1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 /* HINT instruction group, including various allocated HINTs */ 1653 static void handle_hint(DisasContext *s, uint32_t insn, 1654 unsigned int op1, unsigned int op2, unsigned int crm) 1655 { 1656 unsigned int selector = crm << 3 | op2; 1657 1658 if (op1 != 3) { 1659 unallocated_encoding(s); 1660 return; 1661 } 1662 1663 switch (selector) { 1664 case 0b00000: /* NOP */ 1665 break; 1666 case 0b00011: /* WFI */ 1667 s->base.is_jmp = DISAS_WFI; 1668 break; 1669 case 0b00001: /* YIELD */ 1670 /* When running in MTTCG we don't generate jumps to the yield and 1671 * WFE helpers as it won't affect the scheduling of other vCPUs. 1672 * If we wanted to more completely model WFE/SEV so we don't busy 1673 * spin unnecessarily we would need to do something more involved. 1674 */ 1675 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1676 s->base.is_jmp = DISAS_YIELD; 1677 } 1678 break; 1679 case 0b00010: /* WFE */ 1680 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1681 s->base.is_jmp = DISAS_WFE; 1682 } 1683 break; 1684 case 0b00100: /* SEV */ 1685 case 0b00101: /* SEVL */ 1686 case 0b00110: /* DGH */ 1687 /* we treat all as NOP at least for now */ 1688 break; 1689 case 0b00111: /* XPACLRI */ 1690 if (s->pauth_active) { 1691 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1692 } 1693 break; 1694 case 0b01000: /* PACIA1716 */ 1695 if (s->pauth_active) { 1696 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1697 } 1698 break; 1699 case 0b01010: /* PACIB1716 */ 1700 if (s->pauth_active) { 1701 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1702 } 1703 break; 1704 case 0b01100: /* AUTIA1716 */ 1705 if (s->pauth_active) { 1706 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1707 } 1708 break; 1709 case 0b01110: /* AUTIB1716 */ 1710 if (s->pauth_active) { 1711 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1712 } 1713 break; 1714 case 0b10000: /* ESB */ 1715 /* Without RAS, we must implement this as NOP. */ 1716 if (dc_isar_feature(aa64_ras, s)) { 1717 /* 1718 * QEMU does not have a source of physical SErrors, 1719 * so we are only concerned with virtual SErrors. 1720 * The pseudocode in the ARM for this case is 1721 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1722 * AArch64.vESBOperation(); 1723 * Most of the condition can be evaluated at translation time. 1724 * Test for EL2 present, and defer test for SEL2 to runtime. 1725 */ 1726 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1727 gen_helper_vesb(cpu_env); 1728 } 1729 } 1730 break; 1731 case 0b11000: /* PACIAZ */ 1732 if (s->pauth_active) { 1733 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1734 tcg_constant_i64(0)); 1735 } 1736 break; 1737 case 0b11001: /* PACIASP */ 1738 if (s->pauth_active) { 1739 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1740 } 1741 break; 1742 case 0b11010: /* PACIBZ */ 1743 if (s->pauth_active) { 1744 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1745 tcg_constant_i64(0)); 1746 } 1747 break; 1748 case 0b11011: /* PACIBSP */ 1749 if (s->pauth_active) { 1750 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1751 } 1752 break; 1753 case 0b11100: /* AUTIAZ */ 1754 if (s->pauth_active) { 1755 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1756 tcg_constant_i64(0)); 1757 } 1758 break; 1759 case 0b11101: /* AUTIASP */ 1760 if (s->pauth_active) { 1761 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1762 } 1763 break; 1764 case 0b11110: /* AUTIBZ */ 1765 if (s->pauth_active) { 1766 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1767 tcg_constant_i64(0)); 1768 } 1769 break; 1770 case 0b11111: /* AUTIBSP */ 1771 if (s->pauth_active) { 1772 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1773 } 1774 break; 1775 default: 1776 /* default specified as NOP equivalent */ 1777 break; 1778 } 1779 } 1780 1781 static void gen_clrex(DisasContext *s, uint32_t insn) 1782 { 1783 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1784 } 1785 1786 /* CLREX, DSB, DMB, ISB */ 1787 static void handle_sync(DisasContext *s, uint32_t insn, 1788 unsigned int op1, unsigned int op2, unsigned int crm) 1789 { 1790 TCGBar bar; 1791 1792 if (op1 != 3) { 1793 unallocated_encoding(s); 1794 return; 1795 } 1796 1797 switch (op2) { 1798 case 2: /* CLREX */ 1799 gen_clrex(s, insn); 1800 return; 1801 case 4: /* DSB */ 1802 case 5: /* DMB */ 1803 switch (crm & 3) { 1804 case 1: /* MBReqTypes_Reads */ 1805 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1806 break; 1807 case 2: /* MBReqTypes_Writes */ 1808 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1809 break; 1810 default: /* MBReqTypes_All */ 1811 bar = TCG_BAR_SC | TCG_MO_ALL; 1812 break; 1813 } 1814 tcg_gen_mb(bar); 1815 return; 1816 case 6: /* ISB */ 1817 /* We need to break the TB after this insn to execute 1818 * a self-modified code correctly and also to take 1819 * any pending interrupts immediately. 1820 */ 1821 reset_btype(s); 1822 gen_goto_tb(s, 0, 4); 1823 return; 1824 1825 case 7: /* SB */ 1826 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1827 goto do_unallocated; 1828 } 1829 /* 1830 * TODO: There is no speculation barrier opcode for TCG; 1831 * MB and end the TB instead. 1832 */ 1833 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1834 gen_goto_tb(s, 0, 4); 1835 return; 1836 1837 default: 1838 do_unallocated: 1839 unallocated_encoding(s); 1840 return; 1841 } 1842 } 1843 1844 static void gen_xaflag(void) 1845 { 1846 TCGv_i32 z = tcg_temp_new_i32(); 1847 1848 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1849 1850 /* 1851 * (!C & !Z) << 31 1852 * (!(C | Z)) << 31 1853 * ~((C | Z) << 31) 1854 * ~-(C | Z) 1855 * (C | Z) - 1 1856 */ 1857 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1858 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1859 1860 /* !(Z & C) */ 1861 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1862 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1863 1864 /* (!C & Z) << 31 -> -(Z & ~C) */ 1865 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1866 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1867 1868 /* C | Z */ 1869 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1870 } 1871 1872 static void gen_axflag(void) 1873 { 1874 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1875 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1876 1877 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1878 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1879 1880 tcg_gen_movi_i32(cpu_NF, 0); 1881 tcg_gen_movi_i32(cpu_VF, 0); 1882 } 1883 1884 /* MSR (immediate) - move immediate to processor state field */ 1885 static void handle_msr_i(DisasContext *s, uint32_t insn, 1886 unsigned int op1, unsigned int op2, unsigned int crm) 1887 { 1888 int op = op1 << 3 | op2; 1889 1890 /* End the TB by default, chaining is ok. */ 1891 s->base.is_jmp = DISAS_TOO_MANY; 1892 1893 switch (op) { 1894 case 0x00: /* CFINV */ 1895 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1896 goto do_unallocated; 1897 } 1898 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1899 s->base.is_jmp = DISAS_NEXT; 1900 break; 1901 1902 case 0x01: /* XAFlag */ 1903 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1904 goto do_unallocated; 1905 } 1906 gen_xaflag(); 1907 s->base.is_jmp = DISAS_NEXT; 1908 break; 1909 1910 case 0x02: /* AXFlag */ 1911 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1912 goto do_unallocated; 1913 } 1914 gen_axflag(); 1915 s->base.is_jmp = DISAS_NEXT; 1916 break; 1917 1918 case 0x03: /* UAO */ 1919 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1920 goto do_unallocated; 1921 } 1922 if (crm & 1) { 1923 set_pstate_bits(PSTATE_UAO); 1924 } else { 1925 clear_pstate_bits(PSTATE_UAO); 1926 } 1927 gen_rebuild_hflags(s); 1928 break; 1929 1930 case 0x04: /* PAN */ 1931 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1932 goto do_unallocated; 1933 } 1934 if (crm & 1) { 1935 set_pstate_bits(PSTATE_PAN); 1936 } else { 1937 clear_pstate_bits(PSTATE_PAN); 1938 } 1939 gen_rebuild_hflags(s); 1940 break; 1941 1942 case 0x05: /* SPSel */ 1943 if (s->current_el == 0) { 1944 goto do_unallocated; 1945 } 1946 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1947 break; 1948 1949 case 0x19: /* SSBS */ 1950 if (!dc_isar_feature(aa64_ssbs, s)) { 1951 goto do_unallocated; 1952 } 1953 if (crm & 1) { 1954 set_pstate_bits(PSTATE_SSBS); 1955 } else { 1956 clear_pstate_bits(PSTATE_SSBS); 1957 } 1958 /* Don't need to rebuild hflags since SSBS is a nop */ 1959 break; 1960 1961 case 0x1a: /* DIT */ 1962 if (!dc_isar_feature(aa64_dit, s)) { 1963 goto do_unallocated; 1964 } 1965 if (crm & 1) { 1966 set_pstate_bits(PSTATE_DIT); 1967 } else { 1968 clear_pstate_bits(PSTATE_DIT); 1969 } 1970 /* There's no need to rebuild hflags because DIT is a nop */ 1971 break; 1972 1973 case 0x1e: /* DAIFSet */ 1974 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1975 break; 1976 1977 case 0x1f: /* DAIFClear */ 1978 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1979 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1980 s->base.is_jmp = DISAS_UPDATE_EXIT; 1981 break; 1982 1983 case 0x1c: /* TCO */ 1984 if (dc_isar_feature(aa64_mte, s)) { 1985 /* Full MTE is enabled -- set the TCO bit as directed. */ 1986 if (crm & 1) { 1987 set_pstate_bits(PSTATE_TCO); 1988 } else { 1989 clear_pstate_bits(PSTATE_TCO); 1990 } 1991 gen_rebuild_hflags(s); 1992 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1993 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1994 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1995 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1996 s->base.is_jmp = DISAS_NEXT; 1997 } else { 1998 goto do_unallocated; 1999 } 2000 break; 2001 2002 case 0x1b: /* SVCR* */ 2003 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 2004 goto do_unallocated; 2005 } 2006 if (sme_access_check(s)) { 2007 int old = s->pstate_sm | (s->pstate_za << 1); 2008 int new = (crm & 1) * 3; 2009 int msk = (crm >> 1) & 3; 2010 2011 if ((old ^ new) & msk) { 2012 /* At least one bit changes. */ 2013 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2014 tcg_constant_i32(msk)); 2015 } else { 2016 s->base.is_jmp = DISAS_NEXT; 2017 } 2018 } 2019 break; 2020 2021 default: 2022 do_unallocated: 2023 unallocated_encoding(s); 2024 return; 2025 } 2026 } 2027 2028 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2029 { 2030 TCGv_i32 tmp = tcg_temp_new_i32(); 2031 TCGv_i32 nzcv = tcg_temp_new_i32(); 2032 2033 /* build bit 31, N */ 2034 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2035 /* build bit 30, Z */ 2036 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2037 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2038 /* build bit 29, C */ 2039 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2040 /* build bit 28, V */ 2041 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2042 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2043 /* generate result */ 2044 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2045 } 2046 2047 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2048 { 2049 TCGv_i32 nzcv = tcg_temp_new_i32(); 2050 2051 /* take NZCV from R[t] */ 2052 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2053 2054 /* bit 31, N */ 2055 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2056 /* bit 30, Z */ 2057 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2058 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2059 /* bit 29, C */ 2060 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2061 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2062 /* bit 28, V */ 2063 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2064 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2065 } 2066 2067 static void gen_sysreg_undef(DisasContext *s, bool isread, 2068 uint8_t op0, uint8_t op1, uint8_t op2, 2069 uint8_t crn, uint8_t crm, uint8_t rt) 2070 { 2071 /* 2072 * Generate code to emit an UNDEF with correct syndrome 2073 * information for a failed system register access. 2074 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2075 * but if FEAT_IDST is implemented then read accesses to registers 2076 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2077 * syndrome. 2078 */ 2079 uint32_t syndrome; 2080 2081 if (isread && dc_isar_feature(aa64_ids, s) && 2082 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2083 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2084 } else { 2085 syndrome = syn_uncategorized(); 2086 } 2087 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2088 } 2089 2090 /* MRS - move from system register 2091 * MSR (register) - move to system register 2092 * SYS 2093 * SYSL 2094 * These are all essentially the same insn in 'read' and 'write' 2095 * versions, with varying op0 fields. 2096 */ 2097 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2098 unsigned int op0, unsigned int op1, unsigned int op2, 2099 unsigned int crn, unsigned int crm, unsigned int rt) 2100 { 2101 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2102 crn, crm, op0, op1, op2); 2103 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2104 bool need_exit_tb = false; 2105 TCGv_ptr tcg_ri = NULL; 2106 TCGv_i64 tcg_rt; 2107 2108 if (!ri) { 2109 /* Unknown register; this might be a guest error or a QEMU 2110 * unimplemented feature. 2111 */ 2112 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2113 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2114 isread ? "read" : "write", op0, op1, crn, crm, op2); 2115 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2116 return; 2117 } 2118 2119 /* Check access permissions */ 2120 if (!cp_access_ok(s->current_el, ri, isread)) { 2121 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2122 return; 2123 } 2124 2125 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2126 /* Emit code to perform further access permissions checks at 2127 * runtime; this may result in an exception. 2128 */ 2129 uint32_t syndrome; 2130 2131 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2132 gen_a64_update_pc(s, 0); 2133 tcg_ri = tcg_temp_new_ptr(); 2134 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2135 tcg_constant_i32(key), 2136 tcg_constant_i32(syndrome), 2137 tcg_constant_i32(isread)); 2138 } else if (ri->type & ARM_CP_RAISES_EXC) { 2139 /* 2140 * The readfn or writefn might raise an exception; 2141 * synchronize the CPU state in case it does. 2142 */ 2143 gen_a64_update_pc(s, 0); 2144 } 2145 2146 /* Handle special cases first */ 2147 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2148 case 0: 2149 break; 2150 case ARM_CP_NOP: 2151 return; 2152 case ARM_CP_NZCV: 2153 tcg_rt = cpu_reg(s, rt); 2154 if (isread) { 2155 gen_get_nzcv(tcg_rt); 2156 } else { 2157 gen_set_nzcv(tcg_rt); 2158 } 2159 return; 2160 case ARM_CP_CURRENTEL: 2161 /* Reads as current EL value from pstate, which is 2162 * guaranteed to be constant by the tb flags. 2163 */ 2164 tcg_rt = cpu_reg(s, rt); 2165 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2166 return; 2167 case ARM_CP_DC_ZVA: 2168 /* Writes clear the aligned block of memory which rt points into. */ 2169 if (s->mte_active[0]) { 2170 int desc = 0; 2171 2172 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2173 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2174 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2175 2176 tcg_rt = tcg_temp_new_i64(); 2177 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2178 tcg_constant_i32(desc), cpu_reg(s, rt)); 2179 } else { 2180 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2181 } 2182 gen_helper_dc_zva(cpu_env, tcg_rt); 2183 return; 2184 case ARM_CP_DC_GVA: 2185 { 2186 TCGv_i64 clean_addr, tag; 2187 2188 /* 2189 * DC_GVA, like DC_ZVA, requires that we supply the original 2190 * pointer for an invalid page. Probe that address first. 2191 */ 2192 tcg_rt = cpu_reg(s, rt); 2193 clean_addr = clean_data_tbi(s, tcg_rt); 2194 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2195 2196 if (s->ata) { 2197 /* Extract the tag from the register to match STZGM. */ 2198 tag = tcg_temp_new_i64(); 2199 tcg_gen_shri_i64(tag, tcg_rt, 56); 2200 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2201 } 2202 } 2203 return; 2204 case ARM_CP_DC_GZVA: 2205 { 2206 TCGv_i64 clean_addr, tag; 2207 2208 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2209 tcg_rt = cpu_reg(s, rt); 2210 clean_addr = clean_data_tbi(s, tcg_rt); 2211 gen_helper_dc_zva(cpu_env, clean_addr); 2212 2213 if (s->ata) { 2214 /* Extract the tag from the register to match STZGM. */ 2215 tag = tcg_temp_new_i64(); 2216 tcg_gen_shri_i64(tag, tcg_rt, 56); 2217 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2218 } 2219 } 2220 return; 2221 default: 2222 g_assert_not_reached(); 2223 } 2224 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2225 return; 2226 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2227 return; 2228 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2229 return; 2230 } 2231 2232 if (ri->type & ARM_CP_IO) { 2233 /* I/O operations must end the TB here (whether read or write) */ 2234 need_exit_tb = translator_io_start(&s->base); 2235 } 2236 2237 tcg_rt = cpu_reg(s, rt); 2238 2239 if (isread) { 2240 if (ri->type & ARM_CP_CONST) { 2241 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2242 } else if (ri->readfn) { 2243 if (!tcg_ri) { 2244 tcg_ri = gen_lookup_cp_reg(key); 2245 } 2246 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2247 } else { 2248 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2249 } 2250 } else { 2251 if (ri->type & ARM_CP_CONST) { 2252 /* If not forbidden by access permissions, treat as WI */ 2253 return; 2254 } else if (ri->writefn) { 2255 if (!tcg_ri) { 2256 tcg_ri = gen_lookup_cp_reg(key); 2257 } 2258 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2259 } else { 2260 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2261 } 2262 } 2263 2264 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2265 /* 2266 * A write to any coprocessor regiser that ends a TB 2267 * must rebuild the hflags for the next TB. 2268 */ 2269 gen_rebuild_hflags(s); 2270 /* 2271 * We default to ending the TB on a coprocessor register write, 2272 * but allow this to be suppressed by the register definition 2273 * (usually only necessary to work around guest bugs). 2274 */ 2275 need_exit_tb = true; 2276 } 2277 if (need_exit_tb) { 2278 s->base.is_jmp = DISAS_UPDATE_EXIT; 2279 } 2280 } 2281 2282 /* System 2283 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2284 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2285 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2286 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2287 */ 2288 static void disas_system(DisasContext *s, uint32_t insn) 2289 { 2290 unsigned int l, op0, op1, crn, crm, op2, rt; 2291 l = extract32(insn, 21, 1); 2292 op0 = extract32(insn, 19, 2); 2293 op1 = extract32(insn, 16, 3); 2294 crn = extract32(insn, 12, 4); 2295 crm = extract32(insn, 8, 4); 2296 op2 = extract32(insn, 5, 3); 2297 rt = extract32(insn, 0, 5); 2298 2299 if (op0 == 0) { 2300 if (l || rt != 31) { 2301 unallocated_encoding(s); 2302 return; 2303 } 2304 switch (crn) { 2305 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2306 handle_hint(s, insn, op1, op2, crm); 2307 break; 2308 case 3: /* CLREX, DSB, DMB, ISB */ 2309 handle_sync(s, insn, op1, op2, crm); 2310 break; 2311 case 4: /* MSR (immediate) */ 2312 handle_msr_i(s, insn, op1, op2, crm); 2313 break; 2314 default: 2315 unallocated_encoding(s); 2316 break; 2317 } 2318 return; 2319 } 2320 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2321 } 2322 2323 /* Exception generation 2324 * 2325 * 31 24 23 21 20 5 4 2 1 0 2326 * +-----------------+-----+------------------------+-----+----+ 2327 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2328 * +-----------------------+------------------------+----------+ 2329 */ 2330 static void disas_exc(DisasContext *s, uint32_t insn) 2331 { 2332 int opc = extract32(insn, 21, 3); 2333 int op2_ll = extract32(insn, 0, 5); 2334 int imm16 = extract32(insn, 5, 16); 2335 uint32_t syndrome; 2336 2337 switch (opc) { 2338 case 0: 2339 /* For SVC, HVC and SMC we advance the single-step state 2340 * machine before taking the exception. This is architecturally 2341 * mandated, to ensure that single-stepping a system call 2342 * instruction works properly. 2343 */ 2344 switch (op2_ll) { 2345 case 1: /* SVC */ 2346 syndrome = syn_aa64_svc(imm16); 2347 if (s->fgt_svc) { 2348 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2349 break; 2350 } 2351 gen_ss_advance(s); 2352 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2353 break; 2354 case 2: /* HVC */ 2355 if (s->current_el == 0) { 2356 unallocated_encoding(s); 2357 break; 2358 } 2359 /* The pre HVC helper handles cases when HVC gets trapped 2360 * as an undefined insn by runtime configuration. 2361 */ 2362 gen_a64_update_pc(s, 0); 2363 gen_helper_pre_hvc(cpu_env); 2364 gen_ss_advance(s); 2365 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2366 break; 2367 case 3: /* SMC */ 2368 if (s->current_el == 0) { 2369 unallocated_encoding(s); 2370 break; 2371 } 2372 gen_a64_update_pc(s, 0); 2373 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2374 gen_ss_advance(s); 2375 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2376 break; 2377 default: 2378 unallocated_encoding(s); 2379 break; 2380 } 2381 break; 2382 case 1: 2383 if (op2_ll != 0) { 2384 unallocated_encoding(s); 2385 break; 2386 } 2387 /* BRK */ 2388 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2389 break; 2390 case 2: 2391 if (op2_ll != 0) { 2392 unallocated_encoding(s); 2393 break; 2394 } 2395 /* HLT. This has two purposes. 2396 * Architecturally, it is an external halting debug instruction. 2397 * Since QEMU doesn't implement external debug, we treat this as 2398 * it is required for halting debug disabled: it will UNDEF. 2399 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2400 */ 2401 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2402 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2403 } else { 2404 unallocated_encoding(s); 2405 } 2406 break; 2407 case 5: 2408 if (op2_ll < 1 || op2_ll > 3) { 2409 unallocated_encoding(s); 2410 break; 2411 } 2412 /* DCPS1, DCPS2, DCPS3 */ 2413 unallocated_encoding(s); 2414 break; 2415 default: 2416 unallocated_encoding(s); 2417 break; 2418 } 2419 } 2420 2421 /* Branches, exception generating and system instructions */ 2422 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2423 { 2424 switch (extract32(insn, 25, 7)) { 2425 case 0x6a: /* Exception generation / System */ 2426 if (insn & (1 << 24)) { 2427 if (extract32(insn, 22, 2) == 0) { 2428 disas_system(s, insn); 2429 } else { 2430 unallocated_encoding(s); 2431 } 2432 } else { 2433 disas_exc(s, insn); 2434 } 2435 break; 2436 default: 2437 unallocated_encoding(s); 2438 break; 2439 } 2440 } 2441 2442 /* 2443 * Load/Store exclusive instructions are implemented by remembering 2444 * the value/address loaded, and seeing if these are the same 2445 * when the store is performed. This is not actually the architecturally 2446 * mandated semantics, but it works for typical guest code sequences 2447 * and avoids having to monitor regular stores. 2448 * 2449 * The store exclusive uses the atomic cmpxchg primitives to avoid 2450 * races in multi-threaded linux-user and when MTTCG softmmu is 2451 * enabled. 2452 */ 2453 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2454 int size, bool is_pair) 2455 { 2456 int idx = get_mem_index(s); 2457 TCGv_i64 dirty_addr, clean_addr; 2458 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2459 2460 s->is_ldex = true; 2461 dirty_addr = cpu_reg_sp(s, rn); 2462 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2463 2464 g_assert(size <= 3); 2465 if (is_pair) { 2466 g_assert(size >= 2); 2467 if (size == 2) { 2468 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2469 if (s->be_data == MO_LE) { 2470 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2471 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2472 } else { 2473 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2474 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2475 } 2476 } else { 2477 TCGv_i128 t16 = tcg_temp_new_i128(); 2478 2479 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2480 2481 if (s->be_data == MO_LE) { 2482 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2483 cpu_exclusive_high, t16); 2484 } else { 2485 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2486 cpu_exclusive_val, t16); 2487 } 2488 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2489 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2490 } 2491 } else { 2492 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2493 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2494 } 2495 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2496 } 2497 2498 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2499 int rn, int size, int is_pair) 2500 { 2501 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2502 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2503 * [addr] = {Rt}; 2504 * if (is_pair) { 2505 * [addr + datasize] = {Rt2}; 2506 * } 2507 * {Rd} = 0; 2508 * } else { 2509 * {Rd} = 1; 2510 * } 2511 * env->exclusive_addr = -1; 2512 */ 2513 TCGLabel *fail_label = gen_new_label(); 2514 TCGLabel *done_label = gen_new_label(); 2515 TCGv_i64 tmp, clean_addr; 2516 MemOp memop; 2517 2518 /* 2519 * FIXME: We are out of spec here. We have recorded only the address 2520 * from load_exclusive, not the entire range, and we assume that the 2521 * size of the access on both sides match. The architecture allows the 2522 * store to be smaller than the load, so long as the stored bytes are 2523 * within the range recorded by the load. 2524 */ 2525 2526 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2527 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2528 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2529 2530 /* 2531 * The write, and any associated faults, only happen if the virtual 2532 * and physical addresses pass the exclusive monitor check. These 2533 * faults are exceedingly unlikely, because normally the guest uses 2534 * the exact same address register for the load_exclusive, and we 2535 * would have recognized these faults there. 2536 * 2537 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2538 * unaligned 4-byte write within the range of an aligned 8-byte load. 2539 * With LSE2, the store would need to cross a 16-byte boundary when the 2540 * load did not, which would mean the store is outside the range 2541 * recorded for the monitor, which would have failed a corrected monitor 2542 * check above. For now, we assume no size change and retain the 2543 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2544 * 2545 * It is possible to trigger an MTE fault, by performing the load with 2546 * a virtual address with a valid tag and performing the store with the 2547 * same virtual address and a different invalid tag. 2548 */ 2549 memop = size + is_pair; 2550 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2551 memop |= MO_ALIGN; 2552 } 2553 memop = finalize_memop(s, memop); 2554 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2555 2556 tmp = tcg_temp_new_i64(); 2557 if (is_pair) { 2558 if (size == 2) { 2559 if (s->be_data == MO_LE) { 2560 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2561 } else { 2562 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2563 } 2564 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2565 cpu_exclusive_val, tmp, 2566 get_mem_index(s), memop); 2567 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2568 } else { 2569 TCGv_i128 t16 = tcg_temp_new_i128(); 2570 TCGv_i128 c16 = tcg_temp_new_i128(); 2571 TCGv_i64 a, b; 2572 2573 if (s->be_data == MO_LE) { 2574 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2575 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2576 cpu_exclusive_high); 2577 } else { 2578 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2579 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2580 cpu_exclusive_val); 2581 } 2582 2583 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2584 get_mem_index(s), memop); 2585 2586 a = tcg_temp_new_i64(); 2587 b = tcg_temp_new_i64(); 2588 if (s->be_data == MO_LE) { 2589 tcg_gen_extr_i128_i64(a, b, t16); 2590 } else { 2591 tcg_gen_extr_i128_i64(b, a, t16); 2592 } 2593 2594 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2595 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2596 tcg_gen_or_i64(tmp, a, b); 2597 2598 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2599 } 2600 } else { 2601 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2602 cpu_reg(s, rt), get_mem_index(s), memop); 2603 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2604 } 2605 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2606 tcg_gen_br(done_label); 2607 2608 gen_set_label(fail_label); 2609 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2610 gen_set_label(done_label); 2611 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2612 } 2613 2614 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2615 int rn, int size) 2616 { 2617 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2618 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2619 int memidx = get_mem_index(s); 2620 TCGv_i64 clean_addr; 2621 MemOp memop; 2622 2623 if (rn == 31) { 2624 gen_check_sp_alignment(s); 2625 } 2626 memop = check_atomic_align(s, rn, size); 2627 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2628 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2629 memidx, memop); 2630 } 2631 2632 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2633 int rn, int size) 2634 { 2635 TCGv_i64 s1 = cpu_reg(s, rs); 2636 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2637 TCGv_i64 t1 = cpu_reg(s, rt); 2638 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2639 TCGv_i64 clean_addr; 2640 int memidx = get_mem_index(s); 2641 MemOp memop; 2642 2643 if (rn == 31) { 2644 gen_check_sp_alignment(s); 2645 } 2646 2647 /* This is a single atomic access, despite the "pair". */ 2648 memop = check_atomic_align(s, rn, size + 1); 2649 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2650 2651 if (size == 2) { 2652 TCGv_i64 cmp = tcg_temp_new_i64(); 2653 TCGv_i64 val = tcg_temp_new_i64(); 2654 2655 if (s->be_data == MO_LE) { 2656 tcg_gen_concat32_i64(val, t1, t2); 2657 tcg_gen_concat32_i64(cmp, s1, s2); 2658 } else { 2659 tcg_gen_concat32_i64(val, t2, t1); 2660 tcg_gen_concat32_i64(cmp, s2, s1); 2661 } 2662 2663 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2664 2665 if (s->be_data == MO_LE) { 2666 tcg_gen_extr32_i64(s1, s2, cmp); 2667 } else { 2668 tcg_gen_extr32_i64(s2, s1, cmp); 2669 } 2670 } else { 2671 TCGv_i128 cmp = tcg_temp_new_i128(); 2672 TCGv_i128 val = tcg_temp_new_i128(); 2673 2674 if (s->be_data == MO_LE) { 2675 tcg_gen_concat_i64_i128(val, t1, t2); 2676 tcg_gen_concat_i64_i128(cmp, s1, s2); 2677 } else { 2678 tcg_gen_concat_i64_i128(val, t2, t1); 2679 tcg_gen_concat_i64_i128(cmp, s2, s1); 2680 } 2681 2682 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2683 2684 if (s->be_data == MO_LE) { 2685 tcg_gen_extr_i128_i64(s1, s2, cmp); 2686 } else { 2687 tcg_gen_extr_i128_i64(s2, s1, cmp); 2688 } 2689 } 2690 } 2691 2692 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2693 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2694 */ 2695 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2696 { 2697 int opc0 = extract32(opc, 0, 1); 2698 int regsize; 2699 2700 if (is_signed) { 2701 regsize = opc0 ? 32 : 64; 2702 } else { 2703 regsize = size == 3 ? 64 : 32; 2704 } 2705 return regsize == 64; 2706 } 2707 2708 /* Load/store exclusive 2709 * 2710 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2711 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2712 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2713 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2714 * 2715 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2716 * L: 0 -> store, 1 -> load 2717 * o2: 0 -> exclusive, 1 -> not 2718 * o1: 0 -> single register, 1 -> register pair 2719 * o0: 1 -> load-acquire/store-release, 0 -> not 2720 */ 2721 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2722 { 2723 int rt = extract32(insn, 0, 5); 2724 int rn = extract32(insn, 5, 5); 2725 int rt2 = extract32(insn, 10, 5); 2726 int rs = extract32(insn, 16, 5); 2727 int is_lasr = extract32(insn, 15, 1); 2728 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2729 int size = extract32(insn, 30, 2); 2730 TCGv_i64 clean_addr; 2731 MemOp memop; 2732 2733 switch (o2_L_o1_o0) { 2734 case 0x0: /* STXR */ 2735 case 0x1: /* STLXR */ 2736 if (rn == 31) { 2737 gen_check_sp_alignment(s); 2738 } 2739 if (is_lasr) { 2740 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2741 } 2742 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2743 return; 2744 2745 case 0x4: /* LDXR */ 2746 case 0x5: /* LDAXR */ 2747 if (rn == 31) { 2748 gen_check_sp_alignment(s); 2749 } 2750 gen_load_exclusive(s, rt, rt2, rn, size, false); 2751 if (is_lasr) { 2752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2753 } 2754 return; 2755 2756 case 0x8: /* STLLR */ 2757 if (!dc_isar_feature(aa64_lor, s)) { 2758 break; 2759 } 2760 /* StoreLORelease is the same as Store-Release for QEMU. */ 2761 /* fall through */ 2762 case 0x9: /* STLR */ 2763 /* Generate ISS for non-exclusive accesses including LASR. */ 2764 if (rn == 31) { 2765 gen_check_sp_alignment(s); 2766 } 2767 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2768 memop = check_ordered_align(s, rn, 0, true, size); 2769 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2770 true, rn != 31, memop); 2771 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2772 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2773 return; 2774 2775 case 0xc: /* LDLAR */ 2776 if (!dc_isar_feature(aa64_lor, s)) { 2777 break; 2778 } 2779 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2780 /* fall through */ 2781 case 0xd: /* LDAR */ 2782 /* Generate ISS for non-exclusive accesses including LASR. */ 2783 if (rn == 31) { 2784 gen_check_sp_alignment(s); 2785 } 2786 memop = check_ordered_align(s, rn, 0, false, size); 2787 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2788 false, rn != 31, memop); 2789 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2790 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2791 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2792 return; 2793 2794 case 0x2: case 0x3: /* CASP / STXP */ 2795 if (size & 2) { /* STXP / STLXP */ 2796 if (rn == 31) { 2797 gen_check_sp_alignment(s); 2798 } 2799 if (is_lasr) { 2800 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2801 } 2802 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2803 return; 2804 } 2805 if (rt2 == 31 2806 && ((rt | rs) & 1) == 0 2807 && dc_isar_feature(aa64_atomics, s)) { 2808 /* CASP / CASPL */ 2809 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2810 return; 2811 } 2812 break; 2813 2814 case 0x6: case 0x7: /* CASPA / LDXP */ 2815 if (size & 2) { /* LDXP / LDAXP */ 2816 if (rn == 31) { 2817 gen_check_sp_alignment(s); 2818 } 2819 gen_load_exclusive(s, rt, rt2, rn, size, true); 2820 if (is_lasr) { 2821 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2822 } 2823 return; 2824 } 2825 if (rt2 == 31 2826 && ((rt | rs) & 1) == 0 2827 && dc_isar_feature(aa64_atomics, s)) { 2828 /* CASPA / CASPAL */ 2829 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2830 return; 2831 } 2832 break; 2833 2834 case 0xa: /* CAS */ 2835 case 0xb: /* CASL */ 2836 case 0xe: /* CASA */ 2837 case 0xf: /* CASAL */ 2838 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2839 gen_compare_and_swap(s, rs, rt, rn, size); 2840 return; 2841 } 2842 break; 2843 } 2844 unallocated_encoding(s); 2845 } 2846 2847 /* 2848 * Load register (literal) 2849 * 2850 * 31 30 29 27 26 25 24 23 5 4 0 2851 * +-----+-------+---+-----+-------------------+-------+ 2852 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2853 * +-----+-------+---+-----+-------------------+-------+ 2854 * 2855 * V: 1 -> vector (simd/fp) 2856 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2857 * 10-> 32 bit signed, 11 -> prefetch 2858 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2859 */ 2860 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2861 { 2862 int rt = extract32(insn, 0, 5); 2863 int64_t imm = sextract32(insn, 5, 19) << 2; 2864 bool is_vector = extract32(insn, 26, 1); 2865 int opc = extract32(insn, 30, 2); 2866 bool is_signed = false; 2867 int size = 2; 2868 TCGv_i64 tcg_rt, clean_addr; 2869 MemOp memop; 2870 2871 if (is_vector) { 2872 if (opc == 3) { 2873 unallocated_encoding(s); 2874 return; 2875 } 2876 size = 2 + opc; 2877 if (!fp_access_check(s)) { 2878 return; 2879 } 2880 memop = finalize_memop_asimd(s, size); 2881 } else { 2882 if (opc == 3) { 2883 /* PRFM (literal) : prefetch */ 2884 return; 2885 } 2886 size = 2 + extract32(opc, 0, 1); 2887 is_signed = extract32(opc, 1, 1); 2888 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2889 } 2890 2891 tcg_rt = cpu_reg(s, rt); 2892 2893 clean_addr = tcg_temp_new_i64(); 2894 gen_pc_plus_diff(s, clean_addr, imm); 2895 2896 if (is_vector) { 2897 do_fp_ld(s, rt, clean_addr, memop); 2898 } else { 2899 /* Only unsigned 32bit loads target 32bit registers. */ 2900 bool iss_sf = opc != 0; 2901 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2902 } 2903 } 2904 2905 /* 2906 * LDNP (Load Pair - non-temporal hint) 2907 * LDP (Load Pair - non vector) 2908 * LDPSW (Load Pair Signed Word - non vector) 2909 * STNP (Store Pair - non-temporal hint) 2910 * STP (Store Pair - non vector) 2911 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2912 * LDP (Load Pair of SIMD&FP) 2913 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2914 * STP (Store Pair of SIMD&FP) 2915 * 2916 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2917 * +-----+-------+---+---+-------+---+-----------------------------+ 2918 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2919 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2920 * 2921 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2922 * LDPSW/STGP 01 2923 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2924 * V: 0 -> GPR, 1 -> Vector 2925 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2926 * 10 -> signed offset, 11 -> pre-index 2927 * L: 0 -> Store 1 -> Load 2928 * 2929 * Rt, Rt2 = GPR or SIMD registers to be stored 2930 * Rn = general purpose register containing address 2931 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2932 */ 2933 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2934 { 2935 int rt = extract32(insn, 0, 5); 2936 int rn = extract32(insn, 5, 5); 2937 int rt2 = extract32(insn, 10, 5); 2938 uint64_t offset = sextract64(insn, 15, 7); 2939 int index = extract32(insn, 23, 2); 2940 bool is_vector = extract32(insn, 26, 1); 2941 bool is_load = extract32(insn, 22, 1); 2942 int opc = extract32(insn, 30, 2); 2943 bool is_signed = false; 2944 bool postindex = false; 2945 bool wback = false; 2946 bool set_tag = false; 2947 TCGv_i64 clean_addr, dirty_addr; 2948 MemOp mop; 2949 int size; 2950 2951 if (opc == 3) { 2952 unallocated_encoding(s); 2953 return; 2954 } 2955 2956 if (is_vector) { 2957 size = 2 + opc; 2958 } else if (opc == 1 && !is_load) { 2959 /* STGP */ 2960 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2961 unallocated_encoding(s); 2962 return; 2963 } 2964 size = 3; 2965 set_tag = true; 2966 } else { 2967 size = 2 + extract32(opc, 1, 1); 2968 is_signed = extract32(opc, 0, 1); 2969 if (!is_load && is_signed) { 2970 unallocated_encoding(s); 2971 return; 2972 } 2973 } 2974 2975 switch (index) { 2976 case 1: /* post-index */ 2977 postindex = true; 2978 wback = true; 2979 break; 2980 case 0: 2981 /* signed offset with "non-temporal" hint. Since we don't emulate 2982 * caches we don't care about hints to the cache system about 2983 * data access patterns, and handle this identically to plain 2984 * signed offset. 2985 */ 2986 if (is_signed) { 2987 /* There is no non-temporal-hint version of LDPSW */ 2988 unallocated_encoding(s); 2989 return; 2990 } 2991 postindex = false; 2992 break; 2993 case 2: /* signed offset, rn not updated */ 2994 postindex = false; 2995 break; 2996 case 3: /* pre-index */ 2997 postindex = false; 2998 wback = true; 2999 break; 3000 } 3001 3002 if (is_vector && !fp_access_check(s)) { 3003 return; 3004 } 3005 3006 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 3007 3008 if (rn == 31) { 3009 gen_check_sp_alignment(s); 3010 } 3011 3012 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3013 if (!postindex) { 3014 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3015 } 3016 3017 if (set_tag) { 3018 if (!s->ata) { 3019 /* 3020 * TODO: We could rely on the stores below, at least for 3021 * system mode, if we arrange to add MO_ALIGN_16. 3022 */ 3023 gen_helper_stg_stub(cpu_env, dirty_addr); 3024 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3025 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3026 } else { 3027 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3028 } 3029 } 3030 3031 if (is_vector) { 3032 mop = finalize_memop_asimd(s, size); 3033 } else { 3034 mop = finalize_memop(s, size); 3035 } 3036 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3037 (wback || rn != 31) && !set_tag, 3038 2 << size, mop); 3039 3040 if (is_vector) { 3041 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3042 if (is_load) { 3043 do_fp_ld(s, rt, clean_addr, mop); 3044 } else { 3045 do_fp_st(s, rt, clean_addr, mop); 3046 } 3047 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3048 if (is_load) { 3049 do_fp_ld(s, rt2, clean_addr, mop); 3050 } else { 3051 do_fp_st(s, rt2, clean_addr, mop); 3052 } 3053 } else { 3054 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3055 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3056 3057 /* 3058 * We built mop above for the single logical access -- rebuild it 3059 * now for the paired operation. 3060 * 3061 * With LSE2, non-sign-extending pairs are treated atomically if 3062 * aligned, and if unaligned one of the pair will be completely 3063 * within a 16-byte block and that element will be atomic. 3064 * Otherwise each element is separately atomic. 3065 * In all cases, issue one operation with the correct atomicity. 3066 * 3067 * This treats sign-extending loads like zero-extending loads, 3068 * since that reuses the most code below. 3069 */ 3070 mop = size + 1; 3071 if (s->align_mem) { 3072 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3073 } 3074 mop = finalize_memop_pair(s, mop); 3075 3076 if (is_load) { 3077 if (size == 2) { 3078 int o2 = s->be_data == MO_LE ? 32 : 0; 3079 int o1 = o2 ^ 32; 3080 3081 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3082 if (is_signed) { 3083 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3084 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3085 } else { 3086 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3087 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3088 } 3089 } else { 3090 TCGv_i128 tmp = tcg_temp_new_i128(); 3091 3092 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3093 if (s->be_data == MO_LE) { 3094 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3095 } else { 3096 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3097 } 3098 } 3099 } else { 3100 if (size == 2) { 3101 TCGv_i64 tmp = tcg_temp_new_i64(); 3102 3103 if (s->be_data == MO_LE) { 3104 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3105 } else { 3106 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3107 } 3108 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3109 } else { 3110 TCGv_i128 tmp = tcg_temp_new_i128(); 3111 3112 if (s->be_data == MO_LE) { 3113 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3114 } else { 3115 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3116 } 3117 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3118 } 3119 } 3120 } 3121 3122 if (wback) { 3123 if (postindex) { 3124 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3125 } 3126 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3127 } 3128 } 3129 3130 /* 3131 * Load/store (immediate post-indexed) 3132 * Load/store (immediate pre-indexed) 3133 * Load/store (unscaled immediate) 3134 * 3135 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3136 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3137 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3138 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3139 * 3140 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3141 10 -> unprivileged 3142 * V = 0 -> non-vector 3143 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3144 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3145 */ 3146 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3147 int opc, 3148 int size, 3149 int rt, 3150 bool is_vector) 3151 { 3152 int rn = extract32(insn, 5, 5); 3153 int imm9 = sextract32(insn, 12, 9); 3154 int idx = extract32(insn, 10, 2); 3155 bool is_signed = false; 3156 bool is_store = false; 3157 bool is_extended = false; 3158 bool is_unpriv = (idx == 2); 3159 bool iss_valid; 3160 bool post_index; 3161 bool writeback; 3162 int memidx; 3163 MemOp memop; 3164 TCGv_i64 clean_addr, dirty_addr; 3165 3166 if (is_vector) { 3167 size |= (opc & 2) << 1; 3168 if (size > 4 || is_unpriv) { 3169 unallocated_encoding(s); 3170 return; 3171 } 3172 is_store = ((opc & 1) == 0); 3173 if (!fp_access_check(s)) { 3174 return; 3175 } 3176 memop = finalize_memop_asimd(s, size); 3177 } else { 3178 if (size == 3 && opc == 2) { 3179 /* PRFM - prefetch */ 3180 if (idx != 0) { 3181 unallocated_encoding(s); 3182 return; 3183 } 3184 return; 3185 } 3186 if (opc == 3 && size > 1) { 3187 unallocated_encoding(s); 3188 return; 3189 } 3190 is_store = (opc == 0); 3191 is_signed = !is_store && extract32(opc, 1, 1); 3192 is_extended = (size < 3) && extract32(opc, 0, 1); 3193 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3194 } 3195 3196 switch (idx) { 3197 case 0: 3198 case 2: 3199 post_index = false; 3200 writeback = false; 3201 break; 3202 case 1: 3203 post_index = true; 3204 writeback = true; 3205 break; 3206 case 3: 3207 post_index = false; 3208 writeback = true; 3209 break; 3210 default: 3211 g_assert_not_reached(); 3212 } 3213 3214 iss_valid = !is_vector && !writeback; 3215 3216 if (rn == 31) { 3217 gen_check_sp_alignment(s); 3218 } 3219 3220 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3221 if (!post_index) { 3222 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3223 } 3224 3225 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3226 3227 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3228 writeback || rn != 31, 3229 size, is_unpriv, memidx); 3230 3231 if (is_vector) { 3232 if (is_store) { 3233 do_fp_st(s, rt, clean_addr, memop); 3234 } else { 3235 do_fp_ld(s, rt, clean_addr, memop); 3236 } 3237 } else { 3238 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3239 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3240 3241 if (is_store) { 3242 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3243 iss_valid, rt, iss_sf, false); 3244 } else { 3245 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3246 is_extended, memidx, 3247 iss_valid, rt, iss_sf, false); 3248 } 3249 } 3250 3251 if (writeback) { 3252 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3253 if (post_index) { 3254 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3255 } 3256 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3257 } 3258 } 3259 3260 /* 3261 * Load/store (register offset) 3262 * 3263 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3264 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3265 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3266 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3267 * 3268 * For non-vector: 3269 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3270 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3271 * For vector: 3272 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3273 * opc<0>: 0 -> store, 1 -> load 3274 * V: 1 -> vector/simd 3275 * opt: extend encoding (see DecodeRegExtend) 3276 * S: if S=1 then scale (essentially index by sizeof(size)) 3277 * Rt: register to transfer into/out of 3278 * Rn: address register or SP for base 3279 * Rm: offset register or ZR for offset 3280 */ 3281 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3282 int opc, 3283 int size, 3284 int rt, 3285 bool is_vector) 3286 { 3287 int rn = extract32(insn, 5, 5); 3288 int shift = extract32(insn, 12, 1); 3289 int rm = extract32(insn, 16, 5); 3290 int opt = extract32(insn, 13, 3); 3291 bool is_signed = false; 3292 bool is_store = false; 3293 bool is_extended = false; 3294 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3295 MemOp memop; 3296 3297 if (extract32(opt, 1, 1) == 0) { 3298 unallocated_encoding(s); 3299 return; 3300 } 3301 3302 if (is_vector) { 3303 size |= (opc & 2) << 1; 3304 if (size > 4) { 3305 unallocated_encoding(s); 3306 return; 3307 } 3308 is_store = !extract32(opc, 0, 1); 3309 if (!fp_access_check(s)) { 3310 return; 3311 } 3312 } else { 3313 if (size == 3 && opc == 2) { 3314 /* PRFM - prefetch */ 3315 return; 3316 } 3317 if (opc == 3 && size > 1) { 3318 unallocated_encoding(s); 3319 return; 3320 } 3321 is_store = (opc == 0); 3322 is_signed = !is_store && extract32(opc, 1, 1); 3323 is_extended = (size < 3) && extract32(opc, 0, 1); 3324 } 3325 3326 if (rn == 31) { 3327 gen_check_sp_alignment(s); 3328 } 3329 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3330 3331 tcg_rm = read_cpu_reg(s, rm, 1); 3332 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3333 3334 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3335 3336 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3337 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3338 3339 if (is_vector) { 3340 if (is_store) { 3341 do_fp_st(s, rt, clean_addr, memop); 3342 } else { 3343 do_fp_ld(s, rt, clean_addr, memop); 3344 } 3345 } else { 3346 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3347 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3348 3349 if (is_store) { 3350 do_gpr_st(s, tcg_rt, clean_addr, memop, 3351 true, rt, iss_sf, false); 3352 } else { 3353 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3354 is_extended, true, rt, iss_sf, false); 3355 } 3356 } 3357 } 3358 3359 /* 3360 * Load/store (unsigned immediate) 3361 * 3362 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3363 * +----+-------+---+-----+-----+------------+-------+------+ 3364 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3365 * +----+-------+---+-----+-----+------------+-------+------+ 3366 * 3367 * For non-vector: 3368 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3369 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3370 * For vector: 3371 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3372 * opc<0>: 0 -> store, 1 -> load 3373 * Rn: base address register (inc SP) 3374 * Rt: target register 3375 */ 3376 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3377 int opc, 3378 int size, 3379 int rt, 3380 bool is_vector) 3381 { 3382 int rn = extract32(insn, 5, 5); 3383 unsigned int imm12 = extract32(insn, 10, 12); 3384 unsigned int offset; 3385 TCGv_i64 clean_addr, dirty_addr; 3386 bool is_store; 3387 bool is_signed = false; 3388 bool is_extended = false; 3389 MemOp memop; 3390 3391 if (is_vector) { 3392 size |= (opc & 2) << 1; 3393 if (size > 4) { 3394 unallocated_encoding(s); 3395 return; 3396 } 3397 is_store = !extract32(opc, 0, 1); 3398 if (!fp_access_check(s)) { 3399 return; 3400 } 3401 } else { 3402 if (size == 3 && opc == 2) { 3403 /* PRFM - prefetch */ 3404 return; 3405 } 3406 if (opc == 3 && size > 1) { 3407 unallocated_encoding(s); 3408 return; 3409 } 3410 is_store = (opc == 0); 3411 is_signed = !is_store && extract32(opc, 1, 1); 3412 is_extended = (size < 3) && extract32(opc, 0, 1); 3413 } 3414 3415 if (rn == 31) { 3416 gen_check_sp_alignment(s); 3417 } 3418 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3419 offset = imm12 << size; 3420 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3421 3422 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3423 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3424 3425 if (is_vector) { 3426 if (is_store) { 3427 do_fp_st(s, rt, clean_addr, memop); 3428 } else { 3429 do_fp_ld(s, rt, clean_addr, memop); 3430 } 3431 } else { 3432 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3433 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3434 if (is_store) { 3435 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3436 } else { 3437 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3438 is_extended, true, rt, iss_sf, false); 3439 } 3440 } 3441 } 3442 3443 /* Atomic memory operations 3444 * 3445 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3446 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3447 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3448 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3449 * 3450 * Rt: the result register 3451 * Rn: base address or SP 3452 * Rs: the source register for the operation 3453 * V: vector flag (always 0 as of v8.3) 3454 * A: acquire flag 3455 * R: release flag 3456 */ 3457 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3458 int size, int rt, bool is_vector) 3459 { 3460 int rs = extract32(insn, 16, 5); 3461 int rn = extract32(insn, 5, 5); 3462 int o3_opc = extract32(insn, 12, 4); 3463 bool r = extract32(insn, 22, 1); 3464 bool a = extract32(insn, 23, 1); 3465 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3466 AtomicThreeOpFn *fn = NULL; 3467 MemOp mop = size; 3468 3469 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3470 unallocated_encoding(s); 3471 return; 3472 } 3473 switch (o3_opc) { 3474 case 000: /* LDADD */ 3475 fn = tcg_gen_atomic_fetch_add_i64; 3476 break; 3477 case 001: /* LDCLR */ 3478 fn = tcg_gen_atomic_fetch_and_i64; 3479 break; 3480 case 002: /* LDEOR */ 3481 fn = tcg_gen_atomic_fetch_xor_i64; 3482 break; 3483 case 003: /* LDSET */ 3484 fn = tcg_gen_atomic_fetch_or_i64; 3485 break; 3486 case 004: /* LDSMAX */ 3487 fn = tcg_gen_atomic_fetch_smax_i64; 3488 mop |= MO_SIGN; 3489 break; 3490 case 005: /* LDSMIN */ 3491 fn = tcg_gen_atomic_fetch_smin_i64; 3492 mop |= MO_SIGN; 3493 break; 3494 case 006: /* LDUMAX */ 3495 fn = tcg_gen_atomic_fetch_umax_i64; 3496 break; 3497 case 007: /* LDUMIN */ 3498 fn = tcg_gen_atomic_fetch_umin_i64; 3499 break; 3500 case 010: /* SWP */ 3501 fn = tcg_gen_atomic_xchg_i64; 3502 break; 3503 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3504 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3505 rs != 31 || a != 1 || r != 0) { 3506 unallocated_encoding(s); 3507 return; 3508 } 3509 break; 3510 default: 3511 unallocated_encoding(s); 3512 return; 3513 } 3514 3515 if (rn == 31) { 3516 gen_check_sp_alignment(s); 3517 } 3518 3519 mop = check_atomic_align(s, rn, mop); 3520 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3521 3522 if (o3_opc == 014) { 3523 /* 3524 * LDAPR* are a special case because they are a simple load, not a 3525 * fetch-and-do-something op. 3526 * The architectural consistency requirements here are weaker than 3527 * full load-acquire (we only need "load-acquire processor consistent"), 3528 * but we choose to implement them as full LDAQ. 3529 */ 3530 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3531 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3532 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3533 return; 3534 } 3535 3536 tcg_rs = read_cpu_reg(s, rs, true); 3537 tcg_rt = cpu_reg(s, rt); 3538 3539 if (o3_opc == 1) { /* LDCLR */ 3540 tcg_gen_not_i64(tcg_rs, tcg_rs); 3541 } 3542 3543 /* The tcg atomic primitives are all full barriers. Therefore we 3544 * can ignore the Acquire and Release bits of this instruction. 3545 */ 3546 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3547 3548 if (mop & MO_SIGN) { 3549 switch (size) { 3550 case MO_8: 3551 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3552 break; 3553 case MO_16: 3554 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3555 break; 3556 case MO_32: 3557 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3558 break; 3559 case MO_64: 3560 break; 3561 default: 3562 g_assert_not_reached(); 3563 } 3564 } 3565 } 3566 3567 /* 3568 * PAC memory operations 3569 * 3570 * 31 30 27 26 24 22 21 12 11 10 5 0 3571 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3572 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3573 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3574 * 3575 * Rt: the result register 3576 * Rn: base address or SP 3577 * V: vector flag (always 0 as of v8.3) 3578 * M: clear for key DA, set for key DB 3579 * W: pre-indexing flag 3580 * S: sign for imm9. 3581 */ 3582 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3583 int size, int rt, bool is_vector) 3584 { 3585 int rn = extract32(insn, 5, 5); 3586 bool is_wback = extract32(insn, 11, 1); 3587 bool use_key_a = !extract32(insn, 23, 1); 3588 int offset; 3589 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3590 MemOp memop; 3591 3592 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3593 unallocated_encoding(s); 3594 return; 3595 } 3596 3597 if (rn == 31) { 3598 gen_check_sp_alignment(s); 3599 } 3600 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3601 3602 if (s->pauth_active) { 3603 if (use_key_a) { 3604 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3605 tcg_constant_i64(0)); 3606 } else { 3607 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3608 tcg_constant_i64(0)); 3609 } 3610 } 3611 3612 /* Form the 10-bit signed, scaled offset. */ 3613 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3614 offset = sextract32(offset << size, 0, 10 + size); 3615 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3616 3617 memop = finalize_memop(s, size); 3618 3619 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3620 clean_addr = gen_mte_check1(s, dirty_addr, false, 3621 is_wback || rn != 31, memop); 3622 3623 tcg_rt = cpu_reg(s, rt); 3624 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3625 /* extend */ false, /* iss_valid */ !is_wback, 3626 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3627 3628 if (is_wback) { 3629 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3630 } 3631 } 3632 3633 /* 3634 * LDAPR/STLR (unscaled immediate) 3635 * 3636 * 31 30 24 22 21 12 10 5 0 3637 * +------+-------------+-----+---+--------+-----+----+-----+ 3638 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3639 * +------+-------------+-----+---+--------+-----+----+-----+ 3640 * 3641 * Rt: source or destination register 3642 * Rn: base register 3643 * imm9: unscaled immediate offset 3644 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3645 * size: size of load/store 3646 */ 3647 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3648 { 3649 int rt = extract32(insn, 0, 5); 3650 int rn = extract32(insn, 5, 5); 3651 int offset = sextract32(insn, 12, 9); 3652 int opc = extract32(insn, 22, 2); 3653 int size = extract32(insn, 30, 2); 3654 TCGv_i64 clean_addr, dirty_addr; 3655 bool is_store = false; 3656 bool extend = false; 3657 bool iss_sf; 3658 MemOp mop = size; 3659 3660 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3661 unallocated_encoding(s); 3662 return; 3663 } 3664 3665 switch (opc) { 3666 case 0: /* STLURB */ 3667 is_store = true; 3668 break; 3669 case 1: /* LDAPUR* */ 3670 break; 3671 case 2: /* LDAPURS* 64-bit variant */ 3672 if (size == 3) { 3673 unallocated_encoding(s); 3674 return; 3675 } 3676 mop |= MO_SIGN; 3677 break; 3678 case 3: /* LDAPURS* 32-bit variant */ 3679 if (size > 1) { 3680 unallocated_encoding(s); 3681 return; 3682 } 3683 mop |= MO_SIGN; 3684 extend = true; /* zero-extend 32->64 after signed load */ 3685 break; 3686 default: 3687 g_assert_not_reached(); 3688 } 3689 3690 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3691 3692 if (rn == 31) { 3693 gen_check_sp_alignment(s); 3694 } 3695 3696 mop = check_ordered_align(s, rn, offset, is_store, mop); 3697 3698 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3699 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3700 clean_addr = clean_data_tbi(s, dirty_addr); 3701 3702 if (is_store) { 3703 /* Store-Release semantics */ 3704 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3705 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3706 } else { 3707 /* 3708 * Load-AcquirePC semantics; we implement as the slightly more 3709 * restrictive Load-Acquire. 3710 */ 3711 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3712 extend, true, rt, iss_sf, true); 3713 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3714 } 3715 } 3716 3717 /* Load/store register (all forms) */ 3718 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3719 { 3720 int rt = extract32(insn, 0, 5); 3721 int opc = extract32(insn, 22, 2); 3722 bool is_vector = extract32(insn, 26, 1); 3723 int size = extract32(insn, 30, 2); 3724 3725 switch (extract32(insn, 24, 2)) { 3726 case 0: 3727 if (extract32(insn, 21, 1) == 0) { 3728 /* Load/store register (unscaled immediate) 3729 * Load/store immediate pre/post-indexed 3730 * Load/store register unprivileged 3731 */ 3732 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3733 return; 3734 } 3735 switch (extract32(insn, 10, 2)) { 3736 case 0: 3737 disas_ldst_atomic(s, insn, size, rt, is_vector); 3738 return; 3739 case 2: 3740 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3741 return; 3742 default: 3743 disas_ldst_pac(s, insn, size, rt, is_vector); 3744 return; 3745 } 3746 break; 3747 case 1: 3748 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3749 return; 3750 } 3751 unallocated_encoding(s); 3752 } 3753 3754 /* AdvSIMD load/store multiple structures 3755 * 3756 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3757 * +---+---+---------------+---+-------------+--------+------+------+------+ 3758 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3759 * +---+---+---------------+---+-------------+--------+------+------+------+ 3760 * 3761 * AdvSIMD load/store multiple structures (post-indexed) 3762 * 3763 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3764 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3765 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3766 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3767 * 3768 * Rt: first (or only) SIMD&FP register to be transferred 3769 * Rn: base address or SP 3770 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3771 */ 3772 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3773 { 3774 int rt = extract32(insn, 0, 5); 3775 int rn = extract32(insn, 5, 5); 3776 int rm = extract32(insn, 16, 5); 3777 int size = extract32(insn, 10, 2); 3778 int opcode = extract32(insn, 12, 4); 3779 bool is_store = !extract32(insn, 22, 1); 3780 bool is_postidx = extract32(insn, 23, 1); 3781 bool is_q = extract32(insn, 30, 1); 3782 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3783 MemOp endian, align, mop; 3784 3785 int total; /* total bytes */ 3786 int elements; /* elements per vector */ 3787 int rpt; /* num iterations */ 3788 int selem; /* structure elements */ 3789 int r; 3790 3791 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3792 unallocated_encoding(s); 3793 return; 3794 } 3795 3796 if (!is_postidx && rm != 0) { 3797 unallocated_encoding(s); 3798 return; 3799 } 3800 3801 /* From the shared decode logic */ 3802 switch (opcode) { 3803 case 0x0: 3804 rpt = 1; 3805 selem = 4; 3806 break; 3807 case 0x2: 3808 rpt = 4; 3809 selem = 1; 3810 break; 3811 case 0x4: 3812 rpt = 1; 3813 selem = 3; 3814 break; 3815 case 0x6: 3816 rpt = 3; 3817 selem = 1; 3818 break; 3819 case 0x7: 3820 rpt = 1; 3821 selem = 1; 3822 break; 3823 case 0x8: 3824 rpt = 1; 3825 selem = 2; 3826 break; 3827 case 0xa: 3828 rpt = 2; 3829 selem = 1; 3830 break; 3831 default: 3832 unallocated_encoding(s); 3833 return; 3834 } 3835 3836 if (size == 3 && !is_q && selem != 1) { 3837 /* reserved */ 3838 unallocated_encoding(s); 3839 return; 3840 } 3841 3842 if (!fp_access_check(s)) { 3843 return; 3844 } 3845 3846 if (rn == 31) { 3847 gen_check_sp_alignment(s); 3848 } 3849 3850 /* For our purposes, bytes are always little-endian. */ 3851 endian = s->be_data; 3852 if (size == 0) { 3853 endian = MO_LE; 3854 } 3855 3856 total = rpt * selem * (is_q ? 16 : 8); 3857 tcg_rn = cpu_reg_sp(s, rn); 3858 3859 /* 3860 * Issue the MTE check vs the logical repeat count, before we 3861 * promote consecutive little-endian elements below. 3862 */ 3863 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3864 total, finalize_memop(s, size)); 3865 3866 /* 3867 * Consecutive little-endian elements from a single register 3868 * can be promoted to a larger little-endian operation. 3869 */ 3870 align = MO_ALIGN; 3871 if (selem == 1 && endian == MO_LE) { 3872 align = pow2_align(size); 3873 size = 3; 3874 } 3875 if (!s->align_mem) { 3876 align = 0; 3877 } 3878 mop = endian | size | align; 3879 3880 elements = (is_q ? 16 : 8) >> size; 3881 tcg_ebytes = tcg_constant_i64(1 << size); 3882 for (r = 0; r < rpt; r++) { 3883 int e; 3884 for (e = 0; e < elements; e++) { 3885 int xs; 3886 for (xs = 0; xs < selem; xs++) { 3887 int tt = (rt + r + xs) % 32; 3888 if (is_store) { 3889 do_vec_st(s, tt, e, clean_addr, mop); 3890 } else { 3891 do_vec_ld(s, tt, e, clean_addr, mop); 3892 } 3893 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3894 } 3895 } 3896 } 3897 3898 if (!is_store) { 3899 /* For non-quad operations, setting a slice of the low 3900 * 64 bits of the register clears the high 64 bits (in 3901 * the ARM ARM pseudocode this is implicit in the fact 3902 * that 'rval' is a 64 bit wide variable). 3903 * For quad operations, we might still need to zero the 3904 * high bits of SVE. 3905 */ 3906 for (r = 0; r < rpt * selem; r++) { 3907 int tt = (rt + r) % 32; 3908 clear_vec_high(s, is_q, tt); 3909 } 3910 } 3911 3912 if (is_postidx) { 3913 if (rm == 31) { 3914 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3915 } else { 3916 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3917 } 3918 } 3919 } 3920 3921 /* AdvSIMD load/store single structure 3922 * 3923 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3924 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3925 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3926 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3927 * 3928 * AdvSIMD load/store single structure (post-indexed) 3929 * 3930 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3931 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3932 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3933 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3934 * 3935 * Rt: first (or only) SIMD&FP register to be transferred 3936 * Rn: base address or SP 3937 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3938 * index = encoded in Q:S:size dependent on size 3939 * 3940 * lane_size = encoded in R, opc 3941 * transfer width = encoded in opc, S, size 3942 */ 3943 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3944 { 3945 int rt = extract32(insn, 0, 5); 3946 int rn = extract32(insn, 5, 5); 3947 int rm = extract32(insn, 16, 5); 3948 int size = extract32(insn, 10, 2); 3949 int S = extract32(insn, 12, 1); 3950 int opc = extract32(insn, 13, 3); 3951 int R = extract32(insn, 21, 1); 3952 int is_load = extract32(insn, 22, 1); 3953 int is_postidx = extract32(insn, 23, 1); 3954 int is_q = extract32(insn, 30, 1); 3955 3956 int scale = extract32(opc, 1, 2); 3957 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3958 bool replicate = false; 3959 int index = is_q << 3 | S << 2 | size; 3960 int xs, total; 3961 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3962 MemOp mop; 3963 3964 if (extract32(insn, 31, 1)) { 3965 unallocated_encoding(s); 3966 return; 3967 } 3968 if (!is_postidx && rm != 0) { 3969 unallocated_encoding(s); 3970 return; 3971 } 3972 3973 switch (scale) { 3974 case 3: 3975 if (!is_load || S) { 3976 unallocated_encoding(s); 3977 return; 3978 } 3979 scale = size; 3980 replicate = true; 3981 break; 3982 case 0: 3983 break; 3984 case 1: 3985 if (extract32(size, 0, 1)) { 3986 unallocated_encoding(s); 3987 return; 3988 } 3989 index >>= 1; 3990 break; 3991 case 2: 3992 if (extract32(size, 1, 1)) { 3993 unallocated_encoding(s); 3994 return; 3995 } 3996 if (!extract32(size, 0, 1)) { 3997 index >>= 2; 3998 } else { 3999 if (S) { 4000 unallocated_encoding(s); 4001 return; 4002 } 4003 index >>= 3; 4004 scale = 3; 4005 } 4006 break; 4007 default: 4008 g_assert_not_reached(); 4009 } 4010 4011 if (!fp_access_check(s)) { 4012 return; 4013 } 4014 4015 if (rn == 31) { 4016 gen_check_sp_alignment(s); 4017 } 4018 4019 total = selem << scale; 4020 tcg_rn = cpu_reg_sp(s, rn); 4021 4022 mop = finalize_memop(s, scale); 4023 4024 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 4025 total, mop); 4026 4027 tcg_ebytes = tcg_constant_i64(1 << scale); 4028 for (xs = 0; xs < selem; xs++) { 4029 if (replicate) { 4030 /* Load and replicate to all elements */ 4031 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4032 4033 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4034 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4035 (is_q + 1) * 8, vec_full_reg_size(s), 4036 tcg_tmp); 4037 } else { 4038 /* Load/store one element per register */ 4039 if (is_load) { 4040 do_vec_ld(s, rt, index, clean_addr, mop); 4041 } else { 4042 do_vec_st(s, rt, index, clean_addr, mop); 4043 } 4044 } 4045 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4046 rt = (rt + 1) % 32; 4047 } 4048 4049 if (is_postidx) { 4050 if (rm == 31) { 4051 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4052 } else { 4053 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4054 } 4055 } 4056 } 4057 4058 /* 4059 * Load/Store memory tags 4060 * 4061 * 31 30 29 24 22 21 12 10 5 0 4062 * +-----+-------------+-----+---+------+-----+------+------+ 4063 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4064 * +-----+-------------+-----+---+------+-----+------+------+ 4065 */ 4066 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4067 { 4068 int rt = extract32(insn, 0, 5); 4069 int rn = extract32(insn, 5, 5); 4070 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4071 int op2 = extract32(insn, 10, 2); 4072 int op1 = extract32(insn, 22, 2); 4073 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4074 int index = 0; 4075 TCGv_i64 addr, clean_addr, tcg_rt; 4076 4077 /* We checked insn bits [29:24,21] in the caller. */ 4078 if (extract32(insn, 30, 2) != 3) { 4079 goto do_unallocated; 4080 } 4081 4082 /* 4083 * @index is a tri-state variable which has 3 states: 4084 * < 0 : post-index, writeback 4085 * = 0 : signed offset 4086 * > 0 : pre-index, writeback 4087 */ 4088 switch (op1) { 4089 case 0: 4090 if (op2 != 0) { 4091 /* STG */ 4092 index = op2 - 2; 4093 } else { 4094 /* STZGM */ 4095 if (s->current_el == 0 || offset != 0) { 4096 goto do_unallocated; 4097 } 4098 is_mult = is_zero = true; 4099 } 4100 break; 4101 case 1: 4102 if (op2 != 0) { 4103 /* STZG */ 4104 is_zero = true; 4105 index = op2 - 2; 4106 } else { 4107 /* LDG */ 4108 is_load = true; 4109 } 4110 break; 4111 case 2: 4112 if (op2 != 0) { 4113 /* ST2G */ 4114 is_pair = true; 4115 index = op2 - 2; 4116 } else { 4117 /* STGM */ 4118 if (s->current_el == 0 || offset != 0) { 4119 goto do_unallocated; 4120 } 4121 is_mult = true; 4122 } 4123 break; 4124 case 3: 4125 if (op2 != 0) { 4126 /* STZ2G */ 4127 is_pair = is_zero = true; 4128 index = op2 - 2; 4129 } else { 4130 /* LDGM */ 4131 if (s->current_el == 0 || offset != 0) { 4132 goto do_unallocated; 4133 } 4134 is_mult = is_load = true; 4135 } 4136 break; 4137 4138 default: 4139 do_unallocated: 4140 unallocated_encoding(s); 4141 return; 4142 } 4143 4144 if (is_mult 4145 ? !dc_isar_feature(aa64_mte, s) 4146 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4147 goto do_unallocated; 4148 } 4149 4150 if (rn == 31) { 4151 gen_check_sp_alignment(s); 4152 } 4153 4154 addr = read_cpu_reg_sp(s, rn, true); 4155 if (index >= 0) { 4156 /* pre-index or signed offset */ 4157 tcg_gen_addi_i64(addr, addr, offset); 4158 } 4159 4160 if (is_mult) { 4161 tcg_rt = cpu_reg(s, rt); 4162 4163 if (is_zero) { 4164 int size = 4 << s->dcz_blocksize; 4165 4166 if (s->ata) { 4167 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4168 } 4169 /* 4170 * The non-tags portion of STZGM is mostly like DC_ZVA, 4171 * except the alignment happens before the access. 4172 */ 4173 clean_addr = clean_data_tbi(s, addr); 4174 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4175 gen_helper_dc_zva(cpu_env, clean_addr); 4176 } else if (s->ata) { 4177 if (is_load) { 4178 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4179 } else { 4180 gen_helper_stgm(cpu_env, addr, tcg_rt); 4181 } 4182 } else { 4183 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4184 int size = 4 << GMID_EL1_BS; 4185 4186 clean_addr = clean_data_tbi(s, addr); 4187 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4188 gen_probe_access(s, clean_addr, acc, size); 4189 4190 if (is_load) { 4191 /* The result tags are zeros. */ 4192 tcg_gen_movi_i64(tcg_rt, 0); 4193 } 4194 } 4195 return; 4196 } 4197 4198 if (is_load) { 4199 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4200 tcg_rt = cpu_reg(s, rt); 4201 if (s->ata) { 4202 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4203 } else { 4204 clean_addr = clean_data_tbi(s, addr); 4205 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4206 gen_address_with_allocation_tag0(tcg_rt, addr); 4207 } 4208 } else { 4209 tcg_rt = cpu_reg_sp(s, rt); 4210 if (!s->ata) { 4211 /* 4212 * For STG and ST2G, we need to check alignment and probe memory. 4213 * TODO: For STZG and STZ2G, we could rely on the stores below, 4214 * at least for system mode; user-only won't enforce alignment. 4215 */ 4216 if (is_pair) { 4217 gen_helper_st2g_stub(cpu_env, addr); 4218 } else { 4219 gen_helper_stg_stub(cpu_env, addr); 4220 } 4221 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4222 if (is_pair) { 4223 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4224 } else { 4225 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4226 } 4227 } else { 4228 if (is_pair) { 4229 gen_helper_st2g(cpu_env, addr, tcg_rt); 4230 } else { 4231 gen_helper_stg(cpu_env, addr, tcg_rt); 4232 } 4233 } 4234 } 4235 4236 if (is_zero) { 4237 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4238 TCGv_i64 zero64 = tcg_constant_i64(0); 4239 TCGv_i128 zero128 = tcg_temp_new_i128(); 4240 int mem_index = get_mem_index(s); 4241 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4242 4243 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4244 4245 /* This is 1 or 2 atomic 16-byte operations. */ 4246 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4247 if (is_pair) { 4248 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4249 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4250 } 4251 } 4252 4253 if (index != 0) { 4254 /* pre-index or post-index */ 4255 if (index < 0) { 4256 /* post-index */ 4257 tcg_gen_addi_i64(addr, addr, offset); 4258 } 4259 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4260 } 4261 } 4262 4263 /* Loads and stores */ 4264 static void disas_ldst(DisasContext *s, uint32_t insn) 4265 { 4266 switch (extract32(insn, 24, 6)) { 4267 case 0x08: /* Load/store exclusive */ 4268 disas_ldst_excl(s, insn); 4269 break; 4270 case 0x18: case 0x1c: /* Load register (literal) */ 4271 disas_ld_lit(s, insn); 4272 break; 4273 case 0x28: case 0x29: 4274 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4275 disas_ldst_pair(s, insn); 4276 break; 4277 case 0x38: case 0x39: 4278 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4279 disas_ldst_reg(s, insn); 4280 break; 4281 case 0x0c: /* AdvSIMD load/store multiple structures */ 4282 disas_ldst_multiple_struct(s, insn); 4283 break; 4284 case 0x0d: /* AdvSIMD load/store single structure */ 4285 disas_ldst_single_struct(s, insn); 4286 break; 4287 case 0x19: 4288 if (extract32(insn, 21, 1) != 0) { 4289 disas_ldst_tag(s, insn); 4290 } else if (extract32(insn, 10, 2) == 0) { 4291 disas_ldst_ldapr_stlr(s, insn); 4292 } else { 4293 unallocated_encoding(s); 4294 } 4295 break; 4296 default: 4297 unallocated_encoding(s); 4298 break; 4299 } 4300 } 4301 4302 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4303 4304 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4305 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4306 { 4307 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4308 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4309 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4310 4311 fn(tcg_rd, tcg_rn, tcg_imm); 4312 if (!a->sf) { 4313 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4314 } 4315 return true; 4316 } 4317 4318 /* 4319 * PC-rel. addressing 4320 */ 4321 4322 static bool trans_ADR(DisasContext *s, arg_ri *a) 4323 { 4324 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4325 return true; 4326 } 4327 4328 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4329 { 4330 int64_t offset = (int64_t)a->imm << 12; 4331 4332 /* The page offset is ok for CF_PCREL. */ 4333 offset -= s->pc_curr & 0xfff; 4334 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4335 return true; 4336 } 4337 4338 /* 4339 * Add/subtract (immediate) 4340 */ 4341 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4342 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4343 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4344 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4345 4346 /* 4347 * Add/subtract (immediate, with tags) 4348 */ 4349 4350 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4351 bool sub_op) 4352 { 4353 TCGv_i64 tcg_rn, tcg_rd; 4354 int imm; 4355 4356 imm = a->uimm6 << LOG2_TAG_GRANULE; 4357 if (sub_op) { 4358 imm = -imm; 4359 } 4360 4361 tcg_rn = cpu_reg_sp(s, a->rn); 4362 tcg_rd = cpu_reg_sp(s, a->rd); 4363 4364 if (s->ata) { 4365 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4366 tcg_constant_i32(imm), 4367 tcg_constant_i32(a->uimm4)); 4368 } else { 4369 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4370 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4371 } 4372 return true; 4373 } 4374 4375 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4376 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4377 4378 /* The input should be a value in the bottom e bits (with higher 4379 * bits zero); returns that value replicated into every element 4380 * of size e in a 64 bit integer. 4381 */ 4382 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4383 { 4384 assert(e != 0); 4385 while (e < 64) { 4386 mask |= mask << e; 4387 e *= 2; 4388 } 4389 return mask; 4390 } 4391 4392 /* 4393 * Logical (immediate) 4394 */ 4395 4396 /* 4397 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4398 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4399 * value (ie should cause a guest UNDEF exception), and true if they are 4400 * valid, in which case the decoded bit pattern is written to result. 4401 */ 4402 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4403 unsigned int imms, unsigned int immr) 4404 { 4405 uint64_t mask; 4406 unsigned e, levels, s, r; 4407 int len; 4408 4409 assert(immn < 2 && imms < 64 && immr < 64); 4410 4411 /* The bit patterns we create here are 64 bit patterns which 4412 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4413 * 64 bits each. Each element contains the same value: a run 4414 * of between 1 and e-1 non-zero bits, rotated within the 4415 * element by between 0 and e-1 bits. 4416 * 4417 * The element size and run length are encoded into immn (1 bit) 4418 * and imms (6 bits) as follows: 4419 * 64 bit elements: immn = 1, imms = <length of run - 1> 4420 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4421 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4422 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4423 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4424 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4425 * Notice that immn = 0, imms = 11111x is the only combination 4426 * not covered by one of the above options; this is reserved. 4427 * Further, <length of run - 1> all-ones is a reserved pattern. 4428 * 4429 * In all cases the rotation is by immr % e (and immr is 6 bits). 4430 */ 4431 4432 /* First determine the element size */ 4433 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4434 if (len < 1) { 4435 /* This is the immn == 0, imms == 0x11111x case */ 4436 return false; 4437 } 4438 e = 1 << len; 4439 4440 levels = e - 1; 4441 s = imms & levels; 4442 r = immr & levels; 4443 4444 if (s == levels) { 4445 /* <length of run - 1> mustn't be all-ones. */ 4446 return false; 4447 } 4448 4449 /* Create the value of one element: s+1 set bits rotated 4450 * by r within the element (which is e bits wide)... 4451 */ 4452 mask = MAKE_64BIT_MASK(0, s + 1); 4453 if (r) { 4454 mask = (mask >> r) | (mask << (e - r)); 4455 mask &= MAKE_64BIT_MASK(0, e); 4456 } 4457 /* ...then replicate the element over the whole 64 bit value */ 4458 mask = bitfield_replicate(mask, e); 4459 *result = mask; 4460 return true; 4461 } 4462 4463 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4464 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4465 { 4466 TCGv_i64 tcg_rd, tcg_rn; 4467 uint64_t imm; 4468 4469 /* Some immediate field values are reserved. */ 4470 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4471 extract32(a->dbm, 0, 6), 4472 extract32(a->dbm, 6, 6))) { 4473 return false; 4474 } 4475 if (!a->sf) { 4476 imm &= 0xffffffffull; 4477 } 4478 4479 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4480 tcg_rn = cpu_reg(s, a->rn); 4481 4482 fn(tcg_rd, tcg_rn, imm); 4483 if (set_cc) { 4484 gen_logic_CC(a->sf, tcg_rd); 4485 } 4486 if (!a->sf) { 4487 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4488 } 4489 return true; 4490 } 4491 4492 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4493 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4494 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4495 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4496 4497 /* 4498 * Move wide (immediate) 4499 */ 4500 4501 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4502 { 4503 int pos = a->hw << 4; 4504 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4505 return true; 4506 } 4507 4508 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4509 { 4510 int pos = a->hw << 4; 4511 uint64_t imm = a->imm; 4512 4513 imm = ~(imm << pos); 4514 if (!a->sf) { 4515 imm = (uint32_t)imm; 4516 } 4517 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4518 return true; 4519 } 4520 4521 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4522 { 4523 int pos = a->hw << 4; 4524 TCGv_i64 tcg_rd, tcg_im; 4525 4526 tcg_rd = cpu_reg(s, a->rd); 4527 tcg_im = tcg_constant_i64(a->imm); 4528 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4529 if (!a->sf) { 4530 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4531 } 4532 return true; 4533 } 4534 4535 /* 4536 * Bitfield 4537 */ 4538 4539 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4540 { 4541 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4542 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4543 unsigned int bitsize = a->sf ? 64 : 32; 4544 unsigned int ri = a->immr; 4545 unsigned int si = a->imms; 4546 unsigned int pos, len; 4547 4548 if (si >= ri) { 4549 /* Wd<s-r:0> = Wn<s:r> */ 4550 len = (si - ri) + 1; 4551 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4552 if (!a->sf) { 4553 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4554 } 4555 } else { 4556 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4557 len = si + 1; 4558 pos = (bitsize - ri) & (bitsize - 1); 4559 4560 if (len < ri) { 4561 /* 4562 * Sign extend the destination field from len to fill the 4563 * balance of the word. Let the deposit below insert all 4564 * of those sign bits. 4565 */ 4566 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4567 len = ri; 4568 } 4569 4570 /* 4571 * We start with zero, and we haven't modified any bits outside 4572 * bitsize, therefore no final zero-extension is unneeded for !sf. 4573 */ 4574 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4575 } 4576 return true; 4577 } 4578 4579 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4580 { 4581 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4582 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4583 unsigned int bitsize = a->sf ? 64 : 32; 4584 unsigned int ri = a->immr; 4585 unsigned int si = a->imms; 4586 unsigned int pos, len; 4587 4588 tcg_rd = cpu_reg(s, a->rd); 4589 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4590 4591 if (si >= ri) { 4592 /* Wd<s-r:0> = Wn<s:r> */ 4593 len = (si - ri) + 1; 4594 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4595 } else { 4596 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4597 len = si + 1; 4598 pos = (bitsize - ri) & (bitsize - 1); 4599 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4600 } 4601 return true; 4602 } 4603 4604 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4605 { 4606 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4607 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4608 unsigned int bitsize = a->sf ? 64 : 32; 4609 unsigned int ri = a->immr; 4610 unsigned int si = a->imms; 4611 unsigned int pos, len; 4612 4613 tcg_rd = cpu_reg(s, a->rd); 4614 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4615 4616 if (si >= ri) { 4617 /* Wd<s-r:0> = Wn<s:r> */ 4618 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4619 len = (si - ri) + 1; 4620 pos = 0; 4621 } else { 4622 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4623 len = si + 1; 4624 pos = (bitsize - ri) & (bitsize - 1); 4625 } 4626 4627 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4628 if (!a->sf) { 4629 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4630 } 4631 return true; 4632 } 4633 4634 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4635 { 4636 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4637 4638 tcg_rd = cpu_reg(s, a->rd); 4639 4640 if (unlikely(a->imm == 0)) { 4641 /* 4642 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4643 * so an extract from bit 0 is a special case. 4644 */ 4645 if (a->sf) { 4646 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4647 } else { 4648 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4649 } 4650 } else { 4651 tcg_rm = cpu_reg(s, a->rm); 4652 tcg_rn = cpu_reg(s, a->rn); 4653 4654 if (a->sf) { 4655 /* Specialization to ROR happens in EXTRACT2. */ 4656 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4657 } else { 4658 TCGv_i32 t0 = tcg_temp_new_i32(); 4659 4660 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4661 if (a->rm == a->rn) { 4662 tcg_gen_rotri_i32(t0, t0, a->imm); 4663 } else { 4664 TCGv_i32 t1 = tcg_temp_new_i32(); 4665 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4666 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4667 } 4668 tcg_gen_extu_i32_i64(tcg_rd, t0); 4669 } 4670 } 4671 return true; 4672 } 4673 4674 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4675 * Note that it is the caller's responsibility to ensure that the 4676 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4677 * mandated semantics for out of range shifts. 4678 */ 4679 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4680 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4681 { 4682 switch (shift_type) { 4683 case A64_SHIFT_TYPE_LSL: 4684 tcg_gen_shl_i64(dst, src, shift_amount); 4685 break; 4686 case A64_SHIFT_TYPE_LSR: 4687 tcg_gen_shr_i64(dst, src, shift_amount); 4688 break; 4689 case A64_SHIFT_TYPE_ASR: 4690 if (!sf) { 4691 tcg_gen_ext32s_i64(dst, src); 4692 } 4693 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4694 break; 4695 case A64_SHIFT_TYPE_ROR: 4696 if (sf) { 4697 tcg_gen_rotr_i64(dst, src, shift_amount); 4698 } else { 4699 TCGv_i32 t0, t1; 4700 t0 = tcg_temp_new_i32(); 4701 t1 = tcg_temp_new_i32(); 4702 tcg_gen_extrl_i64_i32(t0, src); 4703 tcg_gen_extrl_i64_i32(t1, shift_amount); 4704 tcg_gen_rotr_i32(t0, t0, t1); 4705 tcg_gen_extu_i32_i64(dst, t0); 4706 } 4707 break; 4708 default: 4709 assert(FALSE); /* all shift types should be handled */ 4710 break; 4711 } 4712 4713 if (!sf) { /* zero extend final result */ 4714 tcg_gen_ext32u_i64(dst, dst); 4715 } 4716 } 4717 4718 /* Shift a TCGv src by immediate, put result in dst. 4719 * The shift amount must be in range (this should always be true as the 4720 * relevant instructions will UNDEF on bad shift immediates). 4721 */ 4722 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4723 enum a64_shift_type shift_type, unsigned int shift_i) 4724 { 4725 assert(shift_i < (sf ? 64 : 32)); 4726 4727 if (shift_i == 0) { 4728 tcg_gen_mov_i64(dst, src); 4729 } else { 4730 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4731 } 4732 } 4733 4734 /* Logical (shifted register) 4735 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4736 * +----+-----+-----------+-------+---+------+--------+------+------+ 4737 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4738 * +----+-----+-----------+-------+---+------+--------+------+------+ 4739 */ 4740 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4741 { 4742 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4743 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4744 4745 sf = extract32(insn, 31, 1); 4746 opc = extract32(insn, 29, 2); 4747 shift_type = extract32(insn, 22, 2); 4748 invert = extract32(insn, 21, 1); 4749 rm = extract32(insn, 16, 5); 4750 shift_amount = extract32(insn, 10, 6); 4751 rn = extract32(insn, 5, 5); 4752 rd = extract32(insn, 0, 5); 4753 4754 if (!sf && (shift_amount & (1 << 5))) { 4755 unallocated_encoding(s); 4756 return; 4757 } 4758 4759 tcg_rd = cpu_reg(s, rd); 4760 4761 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4762 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4763 * register-register MOV and MVN, so it is worth special casing. 4764 */ 4765 tcg_rm = cpu_reg(s, rm); 4766 if (invert) { 4767 tcg_gen_not_i64(tcg_rd, tcg_rm); 4768 if (!sf) { 4769 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4770 } 4771 } else { 4772 if (sf) { 4773 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4774 } else { 4775 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4776 } 4777 } 4778 return; 4779 } 4780 4781 tcg_rm = read_cpu_reg(s, rm, sf); 4782 4783 if (shift_amount) { 4784 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4785 } 4786 4787 tcg_rn = cpu_reg(s, rn); 4788 4789 switch (opc | (invert << 2)) { 4790 case 0: /* AND */ 4791 case 3: /* ANDS */ 4792 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4793 break; 4794 case 1: /* ORR */ 4795 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4796 break; 4797 case 2: /* EOR */ 4798 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4799 break; 4800 case 4: /* BIC */ 4801 case 7: /* BICS */ 4802 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4803 break; 4804 case 5: /* ORN */ 4805 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4806 break; 4807 case 6: /* EON */ 4808 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4809 break; 4810 default: 4811 assert(FALSE); 4812 break; 4813 } 4814 4815 if (!sf) { 4816 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4817 } 4818 4819 if (opc == 3) { 4820 gen_logic_CC(sf, tcg_rd); 4821 } 4822 } 4823 4824 /* 4825 * Add/subtract (extended register) 4826 * 4827 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4828 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4829 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4830 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4831 * 4832 * sf: 0 -> 32bit, 1 -> 64bit 4833 * op: 0 -> add , 1 -> sub 4834 * S: 1 -> set flags 4835 * opt: 00 4836 * option: extension type (see DecodeRegExtend) 4837 * imm3: optional shift to Rm 4838 * 4839 * Rd = Rn + LSL(extend(Rm), amount) 4840 */ 4841 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4842 { 4843 int rd = extract32(insn, 0, 5); 4844 int rn = extract32(insn, 5, 5); 4845 int imm3 = extract32(insn, 10, 3); 4846 int option = extract32(insn, 13, 3); 4847 int rm = extract32(insn, 16, 5); 4848 int opt = extract32(insn, 22, 2); 4849 bool setflags = extract32(insn, 29, 1); 4850 bool sub_op = extract32(insn, 30, 1); 4851 bool sf = extract32(insn, 31, 1); 4852 4853 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4854 TCGv_i64 tcg_rd; 4855 TCGv_i64 tcg_result; 4856 4857 if (imm3 > 4 || opt != 0) { 4858 unallocated_encoding(s); 4859 return; 4860 } 4861 4862 /* non-flag setting ops may use SP */ 4863 if (!setflags) { 4864 tcg_rd = cpu_reg_sp(s, rd); 4865 } else { 4866 tcg_rd = cpu_reg(s, rd); 4867 } 4868 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4869 4870 tcg_rm = read_cpu_reg(s, rm, sf); 4871 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4872 4873 tcg_result = tcg_temp_new_i64(); 4874 4875 if (!setflags) { 4876 if (sub_op) { 4877 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4878 } else { 4879 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4880 } 4881 } else { 4882 if (sub_op) { 4883 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4884 } else { 4885 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4886 } 4887 } 4888 4889 if (sf) { 4890 tcg_gen_mov_i64(tcg_rd, tcg_result); 4891 } else { 4892 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4893 } 4894 } 4895 4896 /* 4897 * Add/subtract (shifted register) 4898 * 4899 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4900 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4901 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4902 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4903 * 4904 * sf: 0 -> 32bit, 1 -> 64bit 4905 * op: 0 -> add , 1 -> sub 4906 * S: 1 -> set flags 4907 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4908 * imm6: Shift amount to apply to Rm before the add/sub 4909 */ 4910 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4911 { 4912 int rd = extract32(insn, 0, 5); 4913 int rn = extract32(insn, 5, 5); 4914 int imm6 = extract32(insn, 10, 6); 4915 int rm = extract32(insn, 16, 5); 4916 int shift_type = extract32(insn, 22, 2); 4917 bool setflags = extract32(insn, 29, 1); 4918 bool sub_op = extract32(insn, 30, 1); 4919 bool sf = extract32(insn, 31, 1); 4920 4921 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4922 TCGv_i64 tcg_rn, tcg_rm; 4923 TCGv_i64 tcg_result; 4924 4925 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4926 unallocated_encoding(s); 4927 return; 4928 } 4929 4930 tcg_rn = read_cpu_reg(s, rn, sf); 4931 tcg_rm = read_cpu_reg(s, rm, sf); 4932 4933 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4934 4935 tcg_result = tcg_temp_new_i64(); 4936 4937 if (!setflags) { 4938 if (sub_op) { 4939 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4940 } else { 4941 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4942 } 4943 } else { 4944 if (sub_op) { 4945 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4946 } else { 4947 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4948 } 4949 } 4950 4951 if (sf) { 4952 tcg_gen_mov_i64(tcg_rd, tcg_result); 4953 } else { 4954 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4955 } 4956 } 4957 4958 /* Data-processing (3 source) 4959 * 4960 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4961 * +--+------+-----------+------+------+----+------+------+------+ 4962 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4963 * +--+------+-----------+------+------+----+------+------+------+ 4964 */ 4965 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4966 { 4967 int rd = extract32(insn, 0, 5); 4968 int rn = extract32(insn, 5, 5); 4969 int ra = extract32(insn, 10, 5); 4970 int rm = extract32(insn, 16, 5); 4971 int op_id = (extract32(insn, 29, 3) << 4) | 4972 (extract32(insn, 21, 3) << 1) | 4973 extract32(insn, 15, 1); 4974 bool sf = extract32(insn, 31, 1); 4975 bool is_sub = extract32(op_id, 0, 1); 4976 bool is_high = extract32(op_id, 2, 1); 4977 bool is_signed = false; 4978 TCGv_i64 tcg_op1; 4979 TCGv_i64 tcg_op2; 4980 TCGv_i64 tcg_tmp; 4981 4982 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4983 switch (op_id) { 4984 case 0x42: /* SMADDL */ 4985 case 0x43: /* SMSUBL */ 4986 case 0x44: /* SMULH */ 4987 is_signed = true; 4988 break; 4989 case 0x0: /* MADD (32bit) */ 4990 case 0x1: /* MSUB (32bit) */ 4991 case 0x40: /* MADD (64bit) */ 4992 case 0x41: /* MSUB (64bit) */ 4993 case 0x4a: /* UMADDL */ 4994 case 0x4b: /* UMSUBL */ 4995 case 0x4c: /* UMULH */ 4996 break; 4997 default: 4998 unallocated_encoding(s); 4999 return; 5000 } 5001 5002 if (is_high) { 5003 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5004 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5005 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5006 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5007 5008 if (is_signed) { 5009 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5010 } else { 5011 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5012 } 5013 return; 5014 } 5015 5016 tcg_op1 = tcg_temp_new_i64(); 5017 tcg_op2 = tcg_temp_new_i64(); 5018 tcg_tmp = tcg_temp_new_i64(); 5019 5020 if (op_id < 0x42) { 5021 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5022 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5023 } else { 5024 if (is_signed) { 5025 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5026 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5027 } else { 5028 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5029 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5030 } 5031 } 5032 5033 if (ra == 31 && !is_sub) { 5034 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5035 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5036 } else { 5037 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5038 if (is_sub) { 5039 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5040 } else { 5041 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5042 } 5043 } 5044 5045 if (!sf) { 5046 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5047 } 5048 } 5049 5050 /* Add/subtract (with carry) 5051 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5052 * +--+--+--+------------------------+------+-------------+------+-----+ 5053 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5054 * +--+--+--+------------------------+------+-------------+------+-----+ 5055 */ 5056 5057 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5058 { 5059 unsigned int sf, op, setflags, rm, rn, rd; 5060 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5061 5062 sf = extract32(insn, 31, 1); 5063 op = extract32(insn, 30, 1); 5064 setflags = extract32(insn, 29, 1); 5065 rm = extract32(insn, 16, 5); 5066 rn = extract32(insn, 5, 5); 5067 rd = extract32(insn, 0, 5); 5068 5069 tcg_rd = cpu_reg(s, rd); 5070 tcg_rn = cpu_reg(s, rn); 5071 5072 if (op) { 5073 tcg_y = tcg_temp_new_i64(); 5074 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5075 } else { 5076 tcg_y = cpu_reg(s, rm); 5077 } 5078 5079 if (setflags) { 5080 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5081 } else { 5082 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5083 } 5084 } 5085 5086 /* 5087 * Rotate right into flags 5088 * 31 30 29 21 15 10 5 4 0 5089 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5090 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5091 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5092 */ 5093 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5094 { 5095 int mask = extract32(insn, 0, 4); 5096 int o2 = extract32(insn, 4, 1); 5097 int rn = extract32(insn, 5, 5); 5098 int imm6 = extract32(insn, 15, 6); 5099 int sf_op_s = extract32(insn, 29, 3); 5100 TCGv_i64 tcg_rn; 5101 TCGv_i32 nzcv; 5102 5103 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5104 unallocated_encoding(s); 5105 return; 5106 } 5107 5108 tcg_rn = read_cpu_reg(s, rn, 1); 5109 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5110 5111 nzcv = tcg_temp_new_i32(); 5112 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5113 5114 if (mask & 8) { /* N */ 5115 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5116 } 5117 if (mask & 4) { /* Z */ 5118 tcg_gen_not_i32(cpu_ZF, nzcv); 5119 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5120 } 5121 if (mask & 2) { /* C */ 5122 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5123 } 5124 if (mask & 1) { /* V */ 5125 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5126 } 5127 } 5128 5129 /* 5130 * Evaluate into flags 5131 * 31 30 29 21 15 14 10 5 4 0 5132 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5133 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5134 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5135 */ 5136 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5137 { 5138 int o3_mask = extract32(insn, 0, 5); 5139 int rn = extract32(insn, 5, 5); 5140 int o2 = extract32(insn, 15, 6); 5141 int sz = extract32(insn, 14, 1); 5142 int sf_op_s = extract32(insn, 29, 3); 5143 TCGv_i32 tmp; 5144 int shift; 5145 5146 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5147 !dc_isar_feature(aa64_condm_4, s)) { 5148 unallocated_encoding(s); 5149 return; 5150 } 5151 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5152 5153 tmp = tcg_temp_new_i32(); 5154 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5155 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5156 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5157 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5158 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5159 } 5160 5161 /* Conditional compare (immediate / register) 5162 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5163 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5164 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5165 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5166 * [1] y [0] [0] 5167 */ 5168 static void disas_cc(DisasContext *s, uint32_t insn) 5169 { 5170 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5171 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5172 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5173 DisasCompare c; 5174 5175 if (!extract32(insn, 29, 1)) { 5176 unallocated_encoding(s); 5177 return; 5178 } 5179 if (insn & (1 << 10 | 1 << 4)) { 5180 unallocated_encoding(s); 5181 return; 5182 } 5183 sf = extract32(insn, 31, 1); 5184 op = extract32(insn, 30, 1); 5185 is_imm = extract32(insn, 11, 1); 5186 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5187 cond = extract32(insn, 12, 4); 5188 rn = extract32(insn, 5, 5); 5189 nzcv = extract32(insn, 0, 4); 5190 5191 /* Set T0 = !COND. */ 5192 tcg_t0 = tcg_temp_new_i32(); 5193 arm_test_cc(&c, cond); 5194 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5195 5196 /* Load the arguments for the new comparison. */ 5197 if (is_imm) { 5198 tcg_y = tcg_temp_new_i64(); 5199 tcg_gen_movi_i64(tcg_y, y); 5200 } else { 5201 tcg_y = cpu_reg(s, y); 5202 } 5203 tcg_rn = cpu_reg(s, rn); 5204 5205 /* Set the flags for the new comparison. */ 5206 tcg_tmp = tcg_temp_new_i64(); 5207 if (op) { 5208 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5209 } else { 5210 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5211 } 5212 5213 /* If COND was false, force the flags to #nzcv. Compute two masks 5214 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5215 * For tcg hosts that support ANDC, we can make do with just T1. 5216 * In either case, allow the tcg optimizer to delete any unused mask. 5217 */ 5218 tcg_t1 = tcg_temp_new_i32(); 5219 tcg_t2 = tcg_temp_new_i32(); 5220 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5221 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5222 5223 if (nzcv & 8) { /* N */ 5224 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5225 } else { 5226 if (TCG_TARGET_HAS_andc_i32) { 5227 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5228 } else { 5229 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5230 } 5231 } 5232 if (nzcv & 4) { /* Z */ 5233 if (TCG_TARGET_HAS_andc_i32) { 5234 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5235 } else { 5236 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5237 } 5238 } else { 5239 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5240 } 5241 if (nzcv & 2) { /* C */ 5242 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5243 } else { 5244 if (TCG_TARGET_HAS_andc_i32) { 5245 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5246 } else { 5247 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5248 } 5249 } 5250 if (nzcv & 1) { /* V */ 5251 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5252 } else { 5253 if (TCG_TARGET_HAS_andc_i32) { 5254 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5255 } else { 5256 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5257 } 5258 } 5259 } 5260 5261 /* Conditional select 5262 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5263 * +----+----+---+-----------------+------+------+-----+------+------+ 5264 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5265 * +----+----+---+-----------------+------+------+-----+------+------+ 5266 */ 5267 static void disas_cond_select(DisasContext *s, uint32_t insn) 5268 { 5269 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5270 TCGv_i64 tcg_rd, zero; 5271 DisasCompare64 c; 5272 5273 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5274 /* S == 1 or op2<1> == 1 */ 5275 unallocated_encoding(s); 5276 return; 5277 } 5278 sf = extract32(insn, 31, 1); 5279 else_inv = extract32(insn, 30, 1); 5280 rm = extract32(insn, 16, 5); 5281 cond = extract32(insn, 12, 4); 5282 else_inc = extract32(insn, 10, 1); 5283 rn = extract32(insn, 5, 5); 5284 rd = extract32(insn, 0, 5); 5285 5286 tcg_rd = cpu_reg(s, rd); 5287 5288 a64_test_cc(&c, cond); 5289 zero = tcg_constant_i64(0); 5290 5291 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5292 /* CSET & CSETM. */ 5293 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5294 if (else_inv) { 5295 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5296 } 5297 } else { 5298 TCGv_i64 t_true = cpu_reg(s, rn); 5299 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5300 if (else_inv && else_inc) { 5301 tcg_gen_neg_i64(t_false, t_false); 5302 } else if (else_inv) { 5303 tcg_gen_not_i64(t_false, t_false); 5304 } else if (else_inc) { 5305 tcg_gen_addi_i64(t_false, t_false, 1); 5306 } 5307 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5308 } 5309 5310 if (!sf) { 5311 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5312 } 5313 } 5314 5315 static void handle_clz(DisasContext *s, unsigned int sf, 5316 unsigned int rn, unsigned int rd) 5317 { 5318 TCGv_i64 tcg_rd, tcg_rn; 5319 tcg_rd = cpu_reg(s, rd); 5320 tcg_rn = cpu_reg(s, rn); 5321 5322 if (sf) { 5323 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5324 } else { 5325 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5326 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5327 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5328 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5329 } 5330 } 5331 5332 static void handle_cls(DisasContext *s, unsigned int sf, 5333 unsigned int rn, unsigned int rd) 5334 { 5335 TCGv_i64 tcg_rd, tcg_rn; 5336 tcg_rd = cpu_reg(s, rd); 5337 tcg_rn = cpu_reg(s, rn); 5338 5339 if (sf) { 5340 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5341 } else { 5342 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5343 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5344 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5345 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5346 } 5347 } 5348 5349 static void handle_rbit(DisasContext *s, unsigned int sf, 5350 unsigned int rn, unsigned int rd) 5351 { 5352 TCGv_i64 tcg_rd, tcg_rn; 5353 tcg_rd = cpu_reg(s, rd); 5354 tcg_rn = cpu_reg(s, rn); 5355 5356 if (sf) { 5357 gen_helper_rbit64(tcg_rd, tcg_rn); 5358 } else { 5359 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5360 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5361 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5362 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5363 } 5364 } 5365 5366 /* REV with sf==1, opcode==3 ("REV64") */ 5367 static void handle_rev64(DisasContext *s, unsigned int sf, 5368 unsigned int rn, unsigned int rd) 5369 { 5370 if (!sf) { 5371 unallocated_encoding(s); 5372 return; 5373 } 5374 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5375 } 5376 5377 /* REV with sf==0, opcode==2 5378 * REV32 (sf==1, opcode==2) 5379 */ 5380 static void handle_rev32(DisasContext *s, unsigned int sf, 5381 unsigned int rn, unsigned int rd) 5382 { 5383 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5384 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5385 5386 if (sf) { 5387 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5388 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5389 } else { 5390 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5391 } 5392 } 5393 5394 /* REV16 (opcode==1) */ 5395 static void handle_rev16(DisasContext *s, unsigned int sf, 5396 unsigned int rn, unsigned int rd) 5397 { 5398 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5399 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5400 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5401 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5402 5403 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5404 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5405 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5406 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5407 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5408 } 5409 5410 /* Data-processing (1 source) 5411 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5412 * +----+---+---+-----------------+---------+--------+------+------+ 5413 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5414 * +----+---+---+-----------------+---------+--------+------+------+ 5415 */ 5416 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5417 { 5418 unsigned int sf, opcode, opcode2, rn, rd; 5419 TCGv_i64 tcg_rd; 5420 5421 if (extract32(insn, 29, 1)) { 5422 unallocated_encoding(s); 5423 return; 5424 } 5425 5426 sf = extract32(insn, 31, 1); 5427 opcode = extract32(insn, 10, 6); 5428 opcode2 = extract32(insn, 16, 5); 5429 rn = extract32(insn, 5, 5); 5430 rd = extract32(insn, 0, 5); 5431 5432 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5433 5434 switch (MAP(sf, opcode2, opcode)) { 5435 case MAP(0, 0x00, 0x00): /* RBIT */ 5436 case MAP(1, 0x00, 0x00): 5437 handle_rbit(s, sf, rn, rd); 5438 break; 5439 case MAP(0, 0x00, 0x01): /* REV16 */ 5440 case MAP(1, 0x00, 0x01): 5441 handle_rev16(s, sf, rn, rd); 5442 break; 5443 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5444 case MAP(1, 0x00, 0x02): 5445 handle_rev32(s, sf, rn, rd); 5446 break; 5447 case MAP(1, 0x00, 0x03): /* REV64 */ 5448 handle_rev64(s, sf, rn, rd); 5449 break; 5450 case MAP(0, 0x00, 0x04): /* CLZ */ 5451 case MAP(1, 0x00, 0x04): 5452 handle_clz(s, sf, rn, rd); 5453 break; 5454 case MAP(0, 0x00, 0x05): /* CLS */ 5455 case MAP(1, 0x00, 0x05): 5456 handle_cls(s, sf, rn, rd); 5457 break; 5458 case MAP(1, 0x01, 0x00): /* PACIA */ 5459 if (s->pauth_active) { 5460 tcg_rd = cpu_reg(s, rd); 5461 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5462 } else if (!dc_isar_feature(aa64_pauth, s)) { 5463 goto do_unallocated; 5464 } 5465 break; 5466 case MAP(1, 0x01, 0x01): /* PACIB */ 5467 if (s->pauth_active) { 5468 tcg_rd = cpu_reg(s, rd); 5469 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5470 } else if (!dc_isar_feature(aa64_pauth, s)) { 5471 goto do_unallocated; 5472 } 5473 break; 5474 case MAP(1, 0x01, 0x02): /* PACDA */ 5475 if (s->pauth_active) { 5476 tcg_rd = cpu_reg(s, rd); 5477 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5478 } else if (!dc_isar_feature(aa64_pauth, s)) { 5479 goto do_unallocated; 5480 } 5481 break; 5482 case MAP(1, 0x01, 0x03): /* PACDB */ 5483 if (s->pauth_active) { 5484 tcg_rd = cpu_reg(s, rd); 5485 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5486 } else if (!dc_isar_feature(aa64_pauth, s)) { 5487 goto do_unallocated; 5488 } 5489 break; 5490 case MAP(1, 0x01, 0x04): /* AUTIA */ 5491 if (s->pauth_active) { 5492 tcg_rd = cpu_reg(s, rd); 5493 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5494 } else if (!dc_isar_feature(aa64_pauth, s)) { 5495 goto do_unallocated; 5496 } 5497 break; 5498 case MAP(1, 0x01, 0x05): /* AUTIB */ 5499 if (s->pauth_active) { 5500 tcg_rd = cpu_reg(s, rd); 5501 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5502 } else if (!dc_isar_feature(aa64_pauth, s)) { 5503 goto do_unallocated; 5504 } 5505 break; 5506 case MAP(1, 0x01, 0x06): /* AUTDA */ 5507 if (s->pauth_active) { 5508 tcg_rd = cpu_reg(s, rd); 5509 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5510 } else if (!dc_isar_feature(aa64_pauth, s)) { 5511 goto do_unallocated; 5512 } 5513 break; 5514 case MAP(1, 0x01, 0x07): /* AUTDB */ 5515 if (s->pauth_active) { 5516 tcg_rd = cpu_reg(s, rd); 5517 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5518 } else if (!dc_isar_feature(aa64_pauth, s)) { 5519 goto do_unallocated; 5520 } 5521 break; 5522 case MAP(1, 0x01, 0x08): /* PACIZA */ 5523 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5524 goto do_unallocated; 5525 } else if (s->pauth_active) { 5526 tcg_rd = cpu_reg(s, rd); 5527 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5528 } 5529 break; 5530 case MAP(1, 0x01, 0x09): /* PACIZB */ 5531 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5532 goto do_unallocated; 5533 } else if (s->pauth_active) { 5534 tcg_rd = cpu_reg(s, rd); 5535 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5536 } 5537 break; 5538 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5539 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5540 goto do_unallocated; 5541 } else if (s->pauth_active) { 5542 tcg_rd = cpu_reg(s, rd); 5543 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5544 } 5545 break; 5546 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5547 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5548 goto do_unallocated; 5549 } else if (s->pauth_active) { 5550 tcg_rd = cpu_reg(s, rd); 5551 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5552 } 5553 break; 5554 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5555 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5556 goto do_unallocated; 5557 } else if (s->pauth_active) { 5558 tcg_rd = cpu_reg(s, rd); 5559 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5560 } 5561 break; 5562 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5563 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5564 goto do_unallocated; 5565 } else if (s->pauth_active) { 5566 tcg_rd = cpu_reg(s, rd); 5567 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5568 } 5569 break; 5570 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5571 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5572 goto do_unallocated; 5573 } else if (s->pauth_active) { 5574 tcg_rd = cpu_reg(s, rd); 5575 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5576 } 5577 break; 5578 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5579 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5580 goto do_unallocated; 5581 } else if (s->pauth_active) { 5582 tcg_rd = cpu_reg(s, rd); 5583 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5584 } 5585 break; 5586 case MAP(1, 0x01, 0x10): /* XPACI */ 5587 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5588 goto do_unallocated; 5589 } else if (s->pauth_active) { 5590 tcg_rd = cpu_reg(s, rd); 5591 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5592 } 5593 break; 5594 case MAP(1, 0x01, 0x11): /* XPACD */ 5595 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5596 goto do_unallocated; 5597 } else if (s->pauth_active) { 5598 tcg_rd = cpu_reg(s, rd); 5599 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5600 } 5601 break; 5602 default: 5603 do_unallocated: 5604 unallocated_encoding(s); 5605 break; 5606 } 5607 5608 #undef MAP 5609 } 5610 5611 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5612 unsigned int rm, unsigned int rn, unsigned int rd) 5613 { 5614 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5615 tcg_rd = cpu_reg(s, rd); 5616 5617 if (!sf && is_signed) { 5618 tcg_n = tcg_temp_new_i64(); 5619 tcg_m = tcg_temp_new_i64(); 5620 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5621 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5622 } else { 5623 tcg_n = read_cpu_reg(s, rn, sf); 5624 tcg_m = read_cpu_reg(s, rm, sf); 5625 } 5626 5627 if (is_signed) { 5628 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5629 } else { 5630 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5631 } 5632 5633 if (!sf) { /* zero extend final result */ 5634 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5635 } 5636 } 5637 5638 /* LSLV, LSRV, ASRV, RORV */ 5639 static void handle_shift_reg(DisasContext *s, 5640 enum a64_shift_type shift_type, unsigned int sf, 5641 unsigned int rm, unsigned int rn, unsigned int rd) 5642 { 5643 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5644 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5645 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5646 5647 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5648 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5649 } 5650 5651 /* CRC32[BHWX], CRC32C[BHWX] */ 5652 static void handle_crc32(DisasContext *s, 5653 unsigned int sf, unsigned int sz, bool crc32c, 5654 unsigned int rm, unsigned int rn, unsigned int rd) 5655 { 5656 TCGv_i64 tcg_acc, tcg_val; 5657 TCGv_i32 tcg_bytes; 5658 5659 if (!dc_isar_feature(aa64_crc32, s) 5660 || (sf == 1 && sz != 3) 5661 || (sf == 0 && sz == 3)) { 5662 unallocated_encoding(s); 5663 return; 5664 } 5665 5666 if (sz == 3) { 5667 tcg_val = cpu_reg(s, rm); 5668 } else { 5669 uint64_t mask; 5670 switch (sz) { 5671 case 0: 5672 mask = 0xFF; 5673 break; 5674 case 1: 5675 mask = 0xFFFF; 5676 break; 5677 case 2: 5678 mask = 0xFFFFFFFF; 5679 break; 5680 default: 5681 g_assert_not_reached(); 5682 } 5683 tcg_val = tcg_temp_new_i64(); 5684 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5685 } 5686 5687 tcg_acc = cpu_reg(s, rn); 5688 tcg_bytes = tcg_constant_i32(1 << sz); 5689 5690 if (crc32c) { 5691 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5692 } else { 5693 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5694 } 5695 } 5696 5697 /* Data-processing (2 source) 5698 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5699 * +----+---+---+-----------------+------+--------+------+------+ 5700 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5701 * +----+---+---+-----------------+------+--------+------+------+ 5702 */ 5703 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5704 { 5705 unsigned int sf, rm, opcode, rn, rd, setflag; 5706 sf = extract32(insn, 31, 1); 5707 setflag = extract32(insn, 29, 1); 5708 rm = extract32(insn, 16, 5); 5709 opcode = extract32(insn, 10, 6); 5710 rn = extract32(insn, 5, 5); 5711 rd = extract32(insn, 0, 5); 5712 5713 if (setflag && opcode != 0) { 5714 unallocated_encoding(s); 5715 return; 5716 } 5717 5718 switch (opcode) { 5719 case 0: /* SUBP(S) */ 5720 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5721 goto do_unallocated; 5722 } else { 5723 TCGv_i64 tcg_n, tcg_m, tcg_d; 5724 5725 tcg_n = read_cpu_reg_sp(s, rn, true); 5726 tcg_m = read_cpu_reg_sp(s, rm, true); 5727 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5728 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5729 tcg_d = cpu_reg(s, rd); 5730 5731 if (setflag) { 5732 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5733 } else { 5734 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5735 } 5736 } 5737 break; 5738 case 2: /* UDIV */ 5739 handle_div(s, false, sf, rm, rn, rd); 5740 break; 5741 case 3: /* SDIV */ 5742 handle_div(s, true, sf, rm, rn, rd); 5743 break; 5744 case 4: /* IRG */ 5745 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5746 goto do_unallocated; 5747 } 5748 if (s->ata) { 5749 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5750 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5751 } else { 5752 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5753 cpu_reg_sp(s, rn)); 5754 } 5755 break; 5756 case 5: /* GMI */ 5757 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5758 goto do_unallocated; 5759 } else { 5760 TCGv_i64 t = tcg_temp_new_i64(); 5761 5762 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5763 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5764 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5765 } 5766 break; 5767 case 8: /* LSLV */ 5768 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5769 break; 5770 case 9: /* LSRV */ 5771 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5772 break; 5773 case 10: /* ASRV */ 5774 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5775 break; 5776 case 11: /* RORV */ 5777 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5778 break; 5779 case 12: /* PACGA */ 5780 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5781 goto do_unallocated; 5782 } 5783 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5784 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5785 break; 5786 case 16: 5787 case 17: 5788 case 18: 5789 case 19: 5790 case 20: 5791 case 21: 5792 case 22: 5793 case 23: /* CRC32 */ 5794 { 5795 int sz = extract32(opcode, 0, 2); 5796 bool crc32c = extract32(opcode, 2, 1); 5797 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5798 break; 5799 } 5800 default: 5801 do_unallocated: 5802 unallocated_encoding(s); 5803 break; 5804 } 5805 } 5806 5807 /* 5808 * Data processing - register 5809 * 31 30 29 28 25 21 20 16 10 0 5810 * +--+---+--+---+-------+-----+-------+-------+---------+ 5811 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5812 * +--+---+--+---+-------+-----+-------+-------+---------+ 5813 */ 5814 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5815 { 5816 int op0 = extract32(insn, 30, 1); 5817 int op1 = extract32(insn, 28, 1); 5818 int op2 = extract32(insn, 21, 4); 5819 int op3 = extract32(insn, 10, 6); 5820 5821 if (!op1) { 5822 if (op2 & 8) { 5823 if (op2 & 1) { 5824 /* Add/sub (extended register) */ 5825 disas_add_sub_ext_reg(s, insn); 5826 } else { 5827 /* Add/sub (shifted register) */ 5828 disas_add_sub_reg(s, insn); 5829 } 5830 } else { 5831 /* Logical (shifted register) */ 5832 disas_logic_reg(s, insn); 5833 } 5834 return; 5835 } 5836 5837 switch (op2) { 5838 case 0x0: 5839 switch (op3) { 5840 case 0x00: /* Add/subtract (with carry) */ 5841 disas_adc_sbc(s, insn); 5842 break; 5843 5844 case 0x01: /* Rotate right into flags */ 5845 case 0x21: 5846 disas_rotate_right_into_flags(s, insn); 5847 break; 5848 5849 case 0x02: /* Evaluate into flags */ 5850 case 0x12: 5851 case 0x22: 5852 case 0x32: 5853 disas_evaluate_into_flags(s, insn); 5854 break; 5855 5856 default: 5857 goto do_unallocated; 5858 } 5859 break; 5860 5861 case 0x2: /* Conditional compare */ 5862 disas_cc(s, insn); /* both imm and reg forms */ 5863 break; 5864 5865 case 0x4: /* Conditional select */ 5866 disas_cond_select(s, insn); 5867 break; 5868 5869 case 0x6: /* Data-processing */ 5870 if (op0) { /* (1 source) */ 5871 disas_data_proc_1src(s, insn); 5872 } else { /* (2 source) */ 5873 disas_data_proc_2src(s, insn); 5874 } 5875 break; 5876 case 0x8 ... 0xf: /* (3 source) */ 5877 disas_data_proc_3src(s, insn); 5878 break; 5879 5880 default: 5881 do_unallocated: 5882 unallocated_encoding(s); 5883 break; 5884 } 5885 } 5886 5887 static void handle_fp_compare(DisasContext *s, int size, 5888 unsigned int rn, unsigned int rm, 5889 bool cmp_with_zero, bool signal_all_nans) 5890 { 5891 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5892 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5893 5894 if (size == MO_64) { 5895 TCGv_i64 tcg_vn, tcg_vm; 5896 5897 tcg_vn = read_fp_dreg(s, rn); 5898 if (cmp_with_zero) { 5899 tcg_vm = tcg_constant_i64(0); 5900 } else { 5901 tcg_vm = read_fp_dreg(s, rm); 5902 } 5903 if (signal_all_nans) { 5904 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5905 } else { 5906 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5907 } 5908 } else { 5909 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5910 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5911 5912 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5913 if (cmp_with_zero) { 5914 tcg_gen_movi_i32(tcg_vm, 0); 5915 } else { 5916 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5917 } 5918 5919 switch (size) { 5920 case MO_32: 5921 if (signal_all_nans) { 5922 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5923 } else { 5924 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5925 } 5926 break; 5927 case MO_16: 5928 if (signal_all_nans) { 5929 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5930 } else { 5931 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5932 } 5933 break; 5934 default: 5935 g_assert_not_reached(); 5936 } 5937 } 5938 5939 gen_set_nzcv(tcg_flags); 5940 } 5941 5942 /* Floating point compare 5943 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5944 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5945 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5946 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5947 */ 5948 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5949 { 5950 unsigned int mos, type, rm, op, rn, opc, op2r; 5951 int size; 5952 5953 mos = extract32(insn, 29, 3); 5954 type = extract32(insn, 22, 2); 5955 rm = extract32(insn, 16, 5); 5956 op = extract32(insn, 14, 2); 5957 rn = extract32(insn, 5, 5); 5958 opc = extract32(insn, 3, 2); 5959 op2r = extract32(insn, 0, 3); 5960 5961 if (mos || op || op2r) { 5962 unallocated_encoding(s); 5963 return; 5964 } 5965 5966 switch (type) { 5967 case 0: 5968 size = MO_32; 5969 break; 5970 case 1: 5971 size = MO_64; 5972 break; 5973 case 3: 5974 size = MO_16; 5975 if (dc_isar_feature(aa64_fp16, s)) { 5976 break; 5977 } 5978 /* fallthru */ 5979 default: 5980 unallocated_encoding(s); 5981 return; 5982 } 5983 5984 if (!fp_access_check(s)) { 5985 return; 5986 } 5987 5988 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5989 } 5990 5991 /* Floating point conditional compare 5992 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5993 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5994 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5995 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5996 */ 5997 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5998 { 5999 unsigned int mos, type, rm, cond, rn, op, nzcv; 6000 TCGLabel *label_continue = NULL; 6001 int size; 6002 6003 mos = extract32(insn, 29, 3); 6004 type = extract32(insn, 22, 2); 6005 rm = extract32(insn, 16, 5); 6006 cond = extract32(insn, 12, 4); 6007 rn = extract32(insn, 5, 5); 6008 op = extract32(insn, 4, 1); 6009 nzcv = extract32(insn, 0, 4); 6010 6011 if (mos) { 6012 unallocated_encoding(s); 6013 return; 6014 } 6015 6016 switch (type) { 6017 case 0: 6018 size = MO_32; 6019 break; 6020 case 1: 6021 size = MO_64; 6022 break; 6023 case 3: 6024 size = MO_16; 6025 if (dc_isar_feature(aa64_fp16, s)) { 6026 break; 6027 } 6028 /* fallthru */ 6029 default: 6030 unallocated_encoding(s); 6031 return; 6032 } 6033 6034 if (!fp_access_check(s)) { 6035 return; 6036 } 6037 6038 if (cond < 0x0e) { /* not always */ 6039 TCGLabel *label_match = gen_new_label(); 6040 label_continue = gen_new_label(); 6041 arm_gen_test_cc(cond, label_match); 6042 /* nomatch: */ 6043 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6044 tcg_gen_br(label_continue); 6045 gen_set_label(label_match); 6046 } 6047 6048 handle_fp_compare(s, size, rn, rm, false, op); 6049 6050 if (cond < 0x0e) { 6051 gen_set_label(label_continue); 6052 } 6053 } 6054 6055 /* Floating point conditional select 6056 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6057 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6058 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6059 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6060 */ 6061 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6062 { 6063 unsigned int mos, type, rm, cond, rn, rd; 6064 TCGv_i64 t_true, t_false; 6065 DisasCompare64 c; 6066 MemOp sz; 6067 6068 mos = extract32(insn, 29, 3); 6069 type = extract32(insn, 22, 2); 6070 rm = extract32(insn, 16, 5); 6071 cond = extract32(insn, 12, 4); 6072 rn = extract32(insn, 5, 5); 6073 rd = extract32(insn, 0, 5); 6074 6075 if (mos) { 6076 unallocated_encoding(s); 6077 return; 6078 } 6079 6080 switch (type) { 6081 case 0: 6082 sz = MO_32; 6083 break; 6084 case 1: 6085 sz = MO_64; 6086 break; 6087 case 3: 6088 sz = MO_16; 6089 if (dc_isar_feature(aa64_fp16, s)) { 6090 break; 6091 } 6092 /* fallthru */ 6093 default: 6094 unallocated_encoding(s); 6095 return; 6096 } 6097 6098 if (!fp_access_check(s)) { 6099 return; 6100 } 6101 6102 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6103 t_true = tcg_temp_new_i64(); 6104 t_false = tcg_temp_new_i64(); 6105 read_vec_element(s, t_true, rn, 0, sz); 6106 read_vec_element(s, t_false, rm, 0, sz); 6107 6108 a64_test_cc(&c, cond); 6109 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6110 t_true, t_false); 6111 6112 /* Note that sregs & hregs write back zeros to the high bits, 6113 and we've already done the zero-extension. */ 6114 write_fp_dreg(s, rd, t_true); 6115 } 6116 6117 /* Floating-point data-processing (1 source) - half precision */ 6118 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6119 { 6120 TCGv_ptr fpst = NULL; 6121 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6122 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6123 6124 switch (opcode) { 6125 case 0x0: /* FMOV */ 6126 tcg_gen_mov_i32(tcg_res, tcg_op); 6127 break; 6128 case 0x1: /* FABS */ 6129 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6130 break; 6131 case 0x2: /* FNEG */ 6132 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6133 break; 6134 case 0x3: /* FSQRT */ 6135 fpst = fpstatus_ptr(FPST_FPCR_F16); 6136 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6137 break; 6138 case 0x8: /* FRINTN */ 6139 case 0x9: /* FRINTP */ 6140 case 0xa: /* FRINTM */ 6141 case 0xb: /* FRINTZ */ 6142 case 0xc: /* FRINTA */ 6143 { 6144 TCGv_i32 tcg_rmode; 6145 6146 fpst = fpstatus_ptr(FPST_FPCR_F16); 6147 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6148 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6149 gen_restore_rmode(tcg_rmode, fpst); 6150 break; 6151 } 6152 case 0xe: /* FRINTX */ 6153 fpst = fpstatus_ptr(FPST_FPCR_F16); 6154 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6155 break; 6156 case 0xf: /* FRINTI */ 6157 fpst = fpstatus_ptr(FPST_FPCR_F16); 6158 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6159 break; 6160 default: 6161 g_assert_not_reached(); 6162 } 6163 6164 write_fp_sreg(s, rd, tcg_res); 6165 } 6166 6167 /* Floating-point data-processing (1 source) - single precision */ 6168 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6169 { 6170 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6171 TCGv_i32 tcg_op, tcg_res; 6172 TCGv_ptr fpst; 6173 int rmode = -1; 6174 6175 tcg_op = read_fp_sreg(s, rn); 6176 tcg_res = tcg_temp_new_i32(); 6177 6178 switch (opcode) { 6179 case 0x0: /* FMOV */ 6180 tcg_gen_mov_i32(tcg_res, tcg_op); 6181 goto done; 6182 case 0x1: /* FABS */ 6183 gen_helper_vfp_abss(tcg_res, tcg_op); 6184 goto done; 6185 case 0x2: /* FNEG */ 6186 gen_helper_vfp_negs(tcg_res, tcg_op); 6187 goto done; 6188 case 0x3: /* FSQRT */ 6189 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6190 goto done; 6191 case 0x6: /* BFCVT */ 6192 gen_fpst = gen_helper_bfcvt; 6193 break; 6194 case 0x8: /* FRINTN */ 6195 case 0x9: /* FRINTP */ 6196 case 0xa: /* FRINTM */ 6197 case 0xb: /* FRINTZ */ 6198 case 0xc: /* FRINTA */ 6199 rmode = opcode & 7; 6200 gen_fpst = gen_helper_rints; 6201 break; 6202 case 0xe: /* FRINTX */ 6203 gen_fpst = gen_helper_rints_exact; 6204 break; 6205 case 0xf: /* FRINTI */ 6206 gen_fpst = gen_helper_rints; 6207 break; 6208 case 0x10: /* FRINT32Z */ 6209 rmode = FPROUNDING_ZERO; 6210 gen_fpst = gen_helper_frint32_s; 6211 break; 6212 case 0x11: /* FRINT32X */ 6213 gen_fpst = gen_helper_frint32_s; 6214 break; 6215 case 0x12: /* FRINT64Z */ 6216 rmode = FPROUNDING_ZERO; 6217 gen_fpst = gen_helper_frint64_s; 6218 break; 6219 case 0x13: /* FRINT64X */ 6220 gen_fpst = gen_helper_frint64_s; 6221 break; 6222 default: 6223 g_assert_not_reached(); 6224 } 6225 6226 fpst = fpstatus_ptr(FPST_FPCR); 6227 if (rmode >= 0) { 6228 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6229 gen_fpst(tcg_res, tcg_op, fpst); 6230 gen_restore_rmode(tcg_rmode, fpst); 6231 } else { 6232 gen_fpst(tcg_res, tcg_op, fpst); 6233 } 6234 6235 done: 6236 write_fp_sreg(s, rd, tcg_res); 6237 } 6238 6239 /* Floating-point data-processing (1 source) - double precision */ 6240 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6241 { 6242 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6243 TCGv_i64 tcg_op, tcg_res; 6244 TCGv_ptr fpst; 6245 int rmode = -1; 6246 6247 switch (opcode) { 6248 case 0x0: /* FMOV */ 6249 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6250 return; 6251 } 6252 6253 tcg_op = read_fp_dreg(s, rn); 6254 tcg_res = tcg_temp_new_i64(); 6255 6256 switch (opcode) { 6257 case 0x1: /* FABS */ 6258 gen_helper_vfp_absd(tcg_res, tcg_op); 6259 goto done; 6260 case 0x2: /* FNEG */ 6261 gen_helper_vfp_negd(tcg_res, tcg_op); 6262 goto done; 6263 case 0x3: /* FSQRT */ 6264 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6265 goto done; 6266 case 0x8: /* FRINTN */ 6267 case 0x9: /* FRINTP */ 6268 case 0xa: /* FRINTM */ 6269 case 0xb: /* FRINTZ */ 6270 case 0xc: /* FRINTA */ 6271 rmode = opcode & 7; 6272 gen_fpst = gen_helper_rintd; 6273 break; 6274 case 0xe: /* FRINTX */ 6275 gen_fpst = gen_helper_rintd_exact; 6276 break; 6277 case 0xf: /* FRINTI */ 6278 gen_fpst = gen_helper_rintd; 6279 break; 6280 case 0x10: /* FRINT32Z */ 6281 rmode = FPROUNDING_ZERO; 6282 gen_fpst = gen_helper_frint32_d; 6283 break; 6284 case 0x11: /* FRINT32X */ 6285 gen_fpst = gen_helper_frint32_d; 6286 break; 6287 case 0x12: /* FRINT64Z */ 6288 rmode = FPROUNDING_ZERO; 6289 gen_fpst = gen_helper_frint64_d; 6290 break; 6291 case 0x13: /* FRINT64X */ 6292 gen_fpst = gen_helper_frint64_d; 6293 break; 6294 default: 6295 g_assert_not_reached(); 6296 } 6297 6298 fpst = fpstatus_ptr(FPST_FPCR); 6299 if (rmode >= 0) { 6300 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6301 gen_fpst(tcg_res, tcg_op, fpst); 6302 gen_restore_rmode(tcg_rmode, fpst); 6303 } else { 6304 gen_fpst(tcg_res, tcg_op, fpst); 6305 } 6306 6307 done: 6308 write_fp_dreg(s, rd, tcg_res); 6309 } 6310 6311 static void handle_fp_fcvt(DisasContext *s, int opcode, 6312 int rd, int rn, int dtype, int ntype) 6313 { 6314 switch (ntype) { 6315 case 0x0: 6316 { 6317 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6318 if (dtype == 1) { 6319 /* Single to double */ 6320 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6321 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6322 write_fp_dreg(s, rd, tcg_rd); 6323 } else { 6324 /* Single to half */ 6325 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6326 TCGv_i32 ahp = get_ahp_flag(); 6327 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6328 6329 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6330 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6331 write_fp_sreg(s, rd, tcg_rd); 6332 } 6333 break; 6334 } 6335 case 0x1: 6336 { 6337 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6338 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6339 if (dtype == 0) { 6340 /* Double to single */ 6341 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6342 } else { 6343 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6344 TCGv_i32 ahp = get_ahp_flag(); 6345 /* Double to half */ 6346 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6347 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6348 } 6349 write_fp_sreg(s, rd, tcg_rd); 6350 break; 6351 } 6352 case 0x3: 6353 { 6354 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6355 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6356 TCGv_i32 tcg_ahp = get_ahp_flag(); 6357 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6358 if (dtype == 0) { 6359 /* Half to single */ 6360 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6361 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6362 write_fp_sreg(s, rd, tcg_rd); 6363 } else { 6364 /* Half to double */ 6365 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6366 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6367 write_fp_dreg(s, rd, tcg_rd); 6368 } 6369 break; 6370 } 6371 default: 6372 g_assert_not_reached(); 6373 } 6374 } 6375 6376 /* Floating point data-processing (1 source) 6377 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6378 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6379 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6380 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6381 */ 6382 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6383 { 6384 int mos = extract32(insn, 29, 3); 6385 int type = extract32(insn, 22, 2); 6386 int opcode = extract32(insn, 15, 6); 6387 int rn = extract32(insn, 5, 5); 6388 int rd = extract32(insn, 0, 5); 6389 6390 if (mos) { 6391 goto do_unallocated; 6392 } 6393 6394 switch (opcode) { 6395 case 0x4: case 0x5: case 0x7: 6396 { 6397 /* FCVT between half, single and double precision */ 6398 int dtype = extract32(opcode, 0, 2); 6399 if (type == 2 || dtype == type) { 6400 goto do_unallocated; 6401 } 6402 if (!fp_access_check(s)) { 6403 return; 6404 } 6405 6406 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6407 break; 6408 } 6409 6410 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6411 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6412 goto do_unallocated; 6413 } 6414 /* fall through */ 6415 case 0x0 ... 0x3: 6416 case 0x8 ... 0xc: 6417 case 0xe ... 0xf: 6418 /* 32-to-32 and 64-to-64 ops */ 6419 switch (type) { 6420 case 0: 6421 if (!fp_access_check(s)) { 6422 return; 6423 } 6424 handle_fp_1src_single(s, opcode, rd, rn); 6425 break; 6426 case 1: 6427 if (!fp_access_check(s)) { 6428 return; 6429 } 6430 handle_fp_1src_double(s, opcode, rd, rn); 6431 break; 6432 case 3: 6433 if (!dc_isar_feature(aa64_fp16, s)) { 6434 goto do_unallocated; 6435 } 6436 6437 if (!fp_access_check(s)) { 6438 return; 6439 } 6440 handle_fp_1src_half(s, opcode, rd, rn); 6441 break; 6442 default: 6443 goto do_unallocated; 6444 } 6445 break; 6446 6447 case 0x6: 6448 switch (type) { 6449 case 1: /* BFCVT */ 6450 if (!dc_isar_feature(aa64_bf16, s)) { 6451 goto do_unallocated; 6452 } 6453 if (!fp_access_check(s)) { 6454 return; 6455 } 6456 handle_fp_1src_single(s, opcode, rd, rn); 6457 break; 6458 default: 6459 goto do_unallocated; 6460 } 6461 break; 6462 6463 default: 6464 do_unallocated: 6465 unallocated_encoding(s); 6466 break; 6467 } 6468 } 6469 6470 /* Floating-point data-processing (2 source) - single precision */ 6471 static void handle_fp_2src_single(DisasContext *s, int opcode, 6472 int rd, int rn, int rm) 6473 { 6474 TCGv_i32 tcg_op1; 6475 TCGv_i32 tcg_op2; 6476 TCGv_i32 tcg_res; 6477 TCGv_ptr fpst; 6478 6479 tcg_res = tcg_temp_new_i32(); 6480 fpst = fpstatus_ptr(FPST_FPCR); 6481 tcg_op1 = read_fp_sreg(s, rn); 6482 tcg_op2 = read_fp_sreg(s, rm); 6483 6484 switch (opcode) { 6485 case 0x0: /* FMUL */ 6486 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6487 break; 6488 case 0x1: /* FDIV */ 6489 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6490 break; 6491 case 0x2: /* FADD */ 6492 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6493 break; 6494 case 0x3: /* FSUB */ 6495 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6496 break; 6497 case 0x4: /* FMAX */ 6498 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6499 break; 6500 case 0x5: /* FMIN */ 6501 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6502 break; 6503 case 0x6: /* FMAXNM */ 6504 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6505 break; 6506 case 0x7: /* FMINNM */ 6507 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6508 break; 6509 case 0x8: /* FNMUL */ 6510 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6511 gen_helper_vfp_negs(tcg_res, tcg_res); 6512 break; 6513 } 6514 6515 write_fp_sreg(s, rd, tcg_res); 6516 } 6517 6518 /* Floating-point data-processing (2 source) - double precision */ 6519 static void handle_fp_2src_double(DisasContext *s, int opcode, 6520 int rd, int rn, int rm) 6521 { 6522 TCGv_i64 tcg_op1; 6523 TCGv_i64 tcg_op2; 6524 TCGv_i64 tcg_res; 6525 TCGv_ptr fpst; 6526 6527 tcg_res = tcg_temp_new_i64(); 6528 fpst = fpstatus_ptr(FPST_FPCR); 6529 tcg_op1 = read_fp_dreg(s, rn); 6530 tcg_op2 = read_fp_dreg(s, rm); 6531 6532 switch (opcode) { 6533 case 0x0: /* FMUL */ 6534 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6535 break; 6536 case 0x1: /* FDIV */ 6537 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6538 break; 6539 case 0x2: /* FADD */ 6540 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6541 break; 6542 case 0x3: /* FSUB */ 6543 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6544 break; 6545 case 0x4: /* FMAX */ 6546 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6547 break; 6548 case 0x5: /* FMIN */ 6549 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6550 break; 6551 case 0x6: /* FMAXNM */ 6552 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6553 break; 6554 case 0x7: /* FMINNM */ 6555 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6556 break; 6557 case 0x8: /* FNMUL */ 6558 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6559 gen_helper_vfp_negd(tcg_res, tcg_res); 6560 break; 6561 } 6562 6563 write_fp_dreg(s, rd, tcg_res); 6564 } 6565 6566 /* Floating-point data-processing (2 source) - half precision */ 6567 static void handle_fp_2src_half(DisasContext *s, int opcode, 6568 int rd, int rn, int rm) 6569 { 6570 TCGv_i32 tcg_op1; 6571 TCGv_i32 tcg_op2; 6572 TCGv_i32 tcg_res; 6573 TCGv_ptr fpst; 6574 6575 tcg_res = tcg_temp_new_i32(); 6576 fpst = fpstatus_ptr(FPST_FPCR_F16); 6577 tcg_op1 = read_fp_hreg(s, rn); 6578 tcg_op2 = read_fp_hreg(s, rm); 6579 6580 switch (opcode) { 6581 case 0x0: /* FMUL */ 6582 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6583 break; 6584 case 0x1: /* FDIV */ 6585 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6586 break; 6587 case 0x2: /* FADD */ 6588 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6589 break; 6590 case 0x3: /* FSUB */ 6591 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6592 break; 6593 case 0x4: /* FMAX */ 6594 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6595 break; 6596 case 0x5: /* FMIN */ 6597 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6598 break; 6599 case 0x6: /* FMAXNM */ 6600 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6601 break; 6602 case 0x7: /* FMINNM */ 6603 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6604 break; 6605 case 0x8: /* FNMUL */ 6606 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6607 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6608 break; 6609 default: 6610 g_assert_not_reached(); 6611 } 6612 6613 write_fp_sreg(s, rd, tcg_res); 6614 } 6615 6616 /* Floating point data-processing (2 source) 6617 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6618 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6619 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6620 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6621 */ 6622 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6623 { 6624 int mos = extract32(insn, 29, 3); 6625 int type = extract32(insn, 22, 2); 6626 int rd = extract32(insn, 0, 5); 6627 int rn = extract32(insn, 5, 5); 6628 int rm = extract32(insn, 16, 5); 6629 int opcode = extract32(insn, 12, 4); 6630 6631 if (opcode > 8 || mos) { 6632 unallocated_encoding(s); 6633 return; 6634 } 6635 6636 switch (type) { 6637 case 0: 6638 if (!fp_access_check(s)) { 6639 return; 6640 } 6641 handle_fp_2src_single(s, opcode, rd, rn, rm); 6642 break; 6643 case 1: 6644 if (!fp_access_check(s)) { 6645 return; 6646 } 6647 handle_fp_2src_double(s, opcode, rd, rn, rm); 6648 break; 6649 case 3: 6650 if (!dc_isar_feature(aa64_fp16, s)) { 6651 unallocated_encoding(s); 6652 return; 6653 } 6654 if (!fp_access_check(s)) { 6655 return; 6656 } 6657 handle_fp_2src_half(s, opcode, rd, rn, rm); 6658 break; 6659 default: 6660 unallocated_encoding(s); 6661 } 6662 } 6663 6664 /* Floating-point data-processing (3 source) - single precision */ 6665 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6666 int rd, int rn, int rm, int ra) 6667 { 6668 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6669 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6670 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6671 6672 tcg_op1 = read_fp_sreg(s, rn); 6673 tcg_op2 = read_fp_sreg(s, rm); 6674 tcg_op3 = read_fp_sreg(s, ra); 6675 6676 /* These are fused multiply-add, and must be done as one 6677 * floating point operation with no rounding between the 6678 * multiplication and addition steps. 6679 * NB that doing the negations here as separate steps is 6680 * correct : an input NaN should come out with its sign bit 6681 * flipped if it is a negated-input. 6682 */ 6683 if (o1 == true) { 6684 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6685 } 6686 6687 if (o0 != o1) { 6688 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6689 } 6690 6691 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6692 6693 write_fp_sreg(s, rd, tcg_res); 6694 } 6695 6696 /* Floating-point data-processing (3 source) - double precision */ 6697 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6698 int rd, int rn, int rm, int ra) 6699 { 6700 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6701 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6702 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6703 6704 tcg_op1 = read_fp_dreg(s, rn); 6705 tcg_op2 = read_fp_dreg(s, rm); 6706 tcg_op3 = read_fp_dreg(s, ra); 6707 6708 /* These are fused multiply-add, and must be done as one 6709 * floating point operation with no rounding between the 6710 * multiplication and addition steps. 6711 * NB that doing the negations here as separate steps is 6712 * correct : an input NaN should come out with its sign bit 6713 * flipped if it is a negated-input. 6714 */ 6715 if (o1 == true) { 6716 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6717 } 6718 6719 if (o0 != o1) { 6720 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6721 } 6722 6723 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6724 6725 write_fp_dreg(s, rd, tcg_res); 6726 } 6727 6728 /* Floating-point data-processing (3 source) - half precision */ 6729 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6730 int rd, int rn, int rm, int ra) 6731 { 6732 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6733 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6734 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6735 6736 tcg_op1 = read_fp_hreg(s, rn); 6737 tcg_op2 = read_fp_hreg(s, rm); 6738 tcg_op3 = read_fp_hreg(s, ra); 6739 6740 /* These are fused multiply-add, and must be done as one 6741 * floating point operation with no rounding between the 6742 * multiplication and addition steps. 6743 * NB that doing the negations here as separate steps is 6744 * correct : an input NaN should come out with its sign bit 6745 * flipped if it is a negated-input. 6746 */ 6747 if (o1 == true) { 6748 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6749 } 6750 6751 if (o0 != o1) { 6752 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6753 } 6754 6755 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6756 6757 write_fp_sreg(s, rd, tcg_res); 6758 } 6759 6760 /* Floating point data-processing (3 source) 6761 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6762 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6763 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6764 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6765 */ 6766 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6767 { 6768 int mos = extract32(insn, 29, 3); 6769 int type = extract32(insn, 22, 2); 6770 int rd = extract32(insn, 0, 5); 6771 int rn = extract32(insn, 5, 5); 6772 int ra = extract32(insn, 10, 5); 6773 int rm = extract32(insn, 16, 5); 6774 bool o0 = extract32(insn, 15, 1); 6775 bool o1 = extract32(insn, 21, 1); 6776 6777 if (mos) { 6778 unallocated_encoding(s); 6779 return; 6780 } 6781 6782 switch (type) { 6783 case 0: 6784 if (!fp_access_check(s)) { 6785 return; 6786 } 6787 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6788 break; 6789 case 1: 6790 if (!fp_access_check(s)) { 6791 return; 6792 } 6793 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6794 break; 6795 case 3: 6796 if (!dc_isar_feature(aa64_fp16, s)) { 6797 unallocated_encoding(s); 6798 return; 6799 } 6800 if (!fp_access_check(s)) { 6801 return; 6802 } 6803 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6804 break; 6805 default: 6806 unallocated_encoding(s); 6807 } 6808 } 6809 6810 /* Floating point immediate 6811 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6812 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6813 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6814 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6815 */ 6816 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6817 { 6818 int rd = extract32(insn, 0, 5); 6819 int imm5 = extract32(insn, 5, 5); 6820 int imm8 = extract32(insn, 13, 8); 6821 int type = extract32(insn, 22, 2); 6822 int mos = extract32(insn, 29, 3); 6823 uint64_t imm; 6824 MemOp sz; 6825 6826 if (mos || imm5) { 6827 unallocated_encoding(s); 6828 return; 6829 } 6830 6831 switch (type) { 6832 case 0: 6833 sz = MO_32; 6834 break; 6835 case 1: 6836 sz = MO_64; 6837 break; 6838 case 3: 6839 sz = MO_16; 6840 if (dc_isar_feature(aa64_fp16, s)) { 6841 break; 6842 } 6843 /* fallthru */ 6844 default: 6845 unallocated_encoding(s); 6846 return; 6847 } 6848 6849 if (!fp_access_check(s)) { 6850 return; 6851 } 6852 6853 imm = vfp_expand_imm(sz, imm8); 6854 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6855 } 6856 6857 /* Handle floating point <=> fixed point conversions. Note that we can 6858 * also deal with fp <=> integer conversions as a special case (scale == 64) 6859 * OPTME: consider handling that special case specially or at least skipping 6860 * the call to scalbn in the helpers for zero shifts. 6861 */ 6862 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6863 bool itof, int rmode, int scale, int sf, int type) 6864 { 6865 bool is_signed = !(opcode & 1); 6866 TCGv_ptr tcg_fpstatus; 6867 TCGv_i32 tcg_shift, tcg_single; 6868 TCGv_i64 tcg_double; 6869 6870 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6871 6872 tcg_shift = tcg_constant_i32(64 - scale); 6873 6874 if (itof) { 6875 TCGv_i64 tcg_int = cpu_reg(s, rn); 6876 if (!sf) { 6877 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6878 6879 if (is_signed) { 6880 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6881 } else { 6882 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6883 } 6884 6885 tcg_int = tcg_extend; 6886 } 6887 6888 switch (type) { 6889 case 1: /* float64 */ 6890 tcg_double = tcg_temp_new_i64(); 6891 if (is_signed) { 6892 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6893 tcg_shift, tcg_fpstatus); 6894 } else { 6895 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6896 tcg_shift, tcg_fpstatus); 6897 } 6898 write_fp_dreg(s, rd, tcg_double); 6899 break; 6900 6901 case 0: /* float32 */ 6902 tcg_single = tcg_temp_new_i32(); 6903 if (is_signed) { 6904 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6905 tcg_shift, tcg_fpstatus); 6906 } else { 6907 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6908 tcg_shift, tcg_fpstatus); 6909 } 6910 write_fp_sreg(s, rd, tcg_single); 6911 break; 6912 6913 case 3: /* float16 */ 6914 tcg_single = tcg_temp_new_i32(); 6915 if (is_signed) { 6916 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6917 tcg_shift, tcg_fpstatus); 6918 } else { 6919 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6920 tcg_shift, tcg_fpstatus); 6921 } 6922 write_fp_sreg(s, rd, tcg_single); 6923 break; 6924 6925 default: 6926 g_assert_not_reached(); 6927 } 6928 } else { 6929 TCGv_i64 tcg_int = cpu_reg(s, rd); 6930 TCGv_i32 tcg_rmode; 6931 6932 if (extract32(opcode, 2, 1)) { 6933 /* There are too many rounding modes to all fit into rmode, 6934 * so FCVTA[US] is a special case. 6935 */ 6936 rmode = FPROUNDING_TIEAWAY; 6937 } 6938 6939 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6940 6941 switch (type) { 6942 case 1: /* float64 */ 6943 tcg_double = read_fp_dreg(s, rn); 6944 if (is_signed) { 6945 if (!sf) { 6946 gen_helper_vfp_tosld(tcg_int, tcg_double, 6947 tcg_shift, tcg_fpstatus); 6948 } else { 6949 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6950 tcg_shift, tcg_fpstatus); 6951 } 6952 } else { 6953 if (!sf) { 6954 gen_helper_vfp_tould(tcg_int, tcg_double, 6955 tcg_shift, tcg_fpstatus); 6956 } else { 6957 gen_helper_vfp_touqd(tcg_int, tcg_double, 6958 tcg_shift, tcg_fpstatus); 6959 } 6960 } 6961 if (!sf) { 6962 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6963 } 6964 break; 6965 6966 case 0: /* float32 */ 6967 tcg_single = read_fp_sreg(s, rn); 6968 if (sf) { 6969 if (is_signed) { 6970 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6971 tcg_shift, tcg_fpstatus); 6972 } else { 6973 gen_helper_vfp_touqs(tcg_int, tcg_single, 6974 tcg_shift, tcg_fpstatus); 6975 } 6976 } else { 6977 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6978 if (is_signed) { 6979 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6980 tcg_shift, tcg_fpstatus); 6981 } else { 6982 gen_helper_vfp_touls(tcg_dest, tcg_single, 6983 tcg_shift, tcg_fpstatus); 6984 } 6985 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6986 } 6987 break; 6988 6989 case 3: /* float16 */ 6990 tcg_single = read_fp_sreg(s, rn); 6991 if (sf) { 6992 if (is_signed) { 6993 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6994 tcg_shift, tcg_fpstatus); 6995 } else { 6996 gen_helper_vfp_touqh(tcg_int, tcg_single, 6997 tcg_shift, tcg_fpstatus); 6998 } 6999 } else { 7000 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7001 if (is_signed) { 7002 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7003 tcg_shift, tcg_fpstatus); 7004 } else { 7005 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7006 tcg_shift, tcg_fpstatus); 7007 } 7008 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7009 } 7010 break; 7011 7012 default: 7013 g_assert_not_reached(); 7014 } 7015 7016 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7017 } 7018 } 7019 7020 /* Floating point <-> fixed point conversions 7021 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7022 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7023 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7024 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7025 */ 7026 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7027 { 7028 int rd = extract32(insn, 0, 5); 7029 int rn = extract32(insn, 5, 5); 7030 int scale = extract32(insn, 10, 6); 7031 int opcode = extract32(insn, 16, 3); 7032 int rmode = extract32(insn, 19, 2); 7033 int type = extract32(insn, 22, 2); 7034 bool sbit = extract32(insn, 29, 1); 7035 bool sf = extract32(insn, 31, 1); 7036 bool itof; 7037 7038 if (sbit || (!sf && scale < 32)) { 7039 unallocated_encoding(s); 7040 return; 7041 } 7042 7043 switch (type) { 7044 case 0: /* float32 */ 7045 case 1: /* float64 */ 7046 break; 7047 case 3: /* float16 */ 7048 if (dc_isar_feature(aa64_fp16, s)) { 7049 break; 7050 } 7051 /* fallthru */ 7052 default: 7053 unallocated_encoding(s); 7054 return; 7055 } 7056 7057 switch ((rmode << 3) | opcode) { 7058 case 0x2: /* SCVTF */ 7059 case 0x3: /* UCVTF */ 7060 itof = true; 7061 break; 7062 case 0x18: /* FCVTZS */ 7063 case 0x19: /* FCVTZU */ 7064 itof = false; 7065 break; 7066 default: 7067 unallocated_encoding(s); 7068 return; 7069 } 7070 7071 if (!fp_access_check(s)) { 7072 return; 7073 } 7074 7075 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7076 } 7077 7078 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7079 { 7080 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7081 * without conversion. 7082 */ 7083 7084 if (itof) { 7085 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7086 TCGv_i64 tmp; 7087 7088 switch (type) { 7089 case 0: 7090 /* 32 bit */ 7091 tmp = tcg_temp_new_i64(); 7092 tcg_gen_ext32u_i64(tmp, tcg_rn); 7093 write_fp_dreg(s, rd, tmp); 7094 break; 7095 case 1: 7096 /* 64 bit */ 7097 write_fp_dreg(s, rd, tcg_rn); 7098 break; 7099 case 2: 7100 /* 64 bit to top half. */ 7101 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7102 clear_vec_high(s, true, rd); 7103 break; 7104 case 3: 7105 /* 16 bit */ 7106 tmp = tcg_temp_new_i64(); 7107 tcg_gen_ext16u_i64(tmp, tcg_rn); 7108 write_fp_dreg(s, rd, tmp); 7109 break; 7110 default: 7111 g_assert_not_reached(); 7112 } 7113 } else { 7114 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7115 7116 switch (type) { 7117 case 0: 7118 /* 32 bit */ 7119 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7120 break; 7121 case 1: 7122 /* 64 bit */ 7123 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7124 break; 7125 case 2: 7126 /* 64 bits from top half */ 7127 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7128 break; 7129 case 3: 7130 /* 16 bit */ 7131 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7132 break; 7133 default: 7134 g_assert_not_reached(); 7135 } 7136 } 7137 } 7138 7139 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7140 { 7141 TCGv_i64 t = read_fp_dreg(s, rn); 7142 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7143 7144 gen_helper_fjcvtzs(t, t, fpstatus); 7145 7146 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7147 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7148 tcg_gen_movi_i32(cpu_CF, 0); 7149 tcg_gen_movi_i32(cpu_NF, 0); 7150 tcg_gen_movi_i32(cpu_VF, 0); 7151 } 7152 7153 /* Floating point <-> integer conversions 7154 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7155 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7156 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7157 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7158 */ 7159 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7160 { 7161 int rd = extract32(insn, 0, 5); 7162 int rn = extract32(insn, 5, 5); 7163 int opcode = extract32(insn, 16, 3); 7164 int rmode = extract32(insn, 19, 2); 7165 int type = extract32(insn, 22, 2); 7166 bool sbit = extract32(insn, 29, 1); 7167 bool sf = extract32(insn, 31, 1); 7168 bool itof = false; 7169 7170 if (sbit) { 7171 goto do_unallocated; 7172 } 7173 7174 switch (opcode) { 7175 case 2: /* SCVTF */ 7176 case 3: /* UCVTF */ 7177 itof = true; 7178 /* fallthru */ 7179 case 4: /* FCVTAS */ 7180 case 5: /* FCVTAU */ 7181 if (rmode != 0) { 7182 goto do_unallocated; 7183 } 7184 /* fallthru */ 7185 case 0: /* FCVT[NPMZ]S */ 7186 case 1: /* FCVT[NPMZ]U */ 7187 switch (type) { 7188 case 0: /* float32 */ 7189 case 1: /* float64 */ 7190 break; 7191 case 3: /* float16 */ 7192 if (!dc_isar_feature(aa64_fp16, s)) { 7193 goto do_unallocated; 7194 } 7195 break; 7196 default: 7197 goto do_unallocated; 7198 } 7199 if (!fp_access_check(s)) { 7200 return; 7201 } 7202 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7203 break; 7204 7205 default: 7206 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7207 case 0b01100110: /* FMOV half <-> 32-bit int */ 7208 case 0b01100111: 7209 case 0b11100110: /* FMOV half <-> 64-bit int */ 7210 case 0b11100111: 7211 if (!dc_isar_feature(aa64_fp16, s)) { 7212 goto do_unallocated; 7213 } 7214 /* fallthru */ 7215 case 0b00000110: /* FMOV 32-bit */ 7216 case 0b00000111: 7217 case 0b10100110: /* FMOV 64-bit */ 7218 case 0b10100111: 7219 case 0b11001110: /* FMOV top half of 128-bit */ 7220 case 0b11001111: 7221 if (!fp_access_check(s)) { 7222 return; 7223 } 7224 itof = opcode & 1; 7225 handle_fmov(s, rd, rn, type, itof); 7226 break; 7227 7228 case 0b00111110: /* FJCVTZS */ 7229 if (!dc_isar_feature(aa64_jscvt, s)) { 7230 goto do_unallocated; 7231 } else if (fp_access_check(s)) { 7232 handle_fjcvtzs(s, rd, rn); 7233 } 7234 break; 7235 7236 default: 7237 do_unallocated: 7238 unallocated_encoding(s); 7239 return; 7240 } 7241 break; 7242 } 7243 } 7244 7245 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7246 * 31 30 29 28 25 24 0 7247 * +---+---+---+---------+-----------------------------+ 7248 * | | 0 | | 1 1 1 1 | | 7249 * +---+---+---+---------+-----------------------------+ 7250 */ 7251 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7252 { 7253 if (extract32(insn, 24, 1)) { 7254 /* Floating point data-processing (3 source) */ 7255 disas_fp_3src(s, insn); 7256 } else if (extract32(insn, 21, 1) == 0) { 7257 /* Floating point to fixed point conversions */ 7258 disas_fp_fixed_conv(s, insn); 7259 } else { 7260 switch (extract32(insn, 10, 2)) { 7261 case 1: 7262 /* Floating point conditional compare */ 7263 disas_fp_ccomp(s, insn); 7264 break; 7265 case 2: 7266 /* Floating point data-processing (2 source) */ 7267 disas_fp_2src(s, insn); 7268 break; 7269 case 3: 7270 /* Floating point conditional select */ 7271 disas_fp_csel(s, insn); 7272 break; 7273 case 0: 7274 switch (ctz32(extract32(insn, 12, 4))) { 7275 case 0: /* [15:12] == xxx1 */ 7276 /* Floating point immediate */ 7277 disas_fp_imm(s, insn); 7278 break; 7279 case 1: /* [15:12] == xx10 */ 7280 /* Floating point compare */ 7281 disas_fp_compare(s, insn); 7282 break; 7283 case 2: /* [15:12] == x100 */ 7284 /* Floating point data-processing (1 source) */ 7285 disas_fp_1src(s, insn); 7286 break; 7287 case 3: /* [15:12] == 1000 */ 7288 unallocated_encoding(s); 7289 break; 7290 default: /* [15:12] == 0000 */ 7291 /* Floating point <-> integer conversions */ 7292 disas_fp_int_conv(s, insn); 7293 break; 7294 } 7295 break; 7296 } 7297 } 7298 } 7299 7300 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7301 int pos) 7302 { 7303 /* Extract 64 bits from the middle of two concatenated 64 bit 7304 * vector register slices left:right. The extracted bits start 7305 * at 'pos' bits into the right (least significant) side. 7306 * We return the result in tcg_right, and guarantee not to 7307 * trash tcg_left. 7308 */ 7309 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7310 assert(pos > 0 && pos < 64); 7311 7312 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7313 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7314 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7315 } 7316 7317 /* EXT 7318 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7319 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7320 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7321 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7322 */ 7323 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7324 { 7325 int is_q = extract32(insn, 30, 1); 7326 int op2 = extract32(insn, 22, 2); 7327 int imm4 = extract32(insn, 11, 4); 7328 int rm = extract32(insn, 16, 5); 7329 int rn = extract32(insn, 5, 5); 7330 int rd = extract32(insn, 0, 5); 7331 int pos = imm4 << 3; 7332 TCGv_i64 tcg_resl, tcg_resh; 7333 7334 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7335 unallocated_encoding(s); 7336 return; 7337 } 7338 7339 if (!fp_access_check(s)) { 7340 return; 7341 } 7342 7343 tcg_resh = tcg_temp_new_i64(); 7344 tcg_resl = tcg_temp_new_i64(); 7345 7346 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7347 * either extracting 128 bits from a 128:128 concatenation, or 7348 * extracting 64 bits from a 64:64 concatenation. 7349 */ 7350 if (!is_q) { 7351 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7352 if (pos != 0) { 7353 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7354 do_ext64(s, tcg_resh, tcg_resl, pos); 7355 } 7356 } else { 7357 TCGv_i64 tcg_hh; 7358 typedef struct { 7359 int reg; 7360 int elt; 7361 } EltPosns; 7362 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7363 EltPosns *elt = eltposns; 7364 7365 if (pos >= 64) { 7366 elt++; 7367 pos -= 64; 7368 } 7369 7370 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7371 elt++; 7372 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7373 elt++; 7374 if (pos != 0) { 7375 do_ext64(s, tcg_resh, tcg_resl, pos); 7376 tcg_hh = tcg_temp_new_i64(); 7377 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7378 do_ext64(s, tcg_hh, tcg_resh, pos); 7379 } 7380 } 7381 7382 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7383 if (is_q) { 7384 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7385 } 7386 clear_vec_high(s, is_q, rd); 7387 } 7388 7389 /* TBL/TBX 7390 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7391 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7392 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7393 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7394 */ 7395 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7396 { 7397 int op2 = extract32(insn, 22, 2); 7398 int is_q = extract32(insn, 30, 1); 7399 int rm = extract32(insn, 16, 5); 7400 int rn = extract32(insn, 5, 5); 7401 int rd = extract32(insn, 0, 5); 7402 int is_tbx = extract32(insn, 12, 1); 7403 int len = (extract32(insn, 13, 2) + 1) * 16; 7404 7405 if (op2 != 0) { 7406 unallocated_encoding(s); 7407 return; 7408 } 7409 7410 if (!fp_access_check(s)) { 7411 return; 7412 } 7413 7414 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7415 vec_full_reg_offset(s, rm), cpu_env, 7416 is_q ? 16 : 8, vec_full_reg_size(s), 7417 (len << 6) | (is_tbx << 5) | rn, 7418 gen_helper_simd_tblx); 7419 } 7420 7421 /* ZIP/UZP/TRN 7422 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7423 * +---+---+-------------+------+---+------+---+------------------+------+ 7424 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7425 * +---+---+-------------+------+---+------+---+------------------+------+ 7426 */ 7427 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7428 { 7429 int rd = extract32(insn, 0, 5); 7430 int rn = extract32(insn, 5, 5); 7431 int rm = extract32(insn, 16, 5); 7432 int size = extract32(insn, 22, 2); 7433 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7434 * bit 2 indicates 1 vs 2 variant of the insn. 7435 */ 7436 int opcode = extract32(insn, 12, 2); 7437 bool part = extract32(insn, 14, 1); 7438 bool is_q = extract32(insn, 30, 1); 7439 int esize = 8 << size; 7440 int i; 7441 int datasize = is_q ? 128 : 64; 7442 int elements = datasize / esize; 7443 TCGv_i64 tcg_res[2], tcg_ele; 7444 7445 if (opcode == 0 || (size == 3 && !is_q)) { 7446 unallocated_encoding(s); 7447 return; 7448 } 7449 7450 if (!fp_access_check(s)) { 7451 return; 7452 } 7453 7454 tcg_res[0] = tcg_temp_new_i64(); 7455 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7456 tcg_ele = tcg_temp_new_i64(); 7457 7458 for (i = 0; i < elements; i++) { 7459 int o, w; 7460 7461 switch (opcode) { 7462 case 1: /* UZP1/2 */ 7463 { 7464 int midpoint = elements / 2; 7465 if (i < midpoint) { 7466 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7467 } else { 7468 read_vec_element(s, tcg_ele, rm, 7469 2 * (i - midpoint) + part, size); 7470 } 7471 break; 7472 } 7473 case 2: /* TRN1/2 */ 7474 if (i & 1) { 7475 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7476 } else { 7477 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7478 } 7479 break; 7480 case 3: /* ZIP1/2 */ 7481 { 7482 int base = part * elements / 2; 7483 if (i & 1) { 7484 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7485 } else { 7486 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7487 } 7488 break; 7489 } 7490 default: 7491 g_assert_not_reached(); 7492 } 7493 7494 w = (i * esize) / 64; 7495 o = (i * esize) % 64; 7496 if (o == 0) { 7497 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7498 } else { 7499 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7500 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7501 } 7502 } 7503 7504 for (i = 0; i <= is_q; ++i) { 7505 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7506 } 7507 clear_vec_high(s, is_q, rd); 7508 } 7509 7510 /* 7511 * do_reduction_op helper 7512 * 7513 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7514 * important for correct NaN propagation that we do these 7515 * operations in exactly the order specified by the pseudocode. 7516 * 7517 * This is a recursive function, TCG temps should be freed by the 7518 * calling function once it is done with the values. 7519 */ 7520 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7521 int esize, int size, int vmap, TCGv_ptr fpst) 7522 { 7523 if (esize == size) { 7524 int element; 7525 MemOp msize = esize == 16 ? MO_16 : MO_32; 7526 TCGv_i32 tcg_elem; 7527 7528 /* We should have one register left here */ 7529 assert(ctpop8(vmap) == 1); 7530 element = ctz32(vmap); 7531 assert(element < 8); 7532 7533 tcg_elem = tcg_temp_new_i32(); 7534 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7535 return tcg_elem; 7536 } else { 7537 int bits = size / 2; 7538 int shift = ctpop8(vmap) / 2; 7539 int vmap_lo = (vmap >> shift) & vmap; 7540 int vmap_hi = (vmap & ~vmap_lo); 7541 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7542 7543 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7544 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7545 tcg_res = tcg_temp_new_i32(); 7546 7547 switch (fpopcode) { 7548 case 0x0c: /* fmaxnmv half-precision */ 7549 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7550 break; 7551 case 0x0f: /* fmaxv half-precision */ 7552 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7553 break; 7554 case 0x1c: /* fminnmv half-precision */ 7555 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7556 break; 7557 case 0x1f: /* fminv half-precision */ 7558 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7559 break; 7560 case 0x2c: /* fmaxnmv */ 7561 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7562 break; 7563 case 0x2f: /* fmaxv */ 7564 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7565 break; 7566 case 0x3c: /* fminnmv */ 7567 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7568 break; 7569 case 0x3f: /* fminv */ 7570 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7571 break; 7572 default: 7573 g_assert_not_reached(); 7574 } 7575 return tcg_res; 7576 } 7577 } 7578 7579 /* AdvSIMD across lanes 7580 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7581 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7582 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7583 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7584 */ 7585 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7586 { 7587 int rd = extract32(insn, 0, 5); 7588 int rn = extract32(insn, 5, 5); 7589 int size = extract32(insn, 22, 2); 7590 int opcode = extract32(insn, 12, 5); 7591 bool is_q = extract32(insn, 30, 1); 7592 bool is_u = extract32(insn, 29, 1); 7593 bool is_fp = false; 7594 bool is_min = false; 7595 int esize; 7596 int elements; 7597 int i; 7598 TCGv_i64 tcg_res, tcg_elt; 7599 7600 switch (opcode) { 7601 case 0x1b: /* ADDV */ 7602 if (is_u) { 7603 unallocated_encoding(s); 7604 return; 7605 } 7606 /* fall through */ 7607 case 0x3: /* SADDLV, UADDLV */ 7608 case 0xa: /* SMAXV, UMAXV */ 7609 case 0x1a: /* SMINV, UMINV */ 7610 if (size == 3 || (size == 2 && !is_q)) { 7611 unallocated_encoding(s); 7612 return; 7613 } 7614 break; 7615 case 0xc: /* FMAXNMV, FMINNMV */ 7616 case 0xf: /* FMAXV, FMINV */ 7617 /* Bit 1 of size field encodes min vs max and the actual size 7618 * depends on the encoding of the U bit. If not set (and FP16 7619 * enabled) then we do half-precision float instead of single 7620 * precision. 7621 */ 7622 is_min = extract32(size, 1, 1); 7623 is_fp = true; 7624 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7625 size = 1; 7626 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7627 unallocated_encoding(s); 7628 return; 7629 } else { 7630 size = 2; 7631 } 7632 break; 7633 default: 7634 unallocated_encoding(s); 7635 return; 7636 } 7637 7638 if (!fp_access_check(s)) { 7639 return; 7640 } 7641 7642 esize = 8 << size; 7643 elements = (is_q ? 128 : 64) / esize; 7644 7645 tcg_res = tcg_temp_new_i64(); 7646 tcg_elt = tcg_temp_new_i64(); 7647 7648 /* These instructions operate across all lanes of a vector 7649 * to produce a single result. We can guarantee that a 64 7650 * bit intermediate is sufficient: 7651 * + for [US]ADDLV the maximum element size is 32 bits, and 7652 * the result type is 64 bits 7653 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7654 * same as the element size, which is 32 bits at most 7655 * For the integer operations we can choose to work at 64 7656 * or 32 bits and truncate at the end; for simplicity 7657 * we use 64 bits always. The floating point 7658 * ops do require 32 bit intermediates, though. 7659 */ 7660 if (!is_fp) { 7661 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7662 7663 for (i = 1; i < elements; i++) { 7664 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7665 7666 switch (opcode) { 7667 case 0x03: /* SADDLV / UADDLV */ 7668 case 0x1b: /* ADDV */ 7669 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7670 break; 7671 case 0x0a: /* SMAXV / UMAXV */ 7672 if (is_u) { 7673 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7674 } else { 7675 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7676 } 7677 break; 7678 case 0x1a: /* SMINV / UMINV */ 7679 if (is_u) { 7680 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7681 } else { 7682 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7683 } 7684 break; 7685 default: 7686 g_assert_not_reached(); 7687 } 7688 7689 } 7690 } else { 7691 /* Floating point vector reduction ops which work across 32 7692 * bit (single) or 16 bit (half-precision) intermediates. 7693 * Note that correct NaN propagation requires that we do these 7694 * operations in exactly the order specified by the pseudocode. 7695 */ 7696 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7697 int fpopcode = opcode | is_min << 4 | is_u << 5; 7698 int vmap = (1 << elements) - 1; 7699 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7700 (is_q ? 128 : 64), vmap, fpst); 7701 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7702 } 7703 7704 /* Now truncate the result to the width required for the final output */ 7705 if (opcode == 0x03) { 7706 /* SADDLV, UADDLV: result is 2*esize */ 7707 size++; 7708 } 7709 7710 switch (size) { 7711 case 0: 7712 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7713 break; 7714 case 1: 7715 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7716 break; 7717 case 2: 7718 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7719 break; 7720 case 3: 7721 break; 7722 default: 7723 g_assert_not_reached(); 7724 } 7725 7726 write_fp_dreg(s, rd, tcg_res); 7727 } 7728 7729 /* DUP (Element, Vector) 7730 * 7731 * 31 30 29 21 20 16 15 10 9 5 4 0 7732 * +---+---+-------------------+--------+-------------+------+------+ 7733 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7734 * +---+---+-------------------+--------+-------------+------+------+ 7735 * 7736 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7737 */ 7738 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7739 int imm5) 7740 { 7741 int size = ctz32(imm5); 7742 int index; 7743 7744 if (size > 3 || (size == 3 && !is_q)) { 7745 unallocated_encoding(s); 7746 return; 7747 } 7748 7749 if (!fp_access_check(s)) { 7750 return; 7751 } 7752 7753 index = imm5 >> (size + 1); 7754 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7755 vec_reg_offset(s, rn, index, size), 7756 is_q ? 16 : 8, vec_full_reg_size(s)); 7757 } 7758 7759 /* DUP (element, scalar) 7760 * 31 21 20 16 15 10 9 5 4 0 7761 * +-----------------------+--------+-------------+------+------+ 7762 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7763 * +-----------------------+--------+-------------+------+------+ 7764 */ 7765 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7766 int imm5) 7767 { 7768 int size = ctz32(imm5); 7769 int index; 7770 TCGv_i64 tmp; 7771 7772 if (size > 3) { 7773 unallocated_encoding(s); 7774 return; 7775 } 7776 7777 if (!fp_access_check(s)) { 7778 return; 7779 } 7780 7781 index = imm5 >> (size + 1); 7782 7783 /* This instruction just extracts the specified element and 7784 * zero-extends it into the bottom of the destination register. 7785 */ 7786 tmp = tcg_temp_new_i64(); 7787 read_vec_element(s, tmp, rn, index, size); 7788 write_fp_dreg(s, rd, tmp); 7789 } 7790 7791 /* DUP (General) 7792 * 7793 * 31 30 29 21 20 16 15 10 9 5 4 0 7794 * +---+---+-------------------+--------+-------------+------+------+ 7795 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7796 * +---+---+-------------------+--------+-------------+------+------+ 7797 * 7798 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7799 */ 7800 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7801 int imm5) 7802 { 7803 int size = ctz32(imm5); 7804 uint32_t dofs, oprsz, maxsz; 7805 7806 if (size > 3 || ((size == 3) && !is_q)) { 7807 unallocated_encoding(s); 7808 return; 7809 } 7810 7811 if (!fp_access_check(s)) { 7812 return; 7813 } 7814 7815 dofs = vec_full_reg_offset(s, rd); 7816 oprsz = is_q ? 16 : 8; 7817 maxsz = vec_full_reg_size(s); 7818 7819 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7820 } 7821 7822 /* INS (Element) 7823 * 7824 * 31 21 20 16 15 14 11 10 9 5 4 0 7825 * +-----------------------+--------+------------+---+------+------+ 7826 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7827 * +-----------------------+--------+------------+---+------+------+ 7828 * 7829 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7830 * index: encoded in imm5<4:size+1> 7831 */ 7832 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7833 int imm4, int imm5) 7834 { 7835 int size = ctz32(imm5); 7836 int src_index, dst_index; 7837 TCGv_i64 tmp; 7838 7839 if (size > 3) { 7840 unallocated_encoding(s); 7841 return; 7842 } 7843 7844 if (!fp_access_check(s)) { 7845 return; 7846 } 7847 7848 dst_index = extract32(imm5, 1+size, 5); 7849 src_index = extract32(imm4, size, 4); 7850 7851 tmp = tcg_temp_new_i64(); 7852 7853 read_vec_element(s, tmp, rn, src_index, size); 7854 write_vec_element(s, tmp, rd, dst_index, size); 7855 7856 /* INS is considered a 128-bit write for SVE. */ 7857 clear_vec_high(s, true, rd); 7858 } 7859 7860 7861 /* INS (General) 7862 * 7863 * 31 21 20 16 15 10 9 5 4 0 7864 * +-----------------------+--------+-------------+------+------+ 7865 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7866 * +-----------------------+--------+-------------+------+------+ 7867 * 7868 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7869 * index: encoded in imm5<4:size+1> 7870 */ 7871 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7872 { 7873 int size = ctz32(imm5); 7874 int idx; 7875 7876 if (size > 3) { 7877 unallocated_encoding(s); 7878 return; 7879 } 7880 7881 if (!fp_access_check(s)) { 7882 return; 7883 } 7884 7885 idx = extract32(imm5, 1 + size, 4 - size); 7886 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7887 7888 /* INS is considered a 128-bit write for SVE. */ 7889 clear_vec_high(s, true, rd); 7890 } 7891 7892 /* 7893 * UMOV (General) 7894 * SMOV (General) 7895 * 7896 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7897 * +---+---+-------------------+--------+-------------+------+------+ 7898 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7899 * +---+---+-------------------+--------+-------------+------+------+ 7900 * 7901 * U: unsigned when set 7902 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7903 */ 7904 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7905 int rn, int rd, int imm5) 7906 { 7907 int size = ctz32(imm5); 7908 int element; 7909 TCGv_i64 tcg_rd; 7910 7911 /* Check for UnallocatedEncodings */ 7912 if (is_signed) { 7913 if (size > 2 || (size == 2 && !is_q)) { 7914 unallocated_encoding(s); 7915 return; 7916 } 7917 } else { 7918 if (size > 3 7919 || (size < 3 && is_q) 7920 || (size == 3 && !is_q)) { 7921 unallocated_encoding(s); 7922 return; 7923 } 7924 } 7925 7926 if (!fp_access_check(s)) { 7927 return; 7928 } 7929 7930 element = extract32(imm5, 1+size, 4); 7931 7932 tcg_rd = cpu_reg(s, rd); 7933 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7934 if (is_signed && !is_q) { 7935 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7936 } 7937 } 7938 7939 /* AdvSIMD copy 7940 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7941 * +---+---+----+-----------------+------+---+------+---+------+------+ 7942 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7943 * +---+---+----+-----------------+------+---+------+---+------+------+ 7944 */ 7945 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7946 { 7947 int rd = extract32(insn, 0, 5); 7948 int rn = extract32(insn, 5, 5); 7949 int imm4 = extract32(insn, 11, 4); 7950 int op = extract32(insn, 29, 1); 7951 int is_q = extract32(insn, 30, 1); 7952 int imm5 = extract32(insn, 16, 5); 7953 7954 if (op) { 7955 if (is_q) { 7956 /* INS (element) */ 7957 handle_simd_inse(s, rd, rn, imm4, imm5); 7958 } else { 7959 unallocated_encoding(s); 7960 } 7961 } else { 7962 switch (imm4) { 7963 case 0: 7964 /* DUP (element - vector) */ 7965 handle_simd_dupe(s, is_q, rd, rn, imm5); 7966 break; 7967 case 1: 7968 /* DUP (general) */ 7969 handle_simd_dupg(s, is_q, rd, rn, imm5); 7970 break; 7971 case 3: 7972 if (is_q) { 7973 /* INS (general) */ 7974 handle_simd_insg(s, rd, rn, imm5); 7975 } else { 7976 unallocated_encoding(s); 7977 } 7978 break; 7979 case 5: 7980 case 7: 7981 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7982 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7983 break; 7984 default: 7985 unallocated_encoding(s); 7986 break; 7987 } 7988 } 7989 } 7990 7991 /* AdvSIMD modified immediate 7992 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7993 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7994 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7995 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7996 * 7997 * There are a number of operations that can be carried out here: 7998 * MOVI - move (shifted) imm into register 7999 * MVNI - move inverted (shifted) imm into register 8000 * ORR - bitwise OR of (shifted) imm with register 8001 * BIC - bitwise clear of (shifted) imm with register 8002 * With ARMv8.2 we also have: 8003 * FMOV half-precision 8004 */ 8005 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8006 { 8007 int rd = extract32(insn, 0, 5); 8008 int cmode = extract32(insn, 12, 4); 8009 int o2 = extract32(insn, 11, 1); 8010 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8011 bool is_neg = extract32(insn, 29, 1); 8012 bool is_q = extract32(insn, 30, 1); 8013 uint64_t imm = 0; 8014 8015 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8016 /* Check for FMOV (vector, immediate) - half-precision */ 8017 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8018 unallocated_encoding(s); 8019 return; 8020 } 8021 } 8022 8023 if (!fp_access_check(s)) { 8024 return; 8025 } 8026 8027 if (cmode == 15 && o2 && !is_neg) { 8028 /* FMOV (vector, immediate) - half-precision */ 8029 imm = vfp_expand_imm(MO_16, abcdefgh); 8030 /* now duplicate across the lanes */ 8031 imm = dup_const(MO_16, imm); 8032 } else { 8033 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8034 } 8035 8036 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8037 /* MOVI or MVNI, with MVNI negation handled above. */ 8038 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8039 vec_full_reg_size(s), imm); 8040 } else { 8041 /* ORR or BIC, with BIC negation to AND handled above. */ 8042 if (is_neg) { 8043 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8044 } else { 8045 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8046 } 8047 } 8048 } 8049 8050 /* AdvSIMD scalar copy 8051 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8052 * +-----+----+-----------------+------+---+------+---+------+------+ 8053 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8054 * +-----+----+-----------------+------+---+------+---+------+------+ 8055 */ 8056 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8057 { 8058 int rd = extract32(insn, 0, 5); 8059 int rn = extract32(insn, 5, 5); 8060 int imm4 = extract32(insn, 11, 4); 8061 int imm5 = extract32(insn, 16, 5); 8062 int op = extract32(insn, 29, 1); 8063 8064 if (op != 0 || imm4 != 0) { 8065 unallocated_encoding(s); 8066 return; 8067 } 8068 8069 /* DUP (element, scalar) */ 8070 handle_simd_dupes(s, rd, rn, imm5); 8071 } 8072 8073 /* AdvSIMD scalar pairwise 8074 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8075 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8076 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8077 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8078 */ 8079 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8080 { 8081 int u = extract32(insn, 29, 1); 8082 int size = extract32(insn, 22, 2); 8083 int opcode = extract32(insn, 12, 5); 8084 int rn = extract32(insn, 5, 5); 8085 int rd = extract32(insn, 0, 5); 8086 TCGv_ptr fpst; 8087 8088 /* For some ops (the FP ones), size[1] is part of the encoding. 8089 * For ADDP strictly it is not but size[1] is always 1 for valid 8090 * encodings. 8091 */ 8092 opcode |= (extract32(size, 1, 1) << 5); 8093 8094 switch (opcode) { 8095 case 0x3b: /* ADDP */ 8096 if (u || size != 3) { 8097 unallocated_encoding(s); 8098 return; 8099 } 8100 if (!fp_access_check(s)) { 8101 return; 8102 } 8103 8104 fpst = NULL; 8105 break; 8106 case 0xc: /* FMAXNMP */ 8107 case 0xd: /* FADDP */ 8108 case 0xf: /* FMAXP */ 8109 case 0x2c: /* FMINNMP */ 8110 case 0x2f: /* FMINP */ 8111 /* FP op, size[0] is 32 or 64 bit*/ 8112 if (!u) { 8113 if (!dc_isar_feature(aa64_fp16, s)) { 8114 unallocated_encoding(s); 8115 return; 8116 } else { 8117 size = MO_16; 8118 } 8119 } else { 8120 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8121 } 8122 8123 if (!fp_access_check(s)) { 8124 return; 8125 } 8126 8127 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8128 break; 8129 default: 8130 unallocated_encoding(s); 8131 return; 8132 } 8133 8134 if (size == MO_64) { 8135 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8136 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8137 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8138 8139 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8140 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8141 8142 switch (opcode) { 8143 case 0x3b: /* ADDP */ 8144 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8145 break; 8146 case 0xc: /* FMAXNMP */ 8147 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8148 break; 8149 case 0xd: /* FADDP */ 8150 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8151 break; 8152 case 0xf: /* FMAXP */ 8153 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8154 break; 8155 case 0x2c: /* FMINNMP */ 8156 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8157 break; 8158 case 0x2f: /* FMINP */ 8159 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8160 break; 8161 default: 8162 g_assert_not_reached(); 8163 } 8164 8165 write_fp_dreg(s, rd, tcg_res); 8166 } else { 8167 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8168 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8169 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8170 8171 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8172 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8173 8174 if (size == MO_16) { 8175 switch (opcode) { 8176 case 0xc: /* FMAXNMP */ 8177 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8178 break; 8179 case 0xd: /* FADDP */ 8180 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8181 break; 8182 case 0xf: /* FMAXP */ 8183 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8184 break; 8185 case 0x2c: /* FMINNMP */ 8186 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8187 break; 8188 case 0x2f: /* FMINP */ 8189 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8190 break; 8191 default: 8192 g_assert_not_reached(); 8193 } 8194 } else { 8195 switch (opcode) { 8196 case 0xc: /* FMAXNMP */ 8197 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8198 break; 8199 case 0xd: /* FADDP */ 8200 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8201 break; 8202 case 0xf: /* FMAXP */ 8203 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8204 break; 8205 case 0x2c: /* FMINNMP */ 8206 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8207 break; 8208 case 0x2f: /* FMINP */ 8209 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8210 break; 8211 default: 8212 g_assert_not_reached(); 8213 } 8214 } 8215 8216 write_fp_sreg(s, rd, tcg_res); 8217 } 8218 } 8219 8220 /* 8221 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8222 * 8223 * This code is handles the common shifting code and is used by both 8224 * the vector and scalar code. 8225 */ 8226 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8227 TCGv_i64 tcg_rnd, bool accumulate, 8228 bool is_u, int size, int shift) 8229 { 8230 bool extended_result = false; 8231 bool round = tcg_rnd != NULL; 8232 int ext_lshift = 0; 8233 TCGv_i64 tcg_src_hi; 8234 8235 if (round && size == 3) { 8236 extended_result = true; 8237 ext_lshift = 64 - shift; 8238 tcg_src_hi = tcg_temp_new_i64(); 8239 } else if (shift == 64) { 8240 if (!accumulate && is_u) { 8241 /* result is zero */ 8242 tcg_gen_movi_i64(tcg_res, 0); 8243 return; 8244 } 8245 } 8246 8247 /* Deal with the rounding step */ 8248 if (round) { 8249 if (extended_result) { 8250 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8251 if (!is_u) { 8252 /* take care of sign extending tcg_res */ 8253 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8254 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8255 tcg_src, tcg_src_hi, 8256 tcg_rnd, tcg_zero); 8257 } else { 8258 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8259 tcg_src, tcg_zero, 8260 tcg_rnd, tcg_zero); 8261 } 8262 } else { 8263 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8264 } 8265 } 8266 8267 /* Now do the shift right */ 8268 if (round && extended_result) { 8269 /* extended case, >64 bit precision required */ 8270 if (ext_lshift == 0) { 8271 /* special case, only high bits matter */ 8272 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8273 } else { 8274 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8275 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8276 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8277 } 8278 } else { 8279 if (is_u) { 8280 if (shift == 64) { 8281 /* essentially shifting in 64 zeros */ 8282 tcg_gen_movi_i64(tcg_src, 0); 8283 } else { 8284 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8285 } 8286 } else { 8287 if (shift == 64) { 8288 /* effectively extending the sign-bit */ 8289 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8290 } else { 8291 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8292 } 8293 } 8294 } 8295 8296 if (accumulate) { 8297 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8298 } else { 8299 tcg_gen_mov_i64(tcg_res, tcg_src); 8300 } 8301 } 8302 8303 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8304 static void handle_scalar_simd_shri(DisasContext *s, 8305 bool is_u, int immh, int immb, 8306 int opcode, int rn, int rd) 8307 { 8308 const int size = 3; 8309 int immhb = immh << 3 | immb; 8310 int shift = 2 * (8 << size) - immhb; 8311 bool accumulate = false; 8312 bool round = false; 8313 bool insert = false; 8314 TCGv_i64 tcg_rn; 8315 TCGv_i64 tcg_rd; 8316 TCGv_i64 tcg_round; 8317 8318 if (!extract32(immh, 3, 1)) { 8319 unallocated_encoding(s); 8320 return; 8321 } 8322 8323 if (!fp_access_check(s)) { 8324 return; 8325 } 8326 8327 switch (opcode) { 8328 case 0x02: /* SSRA / USRA (accumulate) */ 8329 accumulate = true; 8330 break; 8331 case 0x04: /* SRSHR / URSHR (rounding) */ 8332 round = true; 8333 break; 8334 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8335 accumulate = round = true; 8336 break; 8337 case 0x08: /* SRI */ 8338 insert = true; 8339 break; 8340 } 8341 8342 if (round) { 8343 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8344 } else { 8345 tcg_round = NULL; 8346 } 8347 8348 tcg_rn = read_fp_dreg(s, rn); 8349 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8350 8351 if (insert) { 8352 /* shift count same as element size is valid but does nothing; 8353 * special case to avoid potential shift by 64. 8354 */ 8355 int esize = 8 << size; 8356 if (shift != esize) { 8357 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8358 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8359 } 8360 } else { 8361 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8362 accumulate, is_u, size, shift); 8363 } 8364 8365 write_fp_dreg(s, rd, tcg_rd); 8366 } 8367 8368 /* SHL/SLI - Scalar shift left */ 8369 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8370 int immh, int immb, int opcode, 8371 int rn, int rd) 8372 { 8373 int size = 32 - clz32(immh) - 1; 8374 int immhb = immh << 3 | immb; 8375 int shift = immhb - (8 << size); 8376 TCGv_i64 tcg_rn; 8377 TCGv_i64 tcg_rd; 8378 8379 if (!extract32(immh, 3, 1)) { 8380 unallocated_encoding(s); 8381 return; 8382 } 8383 8384 if (!fp_access_check(s)) { 8385 return; 8386 } 8387 8388 tcg_rn = read_fp_dreg(s, rn); 8389 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8390 8391 if (insert) { 8392 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8393 } else { 8394 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8395 } 8396 8397 write_fp_dreg(s, rd, tcg_rd); 8398 } 8399 8400 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8401 * (signed/unsigned) narrowing */ 8402 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8403 bool is_u_shift, bool is_u_narrow, 8404 int immh, int immb, int opcode, 8405 int rn, int rd) 8406 { 8407 int immhb = immh << 3 | immb; 8408 int size = 32 - clz32(immh) - 1; 8409 int esize = 8 << size; 8410 int shift = (2 * esize) - immhb; 8411 int elements = is_scalar ? 1 : (64 / esize); 8412 bool round = extract32(opcode, 0, 1); 8413 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8414 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8415 TCGv_i32 tcg_rd_narrowed; 8416 TCGv_i64 tcg_final; 8417 8418 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8419 { gen_helper_neon_narrow_sat_s8, 8420 gen_helper_neon_unarrow_sat8 }, 8421 { gen_helper_neon_narrow_sat_s16, 8422 gen_helper_neon_unarrow_sat16 }, 8423 { gen_helper_neon_narrow_sat_s32, 8424 gen_helper_neon_unarrow_sat32 }, 8425 { NULL, NULL }, 8426 }; 8427 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8428 gen_helper_neon_narrow_sat_u8, 8429 gen_helper_neon_narrow_sat_u16, 8430 gen_helper_neon_narrow_sat_u32, 8431 NULL 8432 }; 8433 NeonGenNarrowEnvFn *narrowfn; 8434 8435 int i; 8436 8437 assert(size < 4); 8438 8439 if (extract32(immh, 3, 1)) { 8440 unallocated_encoding(s); 8441 return; 8442 } 8443 8444 if (!fp_access_check(s)) { 8445 return; 8446 } 8447 8448 if (is_u_shift) { 8449 narrowfn = unsigned_narrow_fns[size]; 8450 } else { 8451 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8452 } 8453 8454 tcg_rn = tcg_temp_new_i64(); 8455 tcg_rd = tcg_temp_new_i64(); 8456 tcg_rd_narrowed = tcg_temp_new_i32(); 8457 tcg_final = tcg_temp_new_i64(); 8458 8459 if (round) { 8460 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8461 } else { 8462 tcg_round = NULL; 8463 } 8464 8465 for (i = 0; i < elements; i++) { 8466 read_vec_element(s, tcg_rn, rn, i, ldop); 8467 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8468 false, is_u_shift, size+1, shift); 8469 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8470 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8471 if (i == 0) { 8472 tcg_gen_mov_i64(tcg_final, tcg_rd); 8473 } else { 8474 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8475 } 8476 } 8477 8478 if (!is_q) { 8479 write_vec_element(s, tcg_final, rd, 0, MO_64); 8480 } else { 8481 write_vec_element(s, tcg_final, rd, 1, MO_64); 8482 } 8483 clear_vec_high(s, is_q, rd); 8484 } 8485 8486 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8487 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8488 bool src_unsigned, bool dst_unsigned, 8489 int immh, int immb, int rn, int rd) 8490 { 8491 int immhb = immh << 3 | immb; 8492 int size = 32 - clz32(immh) - 1; 8493 int shift = immhb - (8 << size); 8494 int pass; 8495 8496 assert(immh != 0); 8497 assert(!(scalar && is_q)); 8498 8499 if (!scalar) { 8500 if (!is_q && extract32(immh, 3, 1)) { 8501 unallocated_encoding(s); 8502 return; 8503 } 8504 8505 /* Since we use the variable-shift helpers we must 8506 * replicate the shift count into each element of 8507 * the tcg_shift value. 8508 */ 8509 switch (size) { 8510 case 0: 8511 shift |= shift << 8; 8512 /* fall through */ 8513 case 1: 8514 shift |= shift << 16; 8515 break; 8516 case 2: 8517 case 3: 8518 break; 8519 default: 8520 g_assert_not_reached(); 8521 } 8522 } 8523 8524 if (!fp_access_check(s)) { 8525 return; 8526 } 8527 8528 if (size == 3) { 8529 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8530 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8531 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8532 { NULL, gen_helper_neon_qshl_u64 }, 8533 }; 8534 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8535 int maxpass = is_q ? 2 : 1; 8536 8537 for (pass = 0; pass < maxpass; pass++) { 8538 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8539 8540 read_vec_element(s, tcg_op, rn, pass, MO_64); 8541 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8542 write_vec_element(s, tcg_op, rd, pass, MO_64); 8543 } 8544 clear_vec_high(s, is_q, rd); 8545 } else { 8546 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8547 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8548 { 8549 { gen_helper_neon_qshl_s8, 8550 gen_helper_neon_qshl_s16, 8551 gen_helper_neon_qshl_s32 }, 8552 { gen_helper_neon_qshlu_s8, 8553 gen_helper_neon_qshlu_s16, 8554 gen_helper_neon_qshlu_s32 } 8555 }, { 8556 { NULL, NULL, NULL }, 8557 { gen_helper_neon_qshl_u8, 8558 gen_helper_neon_qshl_u16, 8559 gen_helper_neon_qshl_u32 } 8560 } 8561 }; 8562 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8563 MemOp memop = scalar ? size : MO_32; 8564 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8565 8566 for (pass = 0; pass < maxpass; pass++) { 8567 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8568 8569 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8570 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8571 if (scalar) { 8572 switch (size) { 8573 case 0: 8574 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8575 break; 8576 case 1: 8577 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8578 break; 8579 case 2: 8580 break; 8581 default: 8582 g_assert_not_reached(); 8583 } 8584 write_fp_sreg(s, rd, tcg_op); 8585 } else { 8586 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8587 } 8588 } 8589 8590 if (!scalar) { 8591 clear_vec_high(s, is_q, rd); 8592 } 8593 } 8594 } 8595 8596 /* Common vector code for handling integer to FP conversion */ 8597 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8598 int elements, int is_signed, 8599 int fracbits, int size) 8600 { 8601 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8602 TCGv_i32 tcg_shift = NULL; 8603 8604 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8605 int pass; 8606 8607 if (fracbits || size == MO_64) { 8608 tcg_shift = tcg_constant_i32(fracbits); 8609 } 8610 8611 if (size == MO_64) { 8612 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8613 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8614 8615 for (pass = 0; pass < elements; pass++) { 8616 read_vec_element(s, tcg_int64, rn, pass, mop); 8617 8618 if (is_signed) { 8619 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8620 tcg_shift, tcg_fpst); 8621 } else { 8622 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8623 tcg_shift, tcg_fpst); 8624 } 8625 if (elements == 1) { 8626 write_fp_dreg(s, rd, tcg_double); 8627 } else { 8628 write_vec_element(s, tcg_double, rd, pass, MO_64); 8629 } 8630 } 8631 } else { 8632 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8633 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8634 8635 for (pass = 0; pass < elements; pass++) { 8636 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8637 8638 switch (size) { 8639 case MO_32: 8640 if (fracbits) { 8641 if (is_signed) { 8642 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8643 tcg_shift, tcg_fpst); 8644 } else { 8645 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8646 tcg_shift, tcg_fpst); 8647 } 8648 } else { 8649 if (is_signed) { 8650 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8651 } else { 8652 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8653 } 8654 } 8655 break; 8656 case MO_16: 8657 if (fracbits) { 8658 if (is_signed) { 8659 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8660 tcg_shift, tcg_fpst); 8661 } else { 8662 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8663 tcg_shift, tcg_fpst); 8664 } 8665 } else { 8666 if (is_signed) { 8667 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8668 } else { 8669 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8670 } 8671 } 8672 break; 8673 default: 8674 g_assert_not_reached(); 8675 } 8676 8677 if (elements == 1) { 8678 write_fp_sreg(s, rd, tcg_float); 8679 } else { 8680 write_vec_element_i32(s, tcg_float, rd, pass, size); 8681 } 8682 } 8683 } 8684 8685 clear_vec_high(s, elements << size == 16, rd); 8686 } 8687 8688 /* UCVTF/SCVTF - Integer to FP conversion */ 8689 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8690 bool is_q, bool is_u, 8691 int immh, int immb, int opcode, 8692 int rn, int rd) 8693 { 8694 int size, elements, fracbits; 8695 int immhb = immh << 3 | immb; 8696 8697 if (immh & 8) { 8698 size = MO_64; 8699 if (!is_scalar && !is_q) { 8700 unallocated_encoding(s); 8701 return; 8702 } 8703 } else if (immh & 4) { 8704 size = MO_32; 8705 } else if (immh & 2) { 8706 size = MO_16; 8707 if (!dc_isar_feature(aa64_fp16, s)) { 8708 unallocated_encoding(s); 8709 return; 8710 } 8711 } else { 8712 /* immh == 0 would be a failure of the decode logic */ 8713 g_assert(immh == 1); 8714 unallocated_encoding(s); 8715 return; 8716 } 8717 8718 if (is_scalar) { 8719 elements = 1; 8720 } else { 8721 elements = (8 << is_q) >> size; 8722 } 8723 fracbits = (16 << size) - immhb; 8724 8725 if (!fp_access_check(s)) { 8726 return; 8727 } 8728 8729 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8730 } 8731 8732 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8733 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8734 bool is_q, bool is_u, 8735 int immh, int immb, int rn, int rd) 8736 { 8737 int immhb = immh << 3 | immb; 8738 int pass, size, fracbits; 8739 TCGv_ptr tcg_fpstatus; 8740 TCGv_i32 tcg_rmode, tcg_shift; 8741 8742 if (immh & 0x8) { 8743 size = MO_64; 8744 if (!is_scalar && !is_q) { 8745 unallocated_encoding(s); 8746 return; 8747 } 8748 } else if (immh & 0x4) { 8749 size = MO_32; 8750 } else if (immh & 0x2) { 8751 size = MO_16; 8752 if (!dc_isar_feature(aa64_fp16, s)) { 8753 unallocated_encoding(s); 8754 return; 8755 } 8756 } else { 8757 /* Should have split out AdvSIMD modified immediate earlier. */ 8758 assert(immh == 1); 8759 unallocated_encoding(s); 8760 return; 8761 } 8762 8763 if (!fp_access_check(s)) { 8764 return; 8765 } 8766 8767 assert(!(is_scalar && is_q)); 8768 8769 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8770 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8771 fracbits = (16 << size) - immhb; 8772 tcg_shift = tcg_constant_i32(fracbits); 8773 8774 if (size == MO_64) { 8775 int maxpass = is_scalar ? 1 : 2; 8776 8777 for (pass = 0; pass < maxpass; pass++) { 8778 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8779 8780 read_vec_element(s, tcg_op, rn, pass, MO_64); 8781 if (is_u) { 8782 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8783 } else { 8784 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8785 } 8786 write_vec_element(s, tcg_op, rd, pass, MO_64); 8787 } 8788 clear_vec_high(s, is_q, rd); 8789 } else { 8790 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8791 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8792 8793 switch (size) { 8794 case MO_16: 8795 if (is_u) { 8796 fn = gen_helper_vfp_touhh; 8797 } else { 8798 fn = gen_helper_vfp_toshh; 8799 } 8800 break; 8801 case MO_32: 8802 if (is_u) { 8803 fn = gen_helper_vfp_touls; 8804 } else { 8805 fn = gen_helper_vfp_tosls; 8806 } 8807 break; 8808 default: 8809 g_assert_not_reached(); 8810 } 8811 8812 for (pass = 0; pass < maxpass; pass++) { 8813 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8814 8815 read_vec_element_i32(s, tcg_op, rn, pass, size); 8816 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8817 if (is_scalar) { 8818 write_fp_sreg(s, rd, tcg_op); 8819 } else { 8820 write_vec_element_i32(s, tcg_op, rd, pass, size); 8821 } 8822 } 8823 if (!is_scalar) { 8824 clear_vec_high(s, is_q, rd); 8825 } 8826 } 8827 8828 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8829 } 8830 8831 /* AdvSIMD scalar shift by immediate 8832 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8833 * +-----+---+-------------+------+------+--------+---+------+------+ 8834 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8835 * +-----+---+-------------+------+------+--------+---+------+------+ 8836 * 8837 * This is the scalar version so it works on a fixed sized registers 8838 */ 8839 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8840 { 8841 int rd = extract32(insn, 0, 5); 8842 int rn = extract32(insn, 5, 5); 8843 int opcode = extract32(insn, 11, 5); 8844 int immb = extract32(insn, 16, 3); 8845 int immh = extract32(insn, 19, 4); 8846 bool is_u = extract32(insn, 29, 1); 8847 8848 if (immh == 0) { 8849 unallocated_encoding(s); 8850 return; 8851 } 8852 8853 switch (opcode) { 8854 case 0x08: /* SRI */ 8855 if (!is_u) { 8856 unallocated_encoding(s); 8857 return; 8858 } 8859 /* fall through */ 8860 case 0x00: /* SSHR / USHR */ 8861 case 0x02: /* SSRA / USRA */ 8862 case 0x04: /* SRSHR / URSHR */ 8863 case 0x06: /* SRSRA / URSRA */ 8864 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8865 break; 8866 case 0x0a: /* SHL / SLI */ 8867 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8868 break; 8869 case 0x1c: /* SCVTF, UCVTF */ 8870 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8871 opcode, rn, rd); 8872 break; 8873 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8874 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8875 if (!is_u) { 8876 unallocated_encoding(s); 8877 return; 8878 } 8879 handle_vec_simd_sqshrn(s, true, false, false, true, 8880 immh, immb, opcode, rn, rd); 8881 break; 8882 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8883 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8884 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8885 immh, immb, opcode, rn, rd); 8886 break; 8887 case 0xc: /* SQSHLU */ 8888 if (!is_u) { 8889 unallocated_encoding(s); 8890 return; 8891 } 8892 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8893 break; 8894 case 0xe: /* SQSHL, UQSHL */ 8895 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8896 break; 8897 case 0x1f: /* FCVTZS, FCVTZU */ 8898 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8899 break; 8900 default: 8901 unallocated_encoding(s); 8902 break; 8903 } 8904 } 8905 8906 /* AdvSIMD scalar three different 8907 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8908 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8909 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8910 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8911 */ 8912 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8913 { 8914 bool is_u = extract32(insn, 29, 1); 8915 int size = extract32(insn, 22, 2); 8916 int opcode = extract32(insn, 12, 4); 8917 int rm = extract32(insn, 16, 5); 8918 int rn = extract32(insn, 5, 5); 8919 int rd = extract32(insn, 0, 5); 8920 8921 if (is_u) { 8922 unallocated_encoding(s); 8923 return; 8924 } 8925 8926 switch (opcode) { 8927 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8928 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8929 case 0xd: /* SQDMULL, SQDMULL2 */ 8930 if (size == 0 || size == 3) { 8931 unallocated_encoding(s); 8932 return; 8933 } 8934 break; 8935 default: 8936 unallocated_encoding(s); 8937 return; 8938 } 8939 8940 if (!fp_access_check(s)) { 8941 return; 8942 } 8943 8944 if (size == 2) { 8945 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8946 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8947 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8948 8949 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8950 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8951 8952 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8953 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8954 8955 switch (opcode) { 8956 case 0xd: /* SQDMULL, SQDMULL2 */ 8957 break; 8958 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8959 tcg_gen_neg_i64(tcg_res, tcg_res); 8960 /* fall through */ 8961 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8962 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8963 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8964 tcg_res, tcg_op1); 8965 break; 8966 default: 8967 g_assert_not_reached(); 8968 } 8969 8970 write_fp_dreg(s, rd, tcg_res); 8971 } else { 8972 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8973 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8974 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8975 8976 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8977 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8978 8979 switch (opcode) { 8980 case 0xd: /* SQDMULL, SQDMULL2 */ 8981 break; 8982 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8983 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8984 /* fall through */ 8985 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8986 { 8987 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8988 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8989 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8990 tcg_res, tcg_op3); 8991 break; 8992 } 8993 default: 8994 g_assert_not_reached(); 8995 } 8996 8997 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8998 write_fp_dreg(s, rd, tcg_res); 8999 } 9000 } 9001 9002 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9003 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9004 { 9005 /* Handle 64x64->64 opcodes which are shared between the scalar 9006 * and vector 3-same groups. We cover every opcode where size == 3 9007 * is valid in either the three-reg-same (integer, not pairwise) 9008 * or scalar-three-reg-same groups. 9009 */ 9010 TCGCond cond; 9011 9012 switch (opcode) { 9013 case 0x1: /* SQADD */ 9014 if (u) { 9015 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9016 } else { 9017 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9018 } 9019 break; 9020 case 0x5: /* SQSUB */ 9021 if (u) { 9022 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9023 } else { 9024 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9025 } 9026 break; 9027 case 0x6: /* CMGT, CMHI */ 9028 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9029 * We implement this using setcond (test) and then negating. 9030 */ 9031 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9032 do_cmop: 9033 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9034 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9035 break; 9036 case 0x7: /* CMGE, CMHS */ 9037 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9038 goto do_cmop; 9039 case 0x11: /* CMTST, CMEQ */ 9040 if (u) { 9041 cond = TCG_COND_EQ; 9042 goto do_cmop; 9043 } 9044 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9045 break; 9046 case 0x8: /* SSHL, USHL */ 9047 if (u) { 9048 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9049 } else { 9050 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9051 } 9052 break; 9053 case 0x9: /* SQSHL, UQSHL */ 9054 if (u) { 9055 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9056 } else { 9057 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9058 } 9059 break; 9060 case 0xa: /* SRSHL, URSHL */ 9061 if (u) { 9062 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9063 } else { 9064 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9065 } 9066 break; 9067 case 0xb: /* SQRSHL, UQRSHL */ 9068 if (u) { 9069 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9070 } else { 9071 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9072 } 9073 break; 9074 case 0x10: /* ADD, SUB */ 9075 if (u) { 9076 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9077 } else { 9078 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9079 } 9080 break; 9081 default: 9082 g_assert_not_reached(); 9083 } 9084 } 9085 9086 /* Handle the 3-same-operands float operations; shared by the scalar 9087 * and vector encodings. The caller must filter out any encodings 9088 * not allocated for the encoding it is dealing with. 9089 */ 9090 static void handle_3same_float(DisasContext *s, int size, int elements, 9091 int fpopcode, int rd, int rn, int rm) 9092 { 9093 int pass; 9094 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9095 9096 for (pass = 0; pass < elements; pass++) { 9097 if (size) { 9098 /* Double */ 9099 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9100 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9101 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9102 9103 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9104 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9105 9106 switch (fpopcode) { 9107 case 0x39: /* FMLS */ 9108 /* As usual for ARM, separate negation for fused multiply-add */ 9109 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9110 /* fall through */ 9111 case 0x19: /* FMLA */ 9112 read_vec_element(s, tcg_res, rd, pass, MO_64); 9113 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9114 tcg_res, fpst); 9115 break; 9116 case 0x18: /* FMAXNM */ 9117 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9118 break; 9119 case 0x1a: /* FADD */ 9120 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9121 break; 9122 case 0x1b: /* FMULX */ 9123 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9124 break; 9125 case 0x1c: /* FCMEQ */ 9126 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9127 break; 9128 case 0x1e: /* FMAX */ 9129 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9130 break; 9131 case 0x1f: /* FRECPS */ 9132 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9133 break; 9134 case 0x38: /* FMINNM */ 9135 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9136 break; 9137 case 0x3a: /* FSUB */ 9138 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9139 break; 9140 case 0x3e: /* FMIN */ 9141 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9142 break; 9143 case 0x3f: /* FRSQRTS */ 9144 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9145 break; 9146 case 0x5b: /* FMUL */ 9147 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9148 break; 9149 case 0x5c: /* FCMGE */ 9150 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9151 break; 9152 case 0x5d: /* FACGE */ 9153 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9154 break; 9155 case 0x5f: /* FDIV */ 9156 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9157 break; 9158 case 0x7a: /* FABD */ 9159 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9160 gen_helper_vfp_absd(tcg_res, tcg_res); 9161 break; 9162 case 0x7c: /* FCMGT */ 9163 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9164 break; 9165 case 0x7d: /* FACGT */ 9166 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9167 break; 9168 default: 9169 g_assert_not_reached(); 9170 } 9171 9172 write_vec_element(s, tcg_res, rd, pass, MO_64); 9173 } else { 9174 /* Single */ 9175 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9176 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9177 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9178 9179 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9180 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9181 9182 switch (fpopcode) { 9183 case 0x39: /* FMLS */ 9184 /* As usual for ARM, separate negation for fused multiply-add */ 9185 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9186 /* fall through */ 9187 case 0x19: /* FMLA */ 9188 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9189 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9190 tcg_res, fpst); 9191 break; 9192 case 0x1a: /* FADD */ 9193 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9194 break; 9195 case 0x1b: /* FMULX */ 9196 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9197 break; 9198 case 0x1c: /* FCMEQ */ 9199 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9200 break; 9201 case 0x1e: /* FMAX */ 9202 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9203 break; 9204 case 0x1f: /* FRECPS */ 9205 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9206 break; 9207 case 0x18: /* FMAXNM */ 9208 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9209 break; 9210 case 0x38: /* FMINNM */ 9211 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9212 break; 9213 case 0x3a: /* FSUB */ 9214 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9215 break; 9216 case 0x3e: /* FMIN */ 9217 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9218 break; 9219 case 0x3f: /* FRSQRTS */ 9220 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9221 break; 9222 case 0x5b: /* FMUL */ 9223 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9224 break; 9225 case 0x5c: /* FCMGE */ 9226 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9227 break; 9228 case 0x5d: /* FACGE */ 9229 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9230 break; 9231 case 0x5f: /* FDIV */ 9232 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9233 break; 9234 case 0x7a: /* FABD */ 9235 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9236 gen_helper_vfp_abss(tcg_res, tcg_res); 9237 break; 9238 case 0x7c: /* FCMGT */ 9239 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9240 break; 9241 case 0x7d: /* FACGT */ 9242 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9243 break; 9244 default: 9245 g_assert_not_reached(); 9246 } 9247 9248 if (elements == 1) { 9249 /* scalar single so clear high part */ 9250 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9251 9252 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9253 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9254 } else { 9255 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9256 } 9257 } 9258 } 9259 9260 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9261 } 9262 9263 /* AdvSIMD scalar three same 9264 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9265 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9266 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9267 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9268 */ 9269 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9270 { 9271 int rd = extract32(insn, 0, 5); 9272 int rn = extract32(insn, 5, 5); 9273 int opcode = extract32(insn, 11, 5); 9274 int rm = extract32(insn, 16, 5); 9275 int size = extract32(insn, 22, 2); 9276 bool u = extract32(insn, 29, 1); 9277 TCGv_i64 tcg_rd; 9278 9279 if (opcode >= 0x18) { 9280 /* Floating point: U, size[1] and opcode indicate operation */ 9281 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9282 switch (fpopcode) { 9283 case 0x1b: /* FMULX */ 9284 case 0x1f: /* FRECPS */ 9285 case 0x3f: /* FRSQRTS */ 9286 case 0x5d: /* FACGE */ 9287 case 0x7d: /* FACGT */ 9288 case 0x1c: /* FCMEQ */ 9289 case 0x5c: /* FCMGE */ 9290 case 0x7c: /* FCMGT */ 9291 case 0x7a: /* FABD */ 9292 break; 9293 default: 9294 unallocated_encoding(s); 9295 return; 9296 } 9297 9298 if (!fp_access_check(s)) { 9299 return; 9300 } 9301 9302 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9303 return; 9304 } 9305 9306 switch (opcode) { 9307 case 0x1: /* SQADD, UQADD */ 9308 case 0x5: /* SQSUB, UQSUB */ 9309 case 0x9: /* SQSHL, UQSHL */ 9310 case 0xb: /* SQRSHL, UQRSHL */ 9311 break; 9312 case 0x8: /* SSHL, USHL */ 9313 case 0xa: /* SRSHL, URSHL */ 9314 case 0x6: /* CMGT, CMHI */ 9315 case 0x7: /* CMGE, CMHS */ 9316 case 0x11: /* CMTST, CMEQ */ 9317 case 0x10: /* ADD, SUB (vector) */ 9318 if (size != 3) { 9319 unallocated_encoding(s); 9320 return; 9321 } 9322 break; 9323 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9324 if (size != 1 && size != 2) { 9325 unallocated_encoding(s); 9326 return; 9327 } 9328 break; 9329 default: 9330 unallocated_encoding(s); 9331 return; 9332 } 9333 9334 if (!fp_access_check(s)) { 9335 return; 9336 } 9337 9338 tcg_rd = tcg_temp_new_i64(); 9339 9340 if (size == 3) { 9341 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9342 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9343 9344 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9345 } else { 9346 /* Do a single operation on the lowest element in the vector. 9347 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9348 * no side effects for all these operations. 9349 * OPTME: special-purpose helpers would avoid doing some 9350 * unnecessary work in the helper for the 8 and 16 bit cases. 9351 */ 9352 NeonGenTwoOpEnvFn *genenvfn; 9353 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9354 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9355 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9356 9357 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9358 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9359 9360 switch (opcode) { 9361 case 0x1: /* SQADD, UQADD */ 9362 { 9363 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9364 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9365 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9366 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9367 }; 9368 genenvfn = fns[size][u]; 9369 break; 9370 } 9371 case 0x5: /* SQSUB, UQSUB */ 9372 { 9373 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9374 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9375 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9376 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9377 }; 9378 genenvfn = fns[size][u]; 9379 break; 9380 } 9381 case 0x9: /* SQSHL, UQSHL */ 9382 { 9383 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9384 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9385 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9386 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9387 }; 9388 genenvfn = fns[size][u]; 9389 break; 9390 } 9391 case 0xb: /* SQRSHL, UQRSHL */ 9392 { 9393 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9394 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9395 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9396 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9397 }; 9398 genenvfn = fns[size][u]; 9399 break; 9400 } 9401 case 0x16: /* SQDMULH, SQRDMULH */ 9402 { 9403 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9404 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9405 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9406 }; 9407 assert(size == 1 || size == 2); 9408 genenvfn = fns[size - 1][u]; 9409 break; 9410 } 9411 default: 9412 g_assert_not_reached(); 9413 } 9414 9415 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9416 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9417 } 9418 9419 write_fp_dreg(s, rd, tcg_rd); 9420 } 9421 9422 /* AdvSIMD scalar three same FP16 9423 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9424 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9425 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9426 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9427 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9428 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9429 */ 9430 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9431 uint32_t insn) 9432 { 9433 int rd = extract32(insn, 0, 5); 9434 int rn = extract32(insn, 5, 5); 9435 int opcode = extract32(insn, 11, 3); 9436 int rm = extract32(insn, 16, 5); 9437 bool u = extract32(insn, 29, 1); 9438 bool a = extract32(insn, 23, 1); 9439 int fpopcode = opcode | (a << 3) | (u << 4); 9440 TCGv_ptr fpst; 9441 TCGv_i32 tcg_op1; 9442 TCGv_i32 tcg_op2; 9443 TCGv_i32 tcg_res; 9444 9445 switch (fpopcode) { 9446 case 0x03: /* FMULX */ 9447 case 0x04: /* FCMEQ (reg) */ 9448 case 0x07: /* FRECPS */ 9449 case 0x0f: /* FRSQRTS */ 9450 case 0x14: /* FCMGE (reg) */ 9451 case 0x15: /* FACGE */ 9452 case 0x1a: /* FABD */ 9453 case 0x1c: /* FCMGT (reg) */ 9454 case 0x1d: /* FACGT */ 9455 break; 9456 default: 9457 unallocated_encoding(s); 9458 return; 9459 } 9460 9461 if (!dc_isar_feature(aa64_fp16, s)) { 9462 unallocated_encoding(s); 9463 } 9464 9465 if (!fp_access_check(s)) { 9466 return; 9467 } 9468 9469 fpst = fpstatus_ptr(FPST_FPCR_F16); 9470 9471 tcg_op1 = read_fp_hreg(s, rn); 9472 tcg_op2 = read_fp_hreg(s, rm); 9473 tcg_res = tcg_temp_new_i32(); 9474 9475 switch (fpopcode) { 9476 case 0x03: /* FMULX */ 9477 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9478 break; 9479 case 0x04: /* FCMEQ (reg) */ 9480 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9481 break; 9482 case 0x07: /* FRECPS */ 9483 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9484 break; 9485 case 0x0f: /* FRSQRTS */ 9486 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9487 break; 9488 case 0x14: /* FCMGE (reg) */ 9489 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9490 break; 9491 case 0x15: /* FACGE */ 9492 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9493 break; 9494 case 0x1a: /* FABD */ 9495 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9496 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9497 break; 9498 case 0x1c: /* FCMGT (reg) */ 9499 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9500 break; 9501 case 0x1d: /* FACGT */ 9502 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9503 break; 9504 default: 9505 g_assert_not_reached(); 9506 } 9507 9508 write_fp_sreg(s, rd, tcg_res); 9509 } 9510 9511 /* AdvSIMD scalar three same extra 9512 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9513 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9514 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9515 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9516 */ 9517 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9518 uint32_t insn) 9519 { 9520 int rd = extract32(insn, 0, 5); 9521 int rn = extract32(insn, 5, 5); 9522 int opcode = extract32(insn, 11, 4); 9523 int rm = extract32(insn, 16, 5); 9524 int size = extract32(insn, 22, 2); 9525 bool u = extract32(insn, 29, 1); 9526 TCGv_i32 ele1, ele2, ele3; 9527 TCGv_i64 res; 9528 bool feature; 9529 9530 switch (u * 16 + opcode) { 9531 case 0x10: /* SQRDMLAH (vector) */ 9532 case 0x11: /* SQRDMLSH (vector) */ 9533 if (size != 1 && size != 2) { 9534 unallocated_encoding(s); 9535 return; 9536 } 9537 feature = dc_isar_feature(aa64_rdm, s); 9538 break; 9539 default: 9540 unallocated_encoding(s); 9541 return; 9542 } 9543 if (!feature) { 9544 unallocated_encoding(s); 9545 return; 9546 } 9547 if (!fp_access_check(s)) { 9548 return; 9549 } 9550 9551 /* Do a single operation on the lowest element in the vector. 9552 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9553 * with no side effects for all these operations. 9554 * OPTME: special-purpose helpers would avoid doing some 9555 * unnecessary work in the helper for the 16 bit cases. 9556 */ 9557 ele1 = tcg_temp_new_i32(); 9558 ele2 = tcg_temp_new_i32(); 9559 ele3 = tcg_temp_new_i32(); 9560 9561 read_vec_element_i32(s, ele1, rn, 0, size); 9562 read_vec_element_i32(s, ele2, rm, 0, size); 9563 read_vec_element_i32(s, ele3, rd, 0, size); 9564 9565 switch (opcode) { 9566 case 0x0: /* SQRDMLAH */ 9567 if (size == 1) { 9568 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9569 } else { 9570 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9571 } 9572 break; 9573 case 0x1: /* SQRDMLSH */ 9574 if (size == 1) { 9575 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9576 } else { 9577 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9578 } 9579 break; 9580 default: 9581 g_assert_not_reached(); 9582 } 9583 9584 res = tcg_temp_new_i64(); 9585 tcg_gen_extu_i32_i64(res, ele3); 9586 write_fp_dreg(s, rd, res); 9587 } 9588 9589 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9590 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9591 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9592 { 9593 /* Handle 64->64 opcodes which are shared between the scalar and 9594 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9595 * is valid in either group and also the double-precision fp ops. 9596 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9597 * requires them. 9598 */ 9599 TCGCond cond; 9600 9601 switch (opcode) { 9602 case 0x4: /* CLS, CLZ */ 9603 if (u) { 9604 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9605 } else { 9606 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9607 } 9608 break; 9609 case 0x5: /* NOT */ 9610 /* This opcode is shared with CNT and RBIT but we have earlier 9611 * enforced that size == 3 if and only if this is the NOT insn. 9612 */ 9613 tcg_gen_not_i64(tcg_rd, tcg_rn); 9614 break; 9615 case 0x7: /* SQABS, SQNEG */ 9616 if (u) { 9617 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9618 } else { 9619 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9620 } 9621 break; 9622 case 0xa: /* CMLT */ 9623 /* 64 bit integer comparison against zero, result is 9624 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9625 * subtracting 1. 9626 */ 9627 cond = TCG_COND_LT; 9628 do_cmop: 9629 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9630 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9631 break; 9632 case 0x8: /* CMGT, CMGE */ 9633 cond = u ? TCG_COND_GE : TCG_COND_GT; 9634 goto do_cmop; 9635 case 0x9: /* CMEQ, CMLE */ 9636 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9637 goto do_cmop; 9638 case 0xb: /* ABS, NEG */ 9639 if (u) { 9640 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9641 } else { 9642 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9643 } 9644 break; 9645 case 0x2f: /* FABS */ 9646 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9647 break; 9648 case 0x6f: /* FNEG */ 9649 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9650 break; 9651 case 0x7f: /* FSQRT */ 9652 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9653 break; 9654 case 0x1a: /* FCVTNS */ 9655 case 0x1b: /* FCVTMS */ 9656 case 0x1c: /* FCVTAS */ 9657 case 0x3a: /* FCVTPS */ 9658 case 0x3b: /* FCVTZS */ 9659 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9660 break; 9661 case 0x5a: /* FCVTNU */ 9662 case 0x5b: /* FCVTMU */ 9663 case 0x5c: /* FCVTAU */ 9664 case 0x7a: /* FCVTPU */ 9665 case 0x7b: /* FCVTZU */ 9666 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9667 break; 9668 case 0x18: /* FRINTN */ 9669 case 0x19: /* FRINTM */ 9670 case 0x38: /* FRINTP */ 9671 case 0x39: /* FRINTZ */ 9672 case 0x58: /* FRINTA */ 9673 case 0x79: /* FRINTI */ 9674 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9675 break; 9676 case 0x59: /* FRINTX */ 9677 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9678 break; 9679 case 0x1e: /* FRINT32Z */ 9680 case 0x5e: /* FRINT32X */ 9681 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9682 break; 9683 case 0x1f: /* FRINT64Z */ 9684 case 0x5f: /* FRINT64X */ 9685 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9686 break; 9687 default: 9688 g_assert_not_reached(); 9689 } 9690 } 9691 9692 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9693 bool is_scalar, bool is_u, bool is_q, 9694 int size, int rn, int rd) 9695 { 9696 bool is_double = (size == MO_64); 9697 TCGv_ptr fpst; 9698 9699 if (!fp_access_check(s)) { 9700 return; 9701 } 9702 9703 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9704 9705 if (is_double) { 9706 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9707 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9708 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9709 NeonGenTwoDoubleOpFn *genfn; 9710 bool swap = false; 9711 int pass; 9712 9713 switch (opcode) { 9714 case 0x2e: /* FCMLT (zero) */ 9715 swap = true; 9716 /* fallthrough */ 9717 case 0x2c: /* FCMGT (zero) */ 9718 genfn = gen_helper_neon_cgt_f64; 9719 break; 9720 case 0x2d: /* FCMEQ (zero) */ 9721 genfn = gen_helper_neon_ceq_f64; 9722 break; 9723 case 0x6d: /* FCMLE (zero) */ 9724 swap = true; 9725 /* fall through */ 9726 case 0x6c: /* FCMGE (zero) */ 9727 genfn = gen_helper_neon_cge_f64; 9728 break; 9729 default: 9730 g_assert_not_reached(); 9731 } 9732 9733 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9734 read_vec_element(s, tcg_op, rn, pass, MO_64); 9735 if (swap) { 9736 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9737 } else { 9738 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9739 } 9740 write_vec_element(s, tcg_res, rd, pass, MO_64); 9741 } 9742 9743 clear_vec_high(s, !is_scalar, rd); 9744 } else { 9745 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9746 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9747 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9748 NeonGenTwoSingleOpFn *genfn; 9749 bool swap = false; 9750 int pass, maxpasses; 9751 9752 if (size == MO_16) { 9753 switch (opcode) { 9754 case 0x2e: /* FCMLT (zero) */ 9755 swap = true; 9756 /* fall through */ 9757 case 0x2c: /* FCMGT (zero) */ 9758 genfn = gen_helper_advsimd_cgt_f16; 9759 break; 9760 case 0x2d: /* FCMEQ (zero) */ 9761 genfn = gen_helper_advsimd_ceq_f16; 9762 break; 9763 case 0x6d: /* FCMLE (zero) */ 9764 swap = true; 9765 /* fall through */ 9766 case 0x6c: /* FCMGE (zero) */ 9767 genfn = gen_helper_advsimd_cge_f16; 9768 break; 9769 default: 9770 g_assert_not_reached(); 9771 } 9772 } else { 9773 switch (opcode) { 9774 case 0x2e: /* FCMLT (zero) */ 9775 swap = true; 9776 /* fall through */ 9777 case 0x2c: /* FCMGT (zero) */ 9778 genfn = gen_helper_neon_cgt_f32; 9779 break; 9780 case 0x2d: /* FCMEQ (zero) */ 9781 genfn = gen_helper_neon_ceq_f32; 9782 break; 9783 case 0x6d: /* FCMLE (zero) */ 9784 swap = true; 9785 /* fall through */ 9786 case 0x6c: /* FCMGE (zero) */ 9787 genfn = gen_helper_neon_cge_f32; 9788 break; 9789 default: 9790 g_assert_not_reached(); 9791 } 9792 } 9793 9794 if (is_scalar) { 9795 maxpasses = 1; 9796 } else { 9797 int vector_size = 8 << is_q; 9798 maxpasses = vector_size >> size; 9799 } 9800 9801 for (pass = 0; pass < maxpasses; pass++) { 9802 read_vec_element_i32(s, tcg_op, rn, pass, size); 9803 if (swap) { 9804 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9805 } else { 9806 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9807 } 9808 if (is_scalar) { 9809 write_fp_sreg(s, rd, tcg_res); 9810 } else { 9811 write_vec_element_i32(s, tcg_res, rd, pass, size); 9812 } 9813 } 9814 9815 if (!is_scalar) { 9816 clear_vec_high(s, is_q, rd); 9817 } 9818 } 9819 } 9820 9821 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9822 bool is_scalar, bool is_u, bool is_q, 9823 int size, int rn, int rd) 9824 { 9825 bool is_double = (size == 3); 9826 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9827 9828 if (is_double) { 9829 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9830 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9831 int pass; 9832 9833 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9834 read_vec_element(s, tcg_op, rn, pass, MO_64); 9835 switch (opcode) { 9836 case 0x3d: /* FRECPE */ 9837 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9838 break; 9839 case 0x3f: /* FRECPX */ 9840 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9841 break; 9842 case 0x7d: /* FRSQRTE */ 9843 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9844 break; 9845 default: 9846 g_assert_not_reached(); 9847 } 9848 write_vec_element(s, tcg_res, rd, pass, MO_64); 9849 } 9850 clear_vec_high(s, !is_scalar, rd); 9851 } else { 9852 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9853 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9854 int pass, maxpasses; 9855 9856 if (is_scalar) { 9857 maxpasses = 1; 9858 } else { 9859 maxpasses = is_q ? 4 : 2; 9860 } 9861 9862 for (pass = 0; pass < maxpasses; pass++) { 9863 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9864 9865 switch (opcode) { 9866 case 0x3c: /* URECPE */ 9867 gen_helper_recpe_u32(tcg_res, tcg_op); 9868 break; 9869 case 0x3d: /* FRECPE */ 9870 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9871 break; 9872 case 0x3f: /* FRECPX */ 9873 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9874 break; 9875 case 0x7d: /* FRSQRTE */ 9876 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9877 break; 9878 default: 9879 g_assert_not_reached(); 9880 } 9881 9882 if (is_scalar) { 9883 write_fp_sreg(s, rd, tcg_res); 9884 } else { 9885 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9886 } 9887 } 9888 if (!is_scalar) { 9889 clear_vec_high(s, is_q, rd); 9890 } 9891 } 9892 } 9893 9894 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9895 int opcode, bool u, bool is_q, 9896 int size, int rn, int rd) 9897 { 9898 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9899 * in the source becomes a size element in the destination). 9900 */ 9901 int pass; 9902 TCGv_i32 tcg_res[2]; 9903 int destelt = is_q ? 2 : 0; 9904 int passes = scalar ? 1 : 2; 9905 9906 if (scalar) { 9907 tcg_res[1] = tcg_constant_i32(0); 9908 } 9909 9910 for (pass = 0; pass < passes; pass++) { 9911 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9912 NeonGenNarrowFn *genfn = NULL; 9913 NeonGenNarrowEnvFn *genenvfn = NULL; 9914 9915 if (scalar) { 9916 read_vec_element(s, tcg_op, rn, pass, size + 1); 9917 } else { 9918 read_vec_element(s, tcg_op, rn, pass, MO_64); 9919 } 9920 tcg_res[pass] = tcg_temp_new_i32(); 9921 9922 switch (opcode) { 9923 case 0x12: /* XTN, SQXTUN */ 9924 { 9925 static NeonGenNarrowFn * const xtnfns[3] = { 9926 gen_helper_neon_narrow_u8, 9927 gen_helper_neon_narrow_u16, 9928 tcg_gen_extrl_i64_i32, 9929 }; 9930 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9931 gen_helper_neon_unarrow_sat8, 9932 gen_helper_neon_unarrow_sat16, 9933 gen_helper_neon_unarrow_sat32, 9934 }; 9935 if (u) { 9936 genenvfn = sqxtunfns[size]; 9937 } else { 9938 genfn = xtnfns[size]; 9939 } 9940 break; 9941 } 9942 case 0x14: /* SQXTN, UQXTN */ 9943 { 9944 static NeonGenNarrowEnvFn * const fns[3][2] = { 9945 { gen_helper_neon_narrow_sat_s8, 9946 gen_helper_neon_narrow_sat_u8 }, 9947 { gen_helper_neon_narrow_sat_s16, 9948 gen_helper_neon_narrow_sat_u16 }, 9949 { gen_helper_neon_narrow_sat_s32, 9950 gen_helper_neon_narrow_sat_u32 }, 9951 }; 9952 genenvfn = fns[size][u]; 9953 break; 9954 } 9955 case 0x16: /* FCVTN, FCVTN2 */ 9956 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9957 if (size == 2) { 9958 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9959 } else { 9960 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9961 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9962 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9963 TCGv_i32 ahp = get_ahp_flag(); 9964 9965 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9966 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9967 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9968 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9969 } 9970 break; 9971 case 0x36: /* BFCVTN, BFCVTN2 */ 9972 { 9973 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9974 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9975 } 9976 break; 9977 case 0x56: /* FCVTXN, FCVTXN2 */ 9978 /* 64 bit to 32 bit float conversion 9979 * with von Neumann rounding (round to odd) 9980 */ 9981 assert(size == 2); 9982 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9983 break; 9984 default: 9985 g_assert_not_reached(); 9986 } 9987 9988 if (genfn) { 9989 genfn(tcg_res[pass], tcg_op); 9990 } else if (genenvfn) { 9991 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9992 } 9993 } 9994 9995 for (pass = 0; pass < 2; pass++) { 9996 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9997 } 9998 clear_vec_high(s, is_q, rd); 9999 } 10000 10001 /* Remaining saturating accumulating ops */ 10002 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10003 bool is_q, int size, int rn, int rd) 10004 { 10005 bool is_double = (size == 3); 10006 10007 if (is_double) { 10008 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10009 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10010 int pass; 10011 10012 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10013 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10014 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10015 10016 if (is_u) { /* USQADD */ 10017 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10018 } else { /* SUQADD */ 10019 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10020 } 10021 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10022 } 10023 clear_vec_high(s, !is_scalar, rd); 10024 } else { 10025 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10026 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10027 int pass, maxpasses; 10028 10029 if (is_scalar) { 10030 maxpasses = 1; 10031 } else { 10032 maxpasses = is_q ? 4 : 2; 10033 } 10034 10035 for (pass = 0; pass < maxpasses; pass++) { 10036 if (is_scalar) { 10037 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10038 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10039 } else { 10040 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10041 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10042 } 10043 10044 if (is_u) { /* USQADD */ 10045 switch (size) { 10046 case 0: 10047 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10048 break; 10049 case 1: 10050 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10051 break; 10052 case 2: 10053 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10054 break; 10055 default: 10056 g_assert_not_reached(); 10057 } 10058 } else { /* SUQADD */ 10059 switch (size) { 10060 case 0: 10061 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10062 break; 10063 case 1: 10064 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10065 break; 10066 case 2: 10067 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10068 break; 10069 default: 10070 g_assert_not_reached(); 10071 } 10072 } 10073 10074 if (is_scalar) { 10075 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10076 } 10077 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10078 } 10079 clear_vec_high(s, is_q, rd); 10080 } 10081 } 10082 10083 /* AdvSIMD scalar two reg misc 10084 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10085 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10086 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10087 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10088 */ 10089 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10090 { 10091 int rd = extract32(insn, 0, 5); 10092 int rn = extract32(insn, 5, 5); 10093 int opcode = extract32(insn, 12, 5); 10094 int size = extract32(insn, 22, 2); 10095 bool u = extract32(insn, 29, 1); 10096 bool is_fcvt = false; 10097 int rmode; 10098 TCGv_i32 tcg_rmode; 10099 TCGv_ptr tcg_fpstatus; 10100 10101 switch (opcode) { 10102 case 0x3: /* USQADD / SUQADD*/ 10103 if (!fp_access_check(s)) { 10104 return; 10105 } 10106 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10107 return; 10108 case 0x7: /* SQABS / SQNEG */ 10109 break; 10110 case 0xa: /* CMLT */ 10111 if (u) { 10112 unallocated_encoding(s); 10113 return; 10114 } 10115 /* fall through */ 10116 case 0x8: /* CMGT, CMGE */ 10117 case 0x9: /* CMEQ, CMLE */ 10118 case 0xb: /* ABS, NEG */ 10119 if (size != 3) { 10120 unallocated_encoding(s); 10121 return; 10122 } 10123 break; 10124 case 0x12: /* SQXTUN */ 10125 if (!u) { 10126 unallocated_encoding(s); 10127 return; 10128 } 10129 /* fall through */ 10130 case 0x14: /* SQXTN, UQXTN */ 10131 if (size == 3) { 10132 unallocated_encoding(s); 10133 return; 10134 } 10135 if (!fp_access_check(s)) { 10136 return; 10137 } 10138 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10139 return; 10140 case 0xc ... 0xf: 10141 case 0x16 ... 0x1d: 10142 case 0x1f: 10143 /* Floating point: U, size[1] and opcode indicate operation; 10144 * size[0] indicates single or double precision. 10145 */ 10146 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10147 size = extract32(size, 0, 1) ? 3 : 2; 10148 switch (opcode) { 10149 case 0x2c: /* FCMGT (zero) */ 10150 case 0x2d: /* FCMEQ (zero) */ 10151 case 0x2e: /* FCMLT (zero) */ 10152 case 0x6c: /* FCMGE (zero) */ 10153 case 0x6d: /* FCMLE (zero) */ 10154 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10155 return; 10156 case 0x1d: /* SCVTF */ 10157 case 0x5d: /* UCVTF */ 10158 { 10159 bool is_signed = (opcode == 0x1d); 10160 if (!fp_access_check(s)) { 10161 return; 10162 } 10163 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10164 return; 10165 } 10166 case 0x3d: /* FRECPE */ 10167 case 0x3f: /* FRECPX */ 10168 case 0x7d: /* FRSQRTE */ 10169 if (!fp_access_check(s)) { 10170 return; 10171 } 10172 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10173 return; 10174 case 0x1a: /* FCVTNS */ 10175 case 0x1b: /* FCVTMS */ 10176 case 0x3a: /* FCVTPS */ 10177 case 0x3b: /* FCVTZS */ 10178 case 0x5a: /* FCVTNU */ 10179 case 0x5b: /* FCVTMU */ 10180 case 0x7a: /* FCVTPU */ 10181 case 0x7b: /* FCVTZU */ 10182 is_fcvt = true; 10183 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10184 break; 10185 case 0x1c: /* FCVTAS */ 10186 case 0x5c: /* FCVTAU */ 10187 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10188 is_fcvt = true; 10189 rmode = FPROUNDING_TIEAWAY; 10190 break; 10191 case 0x56: /* FCVTXN, FCVTXN2 */ 10192 if (size == 2) { 10193 unallocated_encoding(s); 10194 return; 10195 } 10196 if (!fp_access_check(s)) { 10197 return; 10198 } 10199 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10200 return; 10201 default: 10202 unallocated_encoding(s); 10203 return; 10204 } 10205 break; 10206 default: 10207 unallocated_encoding(s); 10208 return; 10209 } 10210 10211 if (!fp_access_check(s)) { 10212 return; 10213 } 10214 10215 if (is_fcvt) { 10216 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10217 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10218 } else { 10219 tcg_fpstatus = NULL; 10220 tcg_rmode = NULL; 10221 } 10222 10223 if (size == 3) { 10224 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10225 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10226 10227 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10228 write_fp_dreg(s, rd, tcg_rd); 10229 } else { 10230 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10231 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10232 10233 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10234 10235 switch (opcode) { 10236 case 0x7: /* SQABS, SQNEG */ 10237 { 10238 NeonGenOneOpEnvFn *genfn; 10239 static NeonGenOneOpEnvFn * const fns[3][2] = { 10240 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10241 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10242 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10243 }; 10244 genfn = fns[size][u]; 10245 genfn(tcg_rd, cpu_env, tcg_rn); 10246 break; 10247 } 10248 case 0x1a: /* FCVTNS */ 10249 case 0x1b: /* FCVTMS */ 10250 case 0x1c: /* FCVTAS */ 10251 case 0x3a: /* FCVTPS */ 10252 case 0x3b: /* FCVTZS */ 10253 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10254 tcg_fpstatus); 10255 break; 10256 case 0x5a: /* FCVTNU */ 10257 case 0x5b: /* FCVTMU */ 10258 case 0x5c: /* FCVTAU */ 10259 case 0x7a: /* FCVTPU */ 10260 case 0x7b: /* FCVTZU */ 10261 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10262 tcg_fpstatus); 10263 break; 10264 default: 10265 g_assert_not_reached(); 10266 } 10267 10268 write_fp_sreg(s, rd, tcg_rd); 10269 } 10270 10271 if (is_fcvt) { 10272 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10273 } 10274 } 10275 10276 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10277 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10278 int immh, int immb, int opcode, int rn, int rd) 10279 { 10280 int size = 32 - clz32(immh) - 1; 10281 int immhb = immh << 3 | immb; 10282 int shift = 2 * (8 << size) - immhb; 10283 GVecGen2iFn *gvec_fn; 10284 10285 if (extract32(immh, 3, 1) && !is_q) { 10286 unallocated_encoding(s); 10287 return; 10288 } 10289 tcg_debug_assert(size <= 3); 10290 10291 if (!fp_access_check(s)) { 10292 return; 10293 } 10294 10295 switch (opcode) { 10296 case 0x02: /* SSRA / USRA (accumulate) */ 10297 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10298 break; 10299 10300 case 0x08: /* SRI */ 10301 gvec_fn = gen_gvec_sri; 10302 break; 10303 10304 case 0x00: /* SSHR / USHR */ 10305 if (is_u) { 10306 if (shift == 8 << size) { 10307 /* Shift count the same size as element size produces zero. */ 10308 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10309 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10310 return; 10311 } 10312 gvec_fn = tcg_gen_gvec_shri; 10313 } else { 10314 /* Shift count the same size as element size produces all sign. */ 10315 if (shift == 8 << size) { 10316 shift -= 1; 10317 } 10318 gvec_fn = tcg_gen_gvec_sari; 10319 } 10320 break; 10321 10322 case 0x04: /* SRSHR / URSHR (rounding) */ 10323 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10324 break; 10325 10326 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10327 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10328 break; 10329 10330 default: 10331 g_assert_not_reached(); 10332 } 10333 10334 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10335 } 10336 10337 /* SHL/SLI - Vector shift left */ 10338 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10339 int immh, int immb, int opcode, int rn, int rd) 10340 { 10341 int size = 32 - clz32(immh) - 1; 10342 int immhb = immh << 3 | immb; 10343 int shift = immhb - (8 << size); 10344 10345 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10346 assert(size >= 0 && size <= 3); 10347 10348 if (extract32(immh, 3, 1) && !is_q) { 10349 unallocated_encoding(s); 10350 return; 10351 } 10352 10353 if (!fp_access_check(s)) { 10354 return; 10355 } 10356 10357 if (insert) { 10358 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10359 } else { 10360 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10361 } 10362 } 10363 10364 /* USHLL/SHLL - Vector shift left with widening */ 10365 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10366 int immh, int immb, int opcode, int rn, int rd) 10367 { 10368 int size = 32 - clz32(immh) - 1; 10369 int immhb = immh << 3 | immb; 10370 int shift = immhb - (8 << size); 10371 int dsize = 64; 10372 int esize = 8 << size; 10373 int elements = dsize/esize; 10374 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10375 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10376 int i; 10377 10378 if (size >= 3) { 10379 unallocated_encoding(s); 10380 return; 10381 } 10382 10383 if (!fp_access_check(s)) { 10384 return; 10385 } 10386 10387 /* For the LL variants the store is larger than the load, 10388 * so if rd == rn we would overwrite parts of our input. 10389 * So load everything right now and use shifts in the main loop. 10390 */ 10391 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10392 10393 for (i = 0; i < elements; i++) { 10394 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10395 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10396 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10397 write_vec_element(s, tcg_rd, rd, i, size + 1); 10398 } 10399 } 10400 10401 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10402 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10403 int immh, int immb, int opcode, int rn, int rd) 10404 { 10405 int immhb = immh << 3 | immb; 10406 int size = 32 - clz32(immh) - 1; 10407 int dsize = 64; 10408 int esize = 8 << size; 10409 int elements = dsize/esize; 10410 int shift = (2 * esize) - immhb; 10411 bool round = extract32(opcode, 0, 1); 10412 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10413 TCGv_i64 tcg_round; 10414 int i; 10415 10416 if (extract32(immh, 3, 1)) { 10417 unallocated_encoding(s); 10418 return; 10419 } 10420 10421 if (!fp_access_check(s)) { 10422 return; 10423 } 10424 10425 tcg_rn = tcg_temp_new_i64(); 10426 tcg_rd = tcg_temp_new_i64(); 10427 tcg_final = tcg_temp_new_i64(); 10428 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10429 10430 if (round) { 10431 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10432 } else { 10433 tcg_round = NULL; 10434 } 10435 10436 for (i = 0; i < elements; i++) { 10437 read_vec_element(s, tcg_rn, rn, i, size+1); 10438 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10439 false, true, size+1, shift); 10440 10441 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10442 } 10443 10444 if (!is_q) { 10445 write_vec_element(s, tcg_final, rd, 0, MO_64); 10446 } else { 10447 write_vec_element(s, tcg_final, rd, 1, MO_64); 10448 } 10449 10450 clear_vec_high(s, is_q, rd); 10451 } 10452 10453 10454 /* AdvSIMD shift by immediate 10455 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10456 * +---+---+---+-------------+------+------+--------+---+------+------+ 10457 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10458 * +---+---+---+-------------+------+------+--------+---+------+------+ 10459 */ 10460 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10461 { 10462 int rd = extract32(insn, 0, 5); 10463 int rn = extract32(insn, 5, 5); 10464 int opcode = extract32(insn, 11, 5); 10465 int immb = extract32(insn, 16, 3); 10466 int immh = extract32(insn, 19, 4); 10467 bool is_u = extract32(insn, 29, 1); 10468 bool is_q = extract32(insn, 30, 1); 10469 10470 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10471 assert(immh != 0); 10472 10473 switch (opcode) { 10474 case 0x08: /* SRI */ 10475 if (!is_u) { 10476 unallocated_encoding(s); 10477 return; 10478 } 10479 /* fall through */ 10480 case 0x00: /* SSHR / USHR */ 10481 case 0x02: /* SSRA / USRA (accumulate) */ 10482 case 0x04: /* SRSHR / URSHR (rounding) */ 10483 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10484 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10485 break; 10486 case 0x0a: /* SHL / SLI */ 10487 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10488 break; 10489 case 0x10: /* SHRN */ 10490 case 0x11: /* RSHRN / SQRSHRUN */ 10491 if (is_u) { 10492 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10493 opcode, rn, rd); 10494 } else { 10495 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10496 } 10497 break; 10498 case 0x12: /* SQSHRN / UQSHRN */ 10499 case 0x13: /* SQRSHRN / UQRSHRN */ 10500 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10501 opcode, rn, rd); 10502 break; 10503 case 0x14: /* SSHLL / USHLL */ 10504 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10505 break; 10506 case 0x1c: /* SCVTF / UCVTF */ 10507 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10508 opcode, rn, rd); 10509 break; 10510 case 0xc: /* SQSHLU */ 10511 if (!is_u) { 10512 unallocated_encoding(s); 10513 return; 10514 } 10515 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10516 break; 10517 case 0xe: /* SQSHL, UQSHL */ 10518 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10519 break; 10520 case 0x1f: /* FCVTZS/ FCVTZU */ 10521 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10522 return; 10523 default: 10524 unallocated_encoding(s); 10525 return; 10526 } 10527 } 10528 10529 /* Generate code to do a "long" addition or subtraction, ie one done in 10530 * TCGv_i64 on vector lanes twice the width specified by size. 10531 */ 10532 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10533 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10534 { 10535 static NeonGenTwo64OpFn * const fns[3][2] = { 10536 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10537 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10538 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10539 }; 10540 NeonGenTwo64OpFn *genfn; 10541 assert(size < 3); 10542 10543 genfn = fns[size][is_sub]; 10544 genfn(tcg_res, tcg_op1, tcg_op2); 10545 } 10546 10547 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10548 int opcode, int rd, int rn, int rm) 10549 { 10550 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10551 TCGv_i64 tcg_res[2]; 10552 int pass, accop; 10553 10554 tcg_res[0] = tcg_temp_new_i64(); 10555 tcg_res[1] = tcg_temp_new_i64(); 10556 10557 /* Does this op do an adding accumulate, a subtracting accumulate, 10558 * or no accumulate at all? 10559 */ 10560 switch (opcode) { 10561 case 5: 10562 case 8: 10563 case 9: 10564 accop = 1; 10565 break; 10566 case 10: 10567 case 11: 10568 accop = -1; 10569 break; 10570 default: 10571 accop = 0; 10572 break; 10573 } 10574 10575 if (accop != 0) { 10576 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10577 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10578 } 10579 10580 /* size == 2 means two 32x32->64 operations; this is worth special 10581 * casing because we can generally handle it inline. 10582 */ 10583 if (size == 2) { 10584 for (pass = 0; pass < 2; pass++) { 10585 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10586 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10587 TCGv_i64 tcg_passres; 10588 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10589 10590 int elt = pass + is_q * 2; 10591 10592 read_vec_element(s, tcg_op1, rn, elt, memop); 10593 read_vec_element(s, tcg_op2, rm, elt, memop); 10594 10595 if (accop == 0) { 10596 tcg_passres = tcg_res[pass]; 10597 } else { 10598 tcg_passres = tcg_temp_new_i64(); 10599 } 10600 10601 switch (opcode) { 10602 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10603 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10604 break; 10605 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10606 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10607 break; 10608 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10609 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10610 { 10611 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10612 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10613 10614 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10615 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10616 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10617 tcg_passres, 10618 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10619 break; 10620 } 10621 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10622 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10623 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10624 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10625 break; 10626 case 9: /* SQDMLAL, SQDMLAL2 */ 10627 case 11: /* SQDMLSL, SQDMLSL2 */ 10628 case 13: /* SQDMULL, SQDMULL2 */ 10629 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10630 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10631 tcg_passres, tcg_passres); 10632 break; 10633 default: 10634 g_assert_not_reached(); 10635 } 10636 10637 if (opcode == 9 || opcode == 11) { 10638 /* saturating accumulate ops */ 10639 if (accop < 0) { 10640 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10641 } 10642 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10643 tcg_res[pass], tcg_passres); 10644 } else if (accop > 0) { 10645 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10646 } else if (accop < 0) { 10647 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10648 } 10649 } 10650 } else { 10651 /* size 0 or 1, generally helper functions */ 10652 for (pass = 0; pass < 2; pass++) { 10653 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10654 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10655 TCGv_i64 tcg_passres; 10656 int elt = pass + is_q * 2; 10657 10658 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10659 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10660 10661 if (accop == 0) { 10662 tcg_passres = tcg_res[pass]; 10663 } else { 10664 tcg_passres = tcg_temp_new_i64(); 10665 } 10666 10667 switch (opcode) { 10668 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10669 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10670 { 10671 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10672 static NeonGenWidenFn * const widenfns[2][2] = { 10673 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10674 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10675 }; 10676 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10677 10678 widenfn(tcg_op2_64, tcg_op2); 10679 widenfn(tcg_passres, tcg_op1); 10680 gen_neon_addl(size, (opcode == 2), tcg_passres, 10681 tcg_passres, tcg_op2_64); 10682 break; 10683 } 10684 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10685 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10686 if (size == 0) { 10687 if (is_u) { 10688 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10689 } else { 10690 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10691 } 10692 } else { 10693 if (is_u) { 10694 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10695 } else { 10696 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10697 } 10698 } 10699 break; 10700 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10701 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10702 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10703 if (size == 0) { 10704 if (is_u) { 10705 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10706 } else { 10707 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10708 } 10709 } else { 10710 if (is_u) { 10711 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10712 } else { 10713 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10714 } 10715 } 10716 break; 10717 case 9: /* SQDMLAL, SQDMLAL2 */ 10718 case 11: /* SQDMLSL, SQDMLSL2 */ 10719 case 13: /* SQDMULL, SQDMULL2 */ 10720 assert(size == 1); 10721 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10722 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10723 tcg_passres, tcg_passres); 10724 break; 10725 default: 10726 g_assert_not_reached(); 10727 } 10728 10729 if (accop != 0) { 10730 if (opcode == 9 || opcode == 11) { 10731 /* saturating accumulate ops */ 10732 if (accop < 0) { 10733 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10734 } 10735 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10736 tcg_res[pass], 10737 tcg_passres); 10738 } else { 10739 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10740 tcg_res[pass], tcg_passres); 10741 } 10742 } 10743 } 10744 } 10745 10746 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10747 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10748 } 10749 10750 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10751 int opcode, int rd, int rn, int rm) 10752 { 10753 TCGv_i64 tcg_res[2]; 10754 int part = is_q ? 2 : 0; 10755 int pass; 10756 10757 for (pass = 0; pass < 2; pass++) { 10758 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10759 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10760 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10761 static NeonGenWidenFn * const widenfns[3][2] = { 10762 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10763 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10764 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10765 }; 10766 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10767 10768 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10769 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10770 widenfn(tcg_op2_wide, tcg_op2); 10771 tcg_res[pass] = tcg_temp_new_i64(); 10772 gen_neon_addl(size, (opcode == 3), 10773 tcg_res[pass], tcg_op1, tcg_op2_wide); 10774 } 10775 10776 for (pass = 0; pass < 2; pass++) { 10777 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10778 } 10779 } 10780 10781 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10782 { 10783 tcg_gen_addi_i64(in, in, 1U << 31); 10784 tcg_gen_extrh_i64_i32(res, in); 10785 } 10786 10787 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10788 int opcode, int rd, int rn, int rm) 10789 { 10790 TCGv_i32 tcg_res[2]; 10791 int part = is_q ? 2 : 0; 10792 int pass; 10793 10794 for (pass = 0; pass < 2; pass++) { 10795 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10796 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10797 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10798 static NeonGenNarrowFn * const narrowfns[3][2] = { 10799 { gen_helper_neon_narrow_high_u8, 10800 gen_helper_neon_narrow_round_high_u8 }, 10801 { gen_helper_neon_narrow_high_u16, 10802 gen_helper_neon_narrow_round_high_u16 }, 10803 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10804 }; 10805 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10806 10807 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10808 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10809 10810 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10811 10812 tcg_res[pass] = tcg_temp_new_i32(); 10813 gennarrow(tcg_res[pass], tcg_wideres); 10814 } 10815 10816 for (pass = 0; pass < 2; pass++) { 10817 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10818 } 10819 clear_vec_high(s, is_q, rd); 10820 } 10821 10822 /* AdvSIMD three different 10823 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10824 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10825 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10826 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10827 */ 10828 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10829 { 10830 /* Instructions in this group fall into three basic classes 10831 * (in each case with the operation working on each element in 10832 * the input vectors): 10833 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10834 * 128 bit input) 10835 * (2) wide 64 x 128 -> 128 10836 * (3) narrowing 128 x 128 -> 64 10837 * Here we do initial decode, catch unallocated cases and 10838 * dispatch to separate functions for each class. 10839 */ 10840 int is_q = extract32(insn, 30, 1); 10841 int is_u = extract32(insn, 29, 1); 10842 int size = extract32(insn, 22, 2); 10843 int opcode = extract32(insn, 12, 4); 10844 int rm = extract32(insn, 16, 5); 10845 int rn = extract32(insn, 5, 5); 10846 int rd = extract32(insn, 0, 5); 10847 10848 switch (opcode) { 10849 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10850 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10851 /* 64 x 128 -> 128 */ 10852 if (size == 3) { 10853 unallocated_encoding(s); 10854 return; 10855 } 10856 if (!fp_access_check(s)) { 10857 return; 10858 } 10859 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10860 break; 10861 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10862 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10863 /* 128 x 128 -> 64 */ 10864 if (size == 3) { 10865 unallocated_encoding(s); 10866 return; 10867 } 10868 if (!fp_access_check(s)) { 10869 return; 10870 } 10871 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10872 break; 10873 case 14: /* PMULL, PMULL2 */ 10874 if (is_u) { 10875 unallocated_encoding(s); 10876 return; 10877 } 10878 switch (size) { 10879 case 0: /* PMULL.P8 */ 10880 if (!fp_access_check(s)) { 10881 return; 10882 } 10883 /* The Q field specifies lo/hi half input for this insn. */ 10884 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10885 gen_helper_neon_pmull_h); 10886 break; 10887 10888 case 3: /* PMULL.P64 */ 10889 if (!dc_isar_feature(aa64_pmull, s)) { 10890 unallocated_encoding(s); 10891 return; 10892 } 10893 if (!fp_access_check(s)) { 10894 return; 10895 } 10896 /* The Q field specifies lo/hi half input for this insn. */ 10897 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10898 gen_helper_gvec_pmull_q); 10899 break; 10900 10901 default: 10902 unallocated_encoding(s); 10903 break; 10904 } 10905 return; 10906 case 9: /* SQDMLAL, SQDMLAL2 */ 10907 case 11: /* SQDMLSL, SQDMLSL2 */ 10908 case 13: /* SQDMULL, SQDMULL2 */ 10909 if (is_u || size == 0) { 10910 unallocated_encoding(s); 10911 return; 10912 } 10913 /* fall through */ 10914 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10915 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10916 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10917 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10918 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10919 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10920 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10921 /* 64 x 64 -> 128 */ 10922 if (size == 3) { 10923 unallocated_encoding(s); 10924 return; 10925 } 10926 if (!fp_access_check(s)) { 10927 return; 10928 } 10929 10930 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10931 break; 10932 default: 10933 /* opcode 15 not allocated */ 10934 unallocated_encoding(s); 10935 break; 10936 } 10937 } 10938 10939 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10940 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10941 { 10942 int rd = extract32(insn, 0, 5); 10943 int rn = extract32(insn, 5, 5); 10944 int rm = extract32(insn, 16, 5); 10945 int size = extract32(insn, 22, 2); 10946 bool is_u = extract32(insn, 29, 1); 10947 bool is_q = extract32(insn, 30, 1); 10948 10949 if (!fp_access_check(s)) { 10950 return; 10951 } 10952 10953 switch (size + 4 * is_u) { 10954 case 0: /* AND */ 10955 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10956 return; 10957 case 1: /* BIC */ 10958 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10959 return; 10960 case 2: /* ORR */ 10961 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10962 return; 10963 case 3: /* ORN */ 10964 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10965 return; 10966 case 4: /* EOR */ 10967 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10968 return; 10969 10970 case 5: /* BSL bitwise select */ 10971 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10972 return; 10973 case 6: /* BIT, bitwise insert if true */ 10974 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10975 return; 10976 case 7: /* BIF, bitwise insert if false */ 10977 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10978 return; 10979 10980 default: 10981 g_assert_not_reached(); 10982 } 10983 } 10984 10985 /* Pairwise op subgroup of C3.6.16. 10986 * 10987 * This is called directly or via the handle_3same_float for float pairwise 10988 * operations where the opcode and size are calculated differently. 10989 */ 10990 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10991 int size, int rn, int rm, int rd) 10992 { 10993 TCGv_ptr fpst; 10994 int pass; 10995 10996 /* Floating point operations need fpst */ 10997 if (opcode >= 0x58) { 10998 fpst = fpstatus_ptr(FPST_FPCR); 10999 } else { 11000 fpst = NULL; 11001 } 11002 11003 if (!fp_access_check(s)) { 11004 return; 11005 } 11006 11007 /* These operations work on the concatenated rm:rn, with each pair of 11008 * adjacent elements being operated on to produce an element in the result. 11009 */ 11010 if (size == 3) { 11011 TCGv_i64 tcg_res[2]; 11012 11013 for (pass = 0; pass < 2; pass++) { 11014 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11015 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11016 int passreg = (pass == 0) ? rn : rm; 11017 11018 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11019 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11020 tcg_res[pass] = tcg_temp_new_i64(); 11021 11022 switch (opcode) { 11023 case 0x17: /* ADDP */ 11024 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11025 break; 11026 case 0x58: /* FMAXNMP */ 11027 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11028 break; 11029 case 0x5a: /* FADDP */ 11030 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11031 break; 11032 case 0x5e: /* FMAXP */ 11033 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11034 break; 11035 case 0x78: /* FMINNMP */ 11036 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11037 break; 11038 case 0x7e: /* FMINP */ 11039 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11040 break; 11041 default: 11042 g_assert_not_reached(); 11043 } 11044 } 11045 11046 for (pass = 0; pass < 2; pass++) { 11047 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11048 } 11049 } else { 11050 int maxpass = is_q ? 4 : 2; 11051 TCGv_i32 tcg_res[4]; 11052 11053 for (pass = 0; pass < maxpass; pass++) { 11054 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11055 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11056 NeonGenTwoOpFn *genfn = NULL; 11057 int passreg = pass < (maxpass / 2) ? rn : rm; 11058 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11059 11060 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11061 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11062 tcg_res[pass] = tcg_temp_new_i32(); 11063 11064 switch (opcode) { 11065 case 0x17: /* ADDP */ 11066 { 11067 static NeonGenTwoOpFn * const fns[3] = { 11068 gen_helper_neon_padd_u8, 11069 gen_helper_neon_padd_u16, 11070 tcg_gen_add_i32, 11071 }; 11072 genfn = fns[size]; 11073 break; 11074 } 11075 case 0x14: /* SMAXP, UMAXP */ 11076 { 11077 static NeonGenTwoOpFn * const fns[3][2] = { 11078 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11079 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11080 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11081 }; 11082 genfn = fns[size][u]; 11083 break; 11084 } 11085 case 0x15: /* SMINP, UMINP */ 11086 { 11087 static NeonGenTwoOpFn * const fns[3][2] = { 11088 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11089 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11090 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11091 }; 11092 genfn = fns[size][u]; 11093 break; 11094 } 11095 /* The FP operations are all on single floats (32 bit) */ 11096 case 0x58: /* FMAXNMP */ 11097 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11098 break; 11099 case 0x5a: /* FADDP */ 11100 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11101 break; 11102 case 0x5e: /* FMAXP */ 11103 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11104 break; 11105 case 0x78: /* FMINNMP */ 11106 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11107 break; 11108 case 0x7e: /* FMINP */ 11109 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11110 break; 11111 default: 11112 g_assert_not_reached(); 11113 } 11114 11115 /* FP ops called directly, otherwise call now */ 11116 if (genfn) { 11117 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11118 } 11119 } 11120 11121 for (pass = 0; pass < maxpass; pass++) { 11122 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11123 } 11124 clear_vec_high(s, is_q, rd); 11125 } 11126 } 11127 11128 /* Floating point op subgroup of C3.6.16. */ 11129 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11130 { 11131 /* For floating point ops, the U, size[1] and opcode bits 11132 * together indicate the operation. size[0] indicates single 11133 * or double. 11134 */ 11135 int fpopcode = extract32(insn, 11, 5) 11136 | (extract32(insn, 23, 1) << 5) 11137 | (extract32(insn, 29, 1) << 6); 11138 int is_q = extract32(insn, 30, 1); 11139 int size = extract32(insn, 22, 1); 11140 int rm = extract32(insn, 16, 5); 11141 int rn = extract32(insn, 5, 5); 11142 int rd = extract32(insn, 0, 5); 11143 11144 int datasize = is_q ? 128 : 64; 11145 int esize = 32 << size; 11146 int elements = datasize / esize; 11147 11148 if (size == 1 && !is_q) { 11149 unallocated_encoding(s); 11150 return; 11151 } 11152 11153 switch (fpopcode) { 11154 case 0x58: /* FMAXNMP */ 11155 case 0x5a: /* FADDP */ 11156 case 0x5e: /* FMAXP */ 11157 case 0x78: /* FMINNMP */ 11158 case 0x7e: /* FMINP */ 11159 if (size && !is_q) { 11160 unallocated_encoding(s); 11161 return; 11162 } 11163 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11164 rn, rm, rd); 11165 return; 11166 case 0x1b: /* FMULX */ 11167 case 0x1f: /* FRECPS */ 11168 case 0x3f: /* FRSQRTS */ 11169 case 0x5d: /* FACGE */ 11170 case 0x7d: /* FACGT */ 11171 case 0x19: /* FMLA */ 11172 case 0x39: /* FMLS */ 11173 case 0x18: /* FMAXNM */ 11174 case 0x1a: /* FADD */ 11175 case 0x1c: /* FCMEQ */ 11176 case 0x1e: /* FMAX */ 11177 case 0x38: /* FMINNM */ 11178 case 0x3a: /* FSUB */ 11179 case 0x3e: /* FMIN */ 11180 case 0x5b: /* FMUL */ 11181 case 0x5c: /* FCMGE */ 11182 case 0x5f: /* FDIV */ 11183 case 0x7a: /* FABD */ 11184 case 0x7c: /* FCMGT */ 11185 if (!fp_access_check(s)) { 11186 return; 11187 } 11188 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11189 return; 11190 11191 case 0x1d: /* FMLAL */ 11192 case 0x3d: /* FMLSL */ 11193 case 0x59: /* FMLAL2 */ 11194 case 0x79: /* FMLSL2 */ 11195 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11196 unallocated_encoding(s); 11197 return; 11198 } 11199 if (fp_access_check(s)) { 11200 int is_s = extract32(insn, 23, 1); 11201 int is_2 = extract32(insn, 29, 1); 11202 int data = (is_2 << 1) | is_s; 11203 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11204 vec_full_reg_offset(s, rn), 11205 vec_full_reg_offset(s, rm), cpu_env, 11206 is_q ? 16 : 8, vec_full_reg_size(s), 11207 data, gen_helper_gvec_fmlal_a64); 11208 } 11209 return; 11210 11211 default: 11212 unallocated_encoding(s); 11213 return; 11214 } 11215 } 11216 11217 /* Integer op subgroup of C3.6.16. */ 11218 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11219 { 11220 int is_q = extract32(insn, 30, 1); 11221 int u = extract32(insn, 29, 1); 11222 int size = extract32(insn, 22, 2); 11223 int opcode = extract32(insn, 11, 5); 11224 int rm = extract32(insn, 16, 5); 11225 int rn = extract32(insn, 5, 5); 11226 int rd = extract32(insn, 0, 5); 11227 int pass; 11228 TCGCond cond; 11229 11230 switch (opcode) { 11231 case 0x13: /* MUL, PMUL */ 11232 if (u && size != 0) { 11233 unallocated_encoding(s); 11234 return; 11235 } 11236 /* fall through */ 11237 case 0x0: /* SHADD, UHADD */ 11238 case 0x2: /* SRHADD, URHADD */ 11239 case 0x4: /* SHSUB, UHSUB */ 11240 case 0xc: /* SMAX, UMAX */ 11241 case 0xd: /* SMIN, UMIN */ 11242 case 0xe: /* SABD, UABD */ 11243 case 0xf: /* SABA, UABA */ 11244 case 0x12: /* MLA, MLS */ 11245 if (size == 3) { 11246 unallocated_encoding(s); 11247 return; 11248 } 11249 break; 11250 case 0x16: /* SQDMULH, SQRDMULH */ 11251 if (size == 0 || size == 3) { 11252 unallocated_encoding(s); 11253 return; 11254 } 11255 break; 11256 default: 11257 if (size == 3 && !is_q) { 11258 unallocated_encoding(s); 11259 return; 11260 } 11261 break; 11262 } 11263 11264 if (!fp_access_check(s)) { 11265 return; 11266 } 11267 11268 switch (opcode) { 11269 case 0x01: /* SQADD, UQADD */ 11270 if (u) { 11271 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11272 } else { 11273 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11274 } 11275 return; 11276 case 0x05: /* SQSUB, UQSUB */ 11277 if (u) { 11278 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11279 } else { 11280 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11281 } 11282 return; 11283 case 0x08: /* SSHL, USHL */ 11284 if (u) { 11285 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11286 } else { 11287 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11288 } 11289 return; 11290 case 0x0c: /* SMAX, UMAX */ 11291 if (u) { 11292 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11293 } else { 11294 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11295 } 11296 return; 11297 case 0x0d: /* SMIN, UMIN */ 11298 if (u) { 11299 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11300 } else { 11301 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11302 } 11303 return; 11304 case 0xe: /* SABD, UABD */ 11305 if (u) { 11306 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11307 } else { 11308 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11309 } 11310 return; 11311 case 0xf: /* SABA, UABA */ 11312 if (u) { 11313 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11314 } else { 11315 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11316 } 11317 return; 11318 case 0x10: /* ADD, SUB */ 11319 if (u) { 11320 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11321 } else { 11322 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11323 } 11324 return; 11325 case 0x13: /* MUL, PMUL */ 11326 if (!u) { /* MUL */ 11327 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11328 } else { /* PMUL */ 11329 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11330 } 11331 return; 11332 case 0x12: /* MLA, MLS */ 11333 if (u) { 11334 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11335 } else { 11336 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11337 } 11338 return; 11339 case 0x16: /* SQDMULH, SQRDMULH */ 11340 { 11341 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11342 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11343 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11344 }; 11345 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11346 } 11347 return; 11348 case 0x11: 11349 if (!u) { /* CMTST */ 11350 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11351 return; 11352 } 11353 /* else CMEQ */ 11354 cond = TCG_COND_EQ; 11355 goto do_gvec_cmp; 11356 case 0x06: /* CMGT, CMHI */ 11357 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11358 goto do_gvec_cmp; 11359 case 0x07: /* CMGE, CMHS */ 11360 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11361 do_gvec_cmp: 11362 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11363 vec_full_reg_offset(s, rn), 11364 vec_full_reg_offset(s, rm), 11365 is_q ? 16 : 8, vec_full_reg_size(s)); 11366 return; 11367 } 11368 11369 if (size == 3) { 11370 assert(is_q); 11371 for (pass = 0; pass < 2; pass++) { 11372 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11373 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11374 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11375 11376 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11377 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11378 11379 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11380 11381 write_vec_element(s, tcg_res, rd, pass, MO_64); 11382 } 11383 } else { 11384 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11385 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11386 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11387 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11388 NeonGenTwoOpFn *genfn = NULL; 11389 NeonGenTwoOpEnvFn *genenvfn = NULL; 11390 11391 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11392 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11393 11394 switch (opcode) { 11395 case 0x0: /* SHADD, UHADD */ 11396 { 11397 static NeonGenTwoOpFn * const fns[3][2] = { 11398 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11399 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11400 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11401 }; 11402 genfn = fns[size][u]; 11403 break; 11404 } 11405 case 0x2: /* SRHADD, URHADD */ 11406 { 11407 static NeonGenTwoOpFn * const fns[3][2] = { 11408 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11409 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11410 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11411 }; 11412 genfn = fns[size][u]; 11413 break; 11414 } 11415 case 0x4: /* SHSUB, UHSUB */ 11416 { 11417 static NeonGenTwoOpFn * const fns[3][2] = { 11418 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11419 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11420 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11421 }; 11422 genfn = fns[size][u]; 11423 break; 11424 } 11425 case 0x9: /* SQSHL, UQSHL */ 11426 { 11427 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11428 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11429 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11430 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11431 }; 11432 genenvfn = fns[size][u]; 11433 break; 11434 } 11435 case 0xa: /* SRSHL, URSHL */ 11436 { 11437 static NeonGenTwoOpFn * const fns[3][2] = { 11438 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11439 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11440 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11441 }; 11442 genfn = fns[size][u]; 11443 break; 11444 } 11445 case 0xb: /* SQRSHL, UQRSHL */ 11446 { 11447 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11448 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11449 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11450 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11451 }; 11452 genenvfn = fns[size][u]; 11453 break; 11454 } 11455 default: 11456 g_assert_not_reached(); 11457 } 11458 11459 if (genenvfn) { 11460 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11461 } else { 11462 genfn(tcg_res, tcg_op1, tcg_op2); 11463 } 11464 11465 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11466 } 11467 } 11468 clear_vec_high(s, is_q, rd); 11469 } 11470 11471 /* AdvSIMD three same 11472 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11473 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11474 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11475 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11476 */ 11477 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11478 { 11479 int opcode = extract32(insn, 11, 5); 11480 11481 switch (opcode) { 11482 case 0x3: /* logic ops */ 11483 disas_simd_3same_logic(s, insn); 11484 break; 11485 case 0x17: /* ADDP */ 11486 case 0x14: /* SMAXP, UMAXP */ 11487 case 0x15: /* SMINP, UMINP */ 11488 { 11489 /* Pairwise operations */ 11490 int is_q = extract32(insn, 30, 1); 11491 int u = extract32(insn, 29, 1); 11492 int size = extract32(insn, 22, 2); 11493 int rm = extract32(insn, 16, 5); 11494 int rn = extract32(insn, 5, 5); 11495 int rd = extract32(insn, 0, 5); 11496 if (opcode == 0x17) { 11497 if (u || (size == 3 && !is_q)) { 11498 unallocated_encoding(s); 11499 return; 11500 } 11501 } else { 11502 if (size == 3) { 11503 unallocated_encoding(s); 11504 return; 11505 } 11506 } 11507 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11508 break; 11509 } 11510 case 0x18 ... 0x31: 11511 /* floating point ops, sz[1] and U are part of opcode */ 11512 disas_simd_3same_float(s, insn); 11513 break; 11514 default: 11515 disas_simd_3same_int(s, insn); 11516 break; 11517 } 11518 } 11519 11520 /* 11521 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11522 * 11523 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11524 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11525 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11526 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11527 * 11528 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11529 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11530 * 11531 */ 11532 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11533 { 11534 int opcode = extract32(insn, 11, 3); 11535 int u = extract32(insn, 29, 1); 11536 int a = extract32(insn, 23, 1); 11537 int is_q = extract32(insn, 30, 1); 11538 int rm = extract32(insn, 16, 5); 11539 int rn = extract32(insn, 5, 5); 11540 int rd = extract32(insn, 0, 5); 11541 /* 11542 * For these floating point ops, the U, a and opcode bits 11543 * together indicate the operation. 11544 */ 11545 int fpopcode = opcode | (a << 3) | (u << 4); 11546 int datasize = is_q ? 128 : 64; 11547 int elements = datasize / 16; 11548 bool pairwise; 11549 TCGv_ptr fpst; 11550 int pass; 11551 11552 switch (fpopcode) { 11553 case 0x0: /* FMAXNM */ 11554 case 0x1: /* FMLA */ 11555 case 0x2: /* FADD */ 11556 case 0x3: /* FMULX */ 11557 case 0x4: /* FCMEQ */ 11558 case 0x6: /* FMAX */ 11559 case 0x7: /* FRECPS */ 11560 case 0x8: /* FMINNM */ 11561 case 0x9: /* FMLS */ 11562 case 0xa: /* FSUB */ 11563 case 0xe: /* FMIN */ 11564 case 0xf: /* FRSQRTS */ 11565 case 0x13: /* FMUL */ 11566 case 0x14: /* FCMGE */ 11567 case 0x15: /* FACGE */ 11568 case 0x17: /* FDIV */ 11569 case 0x1a: /* FABD */ 11570 case 0x1c: /* FCMGT */ 11571 case 0x1d: /* FACGT */ 11572 pairwise = false; 11573 break; 11574 case 0x10: /* FMAXNMP */ 11575 case 0x12: /* FADDP */ 11576 case 0x16: /* FMAXP */ 11577 case 0x18: /* FMINNMP */ 11578 case 0x1e: /* FMINP */ 11579 pairwise = true; 11580 break; 11581 default: 11582 unallocated_encoding(s); 11583 return; 11584 } 11585 11586 if (!dc_isar_feature(aa64_fp16, s)) { 11587 unallocated_encoding(s); 11588 return; 11589 } 11590 11591 if (!fp_access_check(s)) { 11592 return; 11593 } 11594 11595 fpst = fpstatus_ptr(FPST_FPCR_F16); 11596 11597 if (pairwise) { 11598 int maxpass = is_q ? 8 : 4; 11599 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11600 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11601 TCGv_i32 tcg_res[8]; 11602 11603 for (pass = 0; pass < maxpass; pass++) { 11604 int passreg = pass < (maxpass / 2) ? rn : rm; 11605 int passelt = (pass << 1) & (maxpass - 1); 11606 11607 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11608 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11609 tcg_res[pass] = tcg_temp_new_i32(); 11610 11611 switch (fpopcode) { 11612 case 0x10: /* FMAXNMP */ 11613 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11614 fpst); 11615 break; 11616 case 0x12: /* FADDP */ 11617 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11618 break; 11619 case 0x16: /* FMAXP */ 11620 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11621 break; 11622 case 0x18: /* FMINNMP */ 11623 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11624 fpst); 11625 break; 11626 case 0x1e: /* FMINP */ 11627 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11628 break; 11629 default: 11630 g_assert_not_reached(); 11631 } 11632 } 11633 11634 for (pass = 0; pass < maxpass; pass++) { 11635 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11636 } 11637 } else { 11638 for (pass = 0; pass < elements; pass++) { 11639 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11640 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11641 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11642 11643 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11644 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11645 11646 switch (fpopcode) { 11647 case 0x0: /* FMAXNM */ 11648 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11649 break; 11650 case 0x1: /* FMLA */ 11651 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11652 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11653 fpst); 11654 break; 11655 case 0x2: /* FADD */ 11656 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11657 break; 11658 case 0x3: /* FMULX */ 11659 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11660 break; 11661 case 0x4: /* FCMEQ */ 11662 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11663 break; 11664 case 0x6: /* FMAX */ 11665 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11666 break; 11667 case 0x7: /* FRECPS */ 11668 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11669 break; 11670 case 0x8: /* FMINNM */ 11671 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11672 break; 11673 case 0x9: /* FMLS */ 11674 /* As usual for ARM, separate negation for fused multiply-add */ 11675 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11676 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11677 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11678 fpst); 11679 break; 11680 case 0xa: /* FSUB */ 11681 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11682 break; 11683 case 0xe: /* FMIN */ 11684 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11685 break; 11686 case 0xf: /* FRSQRTS */ 11687 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11688 break; 11689 case 0x13: /* FMUL */ 11690 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11691 break; 11692 case 0x14: /* FCMGE */ 11693 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11694 break; 11695 case 0x15: /* FACGE */ 11696 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11697 break; 11698 case 0x17: /* FDIV */ 11699 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11700 break; 11701 case 0x1a: /* FABD */ 11702 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11703 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11704 break; 11705 case 0x1c: /* FCMGT */ 11706 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11707 break; 11708 case 0x1d: /* FACGT */ 11709 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11710 break; 11711 default: 11712 g_assert_not_reached(); 11713 } 11714 11715 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11716 } 11717 } 11718 11719 clear_vec_high(s, is_q, rd); 11720 } 11721 11722 /* AdvSIMD three same extra 11723 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11724 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11725 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11726 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11727 */ 11728 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11729 { 11730 int rd = extract32(insn, 0, 5); 11731 int rn = extract32(insn, 5, 5); 11732 int opcode = extract32(insn, 11, 4); 11733 int rm = extract32(insn, 16, 5); 11734 int size = extract32(insn, 22, 2); 11735 bool u = extract32(insn, 29, 1); 11736 bool is_q = extract32(insn, 30, 1); 11737 bool feature; 11738 int rot; 11739 11740 switch (u * 16 + opcode) { 11741 case 0x10: /* SQRDMLAH (vector) */ 11742 case 0x11: /* SQRDMLSH (vector) */ 11743 if (size != 1 && size != 2) { 11744 unallocated_encoding(s); 11745 return; 11746 } 11747 feature = dc_isar_feature(aa64_rdm, s); 11748 break; 11749 case 0x02: /* SDOT (vector) */ 11750 case 0x12: /* UDOT (vector) */ 11751 if (size != MO_32) { 11752 unallocated_encoding(s); 11753 return; 11754 } 11755 feature = dc_isar_feature(aa64_dp, s); 11756 break; 11757 case 0x03: /* USDOT */ 11758 if (size != MO_32) { 11759 unallocated_encoding(s); 11760 return; 11761 } 11762 feature = dc_isar_feature(aa64_i8mm, s); 11763 break; 11764 case 0x04: /* SMMLA */ 11765 case 0x14: /* UMMLA */ 11766 case 0x05: /* USMMLA */ 11767 if (!is_q || size != MO_32) { 11768 unallocated_encoding(s); 11769 return; 11770 } 11771 feature = dc_isar_feature(aa64_i8mm, s); 11772 break; 11773 case 0x18: /* FCMLA, #0 */ 11774 case 0x19: /* FCMLA, #90 */ 11775 case 0x1a: /* FCMLA, #180 */ 11776 case 0x1b: /* FCMLA, #270 */ 11777 case 0x1c: /* FCADD, #90 */ 11778 case 0x1e: /* FCADD, #270 */ 11779 if (size == 0 11780 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11781 || (size == 3 && !is_q)) { 11782 unallocated_encoding(s); 11783 return; 11784 } 11785 feature = dc_isar_feature(aa64_fcma, s); 11786 break; 11787 case 0x1d: /* BFMMLA */ 11788 if (size != MO_16 || !is_q) { 11789 unallocated_encoding(s); 11790 return; 11791 } 11792 feature = dc_isar_feature(aa64_bf16, s); 11793 break; 11794 case 0x1f: 11795 switch (size) { 11796 case 1: /* BFDOT */ 11797 case 3: /* BFMLAL{B,T} */ 11798 feature = dc_isar_feature(aa64_bf16, s); 11799 break; 11800 default: 11801 unallocated_encoding(s); 11802 return; 11803 } 11804 break; 11805 default: 11806 unallocated_encoding(s); 11807 return; 11808 } 11809 if (!feature) { 11810 unallocated_encoding(s); 11811 return; 11812 } 11813 if (!fp_access_check(s)) { 11814 return; 11815 } 11816 11817 switch (opcode) { 11818 case 0x0: /* SQRDMLAH (vector) */ 11819 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11820 return; 11821 11822 case 0x1: /* SQRDMLSH (vector) */ 11823 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11824 return; 11825 11826 case 0x2: /* SDOT / UDOT */ 11827 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11828 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11829 return; 11830 11831 case 0x3: /* USDOT */ 11832 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11833 return; 11834 11835 case 0x04: /* SMMLA, UMMLA */ 11836 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11837 u ? gen_helper_gvec_ummla_b 11838 : gen_helper_gvec_smmla_b); 11839 return; 11840 case 0x05: /* USMMLA */ 11841 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11842 return; 11843 11844 case 0x8: /* FCMLA, #0 */ 11845 case 0x9: /* FCMLA, #90 */ 11846 case 0xa: /* FCMLA, #180 */ 11847 case 0xb: /* FCMLA, #270 */ 11848 rot = extract32(opcode, 0, 2); 11849 switch (size) { 11850 case 1: 11851 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11852 gen_helper_gvec_fcmlah); 11853 break; 11854 case 2: 11855 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11856 gen_helper_gvec_fcmlas); 11857 break; 11858 case 3: 11859 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11860 gen_helper_gvec_fcmlad); 11861 break; 11862 default: 11863 g_assert_not_reached(); 11864 } 11865 return; 11866 11867 case 0xc: /* FCADD, #90 */ 11868 case 0xe: /* FCADD, #270 */ 11869 rot = extract32(opcode, 1, 1); 11870 switch (size) { 11871 case 1: 11872 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11873 gen_helper_gvec_fcaddh); 11874 break; 11875 case 2: 11876 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11877 gen_helper_gvec_fcadds); 11878 break; 11879 case 3: 11880 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11881 gen_helper_gvec_fcaddd); 11882 break; 11883 default: 11884 g_assert_not_reached(); 11885 } 11886 return; 11887 11888 case 0xd: /* BFMMLA */ 11889 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11890 return; 11891 case 0xf: 11892 switch (size) { 11893 case 1: /* BFDOT */ 11894 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11895 break; 11896 case 3: /* BFMLAL{B,T} */ 11897 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11898 gen_helper_gvec_bfmlal); 11899 break; 11900 default: 11901 g_assert_not_reached(); 11902 } 11903 return; 11904 11905 default: 11906 g_assert_not_reached(); 11907 } 11908 } 11909 11910 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11911 int size, int rn, int rd) 11912 { 11913 /* Handle 2-reg-misc ops which are widening (so each size element 11914 * in the source becomes a 2*size element in the destination. 11915 * The only instruction like this is FCVTL. 11916 */ 11917 int pass; 11918 11919 if (size == 3) { 11920 /* 32 -> 64 bit fp conversion */ 11921 TCGv_i64 tcg_res[2]; 11922 int srcelt = is_q ? 2 : 0; 11923 11924 for (pass = 0; pass < 2; pass++) { 11925 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11926 tcg_res[pass] = tcg_temp_new_i64(); 11927 11928 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11929 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11930 } 11931 for (pass = 0; pass < 2; pass++) { 11932 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11933 } 11934 } else { 11935 /* 16 -> 32 bit fp conversion */ 11936 int srcelt = is_q ? 4 : 0; 11937 TCGv_i32 tcg_res[4]; 11938 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11939 TCGv_i32 ahp = get_ahp_flag(); 11940 11941 for (pass = 0; pass < 4; pass++) { 11942 tcg_res[pass] = tcg_temp_new_i32(); 11943 11944 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11945 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11946 fpst, ahp); 11947 } 11948 for (pass = 0; pass < 4; pass++) { 11949 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11950 } 11951 } 11952 } 11953 11954 static void handle_rev(DisasContext *s, int opcode, bool u, 11955 bool is_q, int size, int rn, int rd) 11956 { 11957 int op = (opcode << 1) | u; 11958 int opsz = op + size; 11959 int grp_size = 3 - opsz; 11960 int dsize = is_q ? 128 : 64; 11961 int i; 11962 11963 if (opsz >= 3) { 11964 unallocated_encoding(s); 11965 return; 11966 } 11967 11968 if (!fp_access_check(s)) { 11969 return; 11970 } 11971 11972 if (size == 0) { 11973 /* Special case bytes, use bswap op on each group of elements */ 11974 int groups = dsize / (8 << grp_size); 11975 11976 for (i = 0; i < groups; i++) { 11977 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11978 11979 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11980 switch (grp_size) { 11981 case MO_16: 11982 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11983 break; 11984 case MO_32: 11985 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11986 break; 11987 case MO_64: 11988 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11989 break; 11990 default: 11991 g_assert_not_reached(); 11992 } 11993 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11994 } 11995 clear_vec_high(s, is_q, rd); 11996 } else { 11997 int revmask = (1 << grp_size) - 1; 11998 int esize = 8 << size; 11999 int elements = dsize / esize; 12000 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12001 TCGv_i64 tcg_rd[2]; 12002 12003 for (i = 0; i < 2; i++) { 12004 tcg_rd[i] = tcg_temp_new_i64(); 12005 tcg_gen_movi_i64(tcg_rd[i], 0); 12006 } 12007 12008 for (i = 0; i < elements; i++) { 12009 int e_rev = (i & 0xf) ^ revmask; 12010 int w = (e_rev * esize) / 64; 12011 int o = (e_rev * esize) % 64; 12012 12013 read_vec_element(s, tcg_rn, rn, i, size); 12014 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12015 } 12016 12017 for (i = 0; i < 2; i++) { 12018 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12019 } 12020 clear_vec_high(s, true, rd); 12021 } 12022 } 12023 12024 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12025 bool is_q, int size, int rn, int rd) 12026 { 12027 /* Implement the pairwise operations from 2-misc: 12028 * SADDLP, UADDLP, SADALP, UADALP. 12029 * These all add pairs of elements in the input to produce a 12030 * double-width result element in the output (possibly accumulating). 12031 */ 12032 bool accum = (opcode == 0x6); 12033 int maxpass = is_q ? 2 : 1; 12034 int pass; 12035 TCGv_i64 tcg_res[2]; 12036 12037 if (size == 2) { 12038 /* 32 + 32 -> 64 op */ 12039 MemOp memop = size + (u ? 0 : MO_SIGN); 12040 12041 for (pass = 0; pass < maxpass; pass++) { 12042 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12043 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12044 12045 tcg_res[pass] = tcg_temp_new_i64(); 12046 12047 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12048 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12049 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12050 if (accum) { 12051 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12052 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12053 } 12054 } 12055 } else { 12056 for (pass = 0; pass < maxpass; pass++) { 12057 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12058 NeonGenOne64OpFn *genfn; 12059 static NeonGenOne64OpFn * const fns[2][2] = { 12060 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12061 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12062 }; 12063 12064 genfn = fns[size][u]; 12065 12066 tcg_res[pass] = tcg_temp_new_i64(); 12067 12068 read_vec_element(s, tcg_op, rn, pass, MO_64); 12069 genfn(tcg_res[pass], tcg_op); 12070 12071 if (accum) { 12072 read_vec_element(s, tcg_op, rd, pass, MO_64); 12073 if (size == 0) { 12074 gen_helper_neon_addl_u16(tcg_res[pass], 12075 tcg_res[pass], tcg_op); 12076 } else { 12077 gen_helper_neon_addl_u32(tcg_res[pass], 12078 tcg_res[pass], tcg_op); 12079 } 12080 } 12081 } 12082 } 12083 if (!is_q) { 12084 tcg_res[1] = tcg_constant_i64(0); 12085 } 12086 for (pass = 0; pass < 2; pass++) { 12087 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12088 } 12089 } 12090 12091 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12092 { 12093 /* Implement SHLL and SHLL2 */ 12094 int pass; 12095 int part = is_q ? 2 : 0; 12096 TCGv_i64 tcg_res[2]; 12097 12098 for (pass = 0; pass < 2; pass++) { 12099 static NeonGenWidenFn * const widenfns[3] = { 12100 gen_helper_neon_widen_u8, 12101 gen_helper_neon_widen_u16, 12102 tcg_gen_extu_i32_i64, 12103 }; 12104 NeonGenWidenFn *widenfn = widenfns[size]; 12105 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12106 12107 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12108 tcg_res[pass] = tcg_temp_new_i64(); 12109 widenfn(tcg_res[pass], tcg_op); 12110 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12111 } 12112 12113 for (pass = 0; pass < 2; pass++) { 12114 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12115 } 12116 } 12117 12118 /* AdvSIMD two reg misc 12119 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12120 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12121 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12122 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12123 */ 12124 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12125 { 12126 int size = extract32(insn, 22, 2); 12127 int opcode = extract32(insn, 12, 5); 12128 bool u = extract32(insn, 29, 1); 12129 bool is_q = extract32(insn, 30, 1); 12130 int rn = extract32(insn, 5, 5); 12131 int rd = extract32(insn, 0, 5); 12132 bool need_fpstatus = false; 12133 int rmode = -1; 12134 TCGv_i32 tcg_rmode; 12135 TCGv_ptr tcg_fpstatus; 12136 12137 switch (opcode) { 12138 case 0x0: /* REV64, REV32 */ 12139 case 0x1: /* REV16 */ 12140 handle_rev(s, opcode, u, is_q, size, rn, rd); 12141 return; 12142 case 0x5: /* CNT, NOT, RBIT */ 12143 if (u && size == 0) { 12144 /* NOT */ 12145 break; 12146 } else if (u && size == 1) { 12147 /* RBIT */ 12148 break; 12149 } else if (!u && size == 0) { 12150 /* CNT */ 12151 break; 12152 } 12153 unallocated_encoding(s); 12154 return; 12155 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12156 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12157 if (size == 3) { 12158 unallocated_encoding(s); 12159 return; 12160 } 12161 if (!fp_access_check(s)) { 12162 return; 12163 } 12164 12165 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12166 return; 12167 case 0x4: /* CLS, CLZ */ 12168 if (size == 3) { 12169 unallocated_encoding(s); 12170 return; 12171 } 12172 break; 12173 case 0x2: /* SADDLP, UADDLP */ 12174 case 0x6: /* SADALP, UADALP */ 12175 if (size == 3) { 12176 unallocated_encoding(s); 12177 return; 12178 } 12179 if (!fp_access_check(s)) { 12180 return; 12181 } 12182 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12183 return; 12184 case 0x13: /* SHLL, SHLL2 */ 12185 if (u == 0 || size == 3) { 12186 unallocated_encoding(s); 12187 return; 12188 } 12189 if (!fp_access_check(s)) { 12190 return; 12191 } 12192 handle_shll(s, is_q, size, rn, rd); 12193 return; 12194 case 0xa: /* CMLT */ 12195 if (u == 1) { 12196 unallocated_encoding(s); 12197 return; 12198 } 12199 /* fall through */ 12200 case 0x8: /* CMGT, CMGE */ 12201 case 0x9: /* CMEQ, CMLE */ 12202 case 0xb: /* ABS, NEG */ 12203 if (size == 3 && !is_q) { 12204 unallocated_encoding(s); 12205 return; 12206 } 12207 break; 12208 case 0x3: /* SUQADD, USQADD */ 12209 if (size == 3 && !is_q) { 12210 unallocated_encoding(s); 12211 return; 12212 } 12213 if (!fp_access_check(s)) { 12214 return; 12215 } 12216 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12217 return; 12218 case 0x7: /* SQABS, SQNEG */ 12219 if (size == 3 && !is_q) { 12220 unallocated_encoding(s); 12221 return; 12222 } 12223 break; 12224 case 0xc ... 0xf: 12225 case 0x16 ... 0x1f: 12226 { 12227 /* Floating point: U, size[1] and opcode indicate operation; 12228 * size[0] indicates single or double precision. 12229 */ 12230 int is_double = extract32(size, 0, 1); 12231 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12232 size = is_double ? 3 : 2; 12233 switch (opcode) { 12234 case 0x2f: /* FABS */ 12235 case 0x6f: /* FNEG */ 12236 if (size == 3 && !is_q) { 12237 unallocated_encoding(s); 12238 return; 12239 } 12240 break; 12241 case 0x1d: /* SCVTF */ 12242 case 0x5d: /* UCVTF */ 12243 { 12244 bool is_signed = (opcode == 0x1d) ? true : false; 12245 int elements = is_double ? 2 : is_q ? 4 : 2; 12246 if (is_double && !is_q) { 12247 unallocated_encoding(s); 12248 return; 12249 } 12250 if (!fp_access_check(s)) { 12251 return; 12252 } 12253 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12254 return; 12255 } 12256 case 0x2c: /* FCMGT (zero) */ 12257 case 0x2d: /* FCMEQ (zero) */ 12258 case 0x2e: /* FCMLT (zero) */ 12259 case 0x6c: /* FCMGE (zero) */ 12260 case 0x6d: /* FCMLE (zero) */ 12261 if (size == 3 && !is_q) { 12262 unallocated_encoding(s); 12263 return; 12264 } 12265 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12266 return; 12267 case 0x7f: /* FSQRT */ 12268 if (size == 3 && !is_q) { 12269 unallocated_encoding(s); 12270 return; 12271 } 12272 break; 12273 case 0x1a: /* FCVTNS */ 12274 case 0x1b: /* FCVTMS */ 12275 case 0x3a: /* FCVTPS */ 12276 case 0x3b: /* FCVTZS */ 12277 case 0x5a: /* FCVTNU */ 12278 case 0x5b: /* FCVTMU */ 12279 case 0x7a: /* FCVTPU */ 12280 case 0x7b: /* FCVTZU */ 12281 need_fpstatus = true; 12282 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12283 if (size == 3 && !is_q) { 12284 unallocated_encoding(s); 12285 return; 12286 } 12287 break; 12288 case 0x5c: /* FCVTAU */ 12289 case 0x1c: /* FCVTAS */ 12290 need_fpstatus = true; 12291 rmode = FPROUNDING_TIEAWAY; 12292 if (size == 3 && !is_q) { 12293 unallocated_encoding(s); 12294 return; 12295 } 12296 break; 12297 case 0x3c: /* URECPE */ 12298 if (size == 3) { 12299 unallocated_encoding(s); 12300 return; 12301 } 12302 /* fall through */ 12303 case 0x3d: /* FRECPE */ 12304 case 0x7d: /* FRSQRTE */ 12305 if (size == 3 && !is_q) { 12306 unallocated_encoding(s); 12307 return; 12308 } 12309 if (!fp_access_check(s)) { 12310 return; 12311 } 12312 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12313 return; 12314 case 0x56: /* FCVTXN, FCVTXN2 */ 12315 if (size == 2) { 12316 unallocated_encoding(s); 12317 return; 12318 } 12319 /* fall through */ 12320 case 0x16: /* FCVTN, FCVTN2 */ 12321 /* handle_2misc_narrow does a 2*size -> size operation, but these 12322 * instructions encode the source size rather than dest size. 12323 */ 12324 if (!fp_access_check(s)) { 12325 return; 12326 } 12327 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12328 return; 12329 case 0x36: /* BFCVTN, BFCVTN2 */ 12330 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12331 unallocated_encoding(s); 12332 return; 12333 } 12334 if (!fp_access_check(s)) { 12335 return; 12336 } 12337 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12338 return; 12339 case 0x17: /* FCVTL, FCVTL2 */ 12340 if (!fp_access_check(s)) { 12341 return; 12342 } 12343 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12344 return; 12345 case 0x18: /* FRINTN */ 12346 case 0x19: /* FRINTM */ 12347 case 0x38: /* FRINTP */ 12348 case 0x39: /* FRINTZ */ 12349 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12350 /* fall through */ 12351 case 0x59: /* FRINTX */ 12352 case 0x79: /* FRINTI */ 12353 need_fpstatus = true; 12354 if (size == 3 && !is_q) { 12355 unallocated_encoding(s); 12356 return; 12357 } 12358 break; 12359 case 0x58: /* FRINTA */ 12360 rmode = FPROUNDING_TIEAWAY; 12361 need_fpstatus = true; 12362 if (size == 3 && !is_q) { 12363 unallocated_encoding(s); 12364 return; 12365 } 12366 break; 12367 case 0x7c: /* URSQRTE */ 12368 if (size == 3) { 12369 unallocated_encoding(s); 12370 return; 12371 } 12372 break; 12373 case 0x1e: /* FRINT32Z */ 12374 case 0x1f: /* FRINT64Z */ 12375 rmode = FPROUNDING_ZERO; 12376 /* fall through */ 12377 case 0x5e: /* FRINT32X */ 12378 case 0x5f: /* FRINT64X */ 12379 need_fpstatus = true; 12380 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12381 unallocated_encoding(s); 12382 return; 12383 } 12384 break; 12385 default: 12386 unallocated_encoding(s); 12387 return; 12388 } 12389 break; 12390 } 12391 default: 12392 unallocated_encoding(s); 12393 return; 12394 } 12395 12396 if (!fp_access_check(s)) { 12397 return; 12398 } 12399 12400 if (need_fpstatus || rmode >= 0) { 12401 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12402 } else { 12403 tcg_fpstatus = NULL; 12404 } 12405 if (rmode >= 0) { 12406 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12407 } else { 12408 tcg_rmode = NULL; 12409 } 12410 12411 switch (opcode) { 12412 case 0x5: 12413 if (u && size == 0) { /* NOT */ 12414 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12415 return; 12416 } 12417 break; 12418 case 0x8: /* CMGT, CMGE */ 12419 if (u) { 12420 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12421 } else { 12422 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12423 } 12424 return; 12425 case 0x9: /* CMEQ, CMLE */ 12426 if (u) { 12427 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12428 } else { 12429 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12430 } 12431 return; 12432 case 0xa: /* CMLT */ 12433 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12434 return; 12435 case 0xb: 12436 if (u) { /* ABS, NEG */ 12437 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12438 } else { 12439 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12440 } 12441 return; 12442 } 12443 12444 if (size == 3) { 12445 /* All 64-bit element operations can be shared with scalar 2misc */ 12446 int pass; 12447 12448 /* Coverity claims (size == 3 && !is_q) has been eliminated 12449 * from all paths leading to here. 12450 */ 12451 tcg_debug_assert(is_q); 12452 for (pass = 0; pass < 2; pass++) { 12453 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12454 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12455 12456 read_vec_element(s, tcg_op, rn, pass, MO_64); 12457 12458 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12459 tcg_rmode, tcg_fpstatus); 12460 12461 write_vec_element(s, tcg_res, rd, pass, MO_64); 12462 } 12463 } else { 12464 int pass; 12465 12466 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12467 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12468 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12469 12470 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12471 12472 if (size == 2) { 12473 /* Special cases for 32 bit elements */ 12474 switch (opcode) { 12475 case 0x4: /* CLS */ 12476 if (u) { 12477 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12478 } else { 12479 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12480 } 12481 break; 12482 case 0x7: /* SQABS, SQNEG */ 12483 if (u) { 12484 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12485 } else { 12486 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12487 } 12488 break; 12489 case 0x2f: /* FABS */ 12490 gen_helper_vfp_abss(tcg_res, tcg_op); 12491 break; 12492 case 0x6f: /* FNEG */ 12493 gen_helper_vfp_negs(tcg_res, tcg_op); 12494 break; 12495 case 0x7f: /* FSQRT */ 12496 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12497 break; 12498 case 0x1a: /* FCVTNS */ 12499 case 0x1b: /* FCVTMS */ 12500 case 0x1c: /* FCVTAS */ 12501 case 0x3a: /* FCVTPS */ 12502 case 0x3b: /* FCVTZS */ 12503 gen_helper_vfp_tosls(tcg_res, tcg_op, 12504 tcg_constant_i32(0), tcg_fpstatus); 12505 break; 12506 case 0x5a: /* FCVTNU */ 12507 case 0x5b: /* FCVTMU */ 12508 case 0x5c: /* FCVTAU */ 12509 case 0x7a: /* FCVTPU */ 12510 case 0x7b: /* FCVTZU */ 12511 gen_helper_vfp_touls(tcg_res, tcg_op, 12512 tcg_constant_i32(0), tcg_fpstatus); 12513 break; 12514 case 0x18: /* FRINTN */ 12515 case 0x19: /* FRINTM */ 12516 case 0x38: /* FRINTP */ 12517 case 0x39: /* FRINTZ */ 12518 case 0x58: /* FRINTA */ 12519 case 0x79: /* FRINTI */ 12520 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12521 break; 12522 case 0x59: /* FRINTX */ 12523 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12524 break; 12525 case 0x7c: /* URSQRTE */ 12526 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12527 break; 12528 case 0x1e: /* FRINT32Z */ 12529 case 0x5e: /* FRINT32X */ 12530 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12531 break; 12532 case 0x1f: /* FRINT64Z */ 12533 case 0x5f: /* FRINT64X */ 12534 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12535 break; 12536 default: 12537 g_assert_not_reached(); 12538 } 12539 } else { 12540 /* Use helpers for 8 and 16 bit elements */ 12541 switch (opcode) { 12542 case 0x5: /* CNT, RBIT */ 12543 /* For these two insns size is part of the opcode specifier 12544 * (handled earlier); they always operate on byte elements. 12545 */ 12546 if (u) { 12547 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12548 } else { 12549 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12550 } 12551 break; 12552 case 0x7: /* SQABS, SQNEG */ 12553 { 12554 NeonGenOneOpEnvFn *genfn; 12555 static NeonGenOneOpEnvFn * const fns[2][2] = { 12556 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12557 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12558 }; 12559 genfn = fns[size][u]; 12560 genfn(tcg_res, cpu_env, tcg_op); 12561 break; 12562 } 12563 case 0x4: /* CLS, CLZ */ 12564 if (u) { 12565 if (size == 0) { 12566 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12567 } else { 12568 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12569 } 12570 } else { 12571 if (size == 0) { 12572 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12573 } else { 12574 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12575 } 12576 } 12577 break; 12578 default: 12579 g_assert_not_reached(); 12580 } 12581 } 12582 12583 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12584 } 12585 } 12586 clear_vec_high(s, is_q, rd); 12587 12588 if (tcg_rmode) { 12589 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12590 } 12591 } 12592 12593 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12594 * 12595 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12596 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12597 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12598 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12599 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12600 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12601 * 12602 * This actually covers two groups where scalar access is governed by 12603 * bit 28. A bunch of the instructions (float to integral) only exist 12604 * in the vector form and are un-allocated for the scalar decode. Also 12605 * in the scalar decode Q is always 1. 12606 */ 12607 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12608 { 12609 int fpop, opcode, a, u; 12610 int rn, rd; 12611 bool is_q; 12612 bool is_scalar; 12613 bool only_in_vector = false; 12614 12615 int pass; 12616 TCGv_i32 tcg_rmode = NULL; 12617 TCGv_ptr tcg_fpstatus = NULL; 12618 bool need_fpst = true; 12619 int rmode = -1; 12620 12621 if (!dc_isar_feature(aa64_fp16, s)) { 12622 unallocated_encoding(s); 12623 return; 12624 } 12625 12626 rd = extract32(insn, 0, 5); 12627 rn = extract32(insn, 5, 5); 12628 12629 a = extract32(insn, 23, 1); 12630 u = extract32(insn, 29, 1); 12631 is_scalar = extract32(insn, 28, 1); 12632 is_q = extract32(insn, 30, 1); 12633 12634 opcode = extract32(insn, 12, 5); 12635 fpop = deposit32(opcode, 5, 1, a); 12636 fpop = deposit32(fpop, 6, 1, u); 12637 12638 switch (fpop) { 12639 case 0x1d: /* SCVTF */ 12640 case 0x5d: /* UCVTF */ 12641 { 12642 int elements; 12643 12644 if (is_scalar) { 12645 elements = 1; 12646 } else { 12647 elements = (is_q ? 8 : 4); 12648 } 12649 12650 if (!fp_access_check(s)) { 12651 return; 12652 } 12653 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12654 return; 12655 } 12656 break; 12657 case 0x2c: /* FCMGT (zero) */ 12658 case 0x2d: /* FCMEQ (zero) */ 12659 case 0x2e: /* FCMLT (zero) */ 12660 case 0x6c: /* FCMGE (zero) */ 12661 case 0x6d: /* FCMLE (zero) */ 12662 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12663 return; 12664 case 0x3d: /* FRECPE */ 12665 case 0x3f: /* FRECPX */ 12666 break; 12667 case 0x18: /* FRINTN */ 12668 only_in_vector = true; 12669 rmode = FPROUNDING_TIEEVEN; 12670 break; 12671 case 0x19: /* FRINTM */ 12672 only_in_vector = true; 12673 rmode = FPROUNDING_NEGINF; 12674 break; 12675 case 0x38: /* FRINTP */ 12676 only_in_vector = true; 12677 rmode = FPROUNDING_POSINF; 12678 break; 12679 case 0x39: /* FRINTZ */ 12680 only_in_vector = true; 12681 rmode = FPROUNDING_ZERO; 12682 break; 12683 case 0x58: /* FRINTA */ 12684 only_in_vector = true; 12685 rmode = FPROUNDING_TIEAWAY; 12686 break; 12687 case 0x59: /* FRINTX */ 12688 case 0x79: /* FRINTI */ 12689 only_in_vector = true; 12690 /* current rounding mode */ 12691 break; 12692 case 0x1a: /* FCVTNS */ 12693 rmode = FPROUNDING_TIEEVEN; 12694 break; 12695 case 0x1b: /* FCVTMS */ 12696 rmode = FPROUNDING_NEGINF; 12697 break; 12698 case 0x1c: /* FCVTAS */ 12699 rmode = FPROUNDING_TIEAWAY; 12700 break; 12701 case 0x3a: /* FCVTPS */ 12702 rmode = FPROUNDING_POSINF; 12703 break; 12704 case 0x3b: /* FCVTZS */ 12705 rmode = FPROUNDING_ZERO; 12706 break; 12707 case 0x5a: /* FCVTNU */ 12708 rmode = FPROUNDING_TIEEVEN; 12709 break; 12710 case 0x5b: /* FCVTMU */ 12711 rmode = FPROUNDING_NEGINF; 12712 break; 12713 case 0x5c: /* FCVTAU */ 12714 rmode = FPROUNDING_TIEAWAY; 12715 break; 12716 case 0x7a: /* FCVTPU */ 12717 rmode = FPROUNDING_POSINF; 12718 break; 12719 case 0x7b: /* FCVTZU */ 12720 rmode = FPROUNDING_ZERO; 12721 break; 12722 case 0x2f: /* FABS */ 12723 case 0x6f: /* FNEG */ 12724 need_fpst = false; 12725 break; 12726 case 0x7d: /* FRSQRTE */ 12727 case 0x7f: /* FSQRT (vector) */ 12728 break; 12729 default: 12730 unallocated_encoding(s); 12731 return; 12732 } 12733 12734 12735 /* Check additional constraints for the scalar encoding */ 12736 if (is_scalar) { 12737 if (!is_q) { 12738 unallocated_encoding(s); 12739 return; 12740 } 12741 /* FRINTxx is only in the vector form */ 12742 if (only_in_vector) { 12743 unallocated_encoding(s); 12744 return; 12745 } 12746 } 12747 12748 if (!fp_access_check(s)) { 12749 return; 12750 } 12751 12752 if (rmode >= 0 || need_fpst) { 12753 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12754 } 12755 12756 if (rmode >= 0) { 12757 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12758 } 12759 12760 if (is_scalar) { 12761 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12762 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12763 12764 switch (fpop) { 12765 case 0x1a: /* FCVTNS */ 12766 case 0x1b: /* FCVTMS */ 12767 case 0x1c: /* FCVTAS */ 12768 case 0x3a: /* FCVTPS */ 12769 case 0x3b: /* FCVTZS */ 12770 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12771 break; 12772 case 0x3d: /* FRECPE */ 12773 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12774 break; 12775 case 0x3f: /* FRECPX */ 12776 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12777 break; 12778 case 0x5a: /* FCVTNU */ 12779 case 0x5b: /* FCVTMU */ 12780 case 0x5c: /* FCVTAU */ 12781 case 0x7a: /* FCVTPU */ 12782 case 0x7b: /* FCVTZU */ 12783 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12784 break; 12785 case 0x6f: /* FNEG */ 12786 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12787 break; 12788 case 0x7d: /* FRSQRTE */ 12789 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12790 break; 12791 default: 12792 g_assert_not_reached(); 12793 } 12794 12795 /* limit any sign extension going on */ 12796 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12797 write_fp_sreg(s, rd, tcg_res); 12798 } else { 12799 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12800 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12801 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12802 12803 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12804 12805 switch (fpop) { 12806 case 0x1a: /* FCVTNS */ 12807 case 0x1b: /* FCVTMS */ 12808 case 0x1c: /* FCVTAS */ 12809 case 0x3a: /* FCVTPS */ 12810 case 0x3b: /* FCVTZS */ 12811 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12812 break; 12813 case 0x3d: /* FRECPE */ 12814 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12815 break; 12816 case 0x5a: /* FCVTNU */ 12817 case 0x5b: /* FCVTMU */ 12818 case 0x5c: /* FCVTAU */ 12819 case 0x7a: /* FCVTPU */ 12820 case 0x7b: /* FCVTZU */ 12821 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12822 break; 12823 case 0x18: /* FRINTN */ 12824 case 0x19: /* FRINTM */ 12825 case 0x38: /* FRINTP */ 12826 case 0x39: /* FRINTZ */ 12827 case 0x58: /* FRINTA */ 12828 case 0x79: /* FRINTI */ 12829 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12830 break; 12831 case 0x59: /* FRINTX */ 12832 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12833 break; 12834 case 0x2f: /* FABS */ 12835 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12836 break; 12837 case 0x6f: /* FNEG */ 12838 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12839 break; 12840 case 0x7d: /* FRSQRTE */ 12841 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12842 break; 12843 case 0x7f: /* FSQRT */ 12844 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12845 break; 12846 default: 12847 g_assert_not_reached(); 12848 } 12849 12850 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12851 } 12852 12853 clear_vec_high(s, is_q, rd); 12854 } 12855 12856 if (tcg_rmode) { 12857 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12858 } 12859 } 12860 12861 /* AdvSIMD scalar x indexed element 12862 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12863 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12864 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12865 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12866 * AdvSIMD vector x indexed element 12867 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12868 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12869 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12870 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12871 */ 12872 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12873 { 12874 /* This encoding has two kinds of instruction: 12875 * normal, where we perform elt x idxelt => elt for each 12876 * element in the vector 12877 * long, where we perform elt x idxelt and generate a result of 12878 * double the width of the input element 12879 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12880 */ 12881 bool is_scalar = extract32(insn, 28, 1); 12882 bool is_q = extract32(insn, 30, 1); 12883 bool u = extract32(insn, 29, 1); 12884 int size = extract32(insn, 22, 2); 12885 int l = extract32(insn, 21, 1); 12886 int m = extract32(insn, 20, 1); 12887 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12888 int rm = extract32(insn, 16, 4); 12889 int opcode = extract32(insn, 12, 4); 12890 int h = extract32(insn, 11, 1); 12891 int rn = extract32(insn, 5, 5); 12892 int rd = extract32(insn, 0, 5); 12893 bool is_long = false; 12894 int is_fp = 0; 12895 bool is_fp16 = false; 12896 int index; 12897 TCGv_ptr fpst; 12898 12899 switch (16 * u + opcode) { 12900 case 0x08: /* MUL */ 12901 case 0x10: /* MLA */ 12902 case 0x14: /* MLS */ 12903 if (is_scalar) { 12904 unallocated_encoding(s); 12905 return; 12906 } 12907 break; 12908 case 0x02: /* SMLAL, SMLAL2 */ 12909 case 0x12: /* UMLAL, UMLAL2 */ 12910 case 0x06: /* SMLSL, SMLSL2 */ 12911 case 0x16: /* UMLSL, UMLSL2 */ 12912 case 0x0a: /* SMULL, SMULL2 */ 12913 case 0x1a: /* UMULL, UMULL2 */ 12914 if (is_scalar) { 12915 unallocated_encoding(s); 12916 return; 12917 } 12918 is_long = true; 12919 break; 12920 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12921 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12922 case 0x0b: /* SQDMULL, SQDMULL2 */ 12923 is_long = true; 12924 break; 12925 case 0x0c: /* SQDMULH */ 12926 case 0x0d: /* SQRDMULH */ 12927 break; 12928 case 0x01: /* FMLA */ 12929 case 0x05: /* FMLS */ 12930 case 0x09: /* FMUL */ 12931 case 0x19: /* FMULX */ 12932 is_fp = 1; 12933 break; 12934 case 0x1d: /* SQRDMLAH */ 12935 case 0x1f: /* SQRDMLSH */ 12936 if (!dc_isar_feature(aa64_rdm, s)) { 12937 unallocated_encoding(s); 12938 return; 12939 } 12940 break; 12941 case 0x0e: /* SDOT */ 12942 case 0x1e: /* UDOT */ 12943 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12944 unallocated_encoding(s); 12945 return; 12946 } 12947 break; 12948 case 0x0f: 12949 switch (size) { 12950 case 0: /* SUDOT */ 12951 case 2: /* USDOT */ 12952 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12953 unallocated_encoding(s); 12954 return; 12955 } 12956 size = MO_32; 12957 break; 12958 case 1: /* BFDOT */ 12959 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12960 unallocated_encoding(s); 12961 return; 12962 } 12963 size = MO_32; 12964 break; 12965 case 3: /* BFMLAL{B,T} */ 12966 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12967 unallocated_encoding(s); 12968 return; 12969 } 12970 /* can't set is_fp without other incorrect size checks */ 12971 size = MO_16; 12972 break; 12973 default: 12974 unallocated_encoding(s); 12975 return; 12976 } 12977 break; 12978 case 0x11: /* FCMLA #0 */ 12979 case 0x13: /* FCMLA #90 */ 12980 case 0x15: /* FCMLA #180 */ 12981 case 0x17: /* FCMLA #270 */ 12982 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12983 unallocated_encoding(s); 12984 return; 12985 } 12986 is_fp = 2; 12987 break; 12988 case 0x00: /* FMLAL */ 12989 case 0x04: /* FMLSL */ 12990 case 0x18: /* FMLAL2 */ 12991 case 0x1c: /* FMLSL2 */ 12992 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12993 unallocated_encoding(s); 12994 return; 12995 } 12996 size = MO_16; 12997 /* is_fp, but we pass cpu_env not fp_status. */ 12998 break; 12999 default: 13000 unallocated_encoding(s); 13001 return; 13002 } 13003 13004 switch (is_fp) { 13005 case 1: /* normal fp */ 13006 /* convert insn encoded size to MemOp size */ 13007 switch (size) { 13008 case 0: /* half-precision */ 13009 size = MO_16; 13010 is_fp16 = true; 13011 break; 13012 case MO_32: /* single precision */ 13013 case MO_64: /* double precision */ 13014 break; 13015 default: 13016 unallocated_encoding(s); 13017 return; 13018 } 13019 break; 13020 13021 case 2: /* complex fp */ 13022 /* Each indexable element is a complex pair. */ 13023 size += 1; 13024 switch (size) { 13025 case MO_32: 13026 if (h && !is_q) { 13027 unallocated_encoding(s); 13028 return; 13029 } 13030 is_fp16 = true; 13031 break; 13032 case MO_64: 13033 break; 13034 default: 13035 unallocated_encoding(s); 13036 return; 13037 } 13038 break; 13039 13040 default: /* integer */ 13041 switch (size) { 13042 case MO_8: 13043 case MO_64: 13044 unallocated_encoding(s); 13045 return; 13046 } 13047 break; 13048 } 13049 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13050 unallocated_encoding(s); 13051 return; 13052 } 13053 13054 /* Given MemOp size, adjust register and indexing. */ 13055 switch (size) { 13056 case MO_16: 13057 index = h << 2 | l << 1 | m; 13058 break; 13059 case MO_32: 13060 index = h << 1 | l; 13061 rm |= m << 4; 13062 break; 13063 case MO_64: 13064 if (l || !is_q) { 13065 unallocated_encoding(s); 13066 return; 13067 } 13068 index = h; 13069 rm |= m << 4; 13070 break; 13071 default: 13072 g_assert_not_reached(); 13073 } 13074 13075 if (!fp_access_check(s)) { 13076 return; 13077 } 13078 13079 if (is_fp) { 13080 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13081 } else { 13082 fpst = NULL; 13083 } 13084 13085 switch (16 * u + opcode) { 13086 case 0x0e: /* SDOT */ 13087 case 0x1e: /* UDOT */ 13088 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13089 u ? gen_helper_gvec_udot_idx_b 13090 : gen_helper_gvec_sdot_idx_b); 13091 return; 13092 case 0x0f: 13093 switch (extract32(insn, 22, 2)) { 13094 case 0: /* SUDOT */ 13095 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13096 gen_helper_gvec_sudot_idx_b); 13097 return; 13098 case 1: /* BFDOT */ 13099 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13100 gen_helper_gvec_bfdot_idx); 13101 return; 13102 case 2: /* USDOT */ 13103 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13104 gen_helper_gvec_usdot_idx_b); 13105 return; 13106 case 3: /* BFMLAL{B,T} */ 13107 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13108 gen_helper_gvec_bfmlal_idx); 13109 return; 13110 } 13111 g_assert_not_reached(); 13112 case 0x11: /* FCMLA #0 */ 13113 case 0x13: /* FCMLA #90 */ 13114 case 0x15: /* FCMLA #180 */ 13115 case 0x17: /* FCMLA #270 */ 13116 { 13117 int rot = extract32(insn, 13, 2); 13118 int data = (index << 2) | rot; 13119 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13120 vec_full_reg_offset(s, rn), 13121 vec_full_reg_offset(s, rm), 13122 vec_full_reg_offset(s, rd), fpst, 13123 is_q ? 16 : 8, vec_full_reg_size(s), data, 13124 size == MO_64 13125 ? gen_helper_gvec_fcmlas_idx 13126 : gen_helper_gvec_fcmlah_idx); 13127 } 13128 return; 13129 13130 case 0x00: /* FMLAL */ 13131 case 0x04: /* FMLSL */ 13132 case 0x18: /* FMLAL2 */ 13133 case 0x1c: /* FMLSL2 */ 13134 { 13135 int is_s = extract32(opcode, 2, 1); 13136 int is_2 = u; 13137 int data = (index << 2) | (is_2 << 1) | is_s; 13138 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13139 vec_full_reg_offset(s, rn), 13140 vec_full_reg_offset(s, rm), cpu_env, 13141 is_q ? 16 : 8, vec_full_reg_size(s), 13142 data, gen_helper_gvec_fmlal_idx_a64); 13143 } 13144 return; 13145 13146 case 0x08: /* MUL */ 13147 if (!is_long && !is_scalar) { 13148 static gen_helper_gvec_3 * const fns[3] = { 13149 gen_helper_gvec_mul_idx_h, 13150 gen_helper_gvec_mul_idx_s, 13151 gen_helper_gvec_mul_idx_d, 13152 }; 13153 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13154 vec_full_reg_offset(s, rn), 13155 vec_full_reg_offset(s, rm), 13156 is_q ? 16 : 8, vec_full_reg_size(s), 13157 index, fns[size - 1]); 13158 return; 13159 } 13160 break; 13161 13162 case 0x10: /* MLA */ 13163 if (!is_long && !is_scalar) { 13164 static gen_helper_gvec_4 * const fns[3] = { 13165 gen_helper_gvec_mla_idx_h, 13166 gen_helper_gvec_mla_idx_s, 13167 gen_helper_gvec_mla_idx_d, 13168 }; 13169 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13170 vec_full_reg_offset(s, rn), 13171 vec_full_reg_offset(s, rm), 13172 vec_full_reg_offset(s, rd), 13173 is_q ? 16 : 8, vec_full_reg_size(s), 13174 index, fns[size - 1]); 13175 return; 13176 } 13177 break; 13178 13179 case 0x14: /* MLS */ 13180 if (!is_long && !is_scalar) { 13181 static gen_helper_gvec_4 * const fns[3] = { 13182 gen_helper_gvec_mls_idx_h, 13183 gen_helper_gvec_mls_idx_s, 13184 gen_helper_gvec_mls_idx_d, 13185 }; 13186 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13187 vec_full_reg_offset(s, rn), 13188 vec_full_reg_offset(s, rm), 13189 vec_full_reg_offset(s, rd), 13190 is_q ? 16 : 8, vec_full_reg_size(s), 13191 index, fns[size - 1]); 13192 return; 13193 } 13194 break; 13195 } 13196 13197 if (size == 3) { 13198 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13199 int pass; 13200 13201 assert(is_fp && is_q && !is_long); 13202 13203 read_vec_element(s, tcg_idx, rm, index, MO_64); 13204 13205 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13206 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13207 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13208 13209 read_vec_element(s, tcg_op, rn, pass, MO_64); 13210 13211 switch (16 * u + opcode) { 13212 case 0x05: /* FMLS */ 13213 /* As usual for ARM, separate negation for fused multiply-add */ 13214 gen_helper_vfp_negd(tcg_op, tcg_op); 13215 /* fall through */ 13216 case 0x01: /* FMLA */ 13217 read_vec_element(s, tcg_res, rd, pass, MO_64); 13218 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13219 break; 13220 case 0x09: /* FMUL */ 13221 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13222 break; 13223 case 0x19: /* FMULX */ 13224 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13225 break; 13226 default: 13227 g_assert_not_reached(); 13228 } 13229 13230 write_vec_element(s, tcg_res, rd, pass, MO_64); 13231 } 13232 13233 clear_vec_high(s, !is_scalar, rd); 13234 } else if (!is_long) { 13235 /* 32 bit floating point, or 16 or 32 bit integer. 13236 * For the 16 bit scalar case we use the usual Neon helpers and 13237 * rely on the fact that 0 op 0 == 0 with no side effects. 13238 */ 13239 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13240 int pass, maxpasses; 13241 13242 if (is_scalar) { 13243 maxpasses = 1; 13244 } else { 13245 maxpasses = is_q ? 4 : 2; 13246 } 13247 13248 read_vec_element_i32(s, tcg_idx, rm, index, size); 13249 13250 if (size == 1 && !is_scalar) { 13251 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13252 * the index into both halves of the 32 bit tcg_idx and then use 13253 * the usual Neon helpers. 13254 */ 13255 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13256 } 13257 13258 for (pass = 0; pass < maxpasses; pass++) { 13259 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13260 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13261 13262 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13263 13264 switch (16 * u + opcode) { 13265 case 0x08: /* MUL */ 13266 case 0x10: /* MLA */ 13267 case 0x14: /* MLS */ 13268 { 13269 static NeonGenTwoOpFn * const fns[2][2] = { 13270 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13271 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13272 }; 13273 NeonGenTwoOpFn *genfn; 13274 bool is_sub = opcode == 0x4; 13275 13276 if (size == 1) { 13277 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13278 } else { 13279 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13280 } 13281 if (opcode == 0x8) { 13282 break; 13283 } 13284 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13285 genfn = fns[size - 1][is_sub]; 13286 genfn(tcg_res, tcg_op, tcg_res); 13287 break; 13288 } 13289 case 0x05: /* FMLS */ 13290 case 0x01: /* FMLA */ 13291 read_vec_element_i32(s, tcg_res, rd, pass, 13292 is_scalar ? size : MO_32); 13293 switch (size) { 13294 case 1: 13295 if (opcode == 0x5) { 13296 /* As usual for ARM, separate negation for fused 13297 * multiply-add */ 13298 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13299 } 13300 if (is_scalar) { 13301 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13302 tcg_res, fpst); 13303 } else { 13304 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13305 tcg_res, fpst); 13306 } 13307 break; 13308 case 2: 13309 if (opcode == 0x5) { 13310 /* As usual for ARM, separate negation for 13311 * fused multiply-add */ 13312 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13313 } 13314 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13315 tcg_res, fpst); 13316 break; 13317 default: 13318 g_assert_not_reached(); 13319 } 13320 break; 13321 case 0x09: /* FMUL */ 13322 switch (size) { 13323 case 1: 13324 if (is_scalar) { 13325 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13326 tcg_idx, fpst); 13327 } else { 13328 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13329 tcg_idx, fpst); 13330 } 13331 break; 13332 case 2: 13333 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13334 break; 13335 default: 13336 g_assert_not_reached(); 13337 } 13338 break; 13339 case 0x19: /* FMULX */ 13340 switch (size) { 13341 case 1: 13342 if (is_scalar) { 13343 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13344 tcg_idx, fpst); 13345 } else { 13346 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13347 tcg_idx, fpst); 13348 } 13349 break; 13350 case 2: 13351 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13352 break; 13353 default: 13354 g_assert_not_reached(); 13355 } 13356 break; 13357 case 0x0c: /* SQDMULH */ 13358 if (size == 1) { 13359 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13360 tcg_op, tcg_idx); 13361 } else { 13362 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13363 tcg_op, tcg_idx); 13364 } 13365 break; 13366 case 0x0d: /* SQRDMULH */ 13367 if (size == 1) { 13368 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13369 tcg_op, tcg_idx); 13370 } else { 13371 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13372 tcg_op, tcg_idx); 13373 } 13374 break; 13375 case 0x1d: /* SQRDMLAH */ 13376 read_vec_element_i32(s, tcg_res, rd, pass, 13377 is_scalar ? size : MO_32); 13378 if (size == 1) { 13379 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13380 tcg_op, tcg_idx, tcg_res); 13381 } else { 13382 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13383 tcg_op, tcg_idx, tcg_res); 13384 } 13385 break; 13386 case 0x1f: /* SQRDMLSH */ 13387 read_vec_element_i32(s, tcg_res, rd, pass, 13388 is_scalar ? size : MO_32); 13389 if (size == 1) { 13390 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13391 tcg_op, tcg_idx, tcg_res); 13392 } else { 13393 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13394 tcg_op, tcg_idx, tcg_res); 13395 } 13396 break; 13397 default: 13398 g_assert_not_reached(); 13399 } 13400 13401 if (is_scalar) { 13402 write_fp_sreg(s, rd, tcg_res); 13403 } else { 13404 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13405 } 13406 } 13407 13408 clear_vec_high(s, is_q, rd); 13409 } else { 13410 /* long ops: 16x16->32 or 32x32->64 */ 13411 TCGv_i64 tcg_res[2]; 13412 int pass; 13413 bool satop = extract32(opcode, 0, 1); 13414 MemOp memop = MO_32; 13415 13416 if (satop || !u) { 13417 memop |= MO_SIGN; 13418 } 13419 13420 if (size == 2) { 13421 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13422 13423 read_vec_element(s, tcg_idx, rm, index, memop); 13424 13425 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13426 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13427 TCGv_i64 tcg_passres; 13428 int passelt; 13429 13430 if (is_scalar) { 13431 passelt = 0; 13432 } else { 13433 passelt = pass + (is_q * 2); 13434 } 13435 13436 read_vec_element(s, tcg_op, rn, passelt, memop); 13437 13438 tcg_res[pass] = tcg_temp_new_i64(); 13439 13440 if (opcode == 0xa || opcode == 0xb) { 13441 /* Non-accumulating ops */ 13442 tcg_passres = tcg_res[pass]; 13443 } else { 13444 tcg_passres = tcg_temp_new_i64(); 13445 } 13446 13447 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13448 13449 if (satop) { 13450 /* saturating, doubling */ 13451 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13452 tcg_passres, tcg_passres); 13453 } 13454 13455 if (opcode == 0xa || opcode == 0xb) { 13456 continue; 13457 } 13458 13459 /* Accumulating op: handle accumulate step */ 13460 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13461 13462 switch (opcode) { 13463 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13464 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13465 break; 13466 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13467 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13468 break; 13469 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13470 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13471 /* fall through */ 13472 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13473 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13474 tcg_res[pass], 13475 tcg_passres); 13476 break; 13477 default: 13478 g_assert_not_reached(); 13479 } 13480 } 13481 13482 clear_vec_high(s, !is_scalar, rd); 13483 } else { 13484 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13485 13486 assert(size == 1); 13487 read_vec_element_i32(s, tcg_idx, rm, index, size); 13488 13489 if (!is_scalar) { 13490 /* The simplest way to handle the 16x16 indexed ops is to 13491 * duplicate the index into both halves of the 32 bit tcg_idx 13492 * and then use the usual Neon helpers. 13493 */ 13494 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13495 } 13496 13497 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13498 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13499 TCGv_i64 tcg_passres; 13500 13501 if (is_scalar) { 13502 read_vec_element_i32(s, tcg_op, rn, pass, size); 13503 } else { 13504 read_vec_element_i32(s, tcg_op, rn, 13505 pass + (is_q * 2), MO_32); 13506 } 13507 13508 tcg_res[pass] = tcg_temp_new_i64(); 13509 13510 if (opcode == 0xa || opcode == 0xb) { 13511 /* Non-accumulating ops */ 13512 tcg_passres = tcg_res[pass]; 13513 } else { 13514 tcg_passres = tcg_temp_new_i64(); 13515 } 13516 13517 if (memop & MO_SIGN) { 13518 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13519 } else { 13520 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13521 } 13522 if (satop) { 13523 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13524 tcg_passres, tcg_passres); 13525 } 13526 13527 if (opcode == 0xa || opcode == 0xb) { 13528 continue; 13529 } 13530 13531 /* Accumulating op: handle accumulate step */ 13532 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13533 13534 switch (opcode) { 13535 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13536 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13537 tcg_passres); 13538 break; 13539 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13540 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13541 tcg_passres); 13542 break; 13543 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13544 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13545 /* fall through */ 13546 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13547 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13548 tcg_res[pass], 13549 tcg_passres); 13550 break; 13551 default: 13552 g_assert_not_reached(); 13553 } 13554 } 13555 13556 if (is_scalar) { 13557 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13558 } 13559 } 13560 13561 if (is_scalar) { 13562 tcg_res[1] = tcg_constant_i64(0); 13563 } 13564 13565 for (pass = 0; pass < 2; pass++) { 13566 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13567 } 13568 } 13569 } 13570 13571 /* Crypto AES 13572 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13573 * +-----------------+------+-----------+--------+-----+------+------+ 13574 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13575 * +-----------------+------+-----------+--------+-----+------+------+ 13576 */ 13577 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13578 { 13579 int size = extract32(insn, 22, 2); 13580 int opcode = extract32(insn, 12, 5); 13581 int rn = extract32(insn, 5, 5); 13582 int rd = extract32(insn, 0, 5); 13583 int decrypt; 13584 gen_helper_gvec_2 *genfn2 = NULL; 13585 gen_helper_gvec_3 *genfn3 = NULL; 13586 13587 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13588 unallocated_encoding(s); 13589 return; 13590 } 13591 13592 switch (opcode) { 13593 case 0x4: /* AESE */ 13594 decrypt = 0; 13595 genfn3 = gen_helper_crypto_aese; 13596 break; 13597 case 0x6: /* AESMC */ 13598 decrypt = 0; 13599 genfn2 = gen_helper_crypto_aesmc; 13600 break; 13601 case 0x5: /* AESD */ 13602 decrypt = 1; 13603 genfn3 = gen_helper_crypto_aese; 13604 break; 13605 case 0x7: /* AESIMC */ 13606 decrypt = 1; 13607 genfn2 = gen_helper_crypto_aesmc; 13608 break; 13609 default: 13610 unallocated_encoding(s); 13611 return; 13612 } 13613 13614 if (!fp_access_check(s)) { 13615 return; 13616 } 13617 if (genfn2) { 13618 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13619 } else { 13620 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13621 } 13622 } 13623 13624 /* Crypto three-reg SHA 13625 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13626 * +-----------------+------+---+------+---+--------+-----+------+------+ 13627 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13628 * +-----------------+------+---+------+---+--------+-----+------+------+ 13629 */ 13630 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13631 { 13632 int size = extract32(insn, 22, 2); 13633 int opcode = extract32(insn, 12, 3); 13634 int rm = extract32(insn, 16, 5); 13635 int rn = extract32(insn, 5, 5); 13636 int rd = extract32(insn, 0, 5); 13637 gen_helper_gvec_3 *genfn; 13638 bool feature; 13639 13640 if (size != 0) { 13641 unallocated_encoding(s); 13642 return; 13643 } 13644 13645 switch (opcode) { 13646 case 0: /* SHA1C */ 13647 genfn = gen_helper_crypto_sha1c; 13648 feature = dc_isar_feature(aa64_sha1, s); 13649 break; 13650 case 1: /* SHA1P */ 13651 genfn = gen_helper_crypto_sha1p; 13652 feature = dc_isar_feature(aa64_sha1, s); 13653 break; 13654 case 2: /* SHA1M */ 13655 genfn = gen_helper_crypto_sha1m; 13656 feature = dc_isar_feature(aa64_sha1, s); 13657 break; 13658 case 3: /* SHA1SU0 */ 13659 genfn = gen_helper_crypto_sha1su0; 13660 feature = dc_isar_feature(aa64_sha1, s); 13661 break; 13662 case 4: /* SHA256H */ 13663 genfn = gen_helper_crypto_sha256h; 13664 feature = dc_isar_feature(aa64_sha256, s); 13665 break; 13666 case 5: /* SHA256H2 */ 13667 genfn = gen_helper_crypto_sha256h2; 13668 feature = dc_isar_feature(aa64_sha256, s); 13669 break; 13670 case 6: /* SHA256SU1 */ 13671 genfn = gen_helper_crypto_sha256su1; 13672 feature = dc_isar_feature(aa64_sha256, s); 13673 break; 13674 default: 13675 unallocated_encoding(s); 13676 return; 13677 } 13678 13679 if (!feature) { 13680 unallocated_encoding(s); 13681 return; 13682 } 13683 13684 if (!fp_access_check(s)) { 13685 return; 13686 } 13687 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13688 } 13689 13690 /* Crypto two-reg SHA 13691 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13692 * +-----------------+------+-----------+--------+-----+------+------+ 13693 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13694 * +-----------------+------+-----------+--------+-----+------+------+ 13695 */ 13696 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13697 { 13698 int size = extract32(insn, 22, 2); 13699 int opcode = extract32(insn, 12, 5); 13700 int rn = extract32(insn, 5, 5); 13701 int rd = extract32(insn, 0, 5); 13702 gen_helper_gvec_2 *genfn; 13703 bool feature; 13704 13705 if (size != 0) { 13706 unallocated_encoding(s); 13707 return; 13708 } 13709 13710 switch (opcode) { 13711 case 0: /* SHA1H */ 13712 feature = dc_isar_feature(aa64_sha1, s); 13713 genfn = gen_helper_crypto_sha1h; 13714 break; 13715 case 1: /* SHA1SU1 */ 13716 feature = dc_isar_feature(aa64_sha1, s); 13717 genfn = gen_helper_crypto_sha1su1; 13718 break; 13719 case 2: /* SHA256SU0 */ 13720 feature = dc_isar_feature(aa64_sha256, s); 13721 genfn = gen_helper_crypto_sha256su0; 13722 break; 13723 default: 13724 unallocated_encoding(s); 13725 return; 13726 } 13727 13728 if (!feature) { 13729 unallocated_encoding(s); 13730 return; 13731 } 13732 13733 if (!fp_access_check(s)) { 13734 return; 13735 } 13736 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13737 } 13738 13739 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13740 { 13741 tcg_gen_rotli_i64(d, m, 1); 13742 tcg_gen_xor_i64(d, d, n); 13743 } 13744 13745 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13746 { 13747 tcg_gen_rotli_vec(vece, d, m, 1); 13748 tcg_gen_xor_vec(vece, d, d, n); 13749 } 13750 13751 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13752 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13753 { 13754 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13755 static const GVecGen3 op = { 13756 .fni8 = gen_rax1_i64, 13757 .fniv = gen_rax1_vec, 13758 .opt_opc = vecop_list, 13759 .fno = gen_helper_crypto_rax1, 13760 .vece = MO_64, 13761 }; 13762 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13763 } 13764 13765 /* Crypto three-reg SHA512 13766 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13767 * +-----------------------+------+---+---+-----+--------+------+------+ 13768 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13769 * +-----------------------+------+---+---+-----+--------+------+------+ 13770 */ 13771 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13772 { 13773 int opcode = extract32(insn, 10, 2); 13774 int o = extract32(insn, 14, 1); 13775 int rm = extract32(insn, 16, 5); 13776 int rn = extract32(insn, 5, 5); 13777 int rd = extract32(insn, 0, 5); 13778 bool feature; 13779 gen_helper_gvec_3 *oolfn = NULL; 13780 GVecGen3Fn *gvecfn = NULL; 13781 13782 if (o == 0) { 13783 switch (opcode) { 13784 case 0: /* SHA512H */ 13785 feature = dc_isar_feature(aa64_sha512, s); 13786 oolfn = gen_helper_crypto_sha512h; 13787 break; 13788 case 1: /* SHA512H2 */ 13789 feature = dc_isar_feature(aa64_sha512, s); 13790 oolfn = gen_helper_crypto_sha512h2; 13791 break; 13792 case 2: /* SHA512SU1 */ 13793 feature = dc_isar_feature(aa64_sha512, s); 13794 oolfn = gen_helper_crypto_sha512su1; 13795 break; 13796 case 3: /* RAX1 */ 13797 feature = dc_isar_feature(aa64_sha3, s); 13798 gvecfn = gen_gvec_rax1; 13799 break; 13800 default: 13801 g_assert_not_reached(); 13802 } 13803 } else { 13804 switch (opcode) { 13805 case 0: /* SM3PARTW1 */ 13806 feature = dc_isar_feature(aa64_sm3, s); 13807 oolfn = gen_helper_crypto_sm3partw1; 13808 break; 13809 case 1: /* SM3PARTW2 */ 13810 feature = dc_isar_feature(aa64_sm3, s); 13811 oolfn = gen_helper_crypto_sm3partw2; 13812 break; 13813 case 2: /* SM4EKEY */ 13814 feature = dc_isar_feature(aa64_sm4, s); 13815 oolfn = gen_helper_crypto_sm4ekey; 13816 break; 13817 default: 13818 unallocated_encoding(s); 13819 return; 13820 } 13821 } 13822 13823 if (!feature) { 13824 unallocated_encoding(s); 13825 return; 13826 } 13827 13828 if (!fp_access_check(s)) { 13829 return; 13830 } 13831 13832 if (oolfn) { 13833 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13834 } else { 13835 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13836 } 13837 } 13838 13839 /* Crypto two-reg SHA512 13840 * 31 12 11 10 9 5 4 0 13841 * +-----------------------------------------+--------+------+------+ 13842 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13843 * +-----------------------------------------+--------+------+------+ 13844 */ 13845 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13846 { 13847 int opcode = extract32(insn, 10, 2); 13848 int rn = extract32(insn, 5, 5); 13849 int rd = extract32(insn, 0, 5); 13850 bool feature; 13851 13852 switch (opcode) { 13853 case 0: /* SHA512SU0 */ 13854 feature = dc_isar_feature(aa64_sha512, s); 13855 break; 13856 case 1: /* SM4E */ 13857 feature = dc_isar_feature(aa64_sm4, s); 13858 break; 13859 default: 13860 unallocated_encoding(s); 13861 return; 13862 } 13863 13864 if (!feature) { 13865 unallocated_encoding(s); 13866 return; 13867 } 13868 13869 if (!fp_access_check(s)) { 13870 return; 13871 } 13872 13873 switch (opcode) { 13874 case 0: /* SHA512SU0 */ 13875 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13876 break; 13877 case 1: /* SM4E */ 13878 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13879 break; 13880 default: 13881 g_assert_not_reached(); 13882 } 13883 } 13884 13885 /* Crypto four-register 13886 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13887 * +-------------------+-----+------+---+------+------+------+ 13888 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13889 * +-------------------+-----+------+---+------+------+------+ 13890 */ 13891 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13892 { 13893 int op0 = extract32(insn, 21, 2); 13894 int rm = extract32(insn, 16, 5); 13895 int ra = extract32(insn, 10, 5); 13896 int rn = extract32(insn, 5, 5); 13897 int rd = extract32(insn, 0, 5); 13898 bool feature; 13899 13900 switch (op0) { 13901 case 0: /* EOR3 */ 13902 case 1: /* BCAX */ 13903 feature = dc_isar_feature(aa64_sha3, s); 13904 break; 13905 case 2: /* SM3SS1 */ 13906 feature = dc_isar_feature(aa64_sm3, s); 13907 break; 13908 default: 13909 unallocated_encoding(s); 13910 return; 13911 } 13912 13913 if (!feature) { 13914 unallocated_encoding(s); 13915 return; 13916 } 13917 13918 if (!fp_access_check(s)) { 13919 return; 13920 } 13921 13922 if (op0 < 2) { 13923 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13924 int pass; 13925 13926 tcg_op1 = tcg_temp_new_i64(); 13927 tcg_op2 = tcg_temp_new_i64(); 13928 tcg_op3 = tcg_temp_new_i64(); 13929 tcg_res[0] = tcg_temp_new_i64(); 13930 tcg_res[1] = tcg_temp_new_i64(); 13931 13932 for (pass = 0; pass < 2; pass++) { 13933 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13934 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13935 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13936 13937 if (op0 == 0) { 13938 /* EOR3 */ 13939 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13940 } else { 13941 /* BCAX */ 13942 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13943 } 13944 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13945 } 13946 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13947 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13948 } else { 13949 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13950 13951 tcg_op1 = tcg_temp_new_i32(); 13952 tcg_op2 = tcg_temp_new_i32(); 13953 tcg_op3 = tcg_temp_new_i32(); 13954 tcg_res = tcg_temp_new_i32(); 13955 tcg_zero = tcg_constant_i32(0); 13956 13957 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13958 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13959 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13960 13961 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13962 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13963 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13964 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13965 13966 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13967 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13968 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13969 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13970 } 13971 } 13972 13973 /* Crypto XAR 13974 * 31 21 20 16 15 10 9 5 4 0 13975 * +-----------------------+------+--------+------+------+ 13976 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13977 * +-----------------------+------+--------+------+------+ 13978 */ 13979 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13980 { 13981 int rm = extract32(insn, 16, 5); 13982 int imm6 = extract32(insn, 10, 6); 13983 int rn = extract32(insn, 5, 5); 13984 int rd = extract32(insn, 0, 5); 13985 13986 if (!dc_isar_feature(aa64_sha3, s)) { 13987 unallocated_encoding(s); 13988 return; 13989 } 13990 13991 if (!fp_access_check(s)) { 13992 return; 13993 } 13994 13995 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13996 vec_full_reg_offset(s, rn), 13997 vec_full_reg_offset(s, rm), imm6, 16, 13998 vec_full_reg_size(s)); 13999 } 14000 14001 /* Crypto three-reg imm2 14002 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14003 * +-----------------------+------+-----+------+--------+------+------+ 14004 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14005 * +-----------------------+------+-----+------+--------+------+------+ 14006 */ 14007 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14008 { 14009 static gen_helper_gvec_3 * const fns[4] = { 14010 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14011 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14012 }; 14013 int opcode = extract32(insn, 10, 2); 14014 int imm2 = extract32(insn, 12, 2); 14015 int rm = extract32(insn, 16, 5); 14016 int rn = extract32(insn, 5, 5); 14017 int rd = extract32(insn, 0, 5); 14018 14019 if (!dc_isar_feature(aa64_sm3, s)) { 14020 unallocated_encoding(s); 14021 return; 14022 } 14023 14024 if (!fp_access_check(s)) { 14025 return; 14026 } 14027 14028 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14029 } 14030 14031 /* C3.6 Data processing - SIMD, inc Crypto 14032 * 14033 * As the decode gets a little complex we are using a table based 14034 * approach for this part of the decode. 14035 */ 14036 static const AArch64DecodeTable data_proc_simd[] = { 14037 /* pattern , mask , fn */ 14038 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14039 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14040 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14041 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14042 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14043 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14044 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14045 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14046 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14047 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14048 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14049 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14050 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14051 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14052 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14053 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14054 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14055 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14056 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14057 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14058 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14059 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14060 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14061 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14062 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14063 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14064 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14065 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14066 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14067 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14068 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14069 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14070 { 0x00000000, 0x00000000, NULL } 14071 }; 14072 14073 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14074 { 14075 /* Note that this is called with all non-FP cases from 14076 * table C3-6 so it must UNDEF for entries not specifically 14077 * allocated to instructions in that table. 14078 */ 14079 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14080 if (fn) { 14081 fn(s, insn); 14082 } else { 14083 unallocated_encoding(s); 14084 } 14085 } 14086 14087 /* C3.6 Data processing - SIMD and floating point */ 14088 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14089 { 14090 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14091 disas_data_proc_fp(s, insn); 14092 } else { 14093 /* SIMD, including crypto */ 14094 disas_data_proc_simd(s, insn); 14095 } 14096 } 14097 14098 static bool trans_OK(DisasContext *s, arg_OK *a) 14099 { 14100 return true; 14101 } 14102 14103 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14104 { 14105 s->is_nonstreaming = true; 14106 return true; 14107 } 14108 14109 /** 14110 * is_guarded_page: 14111 * @env: The cpu environment 14112 * @s: The DisasContext 14113 * 14114 * Return true if the page is guarded. 14115 */ 14116 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14117 { 14118 uint64_t addr = s->base.pc_first; 14119 #ifdef CONFIG_USER_ONLY 14120 return page_get_flags(addr) & PAGE_BTI; 14121 #else 14122 CPUTLBEntryFull *full; 14123 void *host; 14124 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14125 int flags; 14126 14127 /* 14128 * We test this immediately after reading an insn, which means 14129 * that the TLB entry must be present and valid, and thus this 14130 * access will never raise an exception. 14131 */ 14132 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14133 false, &host, &full, 0); 14134 assert(!(flags & TLB_INVALID_MASK)); 14135 14136 return full->guarded; 14137 #endif 14138 } 14139 14140 /** 14141 * btype_destination_ok: 14142 * @insn: The instruction at the branch destination 14143 * @bt: SCTLR_ELx.BT 14144 * @btype: PSTATE.BTYPE, and is non-zero 14145 * 14146 * On a guarded page, there are a limited number of insns 14147 * that may be present at the branch target: 14148 * - branch target identifiers, 14149 * - paciasp, pacibsp, 14150 * - BRK insn 14151 * - HLT insn 14152 * Anything else causes a Branch Target Exception. 14153 * 14154 * Return true if the branch is compatible, false to raise BTITRAP. 14155 */ 14156 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14157 { 14158 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14159 /* HINT space */ 14160 switch (extract32(insn, 5, 7)) { 14161 case 0b011001: /* PACIASP */ 14162 case 0b011011: /* PACIBSP */ 14163 /* 14164 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14165 * with btype == 3. Otherwise all btype are ok. 14166 */ 14167 return !bt || btype != 3; 14168 case 0b100000: /* BTI */ 14169 /* Not compatible with any btype. */ 14170 return false; 14171 case 0b100010: /* BTI c */ 14172 /* Not compatible with btype == 3 */ 14173 return btype != 3; 14174 case 0b100100: /* BTI j */ 14175 /* Not compatible with btype == 2 */ 14176 return btype != 2; 14177 case 0b100110: /* BTI jc */ 14178 /* Compatible with any btype. */ 14179 return true; 14180 } 14181 } else { 14182 switch (insn & 0xffe0001fu) { 14183 case 0xd4200000u: /* BRK */ 14184 case 0xd4400000u: /* HLT */ 14185 /* Give priority to the breakpoint exception. */ 14186 return true; 14187 } 14188 } 14189 return false; 14190 } 14191 14192 /* C3.1 A64 instruction index by encoding */ 14193 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14194 { 14195 switch (extract32(insn, 25, 4)) { 14196 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14197 disas_b_exc_sys(s, insn); 14198 break; 14199 case 0x4: 14200 case 0x6: 14201 case 0xc: 14202 case 0xe: /* Loads and stores */ 14203 disas_ldst(s, insn); 14204 break; 14205 case 0x5: 14206 case 0xd: /* Data processing - register */ 14207 disas_data_proc_reg(s, insn); 14208 break; 14209 case 0x7: 14210 case 0xf: /* Data processing - SIMD and floating point */ 14211 disas_data_proc_simd_fp(s, insn); 14212 break; 14213 default: 14214 unallocated_encoding(s); 14215 break; 14216 } 14217 } 14218 14219 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14220 CPUState *cpu) 14221 { 14222 DisasContext *dc = container_of(dcbase, DisasContext, base); 14223 CPUARMState *env = cpu->env_ptr; 14224 ARMCPU *arm_cpu = env_archcpu(env); 14225 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14226 int bound, core_mmu_idx; 14227 14228 dc->isar = &arm_cpu->isar; 14229 dc->condjmp = 0; 14230 dc->pc_save = dc->base.pc_first; 14231 dc->aarch64 = true; 14232 dc->thumb = false; 14233 dc->sctlr_b = 0; 14234 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14235 dc->condexec_mask = 0; 14236 dc->condexec_cond = 0; 14237 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14238 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14239 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14240 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14241 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14242 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14243 #if !defined(CONFIG_USER_ONLY) 14244 dc->user = (dc->current_el == 0); 14245 #endif 14246 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14247 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14248 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14249 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14250 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14251 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14252 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14253 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14254 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14255 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14256 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14257 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14258 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14259 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14260 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14261 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14262 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14263 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14264 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14265 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14266 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14267 dc->vec_len = 0; 14268 dc->vec_stride = 0; 14269 dc->cp_regs = arm_cpu->cp_regs; 14270 dc->features = env->features; 14271 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14272 14273 #ifdef CONFIG_USER_ONLY 14274 /* In sve_probe_page, we assume TBI is enabled. */ 14275 tcg_debug_assert(dc->tbid & 1); 14276 #endif 14277 14278 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14279 14280 /* Single step state. The code-generation logic here is: 14281 * SS_ACTIVE == 0: 14282 * generate code with no special handling for single-stepping (except 14283 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14284 * this happens anyway because those changes are all system register or 14285 * PSTATE writes). 14286 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14287 * emit code for one insn 14288 * emit code to clear PSTATE.SS 14289 * emit code to generate software step exception for completed step 14290 * end TB (as usual for having generated an exception) 14291 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14292 * emit code to generate a software step exception 14293 * end the TB 14294 */ 14295 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14296 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14297 dc->is_ldex = false; 14298 14299 /* Bound the number of insns to execute to those left on the page. */ 14300 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14301 14302 /* If architectural single step active, limit to 1. */ 14303 if (dc->ss_active) { 14304 bound = 1; 14305 } 14306 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14307 } 14308 14309 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14310 { 14311 } 14312 14313 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14314 { 14315 DisasContext *dc = container_of(dcbase, DisasContext, base); 14316 target_ulong pc_arg = dc->base.pc_next; 14317 14318 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14319 pc_arg &= ~TARGET_PAGE_MASK; 14320 } 14321 tcg_gen_insn_start(pc_arg, 0, 0); 14322 dc->insn_start = tcg_last_op(); 14323 } 14324 14325 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14326 { 14327 DisasContext *s = container_of(dcbase, DisasContext, base); 14328 CPUARMState *env = cpu->env_ptr; 14329 uint64_t pc = s->base.pc_next; 14330 uint32_t insn; 14331 14332 /* Singlestep exceptions have the highest priority. */ 14333 if (s->ss_active && !s->pstate_ss) { 14334 /* Singlestep state is Active-pending. 14335 * If we're in this state at the start of a TB then either 14336 * a) we just took an exception to an EL which is being debugged 14337 * and this is the first insn in the exception handler 14338 * b) debug exceptions were masked and we just unmasked them 14339 * without changing EL (eg by clearing PSTATE.D) 14340 * In either case we're going to take a swstep exception in the 14341 * "did not step an insn" case, and so the syndrome ISV and EX 14342 * bits should be zero. 14343 */ 14344 assert(s->base.num_insns == 1); 14345 gen_swstep_exception(s, 0, 0); 14346 s->base.is_jmp = DISAS_NORETURN; 14347 s->base.pc_next = pc + 4; 14348 return; 14349 } 14350 14351 if (pc & 3) { 14352 /* 14353 * PC alignment fault. This has priority over the instruction abort 14354 * that we would receive from a translation fault via arm_ldl_code. 14355 * This should only be possible after an indirect branch, at the 14356 * start of the TB. 14357 */ 14358 assert(s->base.num_insns == 1); 14359 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14360 s->base.is_jmp = DISAS_NORETURN; 14361 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14362 return; 14363 } 14364 14365 s->pc_curr = pc; 14366 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14367 s->insn = insn; 14368 s->base.pc_next = pc + 4; 14369 14370 s->fp_access_checked = false; 14371 s->sve_access_checked = false; 14372 14373 if (s->pstate_il) { 14374 /* 14375 * Illegal execution state. This has priority over BTI 14376 * exceptions, but comes after instruction abort exceptions. 14377 */ 14378 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14379 return; 14380 } 14381 14382 if (dc_isar_feature(aa64_bti, s)) { 14383 if (s->base.num_insns == 1) { 14384 /* 14385 * At the first insn of the TB, compute s->guarded_page. 14386 * We delayed computing this until successfully reading 14387 * the first insn of the TB, above. This (mostly) ensures 14388 * that the softmmu tlb entry has been populated, and the 14389 * page table GP bit is available. 14390 * 14391 * Note that we need to compute this even if btype == 0, 14392 * because this value is used for BR instructions later 14393 * where ENV is not available. 14394 */ 14395 s->guarded_page = is_guarded_page(env, s); 14396 14397 /* First insn can have btype set to non-zero. */ 14398 tcg_debug_assert(s->btype >= 0); 14399 14400 /* 14401 * Note that the Branch Target Exception has fairly high 14402 * priority -- below debugging exceptions but above most 14403 * everything else. This allows us to handle this now 14404 * instead of waiting until the insn is otherwise decoded. 14405 */ 14406 if (s->btype != 0 14407 && s->guarded_page 14408 && !btype_destination_ok(insn, s->bt, s->btype)) { 14409 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14410 return; 14411 } 14412 } else { 14413 /* Not the first insn: btype must be 0. */ 14414 tcg_debug_assert(s->btype == 0); 14415 } 14416 } 14417 14418 s->is_nonstreaming = false; 14419 if (s->sme_trap_nonstreaming) { 14420 disas_sme_fa64(s, insn); 14421 } 14422 14423 if (!disas_a64(s, insn) && 14424 !disas_sme(s, insn) && 14425 !disas_sve(s, insn)) { 14426 disas_a64_legacy(s, insn); 14427 } 14428 14429 /* 14430 * After execution of most insns, btype is reset to 0. 14431 * Note that we set btype == -1 when the insn sets btype. 14432 */ 14433 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14434 reset_btype(s); 14435 } 14436 } 14437 14438 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14439 { 14440 DisasContext *dc = container_of(dcbase, DisasContext, base); 14441 14442 if (unlikely(dc->ss_active)) { 14443 /* Note that this means single stepping WFI doesn't halt the CPU. 14444 * For conditional branch insns this is harmless unreachable code as 14445 * gen_goto_tb() has already handled emitting the debug exception 14446 * (and thus a tb-jump is not possible when singlestepping). 14447 */ 14448 switch (dc->base.is_jmp) { 14449 default: 14450 gen_a64_update_pc(dc, 4); 14451 /* fall through */ 14452 case DISAS_EXIT: 14453 case DISAS_JUMP: 14454 gen_step_complete_exception(dc); 14455 break; 14456 case DISAS_NORETURN: 14457 break; 14458 } 14459 } else { 14460 switch (dc->base.is_jmp) { 14461 case DISAS_NEXT: 14462 case DISAS_TOO_MANY: 14463 gen_goto_tb(dc, 1, 4); 14464 break; 14465 default: 14466 case DISAS_UPDATE_EXIT: 14467 gen_a64_update_pc(dc, 4); 14468 /* fall through */ 14469 case DISAS_EXIT: 14470 tcg_gen_exit_tb(NULL, 0); 14471 break; 14472 case DISAS_UPDATE_NOCHAIN: 14473 gen_a64_update_pc(dc, 4); 14474 /* fall through */ 14475 case DISAS_JUMP: 14476 tcg_gen_lookup_and_goto_ptr(); 14477 break; 14478 case DISAS_NORETURN: 14479 case DISAS_SWI: 14480 break; 14481 case DISAS_WFE: 14482 gen_a64_update_pc(dc, 4); 14483 gen_helper_wfe(cpu_env); 14484 break; 14485 case DISAS_YIELD: 14486 gen_a64_update_pc(dc, 4); 14487 gen_helper_yield(cpu_env); 14488 break; 14489 case DISAS_WFI: 14490 /* 14491 * This is a special case because we don't want to just halt 14492 * the CPU if trying to debug across a WFI. 14493 */ 14494 gen_a64_update_pc(dc, 4); 14495 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14496 /* 14497 * The helper doesn't necessarily throw an exception, but we 14498 * must go back to the main loop to check for interrupts anyway. 14499 */ 14500 tcg_gen_exit_tb(NULL, 0); 14501 break; 14502 } 14503 } 14504 } 14505 14506 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14507 CPUState *cpu, FILE *logfile) 14508 { 14509 DisasContext *dc = container_of(dcbase, DisasContext, base); 14510 14511 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14512 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14513 } 14514 14515 const TranslatorOps aarch64_translator_ops = { 14516 .init_disas_context = aarch64_tr_init_disas_context, 14517 .tb_start = aarch64_tr_tb_start, 14518 .insn_start = aarch64_tr_insn_start, 14519 .translate_insn = aarch64_tr_translate_insn, 14520 .tb_stop = aarch64_tr_tb_stop, 14521 .disas_log = aarch64_tr_disas_log, 14522 }; 14523