418             if (!fp_access_check(s)) {
7419                 return;
7420             }
7421             itof = opcode & 1;
7422             handle_fmov(s, rd, rn, type, itof);
7423             break;
7424 
7425         case 0b00111110: /* FJCVTZS */
7426             if (!dc_isar_feature(aa64_jscvt, s)) {
7427                 goto do_unallocated;
7428             } else if (fp_access_check(s)) {
7429                 handle_fjcvtzs(s, rd, rn);
7430             }
7431             break;
7432 
7433         default:
7434         do_unallocated:
7435             unallocated_encoding(s);
7436             return;
7437         }
7438         break;
7439     }
7440 }
7441 
7442 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7443  *   31  30  29 28     25 24                          0
7444  * +---+---+---+---------+-----------------------------+
7445  * |   | 0 |   | 1 1 1 1 |                             |
7446  * +---+---+---+---------+-----------------------------+
7447  */
7448 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7449 {
7450     if (extract32(insn, 24, 1)) {
7451         /* Floating point data-processing (3 source) */
7452         disas_fp_3src(s, insn);
7453     } else if (extract32(insn, 21, 1) == 0) {
7454         /* Floating point to fixed point conversions */
7455         disas_fp_fixed_conv(s, insn);
7456     } else {
7457         switch (extract32(insn, 10, 2)) {
7458         case 1:
7459             /* Floating point conditional compare */
7460             disas_fp_ccomp(s, insn);
7461             break;
7462         case 2:
7463             /* Floating point data-processing (2 source) */
7464             disas_fp_2src(s, insn);
7465             break;
7466         case 3:
7467             /* Floating point conditional select */
7468             disas_fp_csel(s, insn);
7469             break;
7470         case 0:
7471             switch (ctz32(extract32(insn, 12, 4))) {
7472             case 0: /* [15:12] == xxx1 */
7473                 /* Floating point immediate */
7474                 disas_fp_imm(s, insn);
7475                 break;
7476             case 1: /* [15:12] == xx10 */
7477                 /* Floating point compare */
7478                 disas_fp_compare(s, insn);
7479                 break;
7480             case 2: /* [15:12] == x100 */
7481                 /* Floating point data-processing (1 source) */
7482                 disas_fp_1src(s, insn);
7483                 break;
7484             case 3: /* [15:12] == 1000 */
7485                 unallocated_encoding(s);
7486                 break;
7487             default: /* [15:12] == 0000 */
7488                 /* Floating point <-> integer conversions */
7489                 disas_fp_int_conv(s, insn);
7490                 break;
7491             }
7492             break;
7493         }
7494     }
7495 }
7496 
7497 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7498                      int pos)
7499 {
7500     /* Extract 64 bits from the middle of two concatenated 64 bit
7501      * vector register slices left:right. The extracted bits start
7502      * at 'pos' bits into the right (least significant) side.
7503      * We return the result in tcg_right, and guarantee not to
7504      * trash tcg_left.
7505      */
7506     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7507     assert(pos > 0 && pos < 64);
7508 
7509     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7510     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7511     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7512 
7513     tcg_temp_free_i64(tcg_tmp);
7514 }
7515 
7516 /* EXT
7517  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7518  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7519  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7520  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7521  */
7522 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7523 {
7524     int is_q = extract32(insn, 30, 1);
7525     int op2 = extract32(insn, 22, 2);
7526     int imm4 = extract32(insn, 11, 4);
7527     int rm = extract32(insn, 16, 5);
7528     int rn = extract32(insn, 5, 5);
7529     int rd = extract32(insn, 0, 5);
7530     int pos = imm4 << 3;
7531     TCGv_i64 tcg_resl, tcg_resh;
7532 
7533     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7534         unallocated_encoding(s);
7535         return;
7536     }
7537 
7538     if (!fp_access_check(s)) {
7539         return;
7540     }
7541 
7542     tcg_resh = tcg_temp_new_i64();
7543     tcg_resl = tcg_temp_new_i64();
7544 
7545     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7546      * either extracting 128 bits from a 128:128 concatenation, or
7547      * extracting 64 bits from a 64:64 concatenation.
7548      */
7549     if (!is_q) {
7550         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7551         if (pos != 0) {
7552             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7553             do_ext64(s, tcg_resh, tcg_resl, pos);
7554         }
7555     } else {
7556         TCGv_i64 tcg_hh;
7557         typedef struct {
7558             int reg;
7559             int elt;
7560         } EltPosns;
7561         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7562         EltPosns *elt = eltposns;
7563 
7564         if (pos >= 64) {
7565             elt++;
7566             pos -= 64;
7567         }
7568 
7569         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7570         elt++;
7571         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7572         elt++;
7573         if (pos != 0) {
7574             do_ext64(s, tcg_resh, tcg_resl, pos);
7575             tcg_hh = tcg_temp_new_i64();
7576             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7577             do_ext64(s, tcg_hh, tcg_resh, pos);
7578             tcg_temp_free_i64(tcg_hh);
7579         }
7580     }
7581 
7582     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7583     tcg_temp_free_i64(tcg_resl);
7584     if (is_q) {
7585         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7586     }
7587     tcg_temp_free_i64(tcg_resh);
7588     clear_vec_high(s, is_q, rd);
7589 }
7590 
7591 /* TBL/TBX
7592  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7593  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7594  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7595  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7596  */
7597 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7598 {
7599     int op2 = extract32(insn, 22, 2);
7600     int is_q = extract32(insn, 30, 1);
7601     int rm = extract32(insn, 16, 5);
7602     int rn = extract32(insn, 5, 5);
7603     int rd = extract32(insn, 0, 5);
7604     int is_tbx = extract32(insn, 12, 1);
7605     int len = (extract32(insn, 13, 2) + 1) * 16;
7606 
7607     if (op2 != 0) {
7608         unallocated_encoding(s);
7609         return;
7610     }
7611 
7612     if (!fp_access_check(s)) {
7613         return;
7614     }
7615 
7616     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7617                        vec_full_reg_offset(s, rm), cpu_env,
7618                        is_q ? 16 : 8, vec_full_reg_size(s),
7619                        (len << 6) | (is_tbx << 5) | rn,
7620                        gen_helper_simd_tblx);
7621 }
7622 
7623 /* ZIP/UZP/TRN
7624  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7625  * +---+---+-------------+------+---+------+---+------------------+------+
7626  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7627  * +---+---+-------------+------+---+------+---+------------------+------+
7628  */
7629 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7630 {
7631     int rd = extract32(insn, 0, 5);
7632     int rn = extract32(insn, 5, 5);
7633     int rm = extract32(insn, 16, 5);
7634     int size = extract32(insn, 22, 2);
7635     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7636      * bit 2 indicates 1 vs 2 variant of the insn.
7637      */
7638     int opcode = extract32(insn, 12, 2);
7639     bool part = extract32(insn, 14, 1);
7640     bool is_q = extract32(insn, 30, 1);
7641     int esize = 8 << size;
7642     int i, ofs;
7643     int datasize = is_q ? 128 : 64;
7644     int elements = datasize / esize;
7645     TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7646 
7647     if (opcode == 0 || (size == 3 && !is_q)) {
7648         unallocated_encoding(s);
7649         return;
7650     }
7651 
7652     if (!fp_access_check(s)) {
7653         return;
7654     }
7655 
7656     tcg_resl = tcg_const_i64(0);
7657     tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7658     tcg_res = tcg_temp_new_i64();
7659 
7660     for (i = 0; i < elements; i++) {
7661         switch (opcode) {
7662         case 1: /* UZP1/2 */
7663         {
7664             int midpoint = elements / 2;
7665             if (i < midpoint) {
7666                 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7667             } else {
7668                 read_vec_element(s, tcg_res, rm,
7669                                  2 * (i - midpoint) + part, size);
7670             }
7671             break;
7672         }
7673         case 2: /* TRN1/2 */
7674             if (i & 1) {
7675                 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7676             } else {
7677                 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7678             }
7679             break;
7680         case 3: /* ZIP1/2 */
7681         {
7682             int base = part * elements / 2;
7683             if (i & 1) {
7684                 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7685             } else {
7686                 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7687             }
7688             break;
7689         }
7690         default:
7691             g_assert_not_reached();
7692         }
7693 
7694         ofs = i * esize;
7695         if (ofs < 64) {
7696             tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7697             tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7698         } else {
7699             tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7700             tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7701         }
7702     }
7703 
7704     tcg_temp_free_i64(tcg_res);
7705 
7706     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7707     tcg_temp_free_i64(tcg_resl);
7708 
7709     if (is_q) {
7710         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7711         tcg_temp_free_i64(tcg_resh);
7712     }
7713     clear_vec_high(s, is_q, rd);
7714 }
7715 
7716 /*
7717  * do_reduction_op helper
7718  *
7719  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7720  * important for correct NaN propagation that we do these
7721  * operations in exactly the order specified by the pseudocode.
7722  *
7723  * This is a recursive function, TCG temps should be freed by the
7724  * calling function once it is done with the values.
7725  */
7726 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7727                                 int esize, int size, int vmap, TCGv_ptr fpst)
7728 {
7729     if (esize == size) {
7730         int element;
7731         MemOp msize = esize == 16 ? MO_16 : MO_32;
7732         TCGv_i32 tcg_elem;
7733 
7734         /* We should have one register left here */
7735         assert(ctpop8(vmap) == 1);
7736         element = ctz32(vmap);
7737         assert(element < 8);
7738 
7739         tcg_elem = tcg_temp_new_i32();
7740         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7741         return tcg_elem;
7742     } else {
7743         int bits = size / 2;
7744         int shift = ctpop8(vmap) / 2;
7745         int vmap_lo = (vmap >> shift) & vmap;
7746         int vmap_hi = (vmap & ~vmap_lo);
7747         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7748 
7749         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7750         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7751         tcg_res = tcg_temp_new_i32();
7752 
7753         switch (fpopcode) {
7754         case 0x0c: /* fmaxnmv half-precision */
7755             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7756             break;
7757         case 0x0f: /* fmaxv half-precision */
7758             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7759             break;
7760         case 0x1c: /* fminnmv half-precision */
7761             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7762             break;
7763         case 0x1f: /* fminv half-precision */
7764             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7765             break;
7766         case 0x2c: /* fmaxnmv */
7767             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7768             break;
7769         case 0x2f: /* fmaxv */
7770             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7771             break;
7772         case 0x3c: /* fminnmv */
7773             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7774             break;
7775         case 0x3f: /* fminv */
7776             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7777             break;
7778         default:
7779             g_assert_not_reached();
7780         }
7781 
7782         tcg_temp_free_i32(tcg_hi);
7783         tcg_temp_free_i32(tcg_lo);
7784         return tcg_res;
7785     }
7786 }
7787 
7788 /* AdvSIMD across lanes
7789  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7790  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7791  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7792  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7793  */
7794 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7795 {
7796     int rd = extract32(insn, 0, 5);
7797     int rn = extract32(insn, 5, 5);
7798     int size = extract32(insn, 22, 2);
7799     int opcode = extract32(insn, 12, 5);
7800     bool is_q = extract32(insn, 30, 1);
7801     bool is_u = extract32(insn, 29, 1);
7802     bool is_fp = false;
7803     bool is_min = false;
7804     int esize;
7805     int elements;
7806     int i;
7807     TCGv_i64 tcg_res, tcg_elt;
7808 
7809     switch (opcode) {
7810     case 0x1b: /* ADDV */
7811         if (is_u) {
7812             unallocated_encoding(s);
7813             return;
7814         }
7815         /* fall through */
7816     case 0x3: /* SADDLV, UADDLV */
7817     case 0xa: /* SMAXV, UMAXV */
7818     case 0x1a: /* SMINV, UMINV */
7819         if (size == 3 || (size == 2 && !is_q)) {
7820             unallocated_encoding(s);
7821             return;
7822         }
7823         break;
7824     case 0xc: /* FMAXNMV, FMINNMV */
7825     case 0xf: /* FMAXV, FMINV */
7826         /* Bit 1 of size field encodes min vs max and the actual size
7827          * depends on the encoding of the U bit. If not set (and FP16
7828          * enabled) then we do half-precision float instead of single
7829          * precision.
7830          */
7831         is_min = extract32(size, 1, 1);
7832         is_fp = true;
7833         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7834             size = 1;
7835         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7836             unallocated_encoding(s);
7837             return;
7838         } else {
7839             size = 2;
7840         }
7841         break;
7842     default:
7843         unallocated_encoding(s);
7844         return;
7845     }
7846 
7847     if (!fp_access_check(s)) {
7848         return;
7849     }
7850 
7851     esize = 8 << size;
7852     elements = (is_q ? 128 : 64) / esize;
7853 
7854     tcg_res = tcg_temp_new_i64();
7855     tcg_elt = tcg_temp_new_i64();
7856 
7857     /* These instructions operate across all lanes of a vector
7858      * to produce a single result. We can guarantee that a 64
7859      * bit intermediate is sufficient:
7860      *  + for [US]ADDLV the maximum element size is 32 bits, and
7861      *    the result type is 64 bits
7862      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7863      *    same as the element size, which is 32 bits at most
7864      * For the integer operations we can choose to work at 64
7865      * or 32 bits and truncate at the end; for simplicity
7866      * we use 64 bits always. The floating point
7867      * ops do require 32 bit intermediates, though.
7868      */
7869     if (!is_fp) {
7870         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7871 
7872         for (i = 1; i < elements; i++) {
7873             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7874 
7875             switch (opcode) {
7876             case 0x03: /* SADDLV / UADDLV */
7877             case 0x1b: /* ADDV */
7878                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7879                 break;
7880             case 0x0a: /* SMAXV / UMAXV */
7881                 if (is_u) {
7882                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7883                 } else {
7884                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7885                 }
7886                 break;
7887             case 0x1a: /* SMINV / UMINV */
7888                 if (is_u) {
7889                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7890                 } else {
7891                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7892                 }
7893                 break;
7894             default:
7895                 g_assert_not_reached();
7896             }
7897 
7898         }
7899     } else {
7900         /* Floating point vector reduction ops which work across 32
7901          * bit (single) or 16 bit (half-precision) intermediates.
7902          * Note that correct NaN propagation requires that we do these
7903          * operations in exactly the order specified by the pseudocode.
7904          */
7905         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7906         int fpopcode = opcode | is_min << 4 | is_u << 5;
7907         int vmap = (1 << elements) - 1;
7908         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7909                                              (is_q ? 128 : 64), vmap, fpst);
7910         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7911         tcg_temp_free_i32(tcg_res32);
7912         tcg_temp_free_ptr(fpst);
7913     }
7914 
7915     tcg_temp_free_i64(tcg_elt);
7916 
7917     /* Now truncate the result to the width required for the final output */
7918     if (opcode == 0x03) {
7919         /* SADDLV, UADDLV: result is 2*esize */
7920         size++;
7921     }
7922 
7923     switch (size) {
7924     case 0:
7925         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7926         break;
7927     case 1:
7928         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7929         break;
7930     case 2:
7931         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7932         break;
7933     case 3:
7934         break;
7935     default:
7936         g_assert_not_reached();
7937     }
7938 
7939     write_fp_dreg(s, rd, tcg_res);
7940     tcg_temp_free_i64(tcg_res);
7941 }
7942 
7943 /* DUP (Element, Vector)
7944  *
7945  *  31  30   29              21 20    16 15        10  9    5 4    0
7946  * +---+---+-------------------+--------+-------------+------+------+
7947  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7948  * +---+---+-------------------+--------+-------------+------+------+
7949  *
7950  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7951  */
7952 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7953                              int imm5)
7954 {
7955     int size = ctz32(imm5);
7956     int index;
7957 
7958     if (size > 3 || (size == 3 && !is_q)) {
7959         unallocated_encoding(s);
7960         return;
7961     }
7962 
7963     if (!fp_access_check(s)) {
7964         return;
7965     }
7966 
7967     index = imm5 >> (size + 1);
7968     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7969                          vec_reg_offset(s, rn, index, size),
7970                          is_q ? 16 : 8, vec_full_reg_size(s));
7971 }
7972 
7973 /* DUP (element, scalar)
7974  *  31                   21 20    16 15        10  9    5 4    0
7975  * +-----------------------+--------+-------------+------+------+
7976  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7977  * +-----------------------+--------+-------------+------+------+
7978  */
7979 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7980                               int imm5)
7981 {
7982     int size = ctz32(imm5);
7983     int index;
7984     TCGv_i64 tmp;
7985 
7986     if (size > 3) {
7987         unallocated_encoding(s);
7988         return;
7989     }
7990 
7991     if (!fp_access_check(s)) {
7992         return;
7993     }
7994 
7995     index = imm5 >> (size + 1);
7996 
7997     /* This instruction just extracts the specified element and
7998      * zero-extends it into the bottom of the destination register.
7999      */
8000     tmp = tcg_temp_new_i64();
8001     read_vec_element(s, tmp, rn, index, size);
8002     write_fp_dreg(s, rd, tmp);
8003     tcg_temp_free_i64(tmp);
8004 }
8005 
8006 /* DUP (General)
8007  *
8008  *  31  30   29              21 20    16 15        10  9    5 4    0
8009  * +---+---+-------------------+--------+-------------+------+------+
8010  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
8011  * +---+---+-------------------+--------+-------------+------+------+
8012  *
8013  * size: encoded in imm5 (see ARM ARM LowestSetBit())
8014  */
8015 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
8016                              int imm5)
8017 {
8018     int size = ctz32(imm5);
8019     uint32_t dofs, oprsz, maxsz;
8020 
8021     if (size > 3 || ((size == 3) && !is_q)) {
8022         unallocated_encoding(s);
8023         return;
8024     }
8025 
8026     if (!fp_access_check(s)) {
8027         return;
8028     }
8029 
8030     dofs = vec_full_reg_offset(s, rd);
8031     oprsz = is_q ? 16 : 8;
8032     maxsz = vec_full_reg_size(s);
8033 
8034     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
8035 }
8036 
8037 /* INS (Element)
8038  *
8039  *  31                   21 20    16 15  14    11  10 9    5 4    0
8040  * +-----------------------+--------+------------+---+------+------+
8041  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
8042  * +-----------------------+--------+------------+---+------+------+
8043  *
8044  * size: encoded in imm5 (see ARM ARM LowestSetBit())
8045  * index: encoded in imm5<4:size+1>
8046  */
8047 static void handle_simd_inse(DisasContext *s, int rd, int rn,
8048                              int imm4, int imm5)
8049 {
8050     int size = ctz32(imm5);
8051     int src_index, dst_index;
8052     TCGv_i64 tmp;
8053 
8054     if (size > 3) {
8055         unallocated_encoding(s);
8056         return;
8057     }
8058 
8059     if (!fp_access_check(s)) {
8060         return;
8061     }
8062 
8063     dst_index = extract32(imm5, 1+size, 5);
8064     src_index = extract32(imm4, size, 4);
8065 
8066     tmp = tcg_temp_new_i64();
8067 
8068     read_vec_element(s, tmp, rn, src_index, size);
8069     write_vec_element(s, tmp, rd, dst_index, size);
8070 
8071     tcg_temp_free_i64(tmp);
8072 
8073     /* INS is considered a 128-bit write for SVE. */
8074     clear_vec_high(s, true, rd);
8075 }
8076 
8077 
8078 /* INS (General)
8079  *
8080  *  31                   21 20    16 15        10  9    5 4    0
8081  * +-----------------------+--------+-------------+------+------+
8082  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
8083  * +-----------------------+--------+-------------+------+------+
8084  *
8085  * size: encoded in imm5 (see ARM ARM LowestSetBit())
8086  * index: encoded in imm5<4:size+1>
8087  */
8088 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
8089 {
8090     int size = ctz32(imm5);
8091     int idx;
8092 
8093     if (size > 3) {
8094         unallocated_encoding(s);
8095         return;
8096     }
8097 
8098     if (!fp_access_check(s)) {
8099         return;
8100     }
8101 
8102     idx = extract32(imm5, 1 + size, 4 - size);
8103     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
8104 
8105     /* INS is considered a 128-bit write for SVE. */
8106     clear_vec_high(s, true, rd);
8107 }
8108 
8109 /*
8110  * UMOV (General)
8111  * SMOV (General)
8112  *
8113  *  31  30   29              21 20    16 15    12   10 9    5 4    0
8114  * +---+---+-------------------+--------+-------------+------+------+
8115  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
8116  * +---+---+-------------------+--------+-------------+------+------+
8117  *
8118  * U: unsigned when set
8119  * size: encoded in imm5 (see ARM ARM LowestSetBit())
8120  */
8121 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
8122                                   int rn, int rd, int imm5)
8123 {
8124     int size = ctz32(imm5);
8125     int element;
8126     TCGv_i64 tcg_rd;
8127 
8128     /* Check for UnallocatedEncodings */
8129     if (is_signed) {
8130         if (size > 2 || (size == 2 && !is_q)) {
8131             unallocated_encoding(s);
8132             return;
8133         }
8134     } else {
8135         if (size > 3
8136             || (size < 3 && is_q)
8137             || (size == 3 && !is_q)) {
8138             unallocated_encoding(s);
8139             return;
8140         }
8141     }
8142 
8143     if (!fp_access_check(s)) {
8144         return;
8145     }
8146 
8147     element = extract32(imm5, 1+size, 4);
8148 
8149     tcg_rd = cpu_reg(s, rd);
8150     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
8151     if (is_signed && !is_q) {
8152         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8153     }
8154 }
8155 
8156 /* AdvSIMD copy
8157  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
8158  * +---+---+----+-----------------+------+---+------+---+------+------+
8159  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
8160  * +---+---+----+-----------------+------+---+------+---+------+------+
8161  */
8162 static void disas_simd_copy(DisasContext *s, uint32_t insn)
8163 {
8164     int rd = extract32(insn, 0, 5);
8165     int rn = extract32(insn, 5, 5);
8166     int imm4 = extract32(insn, 11, 4);
8167     int op = extract32(insn, 29, 1);
8168     int is_q = extract32(insn, 30, 1);
8169     int imm5 = extract32(insn, 16, 5);
8170 
8171     if (op) {
8172         if (is_q) {
8173             /* INS (element) */
8174             handle_simd_inse(s, rd, rn, imm4, imm5);
8175         } else {
8176             unallocated_encoding(s);
8177         }
8178     } else {
8179         switch (imm4) {
8180         case 0:
8181             /* DUP (element - vector) */
8182             handle_simd_dupe(s, is_q, rd, rn, imm5);
8183             break;
8184         case 1:
8185             /* DUP (general) */
8186             handle_simd_dupg(s, is_q, rd, rn, imm5);
8187             break;
8188         case 3:
8189             if (is_q) {
8190                 /* INS (general) */
8191                 handle_simd_insg(s, rd, rn, imm5);
8192             } else {
8193                 unallocated_encoding(s);
8194             }
8195             break;
8196         case 5:
8197         case 7:
8198             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8199             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8200             break;
8201         default:
8202             unallocated_encoding(s);
8203             break;
8204         }
8205     }
8206 }
8207 
8208 /* AdvSIMD modified immediate
8209  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8210  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8211  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8212  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8213  *
8214  * There are a number of operations that can be carried out here:
8215  *   MOVI - move (shifted) imm into register
8216  *   MVNI - move inverted (shifted) imm into register
8217  *   ORR  - bitwise OR of (shifted) imm with register
8218  *   BIC  - bitwise clear of (shifted) imm with register
8219  * With ARMv8.2 we also have:
8220  *   FMOV half-precision
8221  */
8222 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8223 {
8224     int rd = extract32(insn, 0, 5);
8225     int cmode = extract32(insn, 12, 4);
8226     int o2 = extract32(insn, 11, 1);
8227     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8228     bool is_neg = extract32(insn, 29, 1);
8229     bool is_q = extract32(insn, 30, 1);
8230     uint64_t imm = 0;
8231 
8232     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8233         /* Check for FMOV (vector, immediate) - half-precision */
8234         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8235             unallocated_encoding(s);
8236             return;
8237         }
8238     }
8239 
8240     if (!fp_access_check(s)) {
8241         return;
8242     }
8243 
8244     if (cmode == 15 && o2 && !is_neg) {
8245         /* FMOV (vector, immediate) - half-precision */
8246         imm = vfp_expand_imm(MO_16, abcdefgh);
8247         /* now duplicate across the lanes */
8248         imm = dup_const(MO_16, imm);
8249     } else {
8250         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8251     }
8252 
8253     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8254         /* MOVI or MVNI, with MVNI negation handled above.  */
8255         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8256                              vec_full_reg_size(s), imm);
8257     } else {
8258         /* ORR or BIC, with BIC negation to AND handled above.  */
8259         if (is_neg) {
8260             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8261         } else {
8262             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8263         }
8264     }
8265 }
8266 
8267 /* AdvSIMD scalar copy
8268  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
8269  * +-----+----+-----------------+------+---+------+---+------+------+
8270  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
8271  * +-----+----+-----------------+------+---+------+---+------+------+
8272  */
8273 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8274 {
8275     int rd = extract32(insn, 0, 5);
8276     int rn = extract32(insn, 5, 5);
8277     int imm4 = extract32(insn, 11, 4);
8278     int imm5 = extract32(insn, 16, 5);
8279     int op = extract32(insn, 29, 1);
8280 
8281     if (op != 0 || imm4 != 0) {
8282         unallocated_encoding(s);
8283         return;
8284     }
8285 
8286     /* DUP (element, scalar) */
8287     handle_simd_dupes(s, rd, rn, imm5);
8288 }
8289 
8290 /* AdvSIMD scalar pairwise
8291  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8292  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8293  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8294  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8295  */
8296 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8297 {
8298     int u = extract32(insn, 29, 1);
8299     int size = extract32(insn, 22, 2);
8300     int opcode = extract32(insn, 12, 5);
8301     int rn = extract32(insn, 5, 5);
8302     int rd = extract32(insn, 0, 5);
8303     TCGv_ptr fpst;
8304 
8305     /* For some ops (the FP ones), size[1] is part of the encoding.
8306      * For ADDP strictly it is not but size[1] is always 1 for valid
8307      * encodings.
8308      */
8309     opcode |= (extract32(size, 1, 1) << 5);
8310 
8311     switch (opcode) {
8312     case 0x3b: /* ADDP */
8313         if (u || size != 3) {
8314             unallocated_encoding(s);
8315             return;
8316         }
8317         if (!fp_access_check(s)) {
8318             return;
8319         }
8320 
8321         fpst = NULL;
8322         break;
8323     case 0xc: /* FMAXNMP */
8324     case 0xd: /* FADDP */
8325     case 0xf: /* FMAXP */
8326     case 0x2c: /* FMINNMP */
8327     case 0x2f: /* FMINP */
8328         /* FP op, size[0] is 32 or 64 bit*/
8329         if (!u) {
8330             if (!dc_isar_feature(aa64_fp16, s)) {
8331                 unallocated_encoding(s);
8332                 return;
8333             } else {
8334                 size = MO_16;
8335             }
8336         } else {
8337             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8338         }
8339 
8340         if (!fp_access_check(s)) {
8341             return;
8342         }
8343 
8344         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8345         break;
8346     default:
8347         unallocated_encoding(s);
8348         return;
8349     }
8350 
8351     if (size == MO_64) {
8352         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8353         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8354         TCGv_i64 tcg_res = tcg_temp_new_i64();
8355 
8356         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8357         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8358 
8359         switch (opcode) {
8360         case 0x3b: /* ADDP */
8361             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8362             break;
8363         case 0xc: /* FMAXNMP */
8364             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8365             break;
8366         case 0xd: /* FADDP */
8367             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8368             break;
8369         case 0xf: /* FMAXP */
8370             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8371             break;
8372         case 0x2c: /* FMINNMP */
8373             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8374             break;
8375         case 0x2f: /* FMINP */
8376             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8377             break;
8378         default:
8379             g_assert_not_reached();
8380         }
8381 
8382         write_fp_dreg(s, rd, tcg_res);
8383 
8384         tcg_temp_free_i64(tcg_op1);
8385         tcg_temp_free_i64(tcg_op2);
8386         tcg_temp_free_i64(tcg_res);
8387     } else {
8388         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8389         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8390         TCGv_i32 tcg_res = tcg_temp_new_i32();
8391 
8392         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8393         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8394 
8395         if (size == MO_16) {
8396             switch (opcode) {
8397             case 0xc: /* FMAXNMP */
8398                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8399                 break;
8400             case 0xd: /* FADDP */
8401                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8402                 break;
8403             case 0xf: /* FMAXP */
8404                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8405                 break;
8406             case 0x2c: /* FMINNMP */
8407                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8408                 break;
8409             case 0x2f: /* FMINP */
8410                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8411                 break;
8412             default:
8413                 g_assert_not_reached();
8414             }
8415         } else {
8416             switch (opcode) {
8417             case 0xc: /* FMAXNMP */
8418                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8419                 break;
8420             case 0xd: /* FADDP */
8421                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8422                 break;
8423             case 0xf: /* FMAXP */
8424                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8425                 break;
8426             case 0x2c: /* FMINNMP */
8427                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8428                 break;
8429             case 0x2f: /* FMINP */
8430                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8431                 break;
8432             default:
8433                 g_assert_not_reached();
8434             }
8435         }
8436 
8437         write_fp_sreg(s, rd, tcg_res);
8438 
8439         tcg_temp_free_i32(tcg_op1);
8440         tcg_temp_free_i32(tcg_op2);
8441         tcg_temp_free_i32(tcg_res);
8442     }
8443 
8444     if (fpst) {
8445         tcg_temp_free_ptr(fpst);
8446     }
8447 }
8448 
8449 /*
8450  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8451  *
8452  * This code is handles the common shifting code and is used by both
8453  * the vector and scalar code.
8454  */
8455 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8456                                     TCGv_i64 tcg_rnd, bool accumulate,
8457                                     bool is_u, int size, int shift)
8458 {
8459     bool extended_result = false;
8460     bool round = tcg_rnd != NULL;
8461     int ext_lshift = 0;
8462     TCGv_i64 tcg_src_hi;
8463 
8464     if (round && size == 3) {
8465         extended_result = true;
8466         ext_lshift = 64 - shift;
8467         tcg_src_hi = tcg_temp_new_i64();
8468     } else if (shift == 64) {
8469         if (!accumulate && is_u) {
8470             /* result is zero */
8471             tcg_gen_movi_i64(tcg_res, 0);
8472             return;
8473         }
8474     }
8475 
8476     /* Deal with the rounding step */
8477     if (round) {
8478         if (extended_result) {
8479             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8480             if (!is_u) {
8481                 /* take care of sign extending tcg_res */
8482                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8483                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8484                                  tcg_src, tcg_src_hi,
8485                                  tcg_rnd, tcg_zero);
8486             } else {
8487                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8488                                  tcg_src, tcg_zero,
8489                                  tcg_rnd, tcg_zero);
8490             }
8491         } else {
8492             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8493         }
8494     }
8495 
8496     /* Now do the shift right */
8497     if (round && extended_result) {
8498         /* extended case, >64 bit precision required */
8499         if (ext_lshift == 0) {
8500             /* special case, only high bits matter */
8501             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8502         } else {
8503             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8504             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8505             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8506         }
8507     } else {
8508         if (is_u) {
8509             if (shift == 64) {
8510                 /* essentially shifting in 64 zeros */
8511                 tcg_gen_movi_i64(tcg_src, 0);
8512             } else {
8513                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8514             }
8515         } else {
8516             if (shift == 64) {
8517                 /* effectively extending the sign-bit */
8518                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8519             } else {
8520                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8521             }
8522         }
8523     }
8524 
8525     if (accumulate) {
8526         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8527     } else {
8528         tcg_gen_mov_i64(tcg_res, tcg_src);
8529     }
8530 
8531     if (extended_result) {
8532         tcg_temp_free_i64(tcg_src_hi);
8533     }
8534 }
8535 
8536 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8537 static void handle_scalar_simd_shri(DisasContext *s,
8538                                     bool is_u, int immh, int immb,
8539                                     int opcode, int rn, int rd)
8540 {
8541     const int size = 3;
8542     int immhb = immh << 3 | immb;
8543     int shift = 2 * (8 << size) - immhb;
8544     bool accumulate = false;
8545     bool round = false;
8546     bool insert = false;
8547     TCGv_i64 tcg_rn;
8548     TCGv_i64 tcg_rd;
8549     TCGv_i64 tcg_round;
8550 
8551     if (!extract32(immh, 3, 1)) {
8552         unallocated_encoding(s);
8553         return;
8554     }
8555 
8556     if (!fp_access_check(s)) {
8557         return;
8558     }
8559 
8560     switch (opcode) {
8561     case 0x02: /* SSRA / USRA (accumulate) */
8562         accumulate = true;
8563         break;
8564     case 0x04: /* SRSHR / URSHR (rounding) */
8565         round = true;
8566         break;
8567     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8568         accumulate = round = true;
8569         break;
8570     case 0x08: /* SRI */
8571         insert = true;
8572         break;
8573     }
8574 
8575     if (round) {
8576         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8577     } else {
8578         tcg_round = NULL;
8579     }
8580 
8581     tcg_rn = read_fp_dreg(s, rn);
8582     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8583 
8584     if (insert) {
8585         /* shift count same as element size is valid but does nothing;
8586          * special case to avoid potential shift by 64.
8587          */
8588         int esize = 8 << size;
8589         if (shift != esize) {
8590             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8591             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8592         }
8593     } else {
8594         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8595                                 accumulate, is_u, size, shift);
8596     }
8597 
8598     write_fp_dreg(s, rd, tcg_rd);
8599 
8600     tcg_temp_free_i64(tcg_rn);
8601     tcg_temp_free_i64(tcg_rd);
8602 }
8603 
8604 /* SHL/SLI - Scalar shift left */
8605 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8606                                     int immh, int immb, int opcode,
8607                                     int rn, int rd)
8608 {
8609     int size = 32 - clz32(immh) - 1;
8610     int immhb = immh << 3 | immb;
8611     int shift = immhb - (8 << size);
8612     TCGv_i64 tcg_rn;
8613     TCGv_i64 tcg_rd;
8614 
8615     if (!extract32(immh, 3, 1)) {
8616         unallocated_encoding(s);
8617         return;
8618     }
8619 
8620     if (!fp_access_check(s)) {
8621         return;
8622     }
8623 
8624     tcg_rn = read_fp_dreg(s, rn);
8625     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8626 
8627     if (insert) {
8628         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8629     } else {
8630         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8631     }
8632 
8633     write_fp_dreg(s, rd, tcg_rd);
8634 
8635     tcg_temp_free_i64(tcg_rn);
8636     tcg_temp_free_i64(tcg_rd);
8637 }
8638 
8639 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8640  * (signed/unsigned) narrowing */
8641 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8642                                    bool is_u_shift, bool is_u_narrow,
8643                                    int immh, int immb, int opcode,
8644                                    int rn, int rd)
8645 {
8646     int immhb = immh << 3 | immb;
8647     int size = 32 - clz32(immh) - 1;
8648     int esize = 8 << size;
8649     int shift = (2 * esize) - immhb;
8650     int elements = is_scalar ? 1 : (64 / esize);
8651     bool round = extract32(opcode, 0, 1);
8652     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8653     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8654     TCGv_i32 tcg_rd_narrowed;
8655     TCGv_i64 tcg_final;
8656 
8657     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8658         { gen_helper_neon_narrow_sat_s8,
8659           gen_helper_neon_unarrow_sat8 },
8660         { gen_helper_neon_narrow_sat_s16,
8661           gen_helper_neon_unarrow_sat16 },
8662         { gen_helper_neon_narrow_sat_s32,
8663           gen_helper_neon_unarrow_sat32 },
8664         { NULL, NULL },
8665     };
8666     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8667         gen_helper_neon_narrow_sat_u8,
8668         gen_helper_neon_narrow_sat_u16,
8669         gen_helper_neon_narrow_sat_u32,
8670         NULL
8671     };
8672     NeonGenNarrowEnvFn *narrowfn;
8673 
8674     int i;
8675 
8676     assert(size < 4);
8677 
8678     if (extract32(immh, 3, 1)) {
8679         unallocated_encoding(s);
8680         return;
8681     }
8682 
8683     if (!fp_access_check(s)) {
8684         return;
8685     }
8686 
8687     if (is_u_shift) {
8688         narrowfn = unsigned_narrow_fns[size];
8689     } else {
8690         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8691     }
8692 
8693     tcg_rn = tcg_temp_new_i64();
8694     tcg_rd = tcg_temp_new_i64();
8695     tcg_rd_narrowed = tcg_temp_new_i32();
8696     tcg_final = tcg_const_i64(0);
8697 
8698     if (round) {
8699         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8700     } else {
8701         tcg_round = NULL;
8702     }
8703 
8704     for (i = 0; i < elements; i++) {
8705         read_vec_element(s, tcg_rn, rn, i, ldop);
8706         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8707                                 false, is_u_shift, size+1, shift);
8708         narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8709         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8710         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8711     }
8712 
8713     if (!is_q) {
8714         write_vec_element(s, tcg_final, rd, 0, MO_64);
8715     } else {
8716         write_vec_element(s, tcg_final, rd, 1, MO_64);
8717     }
8718 
8719     tcg_temp_free_i64(tcg_rn);
8720     tcg_temp_free_i64(tcg_rd);
8721     tcg_temp_free_i32(tcg_rd_narrowed);
8722     tcg_temp_free_i64(tcg_final);
8723 
8724     clear_vec_high(s, is_q, rd);
8725 }
8726 
8727 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8728 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8729                              bool src_unsigned, bool dst_unsigned,
8730                              int immh, int immb, int rn, int rd)
8731 {
8732     int immhb = immh << 3 | immb;
8733     int size = 32 - clz32(immh) - 1;
8734     int shift = immhb - (8 << size);
8735     int pass;
8736 
8737     assert(immh != 0);
8738     assert(!(scalar && is_q));
8739 
8740     if (!scalar) {
8741         if (!is_q && extract32(immh, 3, 1)) {
8742             unallocated_encoding(s);
8743             return;
8744         }
8745 
8746         /* Since we use the variable-shift helpers we must
8747          * replicate the shift count into each element of
8748          * the tcg_shift value.
8749          */
8750         switch (size) {
8751         case 0:
8752             shift |= shift << 8;
8753             /* fall through */
8754         case 1:
8755             shift |= shift << 16;
8756             break;
8757         case 2:
8758         case 3:
8759             break;
8760         default:
8761             g_assert_not_reached();
8762         }
8763     }
8764 
8765     if (!fp_access_check(s)) {
8766         return;
8767     }
8768 
8769     if (size == 3) {
8770         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8771         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8772             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8773             { NULL, gen_helper_neon_qshl_u64 },
8774         };
8775         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8776         int maxpass = is_q ? 2 : 1;
8777 
8778         for (pass = 0; pass < maxpass; pass++) {
8779             TCGv_i64 tcg_op = tcg_temp_new_i64();
8780 
8781             read_vec_element(s, tcg_op, rn, pass, MO_64);
8782             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8783             write_vec_element(s, tcg_op, rd, pass, MO_64);
8784 
8785             tcg_temp_free_i64(tcg_op);
8786         }
8787         clear_vec_high(s, is_q, rd);
8788     } else {
8789         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8790         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8791             {
8792                 { gen_helper_neon_qshl_s8,
8793                   gen_helper_neon_qshl_s16,
8794                   gen_helper_neon_qshl_s32 },
8795                 { gen_helper_neon_qshlu_s8,
8796                   gen_helper_neon_qshlu_s16,
8797                   gen_helper_neon_qshlu_s32 }
8798             }, {
8799                 { NULL, NULL, NULL },
8800                 { gen_helper_neon_qshl_u8,
8801                   gen_helper_neon_qshl_u16,
8802                   gen_helper_neon_qshl_u32 }
8803             }
8804         };
8805         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8806         MemOp memop = scalar ? size : MO_32;
8807         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8808 
8809         for (pass = 0; pass < maxpass; pass++) {
8810             TCGv_i32 tcg_op = tcg_temp_new_i32();
8811 
8812             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8813             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8814             if (scalar) {
8815                 switch (size) {
8816                 case 0:
8817                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8818                     break;
8819                 case 1:
8820                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8821                     break;
8822                 case 2:
8823                     break;
8824                 default:
8825                     g_assert_not_reached();
8826                 }
8827                 write_fp_sreg(s, rd, tcg_op);
8828             } else {
8829                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8830             }
8831 
8832             tcg_temp_free_i32(tcg_op);
8833         }
8834 
8835         if (!scalar) {
8836             clear_vec_high(s, is_q, rd);
8837         }
8838     }
8839 }
8840 
8841 /* Common vector code for handling integer to FP conversion */
8842 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8843                                    int elements, int is_signed,
8844                                    int fracbits, int size)
8845 {
8846     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8847     TCGv_i32 tcg_shift = NULL;
8848 
8849     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8850     int pass;
8851 
8852     if (fracbits || size == MO_64) {
8853         tcg_shift = tcg_constant_i32(fracbits);
8854     }
8855 
8856     if (size == MO_64) {
8857         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8858         TCGv_i64 tcg_double = tcg_temp_new_i64();
8859 
8860         for (pass = 0; pass < elements; pass++) {
8861             read_vec_element(s, tcg_int64, rn, pass, mop);
8862 
8863             if (is_signed) {
8864                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8865                                      tcg_shift, tcg_fpst);
8866             } else {
8867                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8868                                      tcg_shift, tcg_fpst);
8869             }
8870             if (elements == 1) {
8871                 write_fp_dreg(s, rd, tcg_double);
8872             } else {
8873                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8874             }
8875         }
8876 
8877         tcg_temp_free_i64(tcg_int64);
8878         tcg_temp_free_i64(tcg_double);
8879 
8880     } else {
8881         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8882         TCGv_i32 tcg_float = tcg_temp_new_i32();
8883 
8884         for (pass = 0; pass < elements; pass++) {
8885             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8886 
8887             switch (size) {
8888             case MO_32:
8889                 if (fracbits) {
8890                     if (is_signed) {
8891                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8892                                              tcg_shift, tcg_fpst);
8893                     } else {
8894                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8895                                              tcg_shift, tcg_fpst);
8896                     }
8897                 } else {
8898                     if (is_signed) {
8899                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8900                     } else {
8901                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8902                     }
8903                 }
8904                 break;
8905             case MO_16:
8906                 if (fracbits) {
8907                     if (is_signed) {
8908                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8909                                              tcg_shift, tcg_fpst);
8910                     } else {
8911                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8912                                              tcg_shift, tcg_fpst);
8913                     }
8914                 } else {
8915                     if (is_signed) {
8916                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8917                     } else {
8918                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8919                     }
8920                 }
8921                 break;
8922             default:
8923                 g_assert_not_reached();
8924             }
8925 
8926             if (elements == 1) {
8927                 write_fp_sreg(s, rd, tcg_float);
8928             } else {
8929                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8930             }
8931         }
8932 
8933         tcg_temp_free_i32(tcg_int32);
8934         tcg_temp_free_i32(tcg_float);
8935     }
8936 
8937     tcg_temp_free_ptr(tcg_fpst);
8938 
8939     clear_vec_high(s, elements << size == 16, rd);
8940 }
8941 
8942 /* UCVTF/SCVTF - Integer to FP conversion */
8943 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8944                                          bool is_q, bool is_u,
8945                                          int immh, int immb, int opcode,
8946                                          int rn, int rd)
8947 {
8948     int size, elements, fracbits;
8949     int immhb = immh << 3 | immb;
8950 
8951     if (immh & 8) {
8952         size = MO_64;
8953         if (!is_scalar && !is_q) {
8954             unallocated_encoding(s);
8955             return;
8956         }
8957     } else if (immh & 4) {
8958         size = MO_32;
8959     } else if (immh & 2) {
8960         size = MO_16;
8961         if (!dc_isar_feature(aa64_fp16, s)) {
8962             unallocated_encoding(s);
8963             return;
8964         }
8965     } else {
8966         /* immh == 0 would be a failure of the decode logic */
8967         g_assert(immh == 1);
8968         unallocated_encoding(s);
8969         return;
8970     }
8971 
8972     if (is_scalar) {
8973         elements = 1;
8974     } else {
8975         elements = (8 << is_q) >> size;
8976     }
8977     fracbits = (16 << size) - immhb;
8978 
8979     if (!fp_access_check(s)) {
8980         return;
8981     }
8982 
8983     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8984 }
8985 
8986 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8987 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8988                                          bool is_q, bool is_u,
8989                                          int immh, int immb, int rn, int rd)
8990 {
8991     int immhb = immh << 3 | immb;
8992     int pass, size, fracbits;
8993     TCGv_ptr tcg_fpstatus;
8994     TCGv_i32 tcg_rmode, tcg_shift;
8995 
8996     if (immh & 0x8) {
8997         size = MO_64;
8998         if (!is_scalar && !is_q) {
8999             unallocated_encoding(s);
9000             return;
9001         }
9002     } else if (immh & 0x4) {
9003         size = MO_32;
9004     } else if (immh & 0x2) {
9005         size = MO_16;
9006         if (!dc_isar_feature(aa64_fp16, s)) {
9007             unallocated_encoding(s);
9008             return;
9009         }
9010     } else {
9011         /* Should have split out AdvSIMD modified immediate earlier.  */
9012         assert(immh == 1);
9013         unallocated_encoding(s);
9014         return;
9015     }
9016 
9017     if (!fp_access_check(s)) {
9018         return;
9019     }
9020 
9021     assert(!(is_scalar && is_q));
9022 
9023     tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
9024     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9025     gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9026     fracbits = (16 << size) - immhb;
9027     tcg_shift = tcg_constant_i32(fracbits);
9028 
9029     if (size == MO_64) {
9030         int maxpass = is_scalar ? 1 : 2;
9031 
9032         for (pass = 0; pass < maxpass; pass++) {
9033             TCGv_i64 tcg_op = tcg_temp_new_i64();
9034 
9035             read_vec_element(s, tcg_op, rn, pass, MO_64);
9036             if (is_u) {
9037                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9038             } else {
9039                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9040             }
9041             write_vec_element(s, tcg_op, rd, pass, MO_64);
9042             tcg_temp_free_i64(tcg_op);
9043         }
9044         clear_vec_high(s, is_q, rd);
9045     } else {
9046         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9047         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9048 
9049         switch (size) {
9050         case MO_16:
9051             if (is_u) {
9052                 fn = gen_helper_vfp_touhh;
9053             } else {
9054                 fn = gen_helper_vfp_toshh;
9055             }
9056             break;
9057         case MO_32:
9058             if (is_u) {
9059                 fn = gen_helper_vfp_touls;
9060             } else {
9061                 fn = gen_helper_vfp_tosls;
9062             }
9063             break;
9064         default:
9065             g_assert_not_reached();
9066         }
9067 
9068         for (pass = 0; pass < maxpass; pass++) {
9069             TCGv_i32 tcg_op = tcg_temp_new_i32();
9070 
9071             read_vec_element_i32(s, tcg_op, rn, pass, size);
9072             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9073             if (is_scalar) {
9074                 write_fp_sreg(s, rd, tcg_op);
9075             } else {
9076                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9077             }
9078             tcg_temp_free_i32(tcg_op);
9079         }
9080         if (!is_scalar) {
9081             clear_vec_high(s, is_q, rd);
9082         }
9083     }
9084 
9085     gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9086     tcg_temp_free_ptr(tcg_fpstatus);
9087     tcg_temp_free_i32(tcg_rmode);
9088 }
9089 
9090 /* AdvSIMD scalar shift by immediate
9091  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9092  * +-----+---+-------------+------+------+--------+---+------+------+
9093  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9094  * +-----+---+-------------+------+------+--------+---+------+------+
9095  *
9096  * This is the scalar version so it works on a fixed sized registers
9097  */
9098 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9099 {
9100     int rd = extract32(insn, 0, 5);
9101     int rn = extract32(insn, 5, 5);
9102     int opcode = extract32(insn, 11, 5);
9103     int immb = extract32(insn, 16, 3);
9104     int immh = extract32(insn, 19, 4);
9105     bool is_u = extract32(insn, 29, 1);
9106 
9107     if (immh == 0) {
9108         unallocated_encoding(s);
9109         return;
9110     }
9111 
9112     switch (opcode) {
9113     case 0x08: /* SRI */
9114         if (!is_u) {
9115             unallocated_encoding(s);
9116             return;
9117         }
9118         /* fall through */
9119     case 0x00: /* SSHR / USHR */
9120     case 0x02: /* SSRA / USRA */
9121     case 0x04: /* SRSHR / URSHR */
9122     case 0x06: /* SRSRA / URSRA */
9123         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9124         break;
9125     case 0x0a: /* SHL / SLI */
9126         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9127         break;
9128     case 0x1c: /* SCVTF, UCVTF */
9129         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9130                                      opcode, rn, rd);
9131         break;
9132     case 0x10: /* SQSHRUN, SQSHRUN2 */
9133     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9134         if (!is_u) {
9135             unallocated_encoding(s);
9136             return;
9137         }
9138         handle_vec_simd_sqshrn(s, true, false, false, true,
9139                                immh, immb, opcode, rn, rd);
9140         break;
9141     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9142     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9143         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9144                                immh, immb, opcode, rn, rd);
9145         break;
9146     case 0xc: /* SQSHLU */
9147         if (!is_u) {
9148             unallocated_encoding(s);
9149             return;
9150         }
9151         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9152         break;
9153     case 0xe: /* SQSHL, UQSHL */
9154         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9155         break;
9156     case 0x1f: /* FCVTZS, FCVTZU */
9157         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9158         break;
9159     default:
9160         unallocated_encoding(s);
9161         break;
9162     }
9163 }
9164 
9165 /* AdvSIMD scalar three different
9166  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9167  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9168  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9169  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9170  */
9171 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9172 {
9173     bool is_u = extract32(insn, 29, 1);
9174     int size = extract32(insn, 22, 2);
9175     int opcode = extract32(insn, 12, 4);
9176     int rm = extract32(insn, 16, 5);
9177     int rn = extract32(insn, 5, 5);
9178     int rd = extract32(insn, 0, 5);
9179 
9180     if (is_u) {
9181         unallocated_encoding(s);
9182         return;
9183     }
9184 
9185     switch (opcode) {
9186     case 0x9: /* SQDMLAL, SQDMLAL2 */
9187     case 0xb: /* SQDMLSL, SQDMLSL2 */
9188     case 0xd: /* SQDMULL, SQDMULL2 */
9189         if (size == 0 || size == 3) {
9190             unallocated_encoding(s);
9191             return;
9192         }
9193         break;
9194     default:
9195         unallocated_encoding(s);
9196         return;
9197     }
9198 
9199     if (!fp_access_check(s)) {
9200         return;
9201     }
9202 
9203     if (size == 2) {
9204         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9205         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9206         TCGv_i64 tcg_res = tcg_temp_new_i64();
9207 
9208         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9209         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9210 
9211         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9212         gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
9213 
9214         switch (opcode) {
9215         case 0xd: /* SQDMULL, SQDMULL2 */
9216             break;
9217         case 0xb: /* SQDMLSL, SQDMLSL2 */
9218             tcg_gen_neg_i64(tcg_res, tcg_res);
9219             /* fall through */
9220         case 0x9: /* SQDMLAL, SQDMLAL2 */
9221             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9222             gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
9223                                               tcg_res, tcg_op1);
9224             break;
9225         default:
9226             g_assert_not_reached();
9227         }
9228 
9229         write_fp_dreg(s, rd, tcg_res);
9230 
9231         tcg_temp_free_i64(tcg_op1);
9232         tcg_temp_free_i64(tcg_op2);
9233         tcg_temp_free_i64(tcg_res);
9234     } else {
9235         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9236         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9237         TCGv_i64 tcg_res = tcg_temp_new_i64();
9238 
9239         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9240         gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
9241 
9242         switch (opcode) {
9243         case 0xd: /* SQDMULL, SQDMULL2 */
9244             break;
9245         case 0xb: /* SQDMLSL, SQDMLSL2 */
9246             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9247             /* fall through */
9248         case 0x9: /* SQDMLAL, SQDMLAL2 */
9249         {
9250             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9251             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9252             gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9253                                               tcg_res, tcg_op3);
9254             tcg_temp_free_i64(tcg_op3);
9255             break;
9256         }
9257         default:
9258             g_assert_not_reached();
9259         }
9260 
9261         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9262         write_fp_dreg(s, rd, tcg_res);
9263 
9264         tcg_temp_free_i32(tcg_op1);
9265         tcg_temp_free_i32(tcg_op2);
9266         tcg_temp_free_i64(tcg_res);
9267     }
9268 }
9269 
9270 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9271                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9272 {
9273     /* Handle 64x64->64 opcodes which are shared between the scalar
9274      * and vector 3-same groups. We cover every opcode where size == 3
9275      * is valid in either the three-reg-same (integer, not pairwise)
9276      * or scalar-three-reg-same groups.
9277      */
9278     TCGCond cond;
9279 
9280     switch (opcode) {
9281     case 0x1: /* SQADD */
9282         if (u) {
9283             gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9284         } else {
9285             gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9286         }
9287         break;
9288     case 0x5: /* SQSUB */
9289         if (u) {
9290             gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9291         } else {
9292             gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9293         }
9294         break;
9295     case 0x6: /* CMGT, CMHI */
9296         /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9297          * We implement this using setcond (test) and then negating.
9298          */
9299         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9300     do_cmop:
9301         tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9302         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9303         break;
9304     case 0x7: /* CMGE, CMHS */
9305         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9306         goto do_cmop;
9307     case 0x11: /* CMTST, CMEQ */
9308         if (u) {
9309             cond = TCG_COND_EQ;
9310             goto do_cmop;
9311         }
9312         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9313         break;
9314     case 0x8: /* SSHL, USHL */
9315         if (u) {
9316             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9317         } else {
9318             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9319         }
9320         break;
9321     case 0x9: /* SQSHL, UQSHL */
9322         if (u) {
9323             gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9324         } else {
9325             gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9326         }
9327         break;
9328     case 0xa: /* SRSHL, URSHL */
9329         if (u) {
9330             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9331         } else {
9332             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9333         }
9334         break;
9335     case 0xb: /* SQRSHL, UQRSHL */
9336         if (u) {
9337             gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9338         } else {
9339             gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9340         }
9341         break;
9342     case 0x10: /* ADD, SUB */
9343         if (u) {
9344             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9345         } else {
9346             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9347         }
9348         break;
9349     default:
9350         g_assert_not_reached();
9351     }
9352 }
9353 
9354 /* Handle the 3-same-operands float operations; shared by the scalar
9355  * and vector encodings. The caller must filter out any encodings
9356  * not allocated for the encoding it is dealing with.
9357  */
9358 static void handle_3same_float(DisasContext *s, int size, int elements,
9359                                int fpopcode, int rd, int rn, int rm)
9360 {
9361     int pass;
9362     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9363 
9364     for (pass = 0; pass < elements; pass++) {
9365         if (size) {
9366             /* Double */
9367             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9368             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9369             TCGv_i64 tcg_res = tcg_temp_new_i64();
9370 
9371             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9372             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9373 
9374             switch (fpopcode) {
9375             case 0x39: /* FMLS */
9376                 /* As usual for ARM, separate negation for fused multiply-add */
9377                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9378                 /* fall through */
9379             case 0x19: /* FMLA */
9380                 read_vec_element(s, tcg_res, rd, pass, MO_64);
9381                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9382                                        tcg_res, fpst);
9383                 break;
9384             case 0x18: /* FMAXNM */
9385                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9386                 break;
9387             case 0x1a: /* FADD */
9388                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9389                 break;
9390             case 0x1b: /* FMULX */
9391                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9392                 break;
9393             case 0x1c: /* FCMEQ */
9394                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9395                 break;
9396             case 0x1e: /* FMAX */
9397                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9398                 break;
9399             case 0x1f: /* FRECPS */
9400                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9401                 break;
9402             case 0x38: /* FMINNM */
9403                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9404                 break;
9405             case 0x3a: /* FSUB */
9406                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9407                 break;
9408             case 0x3e: /* FMIN */
9409                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9410                 break;
9411             case 0x3f: /* FRSQRTS */
9412                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9413                 break;
9414             case 0x5b: /* FMUL */
9415                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9416                 break;
9417             case 0x5c: /* FCMGE */
9418                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9419                 break;
9420             case 0x5d: /* FACGE */
9421                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9422                 break;
9423             case 0x5f: /* FDIV */
9424                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9425                 break;
9426             case 0x7a: /* FABD */
9427                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9428                 gen_helper_vfp_absd(tcg_res, tcg_res);
9429                 break;
9430             case 0x7c: /* FCMGT */
9431                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9432                 break;
9433             case 0x7d: /* FACGT */
9434                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9435                 break;
9436             default:
9437                 g_assert_not_reached();
9438             }
9439 
9440             write_vec_element(s, tcg_res, rd, pass, MO_64);
9441 
9442             tcg_temp_free_i64(tcg_res);
9443             tcg_temp_free_i64(tcg_op1);
9444             tcg_temp_free_i64(tcg_op2);
9445         } else {
9446             /* Single */
9447             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9448             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9449             TCGv_i32 tcg_res = tcg_temp_new_i32();
9450 
9451             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9452             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9453 
9454             switch (fpopcode) {
9455             case 0x39: /* FMLS */
9456                 /* As usual for ARM, separate negation for fused multiply-add */
9457                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9458                 /* fall through */
9459             case 0x19: /* FMLA */
9460                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9461                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9462                                        tcg_res, fpst);
9463                 break;
9464             case 0x1a: /* FADD */
9465                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9466                 break;
9467             case 0x1b: /* FMULX */
9468                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9469                 break;
9470             case 0x1c: /* FCMEQ */
9471                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9472                 break;
9473             case 0x1e: /* FMAX */
9474                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9475                 break;
9476             case 0x1f: /* FRECPS */
9477                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9478                 break;
9479             case 0x18: /* FMAXNM */
9480                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9481                 break;
9482             case 0x38: /* FMINNM */
9483                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9484                 break;
9485             case 0x3a: /* FSUB */
9486                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9487                 break;
9488             case 0x3e: /* FMIN */
9489                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9490                 break;
9491             case 0x3f: /* FRSQRTS */
9492                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9493                 break;
9494             case 0x5b: /* FMUL */
9495                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9496                 break;
9497             case 0x5c: /* FCMGE */
9498                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9499                 break;
9500             case 0x5d: /* FACGE */
9501                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9502                 break;
9503             case 0x5f: /* FDIV */
9504                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9505                 break;
9506             case 0x7a: /* FABD */
9507                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9508                 gen_helper_vfp_abss(tcg_res, tcg_res);
9509                 break;
9510             case 0x7c: /* FCMGT */
9511                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9512                 break;
9513             case 0x7d: /* FACGT */
9514                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9515                 break;
9516             default:
9517                 g_assert_not_reached();
9518             }
9519 
9520             if (elements == 1) {
9521                 /* scalar single so clear high part */
9522                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9523 
9524                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9525                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9526                 tcg_temp_free_i64(tcg_tmp);
9527             } else {
9528                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9529             }
9530 
9531             tcg_temp_free_i32(tcg_res);
9532             tcg_temp_free_i32(tcg_op1);
9533             tcg_temp_free_i32(tcg_op2);
9534         }
9535     }
9536 
9537     tcg_temp_free_ptr(fpst);
9538 
9539     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9540 }
9541 
9542 /* AdvSIMD scalar three same
9543  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9544  * +-----+---+-----------+------+---+------+--------+---+------+------+
9545  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9546  * +-----+---+-----------+------+---+------+--------+---+------+------+
9547  */
9548 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9549 {
9550     int rd = extract32(insn, 0, 5);
9551     int rn = extract32(insn, 5, 5);
9552     int opcode = extract32(insn, 11, 5);
9553     int rm = extract32(insn, 16, 5);
9554     int size = extract32(insn, 22, 2);
9555     bool u = extract32(insn, 29, 1);
9556     TCGv_i64 tcg_rd;
9557 
9558     if (opcode >= 0x18) {
9559         /* Floating point: U, size[1] and opcode indicate operation */
9560         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9561         switch (fpopcode) {
9562         case 0x1b: /* FMULX */
9563         case 0x1f: /* FRECPS */
9564         case 0x3f: /* FRSQRTS */
9565         case 0x5d: /* FACGE */
9566         case 0x7d: /* FACGT */
9567         case 0x1c: /* FCMEQ */
9568         case 0x5c: /* FCMGE */
9569         case 0x7c: /* FCMGT */
9570         case 0x7a: /* FABD */
9571             break;
9572         default:
9573             unallocated_encoding(s);
9574             return;
9575         }
9576 
9577         if (!fp_access_check(s)) {
9578             return;
9579         }
9580 
9581         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9582         return;
9583     }
9584 
9585     switch (opcode) {
9586     case 0x1: /* SQADD, UQADD */
9587     case 0x5: /* SQSUB, UQSUB */
9588     case 0x9: /* SQSHL, UQSHL */
9589     case 0xb: /* SQRSHL, UQRSHL */
9590         break;
9591     case 0x8: /* SSHL, USHL */
9592     case 0xa: /* SRSHL, URSHL */
9593     case 0x6: /* CMGT, CMHI */
9594     case 0x7: /* CMGE, CMHS */
9595     case 0x11: /* CMTST, CMEQ */
9596     case 0x10: /* ADD, SUB (vector) */
9597         if (size != 3) {
9598             unallocated_encoding(s);
9599             return;
9600         }
9601         break;
9602     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9603         if (size != 1 && size != 2) {
9604             unallocated_encoding(s);
9605             return;
9606         }
9607         break;
9608     default:
9609         unallocated_encoding(s);
9610         return;
9611     }
9612 
9613     if (!fp_access_check(s)) {
9614         return;
9615     }
9616 
9617     tcg_rd = tcg_temp_new_i64();
9618 
9619     if (size == 3) {
9620         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9621         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9622 
9623         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9624         tcg_temp_free_i64(tcg_rn);
9625         tcg_temp_free_i64(tcg_rm);
9626     } else {
9627         /* Do a single operation on the lowest element in the vector.
9628          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9629          * no side effects for all these operations.
9630          * OPTME: special-purpose helpers would avoid doing some
9631          * unnecessary work in the helper for the 8 and 16 bit cases.
9632          */
9633         NeonGenTwoOpEnvFn *genenvfn;
9634         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9635         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9636         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9637 
9638         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9639         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9640 
9641         switch (opcode) {
9642         case 0x1: /* SQADD, UQADD */
9643         {
9644             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9645                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9646                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9647                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9648             };
9649             genenvfn = fns[size][u];
9650             break;
9651         }
9652         case 0x5: /* SQSUB, UQSUB */
9653         {
9654             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9655                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9656                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9657                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9658             };
9659             genenvfn = fns[size][u];
9660             break;
9661         }
9662         case 0x9: /* SQSHL, UQSHL */
9663         {
9664             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9665                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9666                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9667                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9668             };
9669             genenvfn = fns[size][u];
9670             break;
9671         }
9672         case 0xb: /* SQRSHL, UQRSHL */
9673         {
9674             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9675                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9676                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9677                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9678             };
9679             genenvfn = fns[size][u];
9680             break;
9681         }
9682         case 0x16: /* SQDMULH, SQRDMULH */
9683         {
9684             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9685                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9686                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9687             };
9688             assert(size == 1 || size == 2);
9689             genenvfn = fns[size - 1][u];
9690             break;
9691         }
9692         default:
9693             g_assert_not_reached();
9694         }
9695 
9696         genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9697         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9698         tcg_temp_free_i32(tcg_rd32);
9699         tcg_temp_free_i32(tcg_rn);
9700         tcg_temp_free_i32(tcg_rm);
9701     }
9702 
9703     write_fp_dreg(s, rd, tcg_rd);
9704 
9705     tcg_temp_free_i64(tcg_rd);
9706 }
9707 
9708 /* AdvSIMD scalar three same FP16
9709  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9710  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9711  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9712  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9713  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9714  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9715  */
9716 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9717                                                   uint32_t insn)
9718 {
9719     int rd = extract32(insn, 0, 5);
9720     int rn = extract32(insn, 5, 5);
9721     int opcode = extract32(insn, 11, 3);
9722     int rm = extract32(insn, 16, 5);
9723     bool u = extract32(insn, 29, 1);
9724     bool a = extract32(insn, 23, 1);
9725     int fpopcode = opcode | (a << 3) |  (u << 4);
9726     TCGv_ptr fpst;
9727     TCGv_i32 tcg_op1;
9728     TCGv_i32 tcg_op2;
9729     TCGv_i32 tcg_res;
9730 
9731     switch (fpopcode) {
9732     case 0x03: /* FMULX */
9733     case 0x04: /* FCMEQ (reg) */
9734     case 0x07: /* FRECPS */
9735     case 0x0f: /* FRSQRTS */
9736     case 0x14: /* FCMGE (reg) */
9737     case 0x15: /* FACGE */
9738     case 0x1a: /* FABD */
9739     case 0x1c: /* FCMGT (reg) */
9740     case 0x1d: /* FACGT */
9741         break;
9742     default:
9743         unallocated_encoding(s);
9744         return;
9745     }
9746 
9747     if (!dc_isar_feature(aa64_fp16, s)) {
9748         unallocated_encoding(s);
9749     }
9750 
9751     if (!fp_access_check(s)) {
9752         return;
9753     }
9754 
9755     fpst = fpstatus_ptr(FPST_FPCR_F16);
9756 
9757     tcg_op1 = read_fp_hreg(s, rn);
9758     tcg_op2 = read_fp_hreg(s, rm);
9759     tcg_res = tcg_temp_new_i32();
9760 
9761     switch (fpopcode) {
9762     case 0x03: /* FMULX */
9763         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9764         break;
9765     case 0x04: /* FCMEQ (reg) */
9766         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9767         break;
9768     case 0x07: /* FRECPS */
9769         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9770         break;
9771     case 0x0f: /* FRSQRTS */
9772         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9773         break;
9774     case 0x14: /* FCMGE (reg) */
9775         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9776         break;
9777     case 0x15: /* FACGE */
9778         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9779         break;
9780     case 0x1a: /* FABD */
9781         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9782         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9783         break;
9784     case 0x1c: /* FCMGT (reg) */
9785         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9786         break;
9787     case 0x1d: /* FACGT */
9788         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9789         break;
9790     default:
9791         g_assert_not_reached();
9792     }
9793 
9794     write_fp_sreg(s, rd, tcg_res);
9795 
9796 
9797     tcg_temp_free_i32(tcg_res);
9798     tcg_temp_free_i32(tcg_op1);
9799     tcg_temp_free_i32(tcg_op2);
9800     tcg_temp_free_ptr(fpst);
9801 }
9802 
9803 /* AdvSIMD scalar three same extra
9804  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9805  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9806  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9807  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9808  */
9809 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9810                                                    uint32_t insn)
9811 {
9812     int rd = extract32(insn, 0, 5);
9813     int rn = extract32(insn, 5, 5);
9814     int opcode = extract32(insn, 11, 4);
9815     int rm = extract32(insn, 16, 5);
9816     int size = extract32(insn, 22, 2);
9817     bool u = extract32(insn, 29, 1);
9818     TCGv_i32 ele1, ele2, ele3;
9819     TCGv_i64 res;
9820     bool feature;
9821 
9822     switch (u * 16 + opcode) {
9823     case 0x10: /* SQRDMLAH (vector) */
9824     case 0x11: /* SQRDMLSH (vector) */
9825         if (size != 1 && size != 2) {
9826             unallocated_encoding(s);
9827             return;
9828         }
9829         feature = dc_isar_feature(aa64_rdm, s);
9830         break;
9831     default:
9832         unallocated_encoding(s);
9833         return;
9834     }
9835     if (!feature) {
9836         unallocated_encoding(s);
9837         return;
9838     }
9839     if (!fp_access_check(s)) {
9840         return;
9841     }
9842 
9843     /* Do a single operation on the lowest element in the vector.
9844      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9845      * with no side effects for all these operations.
9846      * OPTME: special-purpose helpers would avoid doing some
9847      * unnecessary work in the helper for the 16 bit cases.
9848      */
9849     ele1 = tcg_temp_new_i32();
9850     ele2 = tcg_temp_new_i32();
9851     ele3 = tcg_temp_new_i32();
9852 
9853     read_vec_element_i32(s, ele1, rn, 0, size);
9854     read_vec_element_i32(s, ele2, rm, 0, size);
9855     read_vec_element_i32(s, ele3, rd, 0, size);
9856 
9857     switch (opcode) {
9858     case 0x0: /* SQRDMLAH */
9859         if (size == 1) {
9860             gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9861         } else {
9862             gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9863         }
9864         break;
9865     case 0x1: /* SQRDMLSH */
9866         if (size == 1) {
9867             gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9868         } else {
9869             gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9870         }
9871         break;
9872     default:
9873         g_assert_not_reached();
9874     }
9875     tcg_temp_free_i32(ele1);
9876     tcg_temp_free_i32(ele2);
9877 
9878     res = tcg_temp_new_i64();
9879     tcg_gen_extu_i32_i64(res, ele3);
9880     tcg_temp_free_i32(ele3);
9881 
9882     write_fp_dreg(s, rd, res);
9883     tcg_temp_free_i64(res);
9884 }
9885 
9886 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9887                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9888                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9889 {
9890     /* Handle 64->64 opcodes which are shared between the scalar and
9891      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9892      * is valid in either group and also the double-precision fp ops.
9893      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9894      * requires them.
9895      */
9896     TCGCond cond;
9897 
9898     switch (opcode) {
9899     case 0x4: /* CLS, CLZ */
9900         if (u) {
9901             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9902         } else {
9903             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9904         }
9905         break;
9906     case 0x5: /* NOT */
9907         /* This opcode is shared with CNT and RBIT but we have earlier
9908          * enforced that size == 3 if and only if this is the NOT insn.
9909          */
9910         tcg_gen_not_i64(tcg_rd, tcg_rn);
9911         break;
9912     case 0x7: /* SQABS, SQNEG */
9913         if (u) {
9914             gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9915         } else {
9916             gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9917         }
9918         break;
9919     case 0xa: /* CMLT */
9920         /* 64 bit integer comparison against zero, result is
9921          * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9922          * subtracting 1.
9923          */
9924         cond = TCG_COND_LT;
9925     do_cmop:
9926         tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9927         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9928         break;
9929     case 0x8: /* CMGT, CMGE */
9930         cond = u ? TCG_COND_GE : TCG_COND_GT;
9931         goto do_cmop;
9932     case 0x9: /* CMEQ, CMLE */
9933         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9934         goto do_cmop;
9935     case 0xb: /* ABS, NEG */
9936         if (u) {
9937             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9938         } else {
9939             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9940         }
9941         break;
9942     case 0x2f: /* FABS */
9943         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9944         break;
9945     case 0x6f: /* FNEG */
9946         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9947         break;
9948     case 0x7f: /* FSQRT */
9949         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9950         break;
9951     case 0x1a: /* FCVTNS */
9952     case 0x1b: /* FCVTMS */
9953     case 0x1c: /* FCVTAS */
9954     case 0x3a: /* FCVTPS */
9955     case 0x3b: /* FCVTZS */
9956         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9957         break;
9958     case 0x5a: /* FCVTNU */
9959     case 0x5b: /* FCVTMU */
9960     case 0x5c: /* FCVTAU */
9961     case 0x7a: /* FCVTPU */
9962     case 0x7b: /* FCVTZU */
9963         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9964         break;
9965     case 0x18: /* FRINTN */
9966     case 0x19: /* FRINTM */
9967     case 0x38: /* FRINTP */
9968     case 0x39: /* FRINTZ */
9969     case 0x58: /* FRINTA */
9970     case 0x79: /* FRINTI */
9971         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9972         break;
9973     case 0x59: /* FRINTX */
9974         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9975         break;
9976     case 0x1e: /* FRINT32Z */
9977     case 0x5e: /* FRINT32X */
9978         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9979         break;
9980     case 0x1f: /* FRINT64Z */
9981     case 0x5f: /* FRINT64X */
9982         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9983         break;
9984     default:
9985         g_assert_not_reached();
9986     }
9987 }
9988 
9989 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9990                                    bool is_scalar, bool is_u, bool is_q,
9991                                    int size, int rn, int rd)
9992 {
9993     bool is_double = (size == MO_64);
9994     TCGv_ptr fpst;
9995 
9996     if (!fp_access_check(s)) {
9997         return;
9998     }
9999 
10000     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
10001 
10002     if (is_double) {
10003         TCGv_i64 tcg_op = tcg_temp_new_i64();
10004         TCGv_i64 tcg_zero = tcg_constant_i64(0);
10005         TCGv_i64 tcg_res = tcg_temp_new_i64();
10006         NeonGenTwoDoubleOpFn *genfn;
10007         bool swap = false;
10008         int pass;
10009 
10010         switch (opcode) {
10011         case 0x2e: /* FCMLT (zero) */
10012             swap = true;
10013             /* fallthrough */
10014         case 0x2c: /* FCMGT (zero) */
10015             genfn = gen_helper_neon_cgt_f64;
10016             break;
10017         case 0x2d: /* FCMEQ (zero) */
10018             genfn = gen_helper_neon_ceq_f64;
10019             break;
10020         case 0x6d: /* FCMLE (zero) */
10021             swap = true;
10022             /* fall through */
10023         case 0x6c: /* FCMGE (zero) */
10024             genfn = gen_helper_neon_cge_f64;
10025             break;
10026         default:
10027             g_assert_not_reached();
10028         }
10029 
10030         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10031             read_vec_element(s, tcg_op, rn, pass, MO_64);
10032             if (swap) {
10033                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10034             } else {
10035                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10036             }
10037             write_vec_element(s, tcg_res, rd, pass, MO_64);
10038         }
10039         tcg_temp_free_i64(tcg_res);
10040         tcg_temp_free_i64(tcg_op);
10041 
10042         clear_vec_high(s, !is_scalar, rd);
10043     } else {
10044         TCGv_i32 tcg_op = tcg_temp_new_i32();
10045         TCGv_i32 tcg_zero = tcg_constant_i32(0);
10046         TCGv_i32 tcg_res = tcg_temp_new_i32();
10047         NeonGenTwoSingleOpFn *genfn;
10048         bool swap = false;
10049         int pass, maxpasses;
10050 
10051         if (size == MO_16) {
10052             switch (opcode) {
10053             case 0x2e: /* FCMLT (zero) */
10054                 swap = true;
10055                 /* fall through */
10056             case 0x2c: /* FCMGT (zero) */
10057                 genfn = gen_helper_advsimd_cgt_f16;
10058                 break;
10059             case 0x2d: /* FCMEQ (zero) */
10060                 genfn = gen_helper_advsimd_ceq_f16;
10061                 break;
10062             case 0x6d: /* FCMLE (zero) */
10063                 swap = true;
10064                 /* fall through */
10065             case 0x6c: /* FCMGE (zero) */
10066                 genfn = gen_helper_advsimd_cge_f16;
10067                 break;
10068             default:
10069                 g_assert_not_reached();
10070             }
10071         } else {
10072             switch (opcode) {
10073             case 0x2e: /* FCMLT (zero) */
10074                 swap = true;
10075                 /* fall through */
10076             case 0x2c: /* FCMGT (zero) */
10077                 genfn = gen_helper_neon_cgt_f32;
10078                 break;
10079             case 0x2d: /* FCMEQ (zero) */
10080                 genfn = gen_helper_neon_ceq_f32;
10081                 break;
10082             case 0x6d: /* FCMLE (zero) */
10083                 swap = true;
10084                 /* fall through */
10085             case 0x6c: /* FCMGE (zero) */
10086                 genfn = gen_helper_neon_cge_f32;
10087                 break;
10088             default:
10089                 g_assert_not_reached();
10090             }
10091         }
10092 
10093         if (is_scalar) {
10094             maxpasses = 1;
10095         } else {
10096             int vector_size = 8 << is_q;
10097             maxpasses = vector_size >> size;
10098         }
10099 
10100         for (pass = 0; pass < maxpasses; pass++) {
10101             read_vec_element_i32(s, tcg_op, rn, pass, size);
10102             if (swap) {
10103                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10104             } else {
10105                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10106             }
10107             if (is_scalar) {
10108                 write_fp_sreg(s, rd, tcg_res);
10109             } else {
10110                 write_vec_element_i32(s, tcg_res, rd, pass, size);
10111             }
10112         }
10113         tcg_temp_free_i32(tcg_res);
10114         tcg_temp_free_i32(tcg_op);
10115         if (!is_scalar) {
10116             clear_vec_high(s, is_q, rd);
10117         }
10118     }
10119 
10120     tcg_temp_free_ptr(fpst);
10121 }
10122 
10123 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10124                                     bool is_scalar, bool is_u, bool is_q,
10125                                     int size, int rn, int rd)
10126 {
10127     bool is_double = (size == 3);
10128     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10129 
10130     if (is_double) {
10131         TCGv_i64 tcg_op = tcg_temp_new_i64();
10132         TCGv_i64 tcg_res = tcg_temp_new_i64();
10133         int pass;
10134 
10135         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10136             read_vec_element(s, tcg_op, rn, pass, MO_64);
10137             switch (opcode) {
10138             case 0x3d: /* FRECPE */
10139                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10140                 break;
10141             case 0x3f: /* FRECPX */
10142                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10143                 break;
10144             case 0x7d: /* FRSQRTE */
10145                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10146                 break;
10147             default:
10148                 g_assert_not_reached();
10149             }
10150             write_vec_element(s, tcg_res, rd, pass, MO_64);
10151         }
10152         tcg_temp_free_i64(tcg_res);
10153         tcg_temp_free_i64(tcg_op);
10154         clear_vec_high(s, !is_scalar, rd);
10155     } else {
10156         TCGv_i32 tcg_op = tcg_temp_new_i32();
10157         TCGv_i32 tcg_res = tcg_temp_new_i32();
10158         int pass, maxpasses;
10159 
10160         if (is_scalar) {
10161             maxpasses = 1;
10162         } else {
10163             maxpasses = is_q ? 4 : 2;
10164         }
10165 
10166         for (pass = 0; pass < maxpasses; pass++) {
10167             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10168 
10169             switch (opcode) {
10170             case 0x3c: /* URECPE */
10171                 gen_helper_recpe_u32(tcg_res, tcg_op);
10172                 break;
10173             case 0x3d: /* FRECPE */
10174                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10175                 break;
10176             case 0x3f: /* FRECPX */
10177                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10178                 break;
10179             case 0x7d: /* FRSQRTE */
10180                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10181                 break;
10182             default:
10183                 g_assert_not_reached();
10184             }
10185 
10186             if (is_scalar) {
10187                 write_fp_sreg(s, rd, tcg_res);
10188             } else {
10189                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10190             }
10191         }
10192         tcg_temp_free_i32(tcg_res);
10193         tcg_temp_free_i32(tcg_op);
10194         if (!is_scalar) {
10195             clear_vec_high(s, is_q, rd);
10196         }
10197     }
10198     tcg_temp_free_ptr(fpst);
10199 }
10200 
10201 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10202                                 int opcode, bool u, bool is_q,
10203                                 int size, int rn, int rd)
10204 {
10205     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10206      * in the source becomes a size element in the destination).
10207      */
10208     int pass;
10209     TCGv_i32 tcg_res[2];
10210     int destelt = is_q ? 2 : 0;
10211     int passes = scalar ? 1 : 2;
10212 
10213     if (scalar) {
10214         tcg_res[1] = tcg_constant_i32(0);
10215     }
10216 
10217     for (pass = 0; pass < passes; pass++) {
10218         TCGv_i64 tcg_op = tcg_temp_new_i64();
10219         NeonGenNarrowFn *genfn = NULL;
10220         NeonGenNarrowEnvFn *genenvfn = NULL;
10221 
10222         if (scalar) {
10223             read_vec_element(s, tcg_op, rn, pass, size + 1);
10224         } else {
10225             read_vec_element(s, tcg_op, rn, pass, MO_64);
10226         }
10227         tcg_res[pass] = tcg_temp_new_i32();
10228 
10229         switch (opcode) {
10230         case 0x12: /* XTN, SQXTUN */
10231         {
10232             static NeonGenNarrowFn * const xtnfns[3] = {
10233                 gen_helper_neon_narrow_u8,
10234                 gen_helper_neon_narrow_u16,
10235                 tcg_gen_extrl_i64_i32,
10236             };
10237             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10238                 gen_helper_neon_unarrow_sat8,
10239                 gen_helper_neon_unarrow_sat16,
10240                 gen_helper_neon_unarrow_sat32,
10241             };
10242             if (u) {
10243                 genenvfn = sqxtunfns[size];
10244             } else {
10245                 genfn = xtnfns[size];
10246             }
10247             break;
10248         }
10249         case 0x14: /* SQXTN, UQXTN */
10250         {
10251             static NeonGenNarrowEnvFn * const fns[3][2] = {
10252                 { gen_helper_neon_narrow_sat_s8,
10253                   gen_helper_neon_narrow_sat_u8 },
10254                 { gen_helper_neon_narrow_sat_s16,
10255                   gen_helper_neon_narrow_sat_u16 },
10256                 { gen_helper_neon_narrow_sat_s32,
10257                   gen_helper_neon_narrow_sat_u32 },
10258             };
10259             genenvfn = fns[size][u];
10260             break;
10261         }
10262         case 0x16: /* FCVTN, FCVTN2 */
10263             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10264             if (size == 2) {
10265                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
10266             } else {
10267                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10268                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10269                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10270                 TCGv_i32 ahp = get_ahp_flag();
10271 
10272                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10273                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10274                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10275                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10276                 tcg_temp_free_i32(tcg_lo);
10277                 tcg_temp_free_i32(tcg_hi);
10278                 tcg_temp_free_ptr(fpst);
10279                 tcg_temp_free_i32(ahp);
10280             }
10281             break;
10282         case 0x36: /* BFCVTN, BFCVTN2 */
10283             {
10284                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10285                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10286                 tcg_temp_free_ptr(fpst);
10287             }
10288             break;
10289         case 0x56:  /* FCVTXN, FCVTXN2 */
10290             /* 64 bit to 32 bit float conversion
10291              * with von Neumann rounding (round to odd)
10292              */
10293             assert(size == 2);
10294             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10295             break;
10296         default:
10297             g_assert_not_reached();
10298         }
10299 
10300         if (genfn) {
10301             genfn(tcg_res[pass], tcg_op);
10302         } else if (genenvfn) {
10303             genenvfn(tcg_res[pass], cpu_env, tcg_op);
10304         }
10305 
10306         tcg_temp_free_i64(tcg_op);
10307     }
10308 
10309     for (pass = 0; pass < 2; pass++) {
10310         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10311         tcg_temp_free_i32(tcg_res[pass]);
10312     }
10313     clear_vec_high(s, is_q, rd);
10314 }
10315 
10316 /* Remaining saturating accumulating ops */
10317 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10318                                 bool is_q, int size, int rn, int rd)
10319 {
10320     bool is_double = (size == 3);
10321 
10322     if (is_double) {
10323         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10324         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10325         int pass;
10326 
10327         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10328             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10329             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10330 
10331             if (is_u) { /* USQADD */
10332                 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10333             } else { /* SUQADD */
10334                 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10335             }
10336             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10337         }
10338         tcg_temp_free_i64(tcg_rd);
10339         tcg_temp_free_i64(tcg_rn);
10340         clear_vec_high(s, !is_scalar, rd);
10341     } else {
10342         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10343         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10344         int pass, maxpasses;
10345 
10346         if (is_scalar) {
10347             maxpasses = 1;
10348         } else {
10349             maxpasses = is_q ? 4 : 2;
10350         }
10351 
10352         for (pass = 0; pass < maxpasses; pass++) {
10353             if (is_scalar) {
10354                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10355                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10356             } else {
10357                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10358                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10359             }
10360 
10361             if (is_u) { /* USQADD */
10362                 switch (size) {
10363                 case 0:
10364                     gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10365                     break;
10366                 case 1:
10367                     gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10368                     break;
10369                 case 2:
10370                     gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10371                     break;
10372                 default:
10373                     g_assert_not_reached();
10374                 }
10375             } else { /* SUQADD */
10376                 switch (size) {
10377                 case 0:
10378                     gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10379                     break;
10380                 case 1:
10381                     gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10382                     break;
10383                 case 2:
10384                     gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10385                     break;
10386                 default:
10387                     g_assert_not_reached();
10388                 }
10389             }
10390 
10391             if (is_scalar) {
10392                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10393             }
10394             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10395         }
10396         tcg_temp_free_i32(tcg_rd);
10397         tcg_temp_free_i32(tcg_rn);
10398         clear_vec_high(s, is_q, rd);
10399     }
10400 }
10401 
10402 /* AdvSIMD scalar two reg misc
10403  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10404  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10405  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10406  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10407  */
10408 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10409 {
10410     int rd = extract32(insn, 0, 5);
10411     int rn = extract32(insn, 5, 5);
10412     int opcode = extract32(insn, 12, 5);
10413     int size = extract32(insn, 22, 2);
10414     bool u = extract32(insn, 29, 1);
10415     bool is_fcvt = false;
10416     int rmode;
10417     TCGv_i32 tcg_rmode;
10418     TCGv_ptr tcg_fpstatus;
10419 
10420     switch (opcode) {
10421     case 0x3: /* USQADD / SUQADD*/
10422         if (!fp_access_check(s)) {
10423             return;
10424         }
10425         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10426         return;
10427     case 0x7: /* SQABS / SQNEG */
10428         break;
10429     case 0xa: /* CMLT */
10430         if (u) {
10431             unallocated_encoding(s);
10432             return;
10433         }
10434         /* fall through */
10435     case 0x8: /* CMGT, CMGE */
10436     case 0x9: /* CMEQ, CMLE */
10437     case 0xb: /* ABS, NEG */
10438         if (size != 3) {
10439             unallocated_encoding(s);
10440             return;
10441         }
10442         break;
10443     case 0x12: /* SQXTUN */
10444         if (!u) {
10445             unallocated_encoding(s);
10446             return;
10447         }
10448         /* fall through */
10449     case 0x14: /* SQXTN, UQXTN */
10450         if (size == 3) {
10451             unallocated_encoding(s);
10452             return;
10453         }
10454         if (!fp_access_check(s)) {
10455             return;
10456         }
10457         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10458         return;
10459     case 0xc ... 0xf:
10460     case 0x16 ... 0x1d:
10461     case 0x1f:
10462         /* Floating point: U, size[1] and opcode indicate operation;
10463          * size[0] indicates single or double precision.
10464          */
10465         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10466         size = extract32(size, 0, 1) ? 3 : 2;
10467         switch (opcode) {
10468         case 0x2c: /* FCMGT (zero) */
10469         case 0x2d: /* FCMEQ (zero) */
10470         case 0x2e: /* FCMLT (zero) */
10471         case 0x6c: /* FCMGE (zero) */
10472         case 0x6d: /* FCMLE (zero) */
10473             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10474             return;
10475         case 0x1d: /* SCVTF */
10476         case 0x5d: /* UCVTF */
10477         {
10478             bool is_signed = (opcode == 0x1d);
10479             if (!fp_access_check(s)) {
10480                 return;
10481             }
10482             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10483             return;
10484         }
10485         case 0x3d: /* FRECPE */
10486         case 0x3f: /* FRECPX */
10487         case 0x7d: /* FRSQRTE */
10488             if (!fp_access_check(s)) {
10489                 return;
10490             }
10491             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10492             return;
10493         case 0x1a: /* FCVTNS */
10494         case 0x1b: /* FCVTMS */
10495         case 0x3a: /* FCVTPS */
10496         case 0x3b: /* FCVTZS */
10497         case 0x5a: /* FCVTNU */
10498         case 0x5b: /* FCVTMU */
10499         case 0x7a: /* FCVTPU */
10500         case 0x7b: /* FCVTZU */
10501             is_fcvt = true;
10502             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10503             break;
10504         case 0x1c: /* FCVTAS */
10505         case 0x5c: /* FCVTAU */
10506             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10507             is_fcvt = true;
10508             rmode = FPROUNDING_TIEAWAY;
10509             break;
10510         case 0x56: /* FCVTXN, FCVTXN2 */
10511             if (size == 2) {
10512                 unallocated_encoding(s);
10513                 return;
10514             }
10515             if (!fp_access_check(s)) {
10516                 return;
10517             }
10518             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10519             return;
10520         default:
10521             unallocated_encoding(s);
10522             return;
10523         }
10524         break;
10525     default:
10526         unallocated_encoding(s);
10527         return;
10528     }
10529 
10530     if (!fp_access_check(s)) {
10531         return;
10532     }
10533 
10534     if (is_fcvt) {
10535         tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10536         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10537         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10538     } else {
10539         tcg_rmode = NULL;
10540         tcg_fpstatus = NULL;
10541     }
10542 
10543     if (size == 3) {
10544         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10545         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10546 
10547         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10548         write_fp_dreg(s, rd, tcg_rd);
10549         tcg_temp_free_i64(tcg_rd);
10550         tcg_temp_free_i64(tcg_rn);
10551     } else {
10552         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10553         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10554 
10555         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10556 
10557         switch (opcode) {
10558         case 0x7: /* SQABS, SQNEG */
10559         {
10560             NeonGenOneOpEnvFn *genfn;
10561             static NeonGenOneOpEnvFn * const fns[3][2] = {
10562                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10563                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10564                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10565             };
10566             genfn = fns[size][u];
10567             genfn(tcg_rd, cpu_env, tcg_rn);
10568             break;
10569         }
10570         case 0x1a: /* FCVTNS */
10571         case 0x1b: /* FCVTMS */
10572         case 0x1c: /* FCVTAS */
10573         case 0x3a: /* FCVTPS */
10574         case 0x3b: /* FCVTZS */
10575             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10576                                  tcg_fpstatus);
10577             break;
10578         case 0x5a: /* FCVTNU */
10579         case 0x5b: /* FCVTMU */
10580         case 0x5c: /* FCVTAU */
10581         case 0x7a: /* FCVTPU */
10582         case 0x7b: /* FCVTZU */
10583             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10584                                  tcg_fpstatus);
10585             break;
10586         default:
10587             g_assert_not_reached();
10588         }
10589 
10590         write_fp_sreg(s, rd, tcg_rd);
10591         tcg_temp_free_i32(tcg_rd);
10592         tcg_temp_free_i32(tcg_rn);
10593     }
10594 
10595     if (is_fcvt) {
10596         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10597         tcg_temp_free_i32(tcg_rmode);
10598         tcg_temp_free_ptr(tcg_fpstatus);
10599     }
10600 }
10601 
10602 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10603 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10604                                  int immh, int immb, int opcode, int rn, int rd)
10605 {
10606     int size = 32 - clz32(immh) - 1;
10607     int immhb = immh << 3 | immb;
10608     int shift = 2 * (8 << size) - immhb;
10609     GVecGen2iFn *gvec_fn;
10610 
10611     if (extract32(immh, 3, 1) && !is_q) {
10612         unallocated_encoding(s);
10613         return;
10614     }
10615     tcg_debug_assert(size <= 3);
10616 
10617     if (!fp_access_check(s)) {
10618         return;
10619     }
10620 
10621     switch (opcode) {
10622     case 0x02: /* SSRA / USRA (accumulate) */
10623         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10624         break;
10625 
10626     case 0x08: /* SRI */
10627         gvec_fn = gen_gvec_sri;
10628         break;
10629 
10630     case 0x00: /* SSHR / USHR */
10631         if (is_u) {
10632             if (shift == 8 << size) {
10633                 /* Shift count the same size as element size produces zero.  */
10634                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10635                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10636                 return;
10637             }
10638             gvec_fn = tcg_gen_gvec_shri;
10639         } else {
10640             /* Shift count the same size as element size produces all sign.  */
10641             if (shift == 8 << size) {
10642                 shift -= 1;
10643             }
10644             gvec_fn = tcg_gen_gvec_sari;
10645         }
10646         break;
10647 
10648     case 0x04: /* SRSHR / URSHR (rounding) */
10649         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10650         break;
10651 
10652     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10653         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10654         break;
10655 
10656     default:
10657         g_assert_not_reached();
10658     }
10659 
10660     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10661 }
10662 
10663 /* SHL/SLI - Vector shift left */
10664 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10665                                  int immh, int immb, int opcode, int rn, int rd)
10666 {
10667     int size = 32 - clz32(immh) - 1;
10668     int immhb = immh << 3 | immb;
10669     int shift = immhb - (8 << size);
10670 
10671     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10672     assert(size >= 0 && size <= 3);
10673 
10674     if (extract32(immh, 3, 1) && !is_q) {
10675         unallocated_encoding(s);
10676         return;
10677     }
10678 
10679     if (!fp_access_check(s)) {
10680         return;
10681     }
10682 
10683     if (insert) {
10684         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10685     } else {
10686         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10687     }
10688 }
10689 
10690 /* USHLL/SHLL - Vector shift left with widening */
10691 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10692                                  int immh, int immb, int opcode, int rn, int rd)
10693 {
10694     int size = 32 - clz32(immh) - 1;
10695     int immhb = immh << 3 | immb;
10696     int shift = immhb - (8 << size);
10697     int dsize = 64;
10698     int esize = 8 << size;
10699     int elements = dsize/esize;
10700     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10701     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10702     int i;
10703 
10704     if (size >= 3) {
10705         unallocated_encoding(s);
10706         return;
10707     }
10708 
10709     if (!fp_access_check(s)) {
10710         return;
10711     }
10712 
10713     /* For the LL variants the store is larger than the load,
10714      * so if rd == rn we would overwrite parts of our input.
10715      * So load everything right now and use shifts in the main loop.
10716      */
10717     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10718 
10719     for (i = 0; i < elements; i++) {
10720         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10721         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10722         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10723         write_vec_element(s, tcg_rd, rd, i, size + 1);
10724     }
10725 }
10726 
10727 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10728 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10729                                  int immh, int immb, int opcode, int rn, int rd)
10730 {
10731     int immhb = immh << 3 | immb;
10732     int size = 32 - clz32(immh) - 1;
10733     int dsize = 64;
10734     int esize = 8 << size;
10735     int elements = dsize/esize;
10736     int shift = (2 * esize) - immhb;
10737     bool round = extract32(opcode, 0, 1);
10738     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10739     TCGv_i64 tcg_round;
10740     int i;
10741 
10742     if (extract32(immh, 3, 1)) {
10743         unallocated_encoding(s);
10744         return;
10745     }
10746 
10747     if (!fp_access_check(s)) {
10748         return;
10749     }
10750 
10751     tcg_rn = tcg_temp_new_i64();
10752     tcg_rd = tcg_temp_new_i64();
10753     tcg_final = tcg_temp_new_i64();
10754     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10755 
10756     if (round) {
10757         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10758     } else {
10759         tcg_round = NULL;
10760     }
10761 
10762     for (i = 0; i < elements; i++) {
10763         read_vec_element(s, tcg_rn, rn, i, size+1);
10764         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10765                                 false, true, size+1, shift);
10766 
10767         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10768     }
10769 
10770     if (!is_q) {
10771         write_vec_element(s, tcg_final, rd, 0, MO_64);
10772     } else {
10773         write_vec_element(s, tcg_final, rd, 1, MO_64);
10774     }
10775     tcg_temp_free_i64(tcg_rn);
10776     tcg_temp_free_i64(tcg_rd);
10777     tcg_temp_free_i64(tcg_final);
10778 
10779     clear_vec_high(s, is_q, rd);
10780 }
10781 
10782 
10783 /* AdvSIMD shift by immediate
10784  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10785  * +---+---+---+-------------+------+------+--------+---+------+------+
10786  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10787  * +---+---+---+-------------+------+------+--------+---+------+------+
10788  */
10789 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10790 {
10791     int rd = extract32(insn, 0, 5);
10792     int rn = extract32(insn, 5, 5);
10793     int opcode = extract32(insn, 11, 5);
10794     int immb = extract32(insn, 16, 3);
10795     int immh = extract32(insn, 19, 4);
10796     bool is_u = extract32(insn, 29, 1);
10797     bool is_q = extract32(insn, 30, 1);
10798 
10799     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10800     assert(immh != 0);
10801 
10802     switch (opcode) {
10803     case 0x08: /* SRI */
10804         if (!is_u) {
10805             unallocated_encoding(s);
10806             return;
10807         }
10808         /* fall through */
10809     case 0x00: /* SSHR / USHR */
10810     case 0x02: /* SSRA / USRA (accumulate) */
10811     case 0x04: /* SRSHR / URSHR (rounding) */
10812     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10813         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10814         break;
10815     case 0x0a: /* SHL / SLI */
10816         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10817         break;
10818     case 0x10: /* SHRN */
10819     case 0x11: /* RSHRN / SQRSHRUN */
10820         if (is_u) {
10821             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10822                                    opcode, rn, rd);
10823         } else {
10824             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10825         }
10826         break;
10827     case 0x12: /* SQSHRN / UQSHRN */
10828     case 0x13: /* SQRSHRN / UQRSHRN */
10829         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10830                                opcode, rn, rd);
10831         break;
10832     case 0x14: /* SSHLL / USHLL */
10833         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10834         break;
10835     case 0x1c: /* SCVTF / UCVTF */
10836         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10837                                      opcode, rn, rd);
10838         break;
10839     case 0xc: /* SQSHLU */
10840         if (!is_u) {
10841             unallocated_encoding(s);
10842             return;
10843         }
10844         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10845         break;
10846     case 0xe: /* SQSHL, UQSHL */
10847         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10848         break;
10849     case 0x1f: /* FCVTZS/ FCVTZU */
10850         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10851         return;
10852     default:
10853         unallocated_encoding(s);
10854         return;
10855     }
10856 }
10857 
10858 /* Generate code to do a "long" addition or subtraction, ie one done in
10859  * TCGv_i64 on vector lanes twice the width specified by size.
10860  */
10861 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10862                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10863 {
10864     static NeonGenTwo64OpFn * const fns[3][2] = {
10865         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10866         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10867         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10868     };
10869     NeonGenTwo64OpFn *genfn;
10870     assert(size < 3);
10871 
10872     genfn = fns[size][is_sub];
10873     genfn(tcg_res, tcg_op1, tcg_op2);
10874 }
10875 
10876 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10877                                 int opcode, int rd, int rn, int rm)
10878 {
10879     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10880     TCGv_i64 tcg_res[2];
10881     int pass, accop;
10882 
10883     tcg_res[0] = tcg_temp_new_i64();
10884     tcg_res[1] = tcg_temp_new_i64();
10885 
10886     /* Does this op do an adding accumulate, a subtracting accumulate,
10887      * or no accumulate at all?
10888      */
10889     switch (opcode) {
10890     case 5:
10891     case 8:
10892     case 9:
10893         accop = 1;
10894         break;
10895     case 10:
10896     case 11:
10897         accop = -1;
10898         break;
10899     default:
10900         accop = 0;
10901         break;
10902     }
10903 
10904     if (accop != 0) {
10905         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10906         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10907     }
10908 
10909     /* size == 2 means two 32x32->64 operations; this is worth special
10910      * casing because we can generally handle it inline.
10911      */
10912     if (size == 2) {
10913         for (pass = 0; pass < 2; pass++) {
10914             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10915             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10916             TCGv_i64 tcg_passres;
10917             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10918 
10919             int elt = pass + is_q * 2;
10920 
10921             read_vec_element(s, tcg_op1, rn, elt, memop);
10922             read_vec_element(s, tcg_op2, rm, elt, memop);
10923 
10924             if (accop == 0) {
10925                 tcg_passres = tcg_res[pass];
10926             } else {
10927                 tcg_passres = tcg_temp_new_i64();
10928             }
10929 
10930             switch (opcode) {
10931             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10932                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10933                 break;
10934             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10935                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10936                 break;
10937             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10938             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10939             {
10940                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10941                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10942 
10943                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10944                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10945                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10946                                     tcg_passres,
10947                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10948                 tcg_temp_free_i64(tcg_tmp1);
10949                 tcg_temp_free_i64(tcg_tmp2);
10950                 break;
10951             }
10952             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10953             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10954             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10955                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10956                 break;
10957             case 9: /* SQDMLAL, SQDMLAL2 */
10958             case 11: /* SQDMLSL, SQDMLSL2 */
10959             case 13: /* SQDMULL, SQDMULL2 */
10960                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10961                 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10962                                                   tcg_passres, tcg_passres);
10963                 break;
10964             default:
10965                 g_assert_not_reached();
10966             }
10967 
10968             if (opcode == 9 || opcode == 11) {
10969                 /* saturating accumulate ops */
10970                 if (accop < 0) {
10971                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10972                 }
10973                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10974                                                   tcg_res[pass], tcg_passres);
10975             } else if (accop > 0) {
10976                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10977             } else if (accop < 0) {
10978                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10979             }
10980 
10981             if (accop != 0) {
10982                 tcg_temp_free_i64(tcg_passres);
10983             }
10984 
10985             tcg_temp_free_i64(tcg_op1);
10986             tcg_temp_free_i64(tcg_op2);
10987         }
10988     } else {
10989         /* size 0 or 1, generally helper functions */
10990         for (pass = 0; pass < 2; pass++) {
10991             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10992             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10993             TCGv_i64 tcg_passres;
10994             int elt = pass + is_q * 2;
10995 
10996             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10997             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10998 
10999             if (accop == 0) {
11000                 tcg_passres = tcg_res[pass];
11001             } else {
11002                 tcg_passres = tcg_temp_new_i64();
11003             }
11004 
11005             switch (opcode) {
11006             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11007             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11008             {
11009                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
11010                 static NeonGenWidenFn * const widenfns[2][2] = {
11011                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11012                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11013                 };
11014                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11015 
11016                 widenfn(tcg_op2_64, tcg_op2);
11017                 widenfn(tcg_passres, tcg_op1);
11018                 gen_neon_addl(size, (opcode == 2), tcg_passres,
11019                               tcg_passres, tcg_op2_64);
11020                 tcg_temp_free_i64(tcg_op2_64);
11021                 break;
11022             }
11023             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11024             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11025                 if (size == 0) {
11026                     if (is_u) {
11027                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
11028                     } else {
11029                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
11030                     }
11031                 } else {
11032                     if (is_u) {
11033                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
11034                     } else {
11035                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
11036                     }
11037                 }
11038                 break;
11039             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11040             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11041             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11042                 if (size == 0) {
11043                     if (is_u) {
11044                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
11045                     } else {
11046                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
11047                     }
11048                 } else {
11049                     if (is_u) {
11050                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
11051                     } else {
11052                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11053                     }
11054                 }
11055                 break;
11056             case 9: /* SQDMLAL, SQDMLAL2 */
11057             case 11: /* SQDMLSL, SQDMLSL2 */
11058             case 13: /* SQDMULL, SQDMULL2 */
11059                 assert(size == 1);
11060                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11061                 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
11062                                                   tcg_passres, tcg_passres);
11063                 break;
11064             default:
11065                 g_assert_not_reached();
11066             }
11067             tcg_temp_free_i32(tcg_op1);
11068             tcg_temp_free_i32(tcg_op2);
11069 
11070             if (accop != 0) {
11071                 if (opcode == 9 || opcode == 11) {
11072                     /* saturating accumulate ops */
11073                     if (accop < 0) {
11074                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
11075                     }
11076                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
11077                                                       tcg_res[pass],
11078                                                       tcg_passres);
11079                 } else {
11080                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
11081                                   tcg_res[pass], tcg_passres);
11082                 }
11083                 tcg_temp_free_i64(tcg_passres);
11084             }
11085         }
11086     }
11087 
11088     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
11089     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
11090     tcg_temp_free_i64(tcg_res[0]);
11091     tcg_temp_free_i64(tcg_res[1]);
11092 }
11093 
11094 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
11095                             int opcode, int rd, int rn, int rm)
11096 {
11097     TCGv_i64 tcg_res[2];
11098     int part = is_q ? 2 : 0;
11099     int pass;
11100 
11101     for (pass = 0; pass < 2; pass++) {
11102         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11103         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11104         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
11105         static NeonGenWidenFn * const widenfns[3][2] = {
11106             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11107             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11108             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
11109         };
11110         NeonGenWidenFn *widenfn = widenfns[size][is_u];
11111 
11112         read_vec_element(s, tcg_op1, rn, pass, MO_64);
11113         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
11114         widenfn(tcg_op2_wide, tcg_op2);
11115         tcg_temp_free_i32(tcg_op2);
11116         tcg_res[pass] = tcg_temp_new_i64();
11117         gen_neon_addl(size, (opcode == 3),
11118                       tcg_res[pass], tcg_op1, tcg_op2_wide);
11119         tcg_temp_free_i64(tcg_op1);
11120         tcg_temp_free_i64(tcg_op2_wide);
11121     }
11122 
11123     for (pass = 0; pass < 2; pass++) {
11124         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11125         tcg_temp_free_i64(tcg_res[pass]);
11126     }
11127 }
11128 
11129 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
11130 {
11131     tcg_gen_addi_i64(in, in, 1U << 31);
11132     tcg_gen_extrh_i64_i32(res, in);
11133 }
11134 
11135 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
11136                                  int opcode, int rd, int rn, int rm)
11137 {
11138     TCGv_i32 tcg_res[2];
11139     int part = is_q ? 2 : 0;
11140     int pass;
11141 
11142     for (pass = 0; pass < 2; pass++) {
11143         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11144         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11145         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
11146         static NeonGenNarrowFn * const narrowfns[3][2] = {
11147             { gen_helper_neon_narrow_high_u8,
11148               gen_helper_neon_narrow_round_high_u8 },
11149             { gen_helper_neon_narrow_high_u16,
11150               gen_helper_neon_narrow_round_high_u16 },
11151             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
11152         };
11153         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
11154 
11155         read_vec_element(s, tcg_op1, rn, pass, MO_64);
11156         read_vec_element(s, tcg_op2, rm, pass, MO_64);
11157 
11158         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
11159 
11160         tcg_temp_free_i64(tcg_op1);
11161         tcg_temp_free_i64(tcg_op2);
11162 
11163         tcg_res[pass] = tcg_temp_new_i32();
11164         gennarrow(tcg_res[pass], tcg_wideres);
11165         tcg_temp_free_i64(tcg_wideres);
11166     }
11167 
11168     for (pass = 0; pass < 2; pass++) {
11169         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
11170         tcg_temp_free_i32(tcg_res[pass]);
11171     }
11172     clear_vec_high(s, is_q, rd);
11173 }
11174 
11175 /* AdvSIMD three different
11176  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
11177  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11178  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
11179  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11180  */
11181 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
11182 {
11183     /* Instructions in this group fall into three basic classes
11184      * (in each case with the operation working on each element in
11185      * the input vectors):
11186      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11187      *     128 bit input)
11188      * (2) wide 64 x 128 -> 128
11189      * (3) narrowing 128 x 128 -> 64
11190      * Here we do initial decode, catch unallocated cases and
11191      * dispatch to separate functions for each class.
11192      */
11193     int is_q = extract32(insn, 30, 1);
11194     int is_u = extract32(insn, 29, 1);
11195     int size = extract32(insn, 22, 2);
11196     int opcode = extract32(insn, 12, 4);
11197     int rm = extract32(insn, 16, 5);
11198     int rn = extract32(insn, 5, 5);
11199     int rd = extract32(insn, 0, 5);
11200 
11201     switch (opcode) {
11202     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11203     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11204         /* 64 x 128 -> 128 */
11205         if (size == 3) {
11206             unallocated_encoding(s);
11207             return;
11208         }
11209         if (!fp_access_check(s)) {
11210             return;
11211         }
11212         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
11213         break;
11214     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11215     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11216         /* 128 x 128 -> 64 */
11217         if (size == 3) {
11218             unallocated_encoding(s);
11219             return;
11220         }
11221         if (!fp_access_check(s)) {
11222             return;
11223         }
11224         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11225         break;
11226     case 14: /* PMULL, PMULL2 */
11227         if (is_u) {
11228             unallocated_encoding(s);
11229             return;
11230         }
11231         switch (size) {
11232         case 0: /* PMULL.P8 */
11233             if (!fp_access_check(s)) {
11234                 return;
11235             }
11236             /* The Q field specifies lo/hi half input for this insn.  */
11237             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11238                              gen_helper_neon_pmull_h);
11239             break;
11240 
11241         case 3: /* PMULL.P64 */
11242             if (!dc_isar_feature(aa64_pmull, s)) {
11243                 unallocated_encoding(s);
11244                 return;
11245             }
11246             if (!fp_access_check(s)) {
11247                 return;
11248             }
11249             /* The Q field specifies lo/hi half input for this insn.  */
11250             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11251                              gen_helper_gvec_pmull_q);
11252             break;
11253 
11254         default:
11255             unallocated_encoding(s);
11256             break;
11257         }
11258         return;
11259     case 9: /* SQDMLAL, SQDMLAL2 */
11260     case 11: /* SQDMLSL, SQDMLSL2 */
11261     case 13: /* SQDMULL, SQDMULL2 */
11262         if (is_u || size == 0) {
11263             unallocated_encoding(s);
11264             return;
11265         }
11266         /* fall through */
11267     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11268     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11269     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11270     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11271     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11272     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11273     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11274         /* 64 x 64 -> 128 */
11275         if (size == 3) {
11276             unallocated_encoding(s);
11277             return;
11278         }
11279         if (!fp_access_check(s)) {
11280             return;
11281         }
11282 
11283         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11284         break;
11285     default:
11286         /* opcode 15 not allocated */
11287         unallocated_encoding(s);
11288         break;
11289     }
11290 }
11291 
11292 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11293 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11294 {
11295     int rd = extract32(insn, 0, 5);
11296     int rn = extract32(insn, 5, 5);
11297     int rm = extract32(insn, 16, 5);
11298     int size = extract32(insn, 22, 2);
11299     bool is_u = extract32(insn, 29, 1);
11300     bool is_q = extract32(insn, 30, 1);
11301 
11302     if (!fp_access_check(s)) {
11303         return;
11304     }
11305 
11306     switch (size + 4 * is_u) {
11307     case 0: /* AND */
11308         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11309         return;
11310     case 1: /* BIC */
11311         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11312         return;
11313     case 2: /* ORR */
11314         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11315         return;
11316     case 3: /* ORN */
11317         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11318         return;
11319     case 4: /* EOR */
11320         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11321         return;
11322 
11323     case 5: /* BSL bitwise select */
11324         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11325         return;
11326     case 6: /* BIT, bitwise insert if true */
11327         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11328         return;
11329     case 7: /* BIF, bitwise insert if false */
11330         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11331         return;
11332 
11333     default:
11334         g_assert_not_reached();
11335     }
11336 }
11337 
11338 /* Pairwise op subgroup of C3.6.16.
11339  *
11340  * This is called directly or via the handle_3same_float for float pairwise
11341  * operations where the opcode and size are calculated differently.
11342  */
11343 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11344                                    int size, int rn, int rm, int rd)
11345 {
11346     TCGv_ptr fpst;
11347     int pass;
11348 
11349     /* Floating point operations need fpst */
11350     if (opcode >= 0x58) {
11351         fpst = fpstatus_ptr(FPST_FPCR);
11352     } else {
11353         fpst = NULL;
11354     }
11355 
11356     if (!fp_access_check(s)) {
11357         return;
11358     }
11359 
11360     /* These operations work on the concatenated rm:rn, with each pair of
11361      * adjacent elements being operated on to produce an element in the result.
11362      */
11363     if (size == 3) {
11364         TCGv_i64 tcg_res[2];
11365 
11366         for (pass = 0; pass < 2; pass++) {
11367             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11368             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11369             int passreg = (pass == 0) ? rn : rm;
11370 
11371             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11372             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11373             tcg_res[pass] = tcg_temp_new_i64();
11374 
11375             switch (opcode) {
11376             case 0x17: /* ADDP */
11377                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11378                 break;
11379             case 0x58: /* FMAXNMP */
11380                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11381                 break;
11382             case 0x5a: /* FADDP */
11383                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11384                 break;
11385             case 0x5e: /* FMAXP */
11386                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11387                 break;
11388             case 0x78: /* FMINNMP */
11389                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11390                 break;
11391             case 0x7e: /* FMINP */
11392                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11393                 break;
11394             default:
11395                 g_assert_not_reached();
11396             }
11397 
11398             tcg_temp_free_i64(tcg_op1);
11399             tcg_temp_free_i64(tcg_op2);
11400         }
11401 
11402         for (pass = 0; pass < 2; pass++) {
11403             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11404             tcg_temp_free_i64(tcg_res[pass]);
11405         }
11406     } else {
11407         int maxpass = is_q ? 4 : 2;
11408         TCGv_i32 tcg_res[4];
11409 
11410         for (pass = 0; pass < maxpass; pass++) {
11411             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11412             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11413             NeonGenTwoOpFn *genfn = NULL;
11414             int passreg = pass < (maxpass / 2) ? rn : rm;
11415             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11416 
11417             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11418             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11419             tcg_res[pass] = tcg_temp_new_i32();
11420 
11421             switch (opcode) {
11422             case 0x17: /* ADDP */
11423             {
11424                 static NeonGenTwoOpFn * const fns[3] = {
11425                     gen_helper_neon_padd_u8,
11426                     gen_helper_neon_padd_u16,
11427                     tcg_gen_add_i32,
11428                 };
11429                 genfn = fns[size];
11430                 break;
11431             }
11432             case 0x14: /* SMAXP, UMAXP */
11433             {
11434                 static NeonGenTwoOpFn * const fns[3][2] = {
11435                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11436                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11437                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11438                 };
11439                 genfn = fns[size][u];
11440                 break;
11441             }
11442             case 0x15: /* SMINP, UMINP */
11443             {
11444                 static NeonGenTwoOpFn * const fns[3][2] = {
11445                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11446                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11447                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11448                 };
11449                 genfn = fns[size][u];
11450                 break;
11451             }
11452             /* The FP operations are all on single floats (32 bit) */
11453             case 0x58: /* FMAXNMP */
11454                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11455                 break;
11456             case 0x5a: /* FADDP */
11457                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11458                 break;
11459             case 0x5e: /* FMAXP */
11460                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11461                 break;
11462             case 0x78: /* FMINNMP */
11463                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11464                 break;
11465             case 0x7e: /* FMINP */
11466                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11467                 break;
11468             default:
11469                 g_assert_not_reached();
11470             }
11471 
11472             /* FP ops called directly, otherwise call now */
11473             if (genfn) {
11474                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11475             }
11476 
11477             tcg_temp_free_i32(tcg_op1);
11478             tcg_temp_free_i32(tcg_op2);
11479         }
11480 
11481         for (pass = 0; pass < maxpass; pass++) {
11482             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11483             tcg_temp_free_i32(tcg_res[pass]);
11484         }
11485         clear_vec_high(s, is_q, rd);
11486     }
11487 
11488     if (fpst) {
11489         tcg_temp_free_ptr(fpst);
11490     }
11491 }
11492 
11493 /* Floating point op subgroup of C3.6.16. */
11494 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11495 {
11496     /* For floating point ops, the U, size[1] and opcode bits
11497      * together indicate the operation. size[0] indicates single
11498      * or double.
11499      */
11500     int fpopcode = extract32(insn, 11, 5)
11501         | (extract32(insn, 23, 1) << 5)
11502         | (extract32(insn, 29, 1) << 6);
11503     int is_q = extract32(insn, 30, 1);
11504     int size = extract32(insn, 22, 1);
11505     int rm = extract32(insn, 16, 5);
11506     int rn = extract32(insn, 5, 5);
11507     int rd = extract32(insn, 0, 5);
11508 
11509     int datasize = is_q ? 128 : 64;
11510     int esize = 32 << size;
11511     int elements = datasize / esize;
11512 
11513     if (size == 1 && !is_q) {
11514         unallocated_encoding(s);
11515         return;
11516     }
11517 
11518     switch (fpopcode) {
11519     case 0x58: /* FMAXNMP */
11520     case 0x5a: /* FADDP */
11521     case 0x5e: /* FMAXP */
11522     case 0x78: /* FMINNMP */
11523     case 0x7e: /* FMINP */
11524         if (size && !is_q) {
11525             unallocated_encoding(s);
11526             return;
11527         }
11528         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11529                                rn, rm, rd);
11530         return;
11531     case 0x1b: /* FMULX */
11532     case 0x1f: /* FRECPS */
11533     case 0x3f: /* FRSQRTS */
11534     case 0x5d: /* FACGE */
11535     case 0x7d: /* FACGT */
11536     case 0x19: /* FMLA */
11537     case 0x39: /* FMLS */
11538     case 0x18: /* FMAXNM */
11539     case 0x1a: /* FADD */
11540     case 0x1c: /* FCMEQ */
11541     case 0x1e: /* FMAX */
11542     case 0x38: /* FMINNM */
11543     case 0x3a: /* FSUB */
11544     case 0x3e: /* FMIN */
11545     case 0x5b: /* FMUL */
11546     case 0x5c: /* FCMGE */
11547     case 0x5f: /* FDIV */
11548     case 0x7a: /* FABD */
11549     case 0x7c: /* FCMGT */
11550         if (!fp_access_check(s)) {
11551             return;
11552         }
11553         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11554         return;
11555 
11556     case 0x1d: /* FMLAL  */
11557     case 0x3d: /* FMLSL  */
11558     case 0x59: /* FMLAL2 */
11559     case 0x79: /* FMLSL2 */
11560         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11561             unallocated_encoding(s);
11562             return;
11563         }
11564         if (fp_access_check(s)) {
11565             int is_s = extract32(insn, 23, 1);
11566             int is_2 = extract32(insn, 29, 1);
11567             int data = (is_2 << 1) | is_s;
11568             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11569                                vec_full_reg_offset(s, rn),
11570                                vec_full_reg_offset(s, rm), cpu_env,
11571                                is_q ? 16 : 8, vec_full_reg_size(s),
11572                                data, gen_helper_gvec_fmlal_a64);
11573         }
11574         return;
11575 
11576     default:
11577         unallocated_encoding(s);
11578         return;
11579     }
11580 }
11581 
11582 /* Integer op subgroup of C3.6.16. */
11583 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11584 {
11585     int is_q = extract32(insn, 30, 1);
11586     int u = extract32(insn, 29, 1);
11587     int size = extract32(insn, 22, 2);
11588     int opcode = extract32(insn, 11, 5);
11589     int rm = extract32(insn, 16, 5);
11590     int rn = extract32(insn, 5, 5);
11591     int rd = extract32(insn, 0, 5);
11592     int pass;
11593     TCGCond cond;
11594 
11595     switch (opcode) {
11596     case 0x13: /* MUL, PMUL */
11597         if (u && size != 0) {
11598             unallocated_encoding(s);
11599             return;
11600         }
11601         /* fall through */
11602     case 0x0: /* SHADD, UHADD */
11603     case 0x2: /* SRHADD, URHADD */
11604     case 0x4: /* SHSUB, UHSUB */
11605     case 0xc: /* SMAX, UMAX */
11606     case 0xd: /* SMIN, UMIN */
11607     case 0xe: /* SABD, UABD */
11608     case 0xf: /* SABA, UABA */
11609     case 0x12: /* MLA, MLS */
11610         if (size == 3) {
11611             unallocated_encoding(s);
11612             return;
11613         }
11614         break;
11615     case 0x16: /* SQDMULH, SQRDMULH */
11616         if (size == 0 || size == 3) {
11617             unallocated_encoding(s);
11618             return;
11619         }
11620         break;
11621     default:
11622         if (size == 3 && !is_q) {
11623             unallocated_encoding(s);
11624             return;
11625         }
11626         break;
11627     }
11628 
11629     if (!fp_access_check(s)) {
11630         return;
11631     }
11632 
11633     switch (opcode) {
11634     case 0x01: /* SQADD, UQADD */
11635         if (u) {
11636             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11637         } else {
11638             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11639         }
11640         return;
11641     case 0x05: /* SQSUB, UQSUB */
11642         if (u) {
11643             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11644         } else {
11645             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11646         }
11647         return;
11648     case 0x08: /* SSHL, USHL */
11649         if (u) {
11650             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11651         } else {
11652             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11653         }
11654         return;
11655     case 0x0c: /* SMAX, UMAX */
11656         if (u) {
11657             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11658         } else {
11659             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11660         }
11661         return;
11662     case 0x0d: /* SMIN, UMIN */
11663         if (u) {
11664             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11665         } else {
11666             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11667         }
11668         return;
11669     case 0xe: /* SABD, UABD */
11670         if (u) {
11671             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11672         } else {
11673             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11674         }
11675         return;
11676     case 0xf: /* SABA, UABA */
11677         if (u) {
11678             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11679         } else {
11680             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11681         }
11682         return;
11683     case 0x10: /* ADD, SUB */
11684         if (u) {
11685             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11686         } else {
11687             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11688         }
11689         return;
11690     case 0x13: /* MUL, PMUL */
11691         if (!u) { /* MUL */
11692             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11693         } else {  /* PMUL */
11694             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11695         }
11696         return;
11697     case 0x12: /* MLA, MLS */
11698         if (u) {
11699             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11700         } else {
11701             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11702         }
11703         return;
11704     case 0x16: /* SQDMULH, SQRDMULH */
11705         {
11706             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11707                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11708                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11709             };
11710             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11711         }
11712         return;
11713     case 0x11:
11714         if (!u) { /* CMTST */
11715             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11716             return;
11717         }
11718         /* else CMEQ */
11719         cond = TCG_COND_EQ;
11720         goto do_gvec_cmp;
11721     case 0x06: /* CMGT, CMHI */
11722         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11723         goto do_gvec_cmp;
11724     case 0x07: /* CMGE, CMHS */
11725         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11726     do_gvec_cmp:
11727         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11728                          vec_full_reg_offset(s, rn),
11729                          vec_full_reg_offset(s, rm),
11730                          is_q ? 16 : 8, vec_full_reg_size(s));
11731         return;
11732     }
11733 
11734     if (size == 3) {
11735         assert(is_q);
11736         for (pass = 0; pass < 2; pass++) {
11737             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11738             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11739             TCGv_i64 tcg_res = tcg_temp_new_i64();
11740 
11741             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11742             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11743 
11744             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11745 
11746             write_vec_element(s, tcg_res, rd, pass, MO_64);
11747 
11748             tcg_temp_free_i64(tcg_res);
11749             tcg_temp_free_i64(tcg_op1);
11750             tcg_temp_free_i64(tcg_op2);
11751         }
11752     } else {
11753         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11754             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11755             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11756             TCGv_i32 tcg_res = tcg_temp_new_i32();
11757             NeonGenTwoOpFn *genfn = NULL;
11758             NeonGenTwoOpEnvFn *genenvfn = NULL;
11759 
11760             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11761             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11762 
11763             switch (opcode) {
11764             case 0x0: /* SHADD, UHADD */
11765             {
11766                 static NeonGenTwoOpFn * const fns[3][2] = {
11767                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11768                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11769                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11770                 };
11771                 genfn = fns[size][u];
11772                 break;
11773             }
11774             case 0x2: /* SRHADD, URHADD */
11775             {
11776                 static NeonGenTwoOpFn * const fns[3][2] = {
11777                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11778                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11779                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11780                 };
11781                 genfn = fns[size][u];
11782                 break;
11783             }
11784             case 0x4: /* SHSUB, UHSUB */
11785             {
11786                 static NeonGenTwoOpFn * const fns[3][2] = {
11787                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11788                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11789                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11790                 };
11791                 genfn = fns[size][u];
11792                 break;
11793             }
11794             case 0x9: /* SQSHL, UQSHL */
11795             {
11796                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11797                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11798                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11799                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11800                 };
11801                 genenvfn = fns[size][u];
11802                 break;
11803             }
11804             case 0xa: /* SRSHL, URSHL */
11805             {
11806                 static NeonGenTwoOpFn * const fns[3][2] = {
11807                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11808                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11809                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11810                 };
11811                 genfn = fns[size][u];
11812                 break;
11813             }
11814             case 0xb: /* SQRSHL, UQRSHL */
11815             {
11816                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11817                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11818                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11819                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11820                 };
11821                 genenvfn = fns[size][u];
11822                 break;
11823             }
11824             default:
11825                 g_assert_not_reached();
11826             }
11827 
11828             if (genenvfn) {
11829                 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11830             } else {
11831                 genfn(tcg_res, tcg_op1, tcg_op2);
11832             }
11833 
11834             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11835 
11836             tcg_temp_free_i32(tcg_res);
11837             tcg_temp_free_i32(tcg_op1);
11838             tcg_temp_free_i32(tcg_op2);
11839         }
11840     }
11841     clear_vec_high(s, is_q, rd);
11842 }
11843 
11844 /* AdvSIMD three same
11845  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11846  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11847  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11848  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11849  */
11850 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11851 {
11852     int opcode = extract32(insn, 11, 5);
11853 
11854     switch (opcode) {
11855     case 0x3: /* logic ops */
11856         disas_simd_3same_logic(s, insn);
11857         break;
11858     case 0x17: /* ADDP */
11859     case 0x14: /* SMAXP, UMAXP */
11860     case 0x15: /* SMINP, UMINP */
11861     {
11862         /* Pairwise operations */
11863         int is_q = extract32(insn, 30, 1);
11864         int u = extract32(insn, 29, 1);
11865         int size = extract32(insn, 22, 2);
11866         int rm = extract32(insn, 16, 5);
11867         int rn = extract32(insn, 5, 5);
11868         int rd = extract32(insn, 0, 5);
11869         if (opcode == 0x17) {
11870             if (u || (size == 3 && !is_q)) {
11871                 unallocated_encoding(s);
11872                 return;
11873             }
11874         } else {
11875             if (size == 3) {
11876                 unallocated_encoding(s);
11877                 return;
11878             }
11879         }
11880         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11881         break;
11882     }
11883     case 0x18 ... 0x31:
11884         /* floating point ops, sz[1] and U are part of opcode */
11885         disas_simd_3same_float(s, insn);
11886         break;
11887     default:
11888         disas_simd_3same_int(s, insn);
11889         break;
11890     }
11891 }
11892 
11893 /*
11894  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11895  *
11896  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11897  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11898  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11899  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11900  *
11901  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11902  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11903  *
11904  */
11905 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11906 {
11907     int opcode = extract32(insn, 11, 3);
11908     int u = extract32(insn, 29, 1);
11909     int a = extract32(insn, 23, 1);
11910     int is_q = extract32(insn, 30, 1);
11911     int rm = extract32(insn, 16, 5);
11912     int rn = extract32(insn, 5, 5);
11913     int rd = extract32(insn, 0, 5);
11914     /*
11915      * For these floating point ops, the U, a and opcode bits
11916      * together indicate the operation.
11917      */
11918     int fpopcode = opcode | (a << 3) | (u << 4);
11919     int datasize = is_q ? 128 : 64;
11920     int elements = datasize / 16;
11921     bool pairwise;
11922     TCGv_ptr fpst;
11923     int pass;
11924 
11925     switch (fpopcode) {
11926     case 0x0: /* FMAXNM */
11927     case 0x1: /* FMLA */
11928     case 0x2: /* FADD */
11929     case 0x3: /* FMULX */
11930     case 0x4: /* FCMEQ */
11931     case 0x6: /* FMAX */
11932     case 0x7: /* FRECPS */
11933     case 0x8: /* FMINNM */
11934     case 0x9: /* FMLS */
11935     case 0xa: /* FSUB */
11936     case 0xe: /* FMIN */
11937     case 0xf: /* FRSQRTS */
11938     case 0x13: /* FMUL */
11939     case 0x14: /* FCMGE */
11940     case 0x15: /* FACGE */
11941     case 0x17: /* FDIV */
11942     case 0x1a: /* FABD */
11943     case 0x1c: /* FCMGT */
11944     case 0x1d: /* FACGT */
11945         pairwise = false;
11946         break;
11947     case 0x10: /* FMAXNMP */
11948     case 0x12: /* FADDP */
11949     case 0x16: /* FMAXP */
11950     case 0x18: /* FMINNMP */
11951     case 0x1e: /* FMINP */
11952         pairwise = true;
11953         break;
11954     default:
11955         unallocated_encoding(s);
11956         return;
11957     }
11958 
11959     if (!dc_isar_feature(aa64_fp16, s)) {
11960         unallocated_encoding(s);
11961         return;
11962     }
11963 
11964     if (!fp_access_check(s)) {
11965         return;
11966     }
11967 
11968     fpst = fpstatus_ptr(FPST_FPCR_F16);
11969 
11970     if (pairwise) {
11971         int maxpass = is_q ? 8 : 4;
11972         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11973         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11974         TCGv_i32 tcg_res[8];
11975 
11976         for (pass = 0; pass < maxpass; pass++) {
11977             int passreg = pass < (maxpass / 2) ? rn : rm;
11978             int passelt = (pass << 1) & (maxpass - 1);
11979 
11980             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11981             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11982             tcg_res[pass] = tcg_temp_new_i32();
11983 
11984             switch (fpopcode) {
11985             case 0x10: /* FMAXNMP */
11986                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11987                                            fpst);
11988                 break;
11989             case 0x12: /* FADDP */
11990                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11991                 break;
11992             case 0x16: /* FMAXP */
11993                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11994                 break;
11995             case 0x18: /* FMINNMP */
11996                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11997                                            fpst);
11998                 break;
11999             case 0x1e: /* FMINP */
12000                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12001                 break;
12002             default:
12003                 g_assert_not_reached();
12004             }
12005         }
12006 
12007         for (pass = 0; pass < maxpass; pass++) {
12008             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
12009             tcg_temp_free_i32(tcg_res[pass]);
12010         }
12011 
12012         tcg_temp_free_i32(tcg_op1);
12013         tcg_temp_free_i32(tcg_op2);
12014 
12015     } else {
12016         for (pass = 0; pass < elements; pass++) {
12017             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12018             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12019             TCGv_i32 tcg_res = tcg_temp_new_i32();
12020 
12021             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
12022             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
12023 
12024             switch (fpopcode) {
12025             case 0x0: /* FMAXNM */
12026                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12027                 break;
12028             case 0x1: /* FMLA */
12029                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12030                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12031                                            fpst);
12032                 break;
12033             case 0x2: /* FADD */
12034                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
12035                 break;
12036             case 0x3: /* FMULX */
12037                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
12038                 break;
12039             case 0x4: /* FCMEQ */
12040                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12041                 break;
12042             case 0x6: /* FMAX */
12043                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
12044                 break;
12045             case 0x7: /* FRECPS */
12046                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12047                 break;
12048             case 0x8: /* FMINNM */
12049                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12050                 break;
12051             case 0x9: /* FMLS */
12052                 /* As usual for ARM, separate negation for fused multiply-add */
12053                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
12054                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12055                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12056                                            fpst);
12057                 break;
12058             case 0xa: /* FSUB */
12059                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12060                 break;
12061             case 0xe: /* FMIN */
12062                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
12063                 break;
12064             case 0xf: /* FRSQRTS */
12065                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12066                 break;
12067             case 0x13: /* FMUL */
12068                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
12069                 break;
12070             case 0x14: /* FCMGE */
12071                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12072                 break;
12073             case 0x15: /* FACGE */
12074                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12075                 break;
12076             case 0x17: /* FDIV */
12077                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
12078                 break;
12079             case 0x1a: /* FABD */
12080                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12081                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
12082                 break;
12083             case 0x1c: /* FCMGT */
12084                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12085                 break;
12086             case 0x1d: /* FACGT */
12087                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12088                 break;
12089             default:
12090                 g_assert_not_reached();
12091             }
12092 
12093             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12094             tcg_temp_free_i32(tcg_res);
12095             tcg_temp_free_i32(tcg_op1);
12096             tcg_temp_free_i32(tcg_op2);
12097         }
12098     }
12099 
12100     tcg_temp_free_ptr(fpst);
12101 
12102     clear_vec_high(s, is_q, rd);
12103 }
12104 
12105 /* AdvSIMD three same extra
12106  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
12107  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12108  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
12109  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12110  */
12111 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
12112 {
12113     int rd = extract32(insn, 0, 5);
12114     int rn = extract32(insn, 5, 5);
12115     int opcode = extract32(insn, 11, 4);
12116     int rm = extract32(insn, 16, 5);
12117     int size = extract32(insn, 22, 2);
12118     bool u = extract32(insn, 29, 1);
12119     bool is_q = extract32(insn, 30, 1);
12120     bool feature;
12121     int rot;
12122 
12123     switch (u * 16 + opcode) {
12124     case 0x10: /* SQRDMLAH (vector) */
12125     case 0x11: /* SQRDMLSH (vector) */
12126         if (size != 1 && size != 2) {
12127             unallocated_encoding(s);
12128             return;
12129         }
12130         feature = dc_isar_feature(aa64_rdm, s);
12131         break;
12132     case 0x02: /* SDOT (vector) */
12133     case 0x12: /* UDOT (vector) */
12134         if (size != MO_32) {
12135             unallocated_encoding(s);
12136             return;
12137         }
12138         feature = dc_isar_feature(aa64_dp, s);
12139         break;
12140     case 0x03: /* USDOT */
12141         if (size != MO_32) {
12142             unallocated_encoding(s);
12143             return;
12144         }
12145         feature = dc_isar_feature(aa64_i8mm, s);
12146         break;
12147     case 0x04: /* SMMLA */
12148     case 0x14: /* UMMLA */
12149     case 0x05: /* USMMLA */
12150         if (!is_q || size != MO_32) {
12151             unallocated_encoding(s);
12152             return;
12153         }
12154         feature = dc_isar_feature(aa64_i8mm, s);
12155         break;
12156     case 0x18: /* FCMLA, #0 */
12157     case 0x19: /* FCMLA, #90 */
12158     case 0x1a: /* FCMLA, #180 */
12159     case 0x1b: /* FCMLA, #270 */
12160     case 0x1c: /* FCADD, #90 */
12161     case 0x1e: /* FCADD, #270 */
12162         if (size == 0
12163             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
12164             || (size == 3 && !is_q)) {
12165             unallocated_encoding(s);
12166             return;
12167         }
12168         feature = dc_isar_feature(aa64_fcma, s);
12169         break;
12170     case 0x1d: /* BFMMLA */
12171         if (size != MO_16 || !is_q) {
12172             unallocated_encoding(s);
12173             return;
12174         }
12175         feature = dc_isar_feature(aa64_bf16, s);
12176         break;
12177     case 0x1f:
12178         switch (size) {
12179         case 1: /* BFDOT */
12180         case 3: /* BFMLAL{B,T} */
12181             feature = dc_isar_feature(aa64_bf16, s);
12182             break;
12183         default:
12184             unallocated_encoding(s);
12185             return;
12186         }
12187         break;
12188     default:
12189         unallocated_encoding(s);
12190         return;
12191     }
12192     if (!feature) {
12193         unallocated_encoding(s);
12194         return;
12195     }
12196     if (!fp_access_check(s)) {
12197         return;
12198     }
12199 
12200     switch (opcode) {
12201     case 0x0: /* SQRDMLAH (vector) */
12202         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
12203         return;
12204 
12205     case 0x1: /* SQRDMLSH (vector) */
12206         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
12207         return;
12208 
12209     case 0x2: /* SDOT / UDOT */
12210         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
12211                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
12212         return;
12213 
12214     case 0x3: /* USDOT */
12215         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
12216         return;
12217 
12218     case 0x04: /* SMMLA, UMMLA */
12219         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
12220                          u ? gen_helper_gvec_ummla_b
12221                          : gen_helper_gvec_smmla_b);
12222         return;
12223     case 0x05: /* USMMLA */
12224         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
12225         return;
12226 
12227     case 0x8: /* FCMLA, #0 */
12228     case 0x9: /* FCMLA, #90 */
12229     case 0xa: /* FCMLA, #180 */
12230     case 0xb: /* FCMLA, #270 */
12231         rot = extract32(opcode, 0, 2);
12232         switch (size) {
12233         case 1:
12234             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
12235                               gen_helper_gvec_fcmlah);
12236             break;
12237         case 2:
12238             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12239                               gen_helper_gvec_fcmlas);
12240             break;
12241         case 3:
12242             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12243                               gen_helper_gvec_fcmlad);
12244             break;
12245         default:
12246             g_assert_not_reached();
12247         }
12248         return;
12249 
12250     case 0xc: /* FCADD, #90 */
12251     case 0xe: /* FCADD, #270 */
12252         rot = extract32(opcode, 1, 1);
12253         switch (size) {
12254         case 1:
12255             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12256                               gen_helper_gvec_fcaddh);
12257             break;
12258         case 2:
12259             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12260                               gen_helper_gvec_fcadds);
12261             break;
12262         case 3:
12263             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12264                               gen_helper_gvec_fcaddd);
12265             break;
12266         default:
12267             g_assert_not_reached();
12268         }
12269         return;
12270 
12271     case 0xd: /* BFMMLA */
12272         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
12273         return;
12274     case 0xf:
12275         switch (size) {
12276         case 1: /* BFDOT */
12277             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
12278             break;
12279         case 3: /* BFMLAL{B,T} */
12280             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
12281                               gen_helper_gvec_bfmlal);
12282             break;
12283         default:
12284             g_assert_not_reached();
12285         }
12286         return;
12287 
12288     default:
12289         g_assert_not_reached();
12290     }
12291 }
12292 
12293 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12294                                   int size, int rn, int rd)
12295 {
12296     /* Handle 2-reg-misc ops which are widening (so each size element
12297      * in the source becomes a 2*size element in the destination.
12298      * The only instruction like this is FCVTL.
12299      */
12300     int pass;
12301 
12302     if (size == 3) {
12303         /* 32 -> 64 bit fp conversion */
12304         TCGv_i64 tcg_res[2];
12305         int srcelt = is_q ? 2 : 0;
12306 
12307         for (pass = 0; pass < 2; pass++) {
12308             TCGv_i32 tcg_op = tcg_temp_new_i32();
12309             tcg_res[pass] = tcg_temp_new_i64();
12310 
12311             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12312             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
12313             tcg_temp_free_i32(tcg_op);
12314         }
12315         for (pass = 0; pass < 2; pass++) {
12316             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12317             tcg_temp_free_i64(tcg_res[pass]);
12318         }
12319     } else {
12320         /* 16 -> 32 bit fp conversion */
12321         int srcelt = is_q ? 4 : 0;
12322         TCGv_i32 tcg_res[4];
12323         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12324         TCGv_i32 ahp = get_ahp_flag();
12325 
12326         for (pass = 0; pass < 4; pass++) {
12327             tcg_res[pass] = tcg_temp_new_i32();
12328 
12329             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12330             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12331                                            fpst, ahp);
12332         }
12333         for (pass = 0; pass < 4; pass++) {
12334             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12335             tcg_temp_free_i32(tcg_res[pass]);
12336         }
12337 
12338         tcg_temp_free_ptr(fpst);
12339         tcg_temp_free_i32(ahp);
12340     }
12341 }
12342 
12343 static void handle_rev(DisasContext *s, int opcode, bool u,
12344                        bool is_q, int size, int rn, int rd)
12345 {
12346     int op = (opcode << 1) | u;
12347     int opsz = op + size;
12348     int grp_size = 3 - opsz;
12349     int dsize = is_q ? 128 : 64;
12350     int i;
12351 
12352     if (opsz >= 3) {
12353         unallocated_encoding(s);
12354         return;
12355     }
12356 
12357     if (!fp_access_check(s)) {
12358         return;
12359     }
12360 
12361     if (size == 0) {
12362         /* Special case bytes, use bswap op on each group of elements */
12363         int groups = dsize / (8 << grp_size);
12364 
12365         for (i = 0; i < groups; i++) {
12366             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12367 
12368             read_vec_element(s, tcg_tmp, rn, i, grp_size);
12369             switch (grp_size) {
12370             case MO_16:
12371                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12372                 break;
12373             case MO_32:
12374                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12375                 break;
12376             case MO_64:
12377                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12378                 break;
12379             default:
12380                 g_assert_not_reached();
12381             }
12382             write_vec_element(s, tcg_tmp, rd, i, grp_size);
12383             tcg_temp_free_i64(tcg_tmp);
12384         }
12385         clear_vec_high(s, is_q, rd);
12386     } else {
12387         int revmask = (1 << grp_size) - 1;
12388         int esize = 8 << size;
12389         int elements = dsize / esize;
12390         TCGv_i64 tcg_rn = tcg_temp_new_i64();
12391         TCGv_i64 tcg_rd = tcg_const_i64(0);
12392         TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
12393 
12394         for (i = 0; i < elements; i++) {
12395             int e_rev = (i & 0xf) ^ revmask;
12396             int off = e_rev * esize;
12397             read_vec_element(s, tcg_rn, rn, i, size);
12398             if (off >= 64) {
12399                 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
12400                                     tcg_rn, off - 64, esize);
12401             } else {
12402                 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
12403             }
12404         }
12405         write_vec_element(s, tcg_rd, rd, 0, MO_64);
12406         write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
12407 
12408         tcg_temp_free_i64(tcg_rd_hi);
12409         tcg_temp_free_i64(tcg_rd);
12410         tcg_temp_free_i64(tcg_rn);
12411     }
12412 }
12413 
12414 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12415                                   bool is_q, int size, int rn, int rd)
12416 {
12417     /* Implement the pairwise operations from 2-misc:
12418      * SADDLP, UADDLP, SADALP, UADALP.
12419      * These all add pairs of elements in the input to produce a
12420      * double-width result element in the output (possibly accumulating).
12421      */
12422     bool accum = (opcode == 0x6);
12423     int maxpass = is_q ? 2 : 1;
12424     int pass;
12425     TCGv_i64 tcg_res[2];
12426 
12427     if (size == 2) {
12428         /* 32 + 32 -> 64 op */
12429         MemOp memop = size + (u ? 0 : MO_SIGN);
12430 
12431         for (pass = 0; pass < maxpass; pass++) {
12432             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12433             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12434 
12435             tcg_res[pass] = tcg_temp_new_i64();
12436 
12437             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12438             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12439             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12440             if (accum) {
12441                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12442                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12443             }
12444 
12445             tcg_temp_free_i64(tcg_op1);
12446             tcg_temp_free_i64(tcg_op2);
12447         }
12448     } else {
12449         for (pass = 0; pass < maxpass; pass++) {
12450             TCGv_i64 tcg_op = tcg_temp_new_i64();
12451             NeonGenOne64OpFn *genfn;
12452             static NeonGenOne64OpFn * const fns[2][2] = {
12453                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12454                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12455             };
12456 
12457             genfn = fns[size][u];
12458 
12459             tcg_res[pass] = tcg_temp_new_i64();
12460 
12461             read_vec_element(s, tcg_op, rn, pass, MO_64);
12462             genfn(tcg_res[pass], tcg_op);
12463 
12464             if (accum) {
12465                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12466                 if (size == 0) {
12467                     gen_helper_neon_addl_u16(tcg_res[pass],
12468                                              tcg_res[pass], tcg_op);
12469                 } else {
12470                     gen_helper_neon_addl_u32(tcg_res[pass],
12471                                              tcg_res[pass], tcg_op);
12472                 }
12473             }
12474             tcg_temp_free_i64(tcg_op);
12475         }
12476     }
12477     if (!is_q) {
12478         tcg_res[1] = tcg_constant_i64(0);
12479     }
12480     for (pass = 0; pass < 2; pass++) {
12481         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12482         tcg_temp_free_i64(tcg_res[pass]);
12483     }
12484 }
12485 
12486 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12487 {
12488     /* Implement SHLL and SHLL2 */
12489     int pass;
12490     int part = is_q ? 2 : 0;
12491     TCGv_i64 tcg_res[2];
12492 
12493     for (pass = 0; pass < 2; pass++) {
12494         static NeonGenWidenFn * const widenfns[3] = {
12495             gen_helper_neon_widen_u8,
12496             gen_helper_neon_widen_u16,
12497             tcg_gen_extu_i32_i64,
12498         };
12499         NeonGenWidenFn *widenfn = widenfns[size];
12500         TCGv_i32 tcg_op = tcg_temp_new_i32();
12501 
12502         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12503         tcg_res[pass] = tcg_temp_new_i64();
12504         widenfn(tcg_res[pass], tcg_op);
12505         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12506 
12507         tcg_temp_free_i32(tcg_op);
12508     }
12509 
12510     for (pass = 0; pass < 2; pass++) {
12511         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12512         tcg_temp_free_i64(tcg_res[pass]);
12513     }
12514 }
12515 
12516 /* AdvSIMD two reg misc
12517  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12518  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12519  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12520  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12521  */
12522 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12523 {
12524     int size = extract32(insn, 22, 2);
12525     int opcode = extract32(insn, 12, 5);
12526     bool u = extract32(insn, 29, 1);
12527     bool is_q = extract32(insn, 30, 1);
12528     int rn = extract32(insn, 5, 5);
12529     int rd = extract32(insn, 0, 5);
12530     bool need_fpstatus = false;
12531     bool need_rmode = false;
12532     int rmode = -1;
12533     TCGv_i32 tcg_rmode;
12534     TCGv_ptr tcg_fpstatus;
12535 
12536     switch (opcode) {
12537     case 0x0: /* REV64, REV32 */
12538     case 0x1: /* REV16 */
12539         handle_rev(s, opcode, u, is_q, size, rn, rd);
12540         return;
12541     case 0x5: /* CNT, NOT, RBIT */
12542         if (u && size == 0) {
12543             /* NOT */
12544             break;
12545         } else if (u && size == 1) {
12546             /* RBIT */
12547             break;
12548         } else if (!u && size == 0) {
12549             /* CNT */
12550             break;
12551         }
12552         unallocated_encoding(s);
12553         return;
12554     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12555     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12556         if (size == 3) {
12557             unallocated_encoding(s);
12558             return;
12559         }
12560         if (!fp_access_check(s)) {
12561             return;
12562         }
12563 
12564         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12565         return;
12566     case 0x4: /* CLS, CLZ */
12567         if (size == 3) {
12568             unallocated_encoding(s);
12569             return;
12570         }
12571         break;
12572     case 0x2: /* SADDLP, UADDLP */
12573     case 0x6: /* SADALP, UADALP */
12574         if (size == 3) {
12575             unallocated_encoding(s);
12576             return;
12577         }
12578         if (!fp_access_check(s)) {
12579             return;
12580         }
12581         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12582         return;
12583     case 0x13: /* SHLL, SHLL2 */
12584         if (u == 0 || size == 3) {
12585             unallocated_encoding(s);
12586             return;
12587         }
12588         if (!fp_access_check(s)) {
12589             return;
12590         }
12591         handle_shll(s, is_q, size, rn, rd);
12592         return;
12593     case 0xa: /* CMLT */
12594         if (u == 1) {
12595             unallocated_encoding(s);
12596             return;
12597         }
12598         /* fall through */
12599     case 0x8: /* CMGT, CMGE */
12600     case 0x9: /* CMEQ, CMLE */
12601     case 0xb: /* ABS, NEG */
12602         if (size == 3 && !is_q) {
12603             unallocated_encoding(s);
12604             return;
12605         }
12606         break;
12607     case 0x3: /* SUQADD, USQADD */
12608         if (size == 3 && !is_q) {
12609             unallocated_encoding(s);
12610             return;
12611         }
12612         if (!fp_access_check(s)) {
12613             return;
12614         }
12615         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12616         return;
12617     case 0x7: /* SQABS, SQNEG */
12618         if (size == 3 && !is_q) {
12619             unallocated_encoding(s);
12620             return;
12621         }
12622         break;
12623     case 0xc ... 0xf:
12624     case 0x16 ... 0x1f:
12625     {
12626         /* Floating point: U, size[1] and opcode indicate operation;
12627          * size[0] indicates single or double precision.
12628          */
12629         int is_double = extract32(size, 0, 1);
12630         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12631         size = is_double ? 3 : 2;
12632         switch (opcode) {
12633         case 0x2f: /* FABS */
12634         case 0x6f: /* FNEG */
12635             if (size == 3 && !is_q) {
12636                 unallocated_encoding(s);
12637                 return;
12638             }
12639             break;
12640         case 0x1d: /* SCVTF */
12641         case 0x5d: /* UCVTF */
12642         {
12643             bool is_signed = (opcode == 0x1d) ? true : false;
12644             int elements = is_double ? 2 : is_q ? 4 : 2;
12645             if (is_double && !is_q) {
12646                 unallocated_encoding(s);
12647                 return;
12648             }
12649             if (!fp_access_check(s)) {
12650                 return;
12651             }
12652             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12653             return;
12654         }
12655         case 0x2c: /* FCMGT (zero) */
12656         case 0x2d: /* FCMEQ (zero) */
12657         case 0x2e: /* FCMLT (zero) */
12658         case 0x6c: /* FCMGE (zero) */
12659         case 0x6d: /* FCMLE (zero) */
12660             if (size == 3 && !is_q) {
12661                 unallocated_encoding(s);
12662                 return;
12663             }
12664             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12665             return;
12666         case 0x7f: /* FSQRT */
12667             if (size == 3 && !is_q) {
12668                 unallocated_encoding(s);
12669                 return;
12670             }
12671             break;
12672         case 0x1a: /* FCVTNS */
12673         case 0x1b: /* FCVTMS */
12674         case 0x3a: /* FCVTPS */
12675         case 0x3b: /* FCVTZS */
12676         case 0x5a: /* FCVTNU */
12677         case 0x5b: /* FCVTMU */
12678         case 0x7a: /* FCVTPU */
12679         case 0x7b: /* FCVTZU */
12680             need_fpstatus = true;
12681             need_rmode = true;
12682             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12683             if (size == 3 && !is_q) {
12684                 unallocated_encoding(s);
12685                 return;
12686             }
12687             break;
12688         case 0x5c: /* FCVTAU */
12689         case 0x1c: /* FCVTAS */
12690             need_fpstatus = true;
12691             need_rmode = true;
12692             rmode = FPROUNDING_TIEAWAY;
12693             if (size == 3 && !is_q) {
12694                 unallocated_encoding(s);
12695                 return;
12696             }
12697             break;
12698         case 0x3c: /* URECPE */
12699             if (size == 3) {
12700                 unallocated_encoding(s);
12701                 return;
12702             }
12703             /* fall through */
12704         case 0x3d: /* FRECPE */
12705         case 0x7d: /* FRSQRTE */
12706             if (size == 3 && !is_q) {
12707                 unallocated_encoding(s);
12708                 return;
12709             }
12710             if (!fp_access_check(s)) {
12711                 return;
12712             }
12713             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12714             return;
12715         case 0x56: /* FCVTXN, FCVTXN2 */
12716             if (size == 2) {
12717                 unallocated_encoding(s);
12718                 return;
12719             }
12720             /* fall through */
12721         case 0x16: /* FCVTN, FCVTN2 */
12722             /* handle_2misc_narrow does a 2*size -> size operation, but these
12723              * instructions encode the source size rather than dest size.
12724              */
12725             if (!fp_access_check(s)) {
12726                 return;
12727             }
12728             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12729             return;
12730         case 0x36: /* BFCVTN, BFCVTN2 */
12731             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12732                 unallocated_encoding(s);
12733                 return;
12734             }
12735             if (!fp_access_check(s)) {
12736                 return;
12737             }
12738             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12739             return;
12740         case 0x17: /* FCVTL, FCVTL2 */
12741             if (!fp_access_check(s)) {
12742                 return;
12743             }
12744             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12745             return;
12746         case 0x18: /* FRINTN */
12747         case 0x19: /* FRINTM */
12748         case 0x38: /* FRINTP */
12749         case 0x39: /* FRINTZ */
12750             need_rmode = true;
12751             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12752             /* fall through */
12753         case 0x59: /* FRINTX */
12754         case 0x79: /* FRINTI */
12755             need_fpstatus = true;
12756             if (size == 3 && !is_q) {
12757                 unallocated_encoding(s);
12758                 return;
12759             }
12760             break;
12761         case 0x58: /* FRINTA */
12762             need_rmode = true;
12763             rmode = FPROUNDING_TIEAWAY;
12764             need_fpstatus = true;
12765             if (size == 3 && !is_q) {
12766                 unallocated_encoding(s);
12767                 return;
12768             }
12769             break;
12770         case 0x7c: /* URSQRTE */
12771             if (size == 3) {
12772                 unallocated_encoding(s);
12773                 return;
12774             }
12775             break;
12776         case 0x1e: /* FRINT32Z */
12777         case 0x1f: /* FRINT64Z */
12778             need_rmode = true;
12779             rmode = FPROUNDING_ZERO;
12780             /* fall through */
12781         case 0x5e: /* FRINT32X */
12782         case 0x5f: /* FRINT64X */
12783             need_fpstatus = true;
12784             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12785                 unallocated_encoding(s);
12786                 return;
12787             }
12788             break;
12789         default:
12790             unallocated_encoding(s);
12791             return;
12792         }
12793         break;
12794     }
12795     default:
12796         unallocated_encoding(s);
12797         return;
12798     }
12799 
12800     if (!fp_access_check(s)) {
12801         return;
12802     }
12803 
12804     if (need_fpstatus || need_rmode) {
12805         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12806     } else {
12807         tcg_fpstatus = NULL;
12808     }
12809     if (need_rmode) {
12810         tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12811         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12812     } else {
12813         tcg_rmode = NULL;
12814     }
12815 
12816     switch (opcode) {
12817     case 0x5:
12818         if (u && size == 0) { /* NOT */
12819             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12820             return;
12821         }
12822         break;
12823     case 0x8: /* CMGT, CMGE */
12824         if (u) {
12825             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12826         } else {
12827             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12828         }
12829         return;
12830     case 0x9: /* CMEQ, CMLE */
12831         if (u) {
12832             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12833         } else {
12834             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12835         }
12836         return;
12837     case 0xa: /* CMLT */
12838         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12839         return;
12840     case 0xb:
12841         if (u) { /* ABS, NEG */
12842             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12843         } else {
12844             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12845         }
12846         return;
12847     }
12848 
12849     if (size == 3) {
12850         /* All 64-bit element operations can be shared with scalar 2misc */
12851         int pass;
12852 
12853         /* Coverity claims (size == 3 && !is_q) has been eliminated
12854          * from all paths leading to here.
12855          */
12856         tcg_debug_assert(is_q);
12857         for (pass = 0; pass < 2; pass++) {
12858             TCGv_i64 tcg_op = tcg_temp_new_i64();
12859             TCGv_i64 tcg_res = tcg_temp_new_i64();
12860 
12861             read_vec_element(s, tcg_op, rn, pass, MO_64);
12862 
12863             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12864                             tcg_rmode, tcg_fpstatus);
12865 
12866             write_vec_element(s, tcg_res, rd, pass, MO_64);
12867 
12868             tcg_temp_free_i64(tcg_res);
12869             tcg_temp_free_i64(tcg_op);
12870         }
12871     } else {
12872         int pass;
12873 
12874         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12875             TCGv_i32 tcg_op = tcg_temp_new_i32();
12876             TCGv_i32 tcg_res = tcg_temp_new_i32();
12877 
12878             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12879 
12880             if (size == 2) {
12881                 /* Special cases for 32 bit elements */
12882                 switch (opcode) {
12883                 case 0x4: /* CLS */
12884                     if (u) {
12885                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12886                     } else {
12887                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12888                     }
12889                     break;
12890                 case 0x7: /* SQABS, SQNEG */
12891                     if (u) {
12892                         gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12893                     } else {
12894                         gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12895                     }
12896                     break;
12897                 case 0x2f: /* FABS */
12898                     gen_helper_vfp_abss(tcg_res, tcg_op);
12899                     break;
12900                 case 0x6f: /* FNEG */
12901                     gen_helper_vfp_negs(tcg_res, tcg_op);
12902                     break;
12903                 case 0x7f: /* FSQRT */
12904                     gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12905                     break;
12906                 case 0x1a: /* FCVTNS */
12907                 case 0x1b: /* FCVTMS */
12908                 case 0x1c: /* FCVTAS */
12909                 case 0x3a: /* FCVTPS */
12910                 case 0x3b: /* FCVTZS */
12911                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12912                                          tcg_constant_i32(0), tcg_fpstatus);
12913                     break;
12914                 case 0x5a: /* FCVTNU */
12915                 case 0x5b: /* FCVTMU */
12916                 case 0x5c: /* FCVTAU */
12917                 case 0x7a: /* FCVTPU */
12918                 case 0x7b: /* FCVTZU */
12919                     gen_helper_vfp_touls(tcg_res, tcg_op,
12920                                          tcg_constant_i32(0), tcg_fpstatus);
12921                     break;
12922                 case 0x18: /* FRINTN */
12923                 case 0x19: /* FRINTM */
12924                 case 0x38: /* FRINTP */
12925                 case 0x39: /* FRINTZ */
12926                 case 0x58: /* FRINTA */
12927                 case 0x79: /* FRINTI */
12928                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12929                     break;
12930                 case 0x59: /* FRINTX */
12931                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12932                     break;
12933                 case 0x7c: /* URSQRTE */
12934                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12935                     break;
12936                 case 0x1e: /* FRINT32Z */
12937                 case 0x5e: /* FRINT32X */
12938                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12939                     break;
12940                 case 0x1f: /* FRINT64Z */
12941                 case 0x5f: /* FRINT64X */
12942                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12943                     break;
12944                 default:
12945                     g_assert_not_reached();
12946                 }
12947             } else {
12948                 /* Use helpers for 8 and 16 bit elements */
12949                 switch (opcode) {
12950                 case 0x5: /* CNT, RBIT */
12951                     /* For these two insns size is part of the opcode specifier
12952                      * (handled earlier); they always operate on byte elements.
12953                      */
12954                     if (u) {
12955                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12956                     } else {
12957                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12958                     }
12959                     break;
12960                 case 0x7: /* SQABS, SQNEG */
12961                 {
12962                     NeonGenOneOpEnvFn *genfn;
12963                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12964                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12965                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12966                     };
12967                     genfn = fns[size][u];
12968                     genfn(tcg_res, cpu_env, tcg_op);
12969                     break;
12970                 }
12971                 case 0x4: /* CLS, CLZ */
12972                     if (u) {
12973                         if (size == 0) {
12974                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12975                         } else {
12976                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12977                         }
12978                     } else {
12979                         if (size == 0) {
12980                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12981                         } else {
12982                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12983                         }
12984                     }
12985                     break;
12986                 default:
12987                     g_assert_not_reached();
12988                 }
12989             }
12990 
12991             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12992 
12993             tcg_temp_free_i32(tcg_res);
12994             tcg_temp_free_i32(tcg_op);
12995         }
12996     }
12997     clear_vec_high(s, is_q, rd);
12998 
12999     if (need_rmode) {
13000         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13001         tcg_temp_free_i32(tcg_rmode);
13002     }
13003     if (need_fpstatus) {
13004         tcg_temp_free_ptr(tcg_fpstatus);
13005     }
13006 }
13007 
13008 /* AdvSIMD [scalar] two register miscellaneous (FP16)
13009  *
13010  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
13011  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13012  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13013  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13014  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
13015  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
13016  *
13017  * This actually covers two groups where scalar access is governed by
13018  * bit 28. A bunch of the instructions (float to integral) only exist
13019  * in the vector form and are un-allocated for the scalar decode. Also
13020  * in the scalar decode Q is always 1.
13021  */
13022 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
13023 {
13024     int fpop, opcode, a, u;
13025     int rn, rd;
13026     bool is_q;
13027     bool is_scalar;
13028     bool only_in_vector = false;
13029 
13030     int pass;
13031     TCGv_i32 tcg_rmode = NULL;
13032     TCGv_ptr tcg_fpstatus = NULL;
13033     bool need_rmode = false;
13034     bool need_fpst = true;
13035     int rmode;
13036 
13037     if (!dc_isar_feature(aa64_fp16, s)) {
13038         unallocated_encoding(s);
13039         return;
13040     }
13041 
13042     rd = extract32(insn, 0, 5);
13043     rn = extract32(insn, 5, 5);
13044 
13045     a = extract32(insn, 23, 1);
13046     u = extract32(insn, 29, 1);
13047     is_scalar = extract32(insn, 28, 1);
13048     is_q = extract32(insn, 30, 1);
13049 
13050     opcode = extract32(insn, 12, 5);
13051     fpop = deposit32(opcode, 5, 1, a);
13052     fpop = deposit32(fpop, 6, 1, u);
13053 
13054     switch (fpop) {
13055     case 0x1d: /* SCVTF */
13056     case 0x5d: /* UCVTF */
13057     {
13058         int elements;
13059 
13060         if (is_scalar) {
13061             elements = 1;
13062         } else {
13063             elements = (is_q ? 8 : 4);
13064         }
13065 
13066         if (!fp_access_check(s)) {
13067             return;
13068         }
13069         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
13070         return;
13071     }
13072     break;
13073     case 0x2c: /* FCMGT (zero) */
13074     case 0x2d: /* FCMEQ (zero) */
13075     case 0x2e: /* FCMLT (zero) */
13076     case 0x6c: /* FCMGE (zero) */
13077     case 0x6d: /* FCMLE (zero) */
13078         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
13079         return;
13080     case 0x3d: /* FRECPE */
13081     case 0x3f: /* FRECPX */
13082         break;
13083     case 0x18: /* FRINTN */
13084         need_rmode = true;
13085         only_in_vector = true;
13086         rmode = FPROUNDING_TIEEVEN;
13087         break;
13088     case 0x19: /* FRINTM */
13089         need_rmode = true;
13090         only_in_vector = true;
13091         rmode = FPROUNDING_NEGINF;
13092         break;
13093     case 0x38: /* FRINTP */
13094         need_rmode = true;
13095         only_in_vector = true;
13096         rmode = FPROUNDING_POSINF;
13097         break;
13098     case 0x39: /* FRINTZ */
13099         need_rmode = true;
13100         only_in_vector = true;
13101         rmode = FPROUNDING_ZERO;
13102         break;
13103     case 0x58: /* FRINTA */
13104         need_rmode = true;
13105         only_in_vector = true;
13106         rmode = FPROUNDING_TIEAWAY;
13107         break;
13108     case 0x59: /* FRINTX */
13109     case 0x79: /* FRINTI */
13110         only_in_vector = true;
13111         /* current rounding mode */
13112         break;
13113     case 0x1a: /* FCVTNS */
13114         need_rmode = true;
13115         rmode = FPROUNDING_TIEEVEN;
13116         break;
13117     case 0x1b: /* FCVTMS */
13118         need_rmode = true;
13119         rmode = FPROUNDING_NEGINF;
13120         break;
13121     case 0x1c: /* FCVTAS */
13122         need_rmode = true;
13123         rmode = FPROUNDING_TIEAWAY;
13124         break;
13125     case 0x3a: /* FCVTPS */
13126         need_rmode = true;
13127         rmode = FPROUNDING_POSINF;
13128         break;
13129     case 0x3b: /* FCVTZS */
13130         need_rmode = true;
13131         rmode = FPROUNDING_ZERO;
13132         break;
13133     case 0x5a: /* FCVTNU */
13134         need_rmode = true;
13135         rmode = FPROUNDING_TIEEVEN;
13136         break;
13137     case 0x5b: /* FCVTMU */
13138         need_rmode = true;
13139         rmode = FPROUNDING_NEGINF;
13140         break;
13141     case 0x5c: /* FCVTAU */
13142         need_rmode = true;
13143         rmode = FPROUNDING_TIEAWAY;
13144         break;
13145     case 0x7a: /* FCVTPU */
13146         need_rmode = true;
13147         rmode = FPROUNDING_POSINF;
13148         break;
13149     case 0x7b: /* FCVTZU */
13150         need_rmode = true;
13151         rmode = FPROUNDING_ZERO;
13152         break;
13153     case 0x2f: /* FABS */
13154     case 0x6f: /* FNEG */
13155         need_fpst = false;
13156         break;
13157     case 0x7d: /* FRSQRTE */
13158     case 0x7f: /* FSQRT (vector) */
13159         break;
13160     default:
13161         unallocated_encoding(s);
13162         return;
13163     }
13164 
13165 
13166     /* Check additional constraints for the scalar encoding */
13167     if (is_scalar) {
13168         if (!is_q) {
13169             unallocated_encoding(s);
13170             return;
13171         }
13172         /* FRINTxx is only in the vector form */
13173         if (only_in_vector) {
13174             unallocated_encoding(s);
13175             return;
13176         }
13177     }
13178 
13179     if (!fp_access_check(s)) {
13180         return;
13181     }
13182 
13183     if (need_rmode || need_fpst) {
13184         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
13185     }
13186 
13187     if (need_rmode) {
13188         tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
13189         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13190     }
13191 
13192     if (is_scalar) {
13193         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
13194         TCGv_i32 tcg_res = tcg_temp_new_i32();
13195 
13196         switch (fpop) {
13197         case 0x1a: /* FCVTNS */
13198         case 0x1b: /* FCVTMS */
13199         case 0x1c: /* FCVTAS */
13200         case 0x3a: /* FCVTPS */
13201         case 0x3b: /* FCVTZS */
13202             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13203             break;
13204         case 0x3d: /* FRECPE */
13205             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13206             break;
13207         case 0x3f: /* FRECPX */
13208             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
13209             break;
13210         case 0x5a: /* FCVTNU */
13211         case 0x5b: /* FCVTMU */
13212         case 0x5c: /* FCVTAU */
13213         case 0x7a: /* FCVTPU */
13214         case 0x7b: /* FCVTZU */
13215             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13216             break;
13217         case 0x6f: /* FNEG */
13218             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13219             break;
13220         case 0x7d: /* FRSQRTE */
13221             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13222             break;
13223         default:
13224             g_assert_not_reached();
13225         }
13226 
13227         /* limit any sign extension going on */
13228         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
13229         write_fp_sreg(s, rd, tcg_res);
13230 
13231         tcg_temp_free_i32(tcg_res);
13232         tcg_temp_free_i32(tcg_op);
13233     } else {
13234         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
13235             TCGv_i32 tcg_op = tcg_temp_new_i32();
13236             TCGv_i32 tcg_res = tcg_temp_new_i32();
13237 
13238             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
13239 
13240             switch (fpop) {
13241             case 0x1a: /* FCVTNS */
13242             case 0x1b: /* FCVTMS */
13243             case 0x1c: /* FCVTAS */
13244             case 0x3a: /* FCVTPS */
13245             case 0x3b: /* FCVTZS */
13246                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13247                 break;
13248             case 0x3d: /* FRECPE */
13249                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13250                 break;
13251             case 0x5a: /* FCVTNU */
13252             case 0x5b: /* FCVTMU */
13253             case 0x5c: /* FCVTAU */
13254             case 0x7a: /* FCVTPU */
13255             case 0x7b: /* FCVTZU */
13256                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13257                 break;
13258             case 0x18: /* FRINTN */
13259             case 0x19: /* FRINTM */
13260             case 0x38: /* FRINTP */
13261             case 0x39: /* FRINTZ */
13262             case 0x58: /* FRINTA */
13263             case 0x79: /* FRINTI */
13264                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
13265                 break;
13266             case 0x59: /* FRINTX */
13267                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
13268                 break;
13269             case 0x2f: /* FABS */
13270                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
13271                 break;
13272             case 0x6f: /* FNEG */
13273                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13274                 break;
13275             case 0x7d: /* FRSQRTE */
13276                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13277                 break;
13278             case 0x7f: /* FSQRT */
13279                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
13280                 break;
13281             default:
13282                 g_assert_not_reached();
13283             }
13284 
13285             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
13286 
13287             tcg_temp_free_i32(tcg_res);
13288             tcg_temp_free_i32(tcg_op);
13289         }
13290 
13291         clear_vec_high(s, is_q, rd);
13292     }
13293 
13294     if (tcg_rmode) {
13295         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13296         tcg_temp_free_i32(tcg_rmode);
13297     }
13298 
13299     if (tcg_fpstatus) {
13300         tcg_temp_free_ptr(tcg_fpstatus);
13301     }
13302 }
13303 
13304 /* AdvSIMD scalar x indexed element
13305  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
13306  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13307  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
13308  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13309  * AdvSIMD vector x indexed element
13310  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
13311  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13312  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
13313  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13314  */
13315 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
13316 {
13317     /* This encoding has two kinds of instruction:
13318      *  normal, where we perform elt x idxelt => elt for each
13319      *     element in the vector
13320      *  long, where we perform elt x idxelt and generate a result of
13321      *     double the width of the input element
13322      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13323      */
13324     bool is_scalar = extract32(insn, 28, 1);
13325     bool is_q = extract32(insn, 30, 1);
13326     bool u = extract32(insn, 29, 1);
13327     int size = extract32(insn, 22, 2);
13328     int l = extract32(insn, 21, 1);
13329     int m = extract32(insn, 20, 1);
13330     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13331     int rm = extract32(insn, 16, 4);
13332     int opcode = extract32(insn, 12, 4);
13333     int h = extract32(insn, 11, 1);
13334     int rn = extract32(insn, 5, 5);
13335     int rd = extract32(insn, 0, 5);
13336     bool is_long = false;
13337     int is_fp = 0;
13338     bool is_fp16 = false;
13339     int index;
13340     TCGv_ptr fpst;
13341 
13342     switch (16 * u + opcode) {
13343     case 0x08: /* MUL */
13344     case 0x10: /* MLA */
13345     case 0x14: /* MLS */
13346         if (is_scalar) {
13347             unallocated_encoding(s);
13348             return;
13349         }
13350         break;
13351     case 0x02: /* SMLAL, SMLAL2 */
13352     case 0x12: /* UMLAL, UMLAL2 */
13353     case 0x06: /* SMLSL, SMLSL2 */
13354     case 0x16: /* UMLSL, UMLSL2 */
13355     case 0x0a: /* SMULL, SMULL2 */
13356     case 0x1a: /* UMULL, UMULL2 */
13357         if (is_scalar) {
13358             unallocated_encoding(s);
13359             return;
13360         }
13361         is_long = true;
13362         break;
13363     case 0x03: /* SQDMLAL, SQDMLAL2 */
13364     case 0x07: /* SQDMLSL, SQDMLSL2 */
13365     case 0x0b: /* SQDMULL, SQDMULL2 */
13366         is_long = true;
13367         break;
13368     case 0x0c: /* SQDMULH */
13369     case 0x0d: /* SQRDMULH */
13370         break;
13371     case 0x01: /* FMLA */
13372     case 0x05: /* FMLS */
13373     case 0x09: /* FMUL */
13374     case 0x19: /* FMULX */
13375         is_fp = 1;
13376         break;
13377     case 0x1d: /* SQRDMLAH */
13378     case 0x1f: /* SQRDMLSH */
13379         if (!dc_isar_feature(aa64_rdm, s)) {
13380             unallocated_encoding(s);
13381             return;
13382         }
13383         break;
13384     case 0x0e: /* SDOT */
13385     case 0x1e: /* UDOT */
13386         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13387             unallocated_encoding(s);
13388             return;
13389         }
13390         break;
13391     case 0x0f:
13392         switch (size) {
13393         case 0: /* SUDOT */
13394         case 2: /* USDOT */
13395             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13396                 unallocated_encoding(s);
13397                 return;
13398             }
13399             size = MO_32;
13400             break;
13401         case 1: /* BFDOT */
13402             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13403                 unallocated_encoding(s);
13404                 return;
13405             }
13406             size = MO_32;
13407             break;
13408         case 3: /* BFMLAL{B,T} */
13409             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13410                 unallocated_encoding(s);
13411                 return;
13412             }
13413             /* can't set is_fp without other incorrect size checks */
13414             size = MO_16;
13415             break;
13416         default:
13417             unallocated_encoding(s);
13418             return;
13419         }
13420         break;
13421     case 0x11: /* FCMLA #0 */
13422     case 0x13: /* FCMLA #90 */
13423     case 0x15: /* FCMLA #180 */
13424     case 0x17: /* FCMLA #270 */
13425         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13426             unallocated_encoding(s);
13427             return;
13428         }
13429         is_fp = 2;
13430         break;
13431     case 0x00: /* FMLAL */
13432     case 0x04: /* FMLSL */
13433     case 0x18: /* FMLAL2 */
13434     case 0x1c: /* FMLSL2 */
13435         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13436             unallocated_encoding(s);
13437             return;
13438         }
13439         size = MO_16;
13440         /* is_fp, but we pass cpu_env not fp_status.  */
13441         break;
13442     default:
13443         unallocated_encoding(s);
13444         return;
13445     }
13446 
13447     switch (is_fp) {
13448     case 1: /* normal fp */
13449         /* convert insn encoded size to MemOp size */
13450         switch (size) {
13451         case 0: /* half-precision */
13452             size = MO_16;
13453             is_fp16 = true;
13454             break;
13455         case MO_32: /* single precision */
13456         case MO_64: /* double precision */
13457             break;
13458         default:
13459             unallocated_encoding(s);
13460             return;
13461         }
13462         break;
13463 
13464     case 2: /* complex fp */
13465         /* Each indexable element is a complex pair.  */
13466         size += 1;
13467         switch (size) {
13468         case MO_32:
13469             if (h && !is_q) {
13470                 unallocated_encoding(s);
13471                 return;
13472             }
13473             is_fp16 = true;
13474             break;
13475         case MO_64:
13476             break;
13477         default:
13478             unallocated_encoding(s);
13479             return;
13480         }
13481         break;
13482 
13483     default: /* integer */
13484         switch (size) {
13485         case MO_8:
13486         case MO_64:
13487             unallocated_encoding(s);
13488             return;
13489         }
13490         break;
13491     }
13492     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13493         unallocated_encoding(s);
13494         return;
13495     }
13496 
13497     /* Given MemOp size, adjust register and indexing.  */
13498     switch (size) {
13499     case MO_16:
13500         index = h << 2 | l << 1 | m;
13501         break;
13502     case MO_32:
13503         index = h << 1 | l;
13504         rm |= m << 4;
13505         break;
13506     case MO_64:
13507         if (l || !is_q) {
13508             unallocated_encoding(s);
13509             return;
13510         }
13511         index = h;
13512         rm |= m << 4;
13513         break;
13514     default:
13515         g_assert_not_reached();
13516     }
13517 
13518     if (!fp_access_check(s)) {
13519         return;
13520     }
13521 
13522     if (is_fp) {
13523         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13524     } else {
13525         fpst = NULL;
13526     }
13527 
13528     switch (16 * u + opcode) {
13529     case 0x0e: /* SDOT */
13530     case 0x1e: /* UDOT */
13531         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13532                          u ? gen_helper_gvec_udot_idx_b
13533                          : gen_helper_gvec_sdot_idx_b);
13534         return;
13535     case 0x0f:
13536         switch (extract32(insn, 22, 2)) {
13537         case 0: /* SUDOT */
13538             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13539                              gen_helper_gvec_sudot_idx_b);
13540             return;
13541         case 1: /* BFDOT */
13542             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13543                              gen_helper_gvec_bfdot_idx);
13544             return;
13545         case 2: /* USDOT */
13546             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13547                              gen_helper_gvec_usdot_idx_b);
13548             return;
13549         case 3: /* BFMLAL{B,T} */
13550             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13551                               gen_helper_gvec_bfmlal_idx);
13552             return;
13553         }
13554         g_assert_not_reached();
13555     case 0x11: /* FCMLA #0 */
13556     case 0x13: /* FCMLA #90 */
13557     case 0x15: /* FCMLA #180 */
13558     case 0x17: /* FCMLA #270 */
13559         {
13560             int rot = extract32(insn, 13, 2);
13561             int data = (index << 2) | rot;
13562             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13563                                vec_full_reg_offset(s, rn),
13564                                vec_full_reg_offset(s, rm),
13565                                vec_full_reg_offset(s, rd), fpst,
13566                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13567                                size == MO_64
13568                                ? gen_helper_gvec_fcmlas_idx
13569                                : gen_helper_gvec_fcmlah_idx);
13570             tcg_temp_free_ptr(fpst);
13571         }
13572         return;
13573 
13574     case 0x00: /* FMLAL */
13575     case 0x04: /* FMLSL */
13576     case 0x18: /* FMLAL2 */
13577     case 0x1c: /* FMLSL2 */
13578         {
13579             int is_s = extract32(opcode, 2, 1);
13580             int is_2 = u;
13581             int data = (index << 2) | (is_2 << 1) | is_s;
13582             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13583                                vec_full_reg_offset(s, rn),
13584                                vec_full_reg_offset(s, rm), cpu_env,
13585                                is_q ? 16 : 8, vec_full_reg_size(s),
13586                                data, gen_helper_gvec_fmlal_idx_a64);
13587         }
13588         return;
13589 
13590     case 0x08: /* MUL */
13591         if (!is_long && !is_scalar) {
13592             static gen_helper_gvec_3 * const fns[3] = {
13593                 gen_helper_gvec_mul_idx_h,
13594                 gen_helper_gvec_mul_idx_s,
13595                 gen_helper_gvec_mul_idx_d,
13596             };
13597             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13598                                vec_full_reg_offset(s, rn),
13599                                vec_full_reg_offset(s, rm),
13600                                is_q ? 16 : 8, vec_full_reg_size(s),
13601                                index, fns[size - 1]);
13602             return;
13603         }
13604         break;
13605 
13606     case 0x10: /* MLA */
13607         if (!is_long && !is_scalar) {
13608             static gen_helper_gvec_4 * const fns[3] = {
13609                 gen_helper_gvec_mla_idx_h,
13610                 gen_helper_gvec_mla_idx_s,
13611                 gen_helper_gvec_mla_idx_d,
13612             };
13613             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13614                                vec_full_reg_offset(s, rn),
13615                                vec_full_reg_offset(s, rm),
13616                                vec_full_reg_offset(s, rd),
13617                                is_q ? 16 : 8, vec_full_reg_size(s),
13618                                index, fns[size - 1]);
13619             return;
13620         }
13621         break;
13622 
13623     case 0x14: /* MLS */
13624         if (!is_long && !is_scalar) {
13625             static gen_helper_gvec_4 * const fns[3] = {
13626                 gen_helper_gvec_mls_idx_h,
13627                 gen_helper_gvec_mls_idx_s,
13628                 gen_helper_gvec_mls_idx_d,
13629             };
13630             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13631                                vec_full_reg_offset(s, rn),
13632                                vec_full_reg_offset(s, rm),
13633                                vec_full_reg_offset(s, rd),
13634                                is_q ? 16 : 8, vec_full_reg_size(s),
13635                                index, fns[size - 1]);
13636             return;
13637         }
13638         break;
13639     }
13640 
13641     if (size == 3) {
13642         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13643         int pass;
13644 
13645         assert(is_fp && is_q && !is_long);
13646 
13647         read_vec_element(s, tcg_idx, rm, index, MO_64);
13648 
13649         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13650             TCGv_i64 tcg_op = tcg_temp_new_i64();
13651             TCGv_i64 tcg_res = tcg_temp_new_i64();
13652 
13653             read_vec_element(s, tcg_op, rn, pass, MO_64);
13654 
13655             switch (16 * u + opcode) {
13656             case 0x05: /* FMLS */
13657                 /* As usual for ARM, separate negation for fused multiply-add */
13658                 gen_helper_vfp_negd(tcg_op, tcg_op);
13659                 /* fall through */
13660             case 0x01: /* FMLA */
13661                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13662                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13663                 break;
13664             case 0x09: /* FMUL */
13665                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13666                 break;
13667             case 0x19: /* FMULX */
13668                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13669                 break;
13670             default:
13671                 g_assert_not_reached();
13672             }
13673 
13674             write_vec_element(s, tcg_res, rd, pass, MO_64);
13675             tcg_temp_free_i64(tcg_op);
13676             tcg_temp_free_i64(tcg_res);
13677         }
13678 
13679         tcg_temp_free_i64(tcg_idx);
13680         clear_vec_high(s, !is_scalar, rd);
13681     } else if (!is_long) {
13682         /* 32 bit floating point, or 16 or 32 bit integer.
13683          * For the 16 bit scalar case we use the usual Neon helpers and
13684          * rely on the fact that 0 op 0 == 0 with no side effects.
13685          */
13686         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13687         int pass, maxpasses;
13688 
13689         if (is_scalar) {
13690             maxpasses = 1;
13691         } else {
13692             maxpasses = is_q ? 4 : 2;
13693         }
13694 
13695         read_vec_element_i32(s, tcg_idx, rm, index, size);
13696 
13697         if (size == 1 && !is_scalar) {
13698             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13699              * the index into both halves of the 32 bit tcg_idx and then use
13700              * the usual Neon helpers.
13701              */
13702             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13703         }
13704 
13705         for (pass = 0; pass < maxpasses; pass++) {
13706             TCGv_i32 tcg_op = tcg_temp_new_i32();
13707             TCGv_i32 tcg_res = tcg_temp_new_i32();
13708 
13709             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13710 
13711             switch (16 * u + opcode) {
13712             case 0x08: /* MUL */
13713             case 0x10: /* MLA */
13714             case 0x14: /* MLS */
13715             {
13716                 static NeonGenTwoOpFn * const fns[2][2] = {
13717                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13718                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13719                 };
13720                 NeonGenTwoOpFn *genfn;
13721                 bool is_sub = opcode == 0x4;
13722 
13723                 if (size == 1) {
13724                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13725                 } else {
13726                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13727                 }
13728                 if (opcode == 0x8) {
13729                     break;
13730                 }
13731                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13732                 genfn = fns[size - 1][is_sub];
13733                 genfn(tcg_res, tcg_op, tcg_res);
13734                 break;
13735             }
13736             case 0x05: /* FMLS */
13737             case 0x01: /* FMLA */
13738                 read_vec_element_i32(s, tcg_res, rd, pass,
13739                                      is_scalar ? size : MO_32);
13740                 switch (size) {
13741                 case 1:
13742                     if (opcode == 0x5) {
13743                         /* As usual for ARM, separate negation for fused
13744                          * multiply-add */
13745                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13746                     }
13747                     if (is_scalar) {
13748                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13749                                                    tcg_res, fpst);
13750                     } else {
13751                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13752                                                     tcg_res, fpst);
13753                     }
13754                     break;
13755                 case 2:
13756                     if (opcode == 0x5) {
13757                         /* As usual for ARM, separate negation for
13758                          * fused multiply-add */
13759                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13760                     }
13761                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13762                                            tcg_res, fpst);
13763                     break;
13764                 default:
13765                     g_assert_not_reached();
13766                 }
13767                 break;
13768             case 0x09: /* FMUL */
13769                 switch (size) {
13770                 case 1:
13771                     if (is_scalar) {
13772                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13773                                                 tcg_idx, fpst);
13774                     } else {
13775                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13776                                                  tcg_idx, fpst);
13777                     }
13778                     break;
13779                 case 2:
13780                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13781                     break;
13782                 default:
13783                     g_assert_not_reached();
13784                 }
13785                 break;
13786             case 0x19: /* FMULX */
13787                 switch (size) {
13788                 case 1:
13789                     if (is_scalar) {
13790                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13791                                                  tcg_idx, fpst);
13792                     } else {
13793                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13794                                                   tcg_idx, fpst);
13795                     }
13796                     break;
13797                 case 2:
13798                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13799                     break;
13800                 default:
13801                     g_assert_not_reached();
13802                 }
13803                 break;
13804             case 0x0c: /* SQDMULH */
13805                 if (size == 1) {
13806                     gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13807                                                tcg_op, tcg_idx);
13808                 } else {
13809                     gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13810                                                tcg_op, tcg_idx);
13811                 }
13812                 break;
13813             case 0x0d: /* SQRDMULH */
13814                 if (size == 1) {
13815                     gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13816                                                 tcg_op, tcg_idx);
13817                 } else {
13818                     gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13819                                                 tcg_op, tcg_idx);
13820                 }
13821                 break;
13822             case 0x1d: /* SQRDMLAH */
13823                 read_vec_element_i32(s, tcg_res, rd, pass,
13824                                      is_scalar ? size : MO_32);
13825                 if (size == 1) {
13826                     gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13827                                                 tcg_op, tcg_idx, tcg_res);
13828                 } else {
13829                     gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13830                                                 tcg_op, tcg_idx, tcg_res);
13831                 }
13832                 break;
13833             case 0x1f: /* SQRDMLSH */
13834                 read_vec_element_i32(s, tcg_res, rd, pass,
13835                                      is_scalar ? size : MO_32);
13836                 if (size == 1) {
13837                     gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13838                                                 tcg_op, tcg_idx, tcg_res);
13839                 } else {
13840                     gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13841                                                 tcg_op, tcg_idx, tcg_res);
13842                 }
13843                 break;
13844             default:
13845                 g_assert_not_reached();
13846             }
13847 
13848             if (is_scalar) {
13849                 write_fp_sreg(s, rd, tcg_res);
13850             } else {
13851                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13852             }
13853 
13854             tcg_temp_free_i32(tcg_op);
13855             tcg_temp_free_i32(tcg_res);
13856         }
13857 
13858         tcg_temp_free_i32(tcg_idx);
13859         clear_vec_high(s, is_q, rd);
13860     } else {
13861         /* long ops: 16x16->32 or 32x32->64 */
13862         TCGv_i64 tcg_res[2];
13863         int pass;
13864         bool satop = extract32(opcode, 0, 1);
13865         MemOp memop = MO_32;
13866 
13867         if (satop || !u) {
13868             memop |= MO_SIGN;
13869         }
13870 
13871         if (size == 2) {
13872             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13873 
13874             read_vec_element(s, tcg_idx, rm, index, memop);
13875 
13876             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13877                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13878                 TCGv_i64 tcg_passres;
13879                 int passelt;
13880 
13881                 if (is_scalar) {
13882                     passelt = 0;
13883                 } else {
13884                     passelt = pass + (is_q * 2);
13885                 }
13886 
13887                 read_vec_element(s, tcg_op, rn, passelt, memop);
13888 
13889                 tcg_res[pass] = tcg_temp_new_i64();
13890 
13891                 if (opcode == 0xa || opcode == 0xb) {
13892                     /* Non-accumulating ops */
13893                     tcg_passres = tcg_res[pass];
13894                 } else {
13895                     tcg_passres = tcg_temp_new_i64();
13896                 }
13897 
13898                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13899                 tcg_temp_free_i64(tcg_op);
13900 
13901                 if (satop) {
13902                     /* saturating, doubling */
13903                     gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13904                                                       tcg_passres, tcg_passres);
13905                 }
13906 
13907                 if (opcode == 0xa || opcode == 0xb) {
13908                     continue;
13909                 }
13910 
13911                 /* Accumulating op: handle accumulate step */
13912                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13913 
13914                 switch (opcode) {
13915                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13916                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13917                     break;
13918                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13919                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13920                     break;
13921                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13922                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13923                     /* fall through */
13924                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13925                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13926                                                       tcg_res[pass],
13927                                                       tcg_passres);
13928                     break;
13929                 default:
13930                     g_assert_not_reached();
13931                 }
13932                 tcg_temp_free_i64(tcg_passres);
13933             }
13934             tcg_temp_free_i64(tcg_idx);
13935 
13936             clear_vec_high(s, !is_scalar, rd);
13937         } else {
13938             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13939 
13940             assert(size == 1);
13941             read_vec_element_i32(s, tcg_idx, rm, index, size);
13942 
13943             if (!is_scalar) {
13944                 /* The simplest way to handle the 16x16 indexed ops is to
13945                  * duplicate the index into both halves of the 32 bit tcg_idx
13946                  * and then use the usual Neon helpers.
13947                  */
13948                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13949             }
13950 
13951             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13952                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13953                 TCGv_i64 tcg_passres;
13954 
13955                 if (is_scalar) {
13956                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13957                 } else {
13958                     read_vec_element_i32(s, tcg_op, rn,
13959                                          pass + (is_q * 2), MO_32);
13960                 }
13961 
13962                 tcg_res[pass] = tcg_temp_new_i64();
13963 
13964                 if (opcode == 0xa || opcode == 0xb) {
13965                     /* Non-accumulating ops */
13966                     tcg_passres = tcg_res[pass];
13967                 } else {
13968                     tcg_passres = tcg_temp_new_i64();
13969                 }
13970 
13971                 if (memop & MO_SIGN) {
13972                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13973                 } else {
13974                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13975                 }
13976                 if (satop) {
13977                     gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13978                                                       tcg_passres, tcg_passres);
13979                 }
13980                 tcg_temp_free_i32(tcg_op);
13981 
13982                 if (opcode == 0xa || opcode == 0xb) {
13983                     continue;
13984                 }
13985 
13986                 /* Accumulating op: handle accumulate step */
13987                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13988 
13989                 switch (opcode) {
13990                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13991                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13992                                              tcg_passres);
13993                     break;
13994                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13995                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13996                                              tcg_passres);
13997                     break;
13998                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13999                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
14000                     /* fall through */
14001                 case 0x3: /* SQDMLAL, SQDMLAL2 */
14002                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
14003                                                       tcg_res[pass],
14004                                                       tcg_passres);
14005                     break;
14006                 default:
14007                     g_assert_not_reached();
14008                 }
14009                 tcg_temp_free_i64(tcg_passres);
14010             }
14011             tcg_temp_free_i32(tcg_idx);
14012 
14013             if (is_scalar) {
14014                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
14015             }
14016         }
14017 
14018         if (is_scalar) {
14019             tcg_res[1] = tcg_constant_i64(0);
14020         }
14021 
14022         for (pass = 0; pass < 2; pass++) {
14023             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
14024             tcg_temp_free_i64(tcg_res[pass]);
14025         }
14026     }
14027 
14028     if (fpst) {
14029         tcg_temp_free_ptr(fpst);
14030     }
14031 }
14032 
14033 /* Crypto AES
14034  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
14035  * +-----------------+------+-----------+--------+-----+------+------+
14036  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
14037  * +-----------------+------+-----------+--------+-----+------+------+
14038  */
14039 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
14040 {
14041     int size = extract32(insn, 22, 2);
14042     int opcode = extract32(insn, 12, 5);
14043     int rn = extract32(insn, 5, 5);
14044     int rd = extract32(insn, 0, 5);
14045     int decrypt;
14046     gen_helper_gvec_2 *genfn2 = NULL;
14047     gen_helper_gvec_3 *genfn3 = NULL;
14048 
14049     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
14050         unallocated_encoding(s);
14051         return;
14052     }
14053 
14054     switch (opcode) {
14055     case 0x4: /* AESE */
14056         decrypt = 0;
14057         genfn3 = gen_helper_crypto_aese;
14058         break;
14059     case 0x6: /* AESMC */
14060         decrypt = 0;
14061         genfn2 = gen_helper_crypto_aesmc;
14062         break;
14063     case 0x5: /* AESD */
14064         decrypt = 1;
14065         genfn3 = gen_helper_crypto_aese;
14066         break;
14067     case 0x7: /* AESIMC */
14068         decrypt = 1;
14069         genfn2 = gen_helper_crypto_aesmc;
14070         break;
14071     default:
14072         unallocated_encoding(s);
14073         return;
14074     }
14075 
14076     if (!fp_access_check(s)) {
14077         return;
14078     }
14079     if (genfn2) {
14080         gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
14081     } else {
14082         gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
14083     }
14084 }
14085 
14086 /* Crypto three-reg SHA
14087  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
14088  * +-----------------+------+---+------+---+--------+-----+------+------+
14089  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
14090  * +-----------------+------+---+------+---+--------+-----+------+------+
14091  */
14092 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
14093 {
14094     int size = extract32(insn, 22, 2);
14095     int opcode = extract32(insn, 12, 3);
14096     int rm = extract32(insn, 16, 5);
14097     int rn = extract32(insn, 5, 5);
14098     int rd = extract32(insn, 0, 5);
14099     gen_helper_gvec_3 *genfn;
14100     bool feature;
14101 
14102     if (size != 0) {
14103         unallocated_encoding(s);
14104         return;
14105     }
14106 
14107     switch (opcode) {
14108     case 0: /* SHA1C */
14109         genfn = gen_helper_crypto_sha1c;
14110         feature = dc_isar_feature(aa64_sha1, s);
14111         break;
14112     case 1: /* SHA1P */
14113         genfn = gen_helper_crypto_sha1p;
14114         feature = dc_isar_feature(aa64_sha1, s);
14115         break;
14116     case 2: /* SHA1M */
14117         genfn = gen_helper_crypto_sha1m;
14118         feature = dc_isar_feature(aa64_sha1, s);
14119         break;
14120     case 3: /* SHA1SU0 */
14121         genfn = gen_helper_crypto_sha1su0;
14122         feature = dc_isar_feature(aa64_sha1, s);
14123         break;
14124     case 4: /* SHA256H */
14125         genfn = gen_helper_crypto_sha256h;
14126         feature = dc_isar_feature(aa64_sha256, s);
14127         break;
14128     case 5: /* SHA256H2 */
14129         genfn = gen_helper_crypto_sha256h2;
14130         feature = dc_isar_feature(aa64_sha256, s);
14131         break;
14132     case 6: /* SHA256SU1 */
14133         genfn = gen_helper_crypto_sha256su1;
14134         feature = dc_isar_feature(aa64_sha256, s);
14135         break;
14136     default:
14137         unallocated_encoding(s);
14138         return;
14139     }
14140 
14141     if (!feature) {
14142         unallocated_encoding(s);
14143         return;
14144     }
14145 
14146     if (!fp_access_check(s)) {
14147         return;
14148     }
14149     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
14150 }
14151 
14152 /* Crypto two-reg SHA
14153  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
14154  * +-----------------+------+-----------+--------+-----+------+------+
14155  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
14156  * +-----------------+------+-----------+--------+-----+------+------+
14157  */
14158 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
14159 {
14160     int size = extract32(insn, 22, 2);
14161     int opcode = extract32(insn, 12, 5);
14162     int rn = extract32(insn, 5, 5);
14163     int rd = extract32(insn, 0, 5);
14164     gen_helper_gvec_2 *genfn;
14165     bool feature;
14166 
14167     if (size != 0) {
14168         unallocated_encoding(s);
14169         return;
14170     }
14171 
14172     switch (opcode) {
14173     case 0: /* SHA1H */
14174         feature = dc_isar_feature(aa64_sha1, s);
14175         genfn = gen_helper_crypto_sha1h;
14176         break;
14177     case 1: /* SHA1SU1 */
14178         feature = dc_isar_feature(aa64_sha1, s);
14179         genfn = gen_helper_crypto_sha1su1;
14180         break;
14181     case 2: /* SHA256SU0 */
14182         feature = dc_isar_feature(aa64_sha256, s);
14183         genfn = gen_helper_crypto_sha256su0;
14184         break;
14185     default:
14186         unallocated_encoding(s);
14187         return;
14188     }
14189 
14190     if (!feature) {
14191         unallocated_encoding(s);
14192         return;
14193     }
14194 
14195     if (!fp_access_check(s)) {
14196         return;
14197     }
14198     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
14199 }
14200 
14201 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
14202 {
14203     tcg_gen_rotli_i64(d, m, 1);
14204     tcg_gen_xor_i64(d, d, n);
14205 }
14206 
14207 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
14208 {
14209     tcg_gen_rotli_vec(vece, d, m, 1);
14210     tcg_gen_xor_vec(vece, d, d, n);
14211 }
14212 
14213 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
14214                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
14215 {
14216     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
14217     static const GVecGen3 op = {
14218         .fni8 = gen_rax1_i64,
14219         .fniv = gen_rax1_vec,
14220         .opt_opc = vecop_list,
14221         .fno = gen_helper_crypto_rax1,
14222         .vece = MO_64,
14223     };
14224     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
14225 }
14226 
14227 /* Crypto three-reg SHA512
14228  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
14229  * +-----------------------+------+---+---+-----+--------+------+------+
14230  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
14231  * +-----------------------+------+---+---+-----+--------+------+------+
14232  */
14233 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
14234 {
14235     int opcode = extract32(insn, 10, 2);
14236     int o =  extract32(insn, 14, 1);
14237     int rm = extract32(insn, 16, 5);
14238     int rn = extract32(insn, 5, 5);
14239     int rd = extract32(insn, 0, 5);
14240     bool feature;
14241     gen_helper_gvec_3 *oolfn = NULL;
14242     GVecGen3Fn *gvecfn = NULL;
14243 
14244     if (o == 0) {
14245         switch (opcode) {
14246         case 0: /* SHA512H */
14247             feature = dc_isar_feature(aa64_sha512, s);
14248             oolfn = gen_helper_crypto_sha512h;
14249             break;
14250         case 1: /* SHA512H2 */
14251             feature = dc_isar_feature(aa64_sha512, s);
14252             oolfn = gen_helper_crypto_sha512h2;
14253             break;
14254         case 2: /* SHA512SU1 */
14255             feature = dc_isar_feature(aa64_sha512, s);
14256             oolfn = gen_helper_crypto_sha512su1;
14257             break;
14258         case 3: /* RAX1 */
14259             feature = dc_isar_feature(aa64_sha3, s);
14260             gvecfn = gen_gvec_rax1;
14261             break;
14262         default:
14263             g_assert_not_reached();
14264         }
14265     } else {
14266         switch (opcode) {
14267         case 0: /* SM3PARTW1 */
14268             feature = dc_isar_feature(aa64_sm3, s);
14269             oolfn = gen_helper_crypto_sm3partw1;
14270             break;
14271         case 1: /* SM3PARTW2 */
14272             feature = dc_isar_feature(aa64_sm3, s);
14273             oolfn = gen_helper_crypto_sm3partw2;
14274             break;
14275         case 2: /* SM4EKEY */
14276             feature = dc_isar_feature(aa64_sm4, s);
14277             oolfn = gen_helper_crypto_sm4ekey;
14278             break;
14279         default:
14280             unallocated_encoding(s);
14281             return;
14282         }
14283     }
14284 
14285     if (!feature) {
14286         unallocated_encoding(s);
14287         return;
14288     }
14289 
14290     if (!fp_access_check(s)) {
14291         return;
14292     }
14293 
14294     if (oolfn) {
14295         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
14296     } else {
14297         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
14298     }
14299 }
14300 
14301 /* Crypto two-reg SHA512
14302  *  31                                     12  11  10  9    5 4    0
14303  * +-----------------------------------------+--------+------+------+
14304  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
14305  * +-----------------------------------------+--------+------+------+
14306  */
14307 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
14308 {
14309     int opcode = extract32(insn, 10, 2);
14310     int rn = extract32(insn, 5, 5);
14311     int rd = extract32(insn, 0, 5);
14312     bool feature;
14313 
14314     switch (opcode) {
14315     case 0: /* SHA512SU0 */
14316         feature = dc_isar_feature(aa64_sha512, s);
14317         break;
14318     case 1: /* SM4E */
14319         feature = dc_isar_feature(aa64_sm4, s);
14320         break;
14321     default:
14322         unallocated_encoding(s);
14323         return;
14324     }
14325 
14326     if (!feature) {
14327         unallocated_encoding(s);
14328         return;
14329     }
14330 
14331     if (!fp_access_check(s)) {
14332         return;
14333     }
14334 
14335     switch (opcode) {
14336     case 0: /* SHA512SU0 */
14337         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
14338         break;
14339     case 1: /* SM4E */
14340         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
14341         break;
14342     default:
14343         g_assert_not_reached();
14344     }
14345 }
14346 
14347 /* Crypto four-register
14348  *  31               23 22 21 20  16 15  14  10 9    5 4    0
14349  * +-------------------+-----+------+---+------+------+------+
14350  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
14351  * +-------------------+-----+------+---+------+------+------+
14352  */
14353 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
14354 {
14355     int op0 = extract32(insn, 21, 2);
14356     int rm = extract32(insn, 16, 5);
14357     int ra = extract32(insn, 10, 5);
14358     int rn = extract32(insn, 5, 5);
14359     int rd = extract32(insn, 0, 5);
14360     bool feature;
14361 
14362     switch (op0) {
14363     case 0: /* EOR3 */
14364     case 1: /* BCAX */
14365         feature = dc_isar_feature(aa64_sha3, s);
14366         break;
14367     case 2: /* SM3SS1 */
14368         feature = dc_isar_feature(aa64_sm3, s);
14369         break;
14370     default:
14371         unallocated_encoding(s);
14372         return;
14373     }
14374 
14375     if (!feature) {
14376         unallocated_encoding(s);
14377         return;
14378     }
14379 
14380     if (!fp_access_check(s)) {
14381         return;
14382     }
14383 
14384     if (op0 < 2) {
14385         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
14386         int pass;
14387 
14388         tcg_op1 = tcg_temp_new_i64();
14389         tcg_op2 = tcg_temp_new_i64();
14390         tcg_op3 = tcg_temp_new_i64();
14391         tcg_res[0] = tcg_temp_new_i64();
14392         tcg_res[1] = tcg_temp_new_i64();
14393 
14394         for (pass = 0; pass < 2; pass++) {
14395             read_vec_element(s, tcg_op1, rn, pass, MO_64);
14396             read_vec_element(s, tcg_op2, rm, pass, MO_64);
14397             read_vec_element(s, tcg_op3, ra, pass, MO_64);
14398 
14399             if (op0 == 0) {
14400                 /* EOR3 */
14401                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
14402             } else {
14403                 /* BCAX */
14404                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
14405             }
14406             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
14407         }
14408         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14409         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14410 
14411         tcg_temp_free_i64(tcg_op1);
14412         tcg_temp_free_i64(tcg_op2);
14413         tcg_temp_free_i64(tcg_op3);
14414         tcg_temp_free_i64(tcg_res[0]);
14415         tcg_temp_free_i64(tcg_res[1]);
14416     } else {
14417         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
14418 
14419         tcg_op1 = tcg_temp_new_i32();
14420         tcg_op2 = tcg_temp_new_i32();
14421         tcg_op3 = tcg_temp_new_i32();
14422         tcg_res = tcg_temp_new_i32();
14423         tcg_zero = tcg_constant_i32(0);
14424 
14425         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
14426         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
14427         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
14428 
14429         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
14430         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
14431         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
14432         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
14433 
14434         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
14435         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
14436         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
14437         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
14438 
14439         tcg_temp_free_i32(tcg_op1);
14440         tcg_temp_free_i32(tcg_op2);
14441         tcg_temp_free_i32(tcg_op3);
14442         tcg_temp_free_i32(tcg_res);
14443     }
14444 }
14445 
14446 /* Crypto XAR
14447  *  31                   21 20  16 15    10 9    5 4    0
14448  * +-----------------------+------+--------+------+------+
14449  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
14450  * +-----------------------+------+--------+------+------+
14451  */
14452 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14453 {
14454     int rm = extract32(insn, 16, 5);
14455     int imm6 = extract32(insn, 10, 6);
14456     int rn = extract32(insn, 5, 5);
14457     int rd = extract32(insn, 0, 5);
14458 
14459     if (!dc_isar_feature(aa64_sha3, s)) {
14460         unallocated_encoding(s);
14461         return;
14462     }
14463 
14464     if (!fp_access_check(s)) {
14465         return;
14466     }
14467 
14468     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
14469                  vec_full_reg_offset(s, rn),
14470                  vec_full_reg_offset(s, rm), imm6, 16,
14471                  vec_full_reg_size(s));
14472 }
14473 
14474 /* Crypto three-reg imm2
14475  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
14476  * +-----------------------+------+-----+------+--------+------+------+
14477  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
14478  * +-----------------------+------+-----+------+--------+------+------+
14479  */
14480 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14481 {
14482     static gen_helper_gvec_3 * const fns[4] = {
14483         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14484         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14485     };
14486     int opcode = extract32(insn, 10, 2);
14487     int imm2 = extract32(insn, 12, 2);
14488     int rm = extract32(insn, 16, 5);
14489     int rn = extract32(insn, 5, 5);
14490     int rd = extract32(insn, 0, 5);
14491 
14492     if (!dc_isar_feature(aa64_sm3, s)) {
14493         unallocated_encoding(s);
14494         return;
14495     }
14496 
14497     if (!fp_access_check(s)) {
14498         return;
14499     }
14500 
14501     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14502 }
14503 
14504 /* C3.6 Data processing - SIMD, inc Crypto
14505  *
14506  * As the decode gets a little complex we are using a table based
14507  * approach for this part of the decode.
14508  */
14509 static const AArch64DecodeTable data_proc_simd[] = {
14510     /* pattern  ,  mask     ,  fn                        */
14511     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14512     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14513     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14514     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14515     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14516     { 0x0e000400, 0x9fe08400, disas_simd_copy },
14517     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14518     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14519     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14520     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14521     { 0x0e000000, 0xbf208c00, disas_simd_tb },
14522     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14523     { 0x2e000000, 0xbf208400, disas_simd_ext },
14524     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14525     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14526     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14527     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14528     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14529     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14530     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14531     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14532     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14533     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14534     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14535     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14536     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14537     { 0xce000000, 0xff808000, disas_crypto_four_reg },
14538     { 0xce800000, 0xffe00000, disas_crypto_xar },
14539     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14540     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14541     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14542     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14543     { 0x00000000, 0x00000000, NULL }
14544 };
14545 
14546 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14547 {
14548     /* Note that this is called with all non-FP cases from
14549      * table C3-6 so it must UNDEF for entries not specifically
14550      * allocated to instructions in that table.
14551      */
14552     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14553     if (fn) {
14554         fn(s, insn);
14555     } else {
14556         unallocated_encoding(s);
14557     }
14558 }
14559 
14560 /* C3.6 Data processing - SIMD and floating point */
14561 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14562 {
14563     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14564         disas_data_proc_fp(s, insn);
14565     } else {
14566         /* SIMD, including crypto */
14567         disas_data_proc_simd(s, insn);
14568     }
14569 }
14570 
14571 /*
14572  * Include the generated SME FA64 decoder.
14573  */
14574 
14575 #include "decode-sme-fa64.c.inc"
14576 
14577 static bool trans_OK(DisasContext *s, arg_OK *a)
14578 {
14579     return true;
14580 }
14581 
14582 static bool trans_FAIL(DisasContext *s, arg_OK *a)
14583 {
14584     s->is_nonstreaming = true;
14585     return true;
14586 }
14587 
14588 /**
14589  * is_guarded_page:
14590  * @env: The cpu environment
14591  * @s: The DisasContext
14592  *
14593  * Return true if the page is guarded.
14594  */
14595 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14596 {
14597     uint64_t addr = s->base.pc_first;
14598 #ifdef CONFIG_USER_ONLY
14599     return page_get_flags(addr) & PAGE_BTI;
14600 #else
14601     CPUTLBEntryFull *full;
14602     void *host;
14603     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14604     int flags;
14605 
14606     /*
14607      * We test this immediately after reading an insn, which means
14608      * that the TLB entry must be present and valid, and thus this
14609      * access will never raise an exception.
14610      */
14611     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
14612                               false, &host, &full, 0);
14613     assert(!(flags & TLB_INVALID_MASK));
14614 
14615     return full->guarded;
14616 #endif
14617 }
14618 
14619 /**
14620  * btype_destination_ok:
14621  * @insn: The instruction at the branch destination
14622  * @bt: SCTLR_ELx.BT
14623  * @btype: PSTATE.BTYPE, and is non-zero
14624  *
14625  * On a guarded page, there are a limited number of insns
14626  * that may be present at the branch target:
14627  *   - branch target identifiers,
14628  *   - paciasp, pacibsp,
14629  *   - BRK insn
14630  *   - HLT insn
14631  * Anything else causes a Branch Target Exception.
14632  *
14633  * Return true if the branch is compatible, false to raise BTITRAP.
14634  */
14635 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14636 {
14637     if ((insn & 0xfffff01fu) == 0xd503201fu) {
14638         /* HINT space */
14639         switch (extract32(insn, 5, 7)) {
14640         case 0b011001: /* PACIASP */
14641         case 0b011011: /* PACIBSP */
14642             /*
14643              * If SCTLR_ELx.BT, then PACI*SP are not compatible
14644              * with btype == 3.  Otherwise all btype are ok.
14645              */
14646             return !bt || btype != 3;
14647         case 0b100000: /* BTI */
14648             /* Not compatible with any btype.  */
14649             return false;
14650         case 0b100010: /* BTI c */
14651             /* Not compatible with btype == 3 */
14652             return btype != 3;
14653         case 0b100100: /* BTI j */
14654             /* Not compatible with btype == 2 */
14655             return btype != 2;
14656         case 0b100110: /* BTI jc */
14657             /* Compatible with any btype.  */
14658             return true;
14659         }
14660     } else {
14661         switch (insn & 0xffe0001fu) {
14662         case 0xd4200000u: /* BRK */
14663         case 0xd4400000u: /* HLT */
14664             /* Give priority to the breakpoint exception.  */
14665             return true;
14666         }
14667     }
14668     return false;
14669 }
14670 
14671 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14672                                           CPUState *cpu)
14673 {
14674     DisasContext *dc = container_of(dcbase, DisasContext, base);
14675     CPUARMState *env = cpu->env_ptr;
14676     ARMCPU *arm_cpu = env_archcpu(env);
14677     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14678     int bound, core_mmu_idx;
14679 
14680     dc->isar = &arm_cpu->isar;
14681     dc->condjmp = 0;
14682     dc->pc_save = dc->base.pc_first;
14683     dc->aarch64 = true;
14684     dc->thumb = false;
14685     dc->sctlr_b = 0;
14686     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14687     dc->condexec_mask = 0;
14688     dc->condexec_cond = 0;
14689     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14690     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14691     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14692     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14693     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14694     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14695 #if !defined(CONFIG_USER_ONLY)
14696     dc->user = (dc->current_el == 0);
14697 #endif
14698     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14699     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14700     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14701     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14702     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14703     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14704     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14705     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14706     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14707     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14708     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14709     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14710     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14711     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14712     dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14713     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14714     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14715     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14716     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14717     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14718     dc->vec_len = 0;
14719     dc->vec_stride = 0;
14720     dc->cp_regs = arm_cpu->cp_regs;
14721     dc->features = env->features;
14722     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14723 
14724 #ifdef CONFIG_USER_ONLY
14725     /* In sve_probe_page, we assume TBI is enabled. */
14726     tcg_debug_assert(dc->tbid & 1);
14727 #endif
14728 
14729     /* Single step state. The code-generation logic here is:
14730      *  SS_ACTIVE == 0:
14731      *   generate code with no special handling for single-stepping (except
14732      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14733      *   this happens anyway because those changes are all system register or
14734      *   PSTATE writes).
14735      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14736      *   emit code for one insn
14737      *   emit code to clear PSTATE.SS
14738      *   emit code to generate software step exception for completed step
14739      *   end TB (as usual for having generated an exception)
14740      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14741      *   emit code to generate a software step exception
14742      *   end the TB
14743      */
14744     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14745     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14746     dc->is_ldex = false;
14747 
14748     /* Bound the number of insns to execute to those left on the page.  */
14749     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14750 
14751     /* If architectural single step active, limit to 1.  */
14752     if (dc->ss_active) {
14753         bound = 1;
14754     }
14755     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14756 }
14757 
14758 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14759 {
14760 }
14761 
14762 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14763 {
14764     DisasContext *dc = container_of(dcbase, DisasContext, base);
14765     target_ulong pc_arg = dc->base.pc_next;
14766 
14767     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14768         pc_arg &= ~TARGET_PAGE_MASK;
14769     }
14770     tcg_gen_insn_start(pc_arg, 0, 0);
14771     dc->insn_start = tcg_last_op();
14772 }
14773 
14774 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14775 {
14776     DisasContext *s = container_of(dcbase, DisasContext, base);
14777     CPUARMState *env = cpu->env_ptr;
14778     uint64_t pc = s->base.pc_next;
14779     uint32_t insn;
14780 
14781     /* Singlestep exceptions have the highest priority. */
14782     if (s->ss_active && !s->pstate_ss) {
14783         /* Singlestep state is Active-pending.
14784          * If we're in this state at the start of a TB then either
14785          *  a) we just took an exception to an EL which is being debugged
14786          *     and this is the first insn in the exception handler
14787          *  b) debug exceptions were masked and we just unmasked them
14788          *     without changing EL (eg by clearing PSTATE.D)
14789          * In either case we're going to take a swstep exception in the
14790          * "did not step an insn" case, and so the syndrome ISV and EX
14791          * bits should be zero.
14792          */
14793         assert(s->base.num_insns == 1);
14794         gen_swstep_exception(s, 0, 0);
14795         s->base.is_jmp = DISAS_NORETURN;
14796         s->base.pc_next = pc + 4;
14797         return;
14798     }
14799 
14800     if (pc & 3) {
14801         /*
14802          * PC alignment fault.  This has priority over the instruction abort
14803          * that we would receive from a translation fault via arm_ldl_code.
14804          * This should only be possible after an indirect branch, at the
14805          * start of the TB.
14806          */
14807         assert(s->base.num_insns == 1);
14808         gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14809         s->base.is_jmp = DISAS_NORETURN;
14810         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14811         return;
14812     }
14813 
14814     s->pc_curr = pc;
14815     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14816     s->insn = insn;
14817     s->base.pc_next = pc + 4;
14818 
14819     s->fp_access_checked = false;
14820     s->sve_access_checked = false;
14821 
14822     if (s->pstate_il) {
14823         /*
14824          * Illegal execution state. This has priority over BTI
14825          * exceptions, but comes after instruction abort exceptions.
14826          */
14827         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14828         return;
14829     }
14830 
14831     if (dc_isar_feature(aa64_bti, s)) {
14832         if (s->base.num_insns == 1) {
14833             /*
14834              * At the first insn of the TB, compute s->guarded_page.
14835              * We delayed computing this until successfully reading
14836              * the first insn of the TB, above.  This (mostly) ensures
14837              * that the softmmu tlb entry has been populated, and the
14838              * page table GP bit is available.
14839              *
14840              * Note that we need to compute this even if btype == 0,
14841              * because this value is used for BR instructions later
14842              * where ENV is not available.
14843              */
14844             s->guarded_page = is_guarded_page(env, s);
14845 
14846             /* First insn can have btype set to non-zero.  */
14847             tcg_debug_assert(s->btype >= 0);
14848 
14849             /*
14850              * Note that the Branch Target Exception has fairly high
14851              * priority -- below debugging exceptions but above most
14852              * everything else.  This allows us to handle this now
14853              * instead of waiting until the insn is otherwise decoded.
14854              */
14855             if (s->btype != 0
14856                 && s->guarded_page
14857                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14858                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14859                 return;
14860             }
14861         } else {
14862             /* Not the first insn: btype must be 0.  */
14863             tcg_debug_assert(s->btype == 0);
14864         }
14865     }
14866 
14867     s->is_nonstreaming = false;
14868     if (s->sme_trap_nonstreaming) {
14869         disas_sme_fa64(s, insn);
14870     }
14871 
14872     switch (extract32(insn, 25, 4)) {
14873     case 0x0:
14874         if (!extract32(insn, 31, 1) || !disas_sme(s, insn)) {
14875             unallocated_encoding(s);
14876         }
14877         break;
14878     case 0x1: case 0x3: /* UNALLOCATED */
14879         unallocated_encoding(s);
14880         break;
14881     case 0x2:
14882         if (!disas_sve(s, insn)) {
14883             unallocated_encoding(s);
14884         }
14885         break;
14886     case 0x8: case 0x9: /* Data processing - immediate */
14887         disas_data_proc_imm(s, insn);
14888         break;
14889     case 0xa: case 0xb: /* Branch, exception generation and system insns */
14890         disas_b_exc_sys(s, insn);
14891         break;
14892     case 0x4:
14893     case 0x6:
14894     case 0xc:
14895     case 0xe:      /* Loads and stores */
14896         disas_ldst(s, insn);
14897         break;
14898     case 0x5:
14899     case 0xd:      /* Data processing - register */
14900         disas_data_proc_reg(s, insn);
14901         break;
14902     case 0x7:
14903     case 0xf:      /* Data processing - SIMD and floating point */
14904         disas_data_proc_simd_fp(s, insn);
14905         break;
14906     default:
14907         assert(FALSE); /* all 15 cases should be handled above */
14908         break;
14909     }
14910 
14911     /*
14912      * After execution of most insns, btype is reset to 0.
14913      * Note that we set btype == -1 when the insn sets btype.
14914      */
14915     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14916         reset_btype(s);
14917     }
14918 }
14919 
14920 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14921 {
14922     DisasContext *dc = container_of(dcbase, DisasContext, base);
14923 
14924     if (unlikely(dc->ss_active)) {
14925         /* Note that this means single stepping WFI doesn't halt the CPU.
14926          * For conditional branch insns this is harmless unreachable code as
14927          * gen_goto_tb() has already handled emitting the debug exception
14928          * (and thus a tb-jump is not possible when singlestepping).
14929          */
14930         switch (dc->base.is_jmp) {
14931         default:
14932             gen_a64_update_pc(dc, 4);
14933             /* fall through */
14934         case DISAS_EXIT:
14935         case DISAS_JUMP:
14936             gen_step_complete_exception(dc);
14937             break;
14938         case DISAS_NORETURN:
14939             break;
14940         }
14941     } else {
14942         switch (dc->base.is_jmp) {
14943         case DISAS_NEXT:
14944         case DISAS_TOO_MANY:
14945             gen_goto_tb(dc, 1, 4);
14946             break;
14947         default:
14948         case DISAS_UPDATE_EXIT:
14949             gen_a64_update_pc(dc, 4);
14950             /* fall through */
14951         case DISAS_EXIT:
14952             tcg_gen_exit_tb(NULL, 0);
14953             break;
14954         case DISAS_UPDATE_NOCHAIN:
14955             gen_a64_update_pc(dc, 4);
14956             /* fall through */
14957         case DISAS_JUMP:
14958             tcg_gen_lookup_and_goto_ptr();
14959             break;
14960         case DISAS_NORETURN:
14961         case DISAS_SWI:
14962             break;
14963         case DISAS_WFE:
14964             gen_a64_update_pc(dc, 4);
14965             gen_helper_wfe(cpu_env);
14966             break;
14967         case DISAS_YIELD:
14968             gen_a64_update_pc(dc, 4);
14969             gen_helper_yield(cpu_env);
14970             break;
14971         case DISAS_WFI:
14972             /*
14973              * This is a special case because we don't want to just halt
14974              * the CPU if trying to debug across a WFI.
14975              */
14976             gen_a64_update_pc(dc, 4);
14977             gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14978             /*
14979              * The helper doesn't necessarily throw an exception, but we
14980              * must go back to the main loop to check for interrupts anyway.
14981              */
14982             tcg_gen_exit_tb(NULL, 0);
14983             break;
14984         }
14985     }
14986 }
14987 
14988 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14989                                  CPUState *cpu, FILE *logfile)
14990 {
14991     DisasContext *dc = container_of(dcbase, DisasContext, base);
14992 
14993     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14994     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14995 }
14996 
14997 const TranslatorOps aarch64_translator_ops = {
14998     .init_disas_context = aarch64_tr_init_disas_context,
14999     .tb_start           = aarch64_tr_tb_start,
15000     .insn_start         = aarch64_tr_insn_start,
15001     .translate_insn     = aarch64_tr_translate_insn,
15002     .tb_stop            = aarch64_tr_tb_stop,
15003     .disas_log          = aarch64_tr_disas_log,
15004 };
15005