xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 243705aa)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "disas/disas.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Include the generated decoders.
51  */
52 
53 #include "decode-sme-fa64.c.inc"
54 #include "decode-a64.c.inc"
55 
56 /* Table based decoder typedefs - used when the relevant bits for decode
57  * are too awkwardly scattered across the instruction (eg SIMD).
58  */
59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
60 
61 typedef struct AArch64DecodeTable {
62     uint32_t pattern;
63     uint32_t mask;
64     AArch64DecodeFn *disas_fn;
65 } AArch64DecodeTable;
66 
67 /* initialize TCG globals.  */
68 void a64_translate_init(void)
69 {
70     int i;
71 
72     cpu_pc = tcg_global_mem_new_i64(cpu_env,
73                                     offsetof(CPUARMState, pc),
74                                     "pc");
75     for (i = 0; i < 32; i++) {
76         cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
77                                           offsetof(CPUARMState, xregs[i]),
78                                           regnames[i]);
79     }
80 
81     cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
82         offsetof(CPUARMState, exclusive_high), "exclusive_high");
83 }
84 
85 /*
86  * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
87  */
88 static int get_a64_user_mem_index(DisasContext *s)
89 {
90     /*
91      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
92      * which is the usual mmu_idx for this cpu state.
93      */
94     ARMMMUIdx useridx = s->mmu_idx;
95 
96     if (s->unpriv) {
97         /*
98          * We have pre-computed the condition for AccType_UNPRIV.
99          * Therefore we should never get here with a mmu_idx for
100          * which we do not know the corresponding user mmu_idx.
101          */
102         switch (useridx) {
103         case ARMMMUIdx_E10_1:
104         case ARMMMUIdx_E10_1_PAN:
105             useridx = ARMMMUIdx_E10_0;
106             break;
107         case ARMMMUIdx_E20_2:
108         case ARMMMUIdx_E20_2_PAN:
109             useridx = ARMMMUIdx_E20_0;
110             break;
111         default:
112             g_assert_not_reached();
113         }
114     }
115     return arm_to_core_mmu_idx(useridx);
116 }
117 
118 static void set_btype_raw(int val)
119 {
120     tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
121                    offsetof(CPUARMState, btype));
122 }
123 
124 static void set_btype(DisasContext *s, int val)
125 {
126     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
127     tcg_debug_assert(val >= 1 && val <= 3);
128     set_btype_raw(val);
129     s->btype = -1;
130 }
131 
132 static void reset_btype(DisasContext *s)
133 {
134     if (s->btype != 0) {
135         set_btype_raw(0);
136         s->btype = 0;
137     }
138 }
139 
140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
141 {
142     assert(s->pc_save != -1);
143     if (tb_cflags(s->base.tb) & CF_PCREL) {
144         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
145     } else {
146         tcg_gen_movi_i64(dest, s->pc_curr + diff);
147     }
148 }
149 
150 void gen_a64_update_pc(DisasContext *s, target_long diff)
151 {
152     gen_pc_plus_diff(s, cpu_pc, diff);
153     s->pc_save = s->pc_curr + diff;
154 }
155 
156 /*
157  * Handle Top Byte Ignore (TBI) bits.
158  *
159  * If address tagging is enabled via the TCR TBI bits:
160  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
161  *    then the address is zero-extended, clearing bits [63:56]
162  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163  *    and TBI1 controls addressses with bit 55 == 1.
164  *    If the appropriate TBI bit is set for the address then
165  *    the address is sign-extended from bit 55 into bits [63:56]
166  *
167  * Here We have concatenated TBI{1,0} into tbi.
168  */
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170                                 TCGv_i64 src, int tbi)
171 {
172     if (tbi == 0) {
173         /* Load unmodified address */
174         tcg_gen_mov_i64(dst, src);
175     } else if (!regime_has_2_ranges(s->mmu_idx)) {
176         /* Force tag byte to all zero */
177         tcg_gen_extract_i64(dst, src, 0, 56);
178     } else {
179         /* Sign-extend from bit 55.  */
180         tcg_gen_sextract_i64(dst, src, 0, 56);
181 
182         switch (tbi) {
183         case 1:
184             /* tbi0 but !tbi1: only use the extension if positive */
185             tcg_gen_and_i64(dst, dst, src);
186             break;
187         case 2:
188             /* !tbi0 but tbi1: only use the extension if negative */
189             tcg_gen_or_i64(dst, dst, src);
190             break;
191         case 3:
192             /* tbi0 and tbi1: always use the extension */
193             break;
194         default:
195             g_assert_not_reached();
196         }
197     }
198 }
199 
200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
201 {
202     /*
203      * If address tagging is enabled for instructions via the TCR TBI bits,
204      * then loading an address into the PC will clear out any tag.
205      */
206     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
207     s->pc_save = -1;
208 }
209 
210 /*
211  * Handle MTE and/or TBI.
212  *
213  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
214  * for the tag to be present in the FAR_ELx register.  But for user-only
215  * mode we do not have a TLB with which to implement this, so we must
216  * remove the top byte now.
217  *
218  * Always return a fresh temporary that we can increment independently
219  * of the write-back address.
220  */
221 
222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
223 {
224     TCGv_i64 clean = tcg_temp_new_i64();
225 #ifdef CONFIG_USER_ONLY
226     gen_top_byte_ignore(s, clean, addr, s->tbid);
227 #else
228     tcg_gen_mov_i64(clean, addr);
229 #endif
230     return clean;
231 }
232 
233 /* Insert a zero tag into src, with the result at dst. */
234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
235 {
236     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
237 }
238 
239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
240                              MMUAccessType acc, int log2_size)
241 {
242     gen_helper_probe_access(cpu_env, ptr,
243                             tcg_constant_i32(acc),
244                             tcg_constant_i32(get_mem_index(s)),
245                             tcg_constant_i32(1 << log2_size));
246 }
247 
248 /*
249  * For MTE, check a single logical or atomic access.  This probes a single
250  * address, the exact one specified.  The size and alignment of the access
251  * is not relevant to MTE, per se, but watchpoints do require the size,
252  * and we want to recognize those before making any other changes to state.
253  */
254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
255                                       bool is_write, bool tag_checked,
256                                       MemOp memop, bool is_unpriv,
257                                       int core_idx)
258 {
259     if (tag_checked && s->mte_active[is_unpriv]) {
260         TCGv_i64 ret;
261         int desc = 0;
262 
263         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
264         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
265         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
266         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
267         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
268         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
269 
270         ret = tcg_temp_new_i64();
271         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
272 
273         return ret;
274     }
275     return clean_data_tbi(s, addr);
276 }
277 
278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
279                         bool tag_checked, MemOp memop)
280 {
281     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
282                                  false, get_mem_index(s));
283 }
284 
285 /*
286  * For MTE, check multiple logical sequential accesses.
287  */
288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
289                         bool tag_checked, int total_size, MemOp single_mop)
290 {
291     if (tag_checked && s->mte_active[0]) {
292         TCGv_i64 ret;
293         int desc = 0;
294 
295         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
296         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
297         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
298         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
299         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
300         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
301 
302         ret = tcg_temp_new_i64();
303         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
304 
305         return ret;
306     }
307     return clean_data_tbi(s, addr);
308 }
309 
310 /*
311  * Generate the special alignment check that applies to AccType_ATOMIC
312  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
313  * naturally aligned, but it must not cross a 16-byte boundary.
314  * See AArch64.CheckAlignment().
315  */
316 static void check_lse2_align(DisasContext *s, int rn, int imm,
317                              bool is_write, MemOp mop)
318 {
319     TCGv_i32 tmp;
320     TCGv_i64 addr;
321     TCGLabel *over_label;
322     MMUAccessType type;
323     int mmu_idx;
324 
325     tmp = tcg_temp_new_i32();
326     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
327     tcg_gen_addi_i32(tmp, tmp, imm & 15);
328     tcg_gen_andi_i32(tmp, tmp, 15);
329     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
330 
331     over_label = gen_new_label();
332     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
333 
334     addr = tcg_temp_new_i64();
335     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
336 
337     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
338     mmu_idx = get_mem_index(s);
339     gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type),
340                                 tcg_constant_i32(mmu_idx));
341 
342     gen_set_label(over_label);
343 
344 }
345 
346 /* Handle the alignment check for AccType_ATOMIC instructions. */
347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
348 {
349     MemOp size = mop & MO_SIZE;
350 
351     if (size == MO_8) {
352         return mop;
353     }
354 
355     /*
356      * If size == MO_128, this is a LDXP, and the operation is single-copy
357      * atomic for each doubleword, not the entire quadword; it still must
358      * be quadword aligned.
359      */
360     if (size == MO_128) {
361         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
362                                    MO_ATOM_IFALIGN_PAIR);
363     }
364     if (dc_isar_feature(aa64_lse2, s)) {
365         check_lse2_align(s, rn, 0, true, mop);
366     } else {
367         mop |= MO_ALIGN;
368     }
369     return finalize_memop(s, mop);
370 }
371 
372 /* Handle the alignment check for AccType_ORDERED instructions. */
373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
374                                  bool is_write, MemOp mop)
375 {
376     MemOp size = mop & MO_SIZE;
377 
378     if (size == MO_8) {
379         return mop;
380     }
381     if (size == MO_128) {
382         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
383                                    MO_ATOM_IFALIGN_PAIR);
384     }
385     if (!dc_isar_feature(aa64_lse2, s)) {
386         mop |= MO_ALIGN;
387     } else if (!s->naa) {
388         check_lse2_align(s, rn, imm, is_write, mop);
389     }
390     return finalize_memop(s, mop);
391 }
392 
393 typedef struct DisasCompare64 {
394     TCGCond cond;
395     TCGv_i64 value;
396 } DisasCompare64;
397 
398 static void a64_test_cc(DisasCompare64 *c64, int cc)
399 {
400     DisasCompare c32;
401 
402     arm_test_cc(&c32, cc);
403 
404     /*
405      * Sign-extend the 32-bit value so that the GE/LT comparisons work
406      * properly.  The NE/EQ comparisons are also fine with this choice.
407       */
408     c64->cond = c32.cond;
409     c64->value = tcg_temp_new_i64();
410     tcg_gen_ext_i32_i64(c64->value, c32.value);
411 }
412 
413 static void gen_rebuild_hflags(DisasContext *s)
414 {
415     gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
416 }
417 
418 static void gen_exception_internal(int excp)
419 {
420     assert(excp_is_internal(excp));
421     gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
422 }
423 
424 static void gen_exception_internal_insn(DisasContext *s, int excp)
425 {
426     gen_a64_update_pc(s, 0);
427     gen_exception_internal(excp);
428     s->base.is_jmp = DISAS_NORETURN;
429 }
430 
431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
432 {
433     gen_a64_update_pc(s, 0);
434     gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
435     s->base.is_jmp = DISAS_NORETURN;
436 }
437 
438 static void gen_step_complete_exception(DisasContext *s)
439 {
440     /* We just completed step of an insn. Move from Active-not-pending
441      * to Active-pending, and then also take the swstep exception.
442      * This corresponds to making the (IMPDEF) choice to prioritize
443      * swstep exceptions over asynchronous exceptions taken to an exception
444      * level where debug is disabled. This choice has the advantage that
445      * we do not need to maintain internal state corresponding to the
446      * ISV/EX syndrome bits between completion of the step and generation
447      * of the exception, and our syndrome information is always correct.
448      */
449     gen_ss_advance(s);
450     gen_swstep_exception(s, 1, s->is_ldex);
451     s->base.is_jmp = DISAS_NORETURN;
452 }
453 
454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
455 {
456     if (s->ss_active) {
457         return false;
458     }
459     return translator_use_goto_tb(&s->base, dest);
460 }
461 
462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
463 {
464     if (use_goto_tb(s, s->pc_curr + diff)) {
465         /*
466          * For pcrel, the pc must always be up-to-date on entry to
467          * the linked TB, so that it can use simple additions for all
468          * further adjustments.  For !pcrel, the linked TB is compiled
469          * to know its full virtual address, so we can delay the
470          * update to pc to the unlinked path.  A long chain of links
471          * can thus avoid many updates to the PC.
472          */
473         if (tb_cflags(s->base.tb) & CF_PCREL) {
474             gen_a64_update_pc(s, diff);
475             tcg_gen_goto_tb(n);
476         } else {
477             tcg_gen_goto_tb(n);
478             gen_a64_update_pc(s, diff);
479         }
480         tcg_gen_exit_tb(s->base.tb, n);
481         s->base.is_jmp = DISAS_NORETURN;
482     } else {
483         gen_a64_update_pc(s, diff);
484         if (s->ss_active) {
485             gen_step_complete_exception(s);
486         } else {
487             tcg_gen_lookup_and_goto_ptr();
488             s->base.is_jmp = DISAS_NORETURN;
489         }
490     }
491 }
492 
493 /*
494  * Register access functions
495  *
496  * These functions are used for directly accessing a register in where
497  * changes to the final register value are likely to be made. If you
498  * need to use a register for temporary calculation (e.g. index type
499  * operations) use the read_* form.
500  *
501  * B1.2.1 Register mappings
502  *
503  * In instruction register encoding 31 can refer to ZR (zero register) or
504  * the SP (stack pointer) depending on context. In QEMU's case we map SP
505  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
506  * This is the point of the _sp forms.
507  */
508 TCGv_i64 cpu_reg(DisasContext *s, int reg)
509 {
510     if (reg == 31) {
511         TCGv_i64 t = tcg_temp_new_i64();
512         tcg_gen_movi_i64(t, 0);
513         return t;
514     } else {
515         return cpu_X[reg];
516     }
517 }
518 
519 /* register access for when 31 == SP */
520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
521 {
522     return cpu_X[reg];
523 }
524 
525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
526  * representing the register contents. This TCGv is an auto-freed
527  * temporary so it need not be explicitly freed, and may be modified.
528  */
529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
530 {
531     TCGv_i64 v = tcg_temp_new_i64();
532     if (reg != 31) {
533         if (sf) {
534             tcg_gen_mov_i64(v, cpu_X[reg]);
535         } else {
536             tcg_gen_ext32u_i64(v, cpu_X[reg]);
537         }
538     } else {
539         tcg_gen_movi_i64(v, 0);
540     }
541     return v;
542 }
543 
544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
545 {
546     TCGv_i64 v = tcg_temp_new_i64();
547     if (sf) {
548         tcg_gen_mov_i64(v, cpu_X[reg]);
549     } else {
550         tcg_gen_ext32u_i64(v, cpu_X[reg]);
551     }
552     return v;
553 }
554 
555 /* Return the offset into CPUARMState of a slice (from
556  * the least significant end) of FP register Qn (ie
557  * Dn, Sn, Hn or Bn).
558  * (Note that this is not the same mapping as for A32; see cpu.h)
559  */
560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
561 {
562     return vec_reg_offset(s, regno, 0, size);
563 }
564 
565 /* Offset of the high half of the 128 bit vector Qn */
566 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
567 {
568     return vec_reg_offset(s, regno, 1, MO_64);
569 }
570 
571 /* Convenience accessors for reading and writing single and double
572  * FP registers. Writing clears the upper parts of the associated
573  * 128 bit vector register, as required by the architecture.
574  * Note that unlike the GP register accessors, the values returned
575  * by the read functions must be manually freed.
576  */
577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
578 {
579     TCGv_i64 v = tcg_temp_new_i64();
580 
581     tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
582     return v;
583 }
584 
585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
586 {
587     TCGv_i32 v = tcg_temp_new_i32();
588 
589     tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
590     return v;
591 }
592 
593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
594 {
595     TCGv_i32 v = tcg_temp_new_i32();
596 
597     tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
598     return v;
599 }
600 
601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
602  * If SVE is not enabled, then there are only 128 bits in the vector.
603  */
604 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
605 {
606     unsigned ofs = fp_reg_offset(s, rd, MO_64);
607     unsigned vsz = vec_full_reg_size(s);
608 
609     /* Nop move, with side effect of clearing the tail. */
610     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
611 }
612 
613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
614 {
615     unsigned ofs = fp_reg_offset(s, reg, MO_64);
616 
617     tcg_gen_st_i64(v, cpu_env, ofs);
618     clear_vec_high(s, false, reg);
619 }
620 
621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
622 {
623     TCGv_i64 tmp = tcg_temp_new_i64();
624 
625     tcg_gen_extu_i32_i64(tmp, v);
626     write_fp_dreg(s, reg, tmp);
627 }
628 
629 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
631                          GVecGen2Fn *gvec_fn, int vece)
632 {
633     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
634             is_q ? 16 : 8, vec_full_reg_size(s));
635 }
636 
637 /* Expand a 2-operand + immediate AdvSIMD vector operation using
638  * an expander function.
639  */
640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
641                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
642 {
643     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
644             imm, is_q ? 16 : 8, vec_full_reg_size(s));
645 }
646 
647 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
649                          GVecGen3Fn *gvec_fn, int vece)
650 {
651     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
652             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
653 }
654 
655 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
657                          int rx, GVecGen4Fn *gvec_fn, int vece)
658 {
659     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
660             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
661             is_q ? 16 : 8, vec_full_reg_size(s));
662 }
663 
664 /* Expand a 2-operand operation using an out-of-line helper.  */
665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
666                              int rn, int data, gen_helper_gvec_2 *fn)
667 {
668     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
669                        vec_full_reg_offset(s, rn),
670                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
671 }
672 
673 /* Expand a 3-operand operation using an out-of-line helper.  */
674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
675                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
676 {
677     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
678                        vec_full_reg_offset(s, rn),
679                        vec_full_reg_offset(s, rm),
680                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
681 }
682 
683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
684  * an out-of-line helper.
685  */
686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
687                               int rm, bool is_fp16, int data,
688                               gen_helper_gvec_3_ptr *fn)
689 {
690     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
691     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
692                        vec_full_reg_offset(s, rn),
693                        vec_full_reg_offset(s, rm), fpst,
694                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
695 }
696 
697 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
699                             int rm, gen_helper_gvec_3_ptr *fn)
700 {
701     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
702 
703     tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
704     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
705                        vec_full_reg_offset(s, rn),
706                        vec_full_reg_offset(s, rm), qc_ptr,
707                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
708 }
709 
710 /* Expand a 4-operand operation using an out-of-line helper.  */
711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
712                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
713 {
714     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
715                        vec_full_reg_offset(s, rn),
716                        vec_full_reg_offset(s, rm),
717                        vec_full_reg_offset(s, ra),
718                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
719 }
720 
721 /*
722  * Expand a 4-operand + fpstatus pointer + simd data value operation using
723  * an out-of-line helper.
724  */
725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
726                               int rm, int ra, bool is_fp16, int data,
727                               gen_helper_gvec_4_ptr *fn)
728 {
729     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
730     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
731                        vec_full_reg_offset(s, rn),
732                        vec_full_reg_offset(s, rm),
733                        vec_full_reg_offset(s, ra), fpst,
734                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
735 }
736 
737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
738  * than the 32 bit equivalent.
739  */
740 static inline void gen_set_NZ64(TCGv_i64 result)
741 {
742     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
743     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
744 }
745 
746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
747 static inline void gen_logic_CC(int sf, TCGv_i64 result)
748 {
749     if (sf) {
750         gen_set_NZ64(result);
751     } else {
752         tcg_gen_extrl_i64_i32(cpu_ZF, result);
753         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
754     }
755     tcg_gen_movi_i32(cpu_CF, 0);
756     tcg_gen_movi_i32(cpu_VF, 0);
757 }
758 
759 /* dest = T0 + T1; compute C, N, V and Z flags */
760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
761 {
762     TCGv_i64 result, flag, tmp;
763     result = tcg_temp_new_i64();
764     flag = tcg_temp_new_i64();
765     tmp = tcg_temp_new_i64();
766 
767     tcg_gen_movi_i64(tmp, 0);
768     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
769 
770     tcg_gen_extrl_i64_i32(cpu_CF, flag);
771 
772     gen_set_NZ64(result);
773 
774     tcg_gen_xor_i64(flag, result, t0);
775     tcg_gen_xor_i64(tmp, t0, t1);
776     tcg_gen_andc_i64(flag, flag, tmp);
777     tcg_gen_extrh_i64_i32(cpu_VF, flag);
778 
779     tcg_gen_mov_i64(dest, result);
780 }
781 
782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
783 {
784     TCGv_i32 t0_32 = tcg_temp_new_i32();
785     TCGv_i32 t1_32 = tcg_temp_new_i32();
786     TCGv_i32 tmp = tcg_temp_new_i32();
787 
788     tcg_gen_movi_i32(tmp, 0);
789     tcg_gen_extrl_i64_i32(t0_32, t0);
790     tcg_gen_extrl_i64_i32(t1_32, t1);
791     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
792     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
793     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
794     tcg_gen_xor_i32(tmp, t0_32, t1_32);
795     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
796     tcg_gen_extu_i32_i64(dest, cpu_NF);
797 }
798 
799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     if (sf) {
802         gen_add64_CC(dest, t0, t1);
803     } else {
804         gen_add32_CC(dest, t0, t1);
805     }
806 }
807 
808 /* dest = T0 - T1; compute C, N, V and Z flags */
809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
810 {
811     /* 64 bit arithmetic */
812     TCGv_i64 result, flag, tmp;
813 
814     result = tcg_temp_new_i64();
815     flag = tcg_temp_new_i64();
816     tcg_gen_sub_i64(result, t0, t1);
817 
818     gen_set_NZ64(result);
819 
820     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
821     tcg_gen_extrl_i64_i32(cpu_CF, flag);
822 
823     tcg_gen_xor_i64(flag, result, t0);
824     tmp = tcg_temp_new_i64();
825     tcg_gen_xor_i64(tmp, t0, t1);
826     tcg_gen_and_i64(flag, flag, tmp);
827     tcg_gen_extrh_i64_i32(cpu_VF, flag);
828     tcg_gen_mov_i64(dest, result);
829 }
830 
831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
832 {
833     /* 32 bit arithmetic */
834     TCGv_i32 t0_32 = tcg_temp_new_i32();
835     TCGv_i32 t1_32 = tcg_temp_new_i32();
836     TCGv_i32 tmp;
837 
838     tcg_gen_extrl_i64_i32(t0_32, t0);
839     tcg_gen_extrl_i64_i32(t1_32, t1);
840     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
841     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
842     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
843     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
844     tmp = tcg_temp_new_i32();
845     tcg_gen_xor_i32(tmp, t0_32, t1_32);
846     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
847     tcg_gen_extu_i32_i64(dest, cpu_NF);
848 }
849 
850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
851 {
852     if (sf) {
853         gen_sub64_CC(dest, t0, t1);
854     } else {
855         gen_sub32_CC(dest, t0, t1);
856     }
857 }
858 
859 /* dest = T0 + T1 + CF; do not compute flags. */
860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
861 {
862     TCGv_i64 flag = tcg_temp_new_i64();
863     tcg_gen_extu_i32_i64(flag, cpu_CF);
864     tcg_gen_add_i64(dest, t0, t1);
865     tcg_gen_add_i64(dest, dest, flag);
866 
867     if (!sf) {
868         tcg_gen_ext32u_i64(dest, dest);
869     }
870 }
871 
872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
874 {
875     if (sf) {
876         TCGv_i64 result = tcg_temp_new_i64();
877         TCGv_i64 cf_64 = tcg_temp_new_i64();
878         TCGv_i64 vf_64 = tcg_temp_new_i64();
879         TCGv_i64 tmp = tcg_temp_new_i64();
880         TCGv_i64 zero = tcg_constant_i64(0);
881 
882         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
883         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
884         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
885         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
886         gen_set_NZ64(result);
887 
888         tcg_gen_xor_i64(vf_64, result, t0);
889         tcg_gen_xor_i64(tmp, t0, t1);
890         tcg_gen_andc_i64(vf_64, vf_64, tmp);
891         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
892 
893         tcg_gen_mov_i64(dest, result);
894     } else {
895         TCGv_i32 t0_32 = tcg_temp_new_i32();
896         TCGv_i32 t1_32 = tcg_temp_new_i32();
897         TCGv_i32 tmp = tcg_temp_new_i32();
898         TCGv_i32 zero = tcg_constant_i32(0);
899 
900         tcg_gen_extrl_i64_i32(t0_32, t0);
901         tcg_gen_extrl_i64_i32(t1_32, t1);
902         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
903         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
904 
905         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
906         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
907         tcg_gen_xor_i32(tmp, t0_32, t1_32);
908         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
909         tcg_gen_extu_i32_i64(dest, cpu_NF);
910     }
911 }
912 
913 /*
914  * Load/Store generators
915  */
916 
917 /*
918  * Store from GPR register to memory.
919  */
920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
921                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
922                              bool iss_valid,
923                              unsigned int iss_srt,
924                              bool iss_sf, bool iss_ar)
925 {
926     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
927 
928     if (iss_valid) {
929         uint32_t syn;
930 
931         syn = syn_data_abort_with_iss(0,
932                                       (memop & MO_SIZE),
933                                       false,
934                                       iss_srt,
935                                       iss_sf,
936                                       iss_ar,
937                                       0, 0, 0, 0, 0, false);
938         disas_set_insn_syndrome(s, syn);
939     }
940 }
941 
942 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
943                       TCGv_i64 tcg_addr, MemOp memop,
944                       bool iss_valid,
945                       unsigned int iss_srt,
946                       bool iss_sf, bool iss_ar)
947 {
948     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
949                      iss_valid, iss_srt, iss_sf, iss_ar);
950 }
951 
952 /*
953  * Load from memory to GPR register
954  */
955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
956                              MemOp memop, bool extend, int memidx,
957                              bool iss_valid, unsigned int iss_srt,
958                              bool iss_sf, bool iss_ar)
959 {
960     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
961 
962     if (extend && (memop & MO_SIGN)) {
963         g_assert((memop & MO_SIZE) <= MO_32);
964         tcg_gen_ext32u_i64(dest, dest);
965     }
966 
967     if (iss_valid) {
968         uint32_t syn;
969 
970         syn = syn_data_abort_with_iss(0,
971                                       (memop & MO_SIZE),
972                                       (memop & MO_SIGN) != 0,
973                                       iss_srt,
974                                       iss_sf,
975                                       iss_ar,
976                                       0, 0, 0, 0, 0, false);
977         disas_set_insn_syndrome(s, syn);
978     }
979 }
980 
981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
982                       MemOp memop, bool extend,
983                       bool iss_valid, unsigned int iss_srt,
984                       bool iss_sf, bool iss_ar)
985 {
986     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
987                      iss_valid, iss_srt, iss_sf, iss_ar);
988 }
989 
990 /*
991  * Store from FP register to memory
992  */
993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
994 {
995     /* This writes the bottom N bits of a 128 bit wide vector to memory */
996     TCGv_i64 tmplo = tcg_temp_new_i64();
997 
998     tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
999 
1000     if ((mop & MO_SIZE) < MO_128) {
1001         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1002     } else {
1003         TCGv_i64 tmphi = tcg_temp_new_i64();
1004         TCGv_i128 t16 = tcg_temp_new_i128();
1005 
1006         tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
1007         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1008 
1009         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1010     }
1011 }
1012 
1013 /*
1014  * Load from memory to FP register
1015  */
1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1017 {
1018     /* This always zero-extends and writes to a full 128 bit wide vector */
1019     TCGv_i64 tmplo = tcg_temp_new_i64();
1020     TCGv_i64 tmphi = NULL;
1021 
1022     if ((mop & MO_SIZE) < MO_128) {
1023         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1024     } else {
1025         TCGv_i128 t16 = tcg_temp_new_i128();
1026 
1027         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1028 
1029         tmphi = tcg_temp_new_i64();
1030         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1031     }
1032 
1033     tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1034 
1035     if (tmphi) {
1036         tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1037     }
1038     clear_vec_high(s, tmphi != NULL, destidx);
1039 }
1040 
1041 /*
1042  * Vector load/store helpers.
1043  *
1044  * The principal difference between this and a FP load is that we don't
1045  * zero extend as we are filling a partial chunk of the vector register.
1046  * These functions don't support 128 bit loads/stores, which would be
1047  * normal load/store operations.
1048  *
1049  * The _i32 versions are useful when operating on 32 bit quantities
1050  * (eg for floating point single or using Neon helper functions).
1051  */
1052 
1053 /* Get value of an element within a vector register */
1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1055                              int element, MemOp memop)
1056 {
1057     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1058     switch ((unsigned)memop) {
1059     case MO_8:
1060         tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1061         break;
1062     case MO_16:
1063         tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1064         break;
1065     case MO_32:
1066         tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1067         break;
1068     case MO_8|MO_SIGN:
1069         tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1070         break;
1071     case MO_16|MO_SIGN:
1072         tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1073         break;
1074     case MO_32|MO_SIGN:
1075         tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1076         break;
1077     case MO_64:
1078     case MO_64|MO_SIGN:
1079         tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1080         break;
1081     default:
1082         g_assert_not_reached();
1083     }
1084 }
1085 
1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1087                                  int element, MemOp memop)
1088 {
1089     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1090     switch (memop) {
1091     case MO_8:
1092         tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1093         break;
1094     case MO_16:
1095         tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1096         break;
1097     case MO_8|MO_SIGN:
1098         tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1099         break;
1100     case MO_16|MO_SIGN:
1101         tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1102         break;
1103     case MO_32:
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1106         break;
1107     default:
1108         g_assert_not_reached();
1109     }
1110 }
1111 
1112 /* Set value of an element within a vector register */
1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1114                               int element, MemOp memop)
1115 {
1116     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1117     switch (memop) {
1118     case MO_8:
1119         tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1120         break;
1121     case MO_16:
1122         tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1123         break;
1124     case MO_32:
1125         tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1126         break;
1127     case MO_64:
1128         tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1129         break;
1130     default:
1131         g_assert_not_reached();
1132     }
1133 }
1134 
1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1136                                   int destidx, int element, MemOp memop)
1137 {
1138     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1139     switch (memop) {
1140     case MO_8:
1141         tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1142         break;
1143     case MO_16:
1144         tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1145         break;
1146     case MO_32:
1147         tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1148         break;
1149     default:
1150         g_assert_not_reached();
1151     }
1152 }
1153 
1154 /* Store from vector register to memory */
1155 static void do_vec_st(DisasContext *s, int srcidx, int element,
1156                       TCGv_i64 tcg_addr, MemOp mop)
1157 {
1158     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1159 
1160     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1161     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1162 }
1163 
1164 /* Load from memory to vector register */
1165 static void do_vec_ld(DisasContext *s, int destidx, int element,
1166                       TCGv_i64 tcg_addr, MemOp mop)
1167 {
1168     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1169 
1170     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1171     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1172 }
1173 
1174 /* Check that FP/Neon access is enabled. If it is, return
1175  * true. If not, emit code to generate an appropriate exception,
1176  * and return false; the caller should not emit any code for
1177  * the instruction. Note that this check must happen after all
1178  * unallocated-encoding checks (otherwise the syndrome information
1179  * for the resulting exception will be incorrect).
1180  */
1181 static bool fp_access_check_only(DisasContext *s)
1182 {
1183     if (s->fp_excp_el) {
1184         assert(!s->fp_access_checked);
1185         s->fp_access_checked = true;
1186 
1187         gen_exception_insn_el(s, 0, EXCP_UDEF,
1188                               syn_fp_access_trap(1, 0xe, false, 0),
1189                               s->fp_excp_el);
1190         return false;
1191     }
1192     s->fp_access_checked = true;
1193     return true;
1194 }
1195 
1196 static bool fp_access_check(DisasContext *s)
1197 {
1198     if (!fp_access_check_only(s)) {
1199         return false;
1200     }
1201     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1202         gen_exception_insn(s, 0, EXCP_UDEF,
1203                            syn_smetrap(SME_ET_Streaming, false));
1204         return false;
1205     }
1206     return true;
1207 }
1208 
1209 /*
1210  * Check that SVE access is enabled.  If it is, return true.
1211  * If not, emit code to generate an appropriate exception and return false.
1212  * This function corresponds to CheckSVEEnabled().
1213  */
1214 bool sve_access_check(DisasContext *s)
1215 {
1216     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1217         assert(dc_isar_feature(aa64_sme, s));
1218         if (!sme_sm_enabled_check(s)) {
1219             goto fail_exit;
1220         }
1221     } else if (s->sve_excp_el) {
1222         gen_exception_insn_el(s, 0, EXCP_UDEF,
1223                               syn_sve_access_trap(), s->sve_excp_el);
1224         goto fail_exit;
1225     }
1226     s->sve_access_checked = true;
1227     return fp_access_check(s);
1228 
1229  fail_exit:
1230     /* Assert that we only raise one exception per instruction. */
1231     assert(!s->sve_access_checked);
1232     s->sve_access_checked = true;
1233     return false;
1234 }
1235 
1236 /*
1237  * Check that SME access is enabled, raise an exception if not.
1238  * Note that this function corresponds to CheckSMEAccess and is
1239  * only used directly for cpregs.
1240  */
1241 static bool sme_access_check(DisasContext *s)
1242 {
1243     if (s->sme_excp_el) {
1244         gen_exception_insn_el(s, 0, EXCP_UDEF,
1245                               syn_smetrap(SME_ET_AccessTrap, false),
1246                               s->sme_excp_el);
1247         return false;
1248     }
1249     return true;
1250 }
1251 
1252 /* This function corresponds to CheckSMEEnabled. */
1253 bool sme_enabled_check(DisasContext *s)
1254 {
1255     /*
1256      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1257      * to be zero when fp_excp_el has priority.  This is because we need
1258      * sme_excp_el by itself for cpregs access checks.
1259      */
1260     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1261         s->fp_access_checked = true;
1262         return sme_access_check(s);
1263     }
1264     return fp_access_check_only(s);
1265 }
1266 
1267 /* Common subroutine for CheckSMEAnd*Enabled. */
1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1269 {
1270     if (!sme_enabled_check(s)) {
1271         return false;
1272     }
1273     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1274         gen_exception_insn(s, 0, EXCP_UDEF,
1275                            syn_smetrap(SME_ET_NotStreaming, false));
1276         return false;
1277     }
1278     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1279         gen_exception_insn(s, 0, EXCP_UDEF,
1280                            syn_smetrap(SME_ET_InactiveZA, false));
1281         return false;
1282     }
1283     return true;
1284 }
1285 
1286 /*
1287  * This utility function is for doing register extension with an
1288  * optional shift. You will likely want to pass a temporary for the
1289  * destination register. See DecodeRegExtend() in the ARM ARM.
1290  */
1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1292                               int option, unsigned int shift)
1293 {
1294     int extsize = extract32(option, 0, 2);
1295     bool is_signed = extract32(option, 2, 1);
1296 
1297     if (is_signed) {
1298         switch (extsize) {
1299         case 0:
1300             tcg_gen_ext8s_i64(tcg_out, tcg_in);
1301             break;
1302         case 1:
1303             tcg_gen_ext16s_i64(tcg_out, tcg_in);
1304             break;
1305         case 2:
1306             tcg_gen_ext32s_i64(tcg_out, tcg_in);
1307             break;
1308         case 3:
1309             tcg_gen_mov_i64(tcg_out, tcg_in);
1310             break;
1311         }
1312     } else {
1313         switch (extsize) {
1314         case 0:
1315             tcg_gen_ext8u_i64(tcg_out, tcg_in);
1316             break;
1317         case 1:
1318             tcg_gen_ext16u_i64(tcg_out, tcg_in);
1319             break;
1320         case 2:
1321             tcg_gen_ext32u_i64(tcg_out, tcg_in);
1322             break;
1323         case 3:
1324             tcg_gen_mov_i64(tcg_out, tcg_in);
1325             break;
1326         }
1327     }
1328 
1329     if (shift) {
1330         tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1331     }
1332 }
1333 
1334 static inline void gen_check_sp_alignment(DisasContext *s)
1335 {
1336     /* The AArch64 architecture mandates that (if enabled via PSTATE
1337      * or SCTLR bits) there is a check that SP is 16-aligned on every
1338      * SP-relative load or store (with an exception generated if it is not).
1339      * In line with general QEMU practice regarding misaligned accesses,
1340      * we omit these checks for the sake of guest program performance.
1341      * This function is provided as a hook so we can more easily add these
1342      * checks in future (possibly as a "favour catching guest program bugs
1343      * over speed" user selectable option).
1344      */
1345 }
1346 
1347 /*
1348  * This provides a simple table based table lookup decoder. It is
1349  * intended to be used when the relevant bits for decode are too
1350  * awkwardly placed and switch/if based logic would be confusing and
1351  * deeply nested. Since it's a linear search through the table, tables
1352  * should be kept small.
1353  *
1354  * It returns the first handler where insn & mask == pattern, or
1355  * NULL if there is no match.
1356  * The table is terminated by an empty mask (i.e. 0)
1357  */
1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1359                                                uint32_t insn)
1360 {
1361     const AArch64DecodeTable *tptr = table;
1362 
1363     while (tptr->mask) {
1364         if ((insn & tptr->mask) == tptr->pattern) {
1365             return tptr->disas_fn;
1366         }
1367         tptr++;
1368     }
1369     return NULL;
1370 }
1371 
1372 /*
1373  * The instruction disassembly implemented here matches
1374  * the instruction encoding classifications in chapter C4
1375  * of the ARM Architecture Reference Manual (DDI0487B_a);
1376  * classification names and decode diagrams here should generally
1377  * match up with those in the manual.
1378  */
1379 
1380 static bool trans_B(DisasContext *s, arg_i *a)
1381 {
1382     reset_btype(s);
1383     gen_goto_tb(s, 0, a->imm);
1384     return true;
1385 }
1386 
1387 static bool trans_BL(DisasContext *s, arg_i *a)
1388 {
1389     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1390     reset_btype(s);
1391     gen_goto_tb(s, 0, a->imm);
1392     return true;
1393 }
1394 
1395 
1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1397 {
1398     DisasLabel match;
1399     TCGv_i64 tcg_cmp;
1400 
1401     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1402     reset_btype(s);
1403 
1404     match = gen_disas_label(s);
1405     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1406                         tcg_cmp, 0, match.label);
1407     gen_goto_tb(s, 0, 4);
1408     set_disas_label(s, match);
1409     gen_goto_tb(s, 1, a->imm);
1410     return true;
1411 }
1412 
1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1414 {
1415     DisasLabel match;
1416     TCGv_i64 tcg_cmp;
1417 
1418     tcg_cmp = tcg_temp_new_i64();
1419     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1420 
1421     reset_btype(s);
1422 
1423     match = gen_disas_label(s);
1424     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1425                         tcg_cmp, 0, match.label);
1426     gen_goto_tb(s, 0, 4);
1427     set_disas_label(s, match);
1428     gen_goto_tb(s, 1, a->imm);
1429     return true;
1430 }
1431 
1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1433 {
1434     reset_btype(s);
1435     if (a->cond < 0x0e) {
1436         /* genuinely conditional branches */
1437         DisasLabel match = gen_disas_label(s);
1438         arm_gen_test_cc(a->cond, match.label);
1439         gen_goto_tb(s, 0, 4);
1440         set_disas_label(s, match);
1441         gen_goto_tb(s, 1, a->imm);
1442     } else {
1443         /* 0xe and 0xf are both "always" conditions */
1444         gen_goto_tb(s, 0, a->imm);
1445     }
1446     return true;
1447 }
1448 
1449 static void set_btype_for_br(DisasContext *s, int rn)
1450 {
1451     if (dc_isar_feature(aa64_bti, s)) {
1452         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1453         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1454     }
1455 }
1456 
1457 static void set_btype_for_blr(DisasContext *s)
1458 {
1459     if (dc_isar_feature(aa64_bti, s)) {
1460         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1461         set_btype(s, 2);
1462     }
1463 }
1464 
1465 static bool trans_BR(DisasContext *s, arg_r *a)
1466 {
1467     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1468     set_btype_for_br(s, a->rn);
1469     s->base.is_jmp = DISAS_JUMP;
1470     return true;
1471 }
1472 
1473 static bool trans_BLR(DisasContext *s, arg_r *a)
1474 {
1475     TCGv_i64 dst = cpu_reg(s, a->rn);
1476     TCGv_i64 lr = cpu_reg(s, 30);
1477     if (dst == lr) {
1478         TCGv_i64 tmp = tcg_temp_new_i64();
1479         tcg_gen_mov_i64(tmp, dst);
1480         dst = tmp;
1481     }
1482     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1483     gen_a64_set_pc(s, dst);
1484     set_btype_for_blr(s);
1485     s->base.is_jmp = DISAS_JUMP;
1486     return true;
1487 }
1488 
1489 static bool trans_RET(DisasContext *s, arg_r *a)
1490 {
1491     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1492     s->base.is_jmp = DISAS_JUMP;
1493     return true;
1494 }
1495 
1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1497                                    TCGv_i64 modifier, bool use_key_a)
1498 {
1499     TCGv_i64 truedst;
1500     /*
1501      * Return the branch target for a BRAA/RETA/etc, which is either
1502      * just the destination dst, or that value with the pauth check
1503      * done and the code removed from the high bits.
1504      */
1505     if (!s->pauth_active) {
1506         return dst;
1507     }
1508 
1509     truedst = tcg_temp_new_i64();
1510     if (use_key_a) {
1511         gen_helper_autia(truedst, cpu_env, dst, modifier);
1512     } else {
1513         gen_helper_autib(truedst, cpu_env, dst, modifier);
1514     }
1515     return truedst;
1516 }
1517 
1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1519 {
1520     TCGv_i64 dst;
1521 
1522     if (!dc_isar_feature(aa64_pauth, s)) {
1523         return false;
1524     }
1525 
1526     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1527     gen_a64_set_pc(s, dst);
1528     set_btype_for_br(s, a->rn);
1529     s->base.is_jmp = DISAS_JUMP;
1530     return true;
1531 }
1532 
1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1534 {
1535     TCGv_i64 dst, lr;
1536 
1537     if (!dc_isar_feature(aa64_pauth, s)) {
1538         return false;
1539     }
1540 
1541     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1542     lr = cpu_reg(s, 30);
1543     if (dst == lr) {
1544         TCGv_i64 tmp = tcg_temp_new_i64();
1545         tcg_gen_mov_i64(tmp, dst);
1546         dst = tmp;
1547     }
1548     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1549     gen_a64_set_pc(s, dst);
1550     set_btype_for_blr(s);
1551     s->base.is_jmp = DISAS_JUMP;
1552     return true;
1553 }
1554 
1555 static bool trans_RETA(DisasContext *s, arg_reta *a)
1556 {
1557     TCGv_i64 dst;
1558 
1559     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1560     gen_a64_set_pc(s, dst);
1561     s->base.is_jmp = DISAS_JUMP;
1562     return true;
1563 }
1564 
1565 static bool trans_BRA(DisasContext *s, arg_bra *a)
1566 {
1567     TCGv_i64 dst;
1568 
1569     if (!dc_isar_feature(aa64_pauth, s)) {
1570         return false;
1571     }
1572     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1573     gen_a64_set_pc(s, dst);
1574     set_btype_for_br(s, a->rn);
1575     s->base.is_jmp = DISAS_JUMP;
1576     return true;
1577 }
1578 
1579 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1580 {
1581     TCGv_i64 dst, lr;
1582 
1583     if (!dc_isar_feature(aa64_pauth, s)) {
1584         return false;
1585     }
1586     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1587     lr = cpu_reg(s, 30);
1588     if (dst == lr) {
1589         TCGv_i64 tmp = tcg_temp_new_i64();
1590         tcg_gen_mov_i64(tmp, dst);
1591         dst = tmp;
1592     }
1593     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1594     gen_a64_set_pc(s, dst);
1595     set_btype_for_blr(s);
1596     s->base.is_jmp = DISAS_JUMP;
1597     return true;
1598 }
1599 
1600 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1601 {
1602     TCGv_i64 dst;
1603 
1604     if (s->current_el == 0) {
1605         return false;
1606     }
1607     if (s->fgt_eret) {
1608         gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2);
1609         return true;
1610     }
1611     dst = tcg_temp_new_i64();
1612     tcg_gen_ld_i64(dst, cpu_env,
1613                    offsetof(CPUARMState, elr_el[s->current_el]));
1614 
1615     translator_io_start(&s->base);
1616 
1617     gen_helper_exception_return(cpu_env, dst);
1618     /* Must exit loop to check un-masked IRQs */
1619     s->base.is_jmp = DISAS_EXIT;
1620     return true;
1621 }
1622 
1623 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1624 {
1625     TCGv_i64 dst;
1626 
1627     if (!dc_isar_feature(aa64_pauth, s)) {
1628         return false;
1629     }
1630     if (s->current_el == 0) {
1631         return false;
1632     }
1633     /* The FGT trap takes precedence over an auth trap. */
1634     if (s->fgt_eret) {
1635         gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2);
1636         return true;
1637     }
1638     dst = tcg_temp_new_i64();
1639     tcg_gen_ld_i64(dst, cpu_env,
1640                    offsetof(CPUARMState, elr_el[s->current_el]));
1641 
1642     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1643 
1644     translator_io_start(&s->base);
1645 
1646     gen_helper_exception_return(cpu_env, dst);
1647     /* Must exit loop to check un-masked IRQs */
1648     s->base.is_jmp = DISAS_EXIT;
1649     return true;
1650 }
1651 
1652 /* HINT instruction group, including various allocated HINTs */
1653 static void handle_hint(DisasContext *s, uint32_t insn,
1654                         unsigned int op1, unsigned int op2, unsigned int crm)
1655 {
1656     unsigned int selector = crm << 3 | op2;
1657 
1658     if (op1 != 3) {
1659         unallocated_encoding(s);
1660         return;
1661     }
1662 
1663     switch (selector) {
1664     case 0b00000: /* NOP */
1665         break;
1666     case 0b00011: /* WFI */
1667         s->base.is_jmp = DISAS_WFI;
1668         break;
1669     case 0b00001: /* YIELD */
1670         /* When running in MTTCG we don't generate jumps to the yield and
1671          * WFE helpers as it won't affect the scheduling of other vCPUs.
1672          * If we wanted to more completely model WFE/SEV so we don't busy
1673          * spin unnecessarily we would need to do something more involved.
1674          */
1675         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1676             s->base.is_jmp = DISAS_YIELD;
1677         }
1678         break;
1679     case 0b00010: /* WFE */
1680         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1681             s->base.is_jmp = DISAS_WFE;
1682         }
1683         break;
1684     case 0b00100: /* SEV */
1685     case 0b00101: /* SEVL */
1686     case 0b00110: /* DGH */
1687         /* we treat all as NOP at least for now */
1688         break;
1689     case 0b00111: /* XPACLRI */
1690         if (s->pauth_active) {
1691             gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1692         }
1693         break;
1694     case 0b01000: /* PACIA1716 */
1695         if (s->pauth_active) {
1696             gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1697         }
1698         break;
1699     case 0b01010: /* PACIB1716 */
1700         if (s->pauth_active) {
1701             gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1702         }
1703         break;
1704     case 0b01100: /* AUTIA1716 */
1705         if (s->pauth_active) {
1706             gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1707         }
1708         break;
1709     case 0b01110: /* AUTIB1716 */
1710         if (s->pauth_active) {
1711             gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1712         }
1713         break;
1714     case 0b10000: /* ESB */
1715         /* Without RAS, we must implement this as NOP. */
1716         if (dc_isar_feature(aa64_ras, s)) {
1717             /*
1718              * QEMU does not have a source of physical SErrors,
1719              * so we are only concerned with virtual SErrors.
1720              * The pseudocode in the ARM for this case is
1721              *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1722              *      AArch64.vESBOperation();
1723              * Most of the condition can be evaluated at translation time.
1724              * Test for EL2 present, and defer test for SEL2 to runtime.
1725              */
1726             if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1727                 gen_helper_vesb(cpu_env);
1728             }
1729         }
1730         break;
1731     case 0b11000: /* PACIAZ */
1732         if (s->pauth_active) {
1733             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1734                              tcg_constant_i64(0));
1735         }
1736         break;
1737     case 0b11001: /* PACIASP */
1738         if (s->pauth_active) {
1739             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1740         }
1741         break;
1742     case 0b11010: /* PACIBZ */
1743         if (s->pauth_active) {
1744             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1745                              tcg_constant_i64(0));
1746         }
1747         break;
1748     case 0b11011: /* PACIBSP */
1749         if (s->pauth_active) {
1750             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1751         }
1752         break;
1753     case 0b11100: /* AUTIAZ */
1754         if (s->pauth_active) {
1755             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1756                              tcg_constant_i64(0));
1757         }
1758         break;
1759     case 0b11101: /* AUTIASP */
1760         if (s->pauth_active) {
1761             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1762         }
1763         break;
1764     case 0b11110: /* AUTIBZ */
1765         if (s->pauth_active) {
1766             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1767                              tcg_constant_i64(0));
1768         }
1769         break;
1770     case 0b11111: /* AUTIBSP */
1771         if (s->pauth_active) {
1772             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1773         }
1774         break;
1775     default:
1776         /* default specified as NOP equivalent */
1777         break;
1778     }
1779 }
1780 
1781 static void gen_clrex(DisasContext *s, uint32_t insn)
1782 {
1783     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1784 }
1785 
1786 /* CLREX, DSB, DMB, ISB */
1787 static void handle_sync(DisasContext *s, uint32_t insn,
1788                         unsigned int op1, unsigned int op2, unsigned int crm)
1789 {
1790     TCGBar bar;
1791 
1792     if (op1 != 3) {
1793         unallocated_encoding(s);
1794         return;
1795     }
1796 
1797     switch (op2) {
1798     case 2: /* CLREX */
1799         gen_clrex(s, insn);
1800         return;
1801     case 4: /* DSB */
1802     case 5: /* DMB */
1803         switch (crm & 3) {
1804         case 1: /* MBReqTypes_Reads */
1805             bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1806             break;
1807         case 2: /* MBReqTypes_Writes */
1808             bar = TCG_BAR_SC | TCG_MO_ST_ST;
1809             break;
1810         default: /* MBReqTypes_All */
1811             bar = TCG_BAR_SC | TCG_MO_ALL;
1812             break;
1813         }
1814         tcg_gen_mb(bar);
1815         return;
1816     case 6: /* ISB */
1817         /* We need to break the TB after this insn to execute
1818          * a self-modified code correctly and also to take
1819          * any pending interrupts immediately.
1820          */
1821         reset_btype(s);
1822         gen_goto_tb(s, 0, 4);
1823         return;
1824 
1825     case 7: /* SB */
1826         if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1827             goto do_unallocated;
1828         }
1829         /*
1830          * TODO: There is no speculation barrier opcode for TCG;
1831          * MB and end the TB instead.
1832          */
1833         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1834         gen_goto_tb(s, 0, 4);
1835         return;
1836 
1837     default:
1838     do_unallocated:
1839         unallocated_encoding(s);
1840         return;
1841     }
1842 }
1843 
1844 static void gen_xaflag(void)
1845 {
1846     TCGv_i32 z = tcg_temp_new_i32();
1847 
1848     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1849 
1850     /*
1851      * (!C & !Z) << 31
1852      * (!(C | Z)) << 31
1853      * ~((C | Z) << 31)
1854      * ~-(C | Z)
1855      * (C | Z) - 1
1856      */
1857     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1858     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1859 
1860     /* !(Z & C) */
1861     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1862     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1863 
1864     /* (!C & Z) << 31 -> -(Z & ~C) */
1865     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1866     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1867 
1868     /* C | Z */
1869     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1870 }
1871 
1872 static void gen_axflag(void)
1873 {
1874     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1875     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1876 
1877     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1878     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1879 
1880     tcg_gen_movi_i32(cpu_NF, 0);
1881     tcg_gen_movi_i32(cpu_VF, 0);
1882 }
1883 
1884 /* MSR (immediate) - move immediate to processor state field */
1885 static void handle_msr_i(DisasContext *s, uint32_t insn,
1886                          unsigned int op1, unsigned int op2, unsigned int crm)
1887 {
1888     int op = op1 << 3 | op2;
1889 
1890     /* End the TB by default, chaining is ok.  */
1891     s->base.is_jmp = DISAS_TOO_MANY;
1892 
1893     switch (op) {
1894     case 0x00: /* CFINV */
1895         if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1896             goto do_unallocated;
1897         }
1898         tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1899         s->base.is_jmp = DISAS_NEXT;
1900         break;
1901 
1902     case 0x01: /* XAFlag */
1903         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1904             goto do_unallocated;
1905         }
1906         gen_xaflag();
1907         s->base.is_jmp = DISAS_NEXT;
1908         break;
1909 
1910     case 0x02: /* AXFlag */
1911         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1912             goto do_unallocated;
1913         }
1914         gen_axflag();
1915         s->base.is_jmp = DISAS_NEXT;
1916         break;
1917 
1918     case 0x03: /* UAO */
1919         if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1920             goto do_unallocated;
1921         }
1922         if (crm & 1) {
1923             set_pstate_bits(PSTATE_UAO);
1924         } else {
1925             clear_pstate_bits(PSTATE_UAO);
1926         }
1927         gen_rebuild_hflags(s);
1928         break;
1929 
1930     case 0x04: /* PAN */
1931         if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1932             goto do_unallocated;
1933         }
1934         if (crm & 1) {
1935             set_pstate_bits(PSTATE_PAN);
1936         } else {
1937             clear_pstate_bits(PSTATE_PAN);
1938         }
1939         gen_rebuild_hflags(s);
1940         break;
1941 
1942     case 0x05: /* SPSel */
1943         if (s->current_el == 0) {
1944             goto do_unallocated;
1945         }
1946         gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1947         break;
1948 
1949     case 0x19: /* SSBS */
1950         if (!dc_isar_feature(aa64_ssbs, s)) {
1951             goto do_unallocated;
1952         }
1953         if (crm & 1) {
1954             set_pstate_bits(PSTATE_SSBS);
1955         } else {
1956             clear_pstate_bits(PSTATE_SSBS);
1957         }
1958         /* Don't need to rebuild hflags since SSBS is a nop */
1959         break;
1960 
1961     case 0x1a: /* DIT */
1962         if (!dc_isar_feature(aa64_dit, s)) {
1963             goto do_unallocated;
1964         }
1965         if (crm & 1) {
1966             set_pstate_bits(PSTATE_DIT);
1967         } else {
1968             clear_pstate_bits(PSTATE_DIT);
1969         }
1970         /* There's no need to rebuild hflags because DIT is a nop */
1971         break;
1972 
1973     case 0x1e: /* DAIFSet */
1974         gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1975         break;
1976 
1977     case 0x1f: /* DAIFClear */
1978         gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1979         /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs.  */
1980         s->base.is_jmp = DISAS_UPDATE_EXIT;
1981         break;
1982 
1983     case 0x1c: /* TCO */
1984         if (dc_isar_feature(aa64_mte, s)) {
1985             /* Full MTE is enabled -- set the TCO bit as directed. */
1986             if (crm & 1) {
1987                 set_pstate_bits(PSTATE_TCO);
1988             } else {
1989                 clear_pstate_bits(PSTATE_TCO);
1990             }
1991             gen_rebuild_hflags(s);
1992             /* Many factors, including TCO, go into MTE_ACTIVE. */
1993             s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1994         } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1995             /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
1996             s->base.is_jmp = DISAS_NEXT;
1997         } else {
1998             goto do_unallocated;
1999         }
2000         break;
2001 
2002     case 0x1b: /* SVCR* */
2003         if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
2004             goto do_unallocated;
2005         }
2006         if (sme_access_check(s)) {
2007             int old = s->pstate_sm | (s->pstate_za << 1);
2008             int new = (crm & 1) * 3;
2009             int msk = (crm >> 1) & 3;
2010 
2011             if ((old ^ new) & msk) {
2012                 /* At least one bit changes. */
2013                 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
2014                                     tcg_constant_i32(msk));
2015             } else {
2016                 s->base.is_jmp = DISAS_NEXT;
2017             }
2018         }
2019         break;
2020 
2021     default:
2022     do_unallocated:
2023         unallocated_encoding(s);
2024         return;
2025     }
2026 }
2027 
2028 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2029 {
2030     TCGv_i32 tmp = tcg_temp_new_i32();
2031     TCGv_i32 nzcv = tcg_temp_new_i32();
2032 
2033     /* build bit 31, N */
2034     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2035     /* build bit 30, Z */
2036     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2037     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2038     /* build bit 29, C */
2039     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2040     /* build bit 28, V */
2041     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2042     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2043     /* generate result */
2044     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2045 }
2046 
2047 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2048 {
2049     TCGv_i32 nzcv = tcg_temp_new_i32();
2050 
2051     /* take NZCV from R[t] */
2052     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2053 
2054     /* bit 31, N */
2055     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2056     /* bit 30, Z */
2057     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2058     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2059     /* bit 29, C */
2060     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2061     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2062     /* bit 28, V */
2063     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2064     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2065 }
2066 
2067 static void gen_sysreg_undef(DisasContext *s, bool isread,
2068                              uint8_t op0, uint8_t op1, uint8_t op2,
2069                              uint8_t crn, uint8_t crm, uint8_t rt)
2070 {
2071     /*
2072      * Generate code to emit an UNDEF with correct syndrome
2073      * information for a failed system register access.
2074      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2075      * but if FEAT_IDST is implemented then read accesses to registers
2076      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2077      * syndrome.
2078      */
2079     uint32_t syndrome;
2080 
2081     if (isread && dc_isar_feature(aa64_ids, s) &&
2082         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2083         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2084     } else {
2085         syndrome = syn_uncategorized();
2086     }
2087     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2088 }
2089 
2090 /* MRS - move from system register
2091  * MSR (register) - move to system register
2092  * SYS
2093  * SYSL
2094  * These are all essentially the same insn in 'read' and 'write'
2095  * versions, with varying op0 fields.
2096  */
2097 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
2098                        unsigned int op0, unsigned int op1, unsigned int op2,
2099                        unsigned int crn, unsigned int crm, unsigned int rt)
2100 {
2101     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2102                                       crn, crm, op0, op1, op2);
2103     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2104     bool need_exit_tb = false;
2105     TCGv_ptr tcg_ri = NULL;
2106     TCGv_i64 tcg_rt;
2107 
2108     if (!ri) {
2109         /* Unknown register; this might be a guest error or a QEMU
2110          * unimplemented feature.
2111          */
2112         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2113                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2114                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2115         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2116         return;
2117     }
2118 
2119     /* Check access permissions */
2120     if (!cp_access_ok(s->current_el, ri, isread)) {
2121         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2122         return;
2123     }
2124 
2125     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2126         /* Emit code to perform further access permissions checks at
2127          * runtime; this may result in an exception.
2128          */
2129         uint32_t syndrome;
2130 
2131         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2132         gen_a64_update_pc(s, 0);
2133         tcg_ri = tcg_temp_new_ptr();
2134         gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
2135                                        tcg_constant_i32(key),
2136                                        tcg_constant_i32(syndrome),
2137                                        tcg_constant_i32(isread));
2138     } else if (ri->type & ARM_CP_RAISES_EXC) {
2139         /*
2140          * The readfn or writefn might raise an exception;
2141          * synchronize the CPU state in case it does.
2142          */
2143         gen_a64_update_pc(s, 0);
2144     }
2145 
2146     /* Handle special cases first */
2147     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2148     case 0:
2149         break;
2150     case ARM_CP_NOP:
2151         return;
2152     case ARM_CP_NZCV:
2153         tcg_rt = cpu_reg(s, rt);
2154         if (isread) {
2155             gen_get_nzcv(tcg_rt);
2156         } else {
2157             gen_set_nzcv(tcg_rt);
2158         }
2159         return;
2160     case ARM_CP_CURRENTEL:
2161         /* Reads as current EL value from pstate, which is
2162          * guaranteed to be constant by the tb flags.
2163          */
2164         tcg_rt = cpu_reg(s, rt);
2165         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2166         return;
2167     case ARM_CP_DC_ZVA:
2168         /* Writes clear the aligned block of memory which rt points into. */
2169         if (s->mte_active[0]) {
2170             int desc = 0;
2171 
2172             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2173             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2174             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2175 
2176             tcg_rt = tcg_temp_new_i64();
2177             gen_helper_mte_check_zva(tcg_rt, cpu_env,
2178                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2179         } else {
2180             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2181         }
2182         gen_helper_dc_zva(cpu_env, tcg_rt);
2183         return;
2184     case ARM_CP_DC_GVA:
2185         {
2186             TCGv_i64 clean_addr, tag;
2187 
2188             /*
2189              * DC_GVA, like DC_ZVA, requires that we supply the original
2190              * pointer for an invalid page.  Probe that address first.
2191              */
2192             tcg_rt = cpu_reg(s, rt);
2193             clean_addr = clean_data_tbi(s, tcg_rt);
2194             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2195 
2196             if (s->ata) {
2197                 /* Extract the tag from the register to match STZGM.  */
2198                 tag = tcg_temp_new_i64();
2199                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2200                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2201             }
2202         }
2203         return;
2204     case ARM_CP_DC_GZVA:
2205         {
2206             TCGv_i64 clean_addr, tag;
2207 
2208             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2209             tcg_rt = cpu_reg(s, rt);
2210             clean_addr = clean_data_tbi(s, tcg_rt);
2211             gen_helper_dc_zva(cpu_env, clean_addr);
2212 
2213             if (s->ata) {
2214                 /* Extract the tag from the register to match STZGM.  */
2215                 tag = tcg_temp_new_i64();
2216                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2217                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2218             }
2219         }
2220         return;
2221     default:
2222         g_assert_not_reached();
2223     }
2224     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2225         return;
2226     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2227         return;
2228     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2229         return;
2230     }
2231 
2232     if (ri->type & ARM_CP_IO) {
2233         /* I/O operations must end the TB here (whether read or write) */
2234         need_exit_tb = translator_io_start(&s->base);
2235     }
2236 
2237     tcg_rt = cpu_reg(s, rt);
2238 
2239     if (isread) {
2240         if (ri->type & ARM_CP_CONST) {
2241             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2242         } else if (ri->readfn) {
2243             if (!tcg_ri) {
2244                 tcg_ri = gen_lookup_cp_reg(key);
2245             }
2246             gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2247         } else {
2248             tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2249         }
2250     } else {
2251         if (ri->type & ARM_CP_CONST) {
2252             /* If not forbidden by access permissions, treat as WI */
2253             return;
2254         } else if (ri->writefn) {
2255             if (!tcg_ri) {
2256                 tcg_ri = gen_lookup_cp_reg(key);
2257             }
2258             gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2259         } else {
2260             tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2261         }
2262     }
2263 
2264     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2265         /*
2266          * A write to any coprocessor regiser that ends a TB
2267          * must rebuild the hflags for the next TB.
2268          */
2269         gen_rebuild_hflags(s);
2270         /*
2271          * We default to ending the TB on a coprocessor register write,
2272          * but allow this to be suppressed by the register definition
2273          * (usually only necessary to work around guest bugs).
2274          */
2275         need_exit_tb = true;
2276     }
2277     if (need_exit_tb) {
2278         s->base.is_jmp = DISAS_UPDATE_EXIT;
2279     }
2280 }
2281 
2282 /* System
2283  *  31                 22 21  20 19 18 16 15   12 11    8 7   5 4    0
2284  * +---------------------+---+-----+-----+-------+-------+-----+------+
2285  * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 |  CRn  |  CRm  | op2 |  Rt  |
2286  * +---------------------+---+-----+-----+-------+-------+-----+------+
2287  */
2288 static void disas_system(DisasContext *s, uint32_t insn)
2289 {
2290     unsigned int l, op0, op1, crn, crm, op2, rt;
2291     l = extract32(insn, 21, 1);
2292     op0 = extract32(insn, 19, 2);
2293     op1 = extract32(insn, 16, 3);
2294     crn = extract32(insn, 12, 4);
2295     crm = extract32(insn, 8, 4);
2296     op2 = extract32(insn, 5, 3);
2297     rt = extract32(insn, 0, 5);
2298 
2299     if (op0 == 0) {
2300         if (l || rt != 31) {
2301             unallocated_encoding(s);
2302             return;
2303         }
2304         switch (crn) {
2305         case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2306             handle_hint(s, insn, op1, op2, crm);
2307             break;
2308         case 3: /* CLREX, DSB, DMB, ISB */
2309             handle_sync(s, insn, op1, op2, crm);
2310             break;
2311         case 4: /* MSR (immediate) */
2312             handle_msr_i(s, insn, op1, op2, crm);
2313             break;
2314         default:
2315             unallocated_encoding(s);
2316             break;
2317         }
2318         return;
2319     }
2320     handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2321 }
2322 
2323 /* Exception generation
2324  *
2325  *  31             24 23 21 20                     5 4   2 1  0
2326  * +-----------------+-----+------------------------+-----+----+
2327  * | 1 1 0 1 0 1 0 0 | opc |          imm16         | op2 | LL |
2328  * +-----------------------+------------------------+----------+
2329  */
2330 static void disas_exc(DisasContext *s, uint32_t insn)
2331 {
2332     int opc = extract32(insn, 21, 3);
2333     int op2_ll = extract32(insn, 0, 5);
2334     int imm16 = extract32(insn, 5, 16);
2335     uint32_t syndrome;
2336 
2337     switch (opc) {
2338     case 0:
2339         /* For SVC, HVC and SMC we advance the single-step state
2340          * machine before taking the exception. This is architecturally
2341          * mandated, to ensure that single-stepping a system call
2342          * instruction works properly.
2343          */
2344         switch (op2_ll) {
2345         case 1:                                                     /* SVC */
2346             syndrome = syn_aa64_svc(imm16);
2347             if (s->fgt_svc) {
2348                 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2349                 break;
2350             }
2351             gen_ss_advance(s);
2352             gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2353             break;
2354         case 2:                                                     /* HVC */
2355             if (s->current_el == 0) {
2356                 unallocated_encoding(s);
2357                 break;
2358             }
2359             /* The pre HVC helper handles cases when HVC gets trapped
2360              * as an undefined insn by runtime configuration.
2361              */
2362             gen_a64_update_pc(s, 0);
2363             gen_helper_pre_hvc(cpu_env);
2364             gen_ss_advance(s);
2365             gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2366             break;
2367         case 3:                                                     /* SMC */
2368             if (s->current_el == 0) {
2369                 unallocated_encoding(s);
2370                 break;
2371             }
2372             gen_a64_update_pc(s, 0);
2373             gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2374             gen_ss_advance(s);
2375             gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2376             break;
2377         default:
2378             unallocated_encoding(s);
2379             break;
2380         }
2381         break;
2382     case 1:
2383         if (op2_ll != 0) {
2384             unallocated_encoding(s);
2385             break;
2386         }
2387         /* BRK */
2388         gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2389         break;
2390     case 2:
2391         if (op2_ll != 0) {
2392             unallocated_encoding(s);
2393             break;
2394         }
2395         /* HLT. This has two purposes.
2396          * Architecturally, it is an external halting debug instruction.
2397          * Since QEMU doesn't implement external debug, we treat this as
2398          * it is required for halting debug disabled: it will UNDEF.
2399          * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2400          */
2401         if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2402             gen_exception_internal_insn(s, EXCP_SEMIHOST);
2403         } else {
2404             unallocated_encoding(s);
2405         }
2406         break;
2407     case 5:
2408         if (op2_ll < 1 || op2_ll > 3) {
2409             unallocated_encoding(s);
2410             break;
2411         }
2412         /* DCPS1, DCPS2, DCPS3 */
2413         unallocated_encoding(s);
2414         break;
2415     default:
2416         unallocated_encoding(s);
2417         break;
2418     }
2419 }
2420 
2421 /* Branches, exception generating and system instructions */
2422 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2423 {
2424     switch (extract32(insn, 25, 7)) {
2425     case 0x6a: /* Exception generation / System */
2426         if (insn & (1 << 24)) {
2427             if (extract32(insn, 22, 2) == 0) {
2428                 disas_system(s, insn);
2429             } else {
2430                 unallocated_encoding(s);
2431             }
2432         } else {
2433             disas_exc(s, insn);
2434         }
2435         break;
2436     default:
2437         unallocated_encoding(s);
2438         break;
2439     }
2440 }
2441 
2442 /*
2443  * Load/Store exclusive instructions are implemented by remembering
2444  * the value/address loaded, and seeing if these are the same
2445  * when the store is performed. This is not actually the architecturally
2446  * mandated semantics, but it works for typical guest code sequences
2447  * and avoids having to monitor regular stores.
2448  *
2449  * The store exclusive uses the atomic cmpxchg primitives to avoid
2450  * races in multi-threaded linux-user and when MTTCG softmmu is
2451  * enabled.
2452  */
2453 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2454                                int size, bool is_pair)
2455 {
2456     int idx = get_mem_index(s);
2457     TCGv_i64 dirty_addr, clean_addr;
2458     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2459 
2460     s->is_ldex = true;
2461     dirty_addr = cpu_reg_sp(s, rn);
2462     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2463 
2464     g_assert(size <= 3);
2465     if (is_pair) {
2466         g_assert(size >= 2);
2467         if (size == 2) {
2468             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2469             if (s->be_data == MO_LE) {
2470                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2471                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2472             } else {
2473                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2474                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2475             }
2476         } else {
2477             TCGv_i128 t16 = tcg_temp_new_i128();
2478 
2479             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2480 
2481             if (s->be_data == MO_LE) {
2482                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2483                                       cpu_exclusive_high, t16);
2484             } else {
2485                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2486                                       cpu_exclusive_val, t16);
2487             }
2488             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2489             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2490         }
2491     } else {
2492         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2493         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2494     }
2495     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2496 }
2497 
2498 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2499                                 int rn, int size, int is_pair)
2500 {
2501     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2502      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2503      *     [addr] = {Rt};
2504      *     if (is_pair) {
2505      *         [addr + datasize] = {Rt2};
2506      *     }
2507      *     {Rd} = 0;
2508      * } else {
2509      *     {Rd} = 1;
2510      * }
2511      * env->exclusive_addr = -1;
2512      */
2513     TCGLabel *fail_label = gen_new_label();
2514     TCGLabel *done_label = gen_new_label();
2515     TCGv_i64 tmp, clean_addr;
2516     MemOp memop;
2517 
2518     /*
2519      * FIXME: We are out of spec here.  We have recorded only the address
2520      * from load_exclusive, not the entire range, and we assume that the
2521      * size of the access on both sides match.  The architecture allows the
2522      * store to be smaller than the load, so long as the stored bytes are
2523      * within the range recorded by the load.
2524      */
2525 
2526     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2527     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2528     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2529 
2530     /*
2531      * The write, and any associated faults, only happen if the virtual
2532      * and physical addresses pass the exclusive monitor check.  These
2533      * faults are exceedingly unlikely, because normally the guest uses
2534      * the exact same address register for the load_exclusive, and we
2535      * would have recognized these faults there.
2536      *
2537      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2538      * unaligned 4-byte write within the range of an aligned 8-byte load.
2539      * With LSE2, the store would need to cross a 16-byte boundary when the
2540      * load did not, which would mean the store is outside the range
2541      * recorded for the monitor, which would have failed a corrected monitor
2542      * check above.  For now, we assume no size change and retain the
2543      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2544      *
2545      * It is possible to trigger an MTE fault, by performing the load with
2546      * a virtual address with a valid tag and performing the store with the
2547      * same virtual address and a different invalid tag.
2548      */
2549     memop = size + is_pair;
2550     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2551         memop |= MO_ALIGN;
2552     }
2553     memop = finalize_memop(s, memop);
2554     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2555 
2556     tmp = tcg_temp_new_i64();
2557     if (is_pair) {
2558         if (size == 2) {
2559             if (s->be_data == MO_LE) {
2560                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2561             } else {
2562                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2563             }
2564             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2565                                        cpu_exclusive_val, tmp,
2566                                        get_mem_index(s), memop);
2567             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2568         } else {
2569             TCGv_i128 t16 = tcg_temp_new_i128();
2570             TCGv_i128 c16 = tcg_temp_new_i128();
2571             TCGv_i64 a, b;
2572 
2573             if (s->be_data == MO_LE) {
2574                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2575                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2576                                         cpu_exclusive_high);
2577             } else {
2578                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2579                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2580                                         cpu_exclusive_val);
2581             }
2582 
2583             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2584                                         get_mem_index(s), memop);
2585 
2586             a = tcg_temp_new_i64();
2587             b = tcg_temp_new_i64();
2588             if (s->be_data == MO_LE) {
2589                 tcg_gen_extr_i128_i64(a, b, t16);
2590             } else {
2591                 tcg_gen_extr_i128_i64(b, a, t16);
2592             }
2593 
2594             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2595             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2596             tcg_gen_or_i64(tmp, a, b);
2597 
2598             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2599         }
2600     } else {
2601         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2602                                    cpu_reg(s, rt), get_mem_index(s), memop);
2603         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2604     }
2605     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2606     tcg_gen_br(done_label);
2607 
2608     gen_set_label(fail_label);
2609     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2610     gen_set_label(done_label);
2611     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2612 }
2613 
2614 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2615                                  int rn, int size)
2616 {
2617     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2618     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2619     int memidx = get_mem_index(s);
2620     TCGv_i64 clean_addr;
2621     MemOp memop;
2622 
2623     if (rn == 31) {
2624         gen_check_sp_alignment(s);
2625     }
2626     memop = check_atomic_align(s, rn, size);
2627     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2628     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2629                                memidx, memop);
2630 }
2631 
2632 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2633                                       int rn, int size)
2634 {
2635     TCGv_i64 s1 = cpu_reg(s, rs);
2636     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2637     TCGv_i64 t1 = cpu_reg(s, rt);
2638     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2639     TCGv_i64 clean_addr;
2640     int memidx = get_mem_index(s);
2641     MemOp memop;
2642 
2643     if (rn == 31) {
2644         gen_check_sp_alignment(s);
2645     }
2646 
2647     /* This is a single atomic access, despite the "pair". */
2648     memop = check_atomic_align(s, rn, size + 1);
2649     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2650 
2651     if (size == 2) {
2652         TCGv_i64 cmp = tcg_temp_new_i64();
2653         TCGv_i64 val = tcg_temp_new_i64();
2654 
2655         if (s->be_data == MO_LE) {
2656             tcg_gen_concat32_i64(val, t1, t2);
2657             tcg_gen_concat32_i64(cmp, s1, s2);
2658         } else {
2659             tcg_gen_concat32_i64(val, t2, t1);
2660             tcg_gen_concat32_i64(cmp, s2, s1);
2661         }
2662 
2663         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2664 
2665         if (s->be_data == MO_LE) {
2666             tcg_gen_extr32_i64(s1, s2, cmp);
2667         } else {
2668             tcg_gen_extr32_i64(s2, s1, cmp);
2669         }
2670     } else {
2671         TCGv_i128 cmp = tcg_temp_new_i128();
2672         TCGv_i128 val = tcg_temp_new_i128();
2673 
2674         if (s->be_data == MO_LE) {
2675             tcg_gen_concat_i64_i128(val, t1, t2);
2676             tcg_gen_concat_i64_i128(cmp, s1, s2);
2677         } else {
2678             tcg_gen_concat_i64_i128(val, t2, t1);
2679             tcg_gen_concat_i64_i128(cmp, s2, s1);
2680         }
2681 
2682         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2683 
2684         if (s->be_data == MO_LE) {
2685             tcg_gen_extr_i128_i64(s1, s2, cmp);
2686         } else {
2687             tcg_gen_extr_i128_i64(s2, s1, cmp);
2688         }
2689     }
2690 }
2691 
2692 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2693  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2694  */
2695 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2696 {
2697     int opc0 = extract32(opc, 0, 1);
2698     int regsize;
2699 
2700     if (is_signed) {
2701         regsize = opc0 ? 32 : 64;
2702     } else {
2703         regsize = size == 3 ? 64 : 32;
2704     }
2705     return regsize == 64;
2706 }
2707 
2708 /* Load/store exclusive
2709  *
2710  *  31 30 29         24  23  22   21  20  16  15  14   10 9    5 4    0
2711  * +-----+-------------+----+---+----+------+----+-------+------+------+
2712  * | sz  | 0 0 1 0 0 0 | o2 | L | o1 |  Rs  | o0 |  Rt2  |  Rn  | Rt   |
2713  * +-----+-------------+----+---+----+------+----+-------+------+------+
2714  *
2715  *  sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2716  *   L: 0 -> store, 1 -> load
2717  *  o2: 0 -> exclusive, 1 -> not
2718  *  o1: 0 -> single register, 1 -> register pair
2719  *  o0: 1 -> load-acquire/store-release, 0 -> not
2720  */
2721 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2722 {
2723     int rt = extract32(insn, 0, 5);
2724     int rn = extract32(insn, 5, 5);
2725     int rt2 = extract32(insn, 10, 5);
2726     int rs = extract32(insn, 16, 5);
2727     int is_lasr = extract32(insn, 15, 1);
2728     int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2729     int size = extract32(insn, 30, 2);
2730     TCGv_i64 clean_addr;
2731     MemOp memop;
2732 
2733     switch (o2_L_o1_o0) {
2734     case 0x0: /* STXR */
2735     case 0x1: /* STLXR */
2736         if (rn == 31) {
2737             gen_check_sp_alignment(s);
2738         }
2739         if (is_lasr) {
2740             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2741         }
2742         gen_store_exclusive(s, rs, rt, rt2, rn, size, false);
2743         return;
2744 
2745     case 0x4: /* LDXR */
2746     case 0x5: /* LDAXR */
2747         if (rn == 31) {
2748             gen_check_sp_alignment(s);
2749         }
2750         gen_load_exclusive(s, rt, rt2, rn, size, false);
2751         if (is_lasr) {
2752             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2753         }
2754         return;
2755 
2756     case 0x8: /* STLLR */
2757         if (!dc_isar_feature(aa64_lor, s)) {
2758             break;
2759         }
2760         /* StoreLORelease is the same as Store-Release for QEMU.  */
2761         /* fall through */
2762     case 0x9: /* STLR */
2763         /* Generate ISS for non-exclusive accesses including LASR.  */
2764         if (rn == 31) {
2765             gen_check_sp_alignment(s);
2766         }
2767         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2768         memop = check_ordered_align(s, rn, 0, true, size);
2769         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2770                                     true, rn != 31, memop);
2771         do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt,
2772                   disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2773         return;
2774 
2775     case 0xc: /* LDLAR */
2776         if (!dc_isar_feature(aa64_lor, s)) {
2777             break;
2778         }
2779         /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2780         /* fall through */
2781     case 0xd: /* LDAR */
2782         /* Generate ISS for non-exclusive accesses including LASR.  */
2783         if (rn == 31) {
2784             gen_check_sp_alignment(s);
2785         }
2786         memop = check_ordered_align(s, rn, 0, false, size);
2787         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2788                                     false, rn != 31, memop);
2789         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true,
2790                   rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2791         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2792         return;
2793 
2794     case 0x2: case 0x3: /* CASP / STXP */
2795         if (size & 2) { /* STXP / STLXP */
2796             if (rn == 31) {
2797                 gen_check_sp_alignment(s);
2798             }
2799             if (is_lasr) {
2800                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2801             }
2802             gen_store_exclusive(s, rs, rt, rt2, rn, size, true);
2803             return;
2804         }
2805         if (rt2 == 31
2806             && ((rt | rs) & 1) == 0
2807             && dc_isar_feature(aa64_atomics, s)) {
2808             /* CASP / CASPL */
2809             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2810             return;
2811         }
2812         break;
2813 
2814     case 0x6: case 0x7: /* CASPA / LDXP */
2815         if (size & 2) { /* LDXP / LDAXP */
2816             if (rn == 31) {
2817                 gen_check_sp_alignment(s);
2818             }
2819             gen_load_exclusive(s, rt, rt2, rn, size, true);
2820             if (is_lasr) {
2821                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2822             }
2823             return;
2824         }
2825         if (rt2 == 31
2826             && ((rt | rs) & 1) == 0
2827             && dc_isar_feature(aa64_atomics, s)) {
2828             /* CASPA / CASPAL */
2829             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2830             return;
2831         }
2832         break;
2833 
2834     case 0xa: /* CAS */
2835     case 0xb: /* CASL */
2836     case 0xe: /* CASA */
2837     case 0xf: /* CASAL */
2838         if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2839             gen_compare_and_swap(s, rs, rt, rn, size);
2840             return;
2841         }
2842         break;
2843     }
2844     unallocated_encoding(s);
2845 }
2846 
2847 /*
2848  * Load register (literal)
2849  *
2850  *  31 30 29   27  26 25 24 23                5 4     0
2851  * +-----+-------+---+-----+-------------------+-------+
2852  * | opc | 0 1 1 | V | 0 0 |     imm19         |  Rt   |
2853  * +-----+-------+---+-----+-------------------+-------+
2854  *
2855  * V: 1 -> vector (simd/fp)
2856  * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2857  *                   10-> 32 bit signed, 11 -> prefetch
2858  * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2859  */
2860 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2861 {
2862     int rt = extract32(insn, 0, 5);
2863     int64_t imm = sextract32(insn, 5, 19) << 2;
2864     bool is_vector = extract32(insn, 26, 1);
2865     int opc = extract32(insn, 30, 2);
2866     bool is_signed = false;
2867     int size = 2;
2868     TCGv_i64 tcg_rt, clean_addr;
2869     MemOp memop;
2870 
2871     if (is_vector) {
2872         if (opc == 3) {
2873             unallocated_encoding(s);
2874             return;
2875         }
2876         size = 2 + opc;
2877         if (!fp_access_check(s)) {
2878             return;
2879         }
2880         memop = finalize_memop_asimd(s, size);
2881     } else {
2882         if (opc == 3) {
2883             /* PRFM (literal) : prefetch */
2884             return;
2885         }
2886         size = 2 + extract32(opc, 0, 1);
2887         is_signed = extract32(opc, 1, 1);
2888         memop = finalize_memop(s, size + is_signed * MO_SIGN);
2889     }
2890 
2891     tcg_rt = cpu_reg(s, rt);
2892 
2893     clean_addr = tcg_temp_new_i64();
2894     gen_pc_plus_diff(s, clean_addr, imm);
2895 
2896     if (is_vector) {
2897         do_fp_ld(s, rt, clean_addr, memop);
2898     } else {
2899         /* Only unsigned 32bit loads target 32bit registers.  */
2900         bool iss_sf = opc != 0;
2901         do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false);
2902     }
2903 }
2904 
2905 /*
2906  * LDNP (Load Pair - non-temporal hint)
2907  * LDP (Load Pair - non vector)
2908  * LDPSW (Load Pair Signed Word - non vector)
2909  * STNP (Store Pair - non-temporal hint)
2910  * STP (Store Pair - non vector)
2911  * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2912  * LDP (Load Pair of SIMD&FP)
2913  * STNP (Store Pair of SIMD&FP - non-temporal hint)
2914  * STP (Store Pair of SIMD&FP)
2915  *
2916  *  31 30 29   27  26  25 24   23  22 21   15 14   10 9    5 4    0
2917  * +-----+-------+---+---+-------+---+-----------------------------+
2918  * | opc | 1 0 1 | V | 0 | index | L |  imm7 |  Rt2  |  Rn  | Rt   |
2919  * +-----+-------+---+---+-------+---+-------+-------+------+------+
2920  *
2921  * opc: LDP/STP/LDNP/STNP        00 -> 32 bit, 10 -> 64 bit
2922  *      LDPSW/STGP               01
2923  *      LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2924  *   V: 0 -> GPR, 1 -> Vector
2925  * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2926  *      10 -> signed offset, 11 -> pre-index
2927  *   L: 0 -> Store 1 -> Load
2928  *
2929  * Rt, Rt2 = GPR or SIMD registers to be stored
2930  * Rn = general purpose register containing address
2931  * imm7 = signed offset (multiple of 4 or 8 depending on size)
2932  */
2933 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2934 {
2935     int rt = extract32(insn, 0, 5);
2936     int rn = extract32(insn, 5, 5);
2937     int rt2 = extract32(insn, 10, 5);
2938     uint64_t offset = sextract64(insn, 15, 7);
2939     int index = extract32(insn, 23, 2);
2940     bool is_vector = extract32(insn, 26, 1);
2941     bool is_load = extract32(insn, 22, 1);
2942     int opc = extract32(insn, 30, 2);
2943     bool is_signed = false;
2944     bool postindex = false;
2945     bool wback = false;
2946     bool set_tag = false;
2947     TCGv_i64 clean_addr, dirty_addr;
2948     MemOp mop;
2949     int size;
2950 
2951     if (opc == 3) {
2952         unallocated_encoding(s);
2953         return;
2954     }
2955 
2956     if (is_vector) {
2957         size = 2 + opc;
2958     } else if (opc == 1 && !is_load) {
2959         /* STGP */
2960         if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2961             unallocated_encoding(s);
2962             return;
2963         }
2964         size = 3;
2965         set_tag = true;
2966     } else {
2967         size = 2 + extract32(opc, 1, 1);
2968         is_signed = extract32(opc, 0, 1);
2969         if (!is_load && is_signed) {
2970             unallocated_encoding(s);
2971             return;
2972         }
2973     }
2974 
2975     switch (index) {
2976     case 1: /* post-index */
2977         postindex = true;
2978         wback = true;
2979         break;
2980     case 0:
2981         /* signed offset with "non-temporal" hint. Since we don't emulate
2982          * caches we don't care about hints to the cache system about
2983          * data access patterns, and handle this identically to plain
2984          * signed offset.
2985          */
2986         if (is_signed) {
2987             /* There is no non-temporal-hint version of LDPSW */
2988             unallocated_encoding(s);
2989             return;
2990         }
2991         postindex = false;
2992         break;
2993     case 2: /* signed offset, rn not updated */
2994         postindex = false;
2995         break;
2996     case 3: /* pre-index */
2997         postindex = false;
2998         wback = true;
2999         break;
3000     }
3001 
3002     if (is_vector && !fp_access_check(s)) {
3003         return;
3004     }
3005 
3006     offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
3007 
3008     if (rn == 31) {
3009         gen_check_sp_alignment(s);
3010     }
3011 
3012     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3013     if (!postindex) {
3014         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3015     }
3016 
3017     if (set_tag) {
3018         if (!s->ata) {
3019             /*
3020              * TODO: We could rely on the stores below, at least for
3021              * system mode, if we arrange to add MO_ALIGN_16.
3022              */
3023             gen_helper_stg_stub(cpu_env, dirty_addr);
3024         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3025             gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
3026         } else {
3027             gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
3028         }
3029     }
3030 
3031     if (is_vector) {
3032         mop = finalize_memop_asimd(s, size);
3033     } else {
3034         mop = finalize_memop(s, size);
3035     }
3036     clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
3037                                 (wback || rn != 31) && !set_tag,
3038                                 2 << size, mop);
3039 
3040     if (is_vector) {
3041         /* LSE2 does not merge FP pairs; leave these as separate operations. */
3042         if (is_load) {
3043             do_fp_ld(s, rt, clean_addr, mop);
3044         } else {
3045             do_fp_st(s, rt, clean_addr, mop);
3046         }
3047         tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3048         if (is_load) {
3049             do_fp_ld(s, rt2, clean_addr, mop);
3050         } else {
3051             do_fp_st(s, rt2, clean_addr, mop);
3052         }
3053     } else {
3054         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3055         TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
3056 
3057         /*
3058          * We built mop above for the single logical access -- rebuild it
3059          * now for the paired operation.
3060          *
3061          * With LSE2, non-sign-extending pairs are treated atomically if
3062          * aligned, and if unaligned one of the pair will be completely
3063          * within a 16-byte block and that element will be atomic.
3064          * Otherwise each element is separately atomic.
3065          * In all cases, issue one operation with the correct atomicity.
3066          *
3067          * This treats sign-extending loads like zero-extending loads,
3068          * since that reuses the most code below.
3069          */
3070         mop = size + 1;
3071         if (s->align_mem) {
3072             mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3073         }
3074         mop = finalize_memop_pair(s, mop);
3075 
3076         if (is_load) {
3077             if (size == 2) {
3078                 int o2 = s->be_data == MO_LE ? 32 : 0;
3079                 int o1 = o2 ^ 32;
3080 
3081                 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3082                 if (is_signed) {
3083                     tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3084                     tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3085                 } else {
3086                     tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3087                     tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3088                 }
3089             } else {
3090                 TCGv_i128 tmp = tcg_temp_new_i128();
3091 
3092                 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3093                 if (s->be_data == MO_LE) {
3094                     tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3095                 } else {
3096                     tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3097                 }
3098             }
3099         } else {
3100             if (size == 2) {
3101                 TCGv_i64 tmp = tcg_temp_new_i64();
3102 
3103                 if (s->be_data == MO_LE) {
3104                     tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3105                 } else {
3106                     tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3107                 }
3108                 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3109             } else {
3110                 TCGv_i128 tmp = tcg_temp_new_i128();
3111 
3112                 if (s->be_data == MO_LE) {
3113                     tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3114                 } else {
3115                     tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3116                 }
3117                 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3118             }
3119         }
3120     }
3121 
3122     if (wback) {
3123         if (postindex) {
3124             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3125         }
3126         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3127     }
3128 }
3129 
3130 /*
3131  * Load/store (immediate post-indexed)
3132  * Load/store (immediate pre-indexed)
3133  * Load/store (unscaled immediate)
3134  *
3135  * 31 30 29   27  26 25 24 23 22 21  20    12 11 10 9    5 4    0
3136  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3137  * |size| 1 1 1 | V | 0 0 | opc | 0 |  imm9  | idx |  Rn  |  Rt  |
3138  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3139  *
3140  * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3141          10 -> unprivileged
3142  * V = 0 -> non-vector
3143  * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3144  * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3145  */
3146 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3147                                 int opc,
3148                                 int size,
3149                                 int rt,
3150                                 bool is_vector)
3151 {
3152     int rn = extract32(insn, 5, 5);
3153     int imm9 = sextract32(insn, 12, 9);
3154     int idx = extract32(insn, 10, 2);
3155     bool is_signed = false;
3156     bool is_store = false;
3157     bool is_extended = false;
3158     bool is_unpriv = (idx == 2);
3159     bool iss_valid;
3160     bool post_index;
3161     bool writeback;
3162     int memidx;
3163     MemOp memop;
3164     TCGv_i64 clean_addr, dirty_addr;
3165 
3166     if (is_vector) {
3167         size |= (opc & 2) << 1;
3168         if (size > 4 || is_unpriv) {
3169             unallocated_encoding(s);
3170             return;
3171         }
3172         is_store = ((opc & 1) == 0);
3173         if (!fp_access_check(s)) {
3174             return;
3175         }
3176         memop = finalize_memop_asimd(s, size);
3177     } else {
3178         if (size == 3 && opc == 2) {
3179             /* PRFM - prefetch */
3180             if (idx != 0) {
3181                 unallocated_encoding(s);
3182                 return;
3183             }
3184             return;
3185         }
3186         if (opc == 3 && size > 1) {
3187             unallocated_encoding(s);
3188             return;
3189         }
3190         is_store = (opc == 0);
3191         is_signed = !is_store && extract32(opc, 1, 1);
3192         is_extended = (size < 3) && extract32(opc, 0, 1);
3193         memop = finalize_memop(s, size + is_signed * MO_SIGN);
3194     }
3195 
3196     switch (idx) {
3197     case 0:
3198     case 2:
3199         post_index = false;
3200         writeback = false;
3201         break;
3202     case 1:
3203         post_index = true;
3204         writeback = true;
3205         break;
3206     case 3:
3207         post_index = false;
3208         writeback = true;
3209         break;
3210     default:
3211         g_assert_not_reached();
3212     }
3213 
3214     iss_valid = !is_vector && !writeback;
3215 
3216     if (rn == 31) {
3217         gen_check_sp_alignment(s);
3218     }
3219 
3220     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3221     if (!post_index) {
3222         tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3223     }
3224 
3225     memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3226 
3227     clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3228                                        writeback || rn != 31,
3229                                        size, is_unpriv, memidx);
3230 
3231     if (is_vector) {
3232         if (is_store) {
3233             do_fp_st(s, rt, clean_addr, memop);
3234         } else {
3235             do_fp_ld(s, rt, clean_addr, memop);
3236         }
3237     } else {
3238         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3239         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3240 
3241         if (is_store) {
3242             do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx,
3243                              iss_valid, rt, iss_sf, false);
3244         } else {
3245             do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop,
3246                              is_extended, memidx,
3247                              iss_valid, rt, iss_sf, false);
3248         }
3249     }
3250 
3251     if (writeback) {
3252         TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3253         if (post_index) {
3254             tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3255         }
3256         tcg_gen_mov_i64(tcg_rn, dirty_addr);
3257     }
3258 }
3259 
3260 /*
3261  * Load/store (register offset)
3262  *
3263  * 31 30 29   27  26 25 24 23 22 21  20  16 15 13 12 11 10 9  5 4  0
3264  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3265  * |size| 1 1 1 | V | 0 0 | opc | 1 |  Rm  | opt | S| 1 0 | Rn | Rt |
3266  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3267  *
3268  * For non-vector:
3269  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3270  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3271  * For vector:
3272  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3273  *   opc<0>: 0 -> store, 1 -> load
3274  * V: 1 -> vector/simd
3275  * opt: extend encoding (see DecodeRegExtend)
3276  * S: if S=1 then scale (essentially index by sizeof(size))
3277  * Rt: register to transfer into/out of
3278  * Rn: address register or SP for base
3279  * Rm: offset register or ZR for offset
3280  */
3281 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3282                                    int opc,
3283                                    int size,
3284                                    int rt,
3285                                    bool is_vector)
3286 {
3287     int rn = extract32(insn, 5, 5);
3288     int shift = extract32(insn, 12, 1);
3289     int rm = extract32(insn, 16, 5);
3290     int opt = extract32(insn, 13, 3);
3291     bool is_signed = false;
3292     bool is_store = false;
3293     bool is_extended = false;
3294     TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3295     MemOp memop;
3296 
3297     if (extract32(opt, 1, 1) == 0) {
3298         unallocated_encoding(s);
3299         return;
3300     }
3301 
3302     if (is_vector) {
3303         size |= (opc & 2) << 1;
3304         if (size > 4) {
3305             unallocated_encoding(s);
3306             return;
3307         }
3308         is_store = !extract32(opc, 0, 1);
3309         if (!fp_access_check(s)) {
3310             return;
3311         }
3312     } else {
3313         if (size == 3 && opc == 2) {
3314             /* PRFM - prefetch */
3315             return;
3316         }
3317         if (opc == 3 && size > 1) {
3318             unallocated_encoding(s);
3319             return;
3320         }
3321         is_store = (opc == 0);
3322         is_signed = !is_store && extract32(opc, 1, 1);
3323         is_extended = (size < 3) && extract32(opc, 0, 1);
3324     }
3325 
3326     if (rn == 31) {
3327         gen_check_sp_alignment(s);
3328     }
3329     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3330 
3331     tcg_rm = read_cpu_reg(s, rm, 1);
3332     ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3333 
3334     tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3335 
3336     memop = finalize_memop(s, size + is_signed * MO_SIGN);
3337     clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop);
3338 
3339     if (is_vector) {
3340         if (is_store) {
3341             do_fp_st(s, rt, clean_addr, memop);
3342         } else {
3343             do_fp_ld(s, rt, clean_addr, memop);
3344         }
3345     } else {
3346         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3347         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3348 
3349         if (is_store) {
3350             do_gpr_st(s, tcg_rt, clean_addr, memop,
3351                       true, rt, iss_sf, false);
3352         } else {
3353             do_gpr_ld(s, tcg_rt, clean_addr, memop,
3354                       is_extended, true, rt, iss_sf, false);
3355         }
3356     }
3357 }
3358 
3359 /*
3360  * Load/store (unsigned immediate)
3361  *
3362  * 31 30 29   27  26 25 24 23 22 21        10 9     5
3363  * +----+-------+---+-----+-----+------------+-------+------+
3364  * |size| 1 1 1 | V | 0 1 | opc |   imm12    |  Rn   |  Rt  |
3365  * +----+-------+---+-----+-----+------------+-------+------+
3366  *
3367  * For non-vector:
3368  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3369  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3370  * For vector:
3371  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3372  *   opc<0>: 0 -> store, 1 -> load
3373  * Rn: base address register (inc SP)
3374  * Rt: target register
3375  */
3376 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3377                                         int opc,
3378                                         int size,
3379                                         int rt,
3380                                         bool is_vector)
3381 {
3382     int rn = extract32(insn, 5, 5);
3383     unsigned int imm12 = extract32(insn, 10, 12);
3384     unsigned int offset;
3385     TCGv_i64 clean_addr, dirty_addr;
3386     bool is_store;
3387     bool is_signed = false;
3388     bool is_extended = false;
3389     MemOp memop;
3390 
3391     if (is_vector) {
3392         size |= (opc & 2) << 1;
3393         if (size > 4) {
3394             unallocated_encoding(s);
3395             return;
3396         }
3397         is_store = !extract32(opc, 0, 1);
3398         if (!fp_access_check(s)) {
3399             return;
3400         }
3401     } else {
3402         if (size == 3 && opc == 2) {
3403             /* PRFM - prefetch */
3404             return;
3405         }
3406         if (opc == 3 && size > 1) {
3407             unallocated_encoding(s);
3408             return;
3409         }
3410         is_store = (opc == 0);
3411         is_signed = !is_store && extract32(opc, 1, 1);
3412         is_extended = (size < 3) && extract32(opc, 0, 1);
3413     }
3414 
3415     if (rn == 31) {
3416         gen_check_sp_alignment(s);
3417     }
3418     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3419     offset = imm12 << size;
3420     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3421 
3422     memop = finalize_memop(s, size + is_signed * MO_SIGN);
3423     clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop);
3424 
3425     if (is_vector) {
3426         if (is_store) {
3427             do_fp_st(s, rt, clean_addr, memop);
3428         } else {
3429             do_fp_ld(s, rt, clean_addr, memop);
3430         }
3431     } else {
3432         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3433         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3434         if (is_store) {
3435             do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false);
3436         } else {
3437             do_gpr_ld(s, tcg_rt, clean_addr, memop,
3438                       is_extended, true, rt, iss_sf, false);
3439         }
3440     }
3441 }
3442 
3443 /* Atomic memory operations
3444  *
3445  *  31  30      27  26    24    22  21   16   15    12    10    5     0
3446  * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3447  * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn |  Rt |
3448  * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3449  *
3450  * Rt: the result register
3451  * Rn: base address or SP
3452  * Rs: the source register for the operation
3453  * V: vector flag (always 0 as of v8.3)
3454  * A: acquire flag
3455  * R: release flag
3456  */
3457 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3458                               int size, int rt, bool is_vector)
3459 {
3460     int rs = extract32(insn, 16, 5);
3461     int rn = extract32(insn, 5, 5);
3462     int o3_opc = extract32(insn, 12, 4);
3463     bool r = extract32(insn, 22, 1);
3464     bool a = extract32(insn, 23, 1);
3465     TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3466     AtomicThreeOpFn *fn = NULL;
3467     MemOp mop = size;
3468 
3469     if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3470         unallocated_encoding(s);
3471         return;
3472     }
3473     switch (o3_opc) {
3474     case 000: /* LDADD */
3475         fn = tcg_gen_atomic_fetch_add_i64;
3476         break;
3477     case 001: /* LDCLR */
3478         fn = tcg_gen_atomic_fetch_and_i64;
3479         break;
3480     case 002: /* LDEOR */
3481         fn = tcg_gen_atomic_fetch_xor_i64;
3482         break;
3483     case 003: /* LDSET */
3484         fn = tcg_gen_atomic_fetch_or_i64;
3485         break;
3486     case 004: /* LDSMAX */
3487         fn = tcg_gen_atomic_fetch_smax_i64;
3488         mop |= MO_SIGN;
3489         break;
3490     case 005: /* LDSMIN */
3491         fn = tcg_gen_atomic_fetch_smin_i64;
3492         mop |= MO_SIGN;
3493         break;
3494     case 006: /* LDUMAX */
3495         fn = tcg_gen_atomic_fetch_umax_i64;
3496         break;
3497     case 007: /* LDUMIN */
3498         fn = tcg_gen_atomic_fetch_umin_i64;
3499         break;
3500     case 010: /* SWP */
3501         fn = tcg_gen_atomic_xchg_i64;
3502         break;
3503     case 014: /* LDAPR, LDAPRH, LDAPRB */
3504         if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3505             rs != 31 || a != 1 || r != 0) {
3506             unallocated_encoding(s);
3507             return;
3508         }
3509         break;
3510     default:
3511         unallocated_encoding(s);
3512         return;
3513     }
3514 
3515     if (rn == 31) {
3516         gen_check_sp_alignment(s);
3517     }
3518 
3519     mop = check_atomic_align(s, rn, mop);
3520     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop);
3521 
3522     if (o3_opc == 014) {
3523         /*
3524          * LDAPR* are a special case because they are a simple load, not a
3525          * fetch-and-do-something op.
3526          * The architectural consistency requirements here are weaker than
3527          * full load-acquire (we only need "load-acquire processor consistent"),
3528          * but we choose to implement them as full LDAQ.
3529          */
3530         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false,
3531                   true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3532         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3533         return;
3534     }
3535 
3536     tcg_rs = read_cpu_reg(s, rs, true);
3537     tcg_rt = cpu_reg(s, rt);
3538 
3539     if (o3_opc == 1) { /* LDCLR */
3540         tcg_gen_not_i64(tcg_rs, tcg_rs);
3541     }
3542 
3543     /* The tcg atomic primitives are all full barriers.  Therefore we
3544      * can ignore the Acquire and Release bits of this instruction.
3545      */
3546     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3547 
3548     if (mop & MO_SIGN) {
3549         switch (size) {
3550         case MO_8:
3551             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3552             break;
3553         case MO_16:
3554             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3555             break;
3556         case MO_32:
3557             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3558             break;
3559         case MO_64:
3560             break;
3561         default:
3562             g_assert_not_reached();
3563         }
3564     }
3565 }
3566 
3567 /*
3568  * PAC memory operations
3569  *
3570  *  31  30      27  26    24    22  21       12  11  10    5     0
3571  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3572  * | size | 1 1 1 | V | 0 0 | M S | 1 |  imm9  | W | 1 | Rn |  Rt |
3573  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3574  *
3575  * Rt: the result register
3576  * Rn: base address or SP
3577  * V: vector flag (always 0 as of v8.3)
3578  * M: clear for key DA, set for key DB
3579  * W: pre-indexing flag
3580  * S: sign for imm9.
3581  */
3582 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3583                            int size, int rt, bool is_vector)
3584 {
3585     int rn = extract32(insn, 5, 5);
3586     bool is_wback = extract32(insn, 11, 1);
3587     bool use_key_a = !extract32(insn, 23, 1);
3588     int offset;
3589     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3590     MemOp memop;
3591 
3592     if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3593         unallocated_encoding(s);
3594         return;
3595     }
3596 
3597     if (rn == 31) {
3598         gen_check_sp_alignment(s);
3599     }
3600     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3601 
3602     if (s->pauth_active) {
3603         if (use_key_a) {
3604             gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3605                              tcg_constant_i64(0));
3606         } else {
3607             gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3608                              tcg_constant_i64(0));
3609         }
3610     }
3611 
3612     /* Form the 10-bit signed, scaled offset.  */
3613     offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3614     offset = sextract32(offset << size, 0, 10 + size);
3615     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3616 
3617     memop = finalize_memop(s, size);
3618 
3619     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3620     clean_addr = gen_mte_check1(s, dirty_addr, false,
3621                                 is_wback || rn != 31, memop);
3622 
3623     tcg_rt = cpu_reg(s, rt);
3624     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3625               /* extend */ false, /* iss_valid */ !is_wback,
3626               /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3627 
3628     if (is_wback) {
3629         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3630     }
3631 }
3632 
3633 /*
3634  * LDAPR/STLR (unscaled immediate)
3635  *
3636  *  31  30            24    22  21       12    10    5     0
3637  * +------+-------------+-----+---+--------+-----+----+-----+
3638  * | size | 0 1 1 0 0 1 | opc | 0 |  imm9  | 0 0 | Rn |  Rt |
3639  * +------+-------------+-----+---+--------+-----+----+-----+
3640  *
3641  * Rt: source or destination register
3642  * Rn: base register
3643  * imm9: unscaled immediate offset
3644  * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3645  * size: size of load/store
3646  */
3647 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3648 {
3649     int rt = extract32(insn, 0, 5);
3650     int rn = extract32(insn, 5, 5);
3651     int offset = sextract32(insn, 12, 9);
3652     int opc = extract32(insn, 22, 2);
3653     int size = extract32(insn, 30, 2);
3654     TCGv_i64 clean_addr, dirty_addr;
3655     bool is_store = false;
3656     bool extend = false;
3657     bool iss_sf;
3658     MemOp mop = size;
3659 
3660     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3661         unallocated_encoding(s);
3662         return;
3663     }
3664 
3665     switch (opc) {
3666     case 0: /* STLURB */
3667         is_store = true;
3668         break;
3669     case 1: /* LDAPUR* */
3670         break;
3671     case 2: /* LDAPURS* 64-bit variant */
3672         if (size == 3) {
3673             unallocated_encoding(s);
3674             return;
3675         }
3676         mop |= MO_SIGN;
3677         break;
3678     case 3: /* LDAPURS* 32-bit variant */
3679         if (size > 1) {
3680             unallocated_encoding(s);
3681             return;
3682         }
3683         mop |= MO_SIGN;
3684         extend = true; /* zero-extend 32->64 after signed load */
3685         break;
3686     default:
3687         g_assert_not_reached();
3688     }
3689 
3690     iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3691 
3692     if (rn == 31) {
3693         gen_check_sp_alignment(s);
3694     }
3695 
3696     mop = check_ordered_align(s, rn, offset, is_store, mop);
3697 
3698     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3699     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3700     clean_addr = clean_data_tbi(s, dirty_addr);
3701 
3702     if (is_store) {
3703         /* Store-Release semantics */
3704         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3705         do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3706     } else {
3707         /*
3708          * Load-AcquirePC semantics; we implement as the slightly more
3709          * restrictive Load-Acquire.
3710          */
3711         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3712                   extend, true, rt, iss_sf, true);
3713         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3714     }
3715 }
3716 
3717 /* Load/store register (all forms) */
3718 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3719 {
3720     int rt = extract32(insn, 0, 5);
3721     int opc = extract32(insn, 22, 2);
3722     bool is_vector = extract32(insn, 26, 1);
3723     int size = extract32(insn, 30, 2);
3724 
3725     switch (extract32(insn, 24, 2)) {
3726     case 0:
3727         if (extract32(insn, 21, 1) == 0) {
3728             /* Load/store register (unscaled immediate)
3729              * Load/store immediate pre/post-indexed
3730              * Load/store register unprivileged
3731              */
3732             disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3733             return;
3734         }
3735         switch (extract32(insn, 10, 2)) {
3736         case 0:
3737             disas_ldst_atomic(s, insn, size, rt, is_vector);
3738             return;
3739         case 2:
3740             disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3741             return;
3742         default:
3743             disas_ldst_pac(s, insn, size, rt, is_vector);
3744             return;
3745         }
3746         break;
3747     case 1:
3748         disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3749         return;
3750     }
3751     unallocated_encoding(s);
3752 }
3753 
3754 /* AdvSIMD load/store multiple structures
3755  *
3756  *  31  30  29           23 22  21         16 15    12 11  10 9    5 4    0
3757  * +---+---+---------------+---+-------------+--------+------+------+------+
3758  * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size |  Rn  |  Rt  |
3759  * +---+---+---------------+---+-------------+--------+------+------+------+
3760  *
3761  * AdvSIMD load/store multiple structures (post-indexed)
3762  *
3763  *  31  30  29           23 22  21  20     16 15    12 11  10 9    5 4    0
3764  * +---+---+---------------+---+---+---------+--------+------+------+------+
3765  * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 |   Rm    | opcode | size |  Rn  |  Rt  |
3766  * +---+---+---------------+---+---+---------+--------+------+------+------+
3767  *
3768  * Rt: first (or only) SIMD&FP register to be transferred
3769  * Rn: base address or SP
3770  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3771  */
3772 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3773 {
3774     int rt = extract32(insn, 0, 5);
3775     int rn = extract32(insn, 5, 5);
3776     int rm = extract32(insn, 16, 5);
3777     int size = extract32(insn, 10, 2);
3778     int opcode = extract32(insn, 12, 4);
3779     bool is_store = !extract32(insn, 22, 1);
3780     bool is_postidx = extract32(insn, 23, 1);
3781     bool is_q = extract32(insn, 30, 1);
3782     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3783     MemOp endian, align, mop;
3784 
3785     int total;    /* total bytes */
3786     int elements; /* elements per vector */
3787     int rpt;    /* num iterations */
3788     int selem;  /* structure elements */
3789     int r;
3790 
3791     if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3792         unallocated_encoding(s);
3793         return;
3794     }
3795 
3796     if (!is_postidx && rm != 0) {
3797         unallocated_encoding(s);
3798         return;
3799     }
3800 
3801     /* From the shared decode logic */
3802     switch (opcode) {
3803     case 0x0:
3804         rpt = 1;
3805         selem = 4;
3806         break;
3807     case 0x2:
3808         rpt = 4;
3809         selem = 1;
3810         break;
3811     case 0x4:
3812         rpt = 1;
3813         selem = 3;
3814         break;
3815     case 0x6:
3816         rpt = 3;
3817         selem = 1;
3818         break;
3819     case 0x7:
3820         rpt = 1;
3821         selem = 1;
3822         break;
3823     case 0x8:
3824         rpt = 1;
3825         selem = 2;
3826         break;
3827     case 0xa:
3828         rpt = 2;
3829         selem = 1;
3830         break;
3831     default:
3832         unallocated_encoding(s);
3833         return;
3834     }
3835 
3836     if (size == 3 && !is_q && selem != 1) {
3837         /* reserved */
3838         unallocated_encoding(s);
3839         return;
3840     }
3841 
3842     if (!fp_access_check(s)) {
3843         return;
3844     }
3845 
3846     if (rn == 31) {
3847         gen_check_sp_alignment(s);
3848     }
3849 
3850     /* For our purposes, bytes are always little-endian.  */
3851     endian = s->be_data;
3852     if (size == 0) {
3853         endian = MO_LE;
3854     }
3855 
3856     total = rpt * selem * (is_q ? 16 : 8);
3857     tcg_rn = cpu_reg_sp(s, rn);
3858 
3859     /*
3860      * Issue the MTE check vs the logical repeat count, before we
3861      * promote consecutive little-endian elements below.
3862      */
3863     clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3864                                 total, finalize_memop(s, size));
3865 
3866     /*
3867      * Consecutive little-endian elements from a single register
3868      * can be promoted to a larger little-endian operation.
3869      */
3870     align = MO_ALIGN;
3871     if (selem == 1 && endian == MO_LE) {
3872         align = pow2_align(size);
3873         size = 3;
3874     }
3875     if (!s->align_mem) {
3876         align = 0;
3877     }
3878     mop = endian | size | align;
3879 
3880     elements = (is_q ? 16 : 8) >> size;
3881     tcg_ebytes = tcg_constant_i64(1 << size);
3882     for (r = 0; r < rpt; r++) {
3883         int e;
3884         for (e = 0; e < elements; e++) {
3885             int xs;
3886             for (xs = 0; xs < selem; xs++) {
3887                 int tt = (rt + r + xs) % 32;
3888                 if (is_store) {
3889                     do_vec_st(s, tt, e, clean_addr, mop);
3890                 } else {
3891                     do_vec_ld(s, tt, e, clean_addr, mop);
3892                 }
3893                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3894             }
3895         }
3896     }
3897 
3898     if (!is_store) {
3899         /* For non-quad operations, setting a slice of the low
3900          * 64 bits of the register clears the high 64 bits (in
3901          * the ARM ARM pseudocode this is implicit in the fact
3902          * that 'rval' is a 64 bit wide variable).
3903          * For quad operations, we might still need to zero the
3904          * high bits of SVE.
3905          */
3906         for (r = 0; r < rpt * selem; r++) {
3907             int tt = (rt + r) % 32;
3908             clear_vec_high(s, is_q, tt);
3909         }
3910     }
3911 
3912     if (is_postidx) {
3913         if (rm == 31) {
3914             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3915         } else {
3916             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3917         }
3918     }
3919 }
3920 
3921 /* AdvSIMD load/store single structure
3922  *
3923  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3924  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3925  * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size |  Rn  |  Rt  |
3926  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3927  *
3928  * AdvSIMD load/store single structure (post-indexed)
3929  *
3930  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3931  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3932  * | 0 | Q | 0 0 1 1 0 1 1 | L R |     Rm    | opc | S | size |  Rn  |  Rt  |
3933  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3934  *
3935  * Rt: first (or only) SIMD&FP register to be transferred
3936  * Rn: base address or SP
3937  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3938  * index = encoded in Q:S:size dependent on size
3939  *
3940  * lane_size = encoded in R, opc
3941  * transfer width = encoded in opc, S, size
3942  */
3943 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3944 {
3945     int rt = extract32(insn, 0, 5);
3946     int rn = extract32(insn, 5, 5);
3947     int rm = extract32(insn, 16, 5);
3948     int size = extract32(insn, 10, 2);
3949     int S = extract32(insn, 12, 1);
3950     int opc = extract32(insn, 13, 3);
3951     int R = extract32(insn, 21, 1);
3952     int is_load = extract32(insn, 22, 1);
3953     int is_postidx = extract32(insn, 23, 1);
3954     int is_q = extract32(insn, 30, 1);
3955 
3956     int scale = extract32(opc, 1, 2);
3957     int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3958     bool replicate = false;
3959     int index = is_q << 3 | S << 2 | size;
3960     int xs, total;
3961     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3962     MemOp mop;
3963 
3964     if (extract32(insn, 31, 1)) {
3965         unallocated_encoding(s);
3966         return;
3967     }
3968     if (!is_postidx && rm != 0) {
3969         unallocated_encoding(s);
3970         return;
3971     }
3972 
3973     switch (scale) {
3974     case 3:
3975         if (!is_load || S) {
3976             unallocated_encoding(s);
3977             return;
3978         }
3979         scale = size;
3980         replicate = true;
3981         break;
3982     case 0:
3983         break;
3984     case 1:
3985         if (extract32(size, 0, 1)) {
3986             unallocated_encoding(s);
3987             return;
3988         }
3989         index >>= 1;
3990         break;
3991     case 2:
3992         if (extract32(size, 1, 1)) {
3993             unallocated_encoding(s);
3994             return;
3995         }
3996         if (!extract32(size, 0, 1)) {
3997             index >>= 2;
3998         } else {
3999             if (S) {
4000                 unallocated_encoding(s);
4001                 return;
4002             }
4003             index >>= 3;
4004             scale = 3;
4005         }
4006         break;
4007     default:
4008         g_assert_not_reached();
4009     }
4010 
4011     if (!fp_access_check(s)) {
4012         return;
4013     }
4014 
4015     if (rn == 31) {
4016         gen_check_sp_alignment(s);
4017     }
4018 
4019     total = selem << scale;
4020     tcg_rn = cpu_reg_sp(s, rn);
4021 
4022     mop = finalize_memop(s, scale);
4023 
4024     clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
4025                                 total, mop);
4026 
4027     tcg_ebytes = tcg_constant_i64(1 << scale);
4028     for (xs = 0; xs < selem; xs++) {
4029         if (replicate) {
4030             /* Load and replicate to all elements */
4031             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4032 
4033             tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
4034             tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
4035                                  (is_q + 1) * 8, vec_full_reg_size(s),
4036                                  tcg_tmp);
4037         } else {
4038             /* Load/store one element per register */
4039             if (is_load) {
4040                 do_vec_ld(s, rt, index, clean_addr, mop);
4041             } else {
4042                 do_vec_st(s, rt, index, clean_addr, mop);
4043             }
4044         }
4045         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4046         rt = (rt + 1) % 32;
4047     }
4048 
4049     if (is_postidx) {
4050         if (rm == 31) {
4051             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4052         } else {
4053             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
4054         }
4055     }
4056 }
4057 
4058 /*
4059  * Load/Store memory tags
4060  *
4061  *  31 30 29         24     22  21     12    10      5      0
4062  * +-----+-------------+-----+---+------+-----+------+------+
4063  * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 |  Rn  |  Rt  |
4064  * +-----+-------------+-----+---+------+-----+------+------+
4065  */
4066 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
4067 {
4068     int rt = extract32(insn, 0, 5);
4069     int rn = extract32(insn, 5, 5);
4070     uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
4071     int op2 = extract32(insn, 10, 2);
4072     int op1 = extract32(insn, 22, 2);
4073     bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
4074     int index = 0;
4075     TCGv_i64 addr, clean_addr, tcg_rt;
4076 
4077     /* We checked insn bits [29:24,21] in the caller.  */
4078     if (extract32(insn, 30, 2) != 3) {
4079         goto do_unallocated;
4080     }
4081 
4082     /*
4083      * @index is a tri-state variable which has 3 states:
4084      * < 0 : post-index, writeback
4085      * = 0 : signed offset
4086      * > 0 : pre-index, writeback
4087      */
4088     switch (op1) {
4089     case 0:
4090         if (op2 != 0) {
4091             /* STG */
4092             index = op2 - 2;
4093         } else {
4094             /* STZGM */
4095             if (s->current_el == 0 || offset != 0) {
4096                 goto do_unallocated;
4097             }
4098             is_mult = is_zero = true;
4099         }
4100         break;
4101     case 1:
4102         if (op2 != 0) {
4103             /* STZG */
4104             is_zero = true;
4105             index = op2 - 2;
4106         } else {
4107             /* LDG */
4108             is_load = true;
4109         }
4110         break;
4111     case 2:
4112         if (op2 != 0) {
4113             /* ST2G */
4114             is_pair = true;
4115             index = op2 - 2;
4116         } else {
4117             /* STGM */
4118             if (s->current_el == 0 || offset != 0) {
4119                 goto do_unallocated;
4120             }
4121             is_mult = true;
4122         }
4123         break;
4124     case 3:
4125         if (op2 != 0) {
4126             /* STZ2G */
4127             is_pair = is_zero = true;
4128             index = op2 - 2;
4129         } else {
4130             /* LDGM */
4131             if (s->current_el == 0 || offset != 0) {
4132                 goto do_unallocated;
4133             }
4134             is_mult = is_load = true;
4135         }
4136         break;
4137 
4138     default:
4139     do_unallocated:
4140         unallocated_encoding(s);
4141         return;
4142     }
4143 
4144     if (is_mult
4145         ? !dc_isar_feature(aa64_mte, s)
4146         : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4147         goto do_unallocated;
4148     }
4149 
4150     if (rn == 31) {
4151         gen_check_sp_alignment(s);
4152     }
4153 
4154     addr = read_cpu_reg_sp(s, rn, true);
4155     if (index >= 0) {
4156         /* pre-index or signed offset */
4157         tcg_gen_addi_i64(addr, addr, offset);
4158     }
4159 
4160     if (is_mult) {
4161         tcg_rt = cpu_reg(s, rt);
4162 
4163         if (is_zero) {
4164             int size = 4 << s->dcz_blocksize;
4165 
4166             if (s->ata) {
4167                 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4168             }
4169             /*
4170              * The non-tags portion of STZGM is mostly like DC_ZVA,
4171              * except the alignment happens before the access.
4172              */
4173             clean_addr = clean_data_tbi(s, addr);
4174             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4175             gen_helper_dc_zva(cpu_env, clean_addr);
4176         } else if (s->ata) {
4177             if (is_load) {
4178                 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4179             } else {
4180                 gen_helper_stgm(cpu_env, addr, tcg_rt);
4181             }
4182         } else {
4183             MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4184             int size = 4 << GMID_EL1_BS;
4185 
4186             clean_addr = clean_data_tbi(s, addr);
4187             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4188             gen_probe_access(s, clean_addr, acc, size);
4189 
4190             if (is_load) {
4191                 /* The result tags are zeros.  */
4192                 tcg_gen_movi_i64(tcg_rt, 0);
4193             }
4194         }
4195         return;
4196     }
4197 
4198     if (is_load) {
4199         tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4200         tcg_rt = cpu_reg(s, rt);
4201         if (s->ata) {
4202             gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4203         } else {
4204             clean_addr = clean_data_tbi(s, addr);
4205             gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4206             gen_address_with_allocation_tag0(tcg_rt, addr);
4207         }
4208     } else {
4209         tcg_rt = cpu_reg_sp(s, rt);
4210         if (!s->ata) {
4211             /*
4212              * For STG and ST2G, we need to check alignment and probe memory.
4213              * TODO: For STZG and STZ2G, we could rely on the stores below,
4214              * at least for system mode; user-only won't enforce alignment.
4215              */
4216             if (is_pair) {
4217                 gen_helper_st2g_stub(cpu_env, addr);
4218             } else {
4219                 gen_helper_stg_stub(cpu_env, addr);
4220             }
4221         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4222             if (is_pair) {
4223                 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4224             } else {
4225                 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4226             }
4227         } else {
4228             if (is_pair) {
4229                 gen_helper_st2g(cpu_env, addr, tcg_rt);
4230             } else {
4231                 gen_helper_stg(cpu_env, addr, tcg_rt);
4232             }
4233         }
4234     }
4235 
4236     if (is_zero) {
4237         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4238         TCGv_i64 zero64 = tcg_constant_i64(0);
4239         TCGv_i128 zero128 = tcg_temp_new_i128();
4240         int mem_index = get_mem_index(s);
4241         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4242 
4243         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4244 
4245         /* This is 1 or 2 atomic 16-byte operations. */
4246         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4247         if (is_pair) {
4248             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4249             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4250         }
4251     }
4252 
4253     if (index != 0) {
4254         /* pre-index or post-index */
4255         if (index < 0) {
4256             /* post-index */
4257             tcg_gen_addi_i64(addr, addr, offset);
4258         }
4259         tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4260     }
4261 }
4262 
4263 /* Loads and stores */
4264 static void disas_ldst(DisasContext *s, uint32_t insn)
4265 {
4266     switch (extract32(insn, 24, 6)) {
4267     case 0x08: /* Load/store exclusive */
4268         disas_ldst_excl(s, insn);
4269         break;
4270     case 0x18: case 0x1c: /* Load register (literal) */
4271         disas_ld_lit(s, insn);
4272         break;
4273     case 0x28: case 0x29:
4274     case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4275         disas_ldst_pair(s, insn);
4276         break;
4277     case 0x38: case 0x39:
4278     case 0x3c: case 0x3d: /* Load/store register (all forms) */
4279         disas_ldst_reg(s, insn);
4280         break;
4281     case 0x0c: /* AdvSIMD load/store multiple structures */
4282         disas_ldst_multiple_struct(s, insn);
4283         break;
4284     case 0x0d: /* AdvSIMD load/store single structure */
4285         disas_ldst_single_struct(s, insn);
4286         break;
4287     case 0x19:
4288         if (extract32(insn, 21, 1) != 0) {
4289             disas_ldst_tag(s, insn);
4290         } else if (extract32(insn, 10, 2) == 0) {
4291             disas_ldst_ldapr_stlr(s, insn);
4292         } else {
4293             unallocated_encoding(s);
4294         }
4295         break;
4296     default:
4297         unallocated_encoding(s);
4298         break;
4299     }
4300 }
4301 
4302 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4303 
4304 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4305                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4306 {
4307     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4308     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4309     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4310 
4311     fn(tcg_rd, tcg_rn, tcg_imm);
4312     if (!a->sf) {
4313         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4314     }
4315     return true;
4316 }
4317 
4318 /*
4319  * PC-rel. addressing
4320  */
4321 
4322 static bool trans_ADR(DisasContext *s, arg_ri *a)
4323 {
4324     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4325     return true;
4326 }
4327 
4328 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4329 {
4330     int64_t offset = (int64_t)a->imm << 12;
4331 
4332     /* The page offset is ok for CF_PCREL. */
4333     offset -= s->pc_curr & 0xfff;
4334     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4335     return true;
4336 }
4337 
4338 /*
4339  * Add/subtract (immediate)
4340  */
4341 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4342 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4343 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4344 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4345 
4346 /*
4347  * Add/subtract (immediate, with tags)
4348  */
4349 
4350 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4351                                       bool sub_op)
4352 {
4353     TCGv_i64 tcg_rn, tcg_rd;
4354     int imm;
4355 
4356     imm = a->uimm6 << LOG2_TAG_GRANULE;
4357     if (sub_op) {
4358         imm = -imm;
4359     }
4360 
4361     tcg_rn = cpu_reg_sp(s, a->rn);
4362     tcg_rd = cpu_reg_sp(s, a->rd);
4363 
4364     if (s->ata) {
4365         gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4366                            tcg_constant_i32(imm),
4367                            tcg_constant_i32(a->uimm4));
4368     } else {
4369         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4370         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4371     }
4372     return true;
4373 }
4374 
4375 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4376 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4377 
4378 /* The input should be a value in the bottom e bits (with higher
4379  * bits zero); returns that value replicated into every element
4380  * of size e in a 64 bit integer.
4381  */
4382 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4383 {
4384     assert(e != 0);
4385     while (e < 64) {
4386         mask |= mask << e;
4387         e *= 2;
4388     }
4389     return mask;
4390 }
4391 
4392 /*
4393  * Logical (immediate)
4394  */
4395 
4396 /*
4397  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4398  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4399  * value (ie should cause a guest UNDEF exception), and true if they are
4400  * valid, in which case the decoded bit pattern is written to result.
4401  */
4402 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4403                             unsigned int imms, unsigned int immr)
4404 {
4405     uint64_t mask;
4406     unsigned e, levels, s, r;
4407     int len;
4408 
4409     assert(immn < 2 && imms < 64 && immr < 64);
4410 
4411     /* The bit patterns we create here are 64 bit patterns which
4412      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4413      * 64 bits each. Each element contains the same value: a run
4414      * of between 1 and e-1 non-zero bits, rotated within the
4415      * element by between 0 and e-1 bits.
4416      *
4417      * The element size and run length are encoded into immn (1 bit)
4418      * and imms (6 bits) as follows:
4419      * 64 bit elements: immn = 1, imms = <length of run - 1>
4420      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4421      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4422      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4423      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4424      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4425      * Notice that immn = 0, imms = 11111x is the only combination
4426      * not covered by one of the above options; this is reserved.
4427      * Further, <length of run - 1> all-ones is a reserved pattern.
4428      *
4429      * In all cases the rotation is by immr % e (and immr is 6 bits).
4430      */
4431 
4432     /* First determine the element size */
4433     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4434     if (len < 1) {
4435         /* This is the immn == 0, imms == 0x11111x case */
4436         return false;
4437     }
4438     e = 1 << len;
4439 
4440     levels = e - 1;
4441     s = imms & levels;
4442     r = immr & levels;
4443 
4444     if (s == levels) {
4445         /* <length of run - 1> mustn't be all-ones. */
4446         return false;
4447     }
4448 
4449     /* Create the value of one element: s+1 set bits rotated
4450      * by r within the element (which is e bits wide)...
4451      */
4452     mask = MAKE_64BIT_MASK(0, s + 1);
4453     if (r) {
4454         mask = (mask >> r) | (mask << (e - r));
4455         mask &= MAKE_64BIT_MASK(0, e);
4456     }
4457     /* ...then replicate the element over the whole 64 bit value */
4458     mask = bitfield_replicate(mask, e);
4459     *result = mask;
4460     return true;
4461 }
4462 
4463 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4464                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4465 {
4466     TCGv_i64 tcg_rd, tcg_rn;
4467     uint64_t imm;
4468 
4469     /* Some immediate field values are reserved. */
4470     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4471                                 extract32(a->dbm, 0, 6),
4472                                 extract32(a->dbm, 6, 6))) {
4473         return false;
4474     }
4475     if (!a->sf) {
4476         imm &= 0xffffffffull;
4477     }
4478 
4479     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4480     tcg_rn = cpu_reg(s, a->rn);
4481 
4482     fn(tcg_rd, tcg_rn, imm);
4483     if (set_cc) {
4484         gen_logic_CC(a->sf, tcg_rd);
4485     }
4486     if (!a->sf) {
4487         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4488     }
4489     return true;
4490 }
4491 
4492 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4493 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4494 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4495 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4496 
4497 /*
4498  * Move wide (immediate)
4499  */
4500 
4501 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4502 {
4503     int pos = a->hw << 4;
4504     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4505     return true;
4506 }
4507 
4508 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4509 {
4510     int pos = a->hw << 4;
4511     uint64_t imm = a->imm;
4512 
4513     imm = ~(imm << pos);
4514     if (!a->sf) {
4515         imm = (uint32_t)imm;
4516     }
4517     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4518     return true;
4519 }
4520 
4521 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4522 {
4523     int pos = a->hw << 4;
4524     TCGv_i64 tcg_rd, tcg_im;
4525 
4526     tcg_rd = cpu_reg(s, a->rd);
4527     tcg_im = tcg_constant_i64(a->imm);
4528     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4529     if (!a->sf) {
4530         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4531     }
4532     return true;
4533 }
4534 
4535 /*
4536  * Bitfield
4537  */
4538 
4539 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4540 {
4541     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4542     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4543     unsigned int bitsize = a->sf ? 64 : 32;
4544     unsigned int ri = a->immr;
4545     unsigned int si = a->imms;
4546     unsigned int pos, len;
4547 
4548     if (si >= ri) {
4549         /* Wd<s-r:0> = Wn<s:r> */
4550         len = (si - ri) + 1;
4551         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4552         if (!a->sf) {
4553             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4554         }
4555     } else {
4556         /* Wd<32+s-r,32-r> = Wn<s:0> */
4557         len = si + 1;
4558         pos = (bitsize - ri) & (bitsize - 1);
4559 
4560         if (len < ri) {
4561             /*
4562              * Sign extend the destination field from len to fill the
4563              * balance of the word.  Let the deposit below insert all
4564              * of those sign bits.
4565              */
4566             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4567             len = ri;
4568         }
4569 
4570         /*
4571          * We start with zero, and we haven't modified any bits outside
4572          * bitsize, therefore no final zero-extension is unneeded for !sf.
4573          */
4574         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4575     }
4576     return true;
4577 }
4578 
4579 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4580 {
4581     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4582     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4583     unsigned int bitsize = a->sf ? 64 : 32;
4584     unsigned int ri = a->immr;
4585     unsigned int si = a->imms;
4586     unsigned int pos, len;
4587 
4588     tcg_rd = cpu_reg(s, a->rd);
4589     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4590 
4591     if (si >= ri) {
4592         /* Wd<s-r:0> = Wn<s:r> */
4593         len = (si - ri) + 1;
4594         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4595     } else {
4596         /* Wd<32+s-r,32-r> = Wn<s:0> */
4597         len = si + 1;
4598         pos = (bitsize - ri) & (bitsize - 1);
4599         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4600     }
4601     return true;
4602 }
4603 
4604 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4605 {
4606     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4607     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4608     unsigned int bitsize = a->sf ? 64 : 32;
4609     unsigned int ri = a->immr;
4610     unsigned int si = a->imms;
4611     unsigned int pos, len;
4612 
4613     tcg_rd = cpu_reg(s, a->rd);
4614     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4615 
4616     if (si >= ri) {
4617         /* Wd<s-r:0> = Wn<s:r> */
4618         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4619         len = (si - ri) + 1;
4620         pos = 0;
4621     } else {
4622         /* Wd<32+s-r,32-r> = Wn<s:0> */
4623         len = si + 1;
4624         pos = (bitsize - ri) & (bitsize - 1);
4625     }
4626 
4627     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4628     if (!a->sf) {
4629         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4630     }
4631     return true;
4632 }
4633 
4634 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4635 {
4636     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4637 
4638     tcg_rd = cpu_reg(s, a->rd);
4639 
4640     if (unlikely(a->imm == 0)) {
4641         /*
4642          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4643          * so an extract from bit 0 is a special case.
4644          */
4645         if (a->sf) {
4646             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4647         } else {
4648             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4649         }
4650     } else {
4651         tcg_rm = cpu_reg(s, a->rm);
4652         tcg_rn = cpu_reg(s, a->rn);
4653 
4654         if (a->sf) {
4655             /* Specialization to ROR happens in EXTRACT2.  */
4656             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4657         } else {
4658             TCGv_i32 t0 = tcg_temp_new_i32();
4659 
4660             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4661             if (a->rm == a->rn) {
4662                 tcg_gen_rotri_i32(t0, t0, a->imm);
4663             } else {
4664                 TCGv_i32 t1 = tcg_temp_new_i32();
4665                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4666                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4667             }
4668             tcg_gen_extu_i32_i64(tcg_rd, t0);
4669         }
4670     }
4671     return true;
4672 }
4673 
4674 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4675  * Note that it is the caller's responsibility to ensure that the
4676  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4677  * mandated semantics for out of range shifts.
4678  */
4679 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4680                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4681 {
4682     switch (shift_type) {
4683     case A64_SHIFT_TYPE_LSL:
4684         tcg_gen_shl_i64(dst, src, shift_amount);
4685         break;
4686     case A64_SHIFT_TYPE_LSR:
4687         tcg_gen_shr_i64(dst, src, shift_amount);
4688         break;
4689     case A64_SHIFT_TYPE_ASR:
4690         if (!sf) {
4691             tcg_gen_ext32s_i64(dst, src);
4692         }
4693         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4694         break;
4695     case A64_SHIFT_TYPE_ROR:
4696         if (sf) {
4697             tcg_gen_rotr_i64(dst, src, shift_amount);
4698         } else {
4699             TCGv_i32 t0, t1;
4700             t0 = tcg_temp_new_i32();
4701             t1 = tcg_temp_new_i32();
4702             tcg_gen_extrl_i64_i32(t0, src);
4703             tcg_gen_extrl_i64_i32(t1, shift_amount);
4704             tcg_gen_rotr_i32(t0, t0, t1);
4705             tcg_gen_extu_i32_i64(dst, t0);
4706         }
4707         break;
4708     default:
4709         assert(FALSE); /* all shift types should be handled */
4710         break;
4711     }
4712 
4713     if (!sf) { /* zero extend final result */
4714         tcg_gen_ext32u_i64(dst, dst);
4715     }
4716 }
4717 
4718 /* Shift a TCGv src by immediate, put result in dst.
4719  * The shift amount must be in range (this should always be true as the
4720  * relevant instructions will UNDEF on bad shift immediates).
4721  */
4722 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4723                           enum a64_shift_type shift_type, unsigned int shift_i)
4724 {
4725     assert(shift_i < (sf ? 64 : 32));
4726 
4727     if (shift_i == 0) {
4728         tcg_gen_mov_i64(dst, src);
4729     } else {
4730         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4731     }
4732 }
4733 
4734 /* Logical (shifted register)
4735  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4736  * +----+-----+-----------+-------+---+------+--------+------+------+
4737  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4738  * +----+-----+-----------+-------+---+------+--------+------+------+
4739  */
4740 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4741 {
4742     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4743     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4744 
4745     sf = extract32(insn, 31, 1);
4746     opc = extract32(insn, 29, 2);
4747     shift_type = extract32(insn, 22, 2);
4748     invert = extract32(insn, 21, 1);
4749     rm = extract32(insn, 16, 5);
4750     shift_amount = extract32(insn, 10, 6);
4751     rn = extract32(insn, 5, 5);
4752     rd = extract32(insn, 0, 5);
4753 
4754     if (!sf && (shift_amount & (1 << 5))) {
4755         unallocated_encoding(s);
4756         return;
4757     }
4758 
4759     tcg_rd = cpu_reg(s, rd);
4760 
4761     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4762         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4763          * register-register MOV and MVN, so it is worth special casing.
4764          */
4765         tcg_rm = cpu_reg(s, rm);
4766         if (invert) {
4767             tcg_gen_not_i64(tcg_rd, tcg_rm);
4768             if (!sf) {
4769                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4770             }
4771         } else {
4772             if (sf) {
4773                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4774             } else {
4775                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4776             }
4777         }
4778         return;
4779     }
4780 
4781     tcg_rm = read_cpu_reg(s, rm, sf);
4782 
4783     if (shift_amount) {
4784         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4785     }
4786 
4787     tcg_rn = cpu_reg(s, rn);
4788 
4789     switch (opc | (invert << 2)) {
4790     case 0: /* AND */
4791     case 3: /* ANDS */
4792         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4793         break;
4794     case 1: /* ORR */
4795         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4796         break;
4797     case 2: /* EOR */
4798         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4799         break;
4800     case 4: /* BIC */
4801     case 7: /* BICS */
4802         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4803         break;
4804     case 5: /* ORN */
4805         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4806         break;
4807     case 6: /* EON */
4808         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4809         break;
4810     default:
4811         assert(FALSE);
4812         break;
4813     }
4814 
4815     if (!sf) {
4816         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4817     }
4818 
4819     if (opc == 3) {
4820         gen_logic_CC(sf, tcg_rd);
4821     }
4822 }
4823 
4824 /*
4825  * Add/subtract (extended register)
4826  *
4827  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4828  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4829  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4830  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4831  *
4832  *  sf: 0 -> 32bit, 1 -> 64bit
4833  *  op: 0 -> add  , 1 -> sub
4834  *   S: 1 -> set flags
4835  * opt: 00
4836  * option: extension type (see DecodeRegExtend)
4837  * imm3: optional shift to Rm
4838  *
4839  * Rd = Rn + LSL(extend(Rm), amount)
4840  */
4841 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4842 {
4843     int rd = extract32(insn, 0, 5);
4844     int rn = extract32(insn, 5, 5);
4845     int imm3 = extract32(insn, 10, 3);
4846     int option = extract32(insn, 13, 3);
4847     int rm = extract32(insn, 16, 5);
4848     int opt = extract32(insn, 22, 2);
4849     bool setflags = extract32(insn, 29, 1);
4850     bool sub_op = extract32(insn, 30, 1);
4851     bool sf = extract32(insn, 31, 1);
4852 
4853     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4854     TCGv_i64 tcg_rd;
4855     TCGv_i64 tcg_result;
4856 
4857     if (imm3 > 4 || opt != 0) {
4858         unallocated_encoding(s);
4859         return;
4860     }
4861 
4862     /* non-flag setting ops may use SP */
4863     if (!setflags) {
4864         tcg_rd = cpu_reg_sp(s, rd);
4865     } else {
4866         tcg_rd = cpu_reg(s, rd);
4867     }
4868     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4869 
4870     tcg_rm = read_cpu_reg(s, rm, sf);
4871     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4872 
4873     tcg_result = tcg_temp_new_i64();
4874 
4875     if (!setflags) {
4876         if (sub_op) {
4877             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4878         } else {
4879             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4880         }
4881     } else {
4882         if (sub_op) {
4883             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4884         } else {
4885             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4886         }
4887     }
4888 
4889     if (sf) {
4890         tcg_gen_mov_i64(tcg_rd, tcg_result);
4891     } else {
4892         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4893     }
4894 }
4895 
4896 /*
4897  * Add/subtract (shifted register)
4898  *
4899  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4900  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4901  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4902  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4903  *
4904  *    sf: 0 -> 32bit, 1 -> 64bit
4905  *    op: 0 -> add  , 1 -> sub
4906  *     S: 1 -> set flags
4907  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4908  *  imm6: Shift amount to apply to Rm before the add/sub
4909  */
4910 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4911 {
4912     int rd = extract32(insn, 0, 5);
4913     int rn = extract32(insn, 5, 5);
4914     int imm6 = extract32(insn, 10, 6);
4915     int rm = extract32(insn, 16, 5);
4916     int shift_type = extract32(insn, 22, 2);
4917     bool setflags = extract32(insn, 29, 1);
4918     bool sub_op = extract32(insn, 30, 1);
4919     bool sf = extract32(insn, 31, 1);
4920 
4921     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4922     TCGv_i64 tcg_rn, tcg_rm;
4923     TCGv_i64 tcg_result;
4924 
4925     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4926         unallocated_encoding(s);
4927         return;
4928     }
4929 
4930     tcg_rn = read_cpu_reg(s, rn, sf);
4931     tcg_rm = read_cpu_reg(s, rm, sf);
4932 
4933     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4934 
4935     tcg_result = tcg_temp_new_i64();
4936 
4937     if (!setflags) {
4938         if (sub_op) {
4939             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4940         } else {
4941             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4942         }
4943     } else {
4944         if (sub_op) {
4945             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4946         } else {
4947             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4948         }
4949     }
4950 
4951     if (sf) {
4952         tcg_gen_mov_i64(tcg_rd, tcg_result);
4953     } else {
4954         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4955     }
4956 }
4957 
4958 /* Data-processing (3 source)
4959  *
4960  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4961  *  +--+------+-----------+------+------+----+------+------+------+
4962  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4963  *  +--+------+-----------+------+------+----+------+------+------+
4964  */
4965 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4966 {
4967     int rd = extract32(insn, 0, 5);
4968     int rn = extract32(insn, 5, 5);
4969     int ra = extract32(insn, 10, 5);
4970     int rm = extract32(insn, 16, 5);
4971     int op_id = (extract32(insn, 29, 3) << 4) |
4972         (extract32(insn, 21, 3) << 1) |
4973         extract32(insn, 15, 1);
4974     bool sf = extract32(insn, 31, 1);
4975     bool is_sub = extract32(op_id, 0, 1);
4976     bool is_high = extract32(op_id, 2, 1);
4977     bool is_signed = false;
4978     TCGv_i64 tcg_op1;
4979     TCGv_i64 tcg_op2;
4980     TCGv_i64 tcg_tmp;
4981 
4982     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4983     switch (op_id) {
4984     case 0x42: /* SMADDL */
4985     case 0x43: /* SMSUBL */
4986     case 0x44: /* SMULH */
4987         is_signed = true;
4988         break;
4989     case 0x0: /* MADD (32bit) */
4990     case 0x1: /* MSUB (32bit) */
4991     case 0x40: /* MADD (64bit) */
4992     case 0x41: /* MSUB (64bit) */
4993     case 0x4a: /* UMADDL */
4994     case 0x4b: /* UMSUBL */
4995     case 0x4c: /* UMULH */
4996         break;
4997     default:
4998         unallocated_encoding(s);
4999         return;
5000     }
5001 
5002     if (is_high) {
5003         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5004         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5005         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5006         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5007 
5008         if (is_signed) {
5009             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5010         } else {
5011             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5012         }
5013         return;
5014     }
5015 
5016     tcg_op1 = tcg_temp_new_i64();
5017     tcg_op2 = tcg_temp_new_i64();
5018     tcg_tmp = tcg_temp_new_i64();
5019 
5020     if (op_id < 0x42) {
5021         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5022         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5023     } else {
5024         if (is_signed) {
5025             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5026             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5027         } else {
5028             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5029             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5030         }
5031     }
5032 
5033     if (ra == 31 && !is_sub) {
5034         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5035         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5036     } else {
5037         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5038         if (is_sub) {
5039             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5040         } else {
5041             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5042         }
5043     }
5044 
5045     if (!sf) {
5046         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5047     }
5048 }
5049 
5050 /* Add/subtract (with carry)
5051  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5052  * +--+--+--+------------------------+------+-------------+------+-----+
5053  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5054  * +--+--+--+------------------------+------+-------------+------+-----+
5055  */
5056 
5057 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5058 {
5059     unsigned int sf, op, setflags, rm, rn, rd;
5060     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5061 
5062     sf = extract32(insn, 31, 1);
5063     op = extract32(insn, 30, 1);
5064     setflags = extract32(insn, 29, 1);
5065     rm = extract32(insn, 16, 5);
5066     rn = extract32(insn, 5, 5);
5067     rd = extract32(insn, 0, 5);
5068 
5069     tcg_rd = cpu_reg(s, rd);
5070     tcg_rn = cpu_reg(s, rn);
5071 
5072     if (op) {
5073         tcg_y = tcg_temp_new_i64();
5074         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5075     } else {
5076         tcg_y = cpu_reg(s, rm);
5077     }
5078 
5079     if (setflags) {
5080         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5081     } else {
5082         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5083     }
5084 }
5085 
5086 /*
5087  * Rotate right into flags
5088  *  31 30 29                21       15          10      5  4      0
5089  * +--+--+--+-----------------+--------+-----------+------+--+------+
5090  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5091  * +--+--+--+-----------------+--------+-----------+------+--+------+
5092  */
5093 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5094 {
5095     int mask = extract32(insn, 0, 4);
5096     int o2 = extract32(insn, 4, 1);
5097     int rn = extract32(insn, 5, 5);
5098     int imm6 = extract32(insn, 15, 6);
5099     int sf_op_s = extract32(insn, 29, 3);
5100     TCGv_i64 tcg_rn;
5101     TCGv_i32 nzcv;
5102 
5103     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5104         unallocated_encoding(s);
5105         return;
5106     }
5107 
5108     tcg_rn = read_cpu_reg(s, rn, 1);
5109     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5110 
5111     nzcv = tcg_temp_new_i32();
5112     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5113 
5114     if (mask & 8) { /* N */
5115         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5116     }
5117     if (mask & 4) { /* Z */
5118         tcg_gen_not_i32(cpu_ZF, nzcv);
5119         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5120     }
5121     if (mask & 2) { /* C */
5122         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5123     }
5124     if (mask & 1) { /* V */
5125         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5126     }
5127 }
5128 
5129 /*
5130  * Evaluate into flags
5131  *  31 30 29                21        15   14        10      5  4      0
5132  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5133  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5134  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5135  */
5136 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5137 {
5138     int o3_mask = extract32(insn, 0, 5);
5139     int rn = extract32(insn, 5, 5);
5140     int o2 = extract32(insn, 15, 6);
5141     int sz = extract32(insn, 14, 1);
5142     int sf_op_s = extract32(insn, 29, 3);
5143     TCGv_i32 tmp;
5144     int shift;
5145 
5146     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5147         !dc_isar_feature(aa64_condm_4, s)) {
5148         unallocated_encoding(s);
5149         return;
5150     }
5151     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5152 
5153     tmp = tcg_temp_new_i32();
5154     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5155     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5156     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5157     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5158     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5159 }
5160 
5161 /* Conditional compare (immediate / register)
5162  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5163  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5164  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5165  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5166  *        [1]                             y                [0]       [0]
5167  */
5168 static void disas_cc(DisasContext *s, uint32_t insn)
5169 {
5170     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5171     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5172     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5173     DisasCompare c;
5174 
5175     if (!extract32(insn, 29, 1)) {
5176         unallocated_encoding(s);
5177         return;
5178     }
5179     if (insn & (1 << 10 | 1 << 4)) {
5180         unallocated_encoding(s);
5181         return;
5182     }
5183     sf = extract32(insn, 31, 1);
5184     op = extract32(insn, 30, 1);
5185     is_imm = extract32(insn, 11, 1);
5186     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5187     cond = extract32(insn, 12, 4);
5188     rn = extract32(insn, 5, 5);
5189     nzcv = extract32(insn, 0, 4);
5190 
5191     /* Set T0 = !COND.  */
5192     tcg_t0 = tcg_temp_new_i32();
5193     arm_test_cc(&c, cond);
5194     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5195 
5196     /* Load the arguments for the new comparison.  */
5197     if (is_imm) {
5198         tcg_y = tcg_temp_new_i64();
5199         tcg_gen_movi_i64(tcg_y, y);
5200     } else {
5201         tcg_y = cpu_reg(s, y);
5202     }
5203     tcg_rn = cpu_reg(s, rn);
5204 
5205     /* Set the flags for the new comparison.  */
5206     tcg_tmp = tcg_temp_new_i64();
5207     if (op) {
5208         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5209     } else {
5210         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5211     }
5212 
5213     /* If COND was false, force the flags to #nzcv.  Compute two masks
5214      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5215      * For tcg hosts that support ANDC, we can make do with just T1.
5216      * In either case, allow the tcg optimizer to delete any unused mask.
5217      */
5218     tcg_t1 = tcg_temp_new_i32();
5219     tcg_t2 = tcg_temp_new_i32();
5220     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5221     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5222 
5223     if (nzcv & 8) { /* N */
5224         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5225     } else {
5226         if (TCG_TARGET_HAS_andc_i32) {
5227             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5228         } else {
5229             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5230         }
5231     }
5232     if (nzcv & 4) { /* Z */
5233         if (TCG_TARGET_HAS_andc_i32) {
5234             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5235         } else {
5236             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5237         }
5238     } else {
5239         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5240     }
5241     if (nzcv & 2) { /* C */
5242         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5243     } else {
5244         if (TCG_TARGET_HAS_andc_i32) {
5245             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5246         } else {
5247             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5248         }
5249     }
5250     if (nzcv & 1) { /* V */
5251         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5252     } else {
5253         if (TCG_TARGET_HAS_andc_i32) {
5254             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5255         } else {
5256             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5257         }
5258     }
5259 }
5260 
5261 /* Conditional select
5262  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5263  * +----+----+---+-----------------+------+------+-----+------+------+
5264  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5265  * +----+----+---+-----------------+------+------+-----+------+------+
5266  */
5267 static void disas_cond_select(DisasContext *s, uint32_t insn)
5268 {
5269     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5270     TCGv_i64 tcg_rd, zero;
5271     DisasCompare64 c;
5272 
5273     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5274         /* S == 1 or op2<1> == 1 */
5275         unallocated_encoding(s);
5276         return;
5277     }
5278     sf = extract32(insn, 31, 1);
5279     else_inv = extract32(insn, 30, 1);
5280     rm = extract32(insn, 16, 5);
5281     cond = extract32(insn, 12, 4);
5282     else_inc = extract32(insn, 10, 1);
5283     rn = extract32(insn, 5, 5);
5284     rd = extract32(insn, 0, 5);
5285 
5286     tcg_rd = cpu_reg(s, rd);
5287 
5288     a64_test_cc(&c, cond);
5289     zero = tcg_constant_i64(0);
5290 
5291     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5292         /* CSET & CSETM.  */
5293         tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5294         if (else_inv) {
5295             tcg_gen_neg_i64(tcg_rd, tcg_rd);
5296         }
5297     } else {
5298         TCGv_i64 t_true = cpu_reg(s, rn);
5299         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5300         if (else_inv && else_inc) {
5301             tcg_gen_neg_i64(t_false, t_false);
5302         } else if (else_inv) {
5303             tcg_gen_not_i64(t_false, t_false);
5304         } else if (else_inc) {
5305             tcg_gen_addi_i64(t_false, t_false, 1);
5306         }
5307         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5308     }
5309 
5310     if (!sf) {
5311         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5312     }
5313 }
5314 
5315 static void handle_clz(DisasContext *s, unsigned int sf,
5316                        unsigned int rn, unsigned int rd)
5317 {
5318     TCGv_i64 tcg_rd, tcg_rn;
5319     tcg_rd = cpu_reg(s, rd);
5320     tcg_rn = cpu_reg(s, rn);
5321 
5322     if (sf) {
5323         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5324     } else {
5325         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5326         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5327         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5328         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5329     }
5330 }
5331 
5332 static void handle_cls(DisasContext *s, unsigned int sf,
5333                        unsigned int rn, unsigned int rd)
5334 {
5335     TCGv_i64 tcg_rd, tcg_rn;
5336     tcg_rd = cpu_reg(s, rd);
5337     tcg_rn = cpu_reg(s, rn);
5338 
5339     if (sf) {
5340         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5341     } else {
5342         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5343         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5344         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5345         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5346     }
5347 }
5348 
5349 static void handle_rbit(DisasContext *s, unsigned int sf,
5350                         unsigned int rn, unsigned int rd)
5351 {
5352     TCGv_i64 tcg_rd, tcg_rn;
5353     tcg_rd = cpu_reg(s, rd);
5354     tcg_rn = cpu_reg(s, rn);
5355 
5356     if (sf) {
5357         gen_helper_rbit64(tcg_rd, tcg_rn);
5358     } else {
5359         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5360         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5361         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5362         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5363     }
5364 }
5365 
5366 /* REV with sf==1, opcode==3 ("REV64") */
5367 static void handle_rev64(DisasContext *s, unsigned int sf,
5368                          unsigned int rn, unsigned int rd)
5369 {
5370     if (!sf) {
5371         unallocated_encoding(s);
5372         return;
5373     }
5374     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5375 }
5376 
5377 /* REV with sf==0, opcode==2
5378  * REV32 (sf==1, opcode==2)
5379  */
5380 static void handle_rev32(DisasContext *s, unsigned int sf,
5381                          unsigned int rn, unsigned int rd)
5382 {
5383     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5384     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5385 
5386     if (sf) {
5387         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5388         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5389     } else {
5390         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5391     }
5392 }
5393 
5394 /* REV16 (opcode==1) */
5395 static void handle_rev16(DisasContext *s, unsigned int sf,
5396                          unsigned int rn, unsigned int rd)
5397 {
5398     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5399     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5400     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5401     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5402 
5403     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5404     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5405     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5406     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5407     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5408 }
5409 
5410 /* Data-processing (1 source)
5411  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5412  * +----+---+---+-----------------+---------+--------+------+------+
5413  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5414  * +----+---+---+-----------------+---------+--------+------+------+
5415  */
5416 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5417 {
5418     unsigned int sf, opcode, opcode2, rn, rd;
5419     TCGv_i64 tcg_rd;
5420 
5421     if (extract32(insn, 29, 1)) {
5422         unallocated_encoding(s);
5423         return;
5424     }
5425 
5426     sf = extract32(insn, 31, 1);
5427     opcode = extract32(insn, 10, 6);
5428     opcode2 = extract32(insn, 16, 5);
5429     rn = extract32(insn, 5, 5);
5430     rd = extract32(insn, 0, 5);
5431 
5432 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5433 
5434     switch (MAP(sf, opcode2, opcode)) {
5435     case MAP(0, 0x00, 0x00): /* RBIT */
5436     case MAP(1, 0x00, 0x00):
5437         handle_rbit(s, sf, rn, rd);
5438         break;
5439     case MAP(0, 0x00, 0x01): /* REV16 */
5440     case MAP(1, 0x00, 0x01):
5441         handle_rev16(s, sf, rn, rd);
5442         break;
5443     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5444     case MAP(1, 0x00, 0x02):
5445         handle_rev32(s, sf, rn, rd);
5446         break;
5447     case MAP(1, 0x00, 0x03): /* REV64 */
5448         handle_rev64(s, sf, rn, rd);
5449         break;
5450     case MAP(0, 0x00, 0x04): /* CLZ */
5451     case MAP(1, 0x00, 0x04):
5452         handle_clz(s, sf, rn, rd);
5453         break;
5454     case MAP(0, 0x00, 0x05): /* CLS */
5455     case MAP(1, 0x00, 0x05):
5456         handle_cls(s, sf, rn, rd);
5457         break;
5458     case MAP(1, 0x01, 0x00): /* PACIA */
5459         if (s->pauth_active) {
5460             tcg_rd = cpu_reg(s, rd);
5461             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5462         } else if (!dc_isar_feature(aa64_pauth, s)) {
5463             goto do_unallocated;
5464         }
5465         break;
5466     case MAP(1, 0x01, 0x01): /* PACIB */
5467         if (s->pauth_active) {
5468             tcg_rd = cpu_reg(s, rd);
5469             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5470         } else if (!dc_isar_feature(aa64_pauth, s)) {
5471             goto do_unallocated;
5472         }
5473         break;
5474     case MAP(1, 0x01, 0x02): /* PACDA */
5475         if (s->pauth_active) {
5476             tcg_rd = cpu_reg(s, rd);
5477             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5478         } else if (!dc_isar_feature(aa64_pauth, s)) {
5479             goto do_unallocated;
5480         }
5481         break;
5482     case MAP(1, 0x01, 0x03): /* PACDB */
5483         if (s->pauth_active) {
5484             tcg_rd = cpu_reg(s, rd);
5485             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5486         } else if (!dc_isar_feature(aa64_pauth, s)) {
5487             goto do_unallocated;
5488         }
5489         break;
5490     case MAP(1, 0x01, 0x04): /* AUTIA */
5491         if (s->pauth_active) {
5492             tcg_rd = cpu_reg(s, rd);
5493             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5494         } else if (!dc_isar_feature(aa64_pauth, s)) {
5495             goto do_unallocated;
5496         }
5497         break;
5498     case MAP(1, 0x01, 0x05): /* AUTIB */
5499         if (s->pauth_active) {
5500             tcg_rd = cpu_reg(s, rd);
5501             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5502         } else if (!dc_isar_feature(aa64_pauth, s)) {
5503             goto do_unallocated;
5504         }
5505         break;
5506     case MAP(1, 0x01, 0x06): /* AUTDA */
5507         if (s->pauth_active) {
5508             tcg_rd = cpu_reg(s, rd);
5509             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5510         } else if (!dc_isar_feature(aa64_pauth, s)) {
5511             goto do_unallocated;
5512         }
5513         break;
5514     case MAP(1, 0x01, 0x07): /* AUTDB */
5515         if (s->pauth_active) {
5516             tcg_rd = cpu_reg(s, rd);
5517             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5518         } else if (!dc_isar_feature(aa64_pauth, s)) {
5519             goto do_unallocated;
5520         }
5521         break;
5522     case MAP(1, 0x01, 0x08): /* PACIZA */
5523         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5524             goto do_unallocated;
5525         } else if (s->pauth_active) {
5526             tcg_rd = cpu_reg(s, rd);
5527             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5528         }
5529         break;
5530     case MAP(1, 0x01, 0x09): /* PACIZB */
5531         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5532             goto do_unallocated;
5533         } else if (s->pauth_active) {
5534             tcg_rd = cpu_reg(s, rd);
5535             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5536         }
5537         break;
5538     case MAP(1, 0x01, 0x0a): /* PACDZA */
5539         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5540             goto do_unallocated;
5541         } else if (s->pauth_active) {
5542             tcg_rd = cpu_reg(s, rd);
5543             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5544         }
5545         break;
5546     case MAP(1, 0x01, 0x0b): /* PACDZB */
5547         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5548             goto do_unallocated;
5549         } else if (s->pauth_active) {
5550             tcg_rd = cpu_reg(s, rd);
5551             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5552         }
5553         break;
5554     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5555         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5556             goto do_unallocated;
5557         } else if (s->pauth_active) {
5558             tcg_rd = cpu_reg(s, rd);
5559             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5560         }
5561         break;
5562     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5563         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5564             goto do_unallocated;
5565         } else if (s->pauth_active) {
5566             tcg_rd = cpu_reg(s, rd);
5567             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5568         }
5569         break;
5570     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5571         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5572             goto do_unallocated;
5573         } else if (s->pauth_active) {
5574             tcg_rd = cpu_reg(s, rd);
5575             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5576         }
5577         break;
5578     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5579         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5580             goto do_unallocated;
5581         } else if (s->pauth_active) {
5582             tcg_rd = cpu_reg(s, rd);
5583             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5584         }
5585         break;
5586     case MAP(1, 0x01, 0x10): /* XPACI */
5587         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5588             goto do_unallocated;
5589         } else if (s->pauth_active) {
5590             tcg_rd = cpu_reg(s, rd);
5591             gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5592         }
5593         break;
5594     case MAP(1, 0x01, 0x11): /* XPACD */
5595         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5596             goto do_unallocated;
5597         } else if (s->pauth_active) {
5598             tcg_rd = cpu_reg(s, rd);
5599             gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5600         }
5601         break;
5602     default:
5603     do_unallocated:
5604         unallocated_encoding(s);
5605         break;
5606     }
5607 
5608 #undef MAP
5609 }
5610 
5611 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5612                        unsigned int rm, unsigned int rn, unsigned int rd)
5613 {
5614     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5615     tcg_rd = cpu_reg(s, rd);
5616 
5617     if (!sf && is_signed) {
5618         tcg_n = tcg_temp_new_i64();
5619         tcg_m = tcg_temp_new_i64();
5620         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5621         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5622     } else {
5623         tcg_n = read_cpu_reg(s, rn, sf);
5624         tcg_m = read_cpu_reg(s, rm, sf);
5625     }
5626 
5627     if (is_signed) {
5628         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5629     } else {
5630         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5631     }
5632 
5633     if (!sf) { /* zero extend final result */
5634         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5635     }
5636 }
5637 
5638 /* LSLV, LSRV, ASRV, RORV */
5639 static void handle_shift_reg(DisasContext *s,
5640                              enum a64_shift_type shift_type, unsigned int sf,
5641                              unsigned int rm, unsigned int rn, unsigned int rd)
5642 {
5643     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5644     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5645     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5646 
5647     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5648     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5649 }
5650 
5651 /* CRC32[BHWX], CRC32C[BHWX] */
5652 static void handle_crc32(DisasContext *s,
5653                          unsigned int sf, unsigned int sz, bool crc32c,
5654                          unsigned int rm, unsigned int rn, unsigned int rd)
5655 {
5656     TCGv_i64 tcg_acc, tcg_val;
5657     TCGv_i32 tcg_bytes;
5658 
5659     if (!dc_isar_feature(aa64_crc32, s)
5660         || (sf == 1 && sz != 3)
5661         || (sf == 0 && sz == 3)) {
5662         unallocated_encoding(s);
5663         return;
5664     }
5665 
5666     if (sz == 3) {
5667         tcg_val = cpu_reg(s, rm);
5668     } else {
5669         uint64_t mask;
5670         switch (sz) {
5671         case 0:
5672             mask = 0xFF;
5673             break;
5674         case 1:
5675             mask = 0xFFFF;
5676             break;
5677         case 2:
5678             mask = 0xFFFFFFFF;
5679             break;
5680         default:
5681             g_assert_not_reached();
5682         }
5683         tcg_val = tcg_temp_new_i64();
5684         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5685     }
5686 
5687     tcg_acc = cpu_reg(s, rn);
5688     tcg_bytes = tcg_constant_i32(1 << sz);
5689 
5690     if (crc32c) {
5691         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5692     } else {
5693         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5694     }
5695 }
5696 
5697 /* Data-processing (2 source)
5698  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5699  * +----+---+---+-----------------+------+--------+------+------+
5700  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5701  * +----+---+---+-----------------+------+--------+------+------+
5702  */
5703 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5704 {
5705     unsigned int sf, rm, opcode, rn, rd, setflag;
5706     sf = extract32(insn, 31, 1);
5707     setflag = extract32(insn, 29, 1);
5708     rm = extract32(insn, 16, 5);
5709     opcode = extract32(insn, 10, 6);
5710     rn = extract32(insn, 5, 5);
5711     rd = extract32(insn, 0, 5);
5712 
5713     if (setflag && opcode != 0) {
5714         unallocated_encoding(s);
5715         return;
5716     }
5717 
5718     switch (opcode) {
5719     case 0: /* SUBP(S) */
5720         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5721             goto do_unallocated;
5722         } else {
5723             TCGv_i64 tcg_n, tcg_m, tcg_d;
5724 
5725             tcg_n = read_cpu_reg_sp(s, rn, true);
5726             tcg_m = read_cpu_reg_sp(s, rm, true);
5727             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5728             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5729             tcg_d = cpu_reg(s, rd);
5730 
5731             if (setflag) {
5732                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5733             } else {
5734                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5735             }
5736         }
5737         break;
5738     case 2: /* UDIV */
5739         handle_div(s, false, sf, rm, rn, rd);
5740         break;
5741     case 3: /* SDIV */
5742         handle_div(s, true, sf, rm, rn, rd);
5743         break;
5744     case 4: /* IRG */
5745         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5746             goto do_unallocated;
5747         }
5748         if (s->ata) {
5749             gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5750                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5751         } else {
5752             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5753                                              cpu_reg_sp(s, rn));
5754         }
5755         break;
5756     case 5: /* GMI */
5757         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5758             goto do_unallocated;
5759         } else {
5760             TCGv_i64 t = tcg_temp_new_i64();
5761 
5762             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5763             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5764             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5765         }
5766         break;
5767     case 8: /* LSLV */
5768         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5769         break;
5770     case 9: /* LSRV */
5771         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5772         break;
5773     case 10: /* ASRV */
5774         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5775         break;
5776     case 11: /* RORV */
5777         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5778         break;
5779     case 12: /* PACGA */
5780         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5781             goto do_unallocated;
5782         }
5783         gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5784                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5785         break;
5786     case 16:
5787     case 17:
5788     case 18:
5789     case 19:
5790     case 20:
5791     case 21:
5792     case 22:
5793     case 23: /* CRC32 */
5794     {
5795         int sz = extract32(opcode, 0, 2);
5796         bool crc32c = extract32(opcode, 2, 1);
5797         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5798         break;
5799     }
5800     default:
5801     do_unallocated:
5802         unallocated_encoding(s);
5803         break;
5804     }
5805 }
5806 
5807 /*
5808  * Data processing - register
5809  *  31  30 29  28      25    21  20  16      10         0
5810  * +--+---+--+---+-------+-----+-------+-------+---------+
5811  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5812  * +--+---+--+---+-------+-----+-------+-------+---------+
5813  */
5814 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5815 {
5816     int op0 = extract32(insn, 30, 1);
5817     int op1 = extract32(insn, 28, 1);
5818     int op2 = extract32(insn, 21, 4);
5819     int op3 = extract32(insn, 10, 6);
5820 
5821     if (!op1) {
5822         if (op2 & 8) {
5823             if (op2 & 1) {
5824                 /* Add/sub (extended register) */
5825                 disas_add_sub_ext_reg(s, insn);
5826             } else {
5827                 /* Add/sub (shifted register) */
5828                 disas_add_sub_reg(s, insn);
5829             }
5830         } else {
5831             /* Logical (shifted register) */
5832             disas_logic_reg(s, insn);
5833         }
5834         return;
5835     }
5836 
5837     switch (op2) {
5838     case 0x0:
5839         switch (op3) {
5840         case 0x00: /* Add/subtract (with carry) */
5841             disas_adc_sbc(s, insn);
5842             break;
5843 
5844         case 0x01: /* Rotate right into flags */
5845         case 0x21:
5846             disas_rotate_right_into_flags(s, insn);
5847             break;
5848 
5849         case 0x02: /* Evaluate into flags */
5850         case 0x12:
5851         case 0x22:
5852         case 0x32:
5853             disas_evaluate_into_flags(s, insn);
5854             break;
5855 
5856         default:
5857             goto do_unallocated;
5858         }
5859         break;
5860 
5861     case 0x2: /* Conditional compare */
5862         disas_cc(s, insn); /* both imm and reg forms */
5863         break;
5864 
5865     case 0x4: /* Conditional select */
5866         disas_cond_select(s, insn);
5867         break;
5868 
5869     case 0x6: /* Data-processing */
5870         if (op0) {    /* (1 source) */
5871             disas_data_proc_1src(s, insn);
5872         } else {      /* (2 source) */
5873             disas_data_proc_2src(s, insn);
5874         }
5875         break;
5876     case 0x8 ... 0xf: /* (3 source) */
5877         disas_data_proc_3src(s, insn);
5878         break;
5879 
5880     default:
5881     do_unallocated:
5882         unallocated_encoding(s);
5883         break;
5884     }
5885 }
5886 
5887 static void handle_fp_compare(DisasContext *s, int size,
5888                               unsigned int rn, unsigned int rm,
5889                               bool cmp_with_zero, bool signal_all_nans)
5890 {
5891     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5892     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5893 
5894     if (size == MO_64) {
5895         TCGv_i64 tcg_vn, tcg_vm;
5896 
5897         tcg_vn = read_fp_dreg(s, rn);
5898         if (cmp_with_zero) {
5899             tcg_vm = tcg_constant_i64(0);
5900         } else {
5901             tcg_vm = read_fp_dreg(s, rm);
5902         }
5903         if (signal_all_nans) {
5904             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5905         } else {
5906             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5907         }
5908     } else {
5909         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5910         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5911 
5912         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5913         if (cmp_with_zero) {
5914             tcg_gen_movi_i32(tcg_vm, 0);
5915         } else {
5916             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5917         }
5918 
5919         switch (size) {
5920         case MO_32:
5921             if (signal_all_nans) {
5922                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5923             } else {
5924                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5925             }
5926             break;
5927         case MO_16:
5928             if (signal_all_nans) {
5929                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5930             } else {
5931                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5932             }
5933             break;
5934         default:
5935             g_assert_not_reached();
5936         }
5937     }
5938 
5939     gen_set_nzcv(tcg_flags);
5940 }
5941 
5942 /* Floating point compare
5943  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5944  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5945  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5946  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5947  */
5948 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5949 {
5950     unsigned int mos, type, rm, op, rn, opc, op2r;
5951     int size;
5952 
5953     mos = extract32(insn, 29, 3);
5954     type = extract32(insn, 22, 2);
5955     rm = extract32(insn, 16, 5);
5956     op = extract32(insn, 14, 2);
5957     rn = extract32(insn, 5, 5);
5958     opc = extract32(insn, 3, 2);
5959     op2r = extract32(insn, 0, 3);
5960 
5961     if (mos || op || op2r) {
5962         unallocated_encoding(s);
5963         return;
5964     }
5965 
5966     switch (type) {
5967     case 0:
5968         size = MO_32;
5969         break;
5970     case 1:
5971         size = MO_64;
5972         break;
5973     case 3:
5974         size = MO_16;
5975         if (dc_isar_feature(aa64_fp16, s)) {
5976             break;
5977         }
5978         /* fallthru */
5979     default:
5980         unallocated_encoding(s);
5981         return;
5982     }
5983 
5984     if (!fp_access_check(s)) {
5985         return;
5986     }
5987 
5988     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5989 }
5990 
5991 /* Floating point conditional compare
5992  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5993  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5994  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5995  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5996  */
5997 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5998 {
5999     unsigned int mos, type, rm, cond, rn, op, nzcv;
6000     TCGLabel *label_continue = NULL;
6001     int size;
6002 
6003     mos = extract32(insn, 29, 3);
6004     type = extract32(insn, 22, 2);
6005     rm = extract32(insn, 16, 5);
6006     cond = extract32(insn, 12, 4);
6007     rn = extract32(insn, 5, 5);
6008     op = extract32(insn, 4, 1);
6009     nzcv = extract32(insn, 0, 4);
6010 
6011     if (mos) {
6012         unallocated_encoding(s);
6013         return;
6014     }
6015 
6016     switch (type) {
6017     case 0:
6018         size = MO_32;
6019         break;
6020     case 1:
6021         size = MO_64;
6022         break;
6023     case 3:
6024         size = MO_16;
6025         if (dc_isar_feature(aa64_fp16, s)) {
6026             break;
6027         }
6028         /* fallthru */
6029     default:
6030         unallocated_encoding(s);
6031         return;
6032     }
6033 
6034     if (!fp_access_check(s)) {
6035         return;
6036     }
6037 
6038     if (cond < 0x0e) { /* not always */
6039         TCGLabel *label_match = gen_new_label();
6040         label_continue = gen_new_label();
6041         arm_gen_test_cc(cond, label_match);
6042         /* nomatch: */
6043         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6044         tcg_gen_br(label_continue);
6045         gen_set_label(label_match);
6046     }
6047 
6048     handle_fp_compare(s, size, rn, rm, false, op);
6049 
6050     if (cond < 0x0e) {
6051         gen_set_label(label_continue);
6052     }
6053 }
6054 
6055 /* Floating point conditional select
6056  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6057  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6058  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6059  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6060  */
6061 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6062 {
6063     unsigned int mos, type, rm, cond, rn, rd;
6064     TCGv_i64 t_true, t_false;
6065     DisasCompare64 c;
6066     MemOp sz;
6067 
6068     mos = extract32(insn, 29, 3);
6069     type = extract32(insn, 22, 2);
6070     rm = extract32(insn, 16, 5);
6071     cond = extract32(insn, 12, 4);
6072     rn = extract32(insn, 5, 5);
6073     rd = extract32(insn, 0, 5);
6074 
6075     if (mos) {
6076         unallocated_encoding(s);
6077         return;
6078     }
6079 
6080     switch (type) {
6081     case 0:
6082         sz = MO_32;
6083         break;
6084     case 1:
6085         sz = MO_64;
6086         break;
6087     case 3:
6088         sz = MO_16;
6089         if (dc_isar_feature(aa64_fp16, s)) {
6090             break;
6091         }
6092         /* fallthru */
6093     default:
6094         unallocated_encoding(s);
6095         return;
6096     }
6097 
6098     if (!fp_access_check(s)) {
6099         return;
6100     }
6101 
6102     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6103     t_true = tcg_temp_new_i64();
6104     t_false = tcg_temp_new_i64();
6105     read_vec_element(s, t_true, rn, 0, sz);
6106     read_vec_element(s, t_false, rm, 0, sz);
6107 
6108     a64_test_cc(&c, cond);
6109     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6110                         t_true, t_false);
6111 
6112     /* Note that sregs & hregs write back zeros to the high bits,
6113        and we've already done the zero-extension.  */
6114     write_fp_dreg(s, rd, t_true);
6115 }
6116 
6117 /* Floating-point data-processing (1 source) - half precision */
6118 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6119 {
6120     TCGv_ptr fpst = NULL;
6121     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6122     TCGv_i32 tcg_res = tcg_temp_new_i32();
6123 
6124     switch (opcode) {
6125     case 0x0: /* FMOV */
6126         tcg_gen_mov_i32(tcg_res, tcg_op);
6127         break;
6128     case 0x1: /* FABS */
6129         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6130         break;
6131     case 0x2: /* FNEG */
6132         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6133         break;
6134     case 0x3: /* FSQRT */
6135         fpst = fpstatus_ptr(FPST_FPCR_F16);
6136         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6137         break;
6138     case 0x8: /* FRINTN */
6139     case 0x9: /* FRINTP */
6140     case 0xa: /* FRINTM */
6141     case 0xb: /* FRINTZ */
6142     case 0xc: /* FRINTA */
6143     {
6144         TCGv_i32 tcg_rmode;
6145 
6146         fpst = fpstatus_ptr(FPST_FPCR_F16);
6147         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6148         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6149         gen_restore_rmode(tcg_rmode, fpst);
6150         break;
6151     }
6152     case 0xe: /* FRINTX */
6153         fpst = fpstatus_ptr(FPST_FPCR_F16);
6154         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6155         break;
6156     case 0xf: /* FRINTI */
6157         fpst = fpstatus_ptr(FPST_FPCR_F16);
6158         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6159         break;
6160     default:
6161         g_assert_not_reached();
6162     }
6163 
6164     write_fp_sreg(s, rd, tcg_res);
6165 }
6166 
6167 /* Floating-point data-processing (1 source) - single precision */
6168 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6169 {
6170     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6171     TCGv_i32 tcg_op, tcg_res;
6172     TCGv_ptr fpst;
6173     int rmode = -1;
6174 
6175     tcg_op = read_fp_sreg(s, rn);
6176     tcg_res = tcg_temp_new_i32();
6177 
6178     switch (opcode) {
6179     case 0x0: /* FMOV */
6180         tcg_gen_mov_i32(tcg_res, tcg_op);
6181         goto done;
6182     case 0x1: /* FABS */
6183         gen_helper_vfp_abss(tcg_res, tcg_op);
6184         goto done;
6185     case 0x2: /* FNEG */
6186         gen_helper_vfp_negs(tcg_res, tcg_op);
6187         goto done;
6188     case 0x3: /* FSQRT */
6189         gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6190         goto done;
6191     case 0x6: /* BFCVT */
6192         gen_fpst = gen_helper_bfcvt;
6193         break;
6194     case 0x8: /* FRINTN */
6195     case 0x9: /* FRINTP */
6196     case 0xa: /* FRINTM */
6197     case 0xb: /* FRINTZ */
6198     case 0xc: /* FRINTA */
6199         rmode = opcode & 7;
6200         gen_fpst = gen_helper_rints;
6201         break;
6202     case 0xe: /* FRINTX */
6203         gen_fpst = gen_helper_rints_exact;
6204         break;
6205     case 0xf: /* FRINTI */
6206         gen_fpst = gen_helper_rints;
6207         break;
6208     case 0x10: /* FRINT32Z */
6209         rmode = FPROUNDING_ZERO;
6210         gen_fpst = gen_helper_frint32_s;
6211         break;
6212     case 0x11: /* FRINT32X */
6213         gen_fpst = gen_helper_frint32_s;
6214         break;
6215     case 0x12: /* FRINT64Z */
6216         rmode = FPROUNDING_ZERO;
6217         gen_fpst = gen_helper_frint64_s;
6218         break;
6219     case 0x13: /* FRINT64X */
6220         gen_fpst = gen_helper_frint64_s;
6221         break;
6222     default:
6223         g_assert_not_reached();
6224     }
6225 
6226     fpst = fpstatus_ptr(FPST_FPCR);
6227     if (rmode >= 0) {
6228         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6229         gen_fpst(tcg_res, tcg_op, fpst);
6230         gen_restore_rmode(tcg_rmode, fpst);
6231     } else {
6232         gen_fpst(tcg_res, tcg_op, fpst);
6233     }
6234 
6235  done:
6236     write_fp_sreg(s, rd, tcg_res);
6237 }
6238 
6239 /* Floating-point data-processing (1 source) - double precision */
6240 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6241 {
6242     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6243     TCGv_i64 tcg_op, tcg_res;
6244     TCGv_ptr fpst;
6245     int rmode = -1;
6246 
6247     switch (opcode) {
6248     case 0x0: /* FMOV */
6249         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6250         return;
6251     }
6252 
6253     tcg_op = read_fp_dreg(s, rn);
6254     tcg_res = tcg_temp_new_i64();
6255 
6256     switch (opcode) {
6257     case 0x1: /* FABS */
6258         gen_helper_vfp_absd(tcg_res, tcg_op);
6259         goto done;
6260     case 0x2: /* FNEG */
6261         gen_helper_vfp_negd(tcg_res, tcg_op);
6262         goto done;
6263     case 0x3: /* FSQRT */
6264         gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6265         goto done;
6266     case 0x8: /* FRINTN */
6267     case 0x9: /* FRINTP */
6268     case 0xa: /* FRINTM */
6269     case 0xb: /* FRINTZ */
6270     case 0xc: /* FRINTA */
6271         rmode = opcode & 7;
6272         gen_fpst = gen_helper_rintd;
6273         break;
6274     case 0xe: /* FRINTX */
6275         gen_fpst = gen_helper_rintd_exact;
6276         break;
6277     case 0xf: /* FRINTI */
6278         gen_fpst = gen_helper_rintd;
6279         break;
6280     case 0x10: /* FRINT32Z */
6281         rmode = FPROUNDING_ZERO;
6282         gen_fpst = gen_helper_frint32_d;
6283         break;
6284     case 0x11: /* FRINT32X */
6285         gen_fpst = gen_helper_frint32_d;
6286         break;
6287     case 0x12: /* FRINT64Z */
6288         rmode = FPROUNDING_ZERO;
6289         gen_fpst = gen_helper_frint64_d;
6290         break;
6291     case 0x13: /* FRINT64X */
6292         gen_fpst = gen_helper_frint64_d;
6293         break;
6294     default:
6295         g_assert_not_reached();
6296     }
6297 
6298     fpst = fpstatus_ptr(FPST_FPCR);
6299     if (rmode >= 0) {
6300         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6301         gen_fpst(tcg_res, tcg_op, fpst);
6302         gen_restore_rmode(tcg_rmode, fpst);
6303     } else {
6304         gen_fpst(tcg_res, tcg_op, fpst);
6305     }
6306 
6307  done:
6308     write_fp_dreg(s, rd, tcg_res);
6309 }
6310 
6311 static void handle_fp_fcvt(DisasContext *s, int opcode,
6312                            int rd, int rn, int dtype, int ntype)
6313 {
6314     switch (ntype) {
6315     case 0x0:
6316     {
6317         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6318         if (dtype == 1) {
6319             /* Single to double */
6320             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6321             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6322             write_fp_dreg(s, rd, tcg_rd);
6323         } else {
6324             /* Single to half */
6325             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6326             TCGv_i32 ahp = get_ahp_flag();
6327             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6328 
6329             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6330             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6331             write_fp_sreg(s, rd, tcg_rd);
6332         }
6333         break;
6334     }
6335     case 0x1:
6336     {
6337         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6338         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6339         if (dtype == 0) {
6340             /* Double to single */
6341             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6342         } else {
6343             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6344             TCGv_i32 ahp = get_ahp_flag();
6345             /* Double to half */
6346             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6347             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6348         }
6349         write_fp_sreg(s, rd, tcg_rd);
6350         break;
6351     }
6352     case 0x3:
6353     {
6354         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6355         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6356         TCGv_i32 tcg_ahp = get_ahp_flag();
6357         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6358         if (dtype == 0) {
6359             /* Half to single */
6360             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6361             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6362             write_fp_sreg(s, rd, tcg_rd);
6363         } else {
6364             /* Half to double */
6365             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6366             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6367             write_fp_dreg(s, rd, tcg_rd);
6368         }
6369         break;
6370     }
6371     default:
6372         g_assert_not_reached();
6373     }
6374 }
6375 
6376 /* Floating point data-processing (1 source)
6377  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6378  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6379  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6380  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6381  */
6382 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6383 {
6384     int mos = extract32(insn, 29, 3);
6385     int type = extract32(insn, 22, 2);
6386     int opcode = extract32(insn, 15, 6);
6387     int rn = extract32(insn, 5, 5);
6388     int rd = extract32(insn, 0, 5);
6389 
6390     if (mos) {
6391         goto do_unallocated;
6392     }
6393 
6394     switch (opcode) {
6395     case 0x4: case 0x5: case 0x7:
6396     {
6397         /* FCVT between half, single and double precision */
6398         int dtype = extract32(opcode, 0, 2);
6399         if (type == 2 || dtype == type) {
6400             goto do_unallocated;
6401         }
6402         if (!fp_access_check(s)) {
6403             return;
6404         }
6405 
6406         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6407         break;
6408     }
6409 
6410     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6411         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6412             goto do_unallocated;
6413         }
6414         /* fall through */
6415     case 0x0 ... 0x3:
6416     case 0x8 ... 0xc:
6417     case 0xe ... 0xf:
6418         /* 32-to-32 and 64-to-64 ops */
6419         switch (type) {
6420         case 0:
6421             if (!fp_access_check(s)) {
6422                 return;
6423             }
6424             handle_fp_1src_single(s, opcode, rd, rn);
6425             break;
6426         case 1:
6427             if (!fp_access_check(s)) {
6428                 return;
6429             }
6430             handle_fp_1src_double(s, opcode, rd, rn);
6431             break;
6432         case 3:
6433             if (!dc_isar_feature(aa64_fp16, s)) {
6434                 goto do_unallocated;
6435             }
6436 
6437             if (!fp_access_check(s)) {
6438                 return;
6439             }
6440             handle_fp_1src_half(s, opcode, rd, rn);
6441             break;
6442         default:
6443             goto do_unallocated;
6444         }
6445         break;
6446 
6447     case 0x6:
6448         switch (type) {
6449         case 1: /* BFCVT */
6450             if (!dc_isar_feature(aa64_bf16, s)) {
6451                 goto do_unallocated;
6452             }
6453             if (!fp_access_check(s)) {
6454                 return;
6455             }
6456             handle_fp_1src_single(s, opcode, rd, rn);
6457             break;
6458         default:
6459             goto do_unallocated;
6460         }
6461         break;
6462 
6463     default:
6464     do_unallocated:
6465         unallocated_encoding(s);
6466         break;
6467     }
6468 }
6469 
6470 /* Floating-point data-processing (2 source) - single precision */
6471 static void handle_fp_2src_single(DisasContext *s, int opcode,
6472                                   int rd, int rn, int rm)
6473 {
6474     TCGv_i32 tcg_op1;
6475     TCGv_i32 tcg_op2;
6476     TCGv_i32 tcg_res;
6477     TCGv_ptr fpst;
6478 
6479     tcg_res = tcg_temp_new_i32();
6480     fpst = fpstatus_ptr(FPST_FPCR);
6481     tcg_op1 = read_fp_sreg(s, rn);
6482     tcg_op2 = read_fp_sreg(s, rm);
6483 
6484     switch (opcode) {
6485     case 0x0: /* FMUL */
6486         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6487         break;
6488     case 0x1: /* FDIV */
6489         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6490         break;
6491     case 0x2: /* FADD */
6492         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6493         break;
6494     case 0x3: /* FSUB */
6495         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6496         break;
6497     case 0x4: /* FMAX */
6498         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6499         break;
6500     case 0x5: /* FMIN */
6501         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6502         break;
6503     case 0x6: /* FMAXNM */
6504         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6505         break;
6506     case 0x7: /* FMINNM */
6507         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6508         break;
6509     case 0x8: /* FNMUL */
6510         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6511         gen_helper_vfp_negs(tcg_res, tcg_res);
6512         break;
6513     }
6514 
6515     write_fp_sreg(s, rd, tcg_res);
6516 }
6517 
6518 /* Floating-point data-processing (2 source) - double precision */
6519 static void handle_fp_2src_double(DisasContext *s, int opcode,
6520                                   int rd, int rn, int rm)
6521 {
6522     TCGv_i64 tcg_op1;
6523     TCGv_i64 tcg_op2;
6524     TCGv_i64 tcg_res;
6525     TCGv_ptr fpst;
6526 
6527     tcg_res = tcg_temp_new_i64();
6528     fpst = fpstatus_ptr(FPST_FPCR);
6529     tcg_op1 = read_fp_dreg(s, rn);
6530     tcg_op2 = read_fp_dreg(s, rm);
6531 
6532     switch (opcode) {
6533     case 0x0: /* FMUL */
6534         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6535         break;
6536     case 0x1: /* FDIV */
6537         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6538         break;
6539     case 0x2: /* FADD */
6540         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6541         break;
6542     case 0x3: /* FSUB */
6543         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6544         break;
6545     case 0x4: /* FMAX */
6546         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6547         break;
6548     case 0x5: /* FMIN */
6549         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6550         break;
6551     case 0x6: /* FMAXNM */
6552         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6553         break;
6554     case 0x7: /* FMINNM */
6555         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6556         break;
6557     case 0x8: /* FNMUL */
6558         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6559         gen_helper_vfp_negd(tcg_res, tcg_res);
6560         break;
6561     }
6562 
6563     write_fp_dreg(s, rd, tcg_res);
6564 }
6565 
6566 /* Floating-point data-processing (2 source) - half precision */
6567 static void handle_fp_2src_half(DisasContext *s, int opcode,
6568                                 int rd, int rn, int rm)
6569 {
6570     TCGv_i32 tcg_op1;
6571     TCGv_i32 tcg_op2;
6572     TCGv_i32 tcg_res;
6573     TCGv_ptr fpst;
6574 
6575     tcg_res = tcg_temp_new_i32();
6576     fpst = fpstatus_ptr(FPST_FPCR_F16);
6577     tcg_op1 = read_fp_hreg(s, rn);
6578     tcg_op2 = read_fp_hreg(s, rm);
6579 
6580     switch (opcode) {
6581     case 0x0: /* FMUL */
6582         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6583         break;
6584     case 0x1: /* FDIV */
6585         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6586         break;
6587     case 0x2: /* FADD */
6588         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6589         break;
6590     case 0x3: /* FSUB */
6591         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6592         break;
6593     case 0x4: /* FMAX */
6594         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6595         break;
6596     case 0x5: /* FMIN */
6597         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6598         break;
6599     case 0x6: /* FMAXNM */
6600         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6601         break;
6602     case 0x7: /* FMINNM */
6603         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6604         break;
6605     case 0x8: /* FNMUL */
6606         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6607         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6608         break;
6609     default:
6610         g_assert_not_reached();
6611     }
6612 
6613     write_fp_sreg(s, rd, tcg_res);
6614 }
6615 
6616 /* Floating point data-processing (2 source)
6617  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6618  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6619  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6620  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6621  */
6622 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6623 {
6624     int mos = extract32(insn, 29, 3);
6625     int type = extract32(insn, 22, 2);
6626     int rd = extract32(insn, 0, 5);
6627     int rn = extract32(insn, 5, 5);
6628     int rm = extract32(insn, 16, 5);
6629     int opcode = extract32(insn, 12, 4);
6630 
6631     if (opcode > 8 || mos) {
6632         unallocated_encoding(s);
6633         return;
6634     }
6635 
6636     switch (type) {
6637     case 0:
6638         if (!fp_access_check(s)) {
6639             return;
6640         }
6641         handle_fp_2src_single(s, opcode, rd, rn, rm);
6642         break;
6643     case 1:
6644         if (!fp_access_check(s)) {
6645             return;
6646         }
6647         handle_fp_2src_double(s, opcode, rd, rn, rm);
6648         break;
6649     case 3:
6650         if (!dc_isar_feature(aa64_fp16, s)) {
6651             unallocated_encoding(s);
6652             return;
6653         }
6654         if (!fp_access_check(s)) {
6655             return;
6656         }
6657         handle_fp_2src_half(s, opcode, rd, rn, rm);
6658         break;
6659     default:
6660         unallocated_encoding(s);
6661     }
6662 }
6663 
6664 /* Floating-point data-processing (3 source) - single precision */
6665 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6666                                   int rd, int rn, int rm, int ra)
6667 {
6668     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6669     TCGv_i32 tcg_res = tcg_temp_new_i32();
6670     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6671 
6672     tcg_op1 = read_fp_sreg(s, rn);
6673     tcg_op2 = read_fp_sreg(s, rm);
6674     tcg_op3 = read_fp_sreg(s, ra);
6675 
6676     /* These are fused multiply-add, and must be done as one
6677      * floating point operation with no rounding between the
6678      * multiplication and addition steps.
6679      * NB that doing the negations here as separate steps is
6680      * correct : an input NaN should come out with its sign bit
6681      * flipped if it is a negated-input.
6682      */
6683     if (o1 == true) {
6684         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6685     }
6686 
6687     if (o0 != o1) {
6688         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6689     }
6690 
6691     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6692 
6693     write_fp_sreg(s, rd, tcg_res);
6694 }
6695 
6696 /* Floating-point data-processing (3 source) - double precision */
6697 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6698                                   int rd, int rn, int rm, int ra)
6699 {
6700     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6701     TCGv_i64 tcg_res = tcg_temp_new_i64();
6702     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6703 
6704     tcg_op1 = read_fp_dreg(s, rn);
6705     tcg_op2 = read_fp_dreg(s, rm);
6706     tcg_op3 = read_fp_dreg(s, ra);
6707 
6708     /* These are fused multiply-add, and must be done as one
6709      * floating point operation with no rounding between the
6710      * multiplication and addition steps.
6711      * NB that doing the negations here as separate steps is
6712      * correct : an input NaN should come out with its sign bit
6713      * flipped if it is a negated-input.
6714      */
6715     if (o1 == true) {
6716         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6717     }
6718 
6719     if (o0 != o1) {
6720         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6721     }
6722 
6723     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6724 
6725     write_fp_dreg(s, rd, tcg_res);
6726 }
6727 
6728 /* Floating-point data-processing (3 source) - half precision */
6729 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6730                                 int rd, int rn, int rm, int ra)
6731 {
6732     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6733     TCGv_i32 tcg_res = tcg_temp_new_i32();
6734     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6735 
6736     tcg_op1 = read_fp_hreg(s, rn);
6737     tcg_op2 = read_fp_hreg(s, rm);
6738     tcg_op3 = read_fp_hreg(s, ra);
6739 
6740     /* These are fused multiply-add, and must be done as one
6741      * floating point operation with no rounding between the
6742      * multiplication and addition steps.
6743      * NB that doing the negations here as separate steps is
6744      * correct : an input NaN should come out with its sign bit
6745      * flipped if it is a negated-input.
6746      */
6747     if (o1 == true) {
6748         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6749     }
6750 
6751     if (o0 != o1) {
6752         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6753     }
6754 
6755     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6756 
6757     write_fp_sreg(s, rd, tcg_res);
6758 }
6759 
6760 /* Floating point data-processing (3 source)
6761  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6762  * +---+---+---+-----------+------+----+------+----+------+------+------+
6763  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6764  * +---+---+---+-----------+------+----+------+----+------+------+------+
6765  */
6766 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6767 {
6768     int mos = extract32(insn, 29, 3);
6769     int type = extract32(insn, 22, 2);
6770     int rd = extract32(insn, 0, 5);
6771     int rn = extract32(insn, 5, 5);
6772     int ra = extract32(insn, 10, 5);
6773     int rm = extract32(insn, 16, 5);
6774     bool o0 = extract32(insn, 15, 1);
6775     bool o1 = extract32(insn, 21, 1);
6776 
6777     if (mos) {
6778         unallocated_encoding(s);
6779         return;
6780     }
6781 
6782     switch (type) {
6783     case 0:
6784         if (!fp_access_check(s)) {
6785             return;
6786         }
6787         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6788         break;
6789     case 1:
6790         if (!fp_access_check(s)) {
6791             return;
6792         }
6793         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6794         break;
6795     case 3:
6796         if (!dc_isar_feature(aa64_fp16, s)) {
6797             unallocated_encoding(s);
6798             return;
6799         }
6800         if (!fp_access_check(s)) {
6801             return;
6802         }
6803         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6804         break;
6805     default:
6806         unallocated_encoding(s);
6807     }
6808 }
6809 
6810 /* Floating point immediate
6811  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6812  * +---+---+---+-----------+------+---+------------+-------+------+------+
6813  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6814  * +---+---+---+-----------+------+---+------------+-------+------+------+
6815  */
6816 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6817 {
6818     int rd = extract32(insn, 0, 5);
6819     int imm5 = extract32(insn, 5, 5);
6820     int imm8 = extract32(insn, 13, 8);
6821     int type = extract32(insn, 22, 2);
6822     int mos = extract32(insn, 29, 3);
6823     uint64_t imm;
6824     MemOp sz;
6825 
6826     if (mos || imm5) {
6827         unallocated_encoding(s);
6828         return;
6829     }
6830 
6831     switch (type) {
6832     case 0:
6833         sz = MO_32;
6834         break;
6835     case 1:
6836         sz = MO_64;
6837         break;
6838     case 3:
6839         sz = MO_16;
6840         if (dc_isar_feature(aa64_fp16, s)) {
6841             break;
6842         }
6843         /* fallthru */
6844     default:
6845         unallocated_encoding(s);
6846         return;
6847     }
6848 
6849     if (!fp_access_check(s)) {
6850         return;
6851     }
6852 
6853     imm = vfp_expand_imm(sz, imm8);
6854     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6855 }
6856 
6857 /* Handle floating point <=> fixed point conversions. Note that we can
6858  * also deal with fp <=> integer conversions as a special case (scale == 64)
6859  * OPTME: consider handling that special case specially or at least skipping
6860  * the call to scalbn in the helpers for zero shifts.
6861  */
6862 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6863                            bool itof, int rmode, int scale, int sf, int type)
6864 {
6865     bool is_signed = !(opcode & 1);
6866     TCGv_ptr tcg_fpstatus;
6867     TCGv_i32 tcg_shift, tcg_single;
6868     TCGv_i64 tcg_double;
6869 
6870     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6871 
6872     tcg_shift = tcg_constant_i32(64 - scale);
6873 
6874     if (itof) {
6875         TCGv_i64 tcg_int = cpu_reg(s, rn);
6876         if (!sf) {
6877             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6878 
6879             if (is_signed) {
6880                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6881             } else {
6882                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6883             }
6884 
6885             tcg_int = tcg_extend;
6886         }
6887 
6888         switch (type) {
6889         case 1: /* float64 */
6890             tcg_double = tcg_temp_new_i64();
6891             if (is_signed) {
6892                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6893                                      tcg_shift, tcg_fpstatus);
6894             } else {
6895                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6896                                      tcg_shift, tcg_fpstatus);
6897             }
6898             write_fp_dreg(s, rd, tcg_double);
6899             break;
6900 
6901         case 0: /* float32 */
6902             tcg_single = tcg_temp_new_i32();
6903             if (is_signed) {
6904                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6905                                      tcg_shift, tcg_fpstatus);
6906             } else {
6907                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6908                                      tcg_shift, tcg_fpstatus);
6909             }
6910             write_fp_sreg(s, rd, tcg_single);
6911             break;
6912 
6913         case 3: /* float16 */
6914             tcg_single = tcg_temp_new_i32();
6915             if (is_signed) {
6916                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6917                                      tcg_shift, tcg_fpstatus);
6918             } else {
6919                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6920                                      tcg_shift, tcg_fpstatus);
6921             }
6922             write_fp_sreg(s, rd, tcg_single);
6923             break;
6924 
6925         default:
6926             g_assert_not_reached();
6927         }
6928     } else {
6929         TCGv_i64 tcg_int = cpu_reg(s, rd);
6930         TCGv_i32 tcg_rmode;
6931 
6932         if (extract32(opcode, 2, 1)) {
6933             /* There are too many rounding modes to all fit into rmode,
6934              * so FCVTA[US] is a special case.
6935              */
6936             rmode = FPROUNDING_TIEAWAY;
6937         }
6938 
6939         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6940 
6941         switch (type) {
6942         case 1: /* float64 */
6943             tcg_double = read_fp_dreg(s, rn);
6944             if (is_signed) {
6945                 if (!sf) {
6946                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6947                                          tcg_shift, tcg_fpstatus);
6948                 } else {
6949                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6950                                          tcg_shift, tcg_fpstatus);
6951                 }
6952             } else {
6953                 if (!sf) {
6954                     gen_helper_vfp_tould(tcg_int, tcg_double,
6955                                          tcg_shift, tcg_fpstatus);
6956                 } else {
6957                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6958                                          tcg_shift, tcg_fpstatus);
6959                 }
6960             }
6961             if (!sf) {
6962                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6963             }
6964             break;
6965 
6966         case 0: /* float32 */
6967             tcg_single = read_fp_sreg(s, rn);
6968             if (sf) {
6969                 if (is_signed) {
6970                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6971                                          tcg_shift, tcg_fpstatus);
6972                 } else {
6973                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6974                                          tcg_shift, tcg_fpstatus);
6975                 }
6976             } else {
6977                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6978                 if (is_signed) {
6979                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
6980                                          tcg_shift, tcg_fpstatus);
6981                 } else {
6982                     gen_helper_vfp_touls(tcg_dest, tcg_single,
6983                                          tcg_shift, tcg_fpstatus);
6984                 }
6985                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6986             }
6987             break;
6988 
6989         case 3: /* float16 */
6990             tcg_single = read_fp_sreg(s, rn);
6991             if (sf) {
6992                 if (is_signed) {
6993                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
6994                                          tcg_shift, tcg_fpstatus);
6995                 } else {
6996                     gen_helper_vfp_touqh(tcg_int, tcg_single,
6997                                          tcg_shift, tcg_fpstatus);
6998                 }
6999             } else {
7000                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7001                 if (is_signed) {
7002                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7003                                          tcg_shift, tcg_fpstatus);
7004                 } else {
7005                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7006                                          tcg_shift, tcg_fpstatus);
7007                 }
7008                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7009             }
7010             break;
7011 
7012         default:
7013             g_assert_not_reached();
7014         }
7015 
7016         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7017     }
7018 }
7019 
7020 /* Floating point <-> fixed point conversions
7021  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7022  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7023  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7024  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7025  */
7026 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7027 {
7028     int rd = extract32(insn, 0, 5);
7029     int rn = extract32(insn, 5, 5);
7030     int scale = extract32(insn, 10, 6);
7031     int opcode = extract32(insn, 16, 3);
7032     int rmode = extract32(insn, 19, 2);
7033     int type = extract32(insn, 22, 2);
7034     bool sbit = extract32(insn, 29, 1);
7035     bool sf = extract32(insn, 31, 1);
7036     bool itof;
7037 
7038     if (sbit || (!sf && scale < 32)) {
7039         unallocated_encoding(s);
7040         return;
7041     }
7042 
7043     switch (type) {
7044     case 0: /* float32 */
7045     case 1: /* float64 */
7046         break;
7047     case 3: /* float16 */
7048         if (dc_isar_feature(aa64_fp16, s)) {
7049             break;
7050         }
7051         /* fallthru */
7052     default:
7053         unallocated_encoding(s);
7054         return;
7055     }
7056 
7057     switch ((rmode << 3) | opcode) {
7058     case 0x2: /* SCVTF */
7059     case 0x3: /* UCVTF */
7060         itof = true;
7061         break;
7062     case 0x18: /* FCVTZS */
7063     case 0x19: /* FCVTZU */
7064         itof = false;
7065         break;
7066     default:
7067         unallocated_encoding(s);
7068         return;
7069     }
7070 
7071     if (!fp_access_check(s)) {
7072         return;
7073     }
7074 
7075     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7076 }
7077 
7078 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7079 {
7080     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7081      * without conversion.
7082      */
7083 
7084     if (itof) {
7085         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7086         TCGv_i64 tmp;
7087 
7088         switch (type) {
7089         case 0:
7090             /* 32 bit */
7091             tmp = tcg_temp_new_i64();
7092             tcg_gen_ext32u_i64(tmp, tcg_rn);
7093             write_fp_dreg(s, rd, tmp);
7094             break;
7095         case 1:
7096             /* 64 bit */
7097             write_fp_dreg(s, rd, tcg_rn);
7098             break;
7099         case 2:
7100             /* 64 bit to top half. */
7101             tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7102             clear_vec_high(s, true, rd);
7103             break;
7104         case 3:
7105             /* 16 bit */
7106             tmp = tcg_temp_new_i64();
7107             tcg_gen_ext16u_i64(tmp, tcg_rn);
7108             write_fp_dreg(s, rd, tmp);
7109             break;
7110         default:
7111             g_assert_not_reached();
7112         }
7113     } else {
7114         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7115 
7116         switch (type) {
7117         case 0:
7118             /* 32 bit */
7119             tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7120             break;
7121         case 1:
7122             /* 64 bit */
7123             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7124             break;
7125         case 2:
7126             /* 64 bits from top half */
7127             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7128             break;
7129         case 3:
7130             /* 16 bit */
7131             tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7132             break;
7133         default:
7134             g_assert_not_reached();
7135         }
7136     }
7137 }
7138 
7139 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7140 {
7141     TCGv_i64 t = read_fp_dreg(s, rn);
7142     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7143 
7144     gen_helper_fjcvtzs(t, t, fpstatus);
7145 
7146     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7147     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7148     tcg_gen_movi_i32(cpu_CF, 0);
7149     tcg_gen_movi_i32(cpu_NF, 0);
7150     tcg_gen_movi_i32(cpu_VF, 0);
7151 }
7152 
7153 /* Floating point <-> integer conversions
7154  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7155  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7156  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7157  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7158  */
7159 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7160 {
7161     int rd = extract32(insn, 0, 5);
7162     int rn = extract32(insn, 5, 5);
7163     int opcode = extract32(insn, 16, 3);
7164     int rmode = extract32(insn, 19, 2);
7165     int type = extract32(insn, 22, 2);
7166     bool sbit = extract32(insn, 29, 1);
7167     bool sf = extract32(insn, 31, 1);
7168     bool itof = false;
7169 
7170     if (sbit) {
7171         goto do_unallocated;
7172     }
7173 
7174     switch (opcode) {
7175     case 2: /* SCVTF */
7176     case 3: /* UCVTF */
7177         itof = true;
7178         /* fallthru */
7179     case 4: /* FCVTAS */
7180     case 5: /* FCVTAU */
7181         if (rmode != 0) {
7182             goto do_unallocated;
7183         }
7184         /* fallthru */
7185     case 0: /* FCVT[NPMZ]S */
7186     case 1: /* FCVT[NPMZ]U */
7187         switch (type) {
7188         case 0: /* float32 */
7189         case 1: /* float64 */
7190             break;
7191         case 3: /* float16 */
7192             if (!dc_isar_feature(aa64_fp16, s)) {
7193                 goto do_unallocated;
7194             }
7195             break;
7196         default:
7197             goto do_unallocated;
7198         }
7199         if (!fp_access_check(s)) {
7200             return;
7201         }
7202         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7203         break;
7204 
7205     default:
7206         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7207         case 0b01100110: /* FMOV half <-> 32-bit int */
7208         case 0b01100111:
7209         case 0b11100110: /* FMOV half <-> 64-bit int */
7210         case 0b11100111:
7211             if (!dc_isar_feature(aa64_fp16, s)) {
7212                 goto do_unallocated;
7213             }
7214             /* fallthru */
7215         case 0b00000110: /* FMOV 32-bit */
7216         case 0b00000111:
7217         case 0b10100110: /* FMOV 64-bit */
7218         case 0b10100111:
7219         case 0b11001110: /* FMOV top half of 128-bit */
7220         case 0b11001111:
7221             if (!fp_access_check(s)) {
7222                 return;
7223             }
7224             itof = opcode & 1;
7225             handle_fmov(s, rd, rn, type, itof);
7226             break;
7227 
7228         case 0b00111110: /* FJCVTZS */
7229             if (!dc_isar_feature(aa64_jscvt, s)) {
7230                 goto do_unallocated;
7231             } else if (fp_access_check(s)) {
7232                 handle_fjcvtzs(s, rd, rn);
7233             }
7234             break;
7235 
7236         default:
7237         do_unallocated:
7238             unallocated_encoding(s);
7239             return;
7240         }
7241         break;
7242     }
7243 }
7244 
7245 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7246  *   31  30  29 28     25 24                          0
7247  * +---+---+---+---------+-----------------------------+
7248  * |   | 0 |   | 1 1 1 1 |                             |
7249  * +---+---+---+---------+-----------------------------+
7250  */
7251 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7252 {
7253     if (extract32(insn, 24, 1)) {
7254         /* Floating point data-processing (3 source) */
7255         disas_fp_3src(s, insn);
7256     } else if (extract32(insn, 21, 1) == 0) {
7257         /* Floating point to fixed point conversions */
7258         disas_fp_fixed_conv(s, insn);
7259     } else {
7260         switch (extract32(insn, 10, 2)) {
7261         case 1:
7262             /* Floating point conditional compare */
7263             disas_fp_ccomp(s, insn);
7264             break;
7265         case 2:
7266             /* Floating point data-processing (2 source) */
7267             disas_fp_2src(s, insn);
7268             break;
7269         case 3:
7270             /* Floating point conditional select */
7271             disas_fp_csel(s, insn);
7272             break;
7273         case 0:
7274             switch (ctz32(extract32(insn, 12, 4))) {
7275             case 0: /* [15:12] == xxx1 */
7276                 /* Floating point immediate */
7277                 disas_fp_imm(s, insn);
7278                 break;
7279             case 1: /* [15:12] == xx10 */
7280                 /* Floating point compare */
7281                 disas_fp_compare(s, insn);
7282                 break;
7283             case 2: /* [15:12] == x100 */
7284                 /* Floating point data-processing (1 source) */
7285                 disas_fp_1src(s, insn);
7286                 break;
7287             case 3: /* [15:12] == 1000 */
7288                 unallocated_encoding(s);
7289                 break;
7290             default: /* [15:12] == 0000 */
7291                 /* Floating point <-> integer conversions */
7292                 disas_fp_int_conv(s, insn);
7293                 break;
7294             }
7295             break;
7296         }
7297     }
7298 }
7299 
7300 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7301                      int pos)
7302 {
7303     /* Extract 64 bits from the middle of two concatenated 64 bit
7304      * vector register slices left:right. The extracted bits start
7305      * at 'pos' bits into the right (least significant) side.
7306      * We return the result in tcg_right, and guarantee not to
7307      * trash tcg_left.
7308      */
7309     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7310     assert(pos > 0 && pos < 64);
7311 
7312     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7313     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7314     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7315 }
7316 
7317 /* EXT
7318  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7319  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7320  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7321  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7322  */
7323 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7324 {
7325     int is_q = extract32(insn, 30, 1);
7326     int op2 = extract32(insn, 22, 2);
7327     int imm4 = extract32(insn, 11, 4);
7328     int rm = extract32(insn, 16, 5);
7329     int rn = extract32(insn, 5, 5);
7330     int rd = extract32(insn, 0, 5);
7331     int pos = imm4 << 3;
7332     TCGv_i64 tcg_resl, tcg_resh;
7333 
7334     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7335         unallocated_encoding(s);
7336         return;
7337     }
7338 
7339     if (!fp_access_check(s)) {
7340         return;
7341     }
7342 
7343     tcg_resh = tcg_temp_new_i64();
7344     tcg_resl = tcg_temp_new_i64();
7345 
7346     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7347      * either extracting 128 bits from a 128:128 concatenation, or
7348      * extracting 64 bits from a 64:64 concatenation.
7349      */
7350     if (!is_q) {
7351         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7352         if (pos != 0) {
7353             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7354             do_ext64(s, tcg_resh, tcg_resl, pos);
7355         }
7356     } else {
7357         TCGv_i64 tcg_hh;
7358         typedef struct {
7359             int reg;
7360             int elt;
7361         } EltPosns;
7362         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7363         EltPosns *elt = eltposns;
7364 
7365         if (pos >= 64) {
7366             elt++;
7367             pos -= 64;
7368         }
7369 
7370         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7371         elt++;
7372         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7373         elt++;
7374         if (pos != 0) {
7375             do_ext64(s, tcg_resh, tcg_resl, pos);
7376             tcg_hh = tcg_temp_new_i64();
7377             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7378             do_ext64(s, tcg_hh, tcg_resh, pos);
7379         }
7380     }
7381 
7382     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7383     if (is_q) {
7384         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7385     }
7386     clear_vec_high(s, is_q, rd);
7387 }
7388 
7389 /* TBL/TBX
7390  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7391  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7392  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7393  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7394  */
7395 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7396 {
7397     int op2 = extract32(insn, 22, 2);
7398     int is_q = extract32(insn, 30, 1);
7399     int rm = extract32(insn, 16, 5);
7400     int rn = extract32(insn, 5, 5);
7401     int rd = extract32(insn, 0, 5);
7402     int is_tbx = extract32(insn, 12, 1);
7403     int len = (extract32(insn, 13, 2) + 1) * 16;
7404 
7405     if (op2 != 0) {
7406         unallocated_encoding(s);
7407         return;
7408     }
7409 
7410     if (!fp_access_check(s)) {
7411         return;
7412     }
7413 
7414     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7415                        vec_full_reg_offset(s, rm), cpu_env,
7416                        is_q ? 16 : 8, vec_full_reg_size(s),
7417                        (len << 6) | (is_tbx << 5) | rn,
7418                        gen_helper_simd_tblx);
7419 }
7420 
7421 /* ZIP/UZP/TRN
7422  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7423  * +---+---+-------------+------+---+------+---+------------------+------+
7424  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7425  * +---+---+-------------+------+---+------+---+------------------+------+
7426  */
7427 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7428 {
7429     int rd = extract32(insn, 0, 5);
7430     int rn = extract32(insn, 5, 5);
7431     int rm = extract32(insn, 16, 5);
7432     int size = extract32(insn, 22, 2);
7433     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7434      * bit 2 indicates 1 vs 2 variant of the insn.
7435      */
7436     int opcode = extract32(insn, 12, 2);
7437     bool part = extract32(insn, 14, 1);
7438     bool is_q = extract32(insn, 30, 1);
7439     int esize = 8 << size;
7440     int i;
7441     int datasize = is_q ? 128 : 64;
7442     int elements = datasize / esize;
7443     TCGv_i64 tcg_res[2], tcg_ele;
7444 
7445     if (opcode == 0 || (size == 3 && !is_q)) {
7446         unallocated_encoding(s);
7447         return;
7448     }
7449 
7450     if (!fp_access_check(s)) {
7451         return;
7452     }
7453 
7454     tcg_res[0] = tcg_temp_new_i64();
7455     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7456     tcg_ele = tcg_temp_new_i64();
7457 
7458     for (i = 0; i < elements; i++) {
7459         int o, w;
7460 
7461         switch (opcode) {
7462         case 1: /* UZP1/2 */
7463         {
7464             int midpoint = elements / 2;
7465             if (i < midpoint) {
7466                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7467             } else {
7468                 read_vec_element(s, tcg_ele, rm,
7469                                  2 * (i - midpoint) + part, size);
7470             }
7471             break;
7472         }
7473         case 2: /* TRN1/2 */
7474             if (i & 1) {
7475                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7476             } else {
7477                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7478             }
7479             break;
7480         case 3: /* ZIP1/2 */
7481         {
7482             int base = part * elements / 2;
7483             if (i & 1) {
7484                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7485             } else {
7486                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7487             }
7488             break;
7489         }
7490         default:
7491             g_assert_not_reached();
7492         }
7493 
7494         w = (i * esize) / 64;
7495         o = (i * esize) % 64;
7496         if (o == 0) {
7497             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7498         } else {
7499             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7500             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7501         }
7502     }
7503 
7504     for (i = 0; i <= is_q; ++i) {
7505         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7506     }
7507     clear_vec_high(s, is_q, rd);
7508 }
7509 
7510 /*
7511  * do_reduction_op helper
7512  *
7513  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7514  * important for correct NaN propagation that we do these
7515  * operations in exactly the order specified by the pseudocode.
7516  *
7517  * This is a recursive function, TCG temps should be freed by the
7518  * calling function once it is done with the values.
7519  */
7520 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7521                                 int esize, int size, int vmap, TCGv_ptr fpst)
7522 {
7523     if (esize == size) {
7524         int element;
7525         MemOp msize = esize == 16 ? MO_16 : MO_32;
7526         TCGv_i32 tcg_elem;
7527 
7528         /* We should have one register left here */
7529         assert(ctpop8(vmap) == 1);
7530         element = ctz32(vmap);
7531         assert(element < 8);
7532 
7533         tcg_elem = tcg_temp_new_i32();
7534         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7535         return tcg_elem;
7536     } else {
7537         int bits = size / 2;
7538         int shift = ctpop8(vmap) / 2;
7539         int vmap_lo = (vmap >> shift) & vmap;
7540         int vmap_hi = (vmap & ~vmap_lo);
7541         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7542 
7543         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7544         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7545         tcg_res = tcg_temp_new_i32();
7546 
7547         switch (fpopcode) {
7548         case 0x0c: /* fmaxnmv half-precision */
7549             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7550             break;
7551         case 0x0f: /* fmaxv half-precision */
7552             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7553             break;
7554         case 0x1c: /* fminnmv half-precision */
7555             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7556             break;
7557         case 0x1f: /* fminv half-precision */
7558             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7559             break;
7560         case 0x2c: /* fmaxnmv */
7561             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7562             break;
7563         case 0x2f: /* fmaxv */
7564             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7565             break;
7566         case 0x3c: /* fminnmv */
7567             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7568             break;
7569         case 0x3f: /* fminv */
7570             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7571             break;
7572         default:
7573             g_assert_not_reached();
7574         }
7575         return tcg_res;
7576     }
7577 }
7578 
7579 /* AdvSIMD across lanes
7580  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7581  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7582  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7583  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7584  */
7585 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7586 {
7587     int rd = extract32(insn, 0, 5);
7588     int rn = extract32(insn, 5, 5);
7589     int size = extract32(insn, 22, 2);
7590     int opcode = extract32(insn, 12, 5);
7591     bool is_q = extract32(insn, 30, 1);
7592     bool is_u = extract32(insn, 29, 1);
7593     bool is_fp = false;
7594     bool is_min = false;
7595     int esize;
7596     int elements;
7597     int i;
7598     TCGv_i64 tcg_res, tcg_elt;
7599 
7600     switch (opcode) {
7601     case 0x1b: /* ADDV */
7602         if (is_u) {
7603             unallocated_encoding(s);
7604             return;
7605         }
7606         /* fall through */
7607     case 0x3: /* SADDLV, UADDLV */
7608     case 0xa: /* SMAXV, UMAXV */
7609     case 0x1a: /* SMINV, UMINV */
7610         if (size == 3 || (size == 2 && !is_q)) {
7611             unallocated_encoding(s);
7612             return;
7613         }
7614         break;
7615     case 0xc: /* FMAXNMV, FMINNMV */
7616     case 0xf: /* FMAXV, FMINV */
7617         /* Bit 1 of size field encodes min vs max and the actual size
7618          * depends on the encoding of the U bit. If not set (and FP16
7619          * enabled) then we do half-precision float instead of single
7620          * precision.
7621          */
7622         is_min = extract32(size, 1, 1);
7623         is_fp = true;
7624         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7625             size = 1;
7626         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7627             unallocated_encoding(s);
7628             return;
7629         } else {
7630             size = 2;
7631         }
7632         break;
7633     default:
7634         unallocated_encoding(s);
7635         return;
7636     }
7637 
7638     if (!fp_access_check(s)) {
7639         return;
7640     }
7641 
7642     esize = 8 << size;
7643     elements = (is_q ? 128 : 64) / esize;
7644 
7645     tcg_res = tcg_temp_new_i64();
7646     tcg_elt = tcg_temp_new_i64();
7647 
7648     /* These instructions operate across all lanes of a vector
7649      * to produce a single result. We can guarantee that a 64
7650      * bit intermediate is sufficient:
7651      *  + for [US]ADDLV the maximum element size is 32 bits, and
7652      *    the result type is 64 bits
7653      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7654      *    same as the element size, which is 32 bits at most
7655      * For the integer operations we can choose to work at 64
7656      * or 32 bits and truncate at the end; for simplicity
7657      * we use 64 bits always. The floating point
7658      * ops do require 32 bit intermediates, though.
7659      */
7660     if (!is_fp) {
7661         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7662 
7663         for (i = 1; i < elements; i++) {
7664             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7665 
7666             switch (opcode) {
7667             case 0x03: /* SADDLV / UADDLV */
7668             case 0x1b: /* ADDV */
7669                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7670                 break;
7671             case 0x0a: /* SMAXV / UMAXV */
7672                 if (is_u) {
7673                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7674                 } else {
7675                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7676                 }
7677                 break;
7678             case 0x1a: /* SMINV / UMINV */
7679                 if (is_u) {
7680                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7681                 } else {
7682                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7683                 }
7684                 break;
7685             default:
7686                 g_assert_not_reached();
7687             }
7688 
7689         }
7690     } else {
7691         /* Floating point vector reduction ops which work across 32
7692          * bit (single) or 16 bit (half-precision) intermediates.
7693          * Note that correct NaN propagation requires that we do these
7694          * operations in exactly the order specified by the pseudocode.
7695          */
7696         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7697         int fpopcode = opcode | is_min << 4 | is_u << 5;
7698         int vmap = (1 << elements) - 1;
7699         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7700                                              (is_q ? 128 : 64), vmap, fpst);
7701         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7702     }
7703 
7704     /* Now truncate the result to the width required for the final output */
7705     if (opcode == 0x03) {
7706         /* SADDLV, UADDLV: result is 2*esize */
7707         size++;
7708     }
7709 
7710     switch (size) {
7711     case 0:
7712         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7713         break;
7714     case 1:
7715         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7716         break;
7717     case 2:
7718         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7719         break;
7720     case 3:
7721         break;
7722     default:
7723         g_assert_not_reached();
7724     }
7725 
7726     write_fp_dreg(s, rd, tcg_res);
7727 }
7728 
7729 /* DUP (Element, Vector)
7730  *
7731  *  31  30   29              21 20    16 15        10  9    5 4    0
7732  * +---+---+-------------------+--------+-------------+------+------+
7733  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7734  * +---+---+-------------------+--------+-------------+------+------+
7735  *
7736  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7737  */
7738 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7739                              int imm5)
7740 {
7741     int size = ctz32(imm5);
7742     int index;
7743 
7744     if (size > 3 || (size == 3 && !is_q)) {
7745         unallocated_encoding(s);
7746         return;
7747     }
7748 
7749     if (!fp_access_check(s)) {
7750         return;
7751     }
7752 
7753     index = imm5 >> (size + 1);
7754     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7755                          vec_reg_offset(s, rn, index, size),
7756                          is_q ? 16 : 8, vec_full_reg_size(s));
7757 }
7758 
7759 /* DUP (element, scalar)
7760  *  31                   21 20    16 15        10  9    5 4    0
7761  * +-----------------------+--------+-------------+------+------+
7762  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7763  * +-----------------------+--------+-------------+------+------+
7764  */
7765 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7766                               int imm5)
7767 {
7768     int size = ctz32(imm5);
7769     int index;
7770     TCGv_i64 tmp;
7771 
7772     if (size > 3) {
7773         unallocated_encoding(s);
7774         return;
7775     }
7776 
7777     if (!fp_access_check(s)) {
7778         return;
7779     }
7780 
7781     index = imm5 >> (size + 1);
7782 
7783     /* This instruction just extracts the specified element and
7784      * zero-extends it into the bottom of the destination register.
7785      */
7786     tmp = tcg_temp_new_i64();
7787     read_vec_element(s, tmp, rn, index, size);
7788     write_fp_dreg(s, rd, tmp);
7789 }
7790 
7791 /* DUP (General)
7792  *
7793  *  31  30   29              21 20    16 15        10  9    5 4    0
7794  * +---+---+-------------------+--------+-------------+------+------+
7795  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7796  * +---+---+-------------------+--------+-------------+------+------+
7797  *
7798  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7799  */
7800 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7801                              int imm5)
7802 {
7803     int size = ctz32(imm5);
7804     uint32_t dofs, oprsz, maxsz;
7805 
7806     if (size > 3 || ((size == 3) && !is_q)) {
7807         unallocated_encoding(s);
7808         return;
7809     }
7810 
7811     if (!fp_access_check(s)) {
7812         return;
7813     }
7814 
7815     dofs = vec_full_reg_offset(s, rd);
7816     oprsz = is_q ? 16 : 8;
7817     maxsz = vec_full_reg_size(s);
7818 
7819     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7820 }
7821 
7822 /* INS (Element)
7823  *
7824  *  31                   21 20    16 15  14    11  10 9    5 4    0
7825  * +-----------------------+--------+------------+---+------+------+
7826  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7827  * +-----------------------+--------+------------+---+------+------+
7828  *
7829  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7830  * index: encoded in imm5<4:size+1>
7831  */
7832 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7833                              int imm4, int imm5)
7834 {
7835     int size = ctz32(imm5);
7836     int src_index, dst_index;
7837     TCGv_i64 tmp;
7838 
7839     if (size > 3) {
7840         unallocated_encoding(s);
7841         return;
7842     }
7843 
7844     if (!fp_access_check(s)) {
7845         return;
7846     }
7847 
7848     dst_index = extract32(imm5, 1+size, 5);
7849     src_index = extract32(imm4, size, 4);
7850 
7851     tmp = tcg_temp_new_i64();
7852 
7853     read_vec_element(s, tmp, rn, src_index, size);
7854     write_vec_element(s, tmp, rd, dst_index, size);
7855 
7856     /* INS is considered a 128-bit write for SVE. */
7857     clear_vec_high(s, true, rd);
7858 }
7859 
7860 
7861 /* INS (General)
7862  *
7863  *  31                   21 20    16 15        10  9    5 4    0
7864  * +-----------------------+--------+-------------+------+------+
7865  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7866  * +-----------------------+--------+-------------+------+------+
7867  *
7868  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7869  * index: encoded in imm5<4:size+1>
7870  */
7871 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7872 {
7873     int size = ctz32(imm5);
7874     int idx;
7875 
7876     if (size > 3) {
7877         unallocated_encoding(s);
7878         return;
7879     }
7880 
7881     if (!fp_access_check(s)) {
7882         return;
7883     }
7884 
7885     idx = extract32(imm5, 1 + size, 4 - size);
7886     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7887 
7888     /* INS is considered a 128-bit write for SVE. */
7889     clear_vec_high(s, true, rd);
7890 }
7891 
7892 /*
7893  * UMOV (General)
7894  * SMOV (General)
7895  *
7896  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7897  * +---+---+-------------------+--------+-------------+------+------+
7898  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7899  * +---+---+-------------------+--------+-------------+------+------+
7900  *
7901  * U: unsigned when set
7902  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7903  */
7904 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7905                                   int rn, int rd, int imm5)
7906 {
7907     int size = ctz32(imm5);
7908     int element;
7909     TCGv_i64 tcg_rd;
7910 
7911     /* Check for UnallocatedEncodings */
7912     if (is_signed) {
7913         if (size > 2 || (size == 2 && !is_q)) {
7914             unallocated_encoding(s);
7915             return;
7916         }
7917     } else {
7918         if (size > 3
7919             || (size < 3 && is_q)
7920             || (size == 3 && !is_q)) {
7921             unallocated_encoding(s);
7922             return;
7923         }
7924     }
7925 
7926     if (!fp_access_check(s)) {
7927         return;
7928     }
7929 
7930     element = extract32(imm5, 1+size, 4);
7931 
7932     tcg_rd = cpu_reg(s, rd);
7933     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7934     if (is_signed && !is_q) {
7935         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7936     }
7937 }
7938 
7939 /* AdvSIMD copy
7940  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7941  * +---+---+----+-----------------+------+---+------+---+------+------+
7942  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7943  * +---+---+----+-----------------+------+---+------+---+------+------+
7944  */
7945 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7946 {
7947     int rd = extract32(insn, 0, 5);
7948     int rn = extract32(insn, 5, 5);
7949     int imm4 = extract32(insn, 11, 4);
7950     int op = extract32(insn, 29, 1);
7951     int is_q = extract32(insn, 30, 1);
7952     int imm5 = extract32(insn, 16, 5);
7953 
7954     if (op) {
7955         if (is_q) {
7956             /* INS (element) */
7957             handle_simd_inse(s, rd, rn, imm4, imm5);
7958         } else {
7959             unallocated_encoding(s);
7960         }
7961     } else {
7962         switch (imm4) {
7963         case 0:
7964             /* DUP (element - vector) */
7965             handle_simd_dupe(s, is_q, rd, rn, imm5);
7966             break;
7967         case 1:
7968             /* DUP (general) */
7969             handle_simd_dupg(s, is_q, rd, rn, imm5);
7970             break;
7971         case 3:
7972             if (is_q) {
7973                 /* INS (general) */
7974                 handle_simd_insg(s, rd, rn, imm5);
7975             } else {
7976                 unallocated_encoding(s);
7977             }
7978             break;
7979         case 5:
7980         case 7:
7981             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7982             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7983             break;
7984         default:
7985             unallocated_encoding(s);
7986             break;
7987         }
7988     }
7989 }
7990 
7991 /* AdvSIMD modified immediate
7992  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7993  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7994  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7995  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7996  *
7997  * There are a number of operations that can be carried out here:
7998  *   MOVI - move (shifted) imm into register
7999  *   MVNI - move inverted (shifted) imm into register
8000  *   ORR  - bitwise OR of (shifted) imm with register
8001  *   BIC  - bitwise clear of (shifted) imm with register
8002  * With ARMv8.2 we also have:
8003  *   FMOV half-precision
8004  */
8005 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8006 {
8007     int rd = extract32(insn, 0, 5);
8008     int cmode = extract32(insn, 12, 4);
8009     int o2 = extract32(insn, 11, 1);
8010     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8011     bool is_neg = extract32(insn, 29, 1);
8012     bool is_q = extract32(insn, 30, 1);
8013     uint64_t imm = 0;
8014 
8015     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8016         /* Check for FMOV (vector, immediate) - half-precision */
8017         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8018             unallocated_encoding(s);
8019             return;
8020         }
8021     }
8022 
8023     if (!fp_access_check(s)) {
8024         return;
8025     }
8026 
8027     if (cmode == 15 && o2 && !is_neg) {
8028         /* FMOV (vector, immediate) - half-precision */
8029         imm = vfp_expand_imm(MO_16, abcdefgh);
8030         /* now duplicate across the lanes */
8031         imm = dup_const(MO_16, imm);
8032     } else {
8033         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8034     }
8035 
8036     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8037         /* MOVI or MVNI, with MVNI negation handled above.  */
8038         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8039                              vec_full_reg_size(s), imm);
8040     } else {
8041         /* ORR or BIC, with BIC negation to AND handled above.  */
8042         if (is_neg) {
8043             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8044         } else {
8045             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8046         }
8047     }
8048 }
8049 
8050 /* AdvSIMD scalar copy
8051  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
8052  * +-----+----+-----------------+------+---+------+---+------+------+
8053  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
8054  * +-----+----+-----------------+------+---+------+---+------+------+
8055  */
8056 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8057 {
8058     int rd = extract32(insn, 0, 5);
8059     int rn = extract32(insn, 5, 5);
8060     int imm4 = extract32(insn, 11, 4);
8061     int imm5 = extract32(insn, 16, 5);
8062     int op = extract32(insn, 29, 1);
8063 
8064     if (op != 0 || imm4 != 0) {
8065         unallocated_encoding(s);
8066         return;
8067     }
8068 
8069     /* DUP (element, scalar) */
8070     handle_simd_dupes(s, rd, rn, imm5);
8071 }
8072 
8073 /* AdvSIMD scalar pairwise
8074  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8075  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8076  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8077  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8078  */
8079 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8080 {
8081     int u = extract32(insn, 29, 1);
8082     int size = extract32(insn, 22, 2);
8083     int opcode = extract32(insn, 12, 5);
8084     int rn = extract32(insn, 5, 5);
8085     int rd = extract32(insn, 0, 5);
8086     TCGv_ptr fpst;
8087 
8088     /* For some ops (the FP ones), size[1] is part of the encoding.
8089      * For ADDP strictly it is not but size[1] is always 1 for valid
8090      * encodings.
8091      */
8092     opcode |= (extract32(size, 1, 1) << 5);
8093 
8094     switch (opcode) {
8095     case 0x3b: /* ADDP */
8096         if (u || size != 3) {
8097             unallocated_encoding(s);
8098             return;
8099         }
8100         if (!fp_access_check(s)) {
8101             return;
8102         }
8103 
8104         fpst = NULL;
8105         break;
8106     case 0xc: /* FMAXNMP */
8107     case 0xd: /* FADDP */
8108     case 0xf: /* FMAXP */
8109     case 0x2c: /* FMINNMP */
8110     case 0x2f: /* FMINP */
8111         /* FP op, size[0] is 32 or 64 bit*/
8112         if (!u) {
8113             if (!dc_isar_feature(aa64_fp16, s)) {
8114                 unallocated_encoding(s);
8115                 return;
8116             } else {
8117                 size = MO_16;
8118             }
8119         } else {
8120             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8121         }
8122 
8123         if (!fp_access_check(s)) {
8124             return;
8125         }
8126 
8127         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8128         break;
8129     default:
8130         unallocated_encoding(s);
8131         return;
8132     }
8133 
8134     if (size == MO_64) {
8135         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8136         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8137         TCGv_i64 tcg_res = tcg_temp_new_i64();
8138 
8139         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8140         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8141 
8142         switch (opcode) {
8143         case 0x3b: /* ADDP */
8144             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8145             break;
8146         case 0xc: /* FMAXNMP */
8147             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8148             break;
8149         case 0xd: /* FADDP */
8150             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8151             break;
8152         case 0xf: /* FMAXP */
8153             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8154             break;
8155         case 0x2c: /* FMINNMP */
8156             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8157             break;
8158         case 0x2f: /* FMINP */
8159             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8160             break;
8161         default:
8162             g_assert_not_reached();
8163         }
8164 
8165         write_fp_dreg(s, rd, tcg_res);
8166     } else {
8167         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8168         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8169         TCGv_i32 tcg_res = tcg_temp_new_i32();
8170 
8171         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8172         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8173 
8174         if (size == MO_16) {
8175             switch (opcode) {
8176             case 0xc: /* FMAXNMP */
8177                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8178                 break;
8179             case 0xd: /* FADDP */
8180                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8181                 break;
8182             case 0xf: /* FMAXP */
8183                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8184                 break;
8185             case 0x2c: /* FMINNMP */
8186                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8187                 break;
8188             case 0x2f: /* FMINP */
8189                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8190                 break;
8191             default:
8192                 g_assert_not_reached();
8193             }
8194         } else {
8195             switch (opcode) {
8196             case 0xc: /* FMAXNMP */
8197                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8198                 break;
8199             case 0xd: /* FADDP */
8200                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8201                 break;
8202             case 0xf: /* FMAXP */
8203                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8204                 break;
8205             case 0x2c: /* FMINNMP */
8206                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8207                 break;
8208             case 0x2f: /* FMINP */
8209                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8210                 break;
8211             default:
8212                 g_assert_not_reached();
8213             }
8214         }
8215 
8216         write_fp_sreg(s, rd, tcg_res);
8217     }
8218 }
8219 
8220 /*
8221  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8222  *
8223  * This code is handles the common shifting code and is used by both
8224  * the vector and scalar code.
8225  */
8226 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8227                                     TCGv_i64 tcg_rnd, bool accumulate,
8228                                     bool is_u, int size, int shift)
8229 {
8230     bool extended_result = false;
8231     bool round = tcg_rnd != NULL;
8232     int ext_lshift = 0;
8233     TCGv_i64 tcg_src_hi;
8234 
8235     if (round && size == 3) {
8236         extended_result = true;
8237         ext_lshift = 64 - shift;
8238         tcg_src_hi = tcg_temp_new_i64();
8239     } else if (shift == 64) {
8240         if (!accumulate && is_u) {
8241             /* result is zero */
8242             tcg_gen_movi_i64(tcg_res, 0);
8243             return;
8244         }
8245     }
8246 
8247     /* Deal with the rounding step */
8248     if (round) {
8249         if (extended_result) {
8250             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8251             if (!is_u) {
8252                 /* take care of sign extending tcg_res */
8253                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8254                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8255                                  tcg_src, tcg_src_hi,
8256                                  tcg_rnd, tcg_zero);
8257             } else {
8258                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8259                                  tcg_src, tcg_zero,
8260                                  tcg_rnd, tcg_zero);
8261             }
8262         } else {
8263             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8264         }
8265     }
8266 
8267     /* Now do the shift right */
8268     if (round && extended_result) {
8269         /* extended case, >64 bit precision required */
8270         if (ext_lshift == 0) {
8271             /* special case, only high bits matter */
8272             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8273         } else {
8274             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8275             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8276             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8277         }
8278     } else {
8279         if (is_u) {
8280             if (shift == 64) {
8281                 /* essentially shifting in 64 zeros */
8282                 tcg_gen_movi_i64(tcg_src, 0);
8283             } else {
8284                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8285             }
8286         } else {
8287             if (shift == 64) {
8288                 /* effectively extending the sign-bit */
8289                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8290             } else {
8291                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8292             }
8293         }
8294     }
8295 
8296     if (accumulate) {
8297         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8298     } else {
8299         tcg_gen_mov_i64(tcg_res, tcg_src);
8300     }
8301 }
8302 
8303 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8304 static void handle_scalar_simd_shri(DisasContext *s,
8305                                     bool is_u, int immh, int immb,
8306                                     int opcode, int rn, int rd)
8307 {
8308     const int size = 3;
8309     int immhb = immh << 3 | immb;
8310     int shift = 2 * (8 << size) - immhb;
8311     bool accumulate = false;
8312     bool round = false;
8313     bool insert = false;
8314     TCGv_i64 tcg_rn;
8315     TCGv_i64 tcg_rd;
8316     TCGv_i64 tcg_round;
8317 
8318     if (!extract32(immh, 3, 1)) {
8319         unallocated_encoding(s);
8320         return;
8321     }
8322 
8323     if (!fp_access_check(s)) {
8324         return;
8325     }
8326 
8327     switch (opcode) {
8328     case 0x02: /* SSRA / USRA (accumulate) */
8329         accumulate = true;
8330         break;
8331     case 0x04: /* SRSHR / URSHR (rounding) */
8332         round = true;
8333         break;
8334     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8335         accumulate = round = true;
8336         break;
8337     case 0x08: /* SRI */
8338         insert = true;
8339         break;
8340     }
8341 
8342     if (round) {
8343         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8344     } else {
8345         tcg_round = NULL;
8346     }
8347 
8348     tcg_rn = read_fp_dreg(s, rn);
8349     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8350 
8351     if (insert) {
8352         /* shift count same as element size is valid but does nothing;
8353          * special case to avoid potential shift by 64.
8354          */
8355         int esize = 8 << size;
8356         if (shift != esize) {
8357             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8358             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8359         }
8360     } else {
8361         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8362                                 accumulate, is_u, size, shift);
8363     }
8364 
8365     write_fp_dreg(s, rd, tcg_rd);
8366 }
8367 
8368 /* SHL/SLI - Scalar shift left */
8369 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8370                                     int immh, int immb, int opcode,
8371                                     int rn, int rd)
8372 {
8373     int size = 32 - clz32(immh) - 1;
8374     int immhb = immh << 3 | immb;
8375     int shift = immhb - (8 << size);
8376     TCGv_i64 tcg_rn;
8377     TCGv_i64 tcg_rd;
8378 
8379     if (!extract32(immh, 3, 1)) {
8380         unallocated_encoding(s);
8381         return;
8382     }
8383 
8384     if (!fp_access_check(s)) {
8385         return;
8386     }
8387 
8388     tcg_rn = read_fp_dreg(s, rn);
8389     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8390 
8391     if (insert) {
8392         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8393     } else {
8394         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8395     }
8396 
8397     write_fp_dreg(s, rd, tcg_rd);
8398 }
8399 
8400 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8401  * (signed/unsigned) narrowing */
8402 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8403                                    bool is_u_shift, bool is_u_narrow,
8404                                    int immh, int immb, int opcode,
8405                                    int rn, int rd)
8406 {
8407     int immhb = immh << 3 | immb;
8408     int size = 32 - clz32(immh) - 1;
8409     int esize = 8 << size;
8410     int shift = (2 * esize) - immhb;
8411     int elements = is_scalar ? 1 : (64 / esize);
8412     bool round = extract32(opcode, 0, 1);
8413     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8414     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8415     TCGv_i32 tcg_rd_narrowed;
8416     TCGv_i64 tcg_final;
8417 
8418     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8419         { gen_helper_neon_narrow_sat_s8,
8420           gen_helper_neon_unarrow_sat8 },
8421         { gen_helper_neon_narrow_sat_s16,
8422           gen_helper_neon_unarrow_sat16 },
8423         { gen_helper_neon_narrow_sat_s32,
8424           gen_helper_neon_unarrow_sat32 },
8425         { NULL, NULL },
8426     };
8427     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8428         gen_helper_neon_narrow_sat_u8,
8429         gen_helper_neon_narrow_sat_u16,
8430         gen_helper_neon_narrow_sat_u32,
8431         NULL
8432     };
8433     NeonGenNarrowEnvFn *narrowfn;
8434 
8435     int i;
8436 
8437     assert(size < 4);
8438 
8439     if (extract32(immh, 3, 1)) {
8440         unallocated_encoding(s);
8441         return;
8442     }
8443 
8444     if (!fp_access_check(s)) {
8445         return;
8446     }
8447 
8448     if (is_u_shift) {
8449         narrowfn = unsigned_narrow_fns[size];
8450     } else {
8451         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8452     }
8453 
8454     tcg_rn = tcg_temp_new_i64();
8455     tcg_rd = tcg_temp_new_i64();
8456     tcg_rd_narrowed = tcg_temp_new_i32();
8457     tcg_final = tcg_temp_new_i64();
8458 
8459     if (round) {
8460         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8461     } else {
8462         tcg_round = NULL;
8463     }
8464 
8465     for (i = 0; i < elements; i++) {
8466         read_vec_element(s, tcg_rn, rn, i, ldop);
8467         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8468                                 false, is_u_shift, size+1, shift);
8469         narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8470         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8471         if (i == 0) {
8472             tcg_gen_mov_i64(tcg_final, tcg_rd);
8473         } else {
8474             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8475         }
8476     }
8477 
8478     if (!is_q) {
8479         write_vec_element(s, tcg_final, rd, 0, MO_64);
8480     } else {
8481         write_vec_element(s, tcg_final, rd, 1, MO_64);
8482     }
8483     clear_vec_high(s, is_q, rd);
8484 }
8485 
8486 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8487 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8488                              bool src_unsigned, bool dst_unsigned,
8489                              int immh, int immb, int rn, int rd)
8490 {
8491     int immhb = immh << 3 | immb;
8492     int size = 32 - clz32(immh) - 1;
8493     int shift = immhb - (8 << size);
8494     int pass;
8495 
8496     assert(immh != 0);
8497     assert(!(scalar && is_q));
8498 
8499     if (!scalar) {
8500         if (!is_q && extract32(immh, 3, 1)) {
8501             unallocated_encoding(s);
8502             return;
8503         }
8504 
8505         /* Since we use the variable-shift helpers we must
8506          * replicate the shift count into each element of
8507          * the tcg_shift value.
8508          */
8509         switch (size) {
8510         case 0:
8511             shift |= shift << 8;
8512             /* fall through */
8513         case 1:
8514             shift |= shift << 16;
8515             break;
8516         case 2:
8517         case 3:
8518             break;
8519         default:
8520             g_assert_not_reached();
8521         }
8522     }
8523 
8524     if (!fp_access_check(s)) {
8525         return;
8526     }
8527 
8528     if (size == 3) {
8529         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8530         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8531             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8532             { NULL, gen_helper_neon_qshl_u64 },
8533         };
8534         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8535         int maxpass = is_q ? 2 : 1;
8536 
8537         for (pass = 0; pass < maxpass; pass++) {
8538             TCGv_i64 tcg_op = tcg_temp_new_i64();
8539 
8540             read_vec_element(s, tcg_op, rn, pass, MO_64);
8541             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8542             write_vec_element(s, tcg_op, rd, pass, MO_64);
8543         }
8544         clear_vec_high(s, is_q, rd);
8545     } else {
8546         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8547         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8548             {
8549                 { gen_helper_neon_qshl_s8,
8550                   gen_helper_neon_qshl_s16,
8551                   gen_helper_neon_qshl_s32 },
8552                 { gen_helper_neon_qshlu_s8,
8553                   gen_helper_neon_qshlu_s16,
8554                   gen_helper_neon_qshlu_s32 }
8555             }, {
8556                 { NULL, NULL, NULL },
8557                 { gen_helper_neon_qshl_u8,
8558                   gen_helper_neon_qshl_u16,
8559                   gen_helper_neon_qshl_u32 }
8560             }
8561         };
8562         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8563         MemOp memop = scalar ? size : MO_32;
8564         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8565 
8566         for (pass = 0; pass < maxpass; pass++) {
8567             TCGv_i32 tcg_op = tcg_temp_new_i32();
8568 
8569             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8570             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8571             if (scalar) {
8572                 switch (size) {
8573                 case 0:
8574                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8575                     break;
8576                 case 1:
8577                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8578                     break;
8579                 case 2:
8580                     break;
8581                 default:
8582                     g_assert_not_reached();
8583                 }
8584                 write_fp_sreg(s, rd, tcg_op);
8585             } else {
8586                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8587             }
8588         }
8589 
8590         if (!scalar) {
8591             clear_vec_high(s, is_q, rd);
8592         }
8593     }
8594 }
8595 
8596 /* Common vector code for handling integer to FP conversion */
8597 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8598                                    int elements, int is_signed,
8599                                    int fracbits, int size)
8600 {
8601     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8602     TCGv_i32 tcg_shift = NULL;
8603 
8604     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8605     int pass;
8606 
8607     if (fracbits || size == MO_64) {
8608         tcg_shift = tcg_constant_i32(fracbits);
8609     }
8610 
8611     if (size == MO_64) {
8612         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8613         TCGv_i64 tcg_double = tcg_temp_new_i64();
8614 
8615         for (pass = 0; pass < elements; pass++) {
8616             read_vec_element(s, tcg_int64, rn, pass, mop);
8617 
8618             if (is_signed) {
8619                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8620                                      tcg_shift, tcg_fpst);
8621             } else {
8622                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8623                                      tcg_shift, tcg_fpst);
8624             }
8625             if (elements == 1) {
8626                 write_fp_dreg(s, rd, tcg_double);
8627             } else {
8628                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8629             }
8630         }
8631     } else {
8632         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8633         TCGv_i32 tcg_float = tcg_temp_new_i32();
8634 
8635         for (pass = 0; pass < elements; pass++) {
8636             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8637 
8638             switch (size) {
8639             case MO_32:
8640                 if (fracbits) {
8641                     if (is_signed) {
8642                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8643                                              tcg_shift, tcg_fpst);
8644                     } else {
8645                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8646                                              tcg_shift, tcg_fpst);
8647                     }
8648                 } else {
8649                     if (is_signed) {
8650                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8651                     } else {
8652                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8653                     }
8654                 }
8655                 break;
8656             case MO_16:
8657                 if (fracbits) {
8658                     if (is_signed) {
8659                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8660                                              tcg_shift, tcg_fpst);
8661                     } else {
8662                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8663                                              tcg_shift, tcg_fpst);
8664                     }
8665                 } else {
8666                     if (is_signed) {
8667                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8668                     } else {
8669                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8670                     }
8671                 }
8672                 break;
8673             default:
8674                 g_assert_not_reached();
8675             }
8676 
8677             if (elements == 1) {
8678                 write_fp_sreg(s, rd, tcg_float);
8679             } else {
8680                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8681             }
8682         }
8683     }
8684 
8685     clear_vec_high(s, elements << size == 16, rd);
8686 }
8687 
8688 /* UCVTF/SCVTF - Integer to FP conversion */
8689 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8690                                          bool is_q, bool is_u,
8691                                          int immh, int immb, int opcode,
8692                                          int rn, int rd)
8693 {
8694     int size, elements, fracbits;
8695     int immhb = immh << 3 | immb;
8696 
8697     if (immh & 8) {
8698         size = MO_64;
8699         if (!is_scalar && !is_q) {
8700             unallocated_encoding(s);
8701             return;
8702         }
8703     } else if (immh & 4) {
8704         size = MO_32;
8705     } else if (immh & 2) {
8706         size = MO_16;
8707         if (!dc_isar_feature(aa64_fp16, s)) {
8708             unallocated_encoding(s);
8709             return;
8710         }
8711     } else {
8712         /* immh == 0 would be a failure of the decode logic */
8713         g_assert(immh == 1);
8714         unallocated_encoding(s);
8715         return;
8716     }
8717 
8718     if (is_scalar) {
8719         elements = 1;
8720     } else {
8721         elements = (8 << is_q) >> size;
8722     }
8723     fracbits = (16 << size) - immhb;
8724 
8725     if (!fp_access_check(s)) {
8726         return;
8727     }
8728 
8729     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8730 }
8731 
8732 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8733 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8734                                          bool is_q, bool is_u,
8735                                          int immh, int immb, int rn, int rd)
8736 {
8737     int immhb = immh << 3 | immb;
8738     int pass, size, fracbits;
8739     TCGv_ptr tcg_fpstatus;
8740     TCGv_i32 tcg_rmode, tcg_shift;
8741 
8742     if (immh & 0x8) {
8743         size = MO_64;
8744         if (!is_scalar && !is_q) {
8745             unallocated_encoding(s);
8746             return;
8747         }
8748     } else if (immh & 0x4) {
8749         size = MO_32;
8750     } else if (immh & 0x2) {
8751         size = MO_16;
8752         if (!dc_isar_feature(aa64_fp16, s)) {
8753             unallocated_encoding(s);
8754             return;
8755         }
8756     } else {
8757         /* Should have split out AdvSIMD modified immediate earlier.  */
8758         assert(immh == 1);
8759         unallocated_encoding(s);
8760         return;
8761     }
8762 
8763     if (!fp_access_check(s)) {
8764         return;
8765     }
8766 
8767     assert(!(is_scalar && is_q));
8768 
8769     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8770     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8771     fracbits = (16 << size) - immhb;
8772     tcg_shift = tcg_constant_i32(fracbits);
8773 
8774     if (size == MO_64) {
8775         int maxpass = is_scalar ? 1 : 2;
8776 
8777         for (pass = 0; pass < maxpass; pass++) {
8778             TCGv_i64 tcg_op = tcg_temp_new_i64();
8779 
8780             read_vec_element(s, tcg_op, rn, pass, MO_64);
8781             if (is_u) {
8782                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8783             } else {
8784                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8785             }
8786             write_vec_element(s, tcg_op, rd, pass, MO_64);
8787         }
8788         clear_vec_high(s, is_q, rd);
8789     } else {
8790         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8791         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8792 
8793         switch (size) {
8794         case MO_16:
8795             if (is_u) {
8796                 fn = gen_helper_vfp_touhh;
8797             } else {
8798                 fn = gen_helper_vfp_toshh;
8799             }
8800             break;
8801         case MO_32:
8802             if (is_u) {
8803                 fn = gen_helper_vfp_touls;
8804             } else {
8805                 fn = gen_helper_vfp_tosls;
8806             }
8807             break;
8808         default:
8809             g_assert_not_reached();
8810         }
8811 
8812         for (pass = 0; pass < maxpass; pass++) {
8813             TCGv_i32 tcg_op = tcg_temp_new_i32();
8814 
8815             read_vec_element_i32(s, tcg_op, rn, pass, size);
8816             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8817             if (is_scalar) {
8818                 write_fp_sreg(s, rd, tcg_op);
8819             } else {
8820                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8821             }
8822         }
8823         if (!is_scalar) {
8824             clear_vec_high(s, is_q, rd);
8825         }
8826     }
8827 
8828     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8829 }
8830 
8831 /* AdvSIMD scalar shift by immediate
8832  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8833  * +-----+---+-------------+------+------+--------+---+------+------+
8834  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8835  * +-----+---+-------------+------+------+--------+---+------+------+
8836  *
8837  * This is the scalar version so it works on a fixed sized registers
8838  */
8839 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8840 {
8841     int rd = extract32(insn, 0, 5);
8842     int rn = extract32(insn, 5, 5);
8843     int opcode = extract32(insn, 11, 5);
8844     int immb = extract32(insn, 16, 3);
8845     int immh = extract32(insn, 19, 4);
8846     bool is_u = extract32(insn, 29, 1);
8847 
8848     if (immh == 0) {
8849         unallocated_encoding(s);
8850         return;
8851     }
8852 
8853     switch (opcode) {
8854     case 0x08: /* SRI */
8855         if (!is_u) {
8856             unallocated_encoding(s);
8857             return;
8858         }
8859         /* fall through */
8860     case 0x00: /* SSHR / USHR */
8861     case 0x02: /* SSRA / USRA */
8862     case 0x04: /* SRSHR / URSHR */
8863     case 0x06: /* SRSRA / URSRA */
8864         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8865         break;
8866     case 0x0a: /* SHL / SLI */
8867         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8868         break;
8869     case 0x1c: /* SCVTF, UCVTF */
8870         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8871                                      opcode, rn, rd);
8872         break;
8873     case 0x10: /* SQSHRUN, SQSHRUN2 */
8874     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8875         if (!is_u) {
8876             unallocated_encoding(s);
8877             return;
8878         }
8879         handle_vec_simd_sqshrn(s, true, false, false, true,
8880                                immh, immb, opcode, rn, rd);
8881         break;
8882     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8883     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8884         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8885                                immh, immb, opcode, rn, rd);
8886         break;
8887     case 0xc: /* SQSHLU */
8888         if (!is_u) {
8889             unallocated_encoding(s);
8890             return;
8891         }
8892         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8893         break;
8894     case 0xe: /* SQSHL, UQSHL */
8895         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8896         break;
8897     case 0x1f: /* FCVTZS, FCVTZU */
8898         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8899         break;
8900     default:
8901         unallocated_encoding(s);
8902         break;
8903     }
8904 }
8905 
8906 /* AdvSIMD scalar three different
8907  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8908  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8909  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8910  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8911  */
8912 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8913 {
8914     bool is_u = extract32(insn, 29, 1);
8915     int size = extract32(insn, 22, 2);
8916     int opcode = extract32(insn, 12, 4);
8917     int rm = extract32(insn, 16, 5);
8918     int rn = extract32(insn, 5, 5);
8919     int rd = extract32(insn, 0, 5);
8920 
8921     if (is_u) {
8922         unallocated_encoding(s);
8923         return;
8924     }
8925 
8926     switch (opcode) {
8927     case 0x9: /* SQDMLAL, SQDMLAL2 */
8928     case 0xb: /* SQDMLSL, SQDMLSL2 */
8929     case 0xd: /* SQDMULL, SQDMULL2 */
8930         if (size == 0 || size == 3) {
8931             unallocated_encoding(s);
8932             return;
8933         }
8934         break;
8935     default:
8936         unallocated_encoding(s);
8937         return;
8938     }
8939 
8940     if (!fp_access_check(s)) {
8941         return;
8942     }
8943 
8944     if (size == 2) {
8945         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8946         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8947         TCGv_i64 tcg_res = tcg_temp_new_i64();
8948 
8949         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8950         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8951 
8952         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8953         gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8954 
8955         switch (opcode) {
8956         case 0xd: /* SQDMULL, SQDMULL2 */
8957             break;
8958         case 0xb: /* SQDMLSL, SQDMLSL2 */
8959             tcg_gen_neg_i64(tcg_res, tcg_res);
8960             /* fall through */
8961         case 0x9: /* SQDMLAL, SQDMLAL2 */
8962             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8963             gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8964                                               tcg_res, tcg_op1);
8965             break;
8966         default:
8967             g_assert_not_reached();
8968         }
8969 
8970         write_fp_dreg(s, rd, tcg_res);
8971     } else {
8972         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8973         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8974         TCGv_i64 tcg_res = tcg_temp_new_i64();
8975 
8976         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8977         gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8978 
8979         switch (opcode) {
8980         case 0xd: /* SQDMULL, SQDMULL2 */
8981             break;
8982         case 0xb: /* SQDMLSL, SQDMLSL2 */
8983             gen_helper_neon_negl_u32(tcg_res, tcg_res);
8984             /* fall through */
8985         case 0x9: /* SQDMLAL, SQDMLAL2 */
8986         {
8987             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8988             read_vec_element(s, tcg_op3, rd, 0, MO_32);
8989             gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8990                                               tcg_res, tcg_op3);
8991             break;
8992         }
8993         default:
8994             g_assert_not_reached();
8995         }
8996 
8997         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8998         write_fp_dreg(s, rd, tcg_res);
8999     }
9000 }
9001 
9002 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9003                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9004 {
9005     /* Handle 64x64->64 opcodes which are shared between the scalar
9006      * and vector 3-same groups. We cover every opcode where size == 3
9007      * is valid in either the three-reg-same (integer, not pairwise)
9008      * or scalar-three-reg-same groups.
9009      */
9010     TCGCond cond;
9011 
9012     switch (opcode) {
9013     case 0x1: /* SQADD */
9014         if (u) {
9015             gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9016         } else {
9017             gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9018         }
9019         break;
9020     case 0x5: /* SQSUB */
9021         if (u) {
9022             gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9023         } else {
9024             gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9025         }
9026         break;
9027     case 0x6: /* CMGT, CMHI */
9028         /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9029          * We implement this using setcond (test) and then negating.
9030          */
9031         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9032     do_cmop:
9033         tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9034         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9035         break;
9036     case 0x7: /* CMGE, CMHS */
9037         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9038         goto do_cmop;
9039     case 0x11: /* CMTST, CMEQ */
9040         if (u) {
9041             cond = TCG_COND_EQ;
9042             goto do_cmop;
9043         }
9044         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9045         break;
9046     case 0x8: /* SSHL, USHL */
9047         if (u) {
9048             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9049         } else {
9050             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9051         }
9052         break;
9053     case 0x9: /* SQSHL, UQSHL */
9054         if (u) {
9055             gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9056         } else {
9057             gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9058         }
9059         break;
9060     case 0xa: /* SRSHL, URSHL */
9061         if (u) {
9062             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9063         } else {
9064             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9065         }
9066         break;
9067     case 0xb: /* SQRSHL, UQRSHL */
9068         if (u) {
9069             gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9070         } else {
9071             gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9072         }
9073         break;
9074     case 0x10: /* ADD, SUB */
9075         if (u) {
9076             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9077         } else {
9078             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9079         }
9080         break;
9081     default:
9082         g_assert_not_reached();
9083     }
9084 }
9085 
9086 /* Handle the 3-same-operands float operations; shared by the scalar
9087  * and vector encodings. The caller must filter out any encodings
9088  * not allocated for the encoding it is dealing with.
9089  */
9090 static void handle_3same_float(DisasContext *s, int size, int elements,
9091                                int fpopcode, int rd, int rn, int rm)
9092 {
9093     int pass;
9094     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9095 
9096     for (pass = 0; pass < elements; pass++) {
9097         if (size) {
9098             /* Double */
9099             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9100             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9101             TCGv_i64 tcg_res = tcg_temp_new_i64();
9102 
9103             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9104             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9105 
9106             switch (fpopcode) {
9107             case 0x39: /* FMLS */
9108                 /* As usual for ARM, separate negation for fused multiply-add */
9109                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9110                 /* fall through */
9111             case 0x19: /* FMLA */
9112                 read_vec_element(s, tcg_res, rd, pass, MO_64);
9113                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9114                                        tcg_res, fpst);
9115                 break;
9116             case 0x18: /* FMAXNM */
9117                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9118                 break;
9119             case 0x1a: /* FADD */
9120                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9121                 break;
9122             case 0x1b: /* FMULX */
9123                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9124                 break;
9125             case 0x1c: /* FCMEQ */
9126                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9127                 break;
9128             case 0x1e: /* FMAX */
9129                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9130                 break;
9131             case 0x1f: /* FRECPS */
9132                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9133                 break;
9134             case 0x38: /* FMINNM */
9135                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9136                 break;
9137             case 0x3a: /* FSUB */
9138                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9139                 break;
9140             case 0x3e: /* FMIN */
9141                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9142                 break;
9143             case 0x3f: /* FRSQRTS */
9144                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9145                 break;
9146             case 0x5b: /* FMUL */
9147                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9148                 break;
9149             case 0x5c: /* FCMGE */
9150                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9151                 break;
9152             case 0x5d: /* FACGE */
9153                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9154                 break;
9155             case 0x5f: /* FDIV */
9156                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9157                 break;
9158             case 0x7a: /* FABD */
9159                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9160                 gen_helper_vfp_absd(tcg_res, tcg_res);
9161                 break;
9162             case 0x7c: /* FCMGT */
9163                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9164                 break;
9165             case 0x7d: /* FACGT */
9166                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9167                 break;
9168             default:
9169                 g_assert_not_reached();
9170             }
9171 
9172             write_vec_element(s, tcg_res, rd, pass, MO_64);
9173         } else {
9174             /* Single */
9175             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9176             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9177             TCGv_i32 tcg_res = tcg_temp_new_i32();
9178 
9179             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9180             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9181 
9182             switch (fpopcode) {
9183             case 0x39: /* FMLS */
9184                 /* As usual for ARM, separate negation for fused multiply-add */
9185                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9186                 /* fall through */
9187             case 0x19: /* FMLA */
9188                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9189                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9190                                        tcg_res, fpst);
9191                 break;
9192             case 0x1a: /* FADD */
9193                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9194                 break;
9195             case 0x1b: /* FMULX */
9196                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9197                 break;
9198             case 0x1c: /* FCMEQ */
9199                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9200                 break;
9201             case 0x1e: /* FMAX */
9202                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9203                 break;
9204             case 0x1f: /* FRECPS */
9205                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9206                 break;
9207             case 0x18: /* FMAXNM */
9208                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9209                 break;
9210             case 0x38: /* FMINNM */
9211                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9212                 break;
9213             case 0x3a: /* FSUB */
9214                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9215                 break;
9216             case 0x3e: /* FMIN */
9217                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9218                 break;
9219             case 0x3f: /* FRSQRTS */
9220                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9221                 break;
9222             case 0x5b: /* FMUL */
9223                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9224                 break;
9225             case 0x5c: /* FCMGE */
9226                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9227                 break;
9228             case 0x5d: /* FACGE */
9229                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9230                 break;
9231             case 0x5f: /* FDIV */
9232                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9233                 break;
9234             case 0x7a: /* FABD */
9235                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9236                 gen_helper_vfp_abss(tcg_res, tcg_res);
9237                 break;
9238             case 0x7c: /* FCMGT */
9239                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9240                 break;
9241             case 0x7d: /* FACGT */
9242                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9243                 break;
9244             default:
9245                 g_assert_not_reached();
9246             }
9247 
9248             if (elements == 1) {
9249                 /* scalar single so clear high part */
9250                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9251 
9252                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9253                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9254             } else {
9255                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9256             }
9257         }
9258     }
9259 
9260     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9261 }
9262 
9263 /* AdvSIMD scalar three same
9264  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9265  * +-----+---+-----------+------+---+------+--------+---+------+------+
9266  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9267  * +-----+---+-----------+------+---+------+--------+---+------+------+
9268  */
9269 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9270 {
9271     int rd = extract32(insn, 0, 5);
9272     int rn = extract32(insn, 5, 5);
9273     int opcode = extract32(insn, 11, 5);
9274     int rm = extract32(insn, 16, 5);
9275     int size = extract32(insn, 22, 2);
9276     bool u = extract32(insn, 29, 1);
9277     TCGv_i64 tcg_rd;
9278 
9279     if (opcode >= 0x18) {
9280         /* Floating point: U, size[1] and opcode indicate operation */
9281         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9282         switch (fpopcode) {
9283         case 0x1b: /* FMULX */
9284         case 0x1f: /* FRECPS */
9285         case 0x3f: /* FRSQRTS */
9286         case 0x5d: /* FACGE */
9287         case 0x7d: /* FACGT */
9288         case 0x1c: /* FCMEQ */
9289         case 0x5c: /* FCMGE */
9290         case 0x7c: /* FCMGT */
9291         case 0x7a: /* FABD */
9292             break;
9293         default:
9294             unallocated_encoding(s);
9295             return;
9296         }
9297 
9298         if (!fp_access_check(s)) {
9299             return;
9300         }
9301 
9302         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9303         return;
9304     }
9305 
9306     switch (opcode) {
9307     case 0x1: /* SQADD, UQADD */
9308     case 0x5: /* SQSUB, UQSUB */
9309     case 0x9: /* SQSHL, UQSHL */
9310     case 0xb: /* SQRSHL, UQRSHL */
9311         break;
9312     case 0x8: /* SSHL, USHL */
9313     case 0xa: /* SRSHL, URSHL */
9314     case 0x6: /* CMGT, CMHI */
9315     case 0x7: /* CMGE, CMHS */
9316     case 0x11: /* CMTST, CMEQ */
9317     case 0x10: /* ADD, SUB (vector) */
9318         if (size != 3) {
9319             unallocated_encoding(s);
9320             return;
9321         }
9322         break;
9323     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9324         if (size != 1 && size != 2) {
9325             unallocated_encoding(s);
9326             return;
9327         }
9328         break;
9329     default:
9330         unallocated_encoding(s);
9331         return;
9332     }
9333 
9334     if (!fp_access_check(s)) {
9335         return;
9336     }
9337 
9338     tcg_rd = tcg_temp_new_i64();
9339 
9340     if (size == 3) {
9341         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9342         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9343 
9344         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9345     } else {
9346         /* Do a single operation on the lowest element in the vector.
9347          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9348          * no side effects for all these operations.
9349          * OPTME: special-purpose helpers would avoid doing some
9350          * unnecessary work in the helper for the 8 and 16 bit cases.
9351          */
9352         NeonGenTwoOpEnvFn *genenvfn;
9353         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9354         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9355         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9356 
9357         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9358         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9359 
9360         switch (opcode) {
9361         case 0x1: /* SQADD, UQADD */
9362         {
9363             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9364                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9365                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9366                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9367             };
9368             genenvfn = fns[size][u];
9369             break;
9370         }
9371         case 0x5: /* SQSUB, UQSUB */
9372         {
9373             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9374                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9375                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9376                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9377             };
9378             genenvfn = fns[size][u];
9379             break;
9380         }
9381         case 0x9: /* SQSHL, UQSHL */
9382         {
9383             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9384                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9385                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9386                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9387             };
9388             genenvfn = fns[size][u];
9389             break;
9390         }
9391         case 0xb: /* SQRSHL, UQRSHL */
9392         {
9393             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9394                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9395                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9396                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9397             };
9398             genenvfn = fns[size][u];
9399             break;
9400         }
9401         case 0x16: /* SQDMULH, SQRDMULH */
9402         {
9403             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9404                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9405                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9406             };
9407             assert(size == 1 || size == 2);
9408             genenvfn = fns[size - 1][u];
9409             break;
9410         }
9411         default:
9412             g_assert_not_reached();
9413         }
9414 
9415         genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9416         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9417     }
9418 
9419     write_fp_dreg(s, rd, tcg_rd);
9420 }
9421 
9422 /* AdvSIMD scalar three same FP16
9423  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9424  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9425  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9426  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9427  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9428  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9429  */
9430 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9431                                                   uint32_t insn)
9432 {
9433     int rd = extract32(insn, 0, 5);
9434     int rn = extract32(insn, 5, 5);
9435     int opcode = extract32(insn, 11, 3);
9436     int rm = extract32(insn, 16, 5);
9437     bool u = extract32(insn, 29, 1);
9438     bool a = extract32(insn, 23, 1);
9439     int fpopcode = opcode | (a << 3) |  (u << 4);
9440     TCGv_ptr fpst;
9441     TCGv_i32 tcg_op1;
9442     TCGv_i32 tcg_op2;
9443     TCGv_i32 tcg_res;
9444 
9445     switch (fpopcode) {
9446     case 0x03: /* FMULX */
9447     case 0x04: /* FCMEQ (reg) */
9448     case 0x07: /* FRECPS */
9449     case 0x0f: /* FRSQRTS */
9450     case 0x14: /* FCMGE (reg) */
9451     case 0x15: /* FACGE */
9452     case 0x1a: /* FABD */
9453     case 0x1c: /* FCMGT (reg) */
9454     case 0x1d: /* FACGT */
9455         break;
9456     default:
9457         unallocated_encoding(s);
9458         return;
9459     }
9460 
9461     if (!dc_isar_feature(aa64_fp16, s)) {
9462         unallocated_encoding(s);
9463     }
9464 
9465     if (!fp_access_check(s)) {
9466         return;
9467     }
9468 
9469     fpst = fpstatus_ptr(FPST_FPCR_F16);
9470 
9471     tcg_op1 = read_fp_hreg(s, rn);
9472     tcg_op2 = read_fp_hreg(s, rm);
9473     tcg_res = tcg_temp_new_i32();
9474 
9475     switch (fpopcode) {
9476     case 0x03: /* FMULX */
9477         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9478         break;
9479     case 0x04: /* FCMEQ (reg) */
9480         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9481         break;
9482     case 0x07: /* FRECPS */
9483         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9484         break;
9485     case 0x0f: /* FRSQRTS */
9486         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9487         break;
9488     case 0x14: /* FCMGE (reg) */
9489         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9490         break;
9491     case 0x15: /* FACGE */
9492         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9493         break;
9494     case 0x1a: /* FABD */
9495         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9496         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9497         break;
9498     case 0x1c: /* FCMGT (reg) */
9499         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9500         break;
9501     case 0x1d: /* FACGT */
9502         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9503         break;
9504     default:
9505         g_assert_not_reached();
9506     }
9507 
9508     write_fp_sreg(s, rd, tcg_res);
9509 }
9510 
9511 /* AdvSIMD scalar three same extra
9512  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9513  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9514  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9515  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9516  */
9517 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9518                                                    uint32_t insn)
9519 {
9520     int rd = extract32(insn, 0, 5);
9521     int rn = extract32(insn, 5, 5);
9522     int opcode = extract32(insn, 11, 4);
9523     int rm = extract32(insn, 16, 5);
9524     int size = extract32(insn, 22, 2);
9525     bool u = extract32(insn, 29, 1);
9526     TCGv_i32 ele1, ele2, ele3;
9527     TCGv_i64 res;
9528     bool feature;
9529 
9530     switch (u * 16 + opcode) {
9531     case 0x10: /* SQRDMLAH (vector) */
9532     case 0x11: /* SQRDMLSH (vector) */
9533         if (size != 1 && size != 2) {
9534             unallocated_encoding(s);
9535             return;
9536         }
9537         feature = dc_isar_feature(aa64_rdm, s);
9538         break;
9539     default:
9540         unallocated_encoding(s);
9541         return;
9542     }
9543     if (!feature) {
9544         unallocated_encoding(s);
9545         return;
9546     }
9547     if (!fp_access_check(s)) {
9548         return;
9549     }
9550 
9551     /* Do a single operation on the lowest element in the vector.
9552      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9553      * with no side effects for all these operations.
9554      * OPTME: special-purpose helpers would avoid doing some
9555      * unnecessary work in the helper for the 16 bit cases.
9556      */
9557     ele1 = tcg_temp_new_i32();
9558     ele2 = tcg_temp_new_i32();
9559     ele3 = tcg_temp_new_i32();
9560 
9561     read_vec_element_i32(s, ele1, rn, 0, size);
9562     read_vec_element_i32(s, ele2, rm, 0, size);
9563     read_vec_element_i32(s, ele3, rd, 0, size);
9564 
9565     switch (opcode) {
9566     case 0x0: /* SQRDMLAH */
9567         if (size == 1) {
9568             gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9569         } else {
9570             gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9571         }
9572         break;
9573     case 0x1: /* SQRDMLSH */
9574         if (size == 1) {
9575             gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9576         } else {
9577             gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9578         }
9579         break;
9580     default:
9581         g_assert_not_reached();
9582     }
9583 
9584     res = tcg_temp_new_i64();
9585     tcg_gen_extu_i32_i64(res, ele3);
9586     write_fp_dreg(s, rd, res);
9587 }
9588 
9589 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9590                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9591                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9592 {
9593     /* Handle 64->64 opcodes which are shared between the scalar and
9594      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9595      * is valid in either group and also the double-precision fp ops.
9596      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9597      * requires them.
9598      */
9599     TCGCond cond;
9600 
9601     switch (opcode) {
9602     case 0x4: /* CLS, CLZ */
9603         if (u) {
9604             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9605         } else {
9606             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9607         }
9608         break;
9609     case 0x5: /* NOT */
9610         /* This opcode is shared with CNT and RBIT but we have earlier
9611          * enforced that size == 3 if and only if this is the NOT insn.
9612          */
9613         tcg_gen_not_i64(tcg_rd, tcg_rn);
9614         break;
9615     case 0x7: /* SQABS, SQNEG */
9616         if (u) {
9617             gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9618         } else {
9619             gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9620         }
9621         break;
9622     case 0xa: /* CMLT */
9623         /* 64 bit integer comparison against zero, result is
9624          * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9625          * subtracting 1.
9626          */
9627         cond = TCG_COND_LT;
9628     do_cmop:
9629         tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9630         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9631         break;
9632     case 0x8: /* CMGT, CMGE */
9633         cond = u ? TCG_COND_GE : TCG_COND_GT;
9634         goto do_cmop;
9635     case 0x9: /* CMEQ, CMLE */
9636         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9637         goto do_cmop;
9638     case 0xb: /* ABS, NEG */
9639         if (u) {
9640             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9641         } else {
9642             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9643         }
9644         break;
9645     case 0x2f: /* FABS */
9646         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9647         break;
9648     case 0x6f: /* FNEG */
9649         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9650         break;
9651     case 0x7f: /* FSQRT */
9652         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9653         break;
9654     case 0x1a: /* FCVTNS */
9655     case 0x1b: /* FCVTMS */
9656     case 0x1c: /* FCVTAS */
9657     case 0x3a: /* FCVTPS */
9658     case 0x3b: /* FCVTZS */
9659         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9660         break;
9661     case 0x5a: /* FCVTNU */
9662     case 0x5b: /* FCVTMU */
9663     case 0x5c: /* FCVTAU */
9664     case 0x7a: /* FCVTPU */
9665     case 0x7b: /* FCVTZU */
9666         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9667         break;
9668     case 0x18: /* FRINTN */
9669     case 0x19: /* FRINTM */
9670     case 0x38: /* FRINTP */
9671     case 0x39: /* FRINTZ */
9672     case 0x58: /* FRINTA */
9673     case 0x79: /* FRINTI */
9674         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9675         break;
9676     case 0x59: /* FRINTX */
9677         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9678         break;
9679     case 0x1e: /* FRINT32Z */
9680     case 0x5e: /* FRINT32X */
9681         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9682         break;
9683     case 0x1f: /* FRINT64Z */
9684     case 0x5f: /* FRINT64X */
9685         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9686         break;
9687     default:
9688         g_assert_not_reached();
9689     }
9690 }
9691 
9692 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9693                                    bool is_scalar, bool is_u, bool is_q,
9694                                    int size, int rn, int rd)
9695 {
9696     bool is_double = (size == MO_64);
9697     TCGv_ptr fpst;
9698 
9699     if (!fp_access_check(s)) {
9700         return;
9701     }
9702 
9703     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9704 
9705     if (is_double) {
9706         TCGv_i64 tcg_op = tcg_temp_new_i64();
9707         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9708         TCGv_i64 tcg_res = tcg_temp_new_i64();
9709         NeonGenTwoDoubleOpFn *genfn;
9710         bool swap = false;
9711         int pass;
9712 
9713         switch (opcode) {
9714         case 0x2e: /* FCMLT (zero) */
9715             swap = true;
9716             /* fallthrough */
9717         case 0x2c: /* FCMGT (zero) */
9718             genfn = gen_helper_neon_cgt_f64;
9719             break;
9720         case 0x2d: /* FCMEQ (zero) */
9721             genfn = gen_helper_neon_ceq_f64;
9722             break;
9723         case 0x6d: /* FCMLE (zero) */
9724             swap = true;
9725             /* fall through */
9726         case 0x6c: /* FCMGE (zero) */
9727             genfn = gen_helper_neon_cge_f64;
9728             break;
9729         default:
9730             g_assert_not_reached();
9731         }
9732 
9733         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9734             read_vec_element(s, tcg_op, rn, pass, MO_64);
9735             if (swap) {
9736                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9737             } else {
9738                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9739             }
9740             write_vec_element(s, tcg_res, rd, pass, MO_64);
9741         }
9742 
9743         clear_vec_high(s, !is_scalar, rd);
9744     } else {
9745         TCGv_i32 tcg_op = tcg_temp_new_i32();
9746         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9747         TCGv_i32 tcg_res = tcg_temp_new_i32();
9748         NeonGenTwoSingleOpFn *genfn;
9749         bool swap = false;
9750         int pass, maxpasses;
9751 
9752         if (size == MO_16) {
9753             switch (opcode) {
9754             case 0x2e: /* FCMLT (zero) */
9755                 swap = true;
9756                 /* fall through */
9757             case 0x2c: /* FCMGT (zero) */
9758                 genfn = gen_helper_advsimd_cgt_f16;
9759                 break;
9760             case 0x2d: /* FCMEQ (zero) */
9761                 genfn = gen_helper_advsimd_ceq_f16;
9762                 break;
9763             case 0x6d: /* FCMLE (zero) */
9764                 swap = true;
9765                 /* fall through */
9766             case 0x6c: /* FCMGE (zero) */
9767                 genfn = gen_helper_advsimd_cge_f16;
9768                 break;
9769             default:
9770                 g_assert_not_reached();
9771             }
9772         } else {
9773             switch (opcode) {
9774             case 0x2e: /* FCMLT (zero) */
9775                 swap = true;
9776                 /* fall through */
9777             case 0x2c: /* FCMGT (zero) */
9778                 genfn = gen_helper_neon_cgt_f32;
9779                 break;
9780             case 0x2d: /* FCMEQ (zero) */
9781                 genfn = gen_helper_neon_ceq_f32;
9782                 break;
9783             case 0x6d: /* FCMLE (zero) */
9784                 swap = true;
9785                 /* fall through */
9786             case 0x6c: /* FCMGE (zero) */
9787                 genfn = gen_helper_neon_cge_f32;
9788                 break;
9789             default:
9790                 g_assert_not_reached();
9791             }
9792         }
9793 
9794         if (is_scalar) {
9795             maxpasses = 1;
9796         } else {
9797             int vector_size = 8 << is_q;
9798             maxpasses = vector_size >> size;
9799         }
9800 
9801         for (pass = 0; pass < maxpasses; pass++) {
9802             read_vec_element_i32(s, tcg_op, rn, pass, size);
9803             if (swap) {
9804                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9805             } else {
9806                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9807             }
9808             if (is_scalar) {
9809                 write_fp_sreg(s, rd, tcg_res);
9810             } else {
9811                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9812             }
9813         }
9814 
9815         if (!is_scalar) {
9816             clear_vec_high(s, is_q, rd);
9817         }
9818     }
9819 }
9820 
9821 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9822                                     bool is_scalar, bool is_u, bool is_q,
9823                                     int size, int rn, int rd)
9824 {
9825     bool is_double = (size == 3);
9826     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9827 
9828     if (is_double) {
9829         TCGv_i64 tcg_op = tcg_temp_new_i64();
9830         TCGv_i64 tcg_res = tcg_temp_new_i64();
9831         int pass;
9832 
9833         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9834             read_vec_element(s, tcg_op, rn, pass, MO_64);
9835             switch (opcode) {
9836             case 0x3d: /* FRECPE */
9837                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9838                 break;
9839             case 0x3f: /* FRECPX */
9840                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9841                 break;
9842             case 0x7d: /* FRSQRTE */
9843                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9844                 break;
9845             default:
9846                 g_assert_not_reached();
9847             }
9848             write_vec_element(s, tcg_res, rd, pass, MO_64);
9849         }
9850         clear_vec_high(s, !is_scalar, rd);
9851     } else {
9852         TCGv_i32 tcg_op = tcg_temp_new_i32();
9853         TCGv_i32 tcg_res = tcg_temp_new_i32();
9854         int pass, maxpasses;
9855 
9856         if (is_scalar) {
9857             maxpasses = 1;
9858         } else {
9859             maxpasses = is_q ? 4 : 2;
9860         }
9861 
9862         for (pass = 0; pass < maxpasses; pass++) {
9863             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9864 
9865             switch (opcode) {
9866             case 0x3c: /* URECPE */
9867                 gen_helper_recpe_u32(tcg_res, tcg_op);
9868                 break;
9869             case 0x3d: /* FRECPE */
9870                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9871                 break;
9872             case 0x3f: /* FRECPX */
9873                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9874                 break;
9875             case 0x7d: /* FRSQRTE */
9876                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9877                 break;
9878             default:
9879                 g_assert_not_reached();
9880             }
9881 
9882             if (is_scalar) {
9883                 write_fp_sreg(s, rd, tcg_res);
9884             } else {
9885                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9886             }
9887         }
9888         if (!is_scalar) {
9889             clear_vec_high(s, is_q, rd);
9890         }
9891     }
9892 }
9893 
9894 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9895                                 int opcode, bool u, bool is_q,
9896                                 int size, int rn, int rd)
9897 {
9898     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9899      * in the source becomes a size element in the destination).
9900      */
9901     int pass;
9902     TCGv_i32 tcg_res[2];
9903     int destelt = is_q ? 2 : 0;
9904     int passes = scalar ? 1 : 2;
9905 
9906     if (scalar) {
9907         tcg_res[1] = tcg_constant_i32(0);
9908     }
9909 
9910     for (pass = 0; pass < passes; pass++) {
9911         TCGv_i64 tcg_op = tcg_temp_new_i64();
9912         NeonGenNarrowFn *genfn = NULL;
9913         NeonGenNarrowEnvFn *genenvfn = NULL;
9914 
9915         if (scalar) {
9916             read_vec_element(s, tcg_op, rn, pass, size + 1);
9917         } else {
9918             read_vec_element(s, tcg_op, rn, pass, MO_64);
9919         }
9920         tcg_res[pass] = tcg_temp_new_i32();
9921 
9922         switch (opcode) {
9923         case 0x12: /* XTN, SQXTUN */
9924         {
9925             static NeonGenNarrowFn * const xtnfns[3] = {
9926                 gen_helper_neon_narrow_u8,
9927                 gen_helper_neon_narrow_u16,
9928                 tcg_gen_extrl_i64_i32,
9929             };
9930             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9931                 gen_helper_neon_unarrow_sat8,
9932                 gen_helper_neon_unarrow_sat16,
9933                 gen_helper_neon_unarrow_sat32,
9934             };
9935             if (u) {
9936                 genenvfn = sqxtunfns[size];
9937             } else {
9938                 genfn = xtnfns[size];
9939             }
9940             break;
9941         }
9942         case 0x14: /* SQXTN, UQXTN */
9943         {
9944             static NeonGenNarrowEnvFn * const fns[3][2] = {
9945                 { gen_helper_neon_narrow_sat_s8,
9946                   gen_helper_neon_narrow_sat_u8 },
9947                 { gen_helper_neon_narrow_sat_s16,
9948                   gen_helper_neon_narrow_sat_u16 },
9949                 { gen_helper_neon_narrow_sat_s32,
9950                   gen_helper_neon_narrow_sat_u32 },
9951             };
9952             genenvfn = fns[size][u];
9953             break;
9954         }
9955         case 0x16: /* FCVTN, FCVTN2 */
9956             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9957             if (size == 2) {
9958                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9959             } else {
9960                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9961                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9962                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9963                 TCGv_i32 ahp = get_ahp_flag();
9964 
9965                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9966                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9967                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9968                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9969             }
9970             break;
9971         case 0x36: /* BFCVTN, BFCVTN2 */
9972             {
9973                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9974                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9975             }
9976             break;
9977         case 0x56:  /* FCVTXN, FCVTXN2 */
9978             /* 64 bit to 32 bit float conversion
9979              * with von Neumann rounding (round to odd)
9980              */
9981             assert(size == 2);
9982             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9983             break;
9984         default:
9985             g_assert_not_reached();
9986         }
9987 
9988         if (genfn) {
9989             genfn(tcg_res[pass], tcg_op);
9990         } else if (genenvfn) {
9991             genenvfn(tcg_res[pass], cpu_env, tcg_op);
9992         }
9993     }
9994 
9995     for (pass = 0; pass < 2; pass++) {
9996         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9997     }
9998     clear_vec_high(s, is_q, rd);
9999 }
10000 
10001 /* Remaining saturating accumulating ops */
10002 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10003                                 bool is_q, int size, int rn, int rd)
10004 {
10005     bool is_double = (size == 3);
10006 
10007     if (is_double) {
10008         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10009         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10010         int pass;
10011 
10012         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10013             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10014             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10015 
10016             if (is_u) { /* USQADD */
10017                 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10018             } else { /* SUQADD */
10019                 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10020             }
10021             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10022         }
10023         clear_vec_high(s, !is_scalar, rd);
10024     } else {
10025         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10026         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10027         int pass, maxpasses;
10028 
10029         if (is_scalar) {
10030             maxpasses = 1;
10031         } else {
10032             maxpasses = is_q ? 4 : 2;
10033         }
10034 
10035         for (pass = 0; pass < maxpasses; pass++) {
10036             if (is_scalar) {
10037                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10038                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10039             } else {
10040                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10041                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10042             }
10043 
10044             if (is_u) { /* USQADD */
10045                 switch (size) {
10046                 case 0:
10047                     gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10048                     break;
10049                 case 1:
10050                     gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10051                     break;
10052                 case 2:
10053                     gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10054                     break;
10055                 default:
10056                     g_assert_not_reached();
10057                 }
10058             } else { /* SUQADD */
10059                 switch (size) {
10060                 case 0:
10061                     gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10062                     break;
10063                 case 1:
10064                     gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10065                     break;
10066                 case 2:
10067                     gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10068                     break;
10069                 default:
10070                     g_assert_not_reached();
10071                 }
10072             }
10073 
10074             if (is_scalar) {
10075                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10076             }
10077             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10078         }
10079         clear_vec_high(s, is_q, rd);
10080     }
10081 }
10082 
10083 /* AdvSIMD scalar two reg misc
10084  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10085  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10086  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10087  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10088  */
10089 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10090 {
10091     int rd = extract32(insn, 0, 5);
10092     int rn = extract32(insn, 5, 5);
10093     int opcode = extract32(insn, 12, 5);
10094     int size = extract32(insn, 22, 2);
10095     bool u = extract32(insn, 29, 1);
10096     bool is_fcvt = false;
10097     int rmode;
10098     TCGv_i32 tcg_rmode;
10099     TCGv_ptr tcg_fpstatus;
10100 
10101     switch (opcode) {
10102     case 0x3: /* USQADD / SUQADD*/
10103         if (!fp_access_check(s)) {
10104             return;
10105         }
10106         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10107         return;
10108     case 0x7: /* SQABS / SQNEG */
10109         break;
10110     case 0xa: /* CMLT */
10111         if (u) {
10112             unallocated_encoding(s);
10113             return;
10114         }
10115         /* fall through */
10116     case 0x8: /* CMGT, CMGE */
10117     case 0x9: /* CMEQ, CMLE */
10118     case 0xb: /* ABS, NEG */
10119         if (size != 3) {
10120             unallocated_encoding(s);
10121             return;
10122         }
10123         break;
10124     case 0x12: /* SQXTUN */
10125         if (!u) {
10126             unallocated_encoding(s);
10127             return;
10128         }
10129         /* fall through */
10130     case 0x14: /* SQXTN, UQXTN */
10131         if (size == 3) {
10132             unallocated_encoding(s);
10133             return;
10134         }
10135         if (!fp_access_check(s)) {
10136             return;
10137         }
10138         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10139         return;
10140     case 0xc ... 0xf:
10141     case 0x16 ... 0x1d:
10142     case 0x1f:
10143         /* Floating point: U, size[1] and opcode indicate operation;
10144          * size[0] indicates single or double precision.
10145          */
10146         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10147         size = extract32(size, 0, 1) ? 3 : 2;
10148         switch (opcode) {
10149         case 0x2c: /* FCMGT (zero) */
10150         case 0x2d: /* FCMEQ (zero) */
10151         case 0x2e: /* FCMLT (zero) */
10152         case 0x6c: /* FCMGE (zero) */
10153         case 0x6d: /* FCMLE (zero) */
10154             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10155             return;
10156         case 0x1d: /* SCVTF */
10157         case 0x5d: /* UCVTF */
10158         {
10159             bool is_signed = (opcode == 0x1d);
10160             if (!fp_access_check(s)) {
10161                 return;
10162             }
10163             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10164             return;
10165         }
10166         case 0x3d: /* FRECPE */
10167         case 0x3f: /* FRECPX */
10168         case 0x7d: /* FRSQRTE */
10169             if (!fp_access_check(s)) {
10170                 return;
10171             }
10172             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10173             return;
10174         case 0x1a: /* FCVTNS */
10175         case 0x1b: /* FCVTMS */
10176         case 0x3a: /* FCVTPS */
10177         case 0x3b: /* FCVTZS */
10178         case 0x5a: /* FCVTNU */
10179         case 0x5b: /* FCVTMU */
10180         case 0x7a: /* FCVTPU */
10181         case 0x7b: /* FCVTZU */
10182             is_fcvt = true;
10183             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10184             break;
10185         case 0x1c: /* FCVTAS */
10186         case 0x5c: /* FCVTAU */
10187             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10188             is_fcvt = true;
10189             rmode = FPROUNDING_TIEAWAY;
10190             break;
10191         case 0x56: /* FCVTXN, FCVTXN2 */
10192             if (size == 2) {
10193                 unallocated_encoding(s);
10194                 return;
10195             }
10196             if (!fp_access_check(s)) {
10197                 return;
10198             }
10199             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10200             return;
10201         default:
10202             unallocated_encoding(s);
10203             return;
10204         }
10205         break;
10206     default:
10207         unallocated_encoding(s);
10208         return;
10209     }
10210 
10211     if (!fp_access_check(s)) {
10212         return;
10213     }
10214 
10215     if (is_fcvt) {
10216         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10217         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10218     } else {
10219         tcg_fpstatus = NULL;
10220         tcg_rmode = NULL;
10221     }
10222 
10223     if (size == 3) {
10224         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10225         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10226 
10227         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10228         write_fp_dreg(s, rd, tcg_rd);
10229     } else {
10230         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10231         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10232 
10233         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10234 
10235         switch (opcode) {
10236         case 0x7: /* SQABS, SQNEG */
10237         {
10238             NeonGenOneOpEnvFn *genfn;
10239             static NeonGenOneOpEnvFn * const fns[3][2] = {
10240                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10241                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10242                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10243             };
10244             genfn = fns[size][u];
10245             genfn(tcg_rd, cpu_env, tcg_rn);
10246             break;
10247         }
10248         case 0x1a: /* FCVTNS */
10249         case 0x1b: /* FCVTMS */
10250         case 0x1c: /* FCVTAS */
10251         case 0x3a: /* FCVTPS */
10252         case 0x3b: /* FCVTZS */
10253             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10254                                  tcg_fpstatus);
10255             break;
10256         case 0x5a: /* FCVTNU */
10257         case 0x5b: /* FCVTMU */
10258         case 0x5c: /* FCVTAU */
10259         case 0x7a: /* FCVTPU */
10260         case 0x7b: /* FCVTZU */
10261             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10262                                  tcg_fpstatus);
10263             break;
10264         default:
10265             g_assert_not_reached();
10266         }
10267 
10268         write_fp_sreg(s, rd, tcg_rd);
10269     }
10270 
10271     if (is_fcvt) {
10272         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10273     }
10274 }
10275 
10276 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10277 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10278                                  int immh, int immb, int opcode, int rn, int rd)
10279 {
10280     int size = 32 - clz32(immh) - 1;
10281     int immhb = immh << 3 | immb;
10282     int shift = 2 * (8 << size) - immhb;
10283     GVecGen2iFn *gvec_fn;
10284 
10285     if (extract32(immh, 3, 1) && !is_q) {
10286         unallocated_encoding(s);
10287         return;
10288     }
10289     tcg_debug_assert(size <= 3);
10290 
10291     if (!fp_access_check(s)) {
10292         return;
10293     }
10294 
10295     switch (opcode) {
10296     case 0x02: /* SSRA / USRA (accumulate) */
10297         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10298         break;
10299 
10300     case 0x08: /* SRI */
10301         gvec_fn = gen_gvec_sri;
10302         break;
10303 
10304     case 0x00: /* SSHR / USHR */
10305         if (is_u) {
10306             if (shift == 8 << size) {
10307                 /* Shift count the same size as element size produces zero.  */
10308                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10309                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10310                 return;
10311             }
10312             gvec_fn = tcg_gen_gvec_shri;
10313         } else {
10314             /* Shift count the same size as element size produces all sign.  */
10315             if (shift == 8 << size) {
10316                 shift -= 1;
10317             }
10318             gvec_fn = tcg_gen_gvec_sari;
10319         }
10320         break;
10321 
10322     case 0x04: /* SRSHR / URSHR (rounding) */
10323         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10324         break;
10325 
10326     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10327         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10328         break;
10329 
10330     default:
10331         g_assert_not_reached();
10332     }
10333 
10334     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10335 }
10336 
10337 /* SHL/SLI - Vector shift left */
10338 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10339                                  int immh, int immb, int opcode, int rn, int rd)
10340 {
10341     int size = 32 - clz32(immh) - 1;
10342     int immhb = immh << 3 | immb;
10343     int shift = immhb - (8 << size);
10344 
10345     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10346     assert(size >= 0 && size <= 3);
10347 
10348     if (extract32(immh, 3, 1) && !is_q) {
10349         unallocated_encoding(s);
10350         return;
10351     }
10352 
10353     if (!fp_access_check(s)) {
10354         return;
10355     }
10356 
10357     if (insert) {
10358         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10359     } else {
10360         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10361     }
10362 }
10363 
10364 /* USHLL/SHLL - Vector shift left with widening */
10365 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10366                                  int immh, int immb, int opcode, int rn, int rd)
10367 {
10368     int size = 32 - clz32(immh) - 1;
10369     int immhb = immh << 3 | immb;
10370     int shift = immhb - (8 << size);
10371     int dsize = 64;
10372     int esize = 8 << size;
10373     int elements = dsize/esize;
10374     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10375     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10376     int i;
10377 
10378     if (size >= 3) {
10379         unallocated_encoding(s);
10380         return;
10381     }
10382 
10383     if (!fp_access_check(s)) {
10384         return;
10385     }
10386 
10387     /* For the LL variants the store is larger than the load,
10388      * so if rd == rn we would overwrite parts of our input.
10389      * So load everything right now and use shifts in the main loop.
10390      */
10391     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10392 
10393     for (i = 0; i < elements; i++) {
10394         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10395         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10396         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10397         write_vec_element(s, tcg_rd, rd, i, size + 1);
10398     }
10399 }
10400 
10401 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10402 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10403                                  int immh, int immb, int opcode, int rn, int rd)
10404 {
10405     int immhb = immh << 3 | immb;
10406     int size = 32 - clz32(immh) - 1;
10407     int dsize = 64;
10408     int esize = 8 << size;
10409     int elements = dsize/esize;
10410     int shift = (2 * esize) - immhb;
10411     bool round = extract32(opcode, 0, 1);
10412     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10413     TCGv_i64 tcg_round;
10414     int i;
10415 
10416     if (extract32(immh, 3, 1)) {
10417         unallocated_encoding(s);
10418         return;
10419     }
10420 
10421     if (!fp_access_check(s)) {
10422         return;
10423     }
10424 
10425     tcg_rn = tcg_temp_new_i64();
10426     tcg_rd = tcg_temp_new_i64();
10427     tcg_final = tcg_temp_new_i64();
10428     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10429 
10430     if (round) {
10431         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10432     } else {
10433         tcg_round = NULL;
10434     }
10435 
10436     for (i = 0; i < elements; i++) {
10437         read_vec_element(s, tcg_rn, rn, i, size+1);
10438         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10439                                 false, true, size+1, shift);
10440 
10441         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10442     }
10443 
10444     if (!is_q) {
10445         write_vec_element(s, tcg_final, rd, 0, MO_64);
10446     } else {
10447         write_vec_element(s, tcg_final, rd, 1, MO_64);
10448     }
10449 
10450     clear_vec_high(s, is_q, rd);
10451 }
10452 
10453 
10454 /* AdvSIMD shift by immediate
10455  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10456  * +---+---+---+-------------+------+------+--------+---+------+------+
10457  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10458  * +---+---+---+-------------+------+------+--------+---+------+------+
10459  */
10460 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10461 {
10462     int rd = extract32(insn, 0, 5);
10463     int rn = extract32(insn, 5, 5);
10464     int opcode = extract32(insn, 11, 5);
10465     int immb = extract32(insn, 16, 3);
10466     int immh = extract32(insn, 19, 4);
10467     bool is_u = extract32(insn, 29, 1);
10468     bool is_q = extract32(insn, 30, 1);
10469 
10470     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10471     assert(immh != 0);
10472 
10473     switch (opcode) {
10474     case 0x08: /* SRI */
10475         if (!is_u) {
10476             unallocated_encoding(s);
10477             return;
10478         }
10479         /* fall through */
10480     case 0x00: /* SSHR / USHR */
10481     case 0x02: /* SSRA / USRA (accumulate) */
10482     case 0x04: /* SRSHR / URSHR (rounding) */
10483     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10484         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10485         break;
10486     case 0x0a: /* SHL / SLI */
10487         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10488         break;
10489     case 0x10: /* SHRN */
10490     case 0x11: /* RSHRN / SQRSHRUN */
10491         if (is_u) {
10492             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10493                                    opcode, rn, rd);
10494         } else {
10495             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10496         }
10497         break;
10498     case 0x12: /* SQSHRN / UQSHRN */
10499     case 0x13: /* SQRSHRN / UQRSHRN */
10500         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10501                                opcode, rn, rd);
10502         break;
10503     case 0x14: /* SSHLL / USHLL */
10504         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10505         break;
10506     case 0x1c: /* SCVTF / UCVTF */
10507         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10508                                      opcode, rn, rd);
10509         break;
10510     case 0xc: /* SQSHLU */
10511         if (!is_u) {
10512             unallocated_encoding(s);
10513             return;
10514         }
10515         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10516         break;
10517     case 0xe: /* SQSHL, UQSHL */
10518         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10519         break;
10520     case 0x1f: /* FCVTZS/ FCVTZU */
10521         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10522         return;
10523     default:
10524         unallocated_encoding(s);
10525         return;
10526     }
10527 }
10528 
10529 /* Generate code to do a "long" addition or subtraction, ie one done in
10530  * TCGv_i64 on vector lanes twice the width specified by size.
10531  */
10532 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10533                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10534 {
10535     static NeonGenTwo64OpFn * const fns[3][2] = {
10536         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10537         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10538         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10539     };
10540     NeonGenTwo64OpFn *genfn;
10541     assert(size < 3);
10542 
10543     genfn = fns[size][is_sub];
10544     genfn(tcg_res, tcg_op1, tcg_op2);
10545 }
10546 
10547 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10548                                 int opcode, int rd, int rn, int rm)
10549 {
10550     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10551     TCGv_i64 tcg_res[2];
10552     int pass, accop;
10553 
10554     tcg_res[0] = tcg_temp_new_i64();
10555     tcg_res[1] = tcg_temp_new_i64();
10556 
10557     /* Does this op do an adding accumulate, a subtracting accumulate,
10558      * or no accumulate at all?
10559      */
10560     switch (opcode) {
10561     case 5:
10562     case 8:
10563     case 9:
10564         accop = 1;
10565         break;
10566     case 10:
10567     case 11:
10568         accop = -1;
10569         break;
10570     default:
10571         accop = 0;
10572         break;
10573     }
10574 
10575     if (accop != 0) {
10576         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10577         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10578     }
10579 
10580     /* size == 2 means two 32x32->64 operations; this is worth special
10581      * casing because we can generally handle it inline.
10582      */
10583     if (size == 2) {
10584         for (pass = 0; pass < 2; pass++) {
10585             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10586             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10587             TCGv_i64 tcg_passres;
10588             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10589 
10590             int elt = pass + is_q * 2;
10591 
10592             read_vec_element(s, tcg_op1, rn, elt, memop);
10593             read_vec_element(s, tcg_op2, rm, elt, memop);
10594 
10595             if (accop == 0) {
10596                 tcg_passres = tcg_res[pass];
10597             } else {
10598                 tcg_passres = tcg_temp_new_i64();
10599             }
10600 
10601             switch (opcode) {
10602             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10603                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10604                 break;
10605             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10606                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10607                 break;
10608             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10609             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10610             {
10611                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10612                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10613 
10614                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10615                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10616                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10617                                     tcg_passres,
10618                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10619                 break;
10620             }
10621             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10622             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10623             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10624                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10625                 break;
10626             case 9: /* SQDMLAL, SQDMLAL2 */
10627             case 11: /* SQDMLSL, SQDMLSL2 */
10628             case 13: /* SQDMULL, SQDMULL2 */
10629                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10630                 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10631                                                   tcg_passres, tcg_passres);
10632                 break;
10633             default:
10634                 g_assert_not_reached();
10635             }
10636 
10637             if (opcode == 9 || opcode == 11) {
10638                 /* saturating accumulate ops */
10639                 if (accop < 0) {
10640                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10641                 }
10642                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10643                                                   tcg_res[pass], tcg_passres);
10644             } else if (accop > 0) {
10645                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10646             } else if (accop < 0) {
10647                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10648             }
10649         }
10650     } else {
10651         /* size 0 or 1, generally helper functions */
10652         for (pass = 0; pass < 2; pass++) {
10653             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10654             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10655             TCGv_i64 tcg_passres;
10656             int elt = pass + is_q * 2;
10657 
10658             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10659             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10660 
10661             if (accop == 0) {
10662                 tcg_passres = tcg_res[pass];
10663             } else {
10664                 tcg_passres = tcg_temp_new_i64();
10665             }
10666 
10667             switch (opcode) {
10668             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10669             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10670             {
10671                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10672                 static NeonGenWidenFn * const widenfns[2][2] = {
10673                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10674                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10675                 };
10676                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10677 
10678                 widenfn(tcg_op2_64, tcg_op2);
10679                 widenfn(tcg_passres, tcg_op1);
10680                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10681                               tcg_passres, tcg_op2_64);
10682                 break;
10683             }
10684             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10685             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10686                 if (size == 0) {
10687                     if (is_u) {
10688                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10689                     } else {
10690                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10691                     }
10692                 } else {
10693                     if (is_u) {
10694                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10695                     } else {
10696                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10697                     }
10698                 }
10699                 break;
10700             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10701             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10702             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10703                 if (size == 0) {
10704                     if (is_u) {
10705                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10706                     } else {
10707                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10708                     }
10709                 } else {
10710                     if (is_u) {
10711                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10712                     } else {
10713                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10714                     }
10715                 }
10716                 break;
10717             case 9: /* SQDMLAL, SQDMLAL2 */
10718             case 11: /* SQDMLSL, SQDMLSL2 */
10719             case 13: /* SQDMULL, SQDMULL2 */
10720                 assert(size == 1);
10721                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10722                 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10723                                                   tcg_passres, tcg_passres);
10724                 break;
10725             default:
10726                 g_assert_not_reached();
10727             }
10728 
10729             if (accop != 0) {
10730                 if (opcode == 9 || opcode == 11) {
10731                     /* saturating accumulate ops */
10732                     if (accop < 0) {
10733                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10734                     }
10735                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10736                                                       tcg_res[pass],
10737                                                       tcg_passres);
10738                 } else {
10739                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10740                                   tcg_res[pass], tcg_passres);
10741                 }
10742             }
10743         }
10744     }
10745 
10746     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10747     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10748 }
10749 
10750 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10751                             int opcode, int rd, int rn, int rm)
10752 {
10753     TCGv_i64 tcg_res[2];
10754     int part = is_q ? 2 : 0;
10755     int pass;
10756 
10757     for (pass = 0; pass < 2; pass++) {
10758         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10759         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10760         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10761         static NeonGenWidenFn * const widenfns[3][2] = {
10762             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10763             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10764             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10765         };
10766         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10767 
10768         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10769         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10770         widenfn(tcg_op2_wide, tcg_op2);
10771         tcg_res[pass] = tcg_temp_new_i64();
10772         gen_neon_addl(size, (opcode == 3),
10773                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10774     }
10775 
10776     for (pass = 0; pass < 2; pass++) {
10777         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10778     }
10779 }
10780 
10781 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10782 {
10783     tcg_gen_addi_i64(in, in, 1U << 31);
10784     tcg_gen_extrh_i64_i32(res, in);
10785 }
10786 
10787 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10788                                  int opcode, int rd, int rn, int rm)
10789 {
10790     TCGv_i32 tcg_res[2];
10791     int part = is_q ? 2 : 0;
10792     int pass;
10793 
10794     for (pass = 0; pass < 2; pass++) {
10795         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10796         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10797         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10798         static NeonGenNarrowFn * const narrowfns[3][2] = {
10799             { gen_helper_neon_narrow_high_u8,
10800               gen_helper_neon_narrow_round_high_u8 },
10801             { gen_helper_neon_narrow_high_u16,
10802               gen_helper_neon_narrow_round_high_u16 },
10803             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10804         };
10805         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10806 
10807         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10808         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10809 
10810         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10811 
10812         tcg_res[pass] = tcg_temp_new_i32();
10813         gennarrow(tcg_res[pass], tcg_wideres);
10814     }
10815 
10816     for (pass = 0; pass < 2; pass++) {
10817         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10818     }
10819     clear_vec_high(s, is_q, rd);
10820 }
10821 
10822 /* AdvSIMD three different
10823  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10824  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10825  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10826  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10827  */
10828 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10829 {
10830     /* Instructions in this group fall into three basic classes
10831      * (in each case with the operation working on each element in
10832      * the input vectors):
10833      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10834      *     128 bit input)
10835      * (2) wide 64 x 128 -> 128
10836      * (3) narrowing 128 x 128 -> 64
10837      * Here we do initial decode, catch unallocated cases and
10838      * dispatch to separate functions for each class.
10839      */
10840     int is_q = extract32(insn, 30, 1);
10841     int is_u = extract32(insn, 29, 1);
10842     int size = extract32(insn, 22, 2);
10843     int opcode = extract32(insn, 12, 4);
10844     int rm = extract32(insn, 16, 5);
10845     int rn = extract32(insn, 5, 5);
10846     int rd = extract32(insn, 0, 5);
10847 
10848     switch (opcode) {
10849     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10850     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10851         /* 64 x 128 -> 128 */
10852         if (size == 3) {
10853             unallocated_encoding(s);
10854             return;
10855         }
10856         if (!fp_access_check(s)) {
10857             return;
10858         }
10859         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10860         break;
10861     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10862     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10863         /* 128 x 128 -> 64 */
10864         if (size == 3) {
10865             unallocated_encoding(s);
10866             return;
10867         }
10868         if (!fp_access_check(s)) {
10869             return;
10870         }
10871         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10872         break;
10873     case 14: /* PMULL, PMULL2 */
10874         if (is_u) {
10875             unallocated_encoding(s);
10876             return;
10877         }
10878         switch (size) {
10879         case 0: /* PMULL.P8 */
10880             if (!fp_access_check(s)) {
10881                 return;
10882             }
10883             /* The Q field specifies lo/hi half input for this insn.  */
10884             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10885                              gen_helper_neon_pmull_h);
10886             break;
10887 
10888         case 3: /* PMULL.P64 */
10889             if (!dc_isar_feature(aa64_pmull, s)) {
10890                 unallocated_encoding(s);
10891                 return;
10892             }
10893             if (!fp_access_check(s)) {
10894                 return;
10895             }
10896             /* The Q field specifies lo/hi half input for this insn.  */
10897             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10898                              gen_helper_gvec_pmull_q);
10899             break;
10900 
10901         default:
10902             unallocated_encoding(s);
10903             break;
10904         }
10905         return;
10906     case 9: /* SQDMLAL, SQDMLAL2 */
10907     case 11: /* SQDMLSL, SQDMLSL2 */
10908     case 13: /* SQDMULL, SQDMULL2 */
10909         if (is_u || size == 0) {
10910             unallocated_encoding(s);
10911             return;
10912         }
10913         /* fall through */
10914     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10915     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10916     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10917     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10918     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10919     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10920     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10921         /* 64 x 64 -> 128 */
10922         if (size == 3) {
10923             unallocated_encoding(s);
10924             return;
10925         }
10926         if (!fp_access_check(s)) {
10927             return;
10928         }
10929 
10930         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10931         break;
10932     default:
10933         /* opcode 15 not allocated */
10934         unallocated_encoding(s);
10935         break;
10936     }
10937 }
10938 
10939 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10940 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10941 {
10942     int rd = extract32(insn, 0, 5);
10943     int rn = extract32(insn, 5, 5);
10944     int rm = extract32(insn, 16, 5);
10945     int size = extract32(insn, 22, 2);
10946     bool is_u = extract32(insn, 29, 1);
10947     bool is_q = extract32(insn, 30, 1);
10948 
10949     if (!fp_access_check(s)) {
10950         return;
10951     }
10952 
10953     switch (size + 4 * is_u) {
10954     case 0: /* AND */
10955         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10956         return;
10957     case 1: /* BIC */
10958         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10959         return;
10960     case 2: /* ORR */
10961         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10962         return;
10963     case 3: /* ORN */
10964         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10965         return;
10966     case 4: /* EOR */
10967         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10968         return;
10969 
10970     case 5: /* BSL bitwise select */
10971         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10972         return;
10973     case 6: /* BIT, bitwise insert if true */
10974         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10975         return;
10976     case 7: /* BIF, bitwise insert if false */
10977         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10978         return;
10979 
10980     default:
10981         g_assert_not_reached();
10982     }
10983 }
10984 
10985 /* Pairwise op subgroup of C3.6.16.
10986  *
10987  * This is called directly or via the handle_3same_float for float pairwise
10988  * operations where the opcode and size are calculated differently.
10989  */
10990 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10991                                    int size, int rn, int rm, int rd)
10992 {
10993     TCGv_ptr fpst;
10994     int pass;
10995 
10996     /* Floating point operations need fpst */
10997     if (opcode >= 0x58) {
10998         fpst = fpstatus_ptr(FPST_FPCR);
10999     } else {
11000         fpst = NULL;
11001     }
11002 
11003     if (!fp_access_check(s)) {
11004         return;
11005     }
11006 
11007     /* These operations work on the concatenated rm:rn, with each pair of
11008      * adjacent elements being operated on to produce an element in the result.
11009      */
11010     if (size == 3) {
11011         TCGv_i64 tcg_res[2];
11012 
11013         for (pass = 0; pass < 2; pass++) {
11014             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11015             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11016             int passreg = (pass == 0) ? rn : rm;
11017 
11018             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11019             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11020             tcg_res[pass] = tcg_temp_new_i64();
11021 
11022             switch (opcode) {
11023             case 0x17: /* ADDP */
11024                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11025                 break;
11026             case 0x58: /* FMAXNMP */
11027                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11028                 break;
11029             case 0x5a: /* FADDP */
11030                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11031                 break;
11032             case 0x5e: /* FMAXP */
11033                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11034                 break;
11035             case 0x78: /* FMINNMP */
11036                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11037                 break;
11038             case 0x7e: /* FMINP */
11039                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11040                 break;
11041             default:
11042                 g_assert_not_reached();
11043             }
11044         }
11045 
11046         for (pass = 0; pass < 2; pass++) {
11047             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11048         }
11049     } else {
11050         int maxpass = is_q ? 4 : 2;
11051         TCGv_i32 tcg_res[4];
11052 
11053         for (pass = 0; pass < maxpass; pass++) {
11054             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11055             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11056             NeonGenTwoOpFn *genfn = NULL;
11057             int passreg = pass < (maxpass / 2) ? rn : rm;
11058             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11059 
11060             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11061             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11062             tcg_res[pass] = tcg_temp_new_i32();
11063 
11064             switch (opcode) {
11065             case 0x17: /* ADDP */
11066             {
11067                 static NeonGenTwoOpFn * const fns[3] = {
11068                     gen_helper_neon_padd_u8,
11069                     gen_helper_neon_padd_u16,
11070                     tcg_gen_add_i32,
11071                 };
11072                 genfn = fns[size];
11073                 break;
11074             }
11075             case 0x14: /* SMAXP, UMAXP */
11076             {
11077                 static NeonGenTwoOpFn * const fns[3][2] = {
11078                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11079                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11080                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11081                 };
11082                 genfn = fns[size][u];
11083                 break;
11084             }
11085             case 0x15: /* SMINP, UMINP */
11086             {
11087                 static NeonGenTwoOpFn * const fns[3][2] = {
11088                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11089                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11090                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11091                 };
11092                 genfn = fns[size][u];
11093                 break;
11094             }
11095             /* The FP operations are all on single floats (32 bit) */
11096             case 0x58: /* FMAXNMP */
11097                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11098                 break;
11099             case 0x5a: /* FADDP */
11100                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11101                 break;
11102             case 0x5e: /* FMAXP */
11103                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11104                 break;
11105             case 0x78: /* FMINNMP */
11106                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11107                 break;
11108             case 0x7e: /* FMINP */
11109                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11110                 break;
11111             default:
11112                 g_assert_not_reached();
11113             }
11114 
11115             /* FP ops called directly, otherwise call now */
11116             if (genfn) {
11117                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11118             }
11119         }
11120 
11121         for (pass = 0; pass < maxpass; pass++) {
11122             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11123         }
11124         clear_vec_high(s, is_q, rd);
11125     }
11126 }
11127 
11128 /* Floating point op subgroup of C3.6.16. */
11129 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11130 {
11131     /* For floating point ops, the U, size[1] and opcode bits
11132      * together indicate the operation. size[0] indicates single
11133      * or double.
11134      */
11135     int fpopcode = extract32(insn, 11, 5)
11136         | (extract32(insn, 23, 1) << 5)
11137         | (extract32(insn, 29, 1) << 6);
11138     int is_q = extract32(insn, 30, 1);
11139     int size = extract32(insn, 22, 1);
11140     int rm = extract32(insn, 16, 5);
11141     int rn = extract32(insn, 5, 5);
11142     int rd = extract32(insn, 0, 5);
11143 
11144     int datasize = is_q ? 128 : 64;
11145     int esize = 32 << size;
11146     int elements = datasize / esize;
11147 
11148     if (size == 1 && !is_q) {
11149         unallocated_encoding(s);
11150         return;
11151     }
11152 
11153     switch (fpopcode) {
11154     case 0x58: /* FMAXNMP */
11155     case 0x5a: /* FADDP */
11156     case 0x5e: /* FMAXP */
11157     case 0x78: /* FMINNMP */
11158     case 0x7e: /* FMINP */
11159         if (size && !is_q) {
11160             unallocated_encoding(s);
11161             return;
11162         }
11163         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11164                                rn, rm, rd);
11165         return;
11166     case 0x1b: /* FMULX */
11167     case 0x1f: /* FRECPS */
11168     case 0x3f: /* FRSQRTS */
11169     case 0x5d: /* FACGE */
11170     case 0x7d: /* FACGT */
11171     case 0x19: /* FMLA */
11172     case 0x39: /* FMLS */
11173     case 0x18: /* FMAXNM */
11174     case 0x1a: /* FADD */
11175     case 0x1c: /* FCMEQ */
11176     case 0x1e: /* FMAX */
11177     case 0x38: /* FMINNM */
11178     case 0x3a: /* FSUB */
11179     case 0x3e: /* FMIN */
11180     case 0x5b: /* FMUL */
11181     case 0x5c: /* FCMGE */
11182     case 0x5f: /* FDIV */
11183     case 0x7a: /* FABD */
11184     case 0x7c: /* FCMGT */
11185         if (!fp_access_check(s)) {
11186             return;
11187         }
11188         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11189         return;
11190 
11191     case 0x1d: /* FMLAL  */
11192     case 0x3d: /* FMLSL  */
11193     case 0x59: /* FMLAL2 */
11194     case 0x79: /* FMLSL2 */
11195         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11196             unallocated_encoding(s);
11197             return;
11198         }
11199         if (fp_access_check(s)) {
11200             int is_s = extract32(insn, 23, 1);
11201             int is_2 = extract32(insn, 29, 1);
11202             int data = (is_2 << 1) | is_s;
11203             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11204                                vec_full_reg_offset(s, rn),
11205                                vec_full_reg_offset(s, rm), cpu_env,
11206                                is_q ? 16 : 8, vec_full_reg_size(s),
11207                                data, gen_helper_gvec_fmlal_a64);
11208         }
11209         return;
11210 
11211     default:
11212         unallocated_encoding(s);
11213         return;
11214     }
11215 }
11216 
11217 /* Integer op subgroup of C3.6.16. */
11218 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11219 {
11220     int is_q = extract32(insn, 30, 1);
11221     int u = extract32(insn, 29, 1);
11222     int size = extract32(insn, 22, 2);
11223     int opcode = extract32(insn, 11, 5);
11224     int rm = extract32(insn, 16, 5);
11225     int rn = extract32(insn, 5, 5);
11226     int rd = extract32(insn, 0, 5);
11227     int pass;
11228     TCGCond cond;
11229 
11230     switch (opcode) {
11231     case 0x13: /* MUL, PMUL */
11232         if (u && size != 0) {
11233             unallocated_encoding(s);
11234             return;
11235         }
11236         /* fall through */
11237     case 0x0: /* SHADD, UHADD */
11238     case 0x2: /* SRHADD, URHADD */
11239     case 0x4: /* SHSUB, UHSUB */
11240     case 0xc: /* SMAX, UMAX */
11241     case 0xd: /* SMIN, UMIN */
11242     case 0xe: /* SABD, UABD */
11243     case 0xf: /* SABA, UABA */
11244     case 0x12: /* MLA, MLS */
11245         if (size == 3) {
11246             unallocated_encoding(s);
11247             return;
11248         }
11249         break;
11250     case 0x16: /* SQDMULH, SQRDMULH */
11251         if (size == 0 || size == 3) {
11252             unallocated_encoding(s);
11253             return;
11254         }
11255         break;
11256     default:
11257         if (size == 3 && !is_q) {
11258             unallocated_encoding(s);
11259             return;
11260         }
11261         break;
11262     }
11263 
11264     if (!fp_access_check(s)) {
11265         return;
11266     }
11267 
11268     switch (opcode) {
11269     case 0x01: /* SQADD, UQADD */
11270         if (u) {
11271             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11272         } else {
11273             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11274         }
11275         return;
11276     case 0x05: /* SQSUB, UQSUB */
11277         if (u) {
11278             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11279         } else {
11280             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11281         }
11282         return;
11283     case 0x08: /* SSHL, USHL */
11284         if (u) {
11285             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11286         } else {
11287             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11288         }
11289         return;
11290     case 0x0c: /* SMAX, UMAX */
11291         if (u) {
11292             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11293         } else {
11294             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11295         }
11296         return;
11297     case 0x0d: /* SMIN, UMIN */
11298         if (u) {
11299             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11300         } else {
11301             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11302         }
11303         return;
11304     case 0xe: /* SABD, UABD */
11305         if (u) {
11306             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11307         } else {
11308             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11309         }
11310         return;
11311     case 0xf: /* SABA, UABA */
11312         if (u) {
11313             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11314         } else {
11315             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11316         }
11317         return;
11318     case 0x10: /* ADD, SUB */
11319         if (u) {
11320             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11321         } else {
11322             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11323         }
11324         return;
11325     case 0x13: /* MUL, PMUL */
11326         if (!u) { /* MUL */
11327             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11328         } else {  /* PMUL */
11329             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11330         }
11331         return;
11332     case 0x12: /* MLA, MLS */
11333         if (u) {
11334             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11335         } else {
11336             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11337         }
11338         return;
11339     case 0x16: /* SQDMULH, SQRDMULH */
11340         {
11341             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11342                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11343                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11344             };
11345             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11346         }
11347         return;
11348     case 0x11:
11349         if (!u) { /* CMTST */
11350             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11351             return;
11352         }
11353         /* else CMEQ */
11354         cond = TCG_COND_EQ;
11355         goto do_gvec_cmp;
11356     case 0x06: /* CMGT, CMHI */
11357         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11358         goto do_gvec_cmp;
11359     case 0x07: /* CMGE, CMHS */
11360         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11361     do_gvec_cmp:
11362         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11363                          vec_full_reg_offset(s, rn),
11364                          vec_full_reg_offset(s, rm),
11365                          is_q ? 16 : 8, vec_full_reg_size(s));
11366         return;
11367     }
11368 
11369     if (size == 3) {
11370         assert(is_q);
11371         for (pass = 0; pass < 2; pass++) {
11372             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11373             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11374             TCGv_i64 tcg_res = tcg_temp_new_i64();
11375 
11376             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11377             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11378 
11379             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11380 
11381             write_vec_element(s, tcg_res, rd, pass, MO_64);
11382         }
11383     } else {
11384         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11385             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11386             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11387             TCGv_i32 tcg_res = tcg_temp_new_i32();
11388             NeonGenTwoOpFn *genfn = NULL;
11389             NeonGenTwoOpEnvFn *genenvfn = NULL;
11390 
11391             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11392             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11393 
11394             switch (opcode) {
11395             case 0x0: /* SHADD, UHADD */
11396             {
11397                 static NeonGenTwoOpFn * const fns[3][2] = {
11398                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11399                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11400                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11401                 };
11402                 genfn = fns[size][u];
11403                 break;
11404             }
11405             case 0x2: /* SRHADD, URHADD */
11406             {
11407                 static NeonGenTwoOpFn * const fns[3][2] = {
11408                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11409                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11410                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11411                 };
11412                 genfn = fns[size][u];
11413                 break;
11414             }
11415             case 0x4: /* SHSUB, UHSUB */
11416             {
11417                 static NeonGenTwoOpFn * const fns[3][2] = {
11418                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11419                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11420                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11421                 };
11422                 genfn = fns[size][u];
11423                 break;
11424             }
11425             case 0x9: /* SQSHL, UQSHL */
11426             {
11427                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11428                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11429                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11430                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11431                 };
11432                 genenvfn = fns[size][u];
11433                 break;
11434             }
11435             case 0xa: /* SRSHL, URSHL */
11436             {
11437                 static NeonGenTwoOpFn * const fns[3][2] = {
11438                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11439                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11440                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11441                 };
11442                 genfn = fns[size][u];
11443                 break;
11444             }
11445             case 0xb: /* SQRSHL, UQRSHL */
11446             {
11447                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11448                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11449                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11450                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11451                 };
11452                 genenvfn = fns[size][u];
11453                 break;
11454             }
11455             default:
11456                 g_assert_not_reached();
11457             }
11458 
11459             if (genenvfn) {
11460                 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11461             } else {
11462                 genfn(tcg_res, tcg_op1, tcg_op2);
11463             }
11464 
11465             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11466         }
11467     }
11468     clear_vec_high(s, is_q, rd);
11469 }
11470 
11471 /* AdvSIMD three same
11472  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11473  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11474  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11475  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11476  */
11477 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11478 {
11479     int opcode = extract32(insn, 11, 5);
11480 
11481     switch (opcode) {
11482     case 0x3: /* logic ops */
11483         disas_simd_3same_logic(s, insn);
11484         break;
11485     case 0x17: /* ADDP */
11486     case 0x14: /* SMAXP, UMAXP */
11487     case 0x15: /* SMINP, UMINP */
11488     {
11489         /* Pairwise operations */
11490         int is_q = extract32(insn, 30, 1);
11491         int u = extract32(insn, 29, 1);
11492         int size = extract32(insn, 22, 2);
11493         int rm = extract32(insn, 16, 5);
11494         int rn = extract32(insn, 5, 5);
11495         int rd = extract32(insn, 0, 5);
11496         if (opcode == 0x17) {
11497             if (u || (size == 3 && !is_q)) {
11498                 unallocated_encoding(s);
11499                 return;
11500             }
11501         } else {
11502             if (size == 3) {
11503                 unallocated_encoding(s);
11504                 return;
11505             }
11506         }
11507         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11508         break;
11509     }
11510     case 0x18 ... 0x31:
11511         /* floating point ops, sz[1] and U are part of opcode */
11512         disas_simd_3same_float(s, insn);
11513         break;
11514     default:
11515         disas_simd_3same_int(s, insn);
11516         break;
11517     }
11518 }
11519 
11520 /*
11521  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11522  *
11523  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11524  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11525  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11526  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11527  *
11528  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11529  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11530  *
11531  */
11532 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11533 {
11534     int opcode = extract32(insn, 11, 3);
11535     int u = extract32(insn, 29, 1);
11536     int a = extract32(insn, 23, 1);
11537     int is_q = extract32(insn, 30, 1);
11538     int rm = extract32(insn, 16, 5);
11539     int rn = extract32(insn, 5, 5);
11540     int rd = extract32(insn, 0, 5);
11541     /*
11542      * For these floating point ops, the U, a and opcode bits
11543      * together indicate the operation.
11544      */
11545     int fpopcode = opcode | (a << 3) | (u << 4);
11546     int datasize = is_q ? 128 : 64;
11547     int elements = datasize / 16;
11548     bool pairwise;
11549     TCGv_ptr fpst;
11550     int pass;
11551 
11552     switch (fpopcode) {
11553     case 0x0: /* FMAXNM */
11554     case 0x1: /* FMLA */
11555     case 0x2: /* FADD */
11556     case 0x3: /* FMULX */
11557     case 0x4: /* FCMEQ */
11558     case 0x6: /* FMAX */
11559     case 0x7: /* FRECPS */
11560     case 0x8: /* FMINNM */
11561     case 0x9: /* FMLS */
11562     case 0xa: /* FSUB */
11563     case 0xe: /* FMIN */
11564     case 0xf: /* FRSQRTS */
11565     case 0x13: /* FMUL */
11566     case 0x14: /* FCMGE */
11567     case 0x15: /* FACGE */
11568     case 0x17: /* FDIV */
11569     case 0x1a: /* FABD */
11570     case 0x1c: /* FCMGT */
11571     case 0x1d: /* FACGT */
11572         pairwise = false;
11573         break;
11574     case 0x10: /* FMAXNMP */
11575     case 0x12: /* FADDP */
11576     case 0x16: /* FMAXP */
11577     case 0x18: /* FMINNMP */
11578     case 0x1e: /* FMINP */
11579         pairwise = true;
11580         break;
11581     default:
11582         unallocated_encoding(s);
11583         return;
11584     }
11585 
11586     if (!dc_isar_feature(aa64_fp16, s)) {
11587         unallocated_encoding(s);
11588         return;
11589     }
11590 
11591     if (!fp_access_check(s)) {
11592         return;
11593     }
11594 
11595     fpst = fpstatus_ptr(FPST_FPCR_F16);
11596 
11597     if (pairwise) {
11598         int maxpass = is_q ? 8 : 4;
11599         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11600         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11601         TCGv_i32 tcg_res[8];
11602 
11603         for (pass = 0; pass < maxpass; pass++) {
11604             int passreg = pass < (maxpass / 2) ? rn : rm;
11605             int passelt = (pass << 1) & (maxpass - 1);
11606 
11607             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11608             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11609             tcg_res[pass] = tcg_temp_new_i32();
11610 
11611             switch (fpopcode) {
11612             case 0x10: /* FMAXNMP */
11613                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11614                                            fpst);
11615                 break;
11616             case 0x12: /* FADDP */
11617                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11618                 break;
11619             case 0x16: /* FMAXP */
11620                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11621                 break;
11622             case 0x18: /* FMINNMP */
11623                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11624                                            fpst);
11625                 break;
11626             case 0x1e: /* FMINP */
11627                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11628                 break;
11629             default:
11630                 g_assert_not_reached();
11631             }
11632         }
11633 
11634         for (pass = 0; pass < maxpass; pass++) {
11635             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11636         }
11637     } else {
11638         for (pass = 0; pass < elements; pass++) {
11639             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11640             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11641             TCGv_i32 tcg_res = tcg_temp_new_i32();
11642 
11643             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11644             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11645 
11646             switch (fpopcode) {
11647             case 0x0: /* FMAXNM */
11648                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11649                 break;
11650             case 0x1: /* FMLA */
11651                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11652                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11653                                            fpst);
11654                 break;
11655             case 0x2: /* FADD */
11656                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11657                 break;
11658             case 0x3: /* FMULX */
11659                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11660                 break;
11661             case 0x4: /* FCMEQ */
11662                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11663                 break;
11664             case 0x6: /* FMAX */
11665                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11666                 break;
11667             case 0x7: /* FRECPS */
11668                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11669                 break;
11670             case 0x8: /* FMINNM */
11671                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11672                 break;
11673             case 0x9: /* FMLS */
11674                 /* As usual for ARM, separate negation for fused multiply-add */
11675                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11676                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11677                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11678                                            fpst);
11679                 break;
11680             case 0xa: /* FSUB */
11681                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11682                 break;
11683             case 0xe: /* FMIN */
11684                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11685                 break;
11686             case 0xf: /* FRSQRTS */
11687                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11688                 break;
11689             case 0x13: /* FMUL */
11690                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11691                 break;
11692             case 0x14: /* FCMGE */
11693                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11694                 break;
11695             case 0x15: /* FACGE */
11696                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11697                 break;
11698             case 0x17: /* FDIV */
11699                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11700                 break;
11701             case 0x1a: /* FABD */
11702                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11703                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11704                 break;
11705             case 0x1c: /* FCMGT */
11706                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11707                 break;
11708             case 0x1d: /* FACGT */
11709                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11710                 break;
11711             default:
11712                 g_assert_not_reached();
11713             }
11714 
11715             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11716         }
11717     }
11718 
11719     clear_vec_high(s, is_q, rd);
11720 }
11721 
11722 /* AdvSIMD three same extra
11723  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11724  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11725  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11726  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11727  */
11728 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11729 {
11730     int rd = extract32(insn, 0, 5);
11731     int rn = extract32(insn, 5, 5);
11732     int opcode = extract32(insn, 11, 4);
11733     int rm = extract32(insn, 16, 5);
11734     int size = extract32(insn, 22, 2);
11735     bool u = extract32(insn, 29, 1);
11736     bool is_q = extract32(insn, 30, 1);
11737     bool feature;
11738     int rot;
11739 
11740     switch (u * 16 + opcode) {
11741     case 0x10: /* SQRDMLAH (vector) */
11742     case 0x11: /* SQRDMLSH (vector) */
11743         if (size != 1 && size != 2) {
11744             unallocated_encoding(s);
11745             return;
11746         }
11747         feature = dc_isar_feature(aa64_rdm, s);
11748         break;
11749     case 0x02: /* SDOT (vector) */
11750     case 0x12: /* UDOT (vector) */
11751         if (size != MO_32) {
11752             unallocated_encoding(s);
11753             return;
11754         }
11755         feature = dc_isar_feature(aa64_dp, s);
11756         break;
11757     case 0x03: /* USDOT */
11758         if (size != MO_32) {
11759             unallocated_encoding(s);
11760             return;
11761         }
11762         feature = dc_isar_feature(aa64_i8mm, s);
11763         break;
11764     case 0x04: /* SMMLA */
11765     case 0x14: /* UMMLA */
11766     case 0x05: /* USMMLA */
11767         if (!is_q || size != MO_32) {
11768             unallocated_encoding(s);
11769             return;
11770         }
11771         feature = dc_isar_feature(aa64_i8mm, s);
11772         break;
11773     case 0x18: /* FCMLA, #0 */
11774     case 0x19: /* FCMLA, #90 */
11775     case 0x1a: /* FCMLA, #180 */
11776     case 0x1b: /* FCMLA, #270 */
11777     case 0x1c: /* FCADD, #90 */
11778     case 0x1e: /* FCADD, #270 */
11779         if (size == 0
11780             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11781             || (size == 3 && !is_q)) {
11782             unallocated_encoding(s);
11783             return;
11784         }
11785         feature = dc_isar_feature(aa64_fcma, s);
11786         break;
11787     case 0x1d: /* BFMMLA */
11788         if (size != MO_16 || !is_q) {
11789             unallocated_encoding(s);
11790             return;
11791         }
11792         feature = dc_isar_feature(aa64_bf16, s);
11793         break;
11794     case 0x1f:
11795         switch (size) {
11796         case 1: /* BFDOT */
11797         case 3: /* BFMLAL{B,T} */
11798             feature = dc_isar_feature(aa64_bf16, s);
11799             break;
11800         default:
11801             unallocated_encoding(s);
11802             return;
11803         }
11804         break;
11805     default:
11806         unallocated_encoding(s);
11807         return;
11808     }
11809     if (!feature) {
11810         unallocated_encoding(s);
11811         return;
11812     }
11813     if (!fp_access_check(s)) {
11814         return;
11815     }
11816 
11817     switch (opcode) {
11818     case 0x0: /* SQRDMLAH (vector) */
11819         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11820         return;
11821 
11822     case 0x1: /* SQRDMLSH (vector) */
11823         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11824         return;
11825 
11826     case 0x2: /* SDOT / UDOT */
11827         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11828                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11829         return;
11830 
11831     case 0x3: /* USDOT */
11832         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11833         return;
11834 
11835     case 0x04: /* SMMLA, UMMLA */
11836         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11837                          u ? gen_helper_gvec_ummla_b
11838                          : gen_helper_gvec_smmla_b);
11839         return;
11840     case 0x05: /* USMMLA */
11841         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11842         return;
11843 
11844     case 0x8: /* FCMLA, #0 */
11845     case 0x9: /* FCMLA, #90 */
11846     case 0xa: /* FCMLA, #180 */
11847     case 0xb: /* FCMLA, #270 */
11848         rot = extract32(opcode, 0, 2);
11849         switch (size) {
11850         case 1:
11851             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11852                               gen_helper_gvec_fcmlah);
11853             break;
11854         case 2:
11855             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11856                               gen_helper_gvec_fcmlas);
11857             break;
11858         case 3:
11859             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11860                               gen_helper_gvec_fcmlad);
11861             break;
11862         default:
11863             g_assert_not_reached();
11864         }
11865         return;
11866 
11867     case 0xc: /* FCADD, #90 */
11868     case 0xe: /* FCADD, #270 */
11869         rot = extract32(opcode, 1, 1);
11870         switch (size) {
11871         case 1:
11872             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11873                               gen_helper_gvec_fcaddh);
11874             break;
11875         case 2:
11876             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11877                               gen_helper_gvec_fcadds);
11878             break;
11879         case 3:
11880             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11881                               gen_helper_gvec_fcaddd);
11882             break;
11883         default:
11884             g_assert_not_reached();
11885         }
11886         return;
11887 
11888     case 0xd: /* BFMMLA */
11889         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11890         return;
11891     case 0xf:
11892         switch (size) {
11893         case 1: /* BFDOT */
11894             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11895             break;
11896         case 3: /* BFMLAL{B,T} */
11897             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11898                               gen_helper_gvec_bfmlal);
11899             break;
11900         default:
11901             g_assert_not_reached();
11902         }
11903         return;
11904 
11905     default:
11906         g_assert_not_reached();
11907     }
11908 }
11909 
11910 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11911                                   int size, int rn, int rd)
11912 {
11913     /* Handle 2-reg-misc ops which are widening (so each size element
11914      * in the source becomes a 2*size element in the destination.
11915      * The only instruction like this is FCVTL.
11916      */
11917     int pass;
11918 
11919     if (size == 3) {
11920         /* 32 -> 64 bit fp conversion */
11921         TCGv_i64 tcg_res[2];
11922         int srcelt = is_q ? 2 : 0;
11923 
11924         for (pass = 0; pass < 2; pass++) {
11925             TCGv_i32 tcg_op = tcg_temp_new_i32();
11926             tcg_res[pass] = tcg_temp_new_i64();
11927 
11928             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11929             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11930         }
11931         for (pass = 0; pass < 2; pass++) {
11932             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11933         }
11934     } else {
11935         /* 16 -> 32 bit fp conversion */
11936         int srcelt = is_q ? 4 : 0;
11937         TCGv_i32 tcg_res[4];
11938         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11939         TCGv_i32 ahp = get_ahp_flag();
11940 
11941         for (pass = 0; pass < 4; pass++) {
11942             tcg_res[pass] = tcg_temp_new_i32();
11943 
11944             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11945             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11946                                            fpst, ahp);
11947         }
11948         for (pass = 0; pass < 4; pass++) {
11949             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11950         }
11951     }
11952 }
11953 
11954 static void handle_rev(DisasContext *s, int opcode, bool u,
11955                        bool is_q, int size, int rn, int rd)
11956 {
11957     int op = (opcode << 1) | u;
11958     int opsz = op + size;
11959     int grp_size = 3 - opsz;
11960     int dsize = is_q ? 128 : 64;
11961     int i;
11962 
11963     if (opsz >= 3) {
11964         unallocated_encoding(s);
11965         return;
11966     }
11967 
11968     if (!fp_access_check(s)) {
11969         return;
11970     }
11971 
11972     if (size == 0) {
11973         /* Special case bytes, use bswap op on each group of elements */
11974         int groups = dsize / (8 << grp_size);
11975 
11976         for (i = 0; i < groups; i++) {
11977             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11978 
11979             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11980             switch (grp_size) {
11981             case MO_16:
11982                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11983                 break;
11984             case MO_32:
11985                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11986                 break;
11987             case MO_64:
11988                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11989                 break;
11990             default:
11991                 g_assert_not_reached();
11992             }
11993             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11994         }
11995         clear_vec_high(s, is_q, rd);
11996     } else {
11997         int revmask = (1 << grp_size) - 1;
11998         int esize = 8 << size;
11999         int elements = dsize / esize;
12000         TCGv_i64 tcg_rn = tcg_temp_new_i64();
12001         TCGv_i64 tcg_rd[2];
12002 
12003         for (i = 0; i < 2; i++) {
12004             tcg_rd[i] = tcg_temp_new_i64();
12005             tcg_gen_movi_i64(tcg_rd[i], 0);
12006         }
12007 
12008         for (i = 0; i < elements; i++) {
12009             int e_rev = (i & 0xf) ^ revmask;
12010             int w = (e_rev * esize) / 64;
12011             int o = (e_rev * esize) % 64;
12012 
12013             read_vec_element(s, tcg_rn, rn, i, size);
12014             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
12015         }
12016 
12017         for (i = 0; i < 2; i++) {
12018             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
12019         }
12020         clear_vec_high(s, true, rd);
12021     }
12022 }
12023 
12024 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12025                                   bool is_q, int size, int rn, int rd)
12026 {
12027     /* Implement the pairwise operations from 2-misc:
12028      * SADDLP, UADDLP, SADALP, UADALP.
12029      * These all add pairs of elements in the input to produce a
12030      * double-width result element in the output (possibly accumulating).
12031      */
12032     bool accum = (opcode == 0x6);
12033     int maxpass = is_q ? 2 : 1;
12034     int pass;
12035     TCGv_i64 tcg_res[2];
12036 
12037     if (size == 2) {
12038         /* 32 + 32 -> 64 op */
12039         MemOp memop = size + (u ? 0 : MO_SIGN);
12040 
12041         for (pass = 0; pass < maxpass; pass++) {
12042             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12043             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12044 
12045             tcg_res[pass] = tcg_temp_new_i64();
12046 
12047             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12048             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12049             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12050             if (accum) {
12051                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12052                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12053             }
12054         }
12055     } else {
12056         for (pass = 0; pass < maxpass; pass++) {
12057             TCGv_i64 tcg_op = tcg_temp_new_i64();
12058             NeonGenOne64OpFn *genfn;
12059             static NeonGenOne64OpFn * const fns[2][2] = {
12060                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12061                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12062             };
12063 
12064             genfn = fns[size][u];
12065 
12066             tcg_res[pass] = tcg_temp_new_i64();
12067 
12068             read_vec_element(s, tcg_op, rn, pass, MO_64);
12069             genfn(tcg_res[pass], tcg_op);
12070 
12071             if (accum) {
12072                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12073                 if (size == 0) {
12074                     gen_helper_neon_addl_u16(tcg_res[pass],
12075                                              tcg_res[pass], tcg_op);
12076                 } else {
12077                     gen_helper_neon_addl_u32(tcg_res[pass],
12078                                              tcg_res[pass], tcg_op);
12079                 }
12080             }
12081         }
12082     }
12083     if (!is_q) {
12084         tcg_res[1] = tcg_constant_i64(0);
12085     }
12086     for (pass = 0; pass < 2; pass++) {
12087         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12088     }
12089 }
12090 
12091 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12092 {
12093     /* Implement SHLL and SHLL2 */
12094     int pass;
12095     int part = is_q ? 2 : 0;
12096     TCGv_i64 tcg_res[2];
12097 
12098     for (pass = 0; pass < 2; pass++) {
12099         static NeonGenWidenFn * const widenfns[3] = {
12100             gen_helper_neon_widen_u8,
12101             gen_helper_neon_widen_u16,
12102             tcg_gen_extu_i32_i64,
12103         };
12104         NeonGenWidenFn *widenfn = widenfns[size];
12105         TCGv_i32 tcg_op = tcg_temp_new_i32();
12106 
12107         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12108         tcg_res[pass] = tcg_temp_new_i64();
12109         widenfn(tcg_res[pass], tcg_op);
12110         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12111     }
12112 
12113     for (pass = 0; pass < 2; pass++) {
12114         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12115     }
12116 }
12117 
12118 /* AdvSIMD two reg misc
12119  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12120  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12121  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12122  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12123  */
12124 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12125 {
12126     int size = extract32(insn, 22, 2);
12127     int opcode = extract32(insn, 12, 5);
12128     bool u = extract32(insn, 29, 1);
12129     bool is_q = extract32(insn, 30, 1);
12130     int rn = extract32(insn, 5, 5);
12131     int rd = extract32(insn, 0, 5);
12132     bool need_fpstatus = false;
12133     int rmode = -1;
12134     TCGv_i32 tcg_rmode;
12135     TCGv_ptr tcg_fpstatus;
12136 
12137     switch (opcode) {
12138     case 0x0: /* REV64, REV32 */
12139     case 0x1: /* REV16 */
12140         handle_rev(s, opcode, u, is_q, size, rn, rd);
12141         return;
12142     case 0x5: /* CNT, NOT, RBIT */
12143         if (u && size == 0) {
12144             /* NOT */
12145             break;
12146         } else if (u && size == 1) {
12147             /* RBIT */
12148             break;
12149         } else if (!u && size == 0) {
12150             /* CNT */
12151             break;
12152         }
12153         unallocated_encoding(s);
12154         return;
12155     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12156     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12157         if (size == 3) {
12158             unallocated_encoding(s);
12159             return;
12160         }
12161         if (!fp_access_check(s)) {
12162             return;
12163         }
12164 
12165         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12166         return;
12167     case 0x4: /* CLS, CLZ */
12168         if (size == 3) {
12169             unallocated_encoding(s);
12170             return;
12171         }
12172         break;
12173     case 0x2: /* SADDLP, UADDLP */
12174     case 0x6: /* SADALP, UADALP */
12175         if (size == 3) {
12176             unallocated_encoding(s);
12177             return;
12178         }
12179         if (!fp_access_check(s)) {
12180             return;
12181         }
12182         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12183         return;
12184     case 0x13: /* SHLL, SHLL2 */
12185         if (u == 0 || size == 3) {
12186             unallocated_encoding(s);
12187             return;
12188         }
12189         if (!fp_access_check(s)) {
12190             return;
12191         }
12192         handle_shll(s, is_q, size, rn, rd);
12193         return;
12194     case 0xa: /* CMLT */
12195         if (u == 1) {
12196             unallocated_encoding(s);
12197             return;
12198         }
12199         /* fall through */
12200     case 0x8: /* CMGT, CMGE */
12201     case 0x9: /* CMEQ, CMLE */
12202     case 0xb: /* ABS, NEG */
12203         if (size == 3 && !is_q) {
12204             unallocated_encoding(s);
12205             return;
12206         }
12207         break;
12208     case 0x3: /* SUQADD, USQADD */
12209         if (size == 3 && !is_q) {
12210             unallocated_encoding(s);
12211             return;
12212         }
12213         if (!fp_access_check(s)) {
12214             return;
12215         }
12216         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12217         return;
12218     case 0x7: /* SQABS, SQNEG */
12219         if (size == 3 && !is_q) {
12220             unallocated_encoding(s);
12221             return;
12222         }
12223         break;
12224     case 0xc ... 0xf:
12225     case 0x16 ... 0x1f:
12226     {
12227         /* Floating point: U, size[1] and opcode indicate operation;
12228          * size[0] indicates single or double precision.
12229          */
12230         int is_double = extract32(size, 0, 1);
12231         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12232         size = is_double ? 3 : 2;
12233         switch (opcode) {
12234         case 0x2f: /* FABS */
12235         case 0x6f: /* FNEG */
12236             if (size == 3 && !is_q) {
12237                 unallocated_encoding(s);
12238                 return;
12239             }
12240             break;
12241         case 0x1d: /* SCVTF */
12242         case 0x5d: /* UCVTF */
12243         {
12244             bool is_signed = (opcode == 0x1d) ? true : false;
12245             int elements = is_double ? 2 : is_q ? 4 : 2;
12246             if (is_double && !is_q) {
12247                 unallocated_encoding(s);
12248                 return;
12249             }
12250             if (!fp_access_check(s)) {
12251                 return;
12252             }
12253             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12254             return;
12255         }
12256         case 0x2c: /* FCMGT (zero) */
12257         case 0x2d: /* FCMEQ (zero) */
12258         case 0x2e: /* FCMLT (zero) */
12259         case 0x6c: /* FCMGE (zero) */
12260         case 0x6d: /* FCMLE (zero) */
12261             if (size == 3 && !is_q) {
12262                 unallocated_encoding(s);
12263                 return;
12264             }
12265             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12266             return;
12267         case 0x7f: /* FSQRT */
12268             if (size == 3 && !is_q) {
12269                 unallocated_encoding(s);
12270                 return;
12271             }
12272             break;
12273         case 0x1a: /* FCVTNS */
12274         case 0x1b: /* FCVTMS */
12275         case 0x3a: /* FCVTPS */
12276         case 0x3b: /* FCVTZS */
12277         case 0x5a: /* FCVTNU */
12278         case 0x5b: /* FCVTMU */
12279         case 0x7a: /* FCVTPU */
12280         case 0x7b: /* FCVTZU */
12281             need_fpstatus = true;
12282             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12283             if (size == 3 && !is_q) {
12284                 unallocated_encoding(s);
12285                 return;
12286             }
12287             break;
12288         case 0x5c: /* FCVTAU */
12289         case 0x1c: /* FCVTAS */
12290             need_fpstatus = true;
12291             rmode = FPROUNDING_TIEAWAY;
12292             if (size == 3 && !is_q) {
12293                 unallocated_encoding(s);
12294                 return;
12295             }
12296             break;
12297         case 0x3c: /* URECPE */
12298             if (size == 3) {
12299                 unallocated_encoding(s);
12300                 return;
12301             }
12302             /* fall through */
12303         case 0x3d: /* FRECPE */
12304         case 0x7d: /* FRSQRTE */
12305             if (size == 3 && !is_q) {
12306                 unallocated_encoding(s);
12307                 return;
12308             }
12309             if (!fp_access_check(s)) {
12310                 return;
12311             }
12312             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12313             return;
12314         case 0x56: /* FCVTXN, FCVTXN2 */
12315             if (size == 2) {
12316                 unallocated_encoding(s);
12317                 return;
12318             }
12319             /* fall through */
12320         case 0x16: /* FCVTN, FCVTN2 */
12321             /* handle_2misc_narrow does a 2*size -> size operation, but these
12322              * instructions encode the source size rather than dest size.
12323              */
12324             if (!fp_access_check(s)) {
12325                 return;
12326             }
12327             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12328             return;
12329         case 0x36: /* BFCVTN, BFCVTN2 */
12330             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12331                 unallocated_encoding(s);
12332                 return;
12333             }
12334             if (!fp_access_check(s)) {
12335                 return;
12336             }
12337             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12338             return;
12339         case 0x17: /* FCVTL, FCVTL2 */
12340             if (!fp_access_check(s)) {
12341                 return;
12342             }
12343             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12344             return;
12345         case 0x18: /* FRINTN */
12346         case 0x19: /* FRINTM */
12347         case 0x38: /* FRINTP */
12348         case 0x39: /* FRINTZ */
12349             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12350             /* fall through */
12351         case 0x59: /* FRINTX */
12352         case 0x79: /* FRINTI */
12353             need_fpstatus = true;
12354             if (size == 3 && !is_q) {
12355                 unallocated_encoding(s);
12356                 return;
12357             }
12358             break;
12359         case 0x58: /* FRINTA */
12360             rmode = FPROUNDING_TIEAWAY;
12361             need_fpstatus = true;
12362             if (size == 3 && !is_q) {
12363                 unallocated_encoding(s);
12364                 return;
12365             }
12366             break;
12367         case 0x7c: /* URSQRTE */
12368             if (size == 3) {
12369                 unallocated_encoding(s);
12370                 return;
12371             }
12372             break;
12373         case 0x1e: /* FRINT32Z */
12374         case 0x1f: /* FRINT64Z */
12375             rmode = FPROUNDING_ZERO;
12376             /* fall through */
12377         case 0x5e: /* FRINT32X */
12378         case 0x5f: /* FRINT64X */
12379             need_fpstatus = true;
12380             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12381                 unallocated_encoding(s);
12382                 return;
12383             }
12384             break;
12385         default:
12386             unallocated_encoding(s);
12387             return;
12388         }
12389         break;
12390     }
12391     default:
12392         unallocated_encoding(s);
12393         return;
12394     }
12395 
12396     if (!fp_access_check(s)) {
12397         return;
12398     }
12399 
12400     if (need_fpstatus || rmode >= 0) {
12401         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12402     } else {
12403         tcg_fpstatus = NULL;
12404     }
12405     if (rmode >= 0) {
12406         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12407     } else {
12408         tcg_rmode = NULL;
12409     }
12410 
12411     switch (opcode) {
12412     case 0x5:
12413         if (u && size == 0) { /* NOT */
12414             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12415             return;
12416         }
12417         break;
12418     case 0x8: /* CMGT, CMGE */
12419         if (u) {
12420             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12421         } else {
12422             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12423         }
12424         return;
12425     case 0x9: /* CMEQ, CMLE */
12426         if (u) {
12427             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12428         } else {
12429             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12430         }
12431         return;
12432     case 0xa: /* CMLT */
12433         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12434         return;
12435     case 0xb:
12436         if (u) { /* ABS, NEG */
12437             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12438         } else {
12439             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12440         }
12441         return;
12442     }
12443 
12444     if (size == 3) {
12445         /* All 64-bit element operations can be shared with scalar 2misc */
12446         int pass;
12447 
12448         /* Coverity claims (size == 3 && !is_q) has been eliminated
12449          * from all paths leading to here.
12450          */
12451         tcg_debug_assert(is_q);
12452         for (pass = 0; pass < 2; pass++) {
12453             TCGv_i64 tcg_op = tcg_temp_new_i64();
12454             TCGv_i64 tcg_res = tcg_temp_new_i64();
12455 
12456             read_vec_element(s, tcg_op, rn, pass, MO_64);
12457 
12458             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12459                             tcg_rmode, tcg_fpstatus);
12460 
12461             write_vec_element(s, tcg_res, rd, pass, MO_64);
12462         }
12463     } else {
12464         int pass;
12465 
12466         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12467             TCGv_i32 tcg_op = tcg_temp_new_i32();
12468             TCGv_i32 tcg_res = tcg_temp_new_i32();
12469 
12470             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12471 
12472             if (size == 2) {
12473                 /* Special cases for 32 bit elements */
12474                 switch (opcode) {
12475                 case 0x4: /* CLS */
12476                     if (u) {
12477                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12478                     } else {
12479                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12480                     }
12481                     break;
12482                 case 0x7: /* SQABS, SQNEG */
12483                     if (u) {
12484                         gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12485                     } else {
12486                         gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12487                     }
12488                     break;
12489                 case 0x2f: /* FABS */
12490                     gen_helper_vfp_abss(tcg_res, tcg_op);
12491                     break;
12492                 case 0x6f: /* FNEG */
12493                     gen_helper_vfp_negs(tcg_res, tcg_op);
12494                     break;
12495                 case 0x7f: /* FSQRT */
12496                     gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12497                     break;
12498                 case 0x1a: /* FCVTNS */
12499                 case 0x1b: /* FCVTMS */
12500                 case 0x1c: /* FCVTAS */
12501                 case 0x3a: /* FCVTPS */
12502                 case 0x3b: /* FCVTZS */
12503                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12504                                          tcg_constant_i32(0), tcg_fpstatus);
12505                     break;
12506                 case 0x5a: /* FCVTNU */
12507                 case 0x5b: /* FCVTMU */
12508                 case 0x5c: /* FCVTAU */
12509                 case 0x7a: /* FCVTPU */
12510                 case 0x7b: /* FCVTZU */
12511                     gen_helper_vfp_touls(tcg_res, tcg_op,
12512                                          tcg_constant_i32(0), tcg_fpstatus);
12513                     break;
12514                 case 0x18: /* FRINTN */
12515                 case 0x19: /* FRINTM */
12516                 case 0x38: /* FRINTP */
12517                 case 0x39: /* FRINTZ */
12518                 case 0x58: /* FRINTA */
12519                 case 0x79: /* FRINTI */
12520                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12521                     break;
12522                 case 0x59: /* FRINTX */
12523                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12524                     break;
12525                 case 0x7c: /* URSQRTE */
12526                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12527                     break;
12528                 case 0x1e: /* FRINT32Z */
12529                 case 0x5e: /* FRINT32X */
12530                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12531                     break;
12532                 case 0x1f: /* FRINT64Z */
12533                 case 0x5f: /* FRINT64X */
12534                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12535                     break;
12536                 default:
12537                     g_assert_not_reached();
12538                 }
12539             } else {
12540                 /* Use helpers for 8 and 16 bit elements */
12541                 switch (opcode) {
12542                 case 0x5: /* CNT, RBIT */
12543                     /* For these two insns size is part of the opcode specifier
12544                      * (handled earlier); they always operate on byte elements.
12545                      */
12546                     if (u) {
12547                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12548                     } else {
12549                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12550                     }
12551                     break;
12552                 case 0x7: /* SQABS, SQNEG */
12553                 {
12554                     NeonGenOneOpEnvFn *genfn;
12555                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12556                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12557                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12558                     };
12559                     genfn = fns[size][u];
12560                     genfn(tcg_res, cpu_env, tcg_op);
12561                     break;
12562                 }
12563                 case 0x4: /* CLS, CLZ */
12564                     if (u) {
12565                         if (size == 0) {
12566                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12567                         } else {
12568                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12569                         }
12570                     } else {
12571                         if (size == 0) {
12572                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12573                         } else {
12574                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12575                         }
12576                     }
12577                     break;
12578                 default:
12579                     g_assert_not_reached();
12580                 }
12581             }
12582 
12583             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12584         }
12585     }
12586     clear_vec_high(s, is_q, rd);
12587 
12588     if (tcg_rmode) {
12589         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12590     }
12591 }
12592 
12593 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12594  *
12595  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12596  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12597  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12598  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12599  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12600  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12601  *
12602  * This actually covers two groups where scalar access is governed by
12603  * bit 28. A bunch of the instructions (float to integral) only exist
12604  * in the vector form and are un-allocated for the scalar decode. Also
12605  * in the scalar decode Q is always 1.
12606  */
12607 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12608 {
12609     int fpop, opcode, a, u;
12610     int rn, rd;
12611     bool is_q;
12612     bool is_scalar;
12613     bool only_in_vector = false;
12614 
12615     int pass;
12616     TCGv_i32 tcg_rmode = NULL;
12617     TCGv_ptr tcg_fpstatus = NULL;
12618     bool need_fpst = true;
12619     int rmode = -1;
12620 
12621     if (!dc_isar_feature(aa64_fp16, s)) {
12622         unallocated_encoding(s);
12623         return;
12624     }
12625 
12626     rd = extract32(insn, 0, 5);
12627     rn = extract32(insn, 5, 5);
12628 
12629     a = extract32(insn, 23, 1);
12630     u = extract32(insn, 29, 1);
12631     is_scalar = extract32(insn, 28, 1);
12632     is_q = extract32(insn, 30, 1);
12633 
12634     opcode = extract32(insn, 12, 5);
12635     fpop = deposit32(opcode, 5, 1, a);
12636     fpop = deposit32(fpop, 6, 1, u);
12637 
12638     switch (fpop) {
12639     case 0x1d: /* SCVTF */
12640     case 0x5d: /* UCVTF */
12641     {
12642         int elements;
12643 
12644         if (is_scalar) {
12645             elements = 1;
12646         } else {
12647             elements = (is_q ? 8 : 4);
12648         }
12649 
12650         if (!fp_access_check(s)) {
12651             return;
12652         }
12653         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12654         return;
12655     }
12656     break;
12657     case 0x2c: /* FCMGT (zero) */
12658     case 0x2d: /* FCMEQ (zero) */
12659     case 0x2e: /* FCMLT (zero) */
12660     case 0x6c: /* FCMGE (zero) */
12661     case 0x6d: /* FCMLE (zero) */
12662         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12663         return;
12664     case 0x3d: /* FRECPE */
12665     case 0x3f: /* FRECPX */
12666         break;
12667     case 0x18: /* FRINTN */
12668         only_in_vector = true;
12669         rmode = FPROUNDING_TIEEVEN;
12670         break;
12671     case 0x19: /* FRINTM */
12672         only_in_vector = true;
12673         rmode = FPROUNDING_NEGINF;
12674         break;
12675     case 0x38: /* FRINTP */
12676         only_in_vector = true;
12677         rmode = FPROUNDING_POSINF;
12678         break;
12679     case 0x39: /* FRINTZ */
12680         only_in_vector = true;
12681         rmode = FPROUNDING_ZERO;
12682         break;
12683     case 0x58: /* FRINTA */
12684         only_in_vector = true;
12685         rmode = FPROUNDING_TIEAWAY;
12686         break;
12687     case 0x59: /* FRINTX */
12688     case 0x79: /* FRINTI */
12689         only_in_vector = true;
12690         /* current rounding mode */
12691         break;
12692     case 0x1a: /* FCVTNS */
12693         rmode = FPROUNDING_TIEEVEN;
12694         break;
12695     case 0x1b: /* FCVTMS */
12696         rmode = FPROUNDING_NEGINF;
12697         break;
12698     case 0x1c: /* FCVTAS */
12699         rmode = FPROUNDING_TIEAWAY;
12700         break;
12701     case 0x3a: /* FCVTPS */
12702         rmode = FPROUNDING_POSINF;
12703         break;
12704     case 0x3b: /* FCVTZS */
12705         rmode = FPROUNDING_ZERO;
12706         break;
12707     case 0x5a: /* FCVTNU */
12708         rmode = FPROUNDING_TIEEVEN;
12709         break;
12710     case 0x5b: /* FCVTMU */
12711         rmode = FPROUNDING_NEGINF;
12712         break;
12713     case 0x5c: /* FCVTAU */
12714         rmode = FPROUNDING_TIEAWAY;
12715         break;
12716     case 0x7a: /* FCVTPU */
12717         rmode = FPROUNDING_POSINF;
12718         break;
12719     case 0x7b: /* FCVTZU */
12720         rmode = FPROUNDING_ZERO;
12721         break;
12722     case 0x2f: /* FABS */
12723     case 0x6f: /* FNEG */
12724         need_fpst = false;
12725         break;
12726     case 0x7d: /* FRSQRTE */
12727     case 0x7f: /* FSQRT (vector) */
12728         break;
12729     default:
12730         unallocated_encoding(s);
12731         return;
12732     }
12733 
12734 
12735     /* Check additional constraints for the scalar encoding */
12736     if (is_scalar) {
12737         if (!is_q) {
12738             unallocated_encoding(s);
12739             return;
12740         }
12741         /* FRINTxx is only in the vector form */
12742         if (only_in_vector) {
12743             unallocated_encoding(s);
12744             return;
12745         }
12746     }
12747 
12748     if (!fp_access_check(s)) {
12749         return;
12750     }
12751 
12752     if (rmode >= 0 || need_fpst) {
12753         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12754     }
12755 
12756     if (rmode >= 0) {
12757         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12758     }
12759 
12760     if (is_scalar) {
12761         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12762         TCGv_i32 tcg_res = tcg_temp_new_i32();
12763 
12764         switch (fpop) {
12765         case 0x1a: /* FCVTNS */
12766         case 0x1b: /* FCVTMS */
12767         case 0x1c: /* FCVTAS */
12768         case 0x3a: /* FCVTPS */
12769         case 0x3b: /* FCVTZS */
12770             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12771             break;
12772         case 0x3d: /* FRECPE */
12773             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12774             break;
12775         case 0x3f: /* FRECPX */
12776             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12777             break;
12778         case 0x5a: /* FCVTNU */
12779         case 0x5b: /* FCVTMU */
12780         case 0x5c: /* FCVTAU */
12781         case 0x7a: /* FCVTPU */
12782         case 0x7b: /* FCVTZU */
12783             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12784             break;
12785         case 0x6f: /* FNEG */
12786             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12787             break;
12788         case 0x7d: /* FRSQRTE */
12789             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12790             break;
12791         default:
12792             g_assert_not_reached();
12793         }
12794 
12795         /* limit any sign extension going on */
12796         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12797         write_fp_sreg(s, rd, tcg_res);
12798     } else {
12799         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12800             TCGv_i32 tcg_op = tcg_temp_new_i32();
12801             TCGv_i32 tcg_res = tcg_temp_new_i32();
12802 
12803             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12804 
12805             switch (fpop) {
12806             case 0x1a: /* FCVTNS */
12807             case 0x1b: /* FCVTMS */
12808             case 0x1c: /* FCVTAS */
12809             case 0x3a: /* FCVTPS */
12810             case 0x3b: /* FCVTZS */
12811                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12812                 break;
12813             case 0x3d: /* FRECPE */
12814                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12815                 break;
12816             case 0x5a: /* FCVTNU */
12817             case 0x5b: /* FCVTMU */
12818             case 0x5c: /* FCVTAU */
12819             case 0x7a: /* FCVTPU */
12820             case 0x7b: /* FCVTZU */
12821                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12822                 break;
12823             case 0x18: /* FRINTN */
12824             case 0x19: /* FRINTM */
12825             case 0x38: /* FRINTP */
12826             case 0x39: /* FRINTZ */
12827             case 0x58: /* FRINTA */
12828             case 0x79: /* FRINTI */
12829                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12830                 break;
12831             case 0x59: /* FRINTX */
12832                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12833                 break;
12834             case 0x2f: /* FABS */
12835                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12836                 break;
12837             case 0x6f: /* FNEG */
12838                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12839                 break;
12840             case 0x7d: /* FRSQRTE */
12841                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12842                 break;
12843             case 0x7f: /* FSQRT */
12844                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12845                 break;
12846             default:
12847                 g_assert_not_reached();
12848             }
12849 
12850             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12851         }
12852 
12853         clear_vec_high(s, is_q, rd);
12854     }
12855 
12856     if (tcg_rmode) {
12857         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12858     }
12859 }
12860 
12861 /* AdvSIMD scalar x indexed element
12862  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12863  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12864  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12865  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12866  * AdvSIMD vector x indexed element
12867  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12868  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12869  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12870  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12871  */
12872 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12873 {
12874     /* This encoding has two kinds of instruction:
12875      *  normal, where we perform elt x idxelt => elt for each
12876      *     element in the vector
12877      *  long, where we perform elt x idxelt and generate a result of
12878      *     double the width of the input element
12879      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12880      */
12881     bool is_scalar = extract32(insn, 28, 1);
12882     bool is_q = extract32(insn, 30, 1);
12883     bool u = extract32(insn, 29, 1);
12884     int size = extract32(insn, 22, 2);
12885     int l = extract32(insn, 21, 1);
12886     int m = extract32(insn, 20, 1);
12887     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12888     int rm = extract32(insn, 16, 4);
12889     int opcode = extract32(insn, 12, 4);
12890     int h = extract32(insn, 11, 1);
12891     int rn = extract32(insn, 5, 5);
12892     int rd = extract32(insn, 0, 5);
12893     bool is_long = false;
12894     int is_fp = 0;
12895     bool is_fp16 = false;
12896     int index;
12897     TCGv_ptr fpst;
12898 
12899     switch (16 * u + opcode) {
12900     case 0x08: /* MUL */
12901     case 0x10: /* MLA */
12902     case 0x14: /* MLS */
12903         if (is_scalar) {
12904             unallocated_encoding(s);
12905             return;
12906         }
12907         break;
12908     case 0x02: /* SMLAL, SMLAL2 */
12909     case 0x12: /* UMLAL, UMLAL2 */
12910     case 0x06: /* SMLSL, SMLSL2 */
12911     case 0x16: /* UMLSL, UMLSL2 */
12912     case 0x0a: /* SMULL, SMULL2 */
12913     case 0x1a: /* UMULL, UMULL2 */
12914         if (is_scalar) {
12915             unallocated_encoding(s);
12916             return;
12917         }
12918         is_long = true;
12919         break;
12920     case 0x03: /* SQDMLAL, SQDMLAL2 */
12921     case 0x07: /* SQDMLSL, SQDMLSL2 */
12922     case 0x0b: /* SQDMULL, SQDMULL2 */
12923         is_long = true;
12924         break;
12925     case 0x0c: /* SQDMULH */
12926     case 0x0d: /* SQRDMULH */
12927         break;
12928     case 0x01: /* FMLA */
12929     case 0x05: /* FMLS */
12930     case 0x09: /* FMUL */
12931     case 0x19: /* FMULX */
12932         is_fp = 1;
12933         break;
12934     case 0x1d: /* SQRDMLAH */
12935     case 0x1f: /* SQRDMLSH */
12936         if (!dc_isar_feature(aa64_rdm, s)) {
12937             unallocated_encoding(s);
12938             return;
12939         }
12940         break;
12941     case 0x0e: /* SDOT */
12942     case 0x1e: /* UDOT */
12943         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12944             unallocated_encoding(s);
12945             return;
12946         }
12947         break;
12948     case 0x0f:
12949         switch (size) {
12950         case 0: /* SUDOT */
12951         case 2: /* USDOT */
12952             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12953                 unallocated_encoding(s);
12954                 return;
12955             }
12956             size = MO_32;
12957             break;
12958         case 1: /* BFDOT */
12959             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12960                 unallocated_encoding(s);
12961                 return;
12962             }
12963             size = MO_32;
12964             break;
12965         case 3: /* BFMLAL{B,T} */
12966             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12967                 unallocated_encoding(s);
12968                 return;
12969             }
12970             /* can't set is_fp without other incorrect size checks */
12971             size = MO_16;
12972             break;
12973         default:
12974             unallocated_encoding(s);
12975             return;
12976         }
12977         break;
12978     case 0x11: /* FCMLA #0 */
12979     case 0x13: /* FCMLA #90 */
12980     case 0x15: /* FCMLA #180 */
12981     case 0x17: /* FCMLA #270 */
12982         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12983             unallocated_encoding(s);
12984             return;
12985         }
12986         is_fp = 2;
12987         break;
12988     case 0x00: /* FMLAL */
12989     case 0x04: /* FMLSL */
12990     case 0x18: /* FMLAL2 */
12991     case 0x1c: /* FMLSL2 */
12992         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12993             unallocated_encoding(s);
12994             return;
12995         }
12996         size = MO_16;
12997         /* is_fp, but we pass cpu_env not fp_status.  */
12998         break;
12999     default:
13000         unallocated_encoding(s);
13001         return;
13002     }
13003 
13004     switch (is_fp) {
13005     case 1: /* normal fp */
13006         /* convert insn encoded size to MemOp size */
13007         switch (size) {
13008         case 0: /* half-precision */
13009             size = MO_16;
13010             is_fp16 = true;
13011             break;
13012         case MO_32: /* single precision */
13013         case MO_64: /* double precision */
13014             break;
13015         default:
13016             unallocated_encoding(s);
13017             return;
13018         }
13019         break;
13020 
13021     case 2: /* complex fp */
13022         /* Each indexable element is a complex pair.  */
13023         size += 1;
13024         switch (size) {
13025         case MO_32:
13026             if (h && !is_q) {
13027                 unallocated_encoding(s);
13028                 return;
13029             }
13030             is_fp16 = true;
13031             break;
13032         case MO_64:
13033             break;
13034         default:
13035             unallocated_encoding(s);
13036             return;
13037         }
13038         break;
13039 
13040     default: /* integer */
13041         switch (size) {
13042         case MO_8:
13043         case MO_64:
13044             unallocated_encoding(s);
13045             return;
13046         }
13047         break;
13048     }
13049     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13050         unallocated_encoding(s);
13051         return;
13052     }
13053 
13054     /* Given MemOp size, adjust register and indexing.  */
13055     switch (size) {
13056     case MO_16:
13057         index = h << 2 | l << 1 | m;
13058         break;
13059     case MO_32:
13060         index = h << 1 | l;
13061         rm |= m << 4;
13062         break;
13063     case MO_64:
13064         if (l || !is_q) {
13065             unallocated_encoding(s);
13066             return;
13067         }
13068         index = h;
13069         rm |= m << 4;
13070         break;
13071     default:
13072         g_assert_not_reached();
13073     }
13074 
13075     if (!fp_access_check(s)) {
13076         return;
13077     }
13078 
13079     if (is_fp) {
13080         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13081     } else {
13082         fpst = NULL;
13083     }
13084 
13085     switch (16 * u + opcode) {
13086     case 0x0e: /* SDOT */
13087     case 0x1e: /* UDOT */
13088         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13089                          u ? gen_helper_gvec_udot_idx_b
13090                          : gen_helper_gvec_sdot_idx_b);
13091         return;
13092     case 0x0f:
13093         switch (extract32(insn, 22, 2)) {
13094         case 0: /* SUDOT */
13095             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13096                              gen_helper_gvec_sudot_idx_b);
13097             return;
13098         case 1: /* BFDOT */
13099             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13100                              gen_helper_gvec_bfdot_idx);
13101             return;
13102         case 2: /* USDOT */
13103             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13104                              gen_helper_gvec_usdot_idx_b);
13105             return;
13106         case 3: /* BFMLAL{B,T} */
13107             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13108                               gen_helper_gvec_bfmlal_idx);
13109             return;
13110         }
13111         g_assert_not_reached();
13112     case 0x11: /* FCMLA #0 */
13113     case 0x13: /* FCMLA #90 */
13114     case 0x15: /* FCMLA #180 */
13115     case 0x17: /* FCMLA #270 */
13116         {
13117             int rot = extract32(insn, 13, 2);
13118             int data = (index << 2) | rot;
13119             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13120                                vec_full_reg_offset(s, rn),
13121                                vec_full_reg_offset(s, rm),
13122                                vec_full_reg_offset(s, rd), fpst,
13123                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13124                                size == MO_64
13125                                ? gen_helper_gvec_fcmlas_idx
13126                                : gen_helper_gvec_fcmlah_idx);
13127         }
13128         return;
13129 
13130     case 0x00: /* FMLAL */
13131     case 0x04: /* FMLSL */
13132     case 0x18: /* FMLAL2 */
13133     case 0x1c: /* FMLSL2 */
13134         {
13135             int is_s = extract32(opcode, 2, 1);
13136             int is_2 = u;
13137             int data = (index << 2) | (is_2 << 1) | is_s;
13138             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13139                                vec_full_reg_offset(s, rn),
13140                                vec_full_reg_offset(s, rm), cpu_env,
13141                                is_q ? 16 : 8, vec_full_reg_size(s),
13142                                data, gen_helper_gvec_fmlal_idx_a64);
13143         }
13144         return;
13145 
13146     case 0x08: /* MUL */
13147         if (!is_long && !is_scalar) {
13148             static gen_helper_gvec_3 * const fns[3] = {
13149                 gen_helper_gvec_mul_idx_h,
13150                 gen_helper_gvec_mul_idx_s,
13151                 gen_helper_gvec_mul_idx_d,
13152             };
13153             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13154                                vec_full_reg_offset(s, rn),
13155                                vec_full_reg_offset(s, rm),
13156                                is_q ? 16 : 8, vec_full_reg_size(s),
13157                                index, fns[size - 1]);
13158             return;
13159         }
13160         break;
13161 
13162     case 0x10: /* MLA */
13163         if (!is_long && !is_scalar) {
13164             static gen_helper_gvec_4 * const fns[3] = {
13165                 gen_helper_gvec_mla_idx_h,
13166                 gen_helper_gvec_mla_idx_s,
13167                 gen_helper_gvec_mla_idx_d,
13168             };
13169             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13170                                vec_full_reg_offset(s, rn),
13171                                vec_full_reg_offset(s, rm),
13172                                vec_full_reg_offset(s, rd),
13173                                is_q ? 16 : 8, vec_full_reg_size(s),
13174                                index, fns[size - 1]);
13175             return;
13176         }
13177         break;
13178 
13179     case 0x14: /* MLS */
13180         if (!is_long && !is_scalar) {
13181             static gen_helper_gvec_4 * const fns[3] = {
13182                 gen_helper_gvec_mls_idx_h,
13183                 gen_helper_gvec_mls_idx_s,
13184                 gen_helper_gvec_mls_idx_d,
13185             };
13186             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13187                                vec_full_reg_offset(s, rn),
13188                                vec_full_reg_offset(s, rm),
13189                                vec_full_reg_offset(s, rd),
13190                                is_q ? 16 : 8, vec_full_reg_size(s),
13191                                index, fns[size - 1]);
13192             return;
13193         }
13194         break;
13195     }
13196 
13197     if (size == 3) {
13198         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13199         int pass;
13200 
13201         assert(is_fp && is_q && !is_long);
13202 
13203         read_vec_element(s, tcg_idx, rm, index, MO_64);
13204 
13205         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13206             TCGv_i64 tcg_op = tcg_temp_new_i64();
13207             TCGv_i64 tcg_res = tcg_temp_new_i64();
13208 
13209             read_vec_element(s, tcg_op, rn, pass, MO_64);
13210 
13211             switch (16 * u + opcode) {
13212             case 0x05: /* FMLS */
13213                 /* As usual for ARM, separate negation for fused multiply-add */
13214                 gen_helper_vfp_negd(tcg_op, tcg_op);
13215                 /* fall through */
13216             case 0x01: /* FMLA */
13217                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13218                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13219                 break;
13220             case 0x09: /* FMUL */
13221                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13222                 break;
13223             case 0x19: /* FMULX */
13224                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13225                 break;
13226             default:
13227                 g_assert_not_reached();
13228             }
13229 
13230             write_vec_element(s, tcg_res, rd, pass, MO_64);
13231         }
13232 
13233         clear_vec_high(s, !is_scalar, rd);
13234     } else if (!is_long) {
13235         /* 32 bit floating point, or 16 or 32 bit integer.
13236          * For the 16 bit scalar case we use the usual Neon helpers and
13237          * rely on the fact that 0 op 0 == 0 with no side effects.
13238          */
13239         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13240         int pass, maxpasses;
13241 
13242         if (is_scalar) {
13243             maxpasses = 1;
13244         } else {
13245             maxpasses = is_q ? 4 : 2;
13246         }
13247 
13248         read_vec_element_i32(s, tcg_idx, rm, index, size);
13249 
13250         if (size == 1 && !is_scalar) {
13251             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13252              * the index into both halves of the 32 bit tcg_idx and then use
13253              * the usual Neon helpers.
13254              */
13255             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13256         }
13257 
13258         for (pass = 0; pass < maxpasses; pass++) {
13259             TCGv_i32 tcg_op = tcg_temp_new_i32();
13260             TCGv_i32 tcg_res = tcg_temp_new_i32();
13261 
13262             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13263 
13264             switch (16 * u + opcode) {
13265             case 0x08: /* MUL */
13266             case 0x10: /* MLA */
13267             case 0x14: /* MLS */
13268             {
13269                 static NeonGenTwoOpFn * const fns[2][2] = {
13270                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13271                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13272                 };
13273                 NeonGenTwoOpFn *genfn;
13274                 bool is_sub = opcode == 0x4;
13275 
13276                 if (size == 1) {
13277                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13278                 } else {
13279                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13280                 }
13281                 if (opcode == 0x8) {
13282                     break;
13283                 }
13284                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13285                 genfn = fns[size - 1][is_sub];
13286                 genfn(tcg_res, tcg_op, tcg_res);
13287                 break;
13288             }
13289             case 0x05: /* FMLS */
13290             case 0x01: /* FMLA */
13291                 read_vec_element_i32(s, tcg_res, rd, pass,
13292                                      is_scalar ? size : MO_32);
13293                 switch (size) {
13294                 case 1:
13295                     if (opcode == 0x5) {
13296                         /* As usual for ARM, separate negation for fused
13297                          * multiply-add */
13298                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13299                     }
13300                     if (is_scalar) {
13301                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13302                                                    tcg_res, fpst);
13303                     } else {
13304                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13305                                                     tcg_res, fpst);
13306                     }
13307                     break;
13308                 case 2:
13309                     if (opcode == 0x5) {
13310                         /* As usual for ARM, separate negation for
13311                          * fused multiply-add */
13312                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13313                     }
13314                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13315                                            tcg_res, fpst);
13316                     break;
13317                 default:
13318                     g_assert_not_reached();
13319                 }
13320                 break;
13321             case 0x09: /* FMUL */
13322                 switch (size) {
13323                 case 1:
13324                     if (is_scalar) {
13325                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13326                                                 tcg_idx, fpst);
13327                     } else {
13328                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13329                                                  tcg_idx, fpst);
13330                     }
13331                     break;
13332                 case 2:
13333                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13334                     break;
13335                 default:
13336                     g_assert_not_reached();
13337                 }
13338                 break;
13339             case 0x19: /* FMULX */
13340                 switch (size) {
13341                 case 1:
13342                     if (is_scalar) {
13343                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13344                                                  tcg_idx, fpst);
13345                     } else {
13346                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13347                                                   tcg_idx, fpst);
13348                     }
13349                     break;
13350                 case 2:
13351                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13352                     break;
13353                 default:
13354                     g_assert_not_reached();
13355                 }
13356                 break;
13357             case 0x0c: /* SQDMULH */
13358                 if (size == 1) {
13359                     gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13360                                                tcg_op, tcg_idx);
13361                 } else {
13362                     gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13363                                                tcg_op, tcg_idx);
13364                 }
13365                 break;
13366             case 0x0d: /* SQRDMULH */
13367                 if (size == 1) {
13368                     gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13369                                                 tcg_op, tcg_idx);
13370                 } else {
13371                     gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13372                                                 tcg_op, tcg_idx);
13373                 }
13374                 break;
13375             case 0x1d: /* SQRDMLAH */
13376                 read_vec_element_i32(s, tcg_res, rd, pass,
13377                                      is_scalar ? size : MO_32);
13378                 if (size == 1) {
13379                     gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13380                                                 tcg_op, tcg_idx, tcg_res);
13381                 } else {
13382                     gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13383                                                 tcg_op, tcg_idx, tcg_res);
13384                 }
13385                 break;
13386             case 0x1f: /* SQRDMLSH */
13387                 read_vec_element_i32(s, tcg_res, rd, pass,
13388                                      is_scalar ? size : MO_32);
13389                 if (size == 1) {
13390                     gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13391                                                 tcg_op, tcg_idx, tcg_res);
13392                 } else {
13393                     gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13394                                                 tcg_op, tcg_idx, tcg_res);
13395                 }
13396                 break;
13397             default:
13398                 g_assert_not_reached();
13399             }
13400 
13401             if (is_scalar) {
13402                 write_fp_sreg(s, rd, tcg_res);
13403             } else {
13404                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13405             }
13406         }
13407 
13408         clear_vec_high(s, is_q, rd);
13409     } else {
13410         /* long ops: 16x16->32 or 32x32->64 */
13411         TCGv_i64 tcg_res[2];
13412         int pass;
13413         bool satop = extract32(opcode, 0, 1);
13414         MemOp memop = MO_32;
13415 
13416         if (satop || !u) {
13417             memop |= MO_SIGN;
13418         }
13419 
13420         if (size == 2) {
13421             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13422 
13423             read_vec_element(s, tcg_idx, rm, index, memop);
13424 
13425             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13426                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13427                 TCGv_i64 tcg_passres;
13428                 int passelt;
13429 
13430                 if (is_scalar) {
13431                     passelt = 0;
13432                 } else {
13433                     passelt = pass + (is_q * 2);
13434                 }
13435 
13436                 read_vec_element(s, tcg_op, rn, passelt, memop);
13437 
13438                 tcg_res[pass] = tcg_temp_new_i64();
13439 
13440                 if (opcode == 0xa || opcode == 0xb) {
13441                     /* Non-accumulating ops */
13442                     tcg_passres = tcg_res[pass];
13443                 } else {
13444                     tcg_passres = tcg_temp_new_i64();
13445                 }
13446 
13447                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13448 
13449                 if (satop) {
13450                     /* saturating, doubling */
13451                     gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13452                                                       tcg_passres, tcg_passres);
13453                 }
13454 
13455                 if (opcode == 0xa || opcode == 0xb) {
13456                     continue;
13457                 }
13458 
13459                 /* Accumulating op: handle accumulate step */
13460                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13461 
13462                 switch (opcode) {
13463                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13464                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13465                     break;
13466                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13467                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13468                     break;
13469                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13470                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13471                     /* fall through */
13472                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13473                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13474                                                       tcg_res[pass],
13475                                                       tcg_passres);
13476                     break;
13477                 default:
13478                     g_assert_not_reached();
13479                 }
13480             }
13481 
13482             clear_vec_high(s, !is_scalar, rd);
13483         } else {
13484             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13485 
13486             assert(size == 1);
13487             read_vec_element_i32(s, tcg_idx, rm, index, size);
13488 
13489             if (!is_scalar) {
13490                 /* The simplest way to handle the 16x16 indexed ops is to
13491                  * duplicate the index into both halves of the 32 bit tcg_idx
13492                  * and then use the usual Neon helpers.
13493                  */
13494                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13495             }
13496 
13497             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13498                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13499                 TCGv_i64 tcg_passres;
13500 
13501                 if (is_scalar) {
13502                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13503                 } else {
13504                     read_vec_element_i32(s, tcg_op, rn,
13505                                          pass + (is_q * 2), MO_32);
13506                 }
13507 
13508                 tcg_res[pass] = tcg_temp_new_i64();
13509 
13510                 if (opcode == 0xa || opcode == 0xb) {
13511                     /* Non-accumulating ops */
13512                     tcg_passres = tcg_res[pass];
13513                 } else {
13514                     tcg_passres = tcg_temp_new_i64();
13515                 }
13516 
13517                 if (memop & MO_SIGN) {
13518                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13519                 } else {
13520                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13521                 }
13522                 if (satop) {
13523                     gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13524                                                       tcg_passres, tcg_passres);
13525                 }
13526 
13527                 if (opcode == 0xa || opcode == 0xb) {
13528                     continue;
13529                 }
13530 
13531                 /* Accumulating op: handle accumulate step */
13532                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13533 
13534                 switch (opcode) {
13535                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13536                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13537                                              tcg_passres);
13538                     break;
13539                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13540                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13541                                              tcg_passres);
13542                     break;
13543                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13544                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13545                     /* fall through */
13546                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13547                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13548                                                       tcg_res[pass],
13549                                                       tcg_passres);
13550                     break;
13551                 default:
13552                     g_assert_not_reached();
13553                 }
13554             }
13555 
13556             if (is_scalar) {
13557                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13558             }
13559         }
13560 
13561         if (is_scalar) {
13562             tcg_res[1] = tcg_constant_i64(0);
13563         }
13564 
13565         for (pass = 0; pass < 2; pass++) {
13566             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13567         }
13568     }
13569 }
13570 
13571 /* Crypto AES
13572  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13573  * +-----------------+------+-----------+--------+-----+------+------+
13574  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13575  * +-----------------+------+-----------+--------+-----+------+------+
13576  */
13577 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13578 {
13579     int size = extract32(insn, 22, 2);
13580     int opcode = extract32(insn, 12, 5);
13581     int rn = extract32(insn, 5, 5);
13582     int rd = extract32(insn, 0, 5);
13583     int decrypt;
13584     gen_helper_gvec_2 *genfn2 = NULL;
13585     gen_helper_gvec_3 *genfn3 = NULL;
13586 
13587     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13588         unallocated_encoding(s);
13589         return;
13590     }
13591 
13592     switch (opcode) {
13593     case 0x4: /* AESE */
13594         decrypt = 0;
13595         genfn3 = gen_helper_crypto_aese;
13596         break;
13597     case 0x6: /* AESMC */
13598         decrypt = 0;
13599         genfn2 = gen_helper_crypto_aesmc;
13600         break;
13601     case 0x5: /* AESD */
13602         decrypt = 1;
13603         genfn3 = gen_helper_crypto_aese;
13604         break;
13605     case 0x7: /* AESIMC */
13606         decrypt = 1;
13607         genfn2 = gen_helper_crypto_aesmc;
13608         break;
13609     default:
13610         unallocated_encoding(s);
13611         return;
13612     }
13613 
13614     if (!fp_access_check(s)) {
13615         return;
13616     }
13617     if (genfn2) {
13618         gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13619     } else {
13620         gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13621     }
13622 }
13623 
13624 /* Crypto three-reg SHA
13625  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13626  * +-----------------+------+---+------+---+--------+-----+------+------+
13627  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13628  * +-----------------+------+---+------+---+--------+-----+------+------+
13629  */
13630 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13631 {
13632     int size = extract32(insn, 22, 2);
13633     int opcode = extract32(insn, 12, 3);
13634     int rm = extract32(insn, 16, 5);
13635     int rn = extract32(insn, 5, 5);
13636     int rd = extract32(insn, 0, 5);
13637     gen_helper_gvec_3 *genfn;
13638     bool feature;
13639 
13640     if (size != 0) {
13641         unallocated_encoding(s);
13642         return;
13643     }
13644 
13645     switch (opcode) {
13646     case 0: /* SHA1C */
13647         genfn = gen_helper_crypto_sha1c;
13648         feature = dc_isar_feature(aa64_sha1, s);
13649         break;
13650     case 1: /* SHA1P */
13651         genfn = gen_helper_crypto_sha1p;
13652         feature = dc_isar_feature(aa64_sha1, s);
13653         break;
13654     case 2: /* SHA1M */
13655         genfn = gen_helper_crypto_sha1m;
13656         feature = dc_isar_feature(aa64_sha1, s);
13657         break;
13658     case 3: /* SHA1SU0 */
13659         genfn = gen_helper_crypto_sha1su0;
13660         feature = dc_isar_feature(aa64_sha1, s);
13661         break;
13662     case 4: /* SHA256H */
13663         genfn = gen_helper_crypto_sha256h;
13664         feature = dc_isar_feature(aa64_sha256, s);
13665         break;
13666     case 5: /* SHA256H2 */
13667         genfn = gen_helper_crypto_sha256h2;
13668         feature = dc_isar_feature(aa64_sha256, s);
13669         break;
13670     case 6: /* SHA256SU1 */
13671         genfn = gen_helper_crypto_sha256su1;
13672         feature = dc_isar_feature(aa64_sha256, s);
13673         break;
13674     default:
13675         unallocated_encoding(s);
13676         return;
13677     }
13678 
13679     if (!feature) {
13680         unallocated_encoding(s);
13681         return;
13682     }
13683 
13684     if (!fp_access_check(s)) {
13685         return;
13686     }
13687     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13688 }
13689 
13690 /* Crypto two-reg SHA
13691  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13692  * +-----------------+------+-----------+--------+-----+------+------+
13693  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13694  * +-----------------+------+-----------+--------+-----+------+------+
13695  */
13696 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13697 {
13698     int size = extract32(insn, 22, 2);
13699     int opcode = extract32(insn, 12, 5);
13700     int rn = extract32(insn, 5, 5);
13701     int rd = extract32(insn, 0, 5);
13702     gen_helper_gvec_2 *genfn;
13703     bool feature;
13704 
13705     if (size != 0) {
13706         unallocated_encoding(s);
13707         return;
13708     }
13709 
13710     switch (opcode) {
13711     case 0: /* SHA1H */
13712         feature = dc_isar_feature(aa64_sha1, s);
13713         genfn = gen_helper_crypto_sha1h;
13714         break;
13715     case 1: /* SHA1SU1 */
13716         feature = dc_isar_feature(aa64_sha1, s);
13717         genfn = gen_helper_crypto_sha1su1;
13718         break;
13719     case 2: /* SHA256SU0 */
13720         feature = dc_isar_feature(aa64_sha256, s);
13721         genfn = gen_helper_crypto_sha256su0;
13722         break;
13723     default:
13724         unallocated_encoding(s);
13725         return;
13726     }
13727 
13728     if (!feature) {
13729         unallocated_encoding(s);
13730         return;
13731     }
13732 
13733     if (!fp_access_check(s)) {
13734         return;
13735     }
13736     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13737 }
13738 
13739 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13740 {
13741     tcg_gen_rotli_i64(d, m, 1);
13742     tcg_gen_xor_i64(d, d, n);
13743 }
13744 
13745 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13746 {
13747     tcg_gen_rotli_vec(vece, d, m, 1);
13748     tcg_gen_xor_vec(vece, d, d, n);
13749 }
13750 
13751 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13752                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13753 {
13754     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13755     static const GVecGen3 op = {
13756         .fni8 = gen_rax1_i64,
13757         .fniv = gen_rax1_vec,
13758         .opt_opc = vecop_list,
13759         .fno = gen_helper_crypto_rax1,
13760         .vece = MO_64,
13761     };
13762     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13763 }
13764 
13765 /* Crypto three-reg SHA512
13766  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13767  * +-----------------------+------+---+---+-----+--------+------+------+
13768  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13769  * +-----------------------+------+---+---+-----+--------+------+------+
13770  */
13771 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13772 {
13773     int opcode = extract32(insn, 10, 2);
13774     int o =  extract32(insn, 14, 1);
13775     int rm = extract32(insn, 16, 5);
13776     int rn = extract32(insn, 5, 5);
13777     int rd = extract32(insn, 0, 5);
13778     bool feature;
13779     gen_helper_gvec_3 *oolfn = NULL;
13780     GVecGen3Fn *gvecfn = NULL;
13781 
13782     if (o == 0) {
13783         switch (opcode) {
13784         case 0: /* SHA512H */
13785             feature = dc_isar_feature(aa64_sha512, s);
13786             oolfn = gen_helper_crypto_sha512h;
13787             break;
13788         case 1: /* SHA512H2 */
13789             feature = dc_isar_feature(aa64_sha512, s);
13790             oolfn = gen_helper_crypto_sha512h2;
13791             break;
13792         case 2: /* SHA512SU1 */
13793             feature = dc_isar_feature(aa64_sha512, s);
13794             oolfn = gen_helper_crypto_sha512su1;
13795             break;
13796         case 3: /* RAX1 */
13797             feature = dc_isar_feature(aa64_sha3, s);
13798             gvecfn = gen_gvec_rax1;
13799             break;
13800         default:
13801             g_assert_not_reached();
13802         }
13803     } else {
13804         switch (opcode) {
13805         case 0: /* SM3PARTW1 */
13806             feature = dc_isar_feature(aa64_sm3, s);
13807             oolfn = gen_helper_crypto_sm3partw1;
13808             break;
13809         case 1: /* SM3PARTW2 */
13810             feature = dc_isar_feature(aa64_sm3, s);
13811             oolfn = gen_helper_crypto_sm3partw2;
13812             break;
13813         case 2: /* SM4EKEY */
13814             feature = dc_isar_feature(aa64_sm4, s);
13815             oolfn = gen_helper_crypto_sm4ekey;
13816             break;
13817         default:
13818             unallocated_encoding(s);
13819             return;
13820         }
13821     }
13822 
13823     if (!feature) {
13824         unallocated_encoding(s);
13825         return;
13826     }
13827 
13828     if (!fp_access_check(s)) {
13829         return;
13830     }
13831 
13832     if (oolfn) {
13833         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13834     } else {
13835         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13836     }
13837 }
13838 
13839 /* Crypto two-reg SHA512
13840  *  31                                     12  11  10  9    5 4    0
13841  * +-----------------------------------------+--------+------+------+
13842  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13843  * +-----------------------------------------+--------+------+------+
13844  */
13845 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13846 {
13847     int opcode = extract32(insn, 10, 2);
13848     int rn = extract32(insn, 5, 5);
13849     int rd = extract32(insn, 0, 5);
13850     bool feature;
13851 
13852     switch (opcode) {
13853     case 0: /* SHA512SU0 */
13854         feature = dc_isar_feature(aa64_sha512, s);
13855         break;
13856     case 1: /* SM4E */
13857         feature = dc_isar_feature(aa64_sm4, s);
13858         break;
13859     default:
13860         unallocated_encoding(s);
13861         return;
13862     }
13863 
13864     if (!feature) {
13865         unallocated_encoding(s);
13866         return;
13867     }
13868 
13869     if (!fp_access_check(s)) {
13870         return;
13871     }
13872 
13873     switch (opcode) {
13874     case 0: /* SHA512SU0 */
13875         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13876         break;
13877     case 1: /* SM4E */
13878         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13879         break;
13880     default:
13881         g_assert_not_reached();
13882     }
13883 }
13884 
13885 /* Crypto four-register
13886  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13887  * +-------------------+-----+------+---+------+------+------+
13888  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13889  * +-------------------+-----+------+---+------+------+------+
13890  */
13891 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13892 {
13893     int op0 = extract32(insn, 21, 2);
13894     int rm = extract32(insn, 16, 5);
13895     int ra = extract32(insn, 10, 5);
13896     int rn = extract32(insn, 5, 5);
13897     int rd = extract32(insn, 0, 5);
13898     bool feature;
13899 
13900     switch (op0) {
13901     case 0: /* EOR3 */
13902     case 1: /* BCAX */
13903         feature = dc_isar_feature(aa64_sha3, s);
13904         break;
13905     case 2: /* SM3SS1 */
13906         feature = dc_isar_feature(aa64_sm3, s);
13907         break;
13908     default:
13909         unallocated_encoding(s);
13910         return;
13911     }
13912 
13913     if (!feature) {
13914         unallocated_encoding(s);
13915         return;
13916     }
13917 
13918     if (!fp_access_check(s)) {
13919         return;
13920     }
13921 
13922     if (op0 < 2) {
13923         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13924         int pass;
13925 
13926         tcg_op1 = tcg_temp_new_i64();
13927         tcg_op2 = tcg_temp_new_i64();
13928         tcg_op3 = tcg_temp_new_i64();
13929         tcg_res[0] = tcg_temp_new_i64();
13930         tcg_res[1] = tcg_temp_new_i64();
13931 
13932         for (pass = 0; pass < 2; pass++) {
13933             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13934             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13935             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13936 
13937             if (op0 == 0) {
13938                 /* EOR3 */
13939                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13940             } else {
13941                 /* BCAX */
13942                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13943             }
13944             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13945         }
13946         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13947         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13948     } else {
13949         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13950 
13951         tcg_op1 = tcg_temp_new_i32();
13952         tcg_op2 = tcg_temp_new_i32();
13953         tcg_op3 = tcg_temp_new_i32();
13954         tcg_res = tcg_temp_new_i32();
13955         tcg_zero = tcg_constant_i32(0);
13956 
13957         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13958         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13959         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13960 
13961         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13962         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13963         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13964         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13965 
13966         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13967         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13968         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13969         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13970     }
13971 }
13972 
13973 /* Crypto XAR
13974  *  31                   21 20  16 15    10 9    5 4    0
13975  * +-----------------------+------+--------+------+------+
13976  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13977  * +-----------------------+------+--------+------+------+
13978  */
13979 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13980 {
13981     int rm = extract32(insn, 16, 5);
13982     int imm6 = extract32(insn, 10, 6);
13983     int rn = extract32(insn, 5, 5);
13984     int rd = extract32(insn, 0, 5);
13985 
13986     if (!dc_isar_feature(aa64_sha3, s)) {
13987         unallocated_encoding(s);
13988         return;
13989     }
13990 
13991     if (!fp_access_check(s)) {
13992         return;
13993     }
13994 
13995     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13996                  vec_full_reg_offset(s, rn),
13997                  vec_full_reg_offset(s, rm), imm6, 16,
13998                  vec_full_reg_size(s));
13999 }
14000 
14001 /* Crypto three-reg imm2
14002  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
14003  * +-----------------------+------+-----+------+--------+------+------+
14004  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
14005  * +-----------------------+------+-----+------+--------+------+------+
14006  */
14007 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14008 {
14009     static gen_helper_gvec_3 * const fns[4] = {
14010         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14011         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14012     };
14013     int opcode = extract32(insn, 10, 2);
14014     int imm2 = extract32(insn, 12, 2);
14015     int rm = extract32(insn, 16, 5);
14016     int rn = extract32(insn, 5, 5);
14017     int rd = extract32(insn, 0, 5);
14018 
14019     if (!dc_isar_feature(aa64_sm3, s)) {
14020         unallocated_encoding(s);
14021         return;
14022     }
14023 
14024     if (!fp_access_check(s)) {
14025         return;
14026     }
14027 
14028     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14029 }
14030 
14031 /* C3.6 Data processing - SIMD, inc Crypto
14032  *
14033  * As the decode gets a little complex we are using a table based
14034  * approach for this part of the decode.
14035  */
14036 static const AArch64DecodeTable data_proc_simd[] = {
14037     /* pattern  ,  mask     ,  fn                        */
14038     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14039     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14040     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14041     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14042     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14043     { 0x0e000400, 0x9fe08400, disas_simd_copy },
14044     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14045     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14046     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14047     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14048     { 0x0e000000, 0xbf208c00, disas_simd_tb },
14049     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14050     { 0x2e000000, 0xbf208400, disas_simd_ext },
14051     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14052     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14053     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14054     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14055     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14056     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14057     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14058     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14059     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14060     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14061     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14062     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14063     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14064     { 0xce000000, 0xff808000, disas_crypto_four_reg },
14065     { 0xce800000, 0xffe00000, disas_crypto_xar },
14066     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14067     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14068     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14069     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14070     { 0x00000000, 0x00000000, NULL }
14071 };
14072 
14073 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14074 {
14075     /* Note that this is called with all non-FP cases from
14076      * table C3-6 so it must UNDEF for entries not specifically
14077      * allocated to instructions in that table.
14078      */
14079     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14080     if (fn) {
14081         fn(s, insn);
14082     } else {
14083         unallocated_encoding(s);
14084     }
14085 }
14086 
14087 /* C3.6 Data processing - SIMD and floating point */
14088 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14089 {
14090     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14091         disas_data_proc_fp(s, insn);
14092     } else {
14093         /* SIMD, including crypto */
14094         disas_data_proc_simd(s, insn);
14095     }
14096 }
14097 
14098 static bool trans_OK(DisasContext *s, arg_OK *a)
14099 {
14100     return true;
14101 }
14102 
14103 static bool trans_FAIL(DisasContext *s, arg_OK *a)
14104 {
14105     s->is_nonstreaming = true;
14106     return true;
14107 }
14108 
14109 /**
14110  * is_guarded_page:
14111  * @env: The cpu environment
14112  * @s: The DisasContext
14113  *
14114  * Return true if the page is guarded.
14115  */
14116 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14117 {
14118     uint64_t addr = s->base.pc_first;
14119 #ifdef CONFIG_USER_ONLY
14120     return page_get_flags(addr) & PAGE_BTI;
14121 #else
14122     CPUTLBEntryFull *full;
14123     void *host;
14124     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14125     int flags;
14126 
14127     /*
14128      * We test this immediately after reading an insn, which means
14129      * that the TLB entry must be present and valid, and thus this
14130      * access will never raise an exception.
14131      */
14132     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
14133                               false, &host, &full, 0);
14134     assert(!(flags & TLB_INVALID_MASK));
14135 
14136     return full->guarded;
14137 #endif
14138 }
14139 
14140 /**
14141  * btype_destination_ok:
14142  * @insn: The instruction at the branch destination
14143  * @bt: SCTLR_ELx.BT
14144  * @btype: PSTATE.BTYPE, and is non-zero
14145  *
14146  * On a guarded page, there are a limited number of insns
14147  * that may be present at the branch target:
14148  *   - branch target identifiers,
14149  *   - paciasp, pacibsp,
14150  *   - BRK insn
14151  *   - HLT insn
14152  * Anything else causes a Branch Target Exception.
14153  *
14154  * Return true if the branch is compatible, false to raise BTITRAP.
14155  */
14156 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14157 {
14158     if ((insn & 0xfffff01fu) == 0xd503201fu) {
14159         /* HINT space */
14160         switch (extract32(insn, 5, 7)) {
14161         case 0b011001: /* PACIASP */
14162         case 0b011011: /* PACIBSP */
14163             /*
14164              * If SCTLR_ELx.BT, then PACI*SP are not compatible
14165              * with btype == 3.  Otherwise all btype are ok.
14166              */
14167             return !bt || btype != 3;
14168         case 0b100000: /* BTI */
14169             /* Not compatible with any btype.  */
14170             return false;
14171         case 0b100010: /* BTI c */
14172             /* Not compatible with btype == 3 */
14173             return btype != 3;
14174         case 0b100100: /* BTI j */
14175             /* Not compatible with btype == 2 */
14176             return btype != 2;
14177         case 0b100110: /* BTI jc */
14178             /* Compatible with any btype.  */
14179             return true;
14180         }
14181     } else {
14182         switch (insn & 0xffe0001fu) {
14183         case 0xd4200000u: /* BRK */
14184         case 0xd4400000u: /* HLT */
14185             /* Give priority to the breakpoint exception.  */
14186             return true;
14187         }
14188     }
14189     return false;
14190 }
14191 
14192 /* C3.1 A64 instruction index by encoding */
14193 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14194 {
14195     switch (extract32(insn, 25, 4)) {
14196     case 0xa: case 0xb: /* Branch, exception generation and system insns */
14197         disas_b_exc_sys(s, insn);
14198         break;
14199     case 0x4:
14200     case 0x6:
14201     case 0xc:
14202     case 0xe:      /* Loads and stores */
14203         disas_ldst(s, insn);
14204         break;
14205     case 0x5:
14206     case 0xd:      /* Data processing - register */
14207         disas_data_proc_reg(s, insn);
14208         break;
14209     case 0x7:
14210     case 0xf:      /* Data processing - SIMD and floating point */
14211         disas_data_proc_simd_fp(s, insn);
14212         break;
14213     default:
14214         unallocated_encoding(s);
14215         break;
14216     }
14217 }
14218 
14219 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14220                                           CPUState *cpu)
14221 {
14222     DisasContext *dc = container_of(dcbase, DisasContext, base);
14223     CPUARMState *env = cpu->env_ptr;
14224     ARMCPU *arm_cpu = env_archcpu(env);
14225     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14226     int bound, core_mmu_idx;
14227 
14228     dc->isar = &arm_cpu->isar;
14229     dc->condjmp = 0;
14230     dc->pc_save = dc->base.pc_first;
14231     dc->aarch64 = true;
14232     dc->thumb = false;
14233     dc->sctlr_b = 0;
14234     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14235     dc->condexec_mask = 0;
14236     dc->condexec_cond = 0;
14237     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14238     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14239     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14240     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14241     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14242     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14243 #if !defined(CONFIG_USER_ONLY)
14244     dc->user = (dc->current_el == 0);
14245 #endif
14246     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14247     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14248     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14249     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14250     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14251     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14252     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14253     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14254     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14255     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14256     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14257     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14258     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14259     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14260     dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14261     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14262     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14263     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14264     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14265     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14266     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
14267     dc->vec_len = 0;
14268     dc->vec_stride = 0;
14269     dc->cp_regs = arm_cpu->cp_regs;
14270     dc->features = env->features;
14271     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14272 
14273 #ifdef CONFIG_USER_ONLY
14274     /* In sve_probe_page, we assume TBI is enabled. */
14275     tcg_debug_assert(dc->tbid & 1);
14276 #endif
14277 
14278     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14279 
14280     /* Single step state. The code-generation logic here is:
14281      *  SS_ACTIVE == 0:
14282      *   generate code with no special handling for single-stepping (except
14283      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14284      *   this happens anyway because those changes are all system register or
14285      *   PSTATE writes).
14286      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14287      *   emit code for one insn
14288      *   emit code to clear PSTATE.SS
14289      *   emit code to generate software step exception for completed step
14290      *   end TB (as usual for having generated an exception)
14291      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14292      *   emit code to generate a software step exception
14293      *   end the TB
14294      */
14295     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14296     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14297     dc->is_ldex = false;
14298 
14299     /* Bound the number of insns to execute to those left on the page.  */
14300     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14301 
14302     /* If architectural single step active, limit to 1.  */
14303     if (dc->ss_active) {
14304         bound = 1;
14305     }
14306     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14307 }
14308 
14309 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14310 {
14311 }
14312 
14313 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14314 {
14315     DisasContext *dc = container_of(dcbase, DisasContext, base);
14316     target_ulong pc_arg = dc->base.pc_next;
14317 
14318     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14319         pc_arg &= ~TARGET_PAGE_MASK;
14320     }
14321     tcg_gen_insn_start(pc_arg, 0, 0);
14322     dc->insn_start = tcg_last_op();
14323 }
14324 
14325 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14326 {
14327     DisasContext *s = container_of(dcbase, DisasContext, base);
14328     CPUARMState *env = cpu->env_ptr;
14329     uint64_t pc = s->base.pc_next;
14330     uint32_t insn;
14331 
14332     /* Singlestep exceptions have the highest priority. */
14333     if (s->ss_active && !s->pstate_ss) {
14334         /* Singlestep state is Active-pending.
14335          * If we're in this state at the start of a TB then either
14336          *  a) we just took an exception to an EL which is being debugged
14337          *     and this is the first insn in the exception handler
14338          *  b) debug exceptions were masked and we just unmasked them
14339          *     without changing EL (eg by clearing PSTATE.D)
14340          * In either case we're going to take a swstep exception in the
14341          * "did not step an insn" case, and so the syndrome ISV and EX
14342          * bits should be zero.
14343          */
14344         assert(s->base.num_insns == 1);
14345         gen_swstep_exception(s, 0, 0);
14346         s->base.is_jmp = DISAS_NORETURN;
14347         s->base.pc_next = pc + 4;
14348         return;
14349     }
14350 
14351     if (pc & 3) {
14352         /*
14353          * PC alignment fault.  This has priority over the instruction abort
14354          * that we would receive from a translation fault via arm_ldl_code.
14355          * This should only be possible after an indirect branch, at the
14356          * start of the TB.
14357          */
14358         assert(s->base.num_insns == 1);
14359         gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14360         s->base.is_jmp = DISAS_NORETURN;
14361         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14362         return;
14363     }
14364 
14365     s->pc_curr = pc;
14366     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14367     s->insn = insn;
14368     s->base.pc_next = pc + 4;
14369 
14370     s->fp_access_checked = false;
14371     s->sve_access_checked = false;
14372 
14373     if (s->pstate_il) {
14374         /*
14375          * Illegal execution state. This has priority over BTI
14376          * exceptions, but comes after instruction abort exceptions.
14377          */
14378         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14379         return;
14380     }
14381 
14382     if (dc_isar_feature(aa64_bti, s)) {
14383         if (s->base.num_insns == 1) {
14384             /*
14385              * At the first insn of the TB, compute s->guarded_page.
14386              * We delayed computing this until successfully reading
14387              * the first insn of the TB, above.  This (mostly) ensures
14388              * that the softmmu tlb entry has been populated, and the
14389              * page table GP bit is available.
14390              *
14391              * Note that we need to compute this even if btype == 0,
14392              * because this value is used for BR instructions later
14393              * where ENV is not available.
14394              */
14395             s->guarded_page = is_guarded_page(env, s);
14396 
14397             /* First insn can have btype set to non-zero.  */
14398             tcg_debug_assert(s->btype >= 0);
14399 
14400             /*
14401              * Note that the Branch Target Exception has fairly high
14402              * priority -- below debugging exceptions but above most
14403              * everything else.  This allows us to handle this now
14404              * instead of waiting until the insn is otherwise decoded.
14405              */
14406             if (s->btype != 0
14407                 && s->guarded_page
14408                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14409                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14410                 return;
14411             }
14412         } else {
14413             /* Not the first insn: btype must be 0.  */
14414             tcg_debug_assert(s->btype == 0);
14415         }
14416     }
14417 
14418     s->is_nonstreaming = false;
14419     if (s->sme_trap_nonstreaming) {
14420         disas_sme_fa64(s, insn);
14421     }
14422 
14423     if (!disas_a64(s, insn) &&
14424         !disas_sme(s, insn) &&
14425         !disas_sve(s, insn)) {
14426         disas_a64_legacy(s, insn);
14427     }
14428 
14429     /*
14430      * After execution of most insns, btype is reset to 0.
14431      * Note that we set btype == -1 when the insn sets btype.
14432      */
14433     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14434         reset_btype(s);
14435     }
14436 }
14437 
14438 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14439 {
14440     DisasContext *dc = container_of(dcbase, DisasContext, base);
14441 
14442     if (unlikely(dc->ss_active)) {
14443         /* Note that this means single stepping WFI doesn't halt the CPU.
14444          * For conditional branch insns this is harmless unreachable code as
14445          * gen_goto_tb() has already handled emitting the debug exception
14446          * (and thus a tb-jump is not possible when singlestepping).
14447          */
14448         switch (dc->base.is_jmp) {
14449         default:
14450             gen_a64_update_pc(dc, 4);
14451             /* fall through */
14452         case DISAS_EXIT:
14453         case DISAS_JUMP:
14454             gen_step_complete_exception(dc);
14455             break;
14456         case DISAS_NORETURN:
14457             break;
14458         }
14459     } else {
14460         switch (dc->base.is_jmp) {
14461         case DISAS_NEXT:
14462         case DISAS_TOO_MANY:
14463             gen_goto_tb(dc, 1, 4);
14464             break;
14465         default:
14466         case DISAS_UPDATE_EXIT:
14467             gen_a64_update_pc(dc, 4);
14468             /* fall through */
14469         case DISAS_EXIT:
14470             tcg_gen_exit_tb(NULL, 0);
14471             break;
14472         case DISAS_UPDATE_NOCHAIN:
14473             gen_a64_update_pc(dc, 4);
14474             /* fall through */
14475         case DISAS_JUMP:
14476             tcg_gen_lookup_and_goto_ptr();
14477             break;
14478         case DISAS_NORETURN:
14479         case DISAS_SWI:
14480             break;
14481         case DISAS_WFE:
14482             gen_a64_update_pc(dc, 4);
14483             gen_helper_wfe(cpu_env);
14484             break;
14485         case DISAS_YIELD:
14486             gen_a64_update_pc(dc, 4);
14487             gen_helper_yield(cpu_env);
14488             break;
14489         case DISAS_WFI:
14490             /*
14491              * This is a special case because we don't want to just halt
14492              * the CPU if trying to debug across a WFI.
14493              */
14494             gen_a64_update_pc(dc, 4);
14495             gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14496             /*
14497              * The helper doesn't necessarily throw an exception, but we
14498              * must go back to the main loop to check for interrupts anyway.
14499              */
14500             tcg_gen_exit_tb(NULL, 0);
14501             break;
14502         }
14503     }
14504 }
14505 
14506 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14507                                  CPUState *cpu, FILE *logfile)
14508 {
14509     DisasContext *dc = container_of(dcbase, DisasContext, base);
14510 
14511     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14512     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14513 }
14514 
14515 const TranslatorOps aarch64_translator_ops = {
14516     .init_disas_context = aarch64_tr_init_disas_context,
14517     .tb_start           = aarch64_tr_tb_start,
14518     .insn_start         = aarch64_tr_insn_start,
14519     .translate_insn     = aarch64_tr_translate_insn,
14520     .tb_stop            = aarch64_tr_tb_stop,
14521     .disas_log          = aarch64_tr_disas_log,
14522 };
14523