xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 1c6ecab4)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand + fpstatus pointer + simd data value operation using
740  * an out-of-line helper.
741  */
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743                               int rm, int ra, bool is_fp16, int data,
744                               gen_helper_gvec_4_ptr *fn)
745 {
746     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748                        vec_full_reg_offset(s, rn),
749                        vec_full_reg_offset(s, rm),
750                        vec_full_reg_offset(s, ra), fpst,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755  * than the 32 bit equivalent.
756  */
757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762 
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766     if (sf) {
767         gen_set_NZ64(result);
768     } else {
769         tcg_gen_extrl_i64_i32(cpu_ZF, result);
770         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771     }
772     tcg_gen_movi_i32(cpu_CF, 0);
773     tcg_gen_movi_i32(cpu_VF, 0);
774 }
775 
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779     TCGv_i64 result, flag, tmp;
780     result = tcg_temp_new_i64();
781     flag = tcg_temp_new_i64();
782     tmp = tcg_temp_new_i64();
783 
784     tcg_gen_movi_i64(tmp, 0);
785     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 
787     tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 
789     gen_set_NZ64(result);
790 
791     tcg_gen_xor_i64(flag, result, t0);
792     tcg_gen_xor_i64(tmp, t0, t1);
793     tcg_gen_andc_i64(flag, flag, tmp);
794     tcg_gen_extrh_i64_i32(cpu_VF, flag);
795 
796     tcg_gen_mov_i64(dest, result);
797 }
798 
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     TCGv_i32 t0_32 = tcg_temp_new_i32();
802     TCGv_i32 t1_32 = tcg_temp_new_i32();
803     TCGv_i32 tmp = tcg_temp_new_i32();
804 
805     tcg_gen_movi_i32(tmp, 0);
806     tcg_gen_extrl_i64_i32(t0_32, t0);
807     tcg_gen_extrl_i64_i32(t1_32, t1);
808     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811     tcg_gen_xor_i32(tmp, t0_32, t1_32);
812     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813     tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815 
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818     if (sf) {
819         gen_add64_CC(dest, t0, t1);
820     } else {
821         gen_add32_CC(dest, t0, t1);
822     }
823 }
824 
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828     /* 64 bit arithmetic */
829     TCGv_i64 result, flag, tmp;
830 
831     result = tcg_temp_new_i64();
832     flag = tcg_temp_new_i64();
833     tcg_gen_sub_i64(result, t0, t1);
834 
835     gen_set_NZ64(result);
836 
837     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838     tcg_gen_extrl_i64_i32(cpu_CF, flag);
839 
840     tcg_gen_xor_i64(flag, result, t0);
841     tmp = tcg_temp_new_i64();
842     tcg_gen_xor_i64(tmp, t0, t1);
843     tcg_gen_and_i64(flag, flag, tmp);
844     tcg_gen_extrh_i64_i32(cpu_VF, flag);
845     tcg_gen_mov_i64(dest, result);
846 }
847 
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850     /* 32 bit arithmetic */
851     TCGv_i32 t0_32 = tcg_temp_new_i32();
852     TCGv_i32 t1_32 = tcg_temp_new_i32();
853     TCGv_i32 tmp;
854 
855     tcg_gen_extrl_i64_i32(t0_32, t0);
856     tcg_gen_extrl_i64_i32(t1_32, t1);
857     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861     tmp = tcg_temp_new_i32();
862     tcg_gen_xor_i32(tmp, t0_32, t1_32);
863     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864     tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866 
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869     if (sf) {
870         gen_sub64_CC(dest, t0, t1);
871     } else {
872         gen_sub32_CC(dest, t0, t1);
873     }
874 }
875 
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879     TCGv_i64 flag = tcg_temp_new_i64();
880     tcg_gen_extu_i32_i64(flag, cpu_CF);
881     tcg_gen_add_i64(dest, t0, t1);
882     tcg_gen_add_i64(dest, dest, flag);
883 
884     if (!sf) {
885         tcg_gen_ext32u_i64(dest, dest);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     if (sf) {
893         TCGv_i64 result = tcg_temp_new_i64();
894         TCGv_i64 cf_64 = tcg_temp_new_i64();
895         TCGv_i64 vf_64 = tcg_temp_new_i64();
896         TCGv_i64 tmp = tcg_temp_new_i64();
897         TCGv_i64 zero = tcg_constant_i64(0);
898 
899         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903         gen_set_NZ64(result);
904 
905         tcg_gen_xor_i64(vf_64, result, t0);
906         tcg_gen_xor_i64(tmp, t0, t1);
907         tcg_gen_andc_i64(vf_64, vf_64, tmp);
908         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909 
910         tcg_gen_mov_i64(dest, result);
911     } else {
912         TCGv_i32 t0_32 = tcg_temp_new_i32();
913         TCGv_i32 t1_32 = tcg_temp_new_i32();
914         TCGv_i32 tmp = tcg_temp_new_i32();
915         TCGv_i32 zero = tcg_constant_i32(0);
916 
917         tcg_gen_extrl_i64_i32(t0_32, t0);
918         tcg_gen_extrl_i64_i32(t1_32, t1);
919         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921 
922         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924         tcg_gen_xor_i32(tmp, t0_32, t1_32);
925         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926         tcg_gen_extu_i32_i64(dest, cpu_NF);
927     }
928 }
929 
930 /*
931  * Load/Store generators
932  */
933 
934 /*
935  * Store from GPR register to memory.
936  */
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
939                              bool iss_valid,
940                              unsigned int iss_srt,
941                              bool iss_sf, bool iss_ar)
942 {
943     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944 
945     if (iss_valid) {
946         uint32_t syn;
947 
948         syn = syn_data_abort_with_iss(0,
949                                       (memop & MO_SIZE),
950                                       false,
951                                       iss_srt,
952                                       iss_sf,
953                                       iss_ar,
954                                       0, 0, 0, 0, 0, false);
955         disas_set_insn_syndrome(s, syn);
956     }
957 }
958 
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960                       TCGv_i64 tcg_addr, MemOp memop,
961                       bool iss_valid,
962                       unsigned int iss_srt,
963                       bool iss_sf, bool iss_ar)
964 {
965     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966                      iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968 
969 /*
970  * Load from memory to GPR register
971  */
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973                              MemOp memop, bool extend, int memidx,
974                              bool iss_valid, unsigned int iss_srt,
975                              bool iss_sf, bool iss_ar)
976 {
977     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978 
979     if (extend && (memop & MO_SIGN)) {
980         g_assert((memop & MO_SIZE) <= MO_32);
981         tcg_gen_ext32u_i64(dest, dest);
982     }
983 
984     if (iss_valid) {
985         uint32_t syn;
986 
987         syn = syn_data_abort_with_iss(0,
988                                       (memop & MO_SIZE),
989                                       (memop & MO_SIGN) != 0,
990                                       iss_srt,
991                                       iss_sf,
992                                       iss_ar,
993                                       0, 0, 0, 0, 0, false);
994         disas_set_insn_syndrome(s, syn);
995     }
996 }
997 
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999                       MemOp memop, bool extend,
1000                       bool iss_valid, unsigned int iss_srt,
1001                       bool iss_sf, bool iss_ar)
1002 {
1003     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004                      iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006 
1007 /*
1008  * Store from FP register to memory
1009  */
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013     TCGv_i64 tmplo = tcg_temp_new_i64();
1014 
1015     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016 
1017     if ((mop & MO_SIZE) < MO_128) {
1018         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019     } else {
1020         TCGv_i64 tmphi = tcg_temp_new_i64();
1021         TCGv_i128 t16 = tcg_temp_new_i128();
1022 
1023         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025 
1026         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027     }
1028 }
1029 
1030 /*
1031  * Load from memory to FP register
1032  */
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035     /* This always zero-extends and writes to a full 128 bit wide vector */
1036     TCGv_i64 tmplo = tcg_temp_new_i64();
1037     TCGv_i64 tmphi = NULL;
1038 
1039     if ((mop & MO_SIZE) < MO_128) {
1040         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041     } else {
1042         TCGv_i128 t16 = tcg_temp_new_i128();
1043 
1044         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045 
1046         tmphi = tcg_temp_new_i64();
1047         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048     }
1049 
1050     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051 
1052     if (tmphi) {
1053         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054     }
1055     clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057 
1058 /*
1059  * Vector load/store helpers.
1060  *
1061  * The principal difference between this and a FP load is that we don't
1062  * zero extend as we are filling a partial chunk of the vector register.
1063  * These functions don't support 128 bit loads/stores, which would be
1064  * normal load/store operations.
1065  *
1066  * The _i32 versions are useful when operating on 32 bit quantities
1067  * (eg for floating point single or using Neon helper functions).
1068  */
1069 
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072                              int element, MemOp memop)
1073 {
1074     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075     switch ((unsigned)memop) {
1076     case MO_8:
1077         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078         break;
1079     case MO_16:
1080         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081         break;
1082     case MO_32:
1083         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084         break;
1085     case MO_8|MO_SIGN:
1086         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087         break;
1088     case MO_16|MO_SIGN:
1089         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090         break;
1091     case MO_32|MO_SIGN:
1092         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093         break;
1094     case MO_64:
1095     case MO_64|MO_SIGN:
1096         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104                                  int element, MemOp memop)
1105 {
1106     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107     switch (memop) {
1108     case MO_8:
1109         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110         break;
1111     case MO_16:
1112         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113         break;
1114     case MO_8|MO_SIGN:
1115         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116         break;
1117     case MO_16|MO_SIGN:
1118         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119         break;
1120     case MO_32:
1121     case MO_32|MO_SIGN:
1122         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127 }
1128 
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131                               int element, MemOp memop)
1132 {
1133     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134     switch (memop) {
1135     case MO_8:
1136         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137         break;
1138     case MO_16:
1139         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140         break;
1141     case MO_32:
1142         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143         break;
1144     case MO_64:
1145         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146         break;
1147     default:
1148         g_assert_not_reached();
1149     }
1150 }
1151 
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153                                   int destidx, int element, MemOp memop)
1154 {
1155     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156     switch (memop) {
1157     case MO_8:
1158         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_16:
1161         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162         break;
1163     case MO_32:
1164         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169 }
1170 
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173                       TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176 
1177     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180 
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183                       TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186 
1187     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190 
1191 /* Check that FP/Neon access is enabled. If it is, return
1192  * true. If not, emit code to generate an appropriate exception,
1193  * and return false; the caller should not emit any code for
1194  * the instruction. Note that this check must happen after all
1195  * unallocated-encoding checks (otherwise the syndrome information
1196  * for the resulting exception will be incorrect).
1197  */
1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200     if (s->fp_excp_el) {
1201         assert(!s->fp_access_checked);
1202         s->fp_access_checked = true;
1203 
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_fp_access_trap(1, 0xe, false, 0),
1206                               s->fp_excp_el);
1207         return false;
1208     }
1209     s->fp_access_checked = true;
1210     return true;
1211 }
1212 
1213 static bool fp_access_check(DisasContext *s)
1214 {
1215     if (!fp_access_check_only(s)) {
1216         return false;
1217     }
1218     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219         gen_exception_insn(s, 0, EXCP_UDEF,
1220                            syn_smetrap(SME_ET_Streaming, false));
1221         return false;
1222     }
1223     return true;
1224 }
1225 
1226 /*
1227  * Check that SVE access is enabled.  If it is, return true.
1228  * If not, emit code to generate an appropriate exception and return false.
1229  * This function corresponds to CheckSVEEnabled().
1230  */
1231 bool sve_access_check(DisasContext *s)
1232 {
1233     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234         assert(dc_isar_feature(aa64_sme, s));
1235         if (!sme_sm_enabled_check(s)) {
1236             goto fail_exit;
1237         }
1238     } else if (s->sve_excp_el) {
1239         gen_exception_insn_el(s, 0, EXCP_UDEF,
1240                               syn_sve_access_trap(), s->sve_excp_el);
1241         goto fail_exit;
1242     }
1243     s->sve_access_checked = true;
1244     return fp_access_check(s);
1245 
1246  fail_exit:
1247     /* Assert that we only raise one exception per instruction. */
1248     assert(!s->sve_access_checked);
1249     s->sve_access_checked = true;
1250     return false;
1251 }
1252 
1253 /*
1254  * Check that SME access is enabled, raise an exception if not.
1255  * Note that this function corresponds to CheckSMEAccess and is
1256  * only used directly for cpregs.
1257  */
1258 static bool sme_access_check(DisasContext *s)
1259 {
1260     if (s->sme_excp_el) {
1261         gen_exception_insn_el(s, 0, EXCP_UDEF,
1262                               syn_smetrap(SME_ET_AccessTrap, false),
1263                               s->sme_excp_el);
1264         return false;
1265     }
1266     return true;
1267 }
1268 
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272     /*
1273      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274      * to be zero when fp_excp_el has priority.  This is because we need
1275      * sme_excp_el by itself for cpregs access checks.
1276      */
1277     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278         s->fp_access_checked = true;
1279         return sme_access_check(s);
1280     }
1281     return fp_access_check_only(s);
1282 }
1283 
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287     if (!sme_enabled_check(s)) {
1288         return false;
1289     }
1290     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291         gen_exception_insn(s, 0, EXCP_UDEF,
1292                            syn_smetrap(SME_ET_NotStreaming, false));
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_InactiveZA, false));
1298         return false;
1299     }
1300     return true;
1301 }
1302 
1303 /*
1304  * Expanders for AdvSIMD translation functions.
1305  */
1306 
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308                             gen_helper_gvec_2 *fn)
1309 {
1310     if (!a->q && a->esz == MO_64) {
1311         return false;
1312     }
1313     if (fp_access_check(s)) {
1314         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315     }
1316     return true;
1317 }
1318 
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320                             gen_helper_gvec_3 *fn)
1321 {
1322     if (!a->q && a->esz == MO_64) {
1323         return false;
1324     }
1325     if (fp_access_check(s)) {
1326         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327     }
1328     return true;
1329 }
1330 
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333     if (!a->q && a->esz == MO_64) {
1334         return false;
1335     }
1336     if (fp_access_check(s)) {
1337         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338     }
1339     return true;
1340 }
1341 
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344     if (a->esz == MO_64) {
1345         return false;
1346     }
1347     if (fp_access_check(s)) {
1348         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349     }
1350     return true;
1351 }
1352 
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355     if (a->esz == MO_8) {
1356         return false;
1357     }
1358     return do_gvec_fn3_no64(s, a, fn);
1359 }
1360 
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363     if (!a->q && a->esz == MO_64) {
1364         return false;
1365     }
1366     if (fp_access_check(s)) {
1367         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368     }
1369     return true;
1370 }
1371 
1372 /*
1373  * This utility function is for doing register extension with an
1374  * optional shift. You will likely want to pass a temporary for the
1375  * destination register. See DecodeRegExtend() in the ARM ARM.
1376  */
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378                               int option, unsigned int shift)
1379 {
1380     int extsize = extract32(option, 0, 2);
1381     bool is_signed = extract32(option, 2, 1);
1382 
1383     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386 
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389     /* The AArch64 architecture mandates that (if enabled via PSTATE
1390      * or SCTLR bits) there is a check that SP is 16-aligned on every
1391      * SP-relative load or store (with an exception generated if it is not).
1392      * In line with general QEMU practice regarding misaligned accesses,
1393      * we omit these checks for the sake of guest program performance.
1394      * This function is provided as a hook so we can more easily add these
1395      * checks in future (possibly as a "favour catching guest program bugs
1396      * over speed" user selectable option).
1397      */
1398 }
1399 
1400 /*
1401  * This provides a simple table based table lookup decoder. It is
1402  * intended to be used when the relevant bits for decode are too
1403  * awkwardly placed and switch/if based logic would be confusing and
1404  * deeply nested. Since it's a linear search through the table, tables
1405  * should be kept small.
1406  *
1407  * It returns the first handler where insn & mask == pattern, or
1408  * NULL if there is no match.
1409  * The table is terminated by an empty mask (i.e. 0)
1410  */
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412                                                uint32_t insn)
1413 {
1414     const AArch64DecodeTable *tptr = table;
1415 
1416     while (tptr->mask) {
1417         if ((insn & tptr->mask) == tptr->pattern) {
1418             return tptr->disas_fn;
1419         }
1420         tptr++;
1421     }
1422     return NULL;
1423 }
1424 
1425 /*
1426  * The instruction disassembly implemented here matches
1427  * the instruction encoding classifications in chapter C4
1428  * of the ARM Architecture Reference Manual (DDI0487B_a);
1429  * classification names and decode diagrams here should generally
1430  * match up with those in the manual.
1431  */
1432 
1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435     reset_btype(s);
1436     gen_goto_tb(s, 0, a->imm);
1437     return true;
1438 }
1439 
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443     reset_btype(s);
1444     gen_goto_tb(s, 0, a->imm);
1445     return true;
1446 }
1447 
1448 
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451     DisasLabel match;
1452     TCGv_i64 tcg_cmp;
1453 
1454     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455     reset_btype(s);
1456 
1457     match = gen_disas_label(s);
1458     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459                         tcg_cmp, 0, match.label);
1460     gen_goto_tb(s, 0, 4);
1461     set_disas_label(s, match);
1462     gen_goto_tb(s, 1, a->imm);
1463     return true;
1464 }
1465 
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = tcg_temp_new_i64();
1472     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473 
1474     reset_btype(s);
1475 
1476     match = gen_disas_label(s);
1477     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478                         tcg_cmp, 0, match.label);
1479     gen_goto_tb(s, 0, 4);
1480     set_disas_label(s, match);
1481     gen_goto_tb(s, 1, a->imm);
1482     return true;
1483 }
1484 
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487     /* BC.cond is only present with FEAT_HBC */
1488     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489         return false;
1490     }
1491     reset_btype(s);
1492     if (a->cond < 0x0e) {
1493         /* genuinely conditional branches */
1494         DisasLabel match = gen_disas_label(s);
1495         arm_gen_test_cc(a->cond, match.label);
1496         gen_goto_tb(s, 0, 4);
1497         set_disas_label(s, match);
1498         gen_goto_tb(s, 1, a->imm);
1499     } else {
1500         /* 0xe and 0xf are both "always" conditions */
1501         gen_goto_tb(s, 0, a->imm);
1502     }
1503     return true;
1504 }
1505 
1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508     if (dc_isar_feature(aa64_bti, s)) {
1509         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1510         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1511     }
1512 }
1513 
1514 static void set_btype_for_blr(DisasContext *s)
1515 {
1516     if (dc_isar_feature(aa64_bti, s)) {
1517         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1518         set_btype(s, 2);
1519     }
1520 }
1521 
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1523 {
1524     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525     set_btype_for_br(s, a->rn);
1526     s->base.is_jmp = DISAS_JUMP;
1527     return true;
1528 }
1529 
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1531 {
1532     TCGv_i64 dst = cpu_reg(s, a->rn);
1533     TCGv_i64 lr = cpu_reg(s, 30);
1534     if (dst == lr) {
1535         TCGv_i64 tmp = tcg_temp_new_i64();
1536         tcg_gen_mov_i64(tmp, dst);
1537         dst = tmp;
1538     }
1539     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540     gen_a64_set_pc(s, dst);
1541     set_btype_for_blr(s);
1542     s->base.is_jmp = DISAS_JUMP;
1543     return true;
1544 }
1545 
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1547 {
1548     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549     s->base.is_jmp = DISAS_JUMP;
1550     return true;
1551 }
1552 
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554                                    TCGv_i64 modifier, bool use_key_a)
1555 {
1556     TCGv_i64 truedst;
1557     /*
1558      * Return the branch target for a BRAA/RETA/etc, which is either
1559      * just the destination dst, or that value with the pauth check
1560      * done and the code removed from the high bits.
1561      */
1562     if (!s->pauth_active) {
1563         return dst;
1564     }
1565 
1566     truedst = tcg_temp_new_i64();
1567     if (use_key_a) {
1568         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569     } else {
1570         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1571     }
1572     return truedst;
1573 }
1574 
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1576 {
1577     TCGv_i64 dst;
1578 
1579     if (!dc_isar_feature(aa64_pauth, s)) {
1580         return false;
1581     }
1582 
1583     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584     gen_a64_set_pc(s, dst);
1585     set_btype_for_br(s, a->rn);
1586     s->base.is_jmp = DISAS_JUMP;
1587     return true;
1588 }
1589 
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1591 {
1592     TCGv_i64 dst, lr;
1593 
1594     if (!dc_isar_feature(aa64_pauth, s)) {
1595         return false;
1596     }
1597 
1598     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599     lr = cpu_reg(s, 30);
1600     if (dst == lr) {
1601         TCGv_i64 tmp = tcg_temp_new_i64();
1602         tcg_gen_mov_i64(tmp, dst);
1603         dst = tmp;
1604     }
1605     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606     gen_a64_set_pc(s, dst);
1607     set_btype_for_blr(s);
1608     s->base.is_jmp = DISAS_JUMP;
1609     return true;
1610 }
1611 
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1613 {
1614     TCGv_i64 dst;
1615 
1616     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617     gen_a64_set_pc(s, dst);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (!dc_isar_feature(aa64_pauth, s)) {
1627         return false;
1628     }
1629     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_br(s, a->rn);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1637 {
1638     TCGv_i64 dst, lr;
1639 
1640     if (!dc_isar_feature(aa64_pauth, s)) {
1641         return false;
1642     }
1643     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644     lr = cpu_reg(s, 30);
1645     if (dst == lr) {
1646         TCGv_i64 tmp = tcg_temp_new_i64();
1647         tcg_gen_mov_i64(tmp, dst);
1648         dst = tmp;
1649     }
1650     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651     gen_a64_set_pc(s, dst);
1652     set_btype_for_blr(s);
1653     s->base.is_jmp = DISAS_JUMP;
1654     return true;
1655 }
1656 
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1658 {
1659     TCGv_i64 dst;
1660 
1661     if (s->current_el == 0) {
1662         return false;
1663     }
1664     if (s->trap_eret) {
1665         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666         return true;
1667     }
1668     dst = tcg_temp_new_i64();
1669     tcg_gen_ld_i64(dst, tcg_env,
1670                    offsetof(CPUARMState, elr_el[s->current_el]));
1671 
1672     translator_io_start(&s->base);
1673 
1674     gen_helper_exception_return(tcg_env, dst);
1675     /* Must exit loop to check un-masked IRQs */
1676     s->base.is_jmp = DISAS_EXIT;
1677     return true;
1678 }
1679 
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1681 {
1682     TCGv_i64 dst;
1683 
1684     if (!dc_isar_feature(aa64_pauth, s)) {
1685         return false;
1686     }
1687     if (s->current_el == 0) {
1688         return false;
1689     }
1690     /* The FGT trap takes precedence over an auth trap. */
1691     if (s->trap_eret) {
1692         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693         return true;
1694     }
1695     dst = tcg_temp_new_i64();
1696     tcg_gen_ld_i64(dst, tcg_env,
1697                    offsetof(CPUARMState, elr_el[s->current_el]));
1698 
1699     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1700 
1701     translator_io_start(&s->base);
1702 
1703     gen_helper_exception_return(tcg_env, dst);
1704     /* Must exit loop to check un-masked IRQs */
1705     s->base.is_jmp = DISAS_EXIT;
1706     return true;
1707 }
1708 
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1710 {
1711     return true;
1712 }
1713 
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1715 {
1716     /*
1717      * When running in MTTCG we don't generate jumps to the yield and
1718      * WFE helpers as it won't affect the scheduling of other vCPUs.
1719      * If we wanted to more completely model WFE/SEV so we don't busy
1720      * spin unnecessarily we would need to do something more involved.
1721      */
1722     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723         s->base.is_jmp = DISAS_YIELD;
1724     }
1725     return true;
1726 }
1727 
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1729 {
1730     s->base.is_jmp = DISAS_WFI;
1731     return true;
1732 }
1733 
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1735 {
1736     /*
1737      * When running in MTTCG we don't generate jumps to the yield and
1738      * WFE helpers as it won't affect the scheduling of other vCPUs.
1739      * If we wanted to more completely model WFE/SEV so we don't busy
1740      * spin unnecessarily we would need to do something more involved.
1741      */
1742     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743         s->base.is_jmp = DISAS_WFE;
1744     }
1745     return true;
1746 }
1747 
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1749 {
1750     if (!dc_isar_feature(aa64_wfxt, s)) {
1751         return false;
1752     }
1753 
1754     /*
1755      * Because we need to pass the register value to the helper,
1756      * it's easier to emit the code now, unlike trans_WFI which
1757      * defers it to aarch64_tr_tb_stop(). That means we need to
1758      * check ss_active so that single-stepping a WFIT doesn't halt.
1759      */
1760     if (s->ss_active) {
1761         /* Act like a NOP under architectural singlestep */
1762         return true;
1763     }
1764 
1765     gen_a64_update_pc(s, 4);
1766     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767     /* Go back to the main loop to check for interrupts */
1768     s->base.is_jmp = DISAS_EXIT;
1769     return true;
1770 }
1771 
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * We rely here on our WFE implementation being a NOP, so we
1780      * don't need to do anything different to handle the WFET timeout
1781      * from what trans_WFE does.
1782      */
1783     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784         s->base.is_jmp = DISAS_WFE;
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1830 {
1831     /* Without RAS, we must implement this as NOP. */
1832     if (dc_isar_feature(aa64_ras, s)) {
1833         /*
1834          * QEMU does not have a source of physical SErrors,
1835          * so we are only concerned with virtual SErrors.
1836          * The pseudocode in the ARM for this case is
1837          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838          *      AArch64.vESBOperation();
1839          * Most of the condition can be evaluated at translation time.
1840          * Test for EL2 present, and defer test for SEL2 to runtime.
1841          */
1842         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843             gen_helper_vesb(tcg_env);
1844         }
1845     }
1846     return true;
1847 }
1848 
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1850 {
1851     if (s->pauth_active) {
1852         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1853     }
1854     return true;
1855 }
1856 
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1858 {
1859     if (s->pauth_active) {
1860         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1861     }
1862     return true;
1863 }
1864 
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1866 {
1867     if (s->pauth_active) {
1868         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1869     }
1870     return true;
1871 }
1872 
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1877     }
1878     return true;
1879 }
1880 
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1885     }
1886     return true;
1887 }
1888 
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1893     }
1894     return true;
1895 }
1896 
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1901     }
1902     return true;
1903 }
1904 
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1909     }
1910     return true;
1911 }
1912 
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1914 {
1915     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916     return true;
1917 }
1918 
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1920 {
1921     /* We handle DSB and DMB the same way */
1922     TCGBar bar;
1923 
1924     switch (a->types) {
1925     case 1: /* MBReqTypes_Reads */
1926         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927         break;
1928     case 2: /* MBReqTypes_Writes */
1929         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930         break;
1931     default: /* MBReqTypes_All */
1932         bar = TCG_BAR_SC | TCG_MO_ALL;
1933         break;
1934     }
1935     tcg_gen_mb(bar);
1936     return true;
1937 }
1938 
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1940 {
1941     /*
1942      * We need to break the TB after this insn to execute
1943      * self-modifying code correctly and also to take
1944      * any pending interrupts immediately.
1945      */
1946     reset_btype(s);
1947     gen_goto_tb(s, 0, 4);
1948     return true;
1949 }
1950 
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1952 {
1953     if (!dc_isar_feature(aa64_sb, s)) {
1954         return false;
1955     }
1956     /*
1957      * TODO: There is no speculation barrier opcode for TCG;
1958      * MB and end the TB instead.
1959      */
1960     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961     gen_goto_tb(s, 0, 4);
1962     return true;
1963 }
1964 
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1966 {
1967     if (!dc_isar_feature(aa64_condm_4, s)) {
1968         return false;
1969     }
1970     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971     return true;
1972 }
1973 
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1975 {
1976     TCGv_i32 z;
1977 
1978     if (!dc_isar_feature(aa64_condm_5, s)) {
1979         return false;
1980     }
1981 
1982     z = tcg_temp_new_i32();
1983 
1984     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1985 
1986     /*
1987      * (!C & !Z) << 31
1988      * (!(C | Z)) << 31
1989      * ~((C | Z) << 31)
1990      * ~-(C | Z)
1991      * (C | Z) - 1
1992      */
1993     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1995 
1996     /* !(Z & C) */
1997     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1999 
2000     /* (!C & Z) << 31 -> -(Z & ~C) */
2001     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2003 
2004     /* C | Z */
2005     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2006 
2007     return true;
2008 }
2009 
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2011 {
2012     if (!dc_isar_feature(aa64_condm_5, s)) {
2013         return false;
2014     }
2015 
2016     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2017     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2018 
2019     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2021 
2022     tcg_gen_movi_i32(cpu_NF, 0);
2023     tcg_gen_movi_i32(cpu_VF, 0);
2024 
2025     return true;
2026 }
2027 
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2029 {
2030     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031         return false;
2032     }
2033     if (a->imm & 1) {
2034         set_pstate_bits(PSTATE_UAO);
2035     } else {
2036         clear_pstate_bits(PSTATE_UAO);
2037     }
2038     gen_rebuild_hflags(s);
2039     s->base.is_jmp = DISAS_TOO_MANY;
2040     return true;
2041 }
2042 
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2044 {
2045     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046         return false;
2047     }
2048     if (a->imm & 1) {
2049         set_pstate_bits(PSTATE_PAN);
2050     } else {
2051         clear_pstate_bits(PSTATE_PAN);
2052     }
2053     gen_rebuild_hflags(s);
2054     s->base.is_jmp = DISAS_TOO_MANY;
2055     return true;
2056 }
2057 
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2059 {
2060     if (s->current_el == 0) {
2061         return false;
2062     }
2063     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064     s->base.is_jmp = DISAS_TOO_MANY;
2065     return true;
2066 }
2067 
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2069 {
2070     if (!dc_isar_feature(aa64_ssbs, s)) {
2071         return false;
2072     }
2073     if (a->imm & 1) {
2074         set_pstate_bits(PSTATE_SSBS);
2075     } else {
2076         clear_pstate_bits(PSTATE_SSBS);
2077     }
2078     /* Don't need to rebuild hflags since SSBS is a nop */
2079     s->base.is_jmp = DISAS_TOO_MANY;
2080     return true;
2081 }
2082 
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2084 {
2085     if (!dc_isar_feature(aa64_dit, s)) {
2086         return false;
2087     }
2088     if (a->imm & 1) {
2089         set_pstate_bits(PSTATE_DIT);
2090     } else {
2091         clear_pstate_bits(PSTATE_DIT);
2092     }
2093     /* There's no need to rebuild hflags because DIT is a nop */
2094     s->base.is_jmp = DISAS_TOO_MANY;
2095     return true;
2096 }
2097 
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2099 {
2100     if (dc_isar_feature(aa64_mte, s)) {
2101         /* Full MTE is enabled -- set the TCO bit as directed. */
2102         if (a->imm & 1) {
2103             set_pstate_bits(PSTATE_TCO);
2104         } else {
2105             clear_pstate_bits(PSTATE_TCO);
2106         }
2107         gen_rebuild_hflags(s);
2108         /* Many factors, including TCO, go into MTE_ACTIVE. */
2109         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110         return true;
2111     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2113         return true;
2114     } else {
2115         /* Insn not present */
2116         return false;
2117     }
2118 }
2119 
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2121 {
2122     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123     s->base.is_jmp = DISAS_TOO_MANY;
2124     return true;
2125 }
2126 
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2128 {
2129     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130     /* Exit the cpu loop to re-evaluate pending IRQs. */
2131     s->base.is_jmp = DISAS_UPDATE_EXIT;
2132     return true;
2133 }
2134 
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2136 {
2137     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138         return false;
2139     }
2140 
2141     if (a->imm == 0) {
2142         clear_pstate_bits(PSTATE_ALLINT);
2143     } else if (s->current_el > 1) {
2144         set_pstate_bits(PSTATE_ALLINT);
2145     } else {
2146         gen_helper_msr_set_allint_el1(tcg_env);
2147     }
2148 
2149     /* Exit the cpu loop to re-evaluate pending IRQs. */
2150     s->base.is_jmp = DISAS_UPDATE_EXIT;
2151     return true;
2152 }
2153 
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2155 {
2156     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157         return false;
2158     }
2159     if (sme_access_check(s)) {
2160         int old = s->pstate_sm | (s->pstate_za << 1);
2161         int new = a->imm * 3;
2162 
2163         if ((old ^ new) & a->mask) {
2164             /* At least one bit changes. */
2165             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166                                 tcg_constant_i32(a->mask));
2167             s->base.is_jmp = DISAS_TOO_MANY;
2168         }
2169     }
2170     return true;
2171 }
2172 
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2174 {
2175     TCGv_i32 tmp = tcg_temp_new_i32();
2176     TCGv_i32 nzcv = tcg_temp_new_i32();
2177 
2178     /* build bit 31, N */
2179     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180     /* build bit 30, Z */
2181     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183     /* build bit 29, C */
2184     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185     /* build bit 28, V */
2186     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188     /* generate result */
2189     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2190 }
2191 
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2193 {
2194     TCGv_i32 nzcv = tcg_temp_new_i32();
2195 
2196     /* take NZCV from R[t] */
2197     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2198 
2199     /* bit 31, N */
2200     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201     /* bit 30, Z */
2202     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204     /* bit 29, C */
2205     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207     /* bit 28, V */
2208     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2210 }
2211 
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213                              uint8_t op0, uint8_t op1, uint8_t op2,
2214                              uint8_t crn, uint8_t crm, uint8_t rt)
2215 {
2216     /*
2217      * Generate code to emit an UNDEF with correct syndrome
2218      * information for a failed system register access.
2219      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220      * but if FEAT_IDST is implemented then read accesses to registers
2221      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222      * syndrome.
2223      */
2224     uint32_t syndrome;
2225 
2226     if (isread && dc_isar_feature(aa64_ids, s) &&
2227         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229     } else {
2230         syndrome = syn_uncategorized();
2231     }
2232     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2233 }
2234 
2235 /* MRS - move from system register
2236  * MSR (register) - move to system register
2237  * SYS
2238  * SYSL
2239  * These are all essentially the same insn in 'read' and 'write'
2240  * versions, with varying op0 fields.
2241  */
2242 static void handle_sys(DisasContext *s, bool isread,
2243                        unsigned int op0, unsigned int op1, unsigned int op2,
2244                        unsigned int crn, unsigned int crm, unsigned int rt)
2245 {
2246     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247                                       crn, crm, op0, op1, op2);
2248     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249     bool need_exit_tb = false;
2250     bool nv_trap_to_el2 = false;
2251     bool nv_redirect_reg = false;
2252     bool skip_fp_access_checks = false;
2253     bool nv2_mem_redirect = false;
2254     TCGv_ptr tcg_ri = NULL;
2255     TCGv_i64 tcg_rt;
2256     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2257 
2258     if (crn == 11 || crn == 15) {
2259         /*
2260          * Check for TIDCP trap, which must take precedence over
2261          * the UNDEF for "no such register" etc.
2262          */
2263         switch (s->current_el) {
2264         case 0:
2265             if (dc_isar_feature(aa64_tidcp1, s)) {
2266                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2267             }
2268             break;
2269         case 1:
2270             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271             break;
2272         }
2273     }
2274 
2275     if (!ri) {
2276         /* Unknown register; this might be a guest error or a QEMU
2277          * unimplemented feature.
2278          */
2279         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2282         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283         return;
2284     }
2285 
2286     if (s->nv2 && ri->nv2_redirect_offset) {
2287         /*
2288          * Some registers always redirect to memory; some only do so if
2289          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290          * pairs which share an offset; see the table in R_CSRPQ).
2291          */
2292         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293             nv2_mem_redirect = s->nv1;
2294         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295             nv2_mem_redirect = !s->nv1;
2296         } else {
2297             nv2_mem_redirect = true;
2298         }
2299     }
2300 
2301     /* Check access permissions */
2302     if (!cp_access_ok(s->current_el, ri, isread)) {
2303         /*
2304          * FEAT_NV/NV2 handling does not do the usual FP access checks
2305          * for registers only accessible at EL2 (though it *does* do them
2306          * for registers accessible at EL1).
2307          */
2308         skip_fp_access_checks = true;
2309         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2310             /*
2311              * This is one of the few EL2 registers which should redirect
2312              * to the equivalent EL1 register. We do that after running
2313              * the EL2 register's accessfn.
2314              */
2315             nv_redirect_reg = true;
2316             assert(!nv2_mem_redirect);
2317         } else if (nv2_mem_redirect) {
2318             /*
2319              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320              * UNDEF to EL1.
2321              */
2322         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2323             /*
2324              * This register / instruction exists and is an EL2 register, so
2325              * we must trap to EL2 if accessed in nested virtualization EL1
2326              * instead of UNDEFing. We'll do that after the usual access checks.
2327              * (This makes a difference only for a couple of registers like
2328              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330              * an accessfn which does nothing when called from EL1, because
2331              * the trap-to-EL3 controls which would apply to that register
2332              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2333              */
2334             nv_trap_to_el2 = true;
2335         } else {
2336             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337             return;
2338         }
2339     }
2340 
2341     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342         /* Emit code to perform further access permissions checks at
2343          * runtime; this may result in an exception.
2344          */
2345         gen_a64_update_pc(s, 0);
2346         tcg_ri = tcg_temp_new_ptr();
2347         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348                                        tcg_constant_i32(key),
2349                                        tcg_constant_i32(syndrome),
2350                                        tcg_constant_i32(isread));
2351     } else if (ri->type & ARM_CP_RAISES_EXC) {
2352         /*
2353          * The readfn or writefn might raise an exception;
2354          * synchronize the CPU state in case it does.
2355          */
2356         gen_a64_update_pc(s, 0);
2357     }
2358 
2359     if (!skip_fp_access_checks) {
2360         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361             return;
2362         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363             return;
2364         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365             return;
2366         }
2367     }
2368 
2369     if (nv_trap_to_el2) {
2370         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371         return;
2372     }
2373 
2374     if (nv_redirect_reg) {
2375         /*
2376          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377          * Conveniently in all cases the encoding of the EL1 register is
2378          * identical to the EL2 register except that opc1 is 0.
2379          * Get the reginfo for the EL1 register to use for the actual access.
2380          * We don't use the EL1 register's access function, and
2381          * fine-grained-traps on EL1 also do not apply here.
2382          */
2383         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384                                  crn, crm, op0, 0, op2);
2385         ri = get_arm_cp_reginfo(s->cp_regs, key);
2386         assert(ri);
2387         assert(cp_access_ok(s->current_el, ri, isread));
2388         /*
2389          * We might not have done an update_pc earlier, so check we don't
2390          * need it. We could support this in future if necessary.
2391          */
2392         assert(!(ri->type & ARM_CP_RAISES_EXC));
2393     }
2394 
2395     if (nv2_mem_redirect) {
2396         /*
2397          * This system register is being redirected into an EL2 memory access.
2398          * This means it is not an IO operation, doesn't change hflags,
2399          * and need not end the TB, because it has no side effects.
2400          *
2401          * The access is 64-bit single copy atomic, guaranteed aligned because
2402          * of the definition of VCNR_EL2. Its endianness depends on
2403          * SCTLR_EL2.EE, not on the data endianness of EL1.
2404          * It is done under either the EL2 translation regime or the EL2&0
2405          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406          * PSTATE.PAN is 0.
2407          */
2408         TCGv_i64 ptr = tcg_temp_new_i64();
2409         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411         int memidx = arm_to_core_mmu_idx(armmemidx);
2412         uint32_t syn;
2413 
2414         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2415 
2416         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417         tcg_gen_addi_i64(ptr, ptr,
2418                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419         tcg_rt = cpu_reg(s, rt);
2420 
2421         syn = syn_data_abort_vncr(0, !isread, 0);
2422         disas_set_insn_syndrome(s, syn);
2423         if (isread) {
2424             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425         } else {
2426             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2427         }
2428         return;
2429     }
2430 
2431     /* Handle special cases first */
2432     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433     case 0:
2434         break;
2435     case ARM_CP_NOP:
2436         return;
2437     case ARM_CP_NZCV:
2438         tcg_rt = cpu_reg(s, rt);
2439         if (isread) {
2440             gen_get_nzcv(tcg_rt);
2441         } else {
2442             gen_set_nzcv(tcg_rt);
2443         }
2444         return;
2445     case ARM_CP_CURRENTEL:
2446     {
2447         /*
2448          * Reads as current EL value from pstate, which is
2449          * guaranteed to be constant by the tb flags.
2450          * For nested virt we should report EL2.
2451          */
2452         int el = s->nv ? 2 : s->current_el;
2453         tcg_rt = cpu_reg(s, rt);
2454         tcg_gen_movi_i64(tcg_rt, el << 2);
2455         return;
2456     }
2457     case ARM_CP_DC_ZVA:
2458         /* Writes clear the aligned block of memory which rt points into. */
2459         if (s->mte_active[0]) {
2460             int desc = 0;
2461 
2462             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2465 
2466             tcg_rt = tcg_temp_new_i64();
2467             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2469         } else {
2470             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2471         }
2472         gen_helper_dc_zva(tcg_env, tcg_rt);
2473         return;
2474     case ARM_CP_DC_GVA:
2475         {
2476             TCGv_i64 clean_addr, tag;
2477 
2478             /*
2479              * DC_GVA, like DC_ZVA, requires that we supply the original
2480              * pointer for an invalid page.  Probe that address first.
2481              */
2482             tcg_rt = cpu_reg(s, rt);
2483             clean_addr = clean_data_tbi(s, tcg_rt);
2484             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2485 
2486             if (s->ata[0]) {
2487                 /* Extract the tag from the register to match STZGM.  */
2488                 tag = tcg_temp_new_i64();
2489                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2491             }
2492         }
2493         return;
2494     case ARM_CP_DC_GZVA:
2495         {
2496             TCGv_i64 clean_addr, tag;
2497 
2498             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499             tcg_rt = cpu_reg(s, rt);
2500             clean_addr = clean_data_tbi(s, tcg_rt);
2501             gen_helper_dc_zva(tcg_env, clean_addr);
2502 
2503             if (s->ata[0]) {
2504                 /* Extract the tag from the register to match STZGM.  */
2505                 tag = tcg_temp_new_i64();
2506                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2508             }
2509         }
2510         return;
2511     default:
2512         g_assert_not_reached();
2513     }
2514 
2515     if (ri->type & ARM_CP_IO) {
2516         /* I/O operations must end the TB here (whether read or write) */
2517         need_exit_tb = translator_io_start(&s->base);
2518     }
2519 
2520     tcg_rt = cpu_reg(s, rt);
2521 
2522     if (isread) {
2523         if (ri->type & ARM_CP_CONST) {
2524             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525         } else if (ri->readfn) {
2526             if (!tcg_ri) {
2527                 tcg_ri = gen_lookup_cp_reg(key);
2528             }
2529             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530         } else {
2531             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2532         }
2533     } else {
2534         if (ri->type & ARM_CP_CONST) {
2535             /* If not forbidden by access permissions, treat as WI */
2536             return;
2537         } else if (ri->writefn) {
2538             if (!tcg_ri) {
2539                 tcg_ri = gen_lookup_cp_reg(key);
2540             }
2541             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542         } else {
2543             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2544         }
2545     }
2546 
2547     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2548         /*
2549          * A write to any coprocessor register that ends a TB
2550          * must rebuild the hflags for the next TB.
2551          */
2552         gen_rebuild_hflags(s);
2553         /*
2554          * We default to ending the TB on a coprocessor register write,
2555          * but allow this to be suppressed by the register definition
2556          * (usually only necessary to work around guest bugs).
2557          */
2558         need_exit_tb = true;
2559     }
2560     if (need_exit_tb) {
2561         s->base.is_jmp = DISAS_UPDATE_EXIT;
2562     }
2563 }
2564 
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2566 {
2567     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568     return true;
2569 }
2570 
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2572 {
2573     /*
2574      * For SVC, HVC and SMC we advance the single-step state
2575      * machine before taking the exception. This is architecturally
2576      * mandated, to ensure that single-stepping a system call
2577      * instruction works properly.
2578      */
2579     uint32_t syndrome = syn_aa64_svc(a->imm);
2580     if (s->fgt_svc) {
2581         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582         return true;
2583     }
2584     gen_ss_advance(s);
2585     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586     return true;
2587 }
2588 
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2590 {
2591     int target_el = s->current_el == 3 ? 3 : 2;
2592 
2593     if (s->current_el == 0) {
2594         unallocated_encoding(s);
2595         return true;
2596     }
2597     /*
2598      * The pre HVC helper handles cases when HVC gets trapped
2599      * as an undefined insn by runtime configuration.
2600      */
2601     gen_a64_update_pc(s, 0);
2602     gen_helper_pre_hvc(tcg_env);
2603     /* Architecture requires ss advance before we do the actual work */
2604     gen_ss_advance(s);
2605     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606     return true;
2607 }
2608 
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2610 {
2611     if (s->current_el == 0) {
2612         unallocated_encoding(s);
2613         return true;
2614     }
2615     gen_a64_update_pc(s, 0);
2616     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617     /* Architecture requires ss advance before we do the actual work */
2618     gen_ss_advance(s);
2619     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620     return true;
2621 }
2622 
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2624 {
2625     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626     return true;
2627 }
2628 
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2630 {
2631     /*
2632      * HLT. This has two purposes.
2633      * Architecturally, it is an external halting debug instruction.
2634      * Since QEMU doesn't implement external debug, we treat this as
2635      * it is required for halting debug disabled: it will UNDEF.
2636      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2637      */
2638     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640     } else {
2641         unallocated_encoding(s);
2642     }
2643     return true;
2644 }
2645 
2646 /*
2647  * Load/Store exclusive instructions are implemented by remembering
2648  * the value/address loaded, and seeing if these are the same
2649  * when the store is performed. This is not actually the architecturally
2650  * mandated semantics, but it works for typical guest code sequences
2651  * and avoids having to monitor regular stores.
2652  *
2653  * The store exclusive uses the atomic cmpxchg primitives to avoid
2654  * races in multi-threaded linux-user and when MTTCG softmmu is
2655  * enabled.
2656  */
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658                                int size, bool is_pair)
2659 {
2660     int idx = get_mem_index(s);
2661     TCGv_i64 dirty_addr, clean_addr;
2662     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2663 
2664     s->is_ldex = true;
2665     dirty_addr = cpu_reg_sp(s, rn);
2666     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2667 
2668     g_assert(size <= 3);
2669     if (is_pair) {
2670         g_assert(size >= 2);
2671         if (size == 2) {
2672             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673             if (s->be_data == MO_LE) {
2674                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676             } else {
2677                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2679             }
2680         } else {
2681             TCGv_i128 t16 = tcg_temp_new_i128();
2682 
2683             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2684 
2685             if (s->be_data == MO_LE) {
2686                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687                                       cpu_exclusive_high, t16);
2688             } else {
2689                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690                                       cpu_exclusive_val, t16);
2691             }
2692             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2694         }
2695     } else {
2696         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2698     }
2699     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2700 }
2701 
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703                                 int rn, int size, int is_pair)
2704 {
2705     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707      *     [addr] = {Rt};
2708      *     if (is_pair) {
2709      *         [addr + datasize] = {Rt2};
2710      *     }
2711      *     {Rd} = 0;
2712      * } else {
2713      *     {Rd} = 1;
2714      * }
2715      * env->exclusive_addr = -1;
2716      */
2717     TCGLabel *fail_label = gen_new_label();
2718     TCGLabel *done_label = gen_new_label();
2719     TCGv_i64 tmp, clean_addr;
2720     MemOp memop;
2721 
2722     /*
2723      * FIXME: We are out of spec here.  We have recorded only the address
2724      * from load_exclusive, not the entire range, and we assume that the
2725      * size of the access on both sides match.  The architecture allows the
2726      * store to be smaller than the load, so long as the stored bytes are
2727      * within the range recorded by the load.
2728      */
2729 
2730     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2733 
2734     /*
2735      * The write, and any associated faults, only happen if the virtual
2736      * and physical addresses pass the exclusive monitor check.  These
2737      * faults are exceedingly unlikely, because normally the guest uses
2738      * the exact same address register for the load_exclusive, and we
2739      * would have recognized these faults there.
2740      *
2741      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742      * unaligned 4-byte write within the range of an aligned 8-byte load.
2743      * With LSE2, the store would need to cross a 16-byte boundary when the
2744      * load did not, which would mean the store is outside the range
2745      * recorded for the monitor, which would have failed a corrected monitor
2746      * check above.  For now, we assume no size change and retain the
2747      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2748      *
2749      * It is possible to trigger an MTE fault, by performing the load with
2750      * a virtual address with a valid tag and performing the store with the
2751      * same virtual address and a different invalid tag.
2752      */
2753     memop = size + is_pair;
2754     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755         memop |= MO_ALIGN;
2756     }
2757     memop = finalize_memop(s, memop);
2758     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2759 
2760     tmp = tcg_temp_new_i64();
2761     if (is_pair) {
2762         if (size == 2) {
2763             if (s->be_data == MO_LE) {
2764                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765             } else {
2766                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2767             }
2768             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769                                        cpu_exclusive_val, tmp,
2770                                        get_mem_index(s), memop);
2771             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772         } else {
2773             TCGv_i128 t16 = tcg_temp_new_i128();
2774             TCGv_i128 c16 = tcg_temp_new_i128();
2775             TCGv_i64 a, b;
2776 
2777             if (s->be_data == MO_LE) {
2778                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780                                         cpu_exclusive_high);
2781             } else {
2782                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784                                         cpu_exclusive_val);
2785             }
2786 
2787             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788                                         get_mem_index(s), memop);
2789 
2790             a = tcg_temp_new_i64();
2791             b = tcg_temp_new_i64();
2792             if (s->be_data == MO_LE) {
2793                 tcg_gen_extr_i128_i64(a, b, t16);
2794             } else {
2795                 tcg_gen_extr_i128_i64(b, a, t16);
2796             }
2797 
2798             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800             tcg_gen_or_i64(tmp, a, b);
2801 
2802             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2803         }
2804     } else {
2805         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806                                    cpu_reg(s, rt), get_mem_index(s), memop);
2807         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2808     }
2809     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810     tcg_gen_br(done_label);
2811 
2812     gen_set_label(fail_label);
2813     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814     gen_set_label(done_label);
2815     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2816 }
2817 
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819                                  int rn, int size)
2820 {
2821     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823     int memidx = get_mem_index(s);
2824     TCGv_i64 clean_addr;
2825     MemOp memop;
2826 
2827     if (rn == 31) {
2828         gen_check_sp_alignment(s);
2829     }
2830     memop = check_atomic_align(s, rn, size);
2831     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833                                memidx, memop);
2834 }
2835 
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837                                       int rn, int size)
2838 {
2839     TCGv_i64 s1 = cpu_reg(s, rs);
2840     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841     TCGv_i64 t1 = cpu_reg(s, rt);
2842     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843     TCGv_i64 clean_addr;
2844     int memidx = get_mem_index(s);
2845     MemOp memop;
2846 
2847     if (rn == 31) {
2848         gen_check_sp_alignment(s);
2849     }
2850 
2851     /* This is a single atomic access, despite the "pair". */
2852     memop = check_atomic_align(s, rn, size + 1);
2853     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2854 
2855     if (size == 2) {
2856         TCGv_i64 cmp = tcg_temp_new_i64();
2857         TCGv_i64 val = tcg_temp_new_i64();
2858 
2859         if (s->be_data == MO_LE) {
2860             tcg_gen_concat32_i64(val, t1, t2);
2861             tcg_gen_concat32_i64(cmp, s1, s2);
2862         } else {
2863             tcg_gen_concat32_i64(val, t2, t1);
2864             tcg_gen_concat32_i64(cmp, s2, s1);
2865         }
2866 
2867         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2868 
2869         if (s->be_data == MO_LE) {
2870             tcg_gen_extr32_i64(s1, s2, cmp);
2871         } else {
2872             tcg_gen_extr32_i64(s2, s1, cmp);
2873         }
2874     } else {
2875         TCGv_i128 cmp = tcg_temp_new_i128();
2876         TCGv_i128 val = tcg_temp_new_i128();
2877 
2878         if (s->be_data == MO_LE) {
2879             tcg_gen_concat_i64_i128(val, t1, t2);
2880             tcg_gen_concat_i64_i128(cmp, s1, s2);
2881         } else {
2882             tcg_gen_concat_i64_i128(val, t2, t1);
2883             tcg_gen_concat_i64_i128(cmp, s2, s1);
2884         }
2885 
2886         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2887 
2888         if (s->be_data == MO_LE) {
2889             tcg_gen_extr_i128_i64(s1, s2, cmp);
2890         } else {
2891             tcg_gen_extr_i128_i64(s2, s1, cmp);
2892         }
2893     }
2894 }
2895 
2896 /*
2897  * Compute the ISS.SF bit for syndrome information if an exception
2898  * is taken on a load or store. This indicates whether the instruction
2899  * is accessing a 32-bit or 64-bit register. This logic is derived
2900  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2901  */
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2903 {
2904 
2905     if (sign) {
2906         /*
2907          * Signed loads are 64 bit results if we are not going to
2908          * do a zero-extend from 32 to 64 after the load.
2909          * (For a store, sign and ext are always false.)
2910          */
2911         return !ext;
2912     } else {
2913         /* Unsigned loads/stores work at the specified size */
2914         return size == MO_64;
2915     }
2916 }
2917 
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2919 {
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     if (a->lasr) {
2924         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2925     }
2926     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927     return true;
2928 }
2929 
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2931 {
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936     if (a->lasr) {
2937         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2938     }
2939     return true;
2940 }
2941 
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2943 {
2944     TCGv_i64 clean_addr;
2945     MemOp memop;
2946     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2947 
2948     /*
2949      * StoreLORelease is the same as Store-Release for QEMU, but
2950      * needs the feature-test.
2951      */
2952     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953         return false;
2954     }
2955     /* Generate ISS for non-exclusive accesses including LASR.  */
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962                                 true, a->rn != 31, memop);
2963     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964               iss_sf, a->lasr);
2965     return true;
2966 }
2967 
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2969 {
2970     TCGv_i64 clean_addr;
2971     MemOp memop;
2972     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2973 
2974     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2975     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976         return false;
2977     }
2978     /* Generate ISS for non-exclusive accesses including LASR.  */
2979     if (a->rn == 31) {
2980         gen_check_sp_alignment(s);
2981     }
2982     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984                                 false, a->rn != 31, memop);
2985     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986               a->rt, iss_sf, a->lasr);
2987     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988     return true;
2989 }
2990 
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2992 {
2993     if (a->rn == 31) {
2994         gen_check_sp_alignment(s);
2995     }
2996     if (a->lasr) {
2997         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2998     }
2999     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000     return true;
3001 }
3002 
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3004 {
3005     if (a->rn == 31) {
3006         gen_check_sp_alignment(s);
3007     }
3008     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009     if (a->lasr) {
3010         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3011     }
3012     return true;
3013 }
3014 
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3016 {
3017     if (!dc_isar_feature(aa64_atomics, s)) {
3018         return false;
3019     }
3020     if (((a->rt | a->rs) & 1) != 0) {
3021         return false;
3022     }
3023 
3024     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025     return true;
3026 }
3027 
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3029 {
3030     if (!dc_isar_feature(aa64_atomics, s)) {
3031         return false;
3032     }
3033     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034     return true;
3035 }
3036 
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3038 {
3039     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041     TCGv_i64 clean_addr = tcg_temp_new_i64();
3042     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3043 
3044     gen_pc_plus_diff(s, clean_addr, a->imm);
3045     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046               false, true, a->rt, iss_sf, false);
3047     return true;
3048 }
3049 
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3051 {
3052     /* Load register (literal), vector version */
3053     TCGv_i64 clean_addr;
3054     MemOp memop;
3055 
3056     if (!fp_access_check(s)) {
3057         return true;
3058     }
3059     memop = finalize_memop_asimd(s, a->sz);
3060     clean_addr = tcg_temp_new_i64();
3061     gen_pc_plus_diff(s, clean_addr, a->imm);
3062     do_fp_ld(s, a->rt, clean_addr, memop);
3063     return true;
3064 }
3065 
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068                                  uint64_t offset, bool is_store, MemOp mop)
3069 {
3070     if (a->rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075     if (!a->p) {
3076         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3077     }
3078 
3079     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3081 }
3082 
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084                                   TCGv_i64 dirty_addr, uint64_t offset)
3085 {
3086     if (a->w) {
3087         if (a->p) {
3088             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3089         }
3090         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3091     }
3092 }
3093 
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103     /*
3104      * We built mop above for the single logical access -- rebuild it
3105      * now for the paired operation.
3106      *
3107      * With LSE2, non-sign-extending pairs are treated atomically if
3108      * aligned, and if unaligned one of the pair will be completely
3109      * within a 16-byte block and that element will be atomic.
3110      * Otherwise each element is separately atomic.
3111      * In all cases, issue one operation with the correct atomicity.
3112      */
3113     mop = a->sz + 1;
3114     if (s->align_mem) {
3115         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3116     }
3117     mop = finalize_memop_pair(s, mop);
3118     if (a->sz == 2) {
3119         TCGv_i64 tmp = tcg_temp_new_i64();
3120 
3121         if (s->be_data == MO_LE) {
3122             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123         } else {
3124             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3125         }
3126         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127     } else {
3128         TCGv_i128 tmp = tcg_temp_new_i128();
3129 
3130         if (s->be_data == MO_LE) {
3131             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132         } else {
3133             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3134         }
3135         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3136     }
3137     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138     return true;
3139 }
3140 
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3142 {
3143     uint64_t offset = a->imm << a->sz;
3144     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145     MemOp mop = finalize_memop(s, a->sz);
3146 
3147     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148     tcg_rt = cpu_reg(s, a->rt);
3149     tcg_rt2 = cpu_reg(s, a->rt2);
3150 
3151     /*
3152      * We built mop above for the single logical access -- rebuild it
3153      * now for the paired operation.
3154      *
3155      * With LSE2, non-sign-extending pairs are treated atomically if
3156      * aligned, and if unaligned one of the pair will be completely
3157      * within a 16-byte block and that element will be atomic.
3158      * Otherwise each element is separately atomic.
3159      * In all cases, issue one operation with the correct atomicity.
3160      *
3161      * This treats sign-extending loads like zero-extending loads,
3162      * since that reuses the most code below.
3163      */
3164     mop = a->sz + 1;
3165     if (s->align_mem) {
3166         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3167     }
3168     mop = finalize_memop_pair(s, mop);
3169     if (a->sz == 2) {
3170         int o2 = s->be_data == MO_LE ? 32 : 0;
3171         int o1 = o2 ^ 32;
3172 
3173         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174         if (a->sign) {
3175             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177         } else {
3178             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3180         }
3181     } else {
3182         TCGv_i128 tmp = tcg_temp_new_i128();
3183 
3184         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185         if (s->be_data == MO_LE) {
3186             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187         } else {
3188             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3189         }
3190     }
3191     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192     return true;
3193 }
3194 
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3196 {
3197     uint64_t offset = a->imm << a->sz;
3198     TCGv_i64 clean_addr, dirty_addr;
3199     MemOp mop;
3200 
3201     if (!fp_access_check(s)) {
3202         return true;
3203     }
3204 
3205     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206     mop = finalize_memop_asimd(s, a->sz);
3207     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208     do_fp_st(s, a->rt, clean_addr, mop);
3209     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210     do_fp_st(s, a->rt2, clean_addr, mop);
3211     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212     return true;
3213 }
3214 
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3216 {
3217     uint64_t offset = a->imm << a->sz;
3218     TCGv_i64 clean_addr, dirty_addr;
3219     MemOp mop;
3220 
3221     if (!fp_access_check(s)) {
3222         return true;
3223     }
3224 
3225     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226     mop = finalize_memop_asimd(s, a->sz);
3227     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228     do_fp_ld(s, a->rt, clean_addr, mop);
3229     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230     do_fp_ld(s, a->rt2, clean_addr, mop);
3231     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232     return true;
3233 }
3234 
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3236 {
3237     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239     MemOp mop;
3240     TCGv_i128 tmp;
3241 
3242     /* STGP only comes in one size. */
3243     tcg_debug_assert(a->sz == MO_64);
3244 
3245     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246         return false;
3247     }
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252 
3253     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254     if (!a->p) {
3255         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3256     }
3257 
3258     clean_addr = clean_data_tbi(s, dirty_addr);
3259     tcg_rt = cpu_reg(s, a->rt);
3260     tcg_rt2 = cpu_reg(s, a->rt2);
3261 
3262     /*
3263      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264      * and one tag operation.  We implement it as one single aligned 16-byte
3265      * memory operation for convenience.  Note that the alignment ensures
3266      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3267      */
3268     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3269 
3270     tmp = tcg_temp_new_i128();
3271     if (s->be_data == MO_LE) {
3272         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273     } else {
3274         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3275     }
3276     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3277 
3278     /* Perform the tag store, if tag access enabled. */
3279     if (s->ata[0]) {
3280         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282         } else {
3283             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3284         }
3285     }
3286 
3287     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288     return true;
3289 }
3290 
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293                                  uint64_t offset, bool is_store, MemOp mop)
3294 {
3295     int memidx;
3296 
3297     if (a->rn == 31) {
3298         gen_check_sp_alignment(s);
3299     }
3300 
3301     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302     if (!a->p) {
3303         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3304     }
3305     memidx = get_a64_user_mem_index(s, a->unpriv);
3306     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307                                         a->w || a->rn != 31,
3308                                         mop, a->unpriv, memidx);
3309 }
3310 
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312                                   TCGv_i64 dirty_addr, uint64_t offset)
3313 {
3314     if (a->w) {
3315         if (a->p) {
3316             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317         }
3318         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3319     }
3320 }
3321 
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     bool iss_sf, iss_valid = !a->w;
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     int memidx = get_a64_user_mem_index(s, a->unpriv);
3327     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3328 
3329     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3330 
3331     tcg_rt = cpu_reg(s, a->rt);
3332     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3333 
3334     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335                      iss_valid, a->rt, iss_sf, false);
3336     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337     return true;
3338 }
3339 
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3341 {
3342     bool iss_sf, iss_valid = !a->w;
3343     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344     int memidx = get_a64_user_mem_index(s, a->unpriv);
3345     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3346 
3347     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3348 
3349     tcg_rt = cpu_reg(s, a->rt);
3350     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3351 
3352     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355     return true;
3356 }
3357 
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3359 {
3360     TCGv_i64 clean_addr, dirty_addr;
3361     MemOp mop;
3362 
3363     if (!fp_access_check(s)) {
3364         return true;
3365     }
3366     mop = finalize_memop_asimd(s, a->sz);
3367     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368     do_fp_st(s, a->rt, clean_addr, mop);
3369     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370     return true;
3371 }
3372 
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3374 {
3375     TCGv_i64 clean_addr, dirty_addr;
3376     MemOp mop;
3377 
3378     if (!fp_access_check(s)) {
3379         return true;
3380     }
3381     mop = finalize_memop_asimd(s, a->sz);
3382     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383     do_fp_ld(s, a->rt, clean_addr, mop);
3384     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385     return true;
3386 }
3387 
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390                              bool is_store, MemOp memop)
3391 {
3392     TCGv_i64 tcg_rm;
3393 
3394     if (a->rn == 31) {
3395         gen_check_sp_alignment(s);
3396     }
3397     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398 
3399     tcg_rm = read_cpu_reg(s, a->rm, 1);
3400     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3401 
3402     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3404 }
3405 
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3407 {
3408     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410     MemOp memop;
3411 
3412     if (extract32(a->opt, 1, 1) == 0) {
3413         return false;
3414     }
3415 
3416     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418     tcg_rt = cpu_reg(s, a->rt);
3419     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420               a->ext, true, a->rt, iss_sf, false);
3421     return true;
3422 }
3423 
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428     MemOp memop;
3429 
3430     if (extract32(a->opt, 1, 1) == 0) {
3431         return false;
3432     }
3433 
3434     memop = finalize_memop(s, a->sz);
3435     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436     tcg_rt = cpu_reg(s, a->rt);
3437     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438     return true;
3439 }
3440 
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3442 {
3443     TCGv_i64 clean_addr, dirty_addr;
3444     MemOp memop;
3445 
3446     if (extract32(a->opt, 1, 1) == 0) {
3447         return false;
3448     }
3449 
3450     if (!fp_access_check(s)) {
3451         return true;
3452     }
3453 
3454     memop = finalize_memop_asimd(s, a->sz);
3455     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456     do_fp_ld(s, a->rt, clean_addr, memop);
3457     return true;
3458 }
3459 
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3461 {
3462     TCGv_i64 clean_addr, dirty_addr;
3463     MemOp memop;
3464 
3465     if (extract32(a->opt, 1, 1) == 0) {
3466         return false;
3467     }
3468 
3469     if (!fp_access_check(s)) {
3470         return true;
3471     }
3472 
3473     memop = finalize_memop_asimd(s, a->sz);
3474     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475     do_fp_st(s, a->rt, clean_addr, memop);
3476     return true;
3477 }
3478 
3479 
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481                          int sign, bool invert)
3482 {
3483     MemOp mop = a->sz | sign;
3484     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3485 
3486     if (a->rn == 31) {
3487         gen_check_sp_alignment(s);
3488     }
3489     mop = check_atomic_align(s, a->rn, mop);
3490     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491                                 a->rn != 31, mop);
3492     tcg_rs = read_cpu_reg(s, a->rs, true);
3493     tcg_rt = cpu_reg(s, a->rt);
3494     if (invert) {
3495         tcg_gen_not_i64(tcg_rs, tcg_rs);
3496     }
3497     /*
3498      * The tcg atomic primitives are all full barriers.  Therefore we
3499      * can ignore the Acquire and Release bits of this instruction.
3500      */
3501     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3502 
3503     if (mop & MO_SIGN) {
3504         switch (a->sz) {
3505         case MO_8:
3506             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_16:
3509             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510             break;
3511         case MO_32:
3512             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513             break;
3514         case MO_64:
3515             break;
3516         default:
3517             g_assert_not_reached();
3518         }
3519     }
3520     return true;
3521 }
3522 
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3532 
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3534 {
3535     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536     TCGv_i64 clean_addr;
3537     MemOp mop;
3538 
3539     if (!dc_isar_feature(aa64_atomics, s) ||
3540         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541         return false;
3542     }
3543     if (a->rn == 31) {
3544         gen_check_sp_alignment(s);
3545     }
3546     mop = check_atomic_align(s, a->rn, a->sz);
3547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548                                 a->rn != 31, mop);
3549     /*
3550      * LDAPR* are a special case because they are a simple load, not a
3551      * fetch-and-do-something op.
3552      * The architectural consistency requirements here are weaker than
3553      * full load-acquire (we only need "load-acquire processor consistent"),
3554      * but we choose to implement them as full LDAQ.
3555      */
3556     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557               true, a->rt, iss_sf, true);
3558     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559     return true;
3560 }
3561 
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3563 {
3564     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565     MemOp memop;
3566 
3567     /* Load with pointer authentication */
3568     if (!dc_isar_feature(aa64_pauth, s)) {
3569         return false;
3570     }
3571 
3572     if (a->rn == 31) {
3573         gen_check_sp_alignment(s);
3574     }
3575     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3576 
3577     if (s->pauth_active) {
3578         if (!a->m) {
3579             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580                                       tcg_constant_i64(0));
3581         } else {
3582             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583                                       tcg_constant_i64(0));
3584         }
3585     }
3586 
3587     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3588 
3589     memop = finalize_memop(s, MO_64);
3590 
3591     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3592     clean_addr = gen_mte_check1(s, dirty_addr, false,
3593                                 a->w || a->rn != 31, memop);
3594 
3595     tcg_rt = cpu_reg(s, a->rt);
3596     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597               /* extend */ false, /* iss_valid */ !a->w,
3598               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3599 
3600     if (a->w) {
3601         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3602     }
3603     return true;
3604 }
3605 
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3607 {
3608     TCGv_i64 clean_addr, dirty_addr;
3609     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3611 
3612     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613         return false;
3614     }
3615 
3616     if (a->rn == 31) {
3617         gen_check_sp_alignment(s);
3618     }
3619 
3620     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623     clean_addr = clean_data_tbi(s, dirty_addr);
3624 
3625     /*
3626      * Load-AcquirePC semantics; we implement as the slightly more
3627      * restrictive Load-Acquire.
3628      */
3629     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630               a->rt, iss_sf, true);
3631     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632     return true;
3633 }
3634 
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3636 {
3637     TCGv_i64 clean_addr, dirty_addr;
3638     MemOp mop = a->sz;
3639     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3640 
3641     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642         return false;
3643     }
3644 
3645     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654     clean_addr = clean_data_tbi(s, dirty_addr);
3655 
3656     /* Store-Release semantics */
3657     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659     return true;
3660 }
3661 
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3663 {
3664     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665     MemOp endian, align, mop;
3666 
3667     int total;    /* total bytes */
3668     int elements; /* elements per vector */
3669     int r;
3670     int size = a->sz;
3671 
3672     if (!a->p && a->rm != 0) {
3673         /* For non-postindexed accesses the Rm field must be 0 */
3674         return false;
3675     }
3676     if (size == 3 && !a->q && a->selem != 1) {
3677         return false;
3678     }
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     if (a->rn == 31) {
3684         gen_check_sp_alignment(s);
3685     }
3686 
3687     /* For our purposes, bytes are always little-endian.  */
3688     endian = s->be_data;
3689     if (size == 0) {
3690         endian = MO_LE;
3691     }
3692 
3693     total = a->rpt * a->selem * (a->q ? 16 : 8);
3694     tcg_rn = cpu_reg_sp(s, a->rn);
3695 
3696     /*
3697      * Issue the MTE check vs the logical repeat count, before we
3698      * promote consecutive little-endian elements below.
3699      */
3700     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701                                 finalize_memop_asimd(s, size));
3702 
3703     /*
3704      * Consecutive little-endian elements from a single register
3705      * can be promoted to a larger little-endian operation.
3706      */
3707     align = MO_ALIGN;
3708     if (a->selem == 1 && endian == MO_LE) {
3709         align = pow2_align(size);
3710         size = 3;
3711     }
3712     if (!s->align_mem) {
3713         align = 0;
3714     }
3715     mop = endian | size | align;
3716 
3717     elements = (a->q ? 16 : 8) >> size;
3718     tcg_ebytes = tcg_constant_i64(1 << size);
3719     for (r = 0; r < a->rpt; r++) {
3720         int e;
3721         for (e = 0; e < elements; e++) {
3722             int xs;
3723             for (xs = 0; xs < a->selem; xs++) {
3724                 int tt = (a->rt + r + xs) % 32;
3725                 do_vec_ld(s, tt, e, clean_addr, mop);
3726                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3727             }
3728         }
3729     }
3730 
3731     /*
3732      * For non-quad operations, setting a slice of the low 64 bits of
3733      * the register clears the high 64 bits (in the ARM ARM pseudocode
3734      * this is implicit in the fact that 'rval' is a 64 bit wide
3735      * variable).  For quad operations, we might still need to zero
3736      * the high bits of SVE.
3737      */
3738     for (r = 0; r < a->rpt * a->selem; r++) {
3739         int tt = (a->rt + r) % 32;
3740         clear_vec_high(s, a->q, tt);
3741     }
3742 
3743     if (a->p) {
3744         if (a->rm == 31) {
3745             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746         } else {
3747             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748         }
3749     }
3750     return true;
3751 }
3752 
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3754 {
3755     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756     MemOp endian, align, mop;
3757 
3758     int total;    /* total bytes */
3759     int elements; /* elements per vector */
3760     int r;
3761     int size = a->sz;
3762 
3763     if (!a->p && a->rm != 0) {
3764         /* For non-postindexed accesses the Rm field must be 0 */
3765         return false;
3766     }
3767     if (size == 3 && !a->q && a->selem != 1) {
3768         return false;
3769     }
3770     if (!fp_access_check(s)) {
3771         return true;
3772     }
3773 
3774     if (a->rn == 31) {
3775         gen_check_sp_alignment(s);
3776     }
3777 
3778     /* For our purposes, bytes are always little-endian.  */
3779     endian = s->be_data;
3780     if (size == 0) {
3781         endian = MO_LE;
3782     }
3783 
3784     total = a->rpt * a->selem * (a->q ? 16 : 8);
3785     tcg_rn = cpu_reg_sp(s, a->rn);
3786 
3787     /*
3788      * Issue the MTE check vs the logical repeat count, before we
3789      * promote consecutive little-endian elements below.
3790      */
3791     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792                                 finalize_memop_asimd(s, size));
3793 
3794     /*
3795      * Consecutive little-endian elements from a single register
3796      * can be promoted to a larger little-endian operation.
3797      */
3798     align = MO_ALIGN;
3799     if (a->selem == 1 && endian == MO_LE) {
3800         align = pow2_align(size);
3801         size = 3;
3802     }
3803     if (!s->align_mem) {
3804         align = 0;
3805     }
3806     mop = endian | size | align;
3807 
3808     elements = (a->q ? 16 : 8) >> size;
3809     tcg_ebytes = tcg_constant_i64(1 << size);
3810     for (r = 0; r < a->rpt; r++) {
3811         int e;
3812         for (e = 0; e < elements; e++) {
3813             int xs;
3814             for (xs = 0; xs < a->selem; xs++) {
3815                 int tt = (a->rt + r + xs) % 32;
3816                 do_vec_st(s, tt, e, clean_addr, mop);
3817                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3818             }
3819         }
3820     }
3821 
3822     if (a->p) {
3823         if (a->rm == 31) {
3824             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825         } else {
3826             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3827         }
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3833 {
3834     int xs, total, rt;
3835     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836     MemOp mop;
3837 
3838     if (!a->p && a->rm != 0) {
3839         return false;
3840     }
3841     if (!fp_access_check(s)) {
3842         return true;
3843     }
3844 
3845     if (a->rn == 31) {
3846         gen_check_sp_alignment(s);
3847     }
3848 
3849     total = a->selem << a->scale;
3850     tcg_rn = cpu_reg_sp(s, a->rn);
3851 
3852     mop = finalize_memop_asimd(s, a->scale);
3853     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854                                 total, mop);
3855 
3856     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858         do_vec_st(s, rt, a->index, clean_addr, mop);
3859         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3860     }
3861 
3862     if (a->p) {
3863         if (a->rm == 31) {
3864             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865         } else {
3866             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3867         }
3868     }
3869     return true;
3870 }
3871 
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3873 {
3874     int xs, total, rt;
3875     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876     MemOp mop;
3877 
3878     if (!a->p && a->rm != 0) {
3879         return false;
3880     }
3881     if (!fp_access_check(s)) {
3882         return true;
3883     }
3884 
3885     if (a->rn == 31) {
3886         gen_check_sp_alignment(s);
3887     }
3888 
3889     total = a->selem << a->scale;
3890     tcg_rn = cpu_reg_sp(s, a->rn);
3891 
3892     mop = finalize_memop_asimd(s, a->scale);
3893     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894                                 total, mop);
3895 
3896     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898         do_vec_ld(s, rt, a->index, clean_addr, mop);
3899         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3900     }
3901 
3902     if (a->p) {
3903         if (a->rm == 31) {
3904             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905         } else {
3906             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3907         }
3908     }
3909     return true;
3910 }
3911 
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3913 {
3914     int xs, total, rt;
3915     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916     MemOp mop;
3917 
3918     if (!a->p && a->rm != 0) {
3919         return false;
3920     }
3921     if (!fp_access_check(s)) {
3922         return true;
3923     }
3924 
3925     if (a->rn == 31) {
3926         gen_check_sp_alignment(s);
3927     }
3928 
3929     total = a->selem << a->scale;
3930     tcg_rn = cpu_reg_sp(s, a->rn);
3931 
3932     mop = finalize_memop_asimd(s, a->scale);
3933     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934                                 total, mop);
3935 
3936     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938         /* Load and replicate to all elements */
3939         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3940 
3941         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3945     }
3946 
3947     if (a->p) {
3948         if (a->rm == 31) {
3949             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950         } else {
3951             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3952         }
3953     }
3954     return true;
3955 }
3956 
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3958 {
3959     TCGv_i64 addr, clean_addr, tcg_rt;
3960     int size = 4 << s->dcz_blocksize;
3961 
3962     if (!dc_isar_feature(aa64_mte, s)) {
3963         return false;
3964     }
3965     if (s->current_el == 0) {
3966         return false;
3967     }
3968 
3969     if (a->rn == 31) {
3970         gen_check_sp_alignment(s);
3971     }
3972 
3973     addr = read_cpu_reg_sp(s, a->rn, true);
3974     tcg_gen_addi_i64(addr, addr, a->imm);
3975     tcg_rt = cpu_reg(s, a->rt);
3976 
3977     if (s->ata[0]) {
3978         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3979     }
3980     /*
3981      * The non-tags portion of STZGM is mostly like DC_ZVA,
3982      * except the alignment happens before the access.
3983      */
3984     clean_addr = clean_data_tbi(s, addr);
3985     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986     gen_helper_dc_zva(tcg_env, clean_addr);
3987     return true;
3988 }
3989 
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3991 {
3992     TCGv_i64 addr, clean_addr, tcg_rt;
3993 
3994     if (!dc_isar_feature(aa64_mte, s)) {
3995         return false;
3996     }
3997     if (s->current_el == 0) {
3998         return false;
3999     }
4000 
4001     if (a->rn == 31) {
4002         gen_check_sp_alignment(s);
4003     }
4004 
4005     addr = read_cpu_reg_sp(s, a->rn, true);
4006     tcg_gen_addi_i64(addr, addr, a->imm);
4007     tcg_rt = cpu_reg(s, a->rt);
4008 
4009     if (s->ata[0]) {
4010         gen_helper_stgm(tcg_env, addr, tcg_rt);
4011     } else {
4012         MMUAccessType acc = MMU_DATA_STORE;
4013         int size = 4 << s->gm_blocksize;
4014 
4015         clean_addr = clean_data_tbi(s, addr);
4016         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017         gen_probe_access(s, clean_addr, acc, size);
4018     }
4019     return true;
4020 }
4021 
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4023 {
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     if (!dc_isar_feature(aa64_mte, s)) {
4027         return false;
4028     }
4029     if (s->current_el == 0) {
4030         return false;
4031     }
4032 
4033     if (a->rn == 31) {
4034         gen_check_sp_alignment(s);
4035     }
4036 
4037     addr = read_cpu_reg_sp(s, a->rn, true);
4038     tcg_gen_addi_i64(addr, addr, a->imm);
4039     tcg_rt = cpu_reg(s, a->rt);
4040 
4041     if (s->ata[0]) {
4042         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043     } else {
4044         MMUAccessType acc = MMU_DATA_LOAD;
4045         int size = 4 << s->gm_blocksize;
4046 
4047         clean_addr = clean_data_tbi(s, addr);
4048         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049         gen_probe_access(s, clean_addr, acc, size);
4050         /* The result tags are zeros.  */
4051         tcg_gen_movi_i64(tcg_rt, 0);
4052     }
4053     return true;
4054 }
4055 
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4057 {
4058     TCGv_i64 addr, clean_addr, tcg_rt;
4059 
4060     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061         return false;
4062     }
4063 
4064     if (a->rn == 31) {
4065         gen_check_sp_alignment(s);
4066     }
4067 
4068     addr = read_cpu_reg_sp(s, a->rn, true);
4069     if (!a->p) {
4070         /* pre-index or signed offset */
4071         tcg_gen_addi_i64(addr, addr, a->imm);
4072     }
4073 
4074     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075     tcg_rt = cpu_reg(s, a->rt);
4076     if (s->ata[0]) {
4077         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078     } else {
4079         /*
4080          * Tag access disabled: we must check for aborts on the load
4081          * load from [rn+offset], and then insert a 0 tag into rt.
4082          */
4083         clean_addr = clean_data_tbi(s, addr);
4084         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4086     }
4087 
4088     if (a->w) {
4089         /* pre-index or post-index */
4090         if (a->p) {
4091             /* post-index */
4092             tcg_gen_addi_i64(addr, addr, a->imm);
4093         }
4094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4095     }
4096     return true;
4097 }
4098 
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4100 {
4101     TCGv_i64 addr, tcg_rt;
4102 
4103     if (a->rn == 31) {
4104         gen_check_sp_alignment(s);
4105     }
4106 
4107     addr = read_cpu_reg_sp(s, a->rn, true);
4108     if (!a->p) {
4109         /* pre-index or signed offset */
4110         tcg_gen_addi_i64(addr, addr, a->imm);
4111     }
4112     tcg_rt = cpu_reg_sp(s, a->rt);
4113     if (!s->ata[0]) {
4114         /*
4115          * For STG and ST2G, we need to check alignment and probe memory.
4116          * TODO: For STZG and STZ2G, we could rely on the stores below,
4117          * at least for system mode; user-only won't enforce alignment.
4118          */
4119         if (is_pair) {
4120             gen_helper_st2g_stub(tcg_env, addr);
4121         } else {
4122             gen_helper_stg_stub(tcg_env, addr);
4123         }
4124     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125         if (is_pair) {
4126             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127         } else {
4128             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4129         }
4130     } else {
4131         if (is_pair) {
4132             gen_helper_st2g(tcg_env, addr, tcg_rt);
4133         } else {
4134             gen_helper_stg(tcg_env, addr, tcg_rt);
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 zero64 = tcg_constant_i64(0);
4141         TCGv_i128 zero128 = tcg_temp_new_i128();
4142         int mem_index = get_mem_index(s);
4143         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4144 
4145         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4146 
4147         /* This is 1 or 2 atomic 16-byte operations. */
4148         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149         if (is_pair) {
4150             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4152         }
4153     }
4154 
4155     if (a->w) {
4156         /* pre-index or post-index */
4157         if (a->p) {
4158             /* post-index */
4159             tcg_gen_addi_i64(addr, addr, a->imm);
4160         }
4161         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4162     }
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4170 
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4172 
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174                    bool is_setg, SetFn fn)
4175 {
4176     int memidx;
4177     uint32_t syndrome, desc = 0;
4178 
4179     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182 
4183     /*
4184      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185      * us to pull this check before the CheckMOPSEnabled() test
4186      * (which we do in the helper function)
4187      */
4188     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189         a->rd == 31 || a->rn == 31) {
4190         return false;
4191     }
4192 
4193     memidx = get_a64_user_mem_index(s, a->unpriv);
4194 
4195     /*
4196      * We pass option_a == true, matching our implementation;
4197      * we pass wrong_option == false: helper function may set that bit.
4198      */
4199     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4201 
4202     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203         /* We may need to do MTE tag checking, so assemble the descriptor */
4204         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4208     }
4209     /* The helper function always needs the memidx even with MTE disabled */
4210     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4211 
4212     /*
4213      * The helper needs the register numbers, but since they're in
4214      * the syndrome anyway, we let it extract them from there rather
4215      * than passing in an extra three integer arguments.
4216      */
4217     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218     return true;
4219 }
4220 
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4227 
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4229 
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4231 {
4232     int rmemidx, wmemidx;
4233     uint32_t syndrome, rdesc = 0, wdesc = 0;
4234     bool wunpriv = extract32(a->options, 0, 1);
4235     bool runpriv = extract32(a->options, 1, 1);
4236 
4237     /*
4238      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239      * us to pull this check before the CheckMOPSEnabled() test
4240      * (which we do in the helper function)
4241      */
4242     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244         return false;
4245     }
4246 
4247     rmemidx = get_a64_user_mem_index(s, runpriv);
4248     wmemidx = get_a64_user_mem_index(s, wunpriv);
4249 
4250     /*
4251      * We pass option_a == true, matching our implementation;
4252      * we pass wrong_option == false: helper function may set that bit.
4253      */
4254     syndrome = syn_mop(false, false, a->options, is_epilogue,
4255                        false, true, a->rd, a->rs, a->rn);
4256 
4257     /* If we need to do MTE tag checking, assemble the descriptors */
4258     if (s->mte_active[runpriv]) {
4259         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4261     }
4262     if (s->mte_active[wunpriv]) {
4263         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4266     }
4267     /* The helper function needs these parts of the descriptor regardless */
4268     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4270 
4271     /*
4272      * The helper needs the register numbers, but since they're in
4273      * the syndrome anyway, we let it extract them from there rather
4274      * than passing in an extra three integer arguments.
4275      */
4276     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277        tcg_constant_i32(rdesc));
4278     return true;
4279 }
4280 
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4287 
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4289 
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4292 {
4293     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4296 
4297     fn(tcg_rd, tcg_rn, tcg_imm);
4298     if (!a->sf) {
4299         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4300     }
4301     return true;
4302 }
4303 
4304 /*
4305  * PC-rel. addressing
4306  */
4307 
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4309 {
4310     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311     return true;
4312 }
4313 
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4315 {
4316     int64_t offset = (int64_t)a->imm << 12;
4317 
4318     /* The page offset is ok for CF_PCREL. */
4319     offset -= s->pc_curr & 0xfff;
4320     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321     return true;
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate)
4326  */
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4331 
4332 /*
4333  * Add/subtract (immediate, with tags)
4334  */
4335 
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337                                       bool sub_op)
4338 {
4339     TCGv_i64 tcg_rn, tcg_rd;
4340     int imm;
4341 
4342     imm = a->uimm6 << LOG2_TAG_GRANULE;
4343     if (sub_op) {
4344         imm = -imm;
4345     }
4346 
4347     tcg_rn = cpu_reg_sp(s, a->rn);
4348     tcg_rd = cpu_reg_sp(s, a->rd);
4349 
4350     if (s->ata[0]) {
4351         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352                            tcg_constant_i32(imm),
4353                            tcg_constant_i32(a->uimm4));
4354     } else {
4355         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4357     }
4358     return true;
4359 }
4360 
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4363 
4364 /* The input should be a value in the bottom e bits (with higher
4365  * bits zero); returns that value replicated into every element
4366  * of size e in a 64 bit integer.
4367  */
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4369 {
4370     assert(e != 0);
4371     while (e < 64) {
4372         mask |= mask << e;
4373         e *= 2;
4374     }
4375     return mask;
4376 }
4377 
4378 /*
4379  * Logical (immediate)
4380  */
4381 
4382 /*
4383  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385  * value (ie should cause a guest UNDEF exception), and true if they are
4386  * valid, in which case the decoded bit pattern is written to result.
4387  */
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389                             unsigned int imms, unsigned int immr)
4390 {
4391     uint64_t mask;
4392     unsigned e, levels, s, r;
4393     int len;
4394 
4395     assert(immn < 2 && imms < 64 && immr < 64);
4396 
4397     /* The bit patterns we create here are 64 bit patterns which
4398      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399      * 64 bits each. Each element contains the same value: a run
4400      * of between 1 and e-1 non-zero bits, rotated within the
4401      * element by between 0 and e-1 bits.
4402      *
4403      * The element size and run length are encoded into immn (1 bit)
4404      * and imms (6 bits) as follows:
4405      * 64 bit elements: immn = 1, imms = <length of run - 1>
4406      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411      * Notice that immn = 0, imms = 11111x is the only combination
4412      * not covered by one of the above options; this is reserved.
4413      * Further, <length of run - 1> all-ones is a reserved pattern.
4414      *
4415      * In all cases the rotation is by immr % e (and immr is 6 bits).
4416      */
4417 
4418     /* First determine the element size */
4419     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420     if (len < 1) {
4421         /* This is the immn == 0, imms == 0x11111x case */
4422         return false;
4423     }
4424     e = 1 << len;
4425 
4426     levels = e - 1;
4427     s = imms & levels;
4428     r = immr & levels;
4429 
4430     if (s == levels) {
4431         /* <length of run - 1> mustn't be all-ones. */
4432         return false;
4433     }
4434 
4435     /* Create the value of one element: s+1 set bits rotated
4436      * by r within the element (which is e bits wide)...
4437      */
4438     mask = MAKE_64BIT_MASK(0, s + 1);
4439     if (r) {
4440         mask = (mask >> r) | (mask << (e - r));
4441         mask &= MAKE_64BIT_MASK(0, e);
4442     }
4443     /* ...then replicate the element over the whole 64 bit value */
4444     mask = bitfield_replicate(mask, e);
4445     *result = mask;
4446     return true;
4447 }
4448 
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4451 {
4452     TCGv_i64 tcg_rd, tcg_rn;
4453     uint64_t imm;
4454 
4455     /* Some immediate field values are reserved. */
4456     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457                                 extract32(a->dbm, 0, 6),
4458                                 extract32(a->dbm, 6, 6))) {
4459         return false;
4460     }
4461     if (!a->sf) {
4462         imm &= 0xffffffffull;
4463     }
4464 
4465     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466     tcg_rn = cpu_reg(s, a->rn);
4467 
4468     fn(tcg_rd, tcg_rn, imm);
4469     if (set_cc) {
4470         gen_logic_CC(a->sf, tcg_rd);
4471     }
4472     if (!a->sf) {
4473         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4474     }
4475     return true;
4476 }
4477 
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4482 
4483 /*
4484  * Move wide (immediate)
4485  */
4486 
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4488 {
4489     int pos = a->hw << 4;
4490     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491     return true;
4492 }
4493 
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4495 {
4496     int pos = a->hw << 4;
4497     uint64_t imm = a->imm;
4498 
4499     imm = ~(imm << pos);
4500     if (!a->sf) {
4501         imm = (uint32_t)imm;
4502     }
4503     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504     return true;
4505 }
4506 
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4508 {
4509     int pos = a->hw << 4;
4510     TCGv_i64 tcg_rd, tcg_im;
4511 
4512     tcg_rd = cpu_reg(s, a->rd);
4513     tcg_im = tcg_constant_i64(a->imm);
4514     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * Bitfield
4523  */
4524 
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4526 {
4527     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529     unsigned int bitsize = a->sf ? 64 : 32;
4530     unsigned int ri = a->immr;
4531     unsigned int si = a->imms;
4532     unsigned int pos, len;
4533 
4534     if (si >= ri) {
4535         /* Wd<s-r:0> = Wn<s:r> */
4536         len = (si - ri) + 1;
4537         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538         if (!a->sf) {
4539             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540         }
4541     } else {
4542         /* Wd<32+s-r,32-r> = Wn<s:0> */
4543         len = si + 1;
4544         pos = (bitsize - ri) & (bitsize - 1);
4545 
4546         if (len < ri) {
4547             /*
4548              * Sign extend the destination field from len to fill the
4549              * balance of the word.  Let the deposit below insert all
4550              * of those sign bits.
4551              */
4552             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553             len = ri;
4554         }
4555 
4556         /*
4557          * We start with zero, and we haven't modified any bits outside
4558          * bitsize, therefore no final zero-extension is unneeded for !sf.
4559          */
4560         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4561     }
4562     return true;
4563 }
4564 
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4566 {
4567     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569     unsigned int bitsize = a->sf ? 64 : 32;
4570     unsigned int ri = a->immr;
4571     unsigned int si = a->imms;
4572     unsigned int pos, len;
4573 
4574     tcg_rd = cpu_reg(s, a->rd);
4575     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 
4577     if (si >= ri) {
4578         /* Wd<s-r:0> = Wn<s:r> */
4579         len = (si - ri) + 1;
4580         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581     } else {
4582         /* Wd<32+s-r,32-r> = Wn<s:0> */
4583         len = si + 1;
4584         pos = (bitsize - ri) & (bitsize - 1);
4585         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4586     }
4587     return true;
4588 }
4589 
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4591 {
4592     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594     unsigned int bitsize = a->sf ? 64 : 32;
4595     unsigned int ri = a->immr;
4596     unsigned int si = a->imms;
4597     unsigned int pos, len;
4598 
4599     tcg_rd = cpu_reg(s, a->rd);
4600     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 
4602     if (si >= ri) {
4603         /* Wd<s-r:0> = Wn<s:r> */
4604         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605         len = (si - ri) + 1;
4606         pos = 0;
4607     } else {
4608         /* Wd<32+s-r,32-r> = Wn<s:0> */
4609         len = si + 1;
4610         pos = (bitsize - ri) & (bitsize - 1);
4611     }
4612 
4613     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614     if (!a->sf) {
4615         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4616     }
4617     return true;
4618 }
4619 
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4621 {
4622     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4623 
4624     tcg_rd = cpu_reg(s, a->rd);
4625 
4626     if (unlikely(a->imm == 0)) {
4627         /*
4628          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629          * so an extract from bit 0 is a special case.
4630          */
4631         if (a->sf) {
4632             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633         } else {
4634             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4635         }
4636     } else {
4637         tcg_rm = cpu_reg(s, a->rm);
4638         tcg_rn = cpu_reg(s, a->rn);
4639 
4640         if (a->sf) {
4641             /* Specialization to ROR happens in EXTRACT2.  */
4642             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643         } else {
4644             TCGv_i32 t0 = tcg_temp_new_i32();
4645 
4646             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647             if (a->rm == a->rn) {
4648                 tcg_gen_rotri_i32(t0, t0, a->imm);
4649             } else {
4650                 TCGv_i32 t1 = tcg_temp_new_i32();
4651                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4653             }
4654             tcg_gen_extu_i32_i64(tcg_rd, t0);
4655         }
4656     }
4657     return true;
4658 }
4659 
4660 /*
4661  * Cryptographic AES, SHA, SHA512
4662  */
4663 
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4668 
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4673 
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4677 
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4681 
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4689 
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4692 
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4695 
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4697 {
4698     if (!dc_isar_feature(aa64_sm3, s)) {
4699         return false;
4700     }
4701     if (fp_access_check(s)) {
4702         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705         TCGv_i32 tcg_res = tcg_temp_new_i32();
4706         unsigned vsz, dofs;
4707 
4708         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4711 
4712         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4716 
4717         /* Clear the whole register first, then store bits [127:96]. */
4718         vsz = vec_full_reg_size(s);
4719         dofs = vec_full_reg_offset(s, a->rd);
4720         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4722     }
4723     return true;
4724 }
4725 
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4727 {
4728     if (fp_access_check(s)) {
4729         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4730     }
4731     return true;
4732 }
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4737 
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4739 {
4740     if (!dc_isar_feature(aa64_sha3, s)) {
4741         return false;
4742     }
4743     if (fp_access_check(s)) {
4744         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745                      vec_full_reg_offset(s, a->rn),
4746                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4747                      vec_full_reg_size(s));
4748     }
4749     return true;
4750 }
4751 
4752 /*
4753  * Advanced SIMD copy
4754  */
4755 
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4757 {
4758     unsigned esz = ctz32(imm);
4759     if (esz <= MO_64) {
4760         *pesz = esz;
4761         *pidx = imm >> (esz + 1);
4762         return true;
4763     }
4764     return false;
4765 }
4766 
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4768 {
4769     MemOp esz;
4770     unsigned idx;
4771 
4772     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773         return false;
4774     }
4775     if (fp_access_check(s)) {
4776         /*
4777          * This instruction just extracts the specified element and
4778          * zero-extends it into the bottom of the destination register.
4779          */
4780         TCGv_i64 tmp = tcg_temp_new_i64();
4781         read_vec_element(s, tmp, a->rn, idx, esz);
4782         write_fp_dreg(s, a->rd, tmp);
4783     }
4784     return true;
4785 }
4786 
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4788 {
4789     MemOp esz;
4790     unsigned idx;
4791 
4792     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793         return false;
4794     }
4795     if (esz == MO_64 && !a->q) {
4796         return false;
4797     }
4798     if (fp_access_check(s)) {
4799         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800                              vec_reg_offset(s, a->rn, idx, esz),
4801                              a->q ? 16 : 8, vec_full_reg_size(s));
4802     }
4803     return true;
4804 }
4805 
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4807 {
4808     MemOp esz;
4809     unsigned idx;
4810 
4811     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812         return false;
4813     }
4814     if (esz == MO_64 && !a->q) {
4815         return false;
4816     }
4817     if (fp_access_check(s)) {
4818         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819                              a->q ? 16 : 8, vec_full_reg_size(s),
4820                              cpu_reg(s, a->rn));
4821     }
4822     return true;
4823 }
4824 
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4826 {
4827     MemOp esz;
4828     unsigned idx;
4829 
4830     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831         return false;
4832     }
4833     if (is_signed) {
4834         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835             return false;
4836         }
4837     } else {
4838         if (esz == MO_64 ? !a->q : a->q) {
4839             return false;
4840         }
4841     }
4842     if (fp_access_check(s)) {
4843         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845         if (is_signed && !a->q) {
4846             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847         }
4848     }
4849     return true;
4850 }
4851 
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4854 
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4856 {
4857     MemOp esz;
4858     unsigned idx;
4859 
4860     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861         return false;
4862     }
4863     if (fp_access_check(s)) {
4864         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865         clear_vec_high(s, true, a->rd);
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4871 {
4872     MemOp esz;
4873     unsigned didx, sidx;
4874 
4875     if (!decode_esz_idx(a->di, &esz, &didx)) {
4876         return false;
4877     }
4878     sidx = a->si >> esz;
4879     if (fp_access_check(s)) {
4880         TCGv_i64 tmp = tcg_temp_new_i64();
4881 
4882         read_vec_element(s, tmp, a->rn, sidx, esz);
4883         write_vec_element(s, tmp, a->rd, didx, esz);
4884 
4885         /* INS is considered a 128-bit write for SVE. */
4886         clear_vec_high(s, true, a->rd);
4887     }
4888     return true;
4889 }
4890 
4891 /*
4892  * Advanced SIMD three same
4893  */
4894 
4895 typedef struct FPScalar {
4896     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4900 
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4902 {
4903     switch (a->esz) {
4904     case MO_64:
4905         if (fp_access_check(s)) {
4906             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909             write_fp_dreg(s, a->rd, t0);
4910         }
4911         break;
4912     case MO_32:
4913         if (fp_access_check(s)) {
4914             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917             write_fp_sreg(s, a->rd, t0);
4918         }
4919         break;
4920     case MO_16:
4921         if (!dc_isar_feature(aa64_fp16, s)) {
4922             return false;
4923         }
4924         if (fp_access_check(s)) {
4925             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928             write_fp_sreg(s, a->rd, t0);
4929         }
4930         break;
4931     default:
4932         return false;
4933     }
4934     return true;
4935 }
4936 
4937 static const FPScalar f_scalar_fadd = {
4938     gen_helper_vfp_addh,
4939     gen_helper_vfp_adds,
4940     gen_helper_vfp_addd,
4941 };
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4943 
4944 static const FPScalar f_scalar_fsub = {
4945     gen_helper_vfp_subh,
4946     gen_helper_vfp_subs,
4947     gen_helper_vfp_subd,
4948 };
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4950 
4951 static const FPScalar f_scalar_fdiv = {
4952     gen_helper_vfp_divh,
4953     gen_helper_vfp_divs,
4954     gen_helper_vfp_divd,
4955 };
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4957 
4958 static const FPScalar f_scalar_fmul = {
4959     gen_helper_vfp_mulh,
4960     gen_helper_vfp_muls,
4961     gen_helper_vfp_muld,
4962 };
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4964 
4965 static const FPScalar f_scalar_fmax = {
4966     gen_helper_advsimd_maxh,
4967     gen_helper_vfp_maxs,
4968     gen_helper_vfp_maxd,
4969 };
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4971 
4972 static const FPScalar f_scalar_fmin = {
4973     gen_helper_advsimd_minh,
4974     gen_helper_vfp_mins,
4975     gen_helper_vfp_mind,
4976 };
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4978 
4979 static const FPScalar f_scalar_fmaxnm = {
4980     gen_helper_advsimd_maxnumh,
4981     gen_helper_vfp_maxnums,
4982     gen_helper_vfp_maxnumd,
4983 };
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4985 
4986 static const FPScalar f_scalar_fminnm = {
4987     gen_helper_advsimd_minnumh,
4988     gen_helper_vfp_minnums,
4989     gen_helper_vfp_minnumd,
4990 };
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4992 
4993 static const FPScalar f_scalar_fmulx = {
4994     gen_helper_advsimd_mulxh,
4995     gen_helper_vfp_mulxs,
4996     gen_helper_vfp_mulxd,
4997 };
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4999 
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5001 {
5002     gen_helper_vfp_mulh(d, n, m, s);
5003     gen_vfp_negh(d, d);
5004 }
5005 
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5007 {
5008     gen_helper_vfp_muls(d, n, m, s);
5009     gen_vfp_negs(d, d);
5010 }
5011 
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5013 {
5014     gen_helper_vfp_muld(d, n, m, s);
5015     gen_vfp_negd(d, d);
5016 }
5017 
5018 static const FPScalar f_scalar_fnmul = {
5019     gen_fnmul_h,
5020     gen_fnmul_s,
5021     gen_fnmul_d,
5022 };
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5024 
5025 static const FPScalar f_scalar_fcmeq = {
5026     gen_helper_advsimd_ceq_f16,
5027     gen_helper_neon_ceq_f32,
5028     gen_helper_neon_ceq_f64,
5029 };
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5031 
5032 static const FPScalar f_scalar_fcmge = {
5033     gen_helper_advsimd_cge_f16,
5034     gen_helper_neon_cge_f32,
5035     gen_helper_neon_cge_f64,
5036 };
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5038 
5039 static const FPScalar f_scalar_fcmgt = {
5040     gen_helper_advsimd_cgt_f16,
5041     gen_helper_neon_cgt_f32,
5042     gen_helper_neon_cgt_f64,
5043 };
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5045 
5046 static const FPScalar f_scalar_facge = {
5047     gen_helper_advsimd_acge_f16,
5048     gen_helper_neon_acge_f32,
5049     gen_helper_neon_acge_f64,
5050 };
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5052 
5053 static const FPScalar f_scalar_facgt = {
5054     gen_helper_advsimd_acgt_f16,
5055     gen_helper_neon_acgt_f32,
5056     gen_helper_neon_acgt_f64,
5057 };
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5059 
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5061 {
5062     gen_helper_vfp_subh(d, n, m, s);
5063     gen_vfp_absh(d, d);
5064 }
5065 
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5067 {
5068     gen_helper_vfp_subs(d, n, m, s);
5069     gen_vfp_abss(d, d);
5070 }
5071 
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5073 {
5074     gen_helper_vfp_subd(d, n, m, s);
5075     gen_vfp_absd(d, d);
5076 }
5077 
5078 static const FPScalar f_scalar_fabd = {
5079     gen_fabd_h,
5080     gen_fabd_s,
5081     gen_fabd_d,
5082 };
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5084 
5085 static const FPScalar f_scalar_frecps = {
5086     gen_helper_recpsf_f16,
5087     gen_helper_recpsf_f32,
5088     gen_helper_recpsf_f64,
5089 };
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5091 
5092 static const FPScalar f_scalar_frsqrts = {
5093     gen_helper_rsqrtsf_f16,
5094     gen_helper_rsqrtsf_f32,
5095     gen_helper_rsqrtsf_f64,
5096 };
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5098 
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100                 MemOp sgn_n, MemOp sgn_m,
5101                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5103 {
5104     TCGv_i64 t0, t1, t2, qc;
5105     MemOp esz = a->esz;
5106 
5107     if (!fp_access_check(s)) {
5108         return true;
5109     }
5110 
5111     t0 = tcg_temp_new_i64();
5112     t1 = tcg_temp_new_i64();
5113     t2 = tcg_temp_new_i64();
5114     qc = tcg_temp_new_i64();
5115     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5118 
5119     if (esz == MO_64) {
5120         gen_d(t0, qc, t1, t2);
5121     } else {
5122         gen_bhs(t0, qc, t1, t2, esz);
5123         tcg_gen_ext_i64(t0, t0, esz);
5124     }
5125 
5126     write_fp_dreg(s, a->rd, t0);
5127     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128     return true;
5129 }
5130 
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5137 
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5140 {
5141     if (fp_access_check(s)) {
5142         TCGv_i64 t0 = tcg_temp_new_i64();
5143         TCGv_i64 t1 = tcg_temp_new_i64();
5144 
5145         read_vec_element(s, t0, a->rn, 0, MO_64);
5146         read_vec_element(s, t1, a->rm, 0, MO_64);
5147         fn(t0, t0, t1);
5148         write_fp_dreg(s, a->rd, t0);
5149     }
5150     return true;
5151 }
5152 
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5159 
5160 typedef struct ENVScalar2 {
5161     NeonGenTwoOpEnvFn *gen_bhs[3];
5162     NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5164 
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5166 {
5167     if (!fp_access_check(s)) {
5168         return true;
5169     }
5170     if (a->esz == MO_64) {
5171         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173         f->gen_d(t0, tcg_env, t0, t1);
5174         write_fp_dreg(s, a->rd, t0);
5175     } else {
5176         TCGv_i32 t0 = tcg_temp_new_i32();
5177         TCGv_i32 t1 = tcg_temp_new_i32();
5178 
5179         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182         write_fp_sreg(s, a->rd, t0);
5183     }
5184     return true;
5185 }
5186 
5187 static const ENVScalar2 f_scalar_sqshl = {
5188     { gen_helper_neon_qshl_s8,
5189       gen_helper_neon_qshl_s16,
5190       gen_helper_neon_qshl_s32 },
5191     gen_helper_neon_qshl_s64,
5192 };
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5194 
5195 static const ENVScalar2 f_scalar_uqshl = {
5196     { gen_helper_neon_qshl_u8,
5197       gen_helper_neon_qshl_u16,
5198       gen_helper_neon_qshl_u32 },
5199     gen_helper_neon_qshl_u64,
5200 };
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5202 
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204     { gen_helper_neon_qrshl_s8,
5205       gen_helper_neon_qrshl_s16,
5206       gen_helper_neon_qrshl_s32 },
5207     gen_helper_neon_qrshl_s64,
5208 };
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5210 
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212     { gen_helper_neon_qrshl_u8,
5213       gen_helper_neon_qrshl_u16,
5214       gen_helper_neon_qrshl_u32 },
5215     gen_helper_neon_qrshl_u64,
5216 };
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5218 
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220                               const ENVScalar2 *f)
5221 {
5222     if (a->esz == MO_16 || a->esz == MO_32) {
5223         return do_env_scalar2(s, a, f);
5224     }
5225     return false;
5226 }
5227 
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5230 };
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5232 
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5235 };
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5237 
5238 typedef struct ENVScalar3 {
5239     NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5241 
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243                               const ENVScalar3 *f)
5244 {
5245     TCGv_i32 t0, t1, t2;
5246 
5247     if (a->esz != MO_16 && a->esz != MO_32) {
5248         return false;
5249     }
5250     if (!fp_access_check(s)) {
5251         return true;
5252     }
5253 
5254     t0 = tcg_temp_new_i32();
5255     t1 = tcg_temp_new_i32();
5256     t2 = tcg_temp_new_i32();
5257     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261     write_fp_sreg(s, a->rd, t0);
5262     return true;
5263 }
5264 
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5267 };
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5269 
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5272 };
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5274 
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5276 {
5277     if (fp_access_check(s)) {
5278         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281         write_fp_dreg(s, a->rd, t0);
5282     }
5283     return true;
5284 }
5285 
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5292 
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5294                           gen_helper_gvec_3_ptr * const fns[3])
5295 {
5296     MemOp esz = a->esz;
5297 
5298     switch (esz) {
5299     case MO_64:
5300         if (!a->q) {
5301             return false;
5302         }
5303         break;
5304     case MO_32:
5305         break;
5306     case MO_16:
5307         if (!dc_isar_feature(aa64_fp16, s)) {
5308             return false;
5309         }
5310         break;
5311     default:
5312         return false;
5313     }
5314     if (fp_access_check(s)) {
5315         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316                           esz == MO_16, 0, fns[esz - 1]);
5317     }
5318     return true;
5319 }
5320 
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322     gen_helper_gvec_fadd_h,
5323     gen_helper_gvec_fadd_s,
5324     gen_helper_gvec_fadd_d,
5325 };
5326 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5327 
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329     gen_helper_gvec_fsub_h,
5330     gen_helper_gvec_fsub_s,
5331     gen_helper_gvec_fsub_d,
5332 };
5333 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5334 
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336     gen_helper_gvec_fdiv_h,
5337     gen_helper_gvec_fdiv_s,
5338     gen_helper_gvec_fdiv_d,
5339 };
5340 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5341 
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343     gen_helper_gvec_fmul_h,
5344     gen_helper_gvec_fmul_s,
5345     gen_helper_gvec_fmul_d,
5346 };
5347 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5348 
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350     gen_helper_gvec_fmax_h,
5351     gen_helper_gvec_fmax_s,
5352     gen_helper_gvec_fmax_d,
5353 };
5354 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5355 
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357     gen_helper_gvec_fmin_h,
5358     gen_helper_gvec_fmin_s,
5359     gen_helper_gvec_fmin_d,
5360 };
5361 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5362 
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364     gen_helper_gvec_fmaxnum_h,
5365     gen_helper_gvec_fmaxnum_s,
5366     gen_helper_gvec_fmaxnum_d,
5367 };
5368 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5369 
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371     gen_helper_gvec_fminnum_h,
5372     gen_helper_gvec_fminnum_s,
5373     gen_helper_gvec_fminnum_d,
5374 };
5375 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5376 
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378     gen_helper_gvec_fmulx_h,
5379     gen_helper_gvec_fmulx_s,
5380     gen_helper_gvec_fmulx_d,
5381 };
5382 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5383 
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385     gen_helper_gvec_vfma_h,
5386     gen_helper_gvec_vfma_s,
5387     gen_helper_gvec_vfma_d,
5388 };
5389 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5390 
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392     gen_helper_gvec_vfms_h,
5393     gen_helper_gvec_vfms_s,
5394     gen_helper_gvec_vfms_d,
5395 };
5396 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5397 
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399     gen_helper_gvec_fceq_h,
5400     gen_helper_gvec_fceq_s,
5401     gen_helper_gvec_fceq_d,
5402 };
5403 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5404 
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406     gen_helper_gvec_fcge_h,
5407     gen_helper_gvec_fcge_s,
5408     gen_helper_gvec_fcge_d,
5409 };
5410 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5411 
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413     gen_helper_gvec_fcgt_h,
5414     gen_helper_gvec_fcgt_s,
5415     gen_helper_gvec_fcgt_d,
5416 };
5417 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5418 
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420     gen_helper_gvec_facge_h,
5421     gen_helper_gvec_facge_s,
5422     gen_helper_gvec_facge_d,
5423 };
5424 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5425 
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427     gen_helper_gvec_facgt_h,
5428     gen_helper_gvec_facgt_s,
5429     gen_helper_gvec_facgt_d,
5430 };
5431 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5432 
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434     gen_helper_gvec_fabd_h,
5435     gen_helper_gvec_fabd_s,
5436     gen_helper_gvec_fabd_d,
5437 };
5438 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5439 
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441     gen_helper_gvec_recps_h,
5442     gen_helper_gvec_recps_s,
5443     gen_helper_gvec_recps_d,
5444 };
5445 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5446 
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448     gen_helper_gvec_rsqrts_h,
5449     gen_helper_gvec_rsqrts_s,
5450     gen_helper_gvec_rsqrts_d,
5451 };
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5453 
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455     gen_helper_gvec_faddp_h,
5456     gen_helper_gvec_faddp_s,
5457     gen_helper_gvec_faddp_d,
5458 };
5459 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5460 
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462     gen_helper_gvec_fmaxp_h,
5463     gen_helper_gvec_fmaxp_s,
5464     gen_helper_gvec_fmaxp_d,
5465 };
5466 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5467 
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469     gen_helper_gvec_fminp_h,
5470     gen_helper_gvec_fminp_s,
5471     gen_helper_gvec_fminp_d,
5472 };
5473 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5474 
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476     gen_helper_gvec_fmaxnump_h,
5477     gen_helper_gvec_fmaxnump_s,
5478     gen_helper_gvec_fmaxnump_d,
5479 };
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5481 
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483     gen_helper_gvec_fminnump_h,
5484     gen_helper_gvec_fminnump_s,
5485     gen_helper_gvec_fminnump_d,
5486 };
5487 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5488 
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5490 {
5491     if (fp_access_check(s)) {
5492         int data = (is_2 << 1) | is_s;
5493         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494                            vec_full_reg_offset(s, a->rn),
5495                            vec_full_reg_offset(s, a->rm), tcg_env,
5496                            a->q ? 16 : 8, vec_full_reg_size(s),
5497                            data, gen_helper_gvec_fmlal_a64);
5498     }
5499     return true;
5500 }
5501 
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5506 
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5512 
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5518 
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5520 {
5521     if (fp_access_check(s)) {
5522         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5523     }
5524     return true;
5525 }
5526 
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5530 
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5537 
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5546 
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5567 
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5569 {
5570     if (a->esz == MO_64 && !a->q) {
5571         return false;
5572     }
5573     if (fp_access_check(s)) {
5574         tcg_gen_gvec_cmp(cond, a->esz,
5575                          vec_full_reg_offset(s, a->rd),
5576                          vec_full_reg_offset(s, a->rn),
5577                          vec_full_reg_offset(s, a->rm),
5578                          a->q ? 16 : 8, vec_full_reg_size(s));
5579     }
5580     return true;
5581 }
5582 
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5589 
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5594 
5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5596                           gen_helper_gvec_4 *fn)
5597 {
5598     if (fp_access_check(s)) {
5599         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5600     }
5601     return true;
5602 }
5603 
5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot)
5608 
5609 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
5610 {
5611     if (!dc_isar_feature(aa64_bf16, s)) {
5612         return false;
5613     }
5614     if (fp_access_check(s)) {
5615         /* Q bit selects BFMLALB vs BFMLALT. */
5616         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q,
5617                           gen_helper_gvec_bfmlal);
5618     }
5619     return true;
5620 }
5621 
5622 /*
5623  * Advanced SIMD scalar/vector x indexed element
5624  */
5625 
5626 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5627 {
5628     switch (a->esz) {
5629     case MO_64:
5630         if (fp_access_check(s)) {
5631             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5632             TCGv_i64 t1 = tcg_temp_new_i64();
5633 
5634             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5635             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5636             write_fp_dreg(s, a->rd, t0);
5637         }
5638         break;
5639     case MO_32:
5640         if (fp_access_check(s)) {
5641             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5642             TCGv_i32 t1 = tcg_temp_new_i32();
5643 
5644             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5645             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5646             write_fp_sreg(s, a->rd, t0);
5647         }
5648         break;
5649     case MO_16:
5650         if (!dc_isar_feature(aa64_fp16, s)) {
5651             return false;
5652         }
5653         if (fp_access_check(s)) {
5654             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5655             TCGv_i32 t1 = tcg_temp_new_i32();
5656 
5657             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5658             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5659             write_fp_sreg(s, a->rd, t0);
5660         }
5661         break;
5662     default:
5663         g_assert_not_reached();
5664     }
5665     return true;
5666 }
5667 
5668 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5669 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5670 
5671 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5672 {
5673     switch (a->esz) {
5674     case MO_64:
5675         if (fp_access_check(s)) {
5676             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5677             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5678             TCGv_i64 t2 = tcg_temp_new_i64();
5679 
5680             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5681             if (neg) {
5682                 gen_vfp_negd(t1, t1);
5683             }
5684             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5685             write_fp_dreg(s, a->rd, t0);
5686         }
5687         break;
5688     case MO_32:
5689         if (fp_access_check(s)) {
5690             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5691             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5692             TCGv_i32 t2 = tcg_temp_new_i32();
5693 
5694             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5695             if (neg) {
5696                 gen_vfp_negs(t1, t1);
5697             }
5698             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5699             write_fp_sreg(s, a->rd, t0);
5700         }
5701         break;
5702     case MO_16:
5703         if (!dc_isar_feature(aa64_fp16, s)) {
5704             return false;
5705         }
5706         if (fp_access_check(s)) {
5707             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5708             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5709             TCGv_i32 t2 = tcg_temp_new_i32();
5710 
5711             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5712             if (neg) {
5713                 gen_vfp_negh(t1, t1);
5714             }
5715             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5716                                        fpstatus_ptr(FPST_FPCR_F16));
5717             write_fp_sreg(s, a->rd, t0);
5718         }
5719         break;
5720     default:
5721         g_assert_not_reached();
5722     }
5723     return true;
5724 }
5725 
5726 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5727 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5728 
5729 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
5730                                   const ENVScalar2 *f)
5731 {
5732     if (a->esz < MO_16 || a->esz > MO_32) {
5733         return false;
5734     }
5735     if (fp_access_check(s)) {
5736         TCGv_i32 t0 = tcg_temp_new_i32();
5737         TCGv_i32 t1 = tcg_temp_new_i32();
5738 
5739         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5740         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5741         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5742         write_fp_sreg(s, a->rd, t0);
5743     }
5744     return true;
5745 }
5746 
5747 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
5748 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
5749 
5750 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
5751                                   const ENVScalar3 *f)
5752 {
5753     if (a->esz < MO_16 || a->esz > MO_32) {
5754         return false;
5755     }
5756     if (fp_access_check(s)) {
5757         TCGv_i32 t0 = tcg_temp_new_i32();
5758         TCGv_i32 t1 = tcg_temp_new_i32();
5759         TCGv_i32 t2 = tcg_temp_new_i32();
5760 
5761         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5762         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5763         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5764         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5765         write_fp_sreg(s, a->rd, t0);
5766     }
5767     return true;
5768 }
5769 
5770 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
5771 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
5772 
5773 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5774                               gen_helper_gvec_3_ptr * const fns[3])
5775 {
5776     MemOp esz = a->esz;
5777 
5778     switch (esz) {
5779     case MO_64:
5780         if (!a->q) {
5781             return false;
5782         }
5783         break;
5784     case MO_32:
5785         break;
5786     case MO_16:
5787         if (!dc_isar_feature(aa64_fp16, s)) {
5788             return false;
5789         }
5790         break;
5791     default:
5792         g_assert_not_reached();
5793     }
5794     if (fp_access_check(s)) {
5795         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5796                           esz == MO_16, a->idx, fns[esz - 1]);
5797     }
5798     return true;
5799 }
5800 
5801 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5802     gen_helper_gvec_fmul_idx_h,
5803     gen_helper_gvec_fmul_idx_s,
5804     gen_helper_gvec_fmul_idx_d,
5805 };
5806 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5807 
5808 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5809     gen_helper_gvec_fmulx_idx_h,
5810     gen_helper_gvec_fmulx_idx_s,
5811     gen_helper_gvec_fmulx_idx_d,
5812 };
5813 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5814 
5815 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5816 {
5817     static gen_helper_gvec_4_ptr * const fns[3] = {
5818         gen_helper_gvec_fmla_idx_h,
5819         gen_helper_gvec_fmla_idx_s,
5820         gen_helper_gvec_fmla_idx_d,
5821     };
5822     MemOp esz = a->esz;
5823 
5824     switch (esz) {
5825     case MO_64:
5826         if (!a->q) {
5827             return false;
5828         }
5829         break;
5830     case MO_32:
5831         break;
5832     case MO_16:
5833         if (!dc_isar_feature(aa64_fp16, s)) {
5834             return false;
5835         }
5836         break;
5837     default:
5838         g_assert_not_reached();
5839     }
5840     if (fp_access_check(s)) {
5841         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5842                           esz == MO_16, (a->idx << 1) | neg,
5843                           fns[esz - 1]);
5844     }
5845     return true;
5846 }
5847 
5848 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5849 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5850 
5851 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5852 {
5853     if (fp_access_check(s)) {
5854         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5855         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5856                            vec_full_reg_offset(s, a->rn),
5857                            vec_full_reg_offset(s, a->rm), tcg_env,
5858                            a->q ? 16 : 8, vec_full_reg_size(s),
5859                            data, gen_helper_gvec_fmlal_idx_a64);
5860     }
5861     return true;
5862 }
5863 
5864 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5865 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5866 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5867 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5868 
5869 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5870                                gen_helper_gvec_3 * const fns[2])
5871 {
5872     assert(a->esz == MO_16 || a->esz == MO_32);
5873     if (fp_access_check(s)) {
5874         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
5875     }
5876     return true;
5877 }
5878 
5879 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
5880     gen_helper_gvec_mul_idx_h,
5881     gen_helper_gvec_mul_idx_s,
5882 };
5883 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
5884 
5885 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
5886 {
5887     static gen_helper_gvec_4 * const fns[2][2] = {
5888         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
5889         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
5890     };
5891 
5892     assert(a->esz == MO_16 || a->esz == MO_32);
5893     if (fp_access_check(s)) {
5894         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
5895                          a->idx, fns[a->esz - 1][sub]);
5896     }
5897     return true;
5898 }
5899 
5900 TRANS(MLA_vi, do_mla_vector_idx, a, false)
5901 TRANS(MLS_vi, do_mla_vector_idx, a, true)
5902 
5903 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
5904                                   gen_helper_gvec_4 * const fns[2])
5905 {
5906     assert(a->esz == MO_16 || a->esz == MO_32);
5907     if (fp_access_check(s)) {
5908         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
5909                            vec_full_reg_offset(s, a->rn),
5910                            vec_full_reg_offset(s, a->rm),
5911                            offsetof(CPUARMState, vfp.qc),
5912                            a->q ? 16 : 8, vec_full_reg_size(s),
5913                            a->idx, fns[a->esz - 1]);
5914     }
5915     return true;
5916 }
5917 
5918 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
5919     gen_helper_neon_sqdmulh_idx_h,
5920     gen_helper_neon_sqdmulh_idx_s,
5921 };
5922 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
5923 
5924 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
5925     gen_helper_neon_sqrdmulh_idx_h,
5926     gen_helper_neon_sqrdmulh_idx_s,
5927 };
5928 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
5929 
5930 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
5931     gen_helper_neon_sqrdmlah_idx_h,
5932     gen_helper_neon_sqrdmlah_idx_s,
5933 };
5934 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5935            f_vector_idx_sqrdmlah)
5936 
5937 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
5938     gen_helper_neon_sqrdmlsh_idx_h,
5939     gen_helper_neon_sqrdmlsh_idx_s,
5940 };
5941 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5942            f_vector_idx_sqrdmlsh)
5943 
5944 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
5945                               gen_helper_gvec_4 *fn)
5946 {
5947     if (fp_access_check(s)) {
5948         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
5949     }
5950     return true;
5951 }
5952 
5953 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
5954 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
5955 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5956            gen_helper_gvec_sudot_idx_b)
5957 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5958            gen_helper_gvec_usdot_idx_b)
5959 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a,
5960            gen_helper_gvec_bfdot_idx)
5961 
5962 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
5963 {
5964     if (!dc_isar_feature(aa64_bf16, s)) {
5965         return false;
5966     }
5967     if (fp_access_check(s)) {
5968         /* Q bit selects BFMLALB vs BFMLALT. */
5969         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0,
5970                           (a->idx << 1) | a->q,
5971                           gen_helper_gvec_bfmlal_idx);
5972     }
5973     return true;
5974 }
5975 
5976 /*
5977  * Advanced SIMD scalar pairwise
5978  */
5979 
5980 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5981 {
5982     switch (a->esz) {
5983     case MO_64:
5984         if (fp_access_check(s)) {
5985             TCGv_i64 t0 = tcg_temp_new_i64();
5986             TCGv_i64 t1 = tcg_temp_new_i64();
5987 
5988             read_vec_element(s, t0, a->rn, 0, MO_64);
5989             read_vec_element(s, t1, a->rn, 1, MO_64);
5990             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5991             write_fp_dreg(s, a->rd, t0);
5992         }
5993         break;
5994     case MO_32:
5995         if (fp_access_check(s)) {
5996             TCGv_i32 t0 = tcg_temp_new_i32();
5997             TCGv_i32 t1 = tcg_temp_new_i32();
5998 
5999             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6000             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6001             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6002             write_fp_sreg(s, a->rd, t0);
6003         }
6004         break;
6005     case MO_16:
6006         if (!dc_isar_feature(aa64_fp16, s)) {
6007             return false;
6008         }
6009         if (fp_access_check(s)) {
6010             TCGv_i32 t0 = tcg_temp_new_i32();
6011             TCGv_i32 t1 = tcg_temp_new_i32();
6012 
6013             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6014             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6015             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6016             write_fp_sreg(s, a->rd, t0);
6017         }
6018         break;
6019     default:
6020         g_assert_not_reached();
6021     }
6022     return true;
6023 }
6024 
6025 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6026 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6027 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6028 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6029 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6030 
6031 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6032 {
6033     if (fp_access_check(s)) {
6034         TCGv_i64 t0 = tcg_temp_new_i64();
6035         TCGv_i64 t1 = tcg_temp_new_i64();
6036 
6037         read_vec_element(s, t0, a->rn, 0, MO_64);
6038         read_vec_element(s, t1, a->rn, 1, MO_64);
6039         tcg_gen_add_i64(t0, t0, t1);
6040         write_fp_dreg(s, a->rd, t0);
6041     }
6042     return true;
6043 }
6044 
6045 /*
6046  * Floating-point conditional select
6047  */
6048 
6049 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6050 {
6051     TCGv_i64 t_true, t_false;
6052     DisasCompare64 c;
6053 
6054     switch (a->esz) {
6055     case MO_32:
6056     case MO_64:
6057         break;
6058     case MO_16:
6059         if (!dc_isar_feature(aa64_fp16, s)) {
6060             return false;
6061         }
6062         break;
6063     default:
6064         return false;
6065     }
6066 
6067     if (!fp_access_check(s)) {
6068         return true;
6069     }
6070 
6071     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6072     t_true = tcg_temp_new_i64();
6073     t_false = tcg_temp_new_i64();
6074     read_vec_element(s, t_true, a->rn, 0, a->esz);
6075     read_vec_element(s, t_false, a->rm, 0, a->esz);
6076 
6077     a64_test_cc(&c, a->cond);
6078     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6079                         t_true, t_false);
6080 
6081     /*
6082      * Note that sregs & hregs write back zeros to the high bits,
6083      * and we've already done the zero-extension.
6084      */
6085     write_fp_dreg(s, a->rd, t_true);
6086     return true;
6087 }
6088 
6089 /*
6090  * Floating-point data-processing (3 source)
6091  */
6092 
6093 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6094 {
6095     TCGv_ptr fpst;
6096 
6097     /*
6098      * These are fused multiply-add.  Note that doing the negations here
6099      * as separate steps is correct: an input NaN should come out with
6100      * its sign bit flipped if it is a negated-input.
6101      */
6102     switch (a->esz) {
6103     case MO_64:
6104         if (fp_access_check(s)) {
6105             TCGv_i64 tn = read_fp_dreg(s, a->rn);
6106             TCGv_i64 tm = read_fp_dreg(s, a->rm);
6107             TCGv_i64 ta = read_fp_dreg(s, a->ra);
6108 
6109             if (neg_a) {
6110                 gen_vfp_negd(ta, ta);
6111             }
6112             if (neg_n) {
6113                 gen_vfp_negd(tn, tn);
6114             }
6115             fpst = fpstatus_ptr(FPST_FPCR);
6116             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6117             write_fp_dreg(s, a->rd, ta);
6118         }
6119         break;
6120 
6121     case MO_32:
6122         if (fp_access_check(s)) {
6123             TCGv_i32 tn = read_fp_sreg(s, a->rn);
6124             TCGv_i32 tm = read_fp_sreg(s, a->rm);
6125             TCGv_i32 ta = read_fp_sreg(s, a->ra);
6126 
6127             if (neg_a) {
6128                 gen_vfp_negs(ta, ta);
6129             }
6130             if (neg_n) {
6131                 gen_vfp_negs(tn, tn);
6132             }
6133             fpst = fpstatus_ptr(FPST_FPCR);
6134             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6135             write_fp_sreg(s, a->rd, ta);
6136         }
6137         break;
6138 
6139     case MO_16:
6140         if (!dc_isar_feature(aa64_fp16, s)) {
6141             return false;
6142         }
6143         if (fp_access_check(s)) {
6144             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6145             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6146             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6147 
6148             if (neg_a) {
6149                 gen_vfp_negh(ta, ta);
6150             }
6151             if (neg_n) {
6152                 gen_vfp_negh(tn, tn);
6153             }
6154             fpst = fpstatus_ptr(FPST_FPCR_F16);
6155             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6156             write_fp_sreg(s, a->rd, ta);
6157         }
6158         break;
6159 
6160     default:
6161         return false;
6162     }
6163     return true;
6164 }
6165 
6166 TRANS(FMADD, do_fmadd, a, false, false)
6167 TRANS(FNMADD, do_fmadd, a, true, true)
6168 TRANS(FMSUB, do_fmadd, a, false, true)
6169 TRANS(FNMSUB, do_fmadd, a, true, false)
6170 
6171 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6172  * Note that it is the caller's responsibility to ensure that the
6173  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6174  * mandated semantics for out of range shifts.
6175  */
6176 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6177                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6178 {
6179     switch (shift_type) {
6180     case A64_SHIFT_TYPE_LSL:
6181         tcg_gen_shl_i64(dst, src, shift_amount);
6182         break;
6183     case A64_SHIFT_TYPE_LSR:
6184         tcg_gen_shr_i64(dst, src, shift_amount);
6185         break;
6186     case A64_SHIFT_TYPE_ASR:
6187         if (!sf) {
6188             tcg_gen_ext32s_i64(dst, src);
6189         }
6190         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6191         break;
6192     case A64_SHIFT_TYPE_ROR:
6193         if (sf) {
6194             tcg_gen_rotr_i64(dst, src, shift_amount);
6195         } else {
6196             TCGv_i32 t0, t1;
6197             t0 = tcg_temp_new_i32();
6198             t1 = tcg_temp_new_i32();
6199             tcg_gen_extrl_i64_i32(t0, src);
6200             tcg_gen_extrl_i64_i32(t1, shift_amount);
6201             tcg_gen_rotr_i32(t0, t0, t1);
6202             tcg_gen_extu_i32_i64(dst, t0);
6203         }
6204         break;
6205     default:
6206         assert(FALSE); /* all shift types should be handled */
6207         break;
6208     }
6209 
6210     if (!sf) { /* zero extend final result */
6211         tcg_gen_ext32u_i64(dst, dst);
6212     }
6213 }
6214 
6215 /* Shift a TCGv src by immediate, put result in dst.
6216  * The shift amount must be in range (this should always be true as the
6217  * relevant instructions will UNDEF on bad shift immediates).
6218  */
6219 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6220                           enum a64_shift_type shift_type, unsigned int shift_i)
6221 {
6222     assert(shift_i < (sf ? 64 : 32));
6223 
6224     if (shift_i == 0) {
6225         tcg_gen_mov_i64(dst, src);
6226     } else {
6227         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6228     }
6229 }
6230 
6231 /* Logical (shifted register)
6232  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
6233  * +----+-----+-----------+-------+---+------+--------+------+------+
6234  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
6235  * +----+-----+-----------+-------+---+------+--------+------+------+
6236  */
6237 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6238 {
6239     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6240     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6241 
6242     sf = extract32(insn, 31, 1);
6243     opc = extract32(insn, 29, 2);
6244     shift_type = extract32(insn, 22, 2);
6245     invert = extract32(insn, 21, 1);
6246     rm = extract32(insn, 16, 5);
6247     shift_amount = extract32(insn, 10, 6);
6248     rn = extract32(insn, 5, 5);
6249     rd = extract32(insn, 0, 5);
6250 
6251     if (!sf && (shift_amount & (1 << 5))) {
6252         unallocated_encoding(s);
6253         return;
6254     }
6255 
6256     tcg_rd = cpu_reg(s, rd);
6257 
6258     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6259         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6260          * register-register MOV and MVN, so it is worth special casing.
6261          */
6262         tcg_rm = cpu_reg(s, rm);
6263         if (invert) {
6264             tcg_gen_not_i64(tcg_rd, tcg_rm);
6265             if (!sf) {
6266                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6267             }
6268         } else {
6269             if (sf) {
6270                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6271             } else {
6272                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6273             }
6274         }
6275         return;
6276     }
6277 
6278     tcg_rm = read_cpu_reg(s, rm, sf);
6279 
6280     if (shift_amount) {
6281         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6282     }
6283 
6284     tcg_rn = cpu_reg(s, rn);
6285 
6286     switch (opc | (invert << 2)) {
6287     case 0: /* AND */
6288     case 3: /* ANDS */
6289         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6290         break;
6291     case 1: /* ORR */
6292         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6293         break;
6294     case 2: /* EOR */
6295         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6296         break;
6297     case 4: /* BIC */
6298     case 7: /* BICS */
6299         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6300         break;
6301     case 5: /* ORN */
6302         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6303         break;
6304     case 6: /* EON */
6305         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6306         break;
6307     default:
6308         assert(FALSE);
6309         break;
6310     }
6311 
6312     if (!sf) {
6313         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6314     }
6315 
6316     if (opc == 3) {
6317         gen_logic_CC(sf, tcg_rd);
6318     }
6319 }
6320 
6321 /*
6322  * Add/subtract (extended register)
6323  *
6324  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
6325  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6326  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
6327  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6328  *
6329  *  sf: 0 -> 32bit, 1 -> 64bit
6330  *  op: 0 -> add  , 1 -> sub
6331  *   S: 1 -> set flags
6332  * opt: 00
6333  * option: extension type (see DecodeRegExtend)
6334  * imm3: optional shift to Rm
6335  *
6336  * Rd = Rn + LSL(extend(Rm), amount)
6337  */
6338 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6339 {
6340     int rd = extract32(insn, 0, 5);
6341     int rn = extract32(insn, 5, 5);
6342     int imm3 = extract32(insn, 10, 3);
6343     int option = extract32(insn, 13, 3);
6344     int rm = extract32(insn, 16, 5);
6345     int opt = extract32(insn, 22, 2);
6346     bool setflags = extract32(insn, 29, 1);
6347     bool sub_op = extract32(insn, 30, 1);
6348     bool sf = extract32(insn, 31, 1);
6349 
6350     TCGv_i64 tcg_rm, tcg_rn; /* temps */
6351     TCGv_i64 tcg_rd;
6352     TCGv_i64 tcg_result;
6353 
6354     if (imm3 > 4 || opt != 0) {
6355         unallocated_encoding(s);
6356         return;
6357     }
6358 
6359     /* non-flag setting ops may use SP */
6360     if (!setflags) {
6361         tcg_rd = cpu_reg_sp(s, rd);
6362     } else {
6363         tcg_rd = cpu_reg(s, rd);
6364     }
6365     tcg_rn = read_cpu_reg_sp(s, rn, sf);
6366 
6367     tcg_rm = read_cpu_reg(s, rm, sf);
6368     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6369 
6370     tcg_result = tcg_temp_new_i64();
6371 
6372     if (!setflags) {
6373         if (sub_op) {
6374             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6375         } else {
6376             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6377         }
6378     } else {
6379         if (sub_op) {
6380             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6381         } else {
6382             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6383         }
6384     }
6385 
6386     if (sf) {
6387         tcg_gen_mov_i64(tcg_rd, tcg_result);
6388     } else {
6389         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6390     }
6391 }
6392 
6393 /*
6394  * Add/subtract (shifted register)
6395  *
6396  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
6397  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6398  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
6399  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6400  *
6401  *    sf: 0 -> 32bit, 1 -> 64bit
6402  *    op: 0 -> add  , 1 -> sub
6403  *     S: 1 -> set flags
6404  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6405  *  imm6: Shift amount to apply to Rm before the add/sub
6406  */
6407 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6408 {
6409     int rd = extract32(insn, 0, 5);
6410     int rn = extract32(insn, 5, 5);
6411     int imm6 = extract32(insn, 10, 6);
6412     int rm = extract32(insn, 16, 5);
6413     int shift_type = extract32(insn, 22, 2);
6414     bool setflags = extract32(insn, 29, 1);
6415     bool sub_op = extract32(insn, 30, 1);
6416     bool sf = extract32(insn, 31, 1);
6417 
6418     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6419     TCGv_i64 tcg_rn, tcg_rm;
6420     TCGv_i64 tcg_result;
6421 
6422     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6423         unallocated_encoding(s);
6424         return;
6425     }
6426 
6427     tcg_rn = read_cpu_reg(s, rn, sf);
6428     tcg_rm = read_cpu_reg(s, rm, sf);
6429 
6430     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6431 
6432     tcg_result = tcg_temp_new_i64();
6433 
6434     if (!setflags) {
6435         if (sub_op) {
6436             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6437         } else {
6438             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6439         }
6440     } else {
6441         if (sub_op) {
6442             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6443         } else {
6444             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6445         }
6446     }
6447 
6448     if (sf) {
6449         tcg_gen_mov_i64(tcg_rd, tcg_result);
6450     } else {
6451         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6452     }
6453 }
6454 
6455 /* Data-processing (3 source)
6456  *
6457  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
6458  *  +--+------+-----------+------+------+----+------+------+------+
6459  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6460  *  +--+------+-----------+------+------+----+------+------+------+
6461  */
6462 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6463 {
6464     int rd = extract32(insn, 0, 5);
6465     int rn = extract32(insn, 5, 5);
6466     int ra = extract32(insn, 10, 5);
6467     int rm = extract32(insn, 16, 5);
6468     int op_id = (extract32(insn, 29, 3) << 4) |
6469         (extract32(insn, 21, 3) << 1) |
6470         extract32(insn, 15, 1);
6471     bool sf = extract32(insn, 31, 1);
6472     bool is_sub = extract32(op_id, 0, 1);
6473     bool is_high = extract32(op_id, 2, 1);
6474     bool is_signed = false;
6475     TCGv_i64 tcg_op1;
6476     TCGv_i64 tcg_op2;
6477     TCGv_i64 tcg_tmp;
6478 
6479     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6480     switch (op_id) {
6481     case 0x42: /* SMADDL */
6482     case 0x43: /* SMSUBL */
6483     case 0x44: /* SMULH */
6484         is_signed = true;
6485         break;
6486     case 0x0: /* MADD (32bit) */
6487     case 0x1: /* MSUB (32bit) */
6488     case 0x40: /* MADD (64bit) */
6489     case 0x41: /* MSUB (64bit) */
6490     case 0x4a: /* UMADDL */
6491     case 0x4b: /* UMSUBL */
6492     case 0x4c: /* UMULH */
6493         break;
6494     default:
6495         unallocated_encoding(s);
6496         return;
6497     }
6498 
6499     if (is_high) {
6500         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6501         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6502         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6503         TCGv_i64 tcg_rm = cpu_reg(s, rm);
6504 
6505         if (is_signed) {
6506             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6507         } else {
6508             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6509         }
6510         return;
6511     }
6512 
6513     tcg_op1 = tcg_temp_new_i64();
6514     tcg_op2 = tcg_temp_new_i64();
6515     tcg_tmp = tcg_temp_new_i64();
6516 
6517     if (op_id < 0x42) {
6518         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6519         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6520     } else {
6521         if (is_signed) {
6522             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6523             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6524         } else {
6525             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6526             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6527         }
6528     }
6529 
6530     if (ra == 31 && !is_sub) {
6531         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6532         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6533     } else {
6534         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6535         if (is_sub) {
6536             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6537         } else {
6538             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6539         }
6540     }
6541 
6542     if (!sf) {
6543         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6544     }
6545 }
6546 
6547 /* Add/subtract (with carry)
6548  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
6549  * +--+--+--+------------------------+------+-------------+------+-----+
6550  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
6551  * +--+--+--+------------------------+------+-------------+------+-----+
6552  */
6553 
6554 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6555 {
6556     unsigned int sf, op, setflags, rm, rn, rd;
6557     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6558 
6559     sf = extract32(insn, 31, 1);
6560     op = extract32(insn, 30, 1);
6561     setflags = extract32(insn, 29, 1);
6562     rm = extract32(insn, 16, 5);
6563     rn = extract32(insn, 5, 5);
6564     rd = extract32(insn, 0, 5);
6565 
6566     tcg_rd = cpu_reg(s, rd);
6567     tcg_rn = cpu_reg(s, rn);
6568 
6569     if (op) {
6570         tcg_y = tcg_temp_new_i64();
6571         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6572     } else {
6573         tcg_y = cpu_reg(s, rm);
6574     }
6575 
6576     if (setflags) {
6577         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6578     } else {
6579         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6580     }
6581 }
6582 
6583 /*
6584  * Rotate right into flags
6585  *  31 30 29                21       15          10      5  4      0
6586  * +--+--+--+-----------------+--------+-----------+------+--+------+
6587  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
6588  * +--+--+--+-----------------+--------+-----------+------+--+------+
6589  */
6590 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6591 {
6592     int mask = extract32(insn, 0, 4);
6593     int o2 = extract32(insn, 4, 1);
6594     int rn = extract32(insn, 5, 5);
6595     int imm6 = extract32(insn, 15, 6);
6596     int sf_op_s = extract32(insn, 29, 3);
6597     TCGv_i64 tcg_rn;
6598     TCGv_i32 nzcv;
6599 
6600     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6601         unallocated_encoding(s);
6602         return;
6603     }
6604 
6605     tcg_rn = read_cpu_reg(s, rn, 1);
6606     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6607 
6608     nzcv = tcg_temp_new_i32();
6609     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6610 
6611     if (mask & 8) { /* N */
6612         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6613     }
6614     if (mask & 4) { /* Z */
6615         tcg_gen_not_i32(cpu_ZF, nzcv);
6616         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6617     }
6618     if (mask & 2) { /* C */
6619         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6620     }
6621     if (mask & 1) { /* V */
6622         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6623     }
6624 }
6625 
6626 /*
6627  * Evaluate into flags
6628  *  31 30 29                21        15   14        10      5  4      0
6629  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6630  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6631  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6632  */
6633 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6634 {
6635     int o3_mask = extract32(insn, 0, 5);
6636     int rn = extract32(insn, 5, 5);
6637     int o2 = extract32(insn, 15, 6);
6638     int sz = extract32(insn, 14, 1);
6639     int sf_op_s = extract32(insn, 29, 3);
6640     TCGv_i32 tmp;
6641     int shift;
6642 
6643     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6644         !dc_isar_feature(aa64_condm_4, s)) {
6645         unallocated_encoding(s);
6646         return;
6647     }
6648     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6649 
6650     tmp = tcg_temp_new_i32();
6651     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6652     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6653     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6654     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6655     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6656 }
6657 
6658 /* Conditional compare (immediate / register)
6659  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6660  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6661  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6662  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6663  *        [1]                             y                [0]       [0]
6664  */
6665 static void disas_cc(DisasContext *s, uint32_t insn)
6666 {
6667     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6668     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6669     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6670     DisasCompare c;
6671 
6672     if (!extract32(insn, 29, 1)) {
6673         unallocated_encoding(s);
6674         return;
6675     }
6676     if (insn & (1 << 10 | 1 << 4)) {
6677         unallocated_encoding(s);
6678         return;
6679     }
6680     sf = extract32(insn, 31, 1);
6681     op = extract32(insn, 30, 1);
6682     is_imm = extract32(insn, 11, 1);
6683     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6684     cond = extract32(insn, 12, 4);
6685     rn = extract32(insn, 5, 5);
6686     nzcv = extract32(insn, 0, 4);
6687 
6688     /* Set T0 = !COND.  */
6689     tcg_t0 = tcg_temp_new_i32();
6690     arm_test_cc(&c, cond);
6691     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6692 
6693     /* Load the arguments for the new comparison.  */
6694     if (is_imm) {
6695         tcg_y = tcg_temp_new_i64();
6696         tcg_gen_movi_i64(tcg_y, y);
6697     } else {
6698         tcg_y = cpu_reg(s, y);
6699     }
6700     tcg_rn = cpu_reg(s, rn);
6701 
6702     /* Set the flags for the new comparison.  */
6703     tcg_tmp = tcg_temp_new_i64();
6704     if (op) {
6705         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6706     } else {
6707         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6708     }
6709 
6710     /* If COND was false, force the flags to #nzcv.  Compute two masks
6711      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6712      * For tcg hosts that support ANDC, we can make do with just T1.
6713      * In either case, allow the tcg optimizer to delete any unused mask.
6714      */
6715     tcg_t1 = tcg_temp_new_i32();
6716     tcg_t2 = tcg_temp_new_i32();
6717     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6718     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6719 
6720     if (nzcv & 8) { /* N */
6721         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6722     } else {
6723         if (TCG_TARGET_HAS_andc_i32) {
6724             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6725         } else {
6726             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6727         }
6728     }
6729     if (nzcv & 4) { /* Z */
6730         if (TCG_TARGET_HAS_andc_i32) {
6731             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6732         } else {
6733             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6734         }
6735     } else {
6736         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6737     }
6738     if (nzcv & 2) { /* C */
6739         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6740     } else {
6741         if (TCG_TARGET_HAS_andc_i32) {
6742             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6743         } else {
6744             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6745         }
6746     }
6747     if (nzcv & 1) { /* V */
6748         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6749     } else {
6750         if (TCG_TARGET_HAS_andc_i32) {
6751             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6752         } else {
6753             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6754         }
6755     }
6756 }
6757 
6758 /* Conditional select
6759  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6760  * +----+----+---+-----------------+------+------+-----+------+------+
6761  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6762  * +----+----+---+-----------------+------+------+-----+------+------+
6763  */
6764 static void disas_cond_select(DisasContext *s, uint32_t insn)
6765 {
6766     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6767     TCGv_i64 tcg_rd, zero;
6768     DisasCompare64 c;
6769 
6770     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6771         /* S == 1 or op2<1> == 1 */
6772         unallocated_encoding(s);
6773         return;
6774     }
6775     sf = extract32(insn, 31, 1);
6776     else_inv = extract32(insn, 30, 1);
6777     rm = extract32(insn, 16, 5);
6778     cond = extract32(insn, 12, 4);
6779     else_inc = extract32(insn, 10, 1);
6780     rn = extract32(insn, 5, 5);
6781     rd = extract32(insn, 0, 5);
6782 
6783     tcg_rd = cpu_reg(s, rd);
6784 
6785     a64_test_cc(&c, cond);
6786     zero = tcg_constant_i64(0);
6787 
6788     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6789         /* CSET & CSETM.  */
6790         if (else_inv) {
6791             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6792                                    tcg_rd, c.value, zero);
6793         } else {
6794             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6795                                 tcg_rd, c.value, zero);
6796         }
6797     } else {
6798         TCGv_i64 t_true = cpu_reg(s, rn);
6799         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6800         if (else_inv && else_inc) {
6801             tcg_gen_neg_i64(t_false, t_false);
6802         } else if (else_inv) {
6803             tcg_gen_not_i64(t_false, t_false);
6804         } else if (else_inc) {
6805             tcg_gen_addi_i64(t_false, t_false, 1);
6806         }
6807         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6808     }
6809 
6810     if (!sf) {
6811         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6812     }
6813 }
6814 
6815 static void handle_clz(DisasContext *s, unsigned int sf,
6816                        unsigned int rn, unsigned int rd)
6817 {
6818     TCGv_i64 tcg_rd, tcg_rn;
6819     tcg_rd = cpu_reg(s, rd);
6820     tcg_rn = cpu_reg(s, rn);
6821 
6822     if (sf) {
6823         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6824     } else {
6825         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6826         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6827         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6828         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6829     }
6830 }
6831 
6832 static void handle_cls(DisasContext *s, unsigned int sf,
6833                        unsigned int rn, unsigned int rd)
6834 {
6835     TCGv_i64 tcg_rd, tcg_rn;
6836     tcg_rd = cpu_reg(s, rd);
6837     tcg_rn = cpu_reg(s, rn);
6838 
6839     if (sf) {
6840         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6841     } else {
6842         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6843         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6844         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6845         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6846     }
6847 }
6848 
6849 static void handle_rbit(DisasContext *s, unsigned int sf,
6850                         unsigned int rn, unsigned int rd)
6851 {
6852     TCGv_i64 tcg_rd, tcg_rn;
6853     tcg_rd = cpu_reg(s, rd);
6854     tcg_rn = cpu_reg(s, rn);
6855 
6856     if (sf) {
6857         gen_helper_rbit64(tcg_rd, tcg_rn);
6858     } else {
6859         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6860         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6861         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6862         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6863     }
6864 }
6865 
6866 /* REV with sf==1, opcode==3 ("REV64") */
6867 static void handle_rev64(DisasContext *s, unsigned int sf,
6868                          unsigned int rn, unsigned int rd)
6869 {
6870     if (!sf) {
6871         unallocated_encoding(s);
6872         return;
6873     }
6874     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6875 }
6876 
6877 /* REV with sf==0, opcode==2
6878  * REV32 (sf==1, opcode==2)
6879  */
6880 static void handle_rev32(DisasContext *s, unsigned int sf,
6881                          unsigned int rn, unsigned int rd)
6882 {
6883     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6884     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6885 
6886     if (sf) {
6887         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6888         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6889     } else {
6890         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6891     }
6892 }
6893 
6894 /* REV16 (opcode==1) */
6895 static void handle_rev16(DisasContext *s, unsigned int sf,
6896                          unsigned int rn, unsigned int rd)
6897 {
6898     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6899     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6900     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6901     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6902 
6903     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6904     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6905     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6906     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6907     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6908 }
6909 
6910 /* Data-processing (1 source)
6911  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6912  * +----+---+---+-----------------+---------+--------+------+------+
6913  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6914  * +----+---+---+-----------------+---------+--------+------+------+
6915  */
6916 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6917 {
6918     unsigned int sf, opcode, opcode2, rn, rd;
6919     TCGv_i64 tcg_rd;
6920 
6921     if (extract32(insn, 29, 1)) {
6922         unallocated_encoding(s);
6923         return;
6924     }
6925 
6926     sf = extract32(insn, 31, 1);
6927     opcode = extract32(insn, 10, 6);
6928     opcode2 = extract32(insn, 16, 5);
6929     rn = extract32(insn, 5, 5);
6930     rd = extract32(insn, 0, 5);
6931 
6932 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6933 
6934     switch (MAP(sf, opcode2, opcode)) {
6935     case MAP(0, 0x00, 0x00): /* RBIT */
6936     case MAP(1, 0x00, 0x00):
6937         handle_rbit(s, sf, rn, rd);
6938         break;
6939     case MAP(0, 0x00, 0x01): /* REV16 */
6940     case MAP(1, 0x00, 0x01):
6941         handle_rev16(s, sf, rn, rd);
6942         break;
6943     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6944     case MAP(1, 0x00, 0x02):
6945         handle_rev32(s, sf, rn, rd);
6946         break;
6947     case MAP(1, 0x00, 0x03): /* REV64 */
6948         handle_rev64(s, sf, rn, rd);
6949         break;
6950     case MAP(0, 0x00, 0x04): /* CLZ */
6951     case MAP(1, 0x00, 0x04):
6952         handle_clz(s, sf, rn, rd);
6953         break;
6954     case MAP(0, 0x00, 0x05): /* CLS */
6955     case MAP(1, 0x00, 0x05):
6956         handle_cls(s, sf, rn, rd);
6957         break;
6958     case MAP(1, 0x01, 0x00): /* PACIA */
6959         if (s->pauth_active) {
6960             tcg_rd = cpu_reg(s, rd);
6961             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6962         } else if (!dc_isar_feature(aa64_pauth, s)) {
6963             goto do_unallocated;
6964         }
6965         break;
6966     case MAP(1, 0x01, 0x01): /* PACIB */
6967         if (s->pauth_active) {
6968             tcg_rd = cpu_reg(s, rd);
6969             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6970         } else if (!dc_isar_feature(aa64_pauth, s)) {
6971             goto do_unallocated;
6972         }
6973         break;
6974     case MAP(1, 0x01, 0x02): /* PACDA */
6975         if (s->pauth_active) {
6976             tcg_rd = cpu_reg(s, rd);
6977             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6978         } else if (!dc_isar_feature(aa64_pauth, s)) {
6979             goto do_unallocated;
6980         }
6981         break;
6982     case MAP(1, 0x01, 0x03): /* PACDB */
6983         if (s->pauth_active) {
6984             tcg_rd = cpu_reg(s, rd);
6985             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6986         } else if (!dc_isar_feature(aa64_pauth, s)) {
6987             goto do_unallocated;
6988         }
6989         break;
6990     case MAP(1, 0x01, 0x04): /* AUTIA */
6991         if (s->pauth_active) {
6992             tcg_rd = cpu_reg(s, rd);
6993             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6994         } else if (!dc_isar_feature(aa64_pauth, s)) {
6995             goto do_unallocated;
6996         }
6997         break;
6998     case MAP(1, 0x01, 0x05): /* AUTIB */
6999         if (s->pauth_active) {
7000             tcg_rd = cpu_reg(s, rd);
7001             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7002         } else if (!dc_isar_feature(aa64_pauth, s)) {
7003             goto do_unallocated;
7004         }
7005         break;
7006     case MAP(1, 0x01, 0x06): /* AUTDA */
7007         if (s->pauth_active) {
7008             tcg_rd = cpu_reg(s, rd);
7009             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7010         } else if (!dc_isar_feature(aa64_pauth, s)) {
7011             goto do_unallocated;
7012         }
7013         break;
7014     case MAP(1, 0x01, 0x07): /* AUTDB */
7015         if (s->pauth_active) {
7016             tcg_rd = cpu_reg(s, rd);
7017             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7018         } else if (!dc_isar_feature(aa64_pauth, s)) {
7019             goto do_unallocated;
7020         }
7021         break;
7022     case MAP(1, 0x01, 0x08): /* PACIZA */
7023         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7024             goto do_unallocated;
7025         } else if (s->pauth_active) {
7026             tcg_rd = cpu_reg(s, rd);
7027             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7028         }
7029         break;
7030     case MAP(1, 0x01, 0x09): /* PACIZB */
7031         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7032             goto do_unallocated;
7033         } else if (s->pauth_active) {
7034             tcg_rd = cpu_reg(s, rd);
7035             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7036         }
7037         break;
7038     case MAP(1, 0x01, 0x0a): /* PACDZA */
7039         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7040             goto do_unallocated;
7041         } else if (s->pauth_active) {
7042             tcg_rd = cpu_reg(s, rd);
7043             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7044         }
7045         break;
7046     case MAP(1, 0x01, 0x0b): /* PACDZB */
7047         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7048             goto do_unallocated;
7049         } else if (s->pauth_active) {
7050             tcg_rd = cpu_reg(s, rd);
7051             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7052         }
7053         break;
7054     case MAP(1, 0x01, 0x0c): /* AUTIZA */
7055         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7056             goto do_unallocated;
7057         } else if (s->pauth_active) {
7058             tcg_rd = cpu_reg(s, rd);
7059             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7060         }
7061         break;
7062     case MAP(1, 0x01, 0x0d): /* AUTIZB */
7063         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7064             goto do_unallocated;
7065         } else if (s->pauth_active) {
7066             tcg_rd = cpu_reg(s, rd);
7067             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7068         }
7069         break;
7070     case MAP(1, 0x01, 0x0e): /* AUTDZA */
7071         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7072             goto do_unallocated;
7073         } else if (s->pauth_active) {
7074             tcg_rd = cpu_reg(s, rd);
7075             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7076         }
7077         break;
7078     case MAP(1, 0x01, 0x0f): /* AUTDZB */
7079         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7080             goto do_unallocated;
7081         } else if (s->pauth_active) {
7082             tcg_rd = cpu_reg(s, rd);
7083             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7084         }
7085         break;
7086     case MAP(1, 0x01, 0x10): /* XPACI */
7087         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7088             goto do_unallocated;
7089         } else if (s->pauth_active) {
7090             tcg_rd = cpu_reg(s, rd);
7091             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7092         }
7093         break;
7094     case MAP(1, 0x01, 0x11): /* XPACD */
7095         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7096             goto do_unallocated;
7097         } else if (s->pauth_active) {
7098             tcg_rd = cpu_reg(s, rd);
7099             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7100         }
7101         break;
7102     default:
7103     do_unallocated:
7104         unallocated_encoding(s);
7105         break;
7106     }
7107 
7108 #undef MAP
7109 }
7110 
7111 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7112                        unsigned int rm, unsigned int rn, unsigned int rd)
7113 {
7114     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7115     tcg_rd = cpu_reg(s, rd);
7116 
7117     if (!sf && is_signed) {
7118         tcg_n = tcg_temp_new_i64();
7119         tcg_m = tcg_temp_new_i64();
7120         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7121         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7122     } else {
7123         tcg_n = read_cpu_reg(s, rn, sf);
7124         tcg_m = read_cpu_reg(s, rm, sf);
7125     }
7126 
7127     if (is_signed) {
7128         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7129     } else {
7130         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7131     }
7132 
7133     if (!sf) { /* zero extend final result */
7134         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7135     }
7136 }
7137 
7138 /* LSLV, LSRV, ASRV, RORV */
7139 static void handle_shift_reg(DisasContext *s,
7140                              enum a64_shift_type shift_type, unsigned int sf,
7141                              unsigned int rm, unsigned int rn, unsigned int rd)
7142 {
7143     TCGv_i64 tcg_shift = tcg_temp_new_i64();
7144     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7145     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7146 
7147     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7148     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7149 }
7150 
7151 /* CRC32[BHWX], CRC32C[BHWX] */
7152 static void handle_crc32(DisasContext *s,
7153                          unsigned int sf, unsigned int sz, bool crc32c,
7154                          unsigned int rm, unsigned int rn, unsigned int rd)
7155 {
7156     TCGv_i64 tcg_acc, tcg_val;
7157     TCGv_i32 tcg_bytes;
7158 
7159     if (!dc_isar_feature(aa64_crc32, s)
7160         || (sf == 1 && sz != 3)
7161         || (sf == 0 && sz == 3)) {
7162         unallocated_encoding(s);
7163         return;
7164     }
7165 
7166     if (sz == 3) {
7167         tcg_val = cpu_reg(s, rm);
7168     } else {
7169         uint64_t mask;
7170         switch (sz) {
7171         case 0:
7172             mask = 0xFF;
7173             break;
7174         case 1:
7175             mask = 0xFFFF;
7176             break;
7177         case 2:
7178             mask = 0xFFFFFFFF;
7179             break;
7180         default:
7181             g_assert_not_reached();
7182         }
7183         tcg_val = tcg_temp_new_i64();
7184         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7185     }
7186 
7187     tcg_acc = cpu_reg(s, rn);
7188     tcg_bytes = tcg_constant_i32(1 << sz);
7189 
7190     if (crc32c) {
7191         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7192     } else {
7193         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7194     }
7195 }
7196 
7197 /* Data-processing (2 source)
7198  *   31   30  29 28             21 20  16 15    10 9    5 4    0
7199  * +----+---+---+-----------------+------+--------+------+------+
7200  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
7201  * +----+---+---+-----------------+------+--------+------+------+
7202  */
7203 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7204 {
7205     unsigned int sf, rm, opcode, rn, rd, setflag;
7206     sf = extract32(insn, 31, 1);
7207     setflag = extract32(insn, 29, 1);
7208     rm = extract32(insn, 16, 5);
7209     opcode = extract32(insn, 10, 6);
7210     rn = extract32(insn, 5, 5);
7211     rd = extract32(insn, 0, 5);
7212 
7213     if (setflag && opcode != 0) {
7214         unallocated_encoding(s);
7215         return;
7216     }
7217 
7218     switch (opcode) {
7219     case 0: /* SUBP(S) */
7220         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7221             goto do_unallocated;
7222         } else {
7223             TCGv_i64 tcg_n, tcg_m, tcg_d;
7224 
7225             tcg_n = read_cpu_reg_sp(s, rn, true);
7226             tcg_m = read_cpu_reg_sp(s, rm, true);
7227             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7228             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7229             tcg_d = cpu_reg(s, rd);
7230 
7231             if (setflag) {
7232                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7233             } else {
7234                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7235             }
7236         }
7237         break;
7238     case 2: /* UDIV */
7239         handle_div(s, false, sf, rm, rn, rd);
7240         break;
7241     case 3: /* SDIV */
7242         handle_div(s, true, sf, rm, rn, rd);
7243         break;
7244     case 4: /* IRG */
7245         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7246             goto do_unallocated;
7247         }
7248         if (s->ata[0]) {
7249             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7250                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
7251         } else {
7252             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7253                                              cpu_reg_sp(s, rn));
7254         }
7255         break;
7256     case 5: /* GMI */
7257         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7258             goto do_unallocated;
7259         } else {
7260             TCGv_i64 t = tcg_temp_new_i64();
7261 
7262             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7263             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7264             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7265         }
7266         break;
7267     case 8: /* LSLV */
7268         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7269         break;
7270     case 9: /* LSRV */
7271         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7272         break;
7273     case 10: /* ASRV */
7274         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7275         break;
7276     case 11: /* RORV */
7277         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7278         break;
7279     case 12: /* PACGA */
7280         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7281             goto do_unallocated;
7282         }
7283         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7284                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
7285         break;
7286     case 16:
7287     case 17:
7288     case 18:
7289     case 19:
7290     case 20:
7291     case 21:
7292     case 22:
7293     case 23: /* CRC32 */
7294     {
7295         int sz = extract32(opcode, 0, 2);
7296         bool crc32c = extract32(opcode, 2, 1);
7297         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7298         break;
7299     }
7300     default:
7301     do_unallocated:
7302         unallocated_encoding(s);
7303         break;
7304     }
7305 }
7306 
7307 /*
7308  * Data processing - register
7309  *  31  30 29  28      25    21  20  16      10         0
7310  * +--+---+--+---+-------+-----+-------+-------+---------+
7311  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
7312  * +--+---+--+---+-------+-----+-------+-------+---------+
7313  */
7314 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7315 {
7316     int op0 = extract32(insn, 30, 1);
7317     int op1 = extract32(insn, 28, 1);
7318     int op2 = extract32(insn, 21, 4);
7319     int op3 = extract32(insn, 10, 6);
7320 
7321     if (!op1) {
7322         if (op2 & 8) {
7323             if (op2 & 1) {
7324                 /* Add/sub (extended register) */
7325                 disas_add_sub_ext_reg(s, insn);
7326             } else {
7327                 /* Add/sub (shifted register) */
7328                 disas_add_sub_reg(s, insn);
7329             }
7330         } else {
7331             /* Logical (shifted register) */
7332             disas_logic_reg(s, insn);
7333         }
7334         return;
7335     }
7336 
7337     switch (op2) {
7338     case 0x0:
7339         switch (op3) {
7340         case 0x00: /* Add/subtract (with carry) */
7341             disas_adc_sbc(s, insn);
7342             break;
7343 
7344         case 0x01: /* Rotate right into flags */
7345         case 0x21:
7346             disas_rotate_right_into_flags(s, insn);
7347             break;
7348 
7349         case 0x02: /* Evaluate into flags */
7350         case 0x12:
7351         case 0x22:
7352         case 0x32:
7353             disas_evaluate_into_flags(s, insn);
7354             break;
7355 
7356         default:
7357             goto do_unallocated;
7358         }
7359         break;
7360 
7361     case 0x2: /* Conditional compare */
7362         disas_cc(s, insn); /* both imm and reg forms */
7363         break;
7364 
7365     case 0x4: /* Conditional select */
7366         disas_cond_select(s, insn);
7367         break;
7368 
7369     case 0x6: /* Data-processing */
7370         if (op0) {    /* (1 source) */
7371             disas_data_proc_1src(s, insn);
7372         } else {      /* (2 source) */
7373             disas_data_proc_2src(s, insn);
7374         }
7375         break;
7376     case 0x8 ... 0xf: /* (3 source) */
7377         disas_data_proc_3src(s, insn);
7378         break;
7379 
7380     default:
7381     do_unallocated:
7382         unallocated_encoding(s);
7383         break;
7384     }
7385 }
7386 
7387 static void handle_fp_compare(DisasContext *s, int size,
7388                               unsigned int rn, unsigned int rm,
7389                               bool cmp_with_zero, bool signal_all_nans)
7390 {
7391     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7392     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7393 
7394     if (size == MO_64) {
7395         TCGv_i64 tcg_vn, tcg_vm;
7396 
7397         tcg_vn = read_fp_dreg(s, rn);
7398         if (cmp_with_zero) {
7399             tcg_vm = tcg_constant_i64(0);
7400         } else {
7401             tcg_vm = read_fp_dreg(s, rm);
7402         }
7403         if (signal_all_nans) {
7404             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7405         } else {
7406             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7407         }
7408     } else {
7409         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7410         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7411 
7412         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7413         if (cmp_with_zero) {
7414             tcg_gen_movi_i32(tcg_vm, 0);
7415         } else {
7416             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7417         }
7418 
7419         switch (size) {
7420         case MO_32:
7421             if (signal_all_nans) {
7422                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7423             } else {
7424                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7425             }
7426             break;
7427         case MO_16:
7428             if (signal_all_nans) {
7429                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7430             } else {
7431                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7432             }
7433             break;
7434         default:
7435             g_assert_not_reached();
7436         }
7437     }
7438 
7439     gen_set_nzcv(tcg_flags);
7440 }
7441 
7442 /* Floating point compare
7443  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
7444  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7445  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
7446  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7447  */
7448 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7449 {
7450     unsigned int mos, type, rm, op, rn, opc, op2r;
7451     int size;
7452 
7453     mos = extract32(insn, 29, 3);
7454     type = extract32(insn, 22, 2);
7455     rm = extract32(insn, 16, 5);
7456     op = extract32(insn, 14, 2);
7457     rn = extract32(insn, 5, 5);
7458     opc = extract32(insn, 3, 2);
7459     op2r = extract32(insn, 0, 3);
7460 
7461     if (mos || op || op2r) {
7462         unallocated_encoding(s);
7463         return;
7464     }
7465 
7466     switch (type) {
7467     case 0:
7468         size = MO_32;
7469         break;
7470     case 1:
7471         size = MO_64;
7472         break;
7473     case 3:
7474         size = MO_16;
7475         if (dc_isar_feature(aa64_fp16, s)) {
7476             break;
7477         }
7478         /* fallthru */
7479     default:
7480         unallocated_encoding(s);
7481         return;
7482     }
7483 
7484     if (!fp_access_check(s)) {
7485         return;
7486     }
7487 
7488     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7489 }
7490 
7491 /* Floating point conditional compare
7492  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
7493  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7494  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
7495  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7496  */
7497 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7498 {
7499     unsigned int mos, type, rm, cond, rn, op, nzcv;
7500     TCGLabel *label_continue = NULL;
7501     int size;
7502 
7503     mos = extract32(insn, 29, 3);
7504     type = extract32(insn, 22, 2);
7505     rm = extract32(insn, 16, 5);
7506     cond = extract32(insn, 12, 4);
7507     rn = extract32(insn, 5, 5);
7508     op = extract32(insn, 4, 1);
7509     nzcv = extract32(insn, 0, 4);
7510 
7511     if (mos) {
7512         unallocated_encoding(s);
7513         return;
7514     }
7515 
7516     switch (type) {
7517     case 0:
7518         size = MO_32;
7519         break;
7520     case 1:
7521         size = MO_64;
7522         break;
7523     case 3:
7524         size = MO_16;
7525         if (dc_isar_feature(aa64_fp16, s)) {
7526             break;
7527         }
7528         /* fallthru */
7529     default:
7530         unallocated_encoding(s);
7531         return;
7532     }
7533 
7534     if (!fp_access_check(s)) {
7535         return;
7536     }
7537 
7538     if (cond < 0x0e) { /* not always */
7539         TCGLabel *label_match = gen_new_label();
7540         label_continue = gen_new_label();
7541         arm_gen_test_cc(cond, label_match);
7542         /* nomatch: */
7543         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7544         tcg_gen_br(label_continue);
7545         gen_set_label(label_match);
7546     }
7547 
7548     handle_fp_compare(s, size, rn, rm, false, op);
7549 
7550     if (cond < 0x0e) {
7551         gen_set_label(label_continue);
7552     }
7553 }
7554 
7555 /* Floating-point data-processing (1 source) - half precision */
7556 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7557 {
7558     TCGv_ptr fpst = NULL;
7559     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7560     TCGv_i32 tcg_res = tcg_temp_new_i32();
7561 
7562     switch (opcode) {
7563     case 0x0: /* FMOV */
7564         tcg_gen_mov_i32(tcg_res, tcg_op);
7565         break;
7566     case 0x1: /* FABS */
7567         gen_vfp_absh(tcg_res, tcg_op);
7568         break;
7569     case 0x2: /* FNEG */
7570         gen_vfp_negh(tcg_res, tcg_op);
7571         break;
7572     case 0x3: /* FSQRT */
7573         fpst = fpstatus_ptr(FPST_FPCR_F16);
7574         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7575         break;
7576     case 0x8: /* FRINTN */
7577     case 0x9: /* FRINTP */
7578     case 0xa: /* FRINTM */
7579     case 0xb: /* FRINTZ */
7580     case 0xc: /* FRINTA */
7581     {
7582         TCGv_i32 tcg_rmode;
7583 
7584         fpst = fpstatus_ptr(FPST_FPCR_F16);
7585         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7586         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7587         gen_restore_rmode(tcg_rmode, fpst);
7588         break;
7589     }
7590     case 0xe: /* FRINTX */
7591         fpst = fpstatus_ptr(FPST_FPCR_F16);
7592         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7593         break;
7594     case 0xf: /* FRINTI */
7595         fpst = fpstatus_ptr(FPST_FPCR_F16);
7596         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7597         break;
7598     default:
7599         g_assert_not_reached();
7600     }
7601 
7602     write_fp_sreg(s, rd, tcg_res);
7603 }
7604 
7605 /* Floating-point data-processing (1 source) - single precision */
7606 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7607 {
7608     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7609     TCGv_i32 tcg_op, tcg_res;
7610     TCGv_ptr fpst;
7611     int rmode = -1;
7612 
7613     tcg_op = read_fp_sreg(s, rn);
7614     tcg_res = tcg_temp_new_i32();
7615 
7616     switch (opcode) {
7617     case 0x0: /* FMOV */
7618         tcg_gen_mov_i32(tcg_res, tcg_op);
7619         goto done;
7620     case 0x1: /* FABS */
7621         gen_vfp_abss(tcg_res, tcg_op);
7622         goto done;
7623     case 0x2: /* FNEG */
7624         gen_vfp_negs(tcg_res, tcg_op);
7625         goto done;
7626     case 0x3: /* FSQRT */
7627         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7628         goto done;
7629     case 0x6: /* BFCVT */
7630         gen_fpst = gen_helper_bfcvt;
7631         break;
7632     case 0x8: /* FRINTN */
7633     case 0x9: /* FRINTP */
7634     case 0xa: /* FRINTM */
7635     case 0xb: /* FRINTZ */
7636     case 0xc: /* FRINTA */
7637         rmode = opcode & 7;
7638         gen_fpst = gen_helper_rints;
7639         break;
7640     case 0xe: /* FRINTX */
7641         gen_fpst = gen_helper_rints_exact;
7642         break;
7643     case 0xf: /* FRINTI */
7644         gen_fpst = gen_helper_rints;
7645         break;
7646     case 0x10: /* FRINT32Z */
7647         rmode = FPROUNDING_ZERO;
7648         gen_fpst = gen_helper_frint32_s;
7649         break;
7650     case 0x11: /* FRINT32X */
7651         gen_fpst = gen_helper_frint32_s;
7652         break;
7653     case 0x12: /* FRINT64Z */
7654         rmode = FPROUNDING_ZERO;
7655         gen_fpst = gen_helper_frint64_s;
7656         break;
7657     case 0x13: /* FRINT64X */
7658         gen_fpst = gen_helper_frint64_s;
7659         break;
7660     default:
7661         g_assert_not_reached();
7662     }
7663 
7664     fpst = fpstatus_ptr(FPST_FPCR);
7665     if (rmode >= 0) {
7666         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7667         gen_fpst(tcg_res, tcg_op, fpst);
7668         gen_restore_rmode(tcg_rmode, fpst);
7669     } else {
7670         gen_fpst(tcg_res, tcg_op, fpst);
7671     }
7672 
7673  done:
7674     write_fp_sreg(s, rd, tcg_res);
7675 }
7676 
7677 /* Floating-point data-processing (1 source) - double precision */
7678 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7679 {
7680     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7681     TCGv_i64 tcg_op, tcg_res;
7682     TCGv_ptr fpst;
7683     int rmode = -1;
7684 
7685     switch (opcode) {
7686     case 0x0: /* FMOV */
7687         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7688         return;
7689     }
7690 
7691     tcg_op = read_fp_dreg(s, rn);
7692     tcg_res = tcg_temp_new_i64();
7693 
7694     switch (opcode) {
7695     case 0x1: /* FABS */
7696         gen_vfp_absd(tcg_res, tcg_op);
7697         goto done;
7698     case 0x2: /* FNEG */
7699         gen_vfp_negd(tcg_res, tcg_op);
7700         goto done;
7701     case 0x3: /* FSQRT */
7702         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7703         goto done;
7704     case 0x8: /* FRINTN */
7705     case 0x9: /* FRINTP */
7706     case 0xa: /* FRINTM */
7707     case 0xb: /* FRINTZ */
7708     case 0xc: /* FRINTA */
7709         rmode = opcode & 7;
7710         gen_fpst = gen_helper_rintd;
7711         break;
7712     case 0xe: /* FRINTX */
7713         gen_fpst = gen_helper_rintd_exact;
7714         break;
7715     case 0xf: /* FRINTI */
7716         gen_fpst = gen_helper_rintd;
7717         break;
7718     case 0x10: /* FRINT32Z */
7719         rmode = FPROUNDING_ZERO;
7720         gen_fpst = gen_helper_frint32_d;
7721         break;
7722     case 0x11: /* FRINT32X */
7723         gen_fpst = gen_helper_frint32_d;
7724         break;
7725     case 0x12: /* FRINT64Z */
7726         rmode = FPROUNDING_ZERO;
7727         gen_fpst = gen_helper_frint64_d;
7728         break;
7729     case 0x13: /* FRINT64X */
7730         gen_fpst = gen_helper_frint64_d;
7731         break;
7732     default:
7733         g_assert_not_reached();
7734     }
7735 
7736     fpst = fpstatus_ptr(FPST_FPCR);
7737     if (rmode >= 0) {
7738         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7739         gen_fpst(tcg_res, tcg_op, fpst);
7740         gen_restore_rmode(tcg_rmode, fpst);
7741     } else {
7742         gen_fpst(tcg_res, tcg_op, fpst);
7743     }
7744 
7745  done:
7746     write_fp_dreg(s, rd, tcg_res);
7747 }
7748 
7749 static void handle_fp_fcvt(DisasContext *s, int opcode,
7750                            int rd, int rn, int dtype, int ntype)
7751 {
7752     switch (ntype) {
7753     case 0x0:
7754     {
7755         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7756         if (dtype == 1) {
7757             /* Single to double */
7758             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7759             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7760             write_fp_dreg(s, rd, tcg_rd);
7761         } else {
7762             /* Single to half */
7763             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7764             TCGv_i32 ahp = get_ahp_flag();
7765             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7766 
7767             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7768             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7769             write_fp_sreg(s, rd, tcg_rd);
7770         }
7771         break;
7772     }
7773     case 0x1:
7774     {
7775         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7776         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7777         if (dtype == 0) {
7778             /* Double to single */
7779             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7780         } else {
7781             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7782             TCGv_i32 ahp = get_ahp_flag();
7783             /* Double to half */
7784             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7785             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7786         }
7787         write_fp_sreg(s, rd, tcg_rd);
7788         break;
7789     }
7790     case 0x3:
7791     {
7792         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7793         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7794         TCGv_i32 tcg_ahp = get_ahp_flag();
7795         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7796         if (dtype == 0) {
7797             /* Half to single */
7798             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7799             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7800             write_fp_sreg(s, rd, tcg_rd);
7801         } else {
7802             /* Half to double */
7803             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7804             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7805             write_fp_dreg(s, rd, tcg_rd);
7806         }
7807         break;
7808     }
7809     default:
7810         g_assert_not_reached();
7811     }
7812 }
7813 
7814 /* Floating point data-processing (1 source)
7815  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7816  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7817  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7818  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7819  */
7820 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7821 {
7822     int mos = extract32(insn, 29, 3);
7823     int type = extract32(insn, 22, 2);
7824     int opcode = extract32(insn, 15, 6);
7825     int rn = extract32(insn, 5, 5);
7826     int rd = extract32(insn, 0, 5);
7827 
7828     if (mos) {
7829         goto do_unallocated;
7830     }
7831 
7832     switch (opcode) {
7833     case 0x4: case 0x5: case 0x7:
7834     {
7835         /* FCVT between half, single and double precision */
7836         int dtype = extract32(opcode, 0, 2);
7837         if (type == 2 || dtype == type) {
7838             goto do_unallocated;
7839         }
7840         if (!fp_access_check(s)) {
7841             return;
7842         }
7843 
7844         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7845         break;
7846     }
7847 
7848     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7849         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7850             goto do_unallocated;
7851         }
7852         /* fall through */
7853     case 0x0 ... 0x3:
7854     case 0x8 ... 0xc:
7855     case 0xe ... 0xf:
7856         /* 32-to-32 and 64-to-64 ops */
7857         switch (type) {
7858         case 0:
7859             if (!fp_access_check(s)) {
7860                 return;
7861             }
7862             handle_fp_1src_single(s, opcode, rd, rn);
7863             break;
7864         case 1:
7865             if (!fp_access_check(s)) {
7866                 return;
7867             }
7868             handle_fp_1src_double(s, opcode, rd, rn);
7869             break;
7870         case 3:
7871             if (!dc_isar_feature(aa64_fp16, s)) {
7872                 goto do_unallocated;
7873             }
7874 
7875             if (!fp_access_check(s)) {
7876                 return;
7877             }
7878             handle_fp_1src_half(s, opcode, rd, rn);
7879             break;
7880         default:
7881             goto do_unallocated;
7882         }
7883         break;
7884 
7885     case 0x6:
7886         switch (type) {
7887         case 1: /* BFCVT */
7888             if (!dc_isar_feature(aa64_bf16, s)) {
7889                 goto do_unallocated;
7890             }
7891             if (!fp_access_check(s)) {
7892                 return;
7893             }
7894             handle_fp_1src_single(s, opcode, rd, rn);
7895             break;
7896         default:
7897             goto do_unallocated;
7898         }
7899         break;
7900 
7901     default:
7902     do_unallocated:
7903         unallocated_encoding(s);
7904         break;
7905     }
7906 }
7907 
7908 /* Floating point immediate
7909  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7910  * +---+---+---+-----------+------+---+------------+-------+------+------+
7911  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7912  * +---+---+---+-----------+------+---+------------+-------+------+------+
7913  */
7914 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7915 {
7916     int rd = extract32(insn, 0, 5);
7917     int imm5 = extract32(insn, 5, 5);
7918     int imm8 = extract32(insn, 13, 8);
7919     int type = extract32(insn, 22, 2);
7920     int mos = extract32(insn, 29, 3);
7921     uint64_t imm;
7922     MemOp sz;
7923 
7924     if (mos || imm5) {
7925         unallocated_encoding(s);
7926         return;
7927     }
7928 
7929     switch (type) {
7930     case 0:
7931         sz = MO_32;
7932         break;
7933     case 1:
7934         sz = MO_64;
7935         break;
7936     case 3:
7937         sz = MO_16;
7938         if (dc_isar_feature(aa64_fp16, s)) {
7939             break;
7940         }
7941         /* fallthru */
7942     default:
7943         unallocated_encoding(s);
7944         return;
7945     }
7946 
7947     if (!fp_access_check(s)) {
7948         return;
7949     }
7950 
7951     imm = vfp_expand_imm(sz, imm8);
7952     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7953 }
7954 
7955 /* Handle floating point <=> fixed point conversions. Note that we can
7956  * also deal with fp <=> integer conversions as a special case (scale == 64)
7957  * OPTME: consider handling that special case specially or at least skipping
7958  * the call to scalbn in the helpers for zero shifts.
7959  */
7960 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7961                            bool itof, int rmode, int scale, int sf, int type)
7962 {
7963     bool is_signed = !(opcode & 1);
7964     TCGv_ptr tcg_fpstatus;
7965     TCGv_i32 tcg_shift, tcg_single;
7966     TCGv_i64 tcg_double;
7967 
7968     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7969 
7970     tcg_shift = tcg_constant_i32(64 - scale);
7971 
7972     if (itof) {
7973         TCGv_i64 tcg_int = cpu_reg(s, rn);
7974         if (!sf) {
7975             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7976 
7977             if (is_signed) {
7978                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7979             } else {
7980                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7981             }
7982 
7983             tcg_int = tcg_extend;
7984         }
7985 
7986         switch (type) {
7987         case 1: /* float64 */
7988             tcg_double = tcg_temp_new_i64();
7989             if (is_signed) {
7990                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7991                                      tcg_shift, tcg_fpstatus);
7992             } else {
7993                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7994                                      tcg_shift, tcg_fpstatus);
7995             }
7996             write_fp_dreg(s, rd, tcg_double);
7997             break;
7998 
7999         case 0: /* float32 */
8000             tcg_single = tcg_temp_new_i32();
8001             if (is_signed) {
8002                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
8003                                      tcg_shift, tcg_fpstatus);
8004             } else {
8005                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
8006                                      tcg_shift, tcg_fpstatus);
8007             }
8008             write_fp_sreg(s, rd, tcg_single);
8009             break;
8010 
8011         case 3: /* float16 */
8012             tcg_single = tcg_temp_new_i32();
8013             if (is_signed) {
8014                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
8015                                      tcg_shift, tcg_fpstatus);
8016             } else {
8017                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
8018                                      tcg_shift, tcg_fpstatus);
8019             }
8020             write_fp_sreg(s, rd, tcg_single);
8021             break;
8022 
8023         default:
8024             g_assert_not_reached();
8025         }
8026     } else {
8027         TCGv_i64 tcg_int = cpu_reg(s, rd);
8028         TCGv_i32 tcg_rmode;
8029 
8030         if (extract32(opcode, 2, 1)) {
8031             /* There are too many rounding modes to all fit into rmode,
8032              * so FCVTA[US] is a special case.
8033              */
8034             rmode = FPROUNDING_TIEAWAY;
8035         }
8036 
8037         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8038 
8039         switch (type) {
8040         case 1: /* float64 */
8041             tcg_double = read_fp_dreg(s, rn);
8042             if (is_signed) {
8043                 if (!sf) {
8044                     gen_helper_vfp_tosld(tcg_int, tcg_double,
8045                                          tcg_shift, tcg_fpstatus);
8046                 } else {
8047                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
8048                                          tcg_shift, tcg_fpstatus);
8049                 }
8050             } else {
8051                 if (!sf) {
8052                     gen_helper_vfp_tould(tcg_int, tcg_double,
8053                                          tcg_shift, tcg_fpstatus);
8054                 } else {
8055                     gen_helper_vfp_touqd(tcg_int, tcg_double,
8056                                          tcg_shift, tcg_fpstatus);
8057                 }
8058             }
8059             if (!sf) {
8060                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8061             }
8062             break;
8063 
8064         case 0: /* float32 */
8065             tcg_single = read_fp_sreg(s, rn);
8066             if (sf) {
8067                 if (is_signed) {
8068                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
8069                                          tcg_shift, tcg_fpstatus);
8070                 } else {
8071                     gen_helper_vfp_touqs(tcg_int, tcg_single,
8072                                          tcg_shift, tcg_fpstatus);
8073                 }
8074             } else {
8075                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8076                 if (is_signed) {
8077                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
8078                                          tcg_shift, tcg_fpstatus);
8079                 } else {
8080                     gen_helper_vfp_touls(tcg_dest, tcg_single,
8081                                          tcg_shift, tcg_fpstatus);
8082                 }
8083                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8084             }
8085             break;
8086 
8087         case 3: /* float16 */
8088             tcg_single = read_fp_sreg(s, rn);
8089             if (sf) {
8090                 if (is_signed) {
8091                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
8092                                          tcg_shift, tcg_fpstatus);
8093                 } else {
8094                     gen_helper_vfp_touqh(tcg_int, tcg_single,
8095                                          tcg_shift, tcg_fpstatus);
8096                 }
8097             } else {
8098                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8099                 if (is_signed) {
8100                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
8101                                          tcg_shift, tcg_fpstatus);
8102                 } else {
8103                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
8104                                          tcg_shift, tcg_fpstatus);
8105                 }
8106                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8107             }
8108             break;
8109 
8110         default:
8111             g_assert_not_reached();
8112         }
8113 
8114         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8115     }
8116 }
8117 
8118 /* Floating point <-> fixed point conversions
8119  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
8120  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8121  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
8122  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8123  */
8124 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8125 {
8126     int rd = extract32(insn, 0, 5);
8127     int rn = extract32(insn, 5, 5);
8128     int scale = extract32(insn, 10, 6);
8129     int opcode = extract32(insn, 16, 3);
8130     int rmode = extract32(insn, 19, 2);
8131     int type = extract32(insn, 22, 2);
8132     bool sbit = extract32(insn, 29, 1);
8133     bool sf = extract32(insn, 31, 1);
8134     bool itof;
8135 
8136     if (sbit || (!sf && scale < 32)) {
8137         unallocated_encoding(s);
8138         return;
8139     }
8140 
8141     switch (type) {
8142     case 0: /* float32 */
8143     case 1: /* float64 */
8144         break;
8145     case 3: /* float16 */
8146         if (dc_isar_feature(aa64_fp16, s)) {
8147             break;
8148         }
8149         /* fallthru */
8150     default:
8151         unallocated_encoding(s);
8152         return;
8153     }
8154 
8155     switch ((rmode << 3) | opcode) {
8156     case 0x2: /* SCVTF */
8157     case 0x3: /* UCVTF */
8158         itof = true;
8159         break;
8160     case 0x18: /* FCVTZS */
8161     case 0x19: /* FCVTZU */
8162         itof = false;
8163         break;
8164     default:
8165         unallocated_encoding(s);
8166         return;
8167     }
8168 
8169     if (!fp_access_check(s)) {
8170         return;
8171     }
8172 
8173     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8174 }
8175 
8176 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8177 {
8178     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8179      * without conversion.
8180      */
8181 
8182     if (itof) {
8183         TCGv_i64 tcg_rn = cpu_reg(s, rn);
8184         TCGv_i64 tmp;
8185 
8186         switch (type) {
8187         case 0:
8188             /* 32 bit */
8189             tmp = tcg_temp_new_i64();
8190             tcg_gen_ext32u_i64(tmp, tcg_rn);
8191             write_fp_dreg(s, rd, tmp);
8192             break;
8193         case 1:
8194             /* 64 bit */
8195             write_fp_dreg(s, rd, tcg_rn);
8196             break;
8197         case 2:
8198             /* 64 bit to top half. */
8199             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8200             clear_vec_high(s, true, rd);
8201             break;
8202         case 3:
8203             /* 16 bit */
8204             tmp = tcg_temp_new_i64();
8205             tcg_gen_ext16u_i64(tmp, tcg_rn);
8206             write_fp_dreg(s, rd, tmp);
8207             break;
8208         default:
8209             g_assert_not_reached();
8210         }
8211     } else {
8212         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8213 
8214         switch (type) {
8215         case 0:
8216             /* 32 bit */
8217             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8218             break;
8219         case 1:
8220             /* 64 bit */
8221             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8222             break;
8223         case 2:
8224             /* 64 bits from top half */
8225             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8226             break;
8227         case 3:
8228             /* 16 bit */
8229             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8230             break;
8231         default:
8232             g_assert_not_reached();
8233         }
8234     }
8235 }
8236 
8237 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8238 {
8239     TCGv_i64 t = read_fp_dreg(s, rn);
8240     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8241 
8242     gen_helper_fjcvtzs(t, t, fpstatus);
8243 
8244     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8245     tcg_gen_extrh_i64_i32(cpu_ZF, t);
8246     tcg_gen_movi_i32(cpu_CF, 0);
8247     tcg_gen_movi_i32(cpu_NF, 0);
8248     tcg_gen_movi_i32(cpu_VF, 0);
8249 }
8250 
8251 /* Floating point <-> integer conversions
8252  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
8253  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8254  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8255  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8256  */
8257 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8258 {
8259     int rd = extract32(insn, 0, 5);
8260     int rn = extract32(insn, 5, 5);
8261     int opcode = extract32(insn, 16, 3);
8262     int rmode = extract32(insn, 19, 2);
8263     int type = extract32(insn, 22, 2);
8264     bool sbit = extract32(insn, 29, 1);
8265     bool sf = extract32(insn, 31, 1);
8266     bool itof = false;
8267 
8268     if (sbit) {
8269         goto do_unallocated;
8270     }
8271 
8272     switch (opcode) {
8273     case 2: /* SCVTF */
8274     case 3: /* UCVTF */
8275         itof = true;
8276         /* fallthru */
8277     case 4: /* FCVTAS */
8278     case 5: /* FCVTAU */
8279         if (rmode != 0) {
8280             goto do_unallocated;
8281         }
8282         /* fallthru */
8283     case 0: /* FCVT[NPMZ]S */
8284     case 1: /* FCVT[NPMZ]U */
8285         switch (type) {
8286         case 0: /* float32 */
8287         case 1: /* float64 */
8288             break;
8289         case 3: /* float16 */
8290             if (!dc_isar_feature(aa64_fp16, s)) {
8291                 goto do_unallocated;
8292             }
8293             break;
8294         default:
8295             goto do_unallocated;
8296         }
8297         if (!fp_access_check(s)) {
8298             return;
8299         }
8300         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8301         break;
8302 
8303     default:
8304         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8305         case 0b01100110: /* FMOV half <-> 32-bit int */
8306         case 0b01100111:
8307         case 0b11100110: /* FMOV half <-> 64-bit int */
8308         case 0b11100111:
8309             if (!dc_isar_feature(aa64_fp16, s)) {
8310                 goto do_unallocated;
8311             }
8312             /* fallthru */
8313         case 0b00000110: /* FMOV 32-bit */
8314         case 0b00000111:
8315         case 0b10100110: /* FMOV 64-bit */
8316         case 0b10100111:
8317         case 0b11001110: /* FMOV top half of 128-bit */
8318         case 0b11001111:
8319             if (!fp_access_check(s)) {
8320                 return;
8321             }
8322             itof = opcode & 1;
8323             handle_fmov(s, rd, rn, type, itof);
8324             break;
8325 
8326         case 0b00111110: /* FJCVTZS */
8327             if (!dc_isar_feature(aa64_jscvt, s)) {
8328                 goto do_unallocated;
8329             } else if (fp_access_check(s)) {
8330                 handle_fjcvtzs(s, rd, rn);
8331             }
8332             break;
8333 
8334         default:
8335         do_unallocated:
8336             unallocated_encoding(s);
8337             return;
8338         }
8339         break;
8340     }
8341 }
8342 
8343 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8344  *   31  30  29 28     25 24                          0
8345  * +---+---+---+---------+-----------------------------+
8346  * |   | 0 |   | 1 1 1 1 |                             |
8347  * +---+---+---+---------+-----------------------------+
8348  */
8349 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8350 {
8351     if (extract32(insn, 24, 1)) {
8352         unallocated_encoding(s); /* in decodetree */
8353     } else if (extract32(insn, 21, 1) == 0) {
8354         /* Floating point to fixed point conversions */
8355         disas_fp_fixed_conv(s, insn);
8356     } else {
8357         switch (extract32(insn, 10, 2)) {
8358         case 1:
8359             /* Floating point conditional compare */
8360             disas_fp_ccomp(s, insn);
8361             break;
8362         case 2:
8363             /* Floating point data-processing (2 source) */
8364             unallocated_encoding(s); /* in decodetree */
8365             break;
8366         case 3:
8367             /* Floating point conditional select */
8368             unallocated_encoding(s); /* in decodetree */
8369             break;
8370         case 0:
8371             switch (ctz32(extract32(insn, 12, 4))) {
8372             case 0: /* [15:12] == xxx1 */
8373                 /* Floating point immediate */
8374                 disas_fp_imm(s, insn);
8375                 break;
8376             case 1: /* [15:12] == xx10 */
8377                 /* Floating point compare */
8378                 disas_fp_compare(s, insn);
8379                 break;
8380             case 2: /* [15:12] == x100 */
8381                 /* Floating point data-processing (1 source) */
8382                 disas_fp_1src(s, insn);
8383                 break;
8384             case 3: /* [15:12] == 1000 */
8385                 unallocated_encoding(s);
8386                 break;
8387             default: /* [15:12] == 0000 */
8388                 /* Floating point <-> integer conversions */
8389                 disas_fp_int_conv(s, insn);
8390                 break;
8391             }
8392             break;
8393         }
8394     }
8395 }
8396 
8397 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8398                      int pos)
8399 {
8400     /* Extract 64 bits from the middle of two concatenated 64 bit
8401      * vector register slices left:right. The extracted bits start
8402      * at 'pos' bits into the right (least significant) side.
8403      * We return the result in tcg_right, and guarantee not to
8404      * trash tcg_left.
8405      */
8406     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8407     assert(pos > 0 && pos < 64);
8408 
8409     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8410     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8411     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8412 }
8413 
8414 /* EXT
8415  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8416  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8417  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8418  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8419  */
8420 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8421 {
8422     int is_q = extract32(insn, 30, 1);
8423     int op2 = extract32(insn, 22, 2);
8424     int imm4 = extract32(insn, 11, 4);
8425     int rm = extract32(insn, 16, 5);
8426     int rn = extract32(insn, 5, 5);
8427     int rd = extract32(insn, 0, 5);
8428     int pos = imm4 << 3;
8429     TCGv_i64 tcg_resl, tcg_resh;
8430 
8431     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8432         unallocated_encoding(s);
8433         return;
8434     }
8435 
8436     if (!fp_access_check(s)) {
8437         return;
8438     }
8439 
8440     tcg_resh = tcg_temp_new_i64();
8441     tcg_resl = tcg_temp_new_i64();
8442 
8443     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8444      * either extracting 128 bits from a 128:128 concatenation, or
8445      * extracting 64 bits from a 64:64 concatenation.
8446      */
8447     if (!is_q) {
8448         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8449         if (pos != 0) {
8450             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8451             do_ext64(s, tcg_resh, tcg_resl, pos);
8452         }
8453     } else {
8454         TCGv_i64 tcg_hh;
8455         typedef struct {
8456             int reg;
8457             int elt;
8458         } EltPosns;
8459         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8460         EltPosns *elt = eltposns;
8461 
8462         if (pos >= 64) {
8463             elt++;
8464             pos -= 64;
8465         }
8466 
8467         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8468         elt++;
8469         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8470         elt++;
8471         if (pos != 0) {
8472             do_ext64(s, tcg_resh, tcg_resl, pos);
8473             tcg_hh = tcg_temp_new_i64();
8474             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8475             do_ext64(s, tcg_hh, tcg_resh, pos);
8476         }
8477     }
8478 
8479     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8480     if (is_q) {
8481         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8482     }
8483     clear_vec_high(s, is_q, rd);
8484 }
8485 
8486 /* TBL/TBX
8487  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8488  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8489  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8490  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8491  */
8492 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8493 {
8494     int op2 = extract32(insn, 22, 2);
8495     int is_q = extract32(insn, 30, 1);
8496     int rm = extract32(insn, 16, 5);
8497     int rn = extract32(insn, 5, 5);
8498     int rd = extract32(insn, 0, 5);
8499     int is_tbx = extract32(insn, 12, 1);
8500     int len = (extract32(insn, 13, 2) + 1) * 16;
8501 
8502     if (op2 != 0) {
8503         unallocated_encoding(s);
8504         return;
8505     }
8506 
8507     if (!fp_access_check(s)) {
8508         return;
8509     }
8510 
8511     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8512                        vec_full_reg_offset(s, rm), tcg_env,
8513                        is_q ? 16 : 8, vec_full_reg_size(s),
8514                        (len << 6) | (is_tbx << 5) | rn,
8515                        gen_helper_simd_tblx);
8516 }
8517 
8518 /* ZIP/UZP/TRN
8519  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8520  * +---+---+-------------+------+---+------+---+------------------+------+
8521  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8522  * +---+---+-------------+------+---+------+---+------------------+------+
8523  */
8524 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8525 {
8526     int rd = extract32(insn, 0, 5);
8527     int rn = extract32(insn, 5, 5);
8528     int rm = extract32(insn, 16, 5);
8529     int size = extract32(insn, 22, 2);
8530     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8531      * bit 2 indicates 1 vs 2 variant of the insn.
8532      */
8533     int opcode = extract32(insn, 12, 2);
8534     bool part = extract32(insn, 14, 1);
8535     bool is_q = extract32(insn, 30, 1);
8536     int esize = 8 << size;
8537     int i;
8538     int datasize = is_q ? 128 : 64;
8539     int elements = datasize / esize;
8540     TCGv_i64 tcg_res[2], tcg_ele;
8541 
8542     if (opcode == 0 || (size == 3 && !is_q)) {
8543         unallocated_encoding(s);
8544         return;
8545     }
8546 
8547     if (!fp_access_check(s)) {
8548         return;
8549     }
8550 
8551     tcg_res[0] = tcg_temp_new_i64();
8552     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8553     tcg_ele = tcg_temp_new_i64();
8554 
8555     for (i = 0; i < elements; i++) {
8556         int o, w;
8557 
8558         switch (opcode) {
8559         case 1: /* UZP1/2 */
8560         {
8561             int midpoint = elements / 2;
8562             if (i < midpoint) {
8563                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8564             } else {
8565                 read_vec_element(s, tcg_ele, rm,
8566                                  2 * (i - midpoint) + part, size);
8567             }
8568             break;
8569         }
8570         case 2: /* TRN1/2 */
8571             if (i & 1) {
8572                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8573             } else {
8574                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8575             }
8576             break;
8577         case 3: /* ZIP1/2 */
8578         {
8579             int base = part * elements / 2;
8580             if (i & 1) {
8581                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8582             } else {
8583                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8584             }
8585             break;
8586         }
8587         default:
8588             g_assert_not_reached();
8589         }
8590 
8591         w = (i * esize) / 64;
8592         o = (i * esize) % 64;
8593         if (o == 0) {
8594             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8595         } else {
8596             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8597             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8598         }
8599     }
8600 
8601     for (i = 0; i <= is_q; ++i) {
8602         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8603     }
8604     clear_vec_high(s, is_q, rd);
8605 }
8606 
8607 /*
8608  * do_reduction_op helper
8609  *
8610  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8611  * important for correct NaN propagation that we do these
8612  * operations in exactly the order specified by the pseudocode.
8613  *
8614  * This is a recursive function, TCG temps should be freed by the
8615  * calling function once it is done with the values.
8616  */
8617 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8618                                 int esize, int size, int vmap, TCGv_ptr fpst)
8619 {
8620     if (esize == size) {
8621         int element;
8622         MemOp msize = esize == 16 ? MO_16 : MO_32;
8623         TCGv_i32 tcg_elem;
8624 
8625         /* We should have one register left here */
8626         assert(ctpop8(vmap) == 1);
8627         element = ctz32(vmap);
8628         assert(element < 8);
8629 
8630         tcg_elem = tcg_temp_new_i32();
8631         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8632         return tcg_elem;
8633     } else {
8634         int bits = size / 2;
8635         int shift = ctpop8(vmap) / 2;
8636         int vmap_lo = (vmap >> shift) & vmap;
8637         int vmap_hi = (vmap & ~vmap_lo);
8638         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8639 
8640         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8641         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8642         tcg_res = tcg_temp_new_i32();
8643 
8644         switch (fpopcode) {
8645         case 0x0c: /* fmaxnmv half-precision */
8646             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8647             break;
8648         case 0x0f: /* fmaxv half-precision */
8649             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8650             break;
8651         case 0x1c: /* fminnmv half-precision */
8652             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8653             break;
8654         case 0x1f: /* fminv half-precision */
8655             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8656             break;
8657         case 0x2c: /* fmaxnmv */
8658             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8659             break;
8660         case 0x2f: /* fmaxv */
8661             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8662             break;
8663         case 0x3c: /* fminnmv */
8664             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8665             break;
8666         case 0x3f: /* fminv */
8667             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8668             break;
8669         default:
8670             g_assert_not_reached();
8671         }
8672         return tcg_res;
8673     }
8674 }
8675 
8676 /* AdvSIMD across lanes
8677  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8678  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8679  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8680  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8681  */
8682 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8683 {
8684     int rd = extract32(insn, 0, 5);
8685     int rn = extract32(insn, 5, 5);
8686     int size = extract32(insn, 22, 2);
8687     int opcode = extract32(insn, 12, 5);
8688     bool is_q = extract32(insn, 30, 1);
8689     bool is_u = extract32(insn, 29, 1);
8690     bool is_fp = false;
8691     bool is_min = false;
8692     int esize;
8693     int elements;
8694     int i;
8695     TCGv_i64 tcg_res, tcg_elt;
8696 
8697     switch (opcode) {
8698     case 0x1b: /* ADDV */
8699         if (is_u) {
8700             unallocated_encoding(s);
8701             return;
8702         }
8703         /* fall through */
8704     case 0x3: /* SADDLV, UADDLV */
8705     case 0xa: /* SMAXV, UMAXV */
8706     case 0x1a: /* SMINV, UMINV */
8707         if (size == 3 || (size == 2 && !is_q)) {
8708             unallocated_encoding(s);
8709             return;
8710         }
8711         break;
8712     case 0xc: /* FMAXNMV, FMINNMV */
8713     case 0xf: /* FMAXV, FMINV */
8714         /* Bit 1 of size field encodes min vs max and the actual size
8715          * depends on the encoding of the U bit. If not set (and FP16
8716          * enabled) then we do half-precision float instead of single
8717          * precision.
8718          */
8719         is_min = extract32(size, 1, 1);
8720         is_fp = true;
8721         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8722             size = 1;
8723         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8724             unallocated_encoding(s);
8725             return;
8726         } else {
8727             size = 2;
8728         }
8729         break;
8730     default:
8731         unallocated_encoding(s);
8732         return;
8733     }
8734 
8735     if (!fp_access_check(s)) {
8736         return;
8737     }
8738 
8739     esize = 8 << size;
8740     elements = (is_q ? 128 : 64) / esize;
8741 
8742     tcg_res = tcg_temp_new_i64();
8743     tcg_elt = tcg_temp_new_i64();
8744 
8745     /* These instructions operate across all lanes of a vector
8746      * to produce a single result. We can guarantee that a 64
8747      * bit intermediate is sufficient:
8748      *  + for [US]ADDLV the maximum element size is 32 bits, and
8749      *    the result type is 64 bits
8750      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8751      *    same as the element size, which is 32 bits at most
8752      * For the integer operations we can choose to work at 64
8753      * or 32 bits and truncate at the end; for simplicity
8754      * we use 64 bits always. The floating point
8755      * ops do require 32 bit intermediates, though.
8756      */
8757     if (!is_fp) {
8758         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8759 
8760         for (i = 1; i < elements; i++) {
8761             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8762 
8763             switch (opcode) {
8764             case 0x03: /* SADDLV / UADDLV */
8765             case 0x1b: /* ADDV */
8766                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8767                 break;
8768             case 0x0a: /* SMAXV / UMAXV */
8769                 if (is_u) {
8770                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8771                 } else {
8772                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8773                 }
8774                 break;
8775             case 0x1a: /* SMINV / UMINV */
8776                 if (is_u) {
8777                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8778                 } else {
8779                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8780                 }
8781                 break;
8782             default:
8783                 g_assert_not_reached();
8784             }
8785 
8786         }
8787     } else {
8788         /* Floating point vector reduction ops which work across 32
8789          * bit (single) or 16 bit (half-precision) intermediates.
8790          * Note that correct NaN propagation requires that we do these
8791          * operations in exactly the order specified by the pseudocode.
8792          */
8793         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8794         int fpopcode = opcode | is_min << 4 | is_u << 5;
8795         int vmap = (1 << elements) - 1;
8796         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8797                                              (is_q ? 128 : 64), vmap, fpst);
8798         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8799     }
8800 
8801     /* Now truncate the result to the width required for the final output */
8802     if (opcode == 0x03) {
8803         /* SADDLV, UADDLV: result is 2*esize */
8804         size++;
8805     }
8806 
8807     switch (size) {
8808     case 0:
8809         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8810         break;
8811     case 1:
8812         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8813         break;
8814     case 2:
8815         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8816         break;
8817     case 3:
8818         break;
8819     default:
8820         g_assert_not_reached();
8821     }
8822 
8823     write_fp_dreg(s, rd, tcg_res);
8824 }
8825 
8826 /* AdvSIMD modified immediate
8827  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8828  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8829  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8830  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8831  *
8832  * There are a number of operations that can be carried out here:
8833  *   MOVI - move (shifted) imm into register
8834  *   MVNI - move inverted (shifted) imm into register
8835  *   ORR  - bitwise OR of (shifted) imm with register
8836  *   BIC  - bitwise clear of (shifted) imm with register
8837  * With ARMv8.2 we also have:
8838  *   FMOV half-precision
8839  */
8840 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8841 {
8842     int rd = extract32(insn, 0, 5);
8843     int cmode = extract32(insn, 12, 4);
8844     int o2 = extract32(insn, 11, 1);
8845     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8846     bool is_neg = extract32(insn, 29, 1);
8847     bool is_q = extract32(insn, 30, 1);
8848     uint64_t imm = 0;
8849 
8850     if (o2) {
8851         if (cmode != 0xf || is_neg) {
8852             unallocated_encoding(s);
8853             return;
8854         }
8855         /* FMOV (vector, immediate) - half-precision */
8856         if (!dc_isar_feature(aa64_fp16, s)) {
8857             unallocated_encoding(s);
8858             return;
8859         }
8860         imm = vfp_expand_imm(MO_16, abcdefgh);
8861         /* now duplicate across the lanes */
8862         imm = dup_const(MO_16, imm);
8863     } else {
8864         if (cmode == 0xf && is_neg && !is_q) {
8865             unallocated_encoding(s);
8866             return;
8867         }
8868         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8869     }
8870 
8871     if (!fp_access_check(s)) {
8872         return;
8873     }
8874 
8875     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8876         /* MOVI or MVNI, with MVNI negation handled above.  */
8877         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8878                              vec_full_reg_size(s), imm);
8879     } else {
8880         /* ORR or BIC, with BIC negation to AND handled above.  */
8881         if (is_neg) {
8882             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8883         } else {
8884             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8885         }
8886     }
8887 }
8888 
8889 /*
8890  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8891  *
8892  * This code is handles the common shifting code and is used by both
8893  * the vector and scalar code.
8894  */
8895 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8896                                     TCGv_i64 tcg_rnd, bool accumulate,
8897                                     bool is_u, int size, int shift)
8898 {
8899     bool extended_result = false;
8900     bool round = tcg_rnd != NULL;
8901     int ext_lshift = 0;
8902     TCGv_i64 tcg_src_hi;
8903 
8904     if (round && size == 3) {
8905         extended_result = true;
8906         ext_lshift = 64 - shift;
8907         tcg_src_hi = tcg_temp_new_i64();
8908     } else if (shift == 64) {
8909         if (!accumulate && is_u) {
8910             /* result is zero */
8911             tcg_gen_movi_i64(tcg_res, 0);
8912             return;
8913         }
8914     }
8915 
8916     /* Deal with the rounding step */
8917     if (round) {
8918         if (extended_result) {
8919             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8920             if (!is_u) {
8921                 /* take care of sign extending tcg_res */
8922                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8923                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8924                                  tcg_src, tcg_src_hi,
8925                                  tcg_rnd, tcg_zero);
8926             } else {
8927                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8928                                  tcg_src, tcg_zero,
8929                                  tcg_rnd, tcg_zero);
8930             }
8931         } else {
8932             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8933         }
8934     }
8935 
8936     /* Now do the shift right */
8937     if (round && extended_result) {
8938         /* extended case, >64 bit precision required */
8939         if (ext_lshift == 0) {
8940             /* special case, only high bits matter */
8941             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8942         } else {
8943             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8944             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8945             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8946         }
8947     } else {
8948         if (is_u) {
8949             if (shift == 64) {
8950                 /* essentially shifting in 64 zeros */
8951                 tcg_gen_movi_i64(tcg_src, 0);
8952             } else {
8953                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8954             }
8955         } else {
8956             if (shift == 64) {
8957                 /* effectively extending the sign-bit */
8958                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8959             } else {
8960                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8961             }
8962         }
8963     }
8964 
8965     if (accumulate) {
8966         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8967     } else {
8968         tcg_gen_mov_i64(tcg_res, tcg_src);
8969     }
8970 }
8971 
8972 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8973 static void handle_scalar_simd_shri(DisasContext *s,
8974                                     bool is_u, int immh, int immb,
8975                                     int opcode, int rn, int rd)
8976 {
8977     const int size = 3;
8978     int immhb = immh << 3 | immb;
8979     int shift = 2 * (8 << size) - immhb;
8980     bool accumulate = false;
8981     bool round = false;
8982     bool insert = false;
8983     TCGv_i64 tcg_rn;
8984     TCGv_i64 tcg_rd;
8985     TCGv_i64 tcg_round;
8986 
8987     if (!extract32(immh, 3, 1)) {
8988         unallocated_encoding(s);
8989         return;
8990     }
8991 
8992     if (!fp_access_check(s)) {
8993         return;
8994     }
8995 
8996     switch (opcode) {
8997     case 0x02: /* SSRA / USRA (accumulate) */
8998         accumulate = true;
8999         break;
9000     case 0x04: /* SRSHR / URSHR (rounding) */
9001         round = true;
9002         break;
9003     case 0x06: /* SRSRA / URSRA (accum + rounding) */
9004         accumulate = round = true;
9005         break;
9006     case 0x08: /* SRI */
9007         insert = true;
9008         break;
9009     }
9010 
9011     if (round) {
9012         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9013     } else {
9014         tcg_round = NULL;
9015     }
9016 
9017     tcg_rn = read_fp_dreg(s, rn);
9018     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9019 
9020     if (insert) {
9021         /* shift count same as element size is valid but does nothing;
9022          * special case to avoid potential shift by 64.
9023          */
9024         int esize = 8 << size;
9025         if (shift != esize) {
9026             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
9027             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
9028         }
9029     } else {
9030         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9031                                 accumulate, is_u, size, shift);
9032     }
9033 
9034     write_fp_dreg(s, rd, tcg_rd);
9035 }
9036 
9037 /* SHL/SLI - Scalar shift left */
9038 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9039                                     int immh, int immb, int opcode,
9040                                     int rn, int rd)
9041 {
9042     int size = 32 - clz32(immh) - 1;
9043     int immhb = immh << 3 | immb;
9044     int shift = immhb - (8 << size);
9045     TCGv_i64 tcg_rn;
9046     TCGv_i64 tcg_rd;
9047 
9048     if (!extract32(immh, 3, 1)) {
9049         unallocated_encoding(s);
9050         return;
9051     }
9052 
9053     if (!fp_access_check(s)) {
9054         return;
9055     }
9056 
9057     tcg_rn = read_fp_dreg(s, rn);
9058     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9059 
9060     if (insert) {
9061         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9062     } else {
9063         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9064     }
9065 
9066     write_fp_dreg(s, rd, tcg_rd);
9067 }
9068 
9069 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9070  * (signed/unsigned) narrowing */
9071 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9072                                    bool is_u_shift, bool is_u_narrow,
9073                                    int immh, int immb, int opcode,
9074                                    int rn, int rd)
9075 {
9076     int immhb = immh << 3 | immb;
9077     int size = 32 - clz32(immh) - 1;
9078     int esize = 8 << size;
9079     int shift = (2 * esize) - immhb;
9080     int elements = is_scalar ? 1 : (64 / esize);
9081     bool round = extract32(opcode, 0, 1);
9082     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9083     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9084     TCGv_i32 tcg_rd_narrowed;
9085     TCGv_i64 tcg_final;
9086 
9087     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9088         { gen_helper_neon_narrow_sat_s8,
9089           gen_helper_neon_unarrow_sat8 },
9090         { gen_helper_neon_narrow_sat_s16,
9091           gen_helper_neon_unarrow_sat16 },
9092         { gen_helper_neon_narrow_sat_s32,
9093           gen_helper_neon_unarrow_sat32 },
9094         { NULL, NULL },
9095     };
9096     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9097         gen_helper_neon_narrow_sat_u8,
9098         gen_helper_neon_narrow_sat_u16,
9099         gen_helper_neon_narrow_sat_u32,
9100         NULL
9101     };
9102     NeonGenNarrowEnvFn *narrowfn;
9103 
9104     int i;
9105 
9106     assert(size < 4);
9107 
9108     if (extract32(immh, 3, 1)) {
9109         unallocated_encoding(s);
9110         return;
9111     }
9112 
9113     if (!fp_access_check(s)) {
9114         return;
9115     }
9116 
9117     if (is_u_shift) {
9118         narrowfn = unsigned_narrow_fns[size];
9119     } else {
9120         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9121     }
9122 
9123     tcg_rn = tcg_temp_new_i64();
9124     tcg_rd = tcg_temp_new_i64();
9125     tcg_rd_narrowed = tcg_temp_new_i32();
9126     tcg_final = tcg_temp_new_i64();
9127 
9128     if (round) {
9129         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9130     } else {
9131         tcg_round = NULL;
9132     }
9133 
9134     for (i = 0; i < elements; i++) {
9135         read_vec_element(s, tcg_rn, rn, i, ldop);
9136         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9137                                 false, is_u_shift, size+1, shift);
9138         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9139         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9140         if (i == 0) {
9141             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9142         } else {
9143             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9144         }
9145     }
9146 
9147     if (!is_q) {
9148         write_vec_element(s, tcg_final, rd, 0, MO_64);
9149     } else {
9150         write_vec_element(s, tcg_final, rd, 1, MO_64);
9151     }
9152     clear_vec_high(s, is_q, rd);
9153 }
9154 
9155 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9156 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9157                              bool src_unsigned, bool dst_unsigned,
9158                              int immh, int immb, int rn, int rd)
9159 {
9160     int immhb = immh << 3 | immb;
9161     int size = 32 - clz32(immh) - 1;
9162     int shift = immhb - (8 << size);
9163     int pass;
9164 
9165     assert(immh != 0);
9166     assert(!(scalar && is_q));
9167 
9168     if (!scalar) {
9169         if (!is_q && extract32(immh, 3, 1)) {
9170             unallocated_encoding(s);
9171             return;
9172         }
9173 
9174         /* Since we use the variable-shift helpers we must
9175          * replicate the shift count into each element of
9176          * the tcg_shift value.
9177          */
9178         switch (size) {
9179         case 0:
9180             shift |= shift << 8;
9181             /* fall through */
9182         case 1:
9183             shift |= shift << 16;
9184             break;
9185         case 2:
9186         case 3:
9187             break;
9188         default:
9189             g_assert_not_reached();
9190         }
9191     }
9192 
9193     if (!fp_access_check(s)) {
9194         return;
9195     }
9196 
9197     if (size == 3) {
9198         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9199         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9200             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9201             { NULL, gen_helper_neon_qshl_u64 },
9202         };
9203         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9204         int maxpass = is_q ? 2 : 1;
9205 
9206         for (pass = 0; pass < maxpass; pass++) {
9207             TCGv_i64 tcg_op = tcg_temp_new_i64();
9208 
9209             read_vec_element(s, tcg_op, rn, pass, MO_64);
9210             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9211             write_vec_element(s, tcg_op, rd, pass, MO_64);
9212         }
9213         clear_vec_high(s, is_q, rd);
9214     } else {
9215         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9216         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9217             {
9218                 { gen_helper_neon_qshl_s8,
9219                   gen_helper_neon_qshl_s16,
9220                   gen_helper_neon_qshl_s32 },
9221                 { gen_helper_neon_qshlu_s8,
9222                   gen_helper_neon_qshlu_s16,
9223                   gen_helper_neon_qshlu_s32 }
9224             }, {
9225                 { NULL, NULL, NULL },
9226                 { gen_helper_neon_qshl_u8,
9227                   gen_helper_neon_qshl_u16,
9228                   gen_helper_neon_qshl_u32 }
9229             }
9230         };
9231         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9232         MemOp memop = scalar ? size : MO_32;
9233         int maxpass = scalar ? 1 : is_q ? 4 : 2;
9234 
9235         for (pass = 0; pass < maxpass; pass++) {
9236             TCGv_i32 tcg_op = tcg_temp_new_i32();
9237 
9238             read_vec_element_i32(s, tcg_op, rn, pass, memop);
9239             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9240             if (scalar) {
9241                 switch (size) {
9242                 case 0:
9243                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
9244                     break;
9245                 case 1:
9246                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9247                     break;
9248                 case 2:
9249                     break;
9250                 default:
9251                     g_assert_not_reached();
9252                 }
9253                 write_fp_sreg(s, rd, tcg_op);
9254             } else {
9255                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9256             }
9257         }
9258 
9259         if (!scalar) {
9260             clear_vec_high(s, is_q, rd);
9261         }
9262     }
9263 }
9264 
9265 /* Common vector code for handling integer to FP conversion */
9266 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9267                                    int elements, int is_signed,
9268                                    int fracbits, int size)
9269 {
9270     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9271     TCGv_i32 tcg_shift = NULL;
9272 
9273     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9274     int pass;
9275 
9276     if (fracbits || size == MO_64) {
9277         tcg_shift = tcg_constant_i32(fracbits);
9278     }
9279 
9280     if (size == MO_64) {
9281         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9282         TCGv_i64 tcg_double = tcg_temp_new_i64();
9283 
9284         for (pass = 0; pass < elements; pass++) {
9285             read_vec_element(s, tcg_int64, rn, pass, mop);
9286 
9287             if (is_signed) {
9288                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9289                                      tcg_shift, tcg_fpst);
9290             } else {
9291                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9292                                      tcg_shift, tcg_fpst);
9293             }
9294             if (elements == 1) {
9295                 write_fp_dreg(s, rd, tcg_double);
9296             } else {
9297                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9298             }
9299         }
9300     } else {
9301         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9302         TCGv_i32 tcg_float = tcg_temp_new_i32();
9303 
9304         for (pass = 0; pass < elements; pass++) {
9305             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9306 
9307             switch (size) {
9308             case MO_32:
9309                 if (fracbits) {
9310                     if (is_signed) {
9311                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9312                                              tcg_shift, tcg_fpst);
9313                     } else {
9314                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9315                                              tcg_shift, tcg_fpst);
9316                     }
9317                 } else {
9318                     if (is_signed) {
9319                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9320                     } else {
9321                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9322                     }
9323                 }
9324                 break;
9325             case MO_16:
9326                 if (fracbits) {
9327                     if (is_signed) {
9328                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9329                                              tcg_shift, tcg_fpst);
9330                     } else {
9331                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9332                                              tcg_shift, tcg_fpst);
9333                     }
9334                 } else {
9335                     if (is_signed) {
9336                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9337                     } else {
9338                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9339                     }
9340                 }
9341                 break;
9342             default:
9343                 g_assert_not_reached();
9344             }
9345 
9346             if (elements == 1) {
9347                 write_fp_sreg(s, rd, tcg_float);
9348             } else {
9349                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9350             }
9351         }
9352     }
9353 
9354     clear_vec_high(s, elements << size == 16, rd);
9355 }
9356 
9357 /* UCVTF/SCVTF - Integer to FP conversion */
9358 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9359                                          bool is_q, bool is_u,
9360                                          int immh, int immb, int opcode,
9361                                          int rn, int rd)
9362 {
9363     int size, elements, fracbits;
9364     int immhb = immh << 3 | immb;
9365 
9366     if (immh & 8) {
9367         size = MO_64;
9368         if (!is_scalar && !is_q) {
9369             unallocated_encoding(s);
9370             return;
9371         }
9372     } else if (immh & 4) {
9373         size = MO_32;
9374     } else if (immh & 2) {
9375         size = MO_16;
9376         if (!dc_isar_feature(aa64_fp16, s)) {
9377             unallocated_encoding(s);
9378             return;
9379         }
9380     } else {
9381         /* immh == 0 would be a failure of the decode logic */
9382         g_assert(immh == 1);
9383         unallocated_encoding(s);
9384         return;
9385     }
9386 
9387     if (is_scalar) {
9388         elements = 1;
9389     } else {
9390         elements = (8 << is_q) >> size;
9391     }
9392     fracbits = (16 << size) - immhb;
9393 
9394     if (!fp_access_check(s)) {
9395         return;
9396     }
9397 
9398     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9399 }
9400 
9401 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9402 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9403                                          bool is_q, bool is_u,
9404                                          int immh, int immb, int rn, int rd)
9405 {
9406     int immhb = immh << 3 | immb;
9407     int pass, size, fracbits;
9408     TCGv_ptr tcg_fpstatus;
9409     TCGv_i32 tcg_rmode, tcg_shift;
9410 
9411     if (immh & 0x8) {
9412         size = MO_64;
9413         if (!is_scalar && !is_q) {
9414             unallocated_encoding(s);
9415             return;
9416         }
9417     } else if (immh & 0x4) {
9418         size = MO_32;
9419     } else if (immh & 0x2) {
9420         size = MO_16;
9421         if (!dc_isar_feature(aa64_fp16, s)) {
9422             unallocated_encoding(s);
9423             return;
9424         }
9425     } else {
9426         /* Should have split out AdvSIMD modified immediate earlier.  */
9427         assert(immh == 1);
9428         unallocated_encoding(s);
9429         return;
9430     }
9431 
9432     if (!fp_access_check(s)) {
9433         return;
9434     }
9435 
9436     assert(!(is_scalar && is_q));
9437 
9438     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9439     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9440     fracbits = (16 << size) - immhb;
9441     tcg_shift = tcg_constant_i32(fracbits);
9442 
9443     if (size == MO_64) {
9444         int maxpass = is_scalar ? 1 : 2;
9445 
9446         for (pass = 0; pass < maxpass; pass++) {
9447             TCGv_i64 tcg_op = tcg_temp_new_i64();
9448 
9449             read_vec_element(s, tcg_op, rn, pass, MO_64);
9450             if (is_u) {
9451                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9452             } else {
9453                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9454             }
9455             write_vec_element(s, tcg_op, rd, pass, MO_64);
9456         }
9457         clear_vec_high(s, is_q, rd);
9458     } else {
9459         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9460         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9461 
9462         switch (size) {
9463         case MO_16:
9464             if (is_u) {
9465                 fn = gen_helper_vfp_touhh;
9466             } else {
9467                 fn = gen_helper_vfp_toshh;
9468             }
9469             break;
9470         case MO_32:
9471             if (is_u) {
9472                 fn = gen_helper_vfp_touls;
9473             } else {
9474                 fn = gen_helper_vfp_tosls;
9475             }
9476             break;
9477         default:
9478             g_assert_not_reached();
9479         }
9480 
9481         for (pass = 0; pass < maxpass; pass++) {
9482             TCGv_i32 tcg_op = tcg_temp_new_i32();
9483 
9484             read_vec_element_i32(s, tcg_op, rn, pass, size);
9485             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9486             if (is_scalar) {
9487                 if (size == MO_16 && !is_u) {
9488                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9489                 }
9490                 write_fp_sreg(s, rd, tcg_op);
9491             } else {
9492                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9493             }
9494         }
9495         if (!is_scalar) {
9496             clear_vec_high(s, is_q, rd);
9497         }
9498     }
9499 
9500     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9501 }
9502 
9503 /* AdvSIMD scalar shift by immediate
9504  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9505  * +-----+---+-------------+------+------+--------+---+------+------+
9506  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9507  * +-----+---+-------------+------+------+--------+---+------+------+
9508  *
9509  * This is the scalar version so it works on a fixed sized registers
9510  */
9511 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9512 {
9513     int rd = extract32(insn, 0, 5);
9514     int rn = extract32(insn, 5, 5);
9515     int opcode = extract32(insn, 11, 5);
9516     int immb = extract32(insn, 16, 3);
9517     int immh = extract32(insn, 19, 4);
9518     bool is_u = extract32(insn, 29, 1);
9519 
9520     if (immh == 0) {
9521         unallocated_encoding(s);
9522         return;
9523     }
9524 
9525     switch (opcode) {
9526     case 0x08: /* SRI */
9527         if (!is_u) {
9528             unallocated_encoding(s);
9529             return;
9530         }
9531         /* fall through */
9532     case 0x00: /* SSHR / USHR */
9533     case 0x02: /* SSRA / USRA */
9534     case 0x04: /* SRSHR / URSHR */
9535     case 0x06: /* SRSRA / URSRA */
9536         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9537         break;
9538     case 0x0a: /* SHL / SLI */
9539         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9540         break;
9541     case 0x1c: /* SCVTF, UCVTF */
9542         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9543                                      opcode, rn, rd);
9544         break;
9545     case 0x10: /* SQSHRUN, SQSHRUN2 */
9546     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9547         if (!is_u) {
9548             unallocated_encoding(s);
9549             return;
9550         }
9551         handle_vec_simd_sqshrn(s, true, false, false, true,
9552                                immh, immb, opcode, rn, rd);
9553         break;
9554     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9555     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9556         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9557                                immh, immb, opcode, rn, rd);
9558         break;
9559     case 0xc: /* SQSHLU */
9560         if (!is_u) {
9561             unallocated_encoding(s);
9562             return;
9563         }
9564         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9565         break;
9566     case 0xe: /* SQSHL, UQSHL */
9567         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9568         break;
9569     case 0x1f: /* FCVTZS, FCVTZU */
9570         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9571         break;
9572     default:
9573         unallocated_encoding(s);
9574         break;
9575     }
9576 }
9577 
9578 /* AdvSIMD scalar three different
9579  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9580  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9581  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9582  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9583  */
9584 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9585 {
9586     bool is_u = extract32(insn, 29, 1);
9587     int size = extract32(insn, 22, 2);
9588     int opcode = extract32(insn, 12, 4);
9589     int rm = extract32(insn, 16, 5);
9590     int rn = extract32(insn, 5, 5);
9591     int rd = extract32(insn, 0, 5);
9592 
9593     if (is_u) {
9594         unallocated_encoding(s);
9595         return;
9596     }
9597 
9598     switch (opcode) {
9599     case 0x9: /* SQDMLAL, SQDMLAL2 */
9600     case 0xb: /* SQDMLSL, SQDMLSL2 */
9601     case 0xd: /* SQDMULL, SQDMULL2 */
9602         if (size == 0 || size == 3) {
9603             unallocated_encoding(s);
9604             return;
9605         }
9606         break;
9607     default:
9608         unallocated_encoding(s);
9609         return;
9610     }
9611 
9612     if (!fp_access_check(s)) {
9613         return;
9614     }
9615 
9616     if (size == 2) {
9617         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9618         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9619         TCGv_i64 tcg_res = tcg_temp_new_i64();
9620 
9621         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9622         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9623 
9624         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9625         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9626 
9627         switch (opcode) {
9628         case 0xd: /* SQDMULL, SQDMULL2 */
9629             break;
9630         case 0xb: /* SQDMLSL, SQDMLSL2 */
9631             tcg_gen_neg_i64(tcg_res, tcg_res);
9632             /* fall through */
9633         case 0x9: /* SQDMLAL, SQDMLAL2 */
9634             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9635             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9636                                               tcg_res, tcg_op1);
9637             break;
9638         default:
9639             g_assert_not_reached();
9640         }
9641 
9642         write_fp_dreg(s, rd, tcg_res);
9643     } else {
9644         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9645         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9646         TCGv_i64 tcg_res = tcg_temp_new_i64();
9647 
9648         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9649         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9650 
9651         switch (opcode) {
9652         case 0xd: /* SQDMULL, SQDMULL2 */
9653             break;
9654         case 0xb: /* SQDMLSL, SQDMLSL2 */
9655             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9656             /* fall through */
9657         case 0x9: /* SQDMLAL, SQDMLAL2 */
9658         {
9659             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9660             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9661             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9662                                               tcg_res, tcg_op3);
9663             break;
9664         }
9665         default:
9666             g_assert_not_reached();
9667         }
9668 
9669         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9670         write_fp_dreg(s, rd, tcg_res);
9671     }
9672 }
9673 
9674 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9675                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9676                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9677 {
9678     /* Handle 64->64 opcodes which are shared between the scalar and
9679      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9680      * is valid in either group and also the double-precision fp ops.
9681      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9682      * requires them.
9683      */
9684     TCGCond cond;
9685 
9686     switch (opcode) {
9687     case 0x4: /* CLS, CLZ */
9688         if (u) {
9689             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9690         } else {
9691             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9692         }
9693         break;
9694     case 0x5: /* NOT */
9695         /* This opcode is shared with CNT and RBIT but we have earlier
9696          * enforced that size == 3 if and only if this is the NOT insn.
9697          */
9698         tcg_gen_not_i64(tcg_rd, tcg_rn);
9699         break;
9700     case 0x7: /* SQABS, SQNEG */
9701         if (u) {
9702             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9703         } else {
9704             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9705         }
9706         break;
9707     case 0xa: /* CMLT */
9708         cond = TCG_COND_LT;
9709     do_cmop:
9710         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9711         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9712         break;
9713     case 0x8: /* CMGT, CMGE */
9714         cond = u ? TCG_COND_GE : TCG_COND_GT;
9715         goto do_cmop;
9716     case 0x9: /* CMEQ, CMLE */
9717         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9718         goto do_cmop;
9719     case 0xb: /* ABS, NEG */
9720         if (u) {
9721             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9722         } else {
9723             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9724         }
9725         break;
9726     case 0x2f: /* FABS */
9727         gen_vfp_absd(tcg_rd, tcg_rn);
9728         break;
9729     case 0x6f: /* FNEG */
9730         gen_vfp_negd(tcg_rd, tcg_rn);
9731         break;
9732     case 0x7f: /* FSQRT */
9733         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9734         break;
9735     case 0x1a: /* FCVTNS */
9736     case 0x1b: /* FCVTMS */
9737     case 0x1c: /* FCVTAS */
9738     case 0x3a: /* FCVTPS */
9739     case 0x3b: /* FCVTZS */
9740         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9741         break;
9742     case 0x5a: /* FCVTNU */
9743     case 0x5b: /* FCVTMU */
9744     case 0x5c: /* FCVTAU */
9745     case 0x7a: /* FCVTPU */
9746     case 0x7b: /* FCVTZU */
9747         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9748         break;
9749     case 0x18: /* FRINTN */
9750     case 0x19: /* FRINTM */
9751     case 0x38: /* FRINTP */
9752     case 0x39: /* FRINTZ */
9753     case 0x58: /* FRINTA */
9754     case 0x79: /* FRINTI */
9755         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9756         break;
9757     case 0x59: /* FRINTX */
9758         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9759         break;
9760     case 0x1e: /* FRINT32Z */
9761     case 0x5e: /* FRINT32X */
9762         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9763         break;
9764     case 0x1f: /* FRINT64Z */
9765     case 0x5f: /* FRINT64X */
9766         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9767         break;
9768     default:
9769         g_assert_not_reached();
9770     }
9771 }
9772 
9773 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9774                                    bool is_scalar, bool is_u, bool is_q,
9775                                    int size, int rn, int rd)
9776 {
9777     bool is_double = (size == MO_64);
9778     TCGv_ptr fpst;
9779 
9780     if (!fp_access_check(s)) {
9781         return;
9782     }
9783 
9784     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9785 
9786     if (is_double) {
9787         TCGv_i64 tcg_op = tcg_temp_new_i64();
9788         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9789         TCGv_i64 tcg_res = tcg_temp_new_i64();
9790         NeonGenTwoDoubleOpFn *genfn;
9791         bool swap = false;
9792         int pass;
9793 
9794         switch (opcode) {
9795         case 0x2e: /* FCMLT (zero) */
9796             swap = true;
9797             /* fallthrough */
9798         case 0x2c: /* FCMGT (zero) */
9799             genfn = gen_helper_neon_cgt_f64;
9800             break;
9801         case 0x2d: /* FCMEQ (zero) */
9802             genfn = gen_helper_neon_ceq_f64;
9803             break;
9804         case 0x6d: /* FCMLE (zero) */
9805             swap = true;
9806             /* fall through */
9807         case 0x6c: /* FCMGE (zero) */
9808             genfn = gen_helper_neon_cge_f64;
9809             break;
9810         default:
9811             g_assert_not_reached();
9812         }
9813 
9814         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9815             read_vec_element(s, tcg_op, rn, pass, MO_64);
9816             if (swap) {
9817                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9818             } else {
9819                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9820             }
9821             write_vec_element(s, tcg_res, rd, pass, MO_64);
9822         }
9823 
9824         clear_vec_high(s, !is_scalar, rd);
9825     } else {
9826         TCGv_i32 tcg_op = tcg_temp_new_i32();
9827         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9828         TCGv_i32 tcg_res = tcg_temp_new_i32();
9829         NeonGenTwoSingleOpFn *genfn;
9830         bool swap = false;
9831         int pass, maxpasses;
9832 
9833         if (size == MO_16) {
9834             switch (opcode) {
9835             case 0x2e: /* FCMLT (zero) */
9836                 swap = true;
9837                 /* fall through */
9838             case 0x2c: /* FCMGT (zero) */
9839                 genfn = gen_helper_advsimd_cgt_f16;
9840                 break;
9841             case 0x2d: /* FCMEQ (zero) */
9842                 genfn = gen_helper_advsimd_ceq_f16;
9843                 break;
9844             case 0x6d: /* FCMLE (zero) */
9845                 swap = true;
9846                 /* fall through */
9847             case 0x6c: /* FCMGE (zero) */
9848                 genfn = gen_helper_advsimd_cge_f16;
9849                 break;
9850             default:
9851                 g_assert_not_reached();
9852             }
9853         } else {
9854             switch (opcode) {
9855             case 0x2e: /* FCMLT (zero) */
9856                 swap = true;
9857                 /* fall through */
9858             case 0x2c: /* FCMGT (zero) */
9859                 genfn = gen_helper_neon_cgt_f32;
9860                 break;
9861             case 0x2d: /* FCMEQ (zero) */
9862                 genfn = gen_helper_neon_ceq_f32;
9863                 break;
9864             case 0x6d: /* FCMLE (zero) */
9865                 swap = true;
9866                 /* fall through */
9867             case 0x6c: /* FCMGE (zero) */
9868                 genfn = gen_helper_neon_cge_f32;
9869                 break;
9870             default:
9871                 g_assert_not_reached();
9872             }
9873         }
9874 
9875         if (is_scalar) {
9876             maxpasses = 1;
9877         } else {
9878             int vector_size = 8 << is_q;
9879             maxpasses = vector_size >> size;
9880         }
9881 
9882         for (pass = 0; pass < maxpasses; pass++) {
9883             read_vec_element_i32(s, tcg_op, rn, pass, size);
9884             if (swap) {
9885                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9886             } else {
9887                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9888             }
9889             if (is_scalar) {
9890                 write_fp_sreg(s, rd, tcg_res);
9891             } else {
9892                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9893             }
9894         }
9895 
9896         if (!is_scalar) {
9897             clear_vec_high(s, is_q, rd);
9898         }
9899     }
9900 }
9901 
9902 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9903                                     bool is_scalar, bool is_u, bool is_q,
9904                                     int size, int rn, int rd)
9905 {
9906     bool is_double = (size == 3);
9907     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9908 
9909     if (is_double) {
9910         TCGv_i64 tcg_op = tcg_temp_new_i64();
9911         TCGv_i64 tcg_res = tcg_temp_new_i64();
9912         int pass;
9913 
9914         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9915             read_vec_element(s, tcg_op, rn, pass, MO_64);
9916             switch (opcode) {
9917             case 0x3d: /* FRECPE */
9918                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9919                 break;
9920             case 0x3f: /* FRECPX */
9921                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9922                 break;
9923             case 0x7d: /* FRSQRTE */
9924                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9925                 break;
9926             default:
9927                 g_assert_not_reached();
9928             }
9929             write_vec_element(s, tcg_res, rd, pass, MO_64);
9930         }
9931         clear_vec_high(s, !is_scalar, rd);
9932     } else {
9933         TCGv_i32 tcg_op = tcg_temp_new_i32();
9934         TCGv_i32 tcg_res = tcg_temp_new_i32();
9935         int pass, maxpasses;
9936 
9937         if (is_scalar) {
9938             maxpasses = 1;
9939         } else {
9940             maxpasses = is_q ? 4 : 2;
9941         }
9942 
9943         for (pass = 0; pass < maxpasses; pass++) {
9944             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9945 
9946             switch (opcode) {
9947             case 0x3c: /* URECPE */
9948                 gen_helper_recpe_u32(tcg_res, tcg_op);
9949                 break;
9950             case 0x3d: /* FRECPE */
9951                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9952                 break;
9953             case 0x3f: /* FRECPX */
9954                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9955                 break;
9956             case 0x7d: /* FRSQRTE */
9957                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9958                 break;
9959             default:
9960                 g_assert_not_reached();
9961             }
9962 
9963             if (is_scalar) {
9964                 write_fp_sreg(s, rd, tcg_res);
9965             } else {
9966                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9967             }
9968         }
9969         if (!is_scalar) {
9970             clear_vec_high(s, is_q, rd);
9971         }
9972     }
9973 }
9974 
9975 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9976                                 int opcode, bool u, bool is_q,
9977                                 int size, int rn, int rd)
9978 {
9979     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9980      * in the source becomes a size element in the destination).
9981      */
9982     int pass;
9983     TCGv_i32 tcg_res[2];
9984     int destelt = is_q ? 2 : 0;
9985     int passes = scalar ? 1 : 2;
9986 
9987     if (scalar) {
9988         tcg_res[1] = tcg_constant_i32(0);
9989     }
9990 
9991     for (pass = 0; pass < passes; pass++) {
9992         TCGv_i64 tcg_op = tcg_temp_new_i64();
9993         NeonGenNarrowFn *genfn = NULL;
9994         NeonGenNarrowEnvFn *genenvfn = NULL;
9995 
9996         if (scalar) {
9997             read_vec_element(s, tcg_op, rn, pass, size + 1);
9998         } else {
9999             read_vec_element(s, tcg_op, rn, pass, MO_64);
10000         }
10001         tcg_res[pass] = tcg_temp_new_i32();
10002 
10003         switch (opcode) {
10004         case 0x12: /* XTN, SQXTUN */
10005         {
10006             static NeonGenNarrowFn * const xtnfns[3] = {
10007                 gen_helper_neon_narrow_u8,
10008                 gen_helper_neon_narrow_u16,
10009                 tcg_gen_extrl_i64_i32,
10010             };
10011             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10012                 gen_helper_neon_unarrow_sat8,
10013                 gen_helper_neon_unarrow_sat16,
10014                 gen_helper_neon_unarrow_sat32,
10015             };
10016             if (u) {
10017                 genenvfn = sqxtunfns[size];
10018             } else {
10019                 genfn = xtnfns[size];
10020             }
10021             break;
10022         }
10023         case 0x14: /* SQXTN, UQXTN */
10024         {
10025             static NeonGenNarrowEnvFn * const fns[3][2] = {
10026                 { gen_helper_neon_narrow_sat_s8,
10027                   gen_helper_neon_narrow_sat_u8 },
10028                 { gen_helper_neon_narrow_sat_s16,
10029                   gen_helper_neon_narrow_sat_u16 },
10030                 { gen_helper_neon_narrow_sat_s32,
10031                   gen_helper_neon_narrow_sat_u32 },
10032             };
10033             genenvfn = fns[size][u];
10034             break;
10035         }
10036         case 0x16: /* FCVTN, FCVTN2 */
10037             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10038             if (size == 2) {
10039                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10040             } else {
10041                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10042                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10043                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10044                 TCGv_i32 ahp = get_ahp_flag();
10045 
10046                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10047                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10048                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10049                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10050             }
10051             break;
10052         case 0x36: /* BFCVTN, BFCVTN2 */
10053             {
10054                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10055                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10056             }
10057             break;
10058         case 0x56:  /* FCVTXN, FCVTXN2 */
10059             /* 64 bit to 32 bit float conversion
10060              * with von Neumann rounding (round to odd)
10061              */
10062             assert(size == 2);
10063             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10064             break;
10065         default:
10066             g_assert_not_reached();
10067         }
10068 
10069         if (genfn) {
10070             genfn(tcg_res[pass], tcg_op);
10071         } else if (genenvfn) {
10072             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10073         }
10074     }
10075 
10076     for (pass = 0; pass < 2; pass++) {
10077         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10078     }
10079     clear_vec_high(s, is_q, rd);
10080 }
10081 
10082 /* AdvSIMD scalar two reg misc
10083  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10084  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10085  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10086  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10087  */
10088 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10089 {
10090     int rd = extract32(insn, 0, 5);
10091     int rn = extract32(insn, 5, 5);
10092     int opcode = extract32(insn, 12, 5);
10093     int size = extract32(insn, 22, 2);
10094     bool u = extract32(insn, 29, 1);
10095     bool is_fcvt = false;
10096     int rmode;
10097     TCGv_i32 tcg_rmode;
10098     TCGv_ptr tcg_fpstatus;
10099 
10100     switch (opcode) {
10101     case 0x7: /* SQABS / SQNEG */
10102         break;
10103     case 0xa: /* CMLT */
10104         if (u) {
10105             unallocated_encoding(s);
10106             return;
10107         }
10108         /* fall through */
10109     case 0x8: /* CMGT, CMGE */
10110     case 0x9: /* CMEQ, CMLE */
10111     case 0xb: /* ABS, NEG */
10112         if (size != 3) {
10113             unallocated_encoding(s);
10114             return;
10115         }
10116         break;
10117     case 0x12: /* SQXTUN */
10118         if (!u) {
10119             unallocated_encoding(s);
10120             return;
10121         }
10122         /* fall through */
10123     case 0x14: /* SQXTN, UQXTN */
10124         if (size == 3) {
10125             unallocated_encoding(s);
10126             return;
10127         }
10128         if (!fp_access_check(s)) {
10129             return;
10130         }
10131         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10132         return;
10133     case 0xc ... 0xf:
10134     case 0x16 ... 0x1d:
10135     case 0x1f:
10136         /* Floating point: U, size[1] and opcode indicate operation;
10137          * size[0] indicates single or double precision.
10138          */
10139         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10140         size = extract32(size, 0, 1) ? 3 : 2;
10141         switch (opcode) {
10142         case 0x2c: /* FCMGT (zero) */
10143         case 0x2d: /* FCMEQ (zero) */
10144         case 0x2e: /* FCMLT (zero) */
10145         case 0x6c: /* FCMGE (zero) */
10146         case 0x6d: /* FCMLE (zero) */
10147             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10148             return;
10149         case 0x1d: /* SCVTF */
10150         case 0x5d: /* UCVTF */
10151         {
10152             bool is_signed = (opcode == 0x1d);
10153             if (!fp_access_check(s)) {
10154                 return;
10155             }
10156             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10157             return;
10158         }
10159         case 0x3d: /* FRECPE */
10160         case 0x3f: /* FRECPX */
10161         case 0x7d: /* FRSQRTE */
10162             if (!fp_access_check(s)) {
10163                 return;
10164             }
10165             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10166             return;
10167         case 0x1a: /* FCVTNS */
10168         case 0x1b: /* FCVTMS */
10169         case 0x3a: /* FCVTPS */
10170         case 0x3b: /* FCVTZS */
10171         case 0x5a: /* FCVTNU */
10172         case 0x5b: /* FCVTMU */
10173         case 0x7a: /* FCVTPU */
10174         case 0x7b: /* FCVTZU */
10175             is_fcvt = true;
10176             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10177             break;
10178         case 0x1c: /* FCVTAS */
10179         case 0x5c: /* FCVTAU */
10180             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10181             is_fcvt = true;
10182             rmode = FPROUNDING_TIEAWAY;
10183             break;
10184         case 0x56: /* FCVTXN, FCVTXN2 */
10185             if (size == 2) {
10186                 unallocated_encoding(s);
10187                 return;
10188             }
10189             if (!fp_access_check(s)) {
10190                 return;
10191             }
10192             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10193             return;
10194         default:
10195             unallocated_encoding(s);
10196             return;
10197         }
10198         break;
10199     default:
10200     case 0x3: /* USQADD / SUQADD */
10201         unallocated_encoding(s);
10202         return;
10203     }
10204 
10205     if (!fp_access_check(s)) {
10206         return;
10207     }
10208 
10209     if (is_fcvt) {
10210         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10211         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10212     } else {
10213         tcg_fpstatus = NULL;
10214         tcg_rmode = NULL;
10215     }
10216 
10217     if (size == 3) {
10218         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10219         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10220 
10221         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10222         write_fp_dreg(s, rd, tcg_rd);
10223     } else {
10224         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10225         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10226 
10227         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10228 
10229         switch (opcode) {
10230         case 0x7: /* SQABS, SQNEG */
10231         {
10232             NeonGenOneOpEnvFn *genfn;
10233             static NeonGenOneOpEnvFn * const fns[3][2] = {
10234                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10235                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10236                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10237             };
10238             genfn = fns[size][u];
10239             genfn(tcg_rd, tcg_env, tcg_rn);
10240             break;
10241         }
10242         case 0x1a: /* FCVTNS */
10243         case 0x1b: /* FCVTMS */
10244         case 0x1c: /* FCVTAS */
10245         case 0x3a: /* FCVTPS */
10246         case 0x3b: /* FCVTZS */
10247             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10248                                  tcg_fpstatus);
10249             break;
10250         case 0x5a: /* FCVTNU */
10251         case 0x5b: /* FCVTMU */
10252         case 0x5c: /* FCVTAU */
10253         case 0x7a: /* FCVTPU */
10254         case 0x7b: /* FCVTZU */
10255             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10256                                  tcg_fpstatus);
10257             break;
10258         default:
10259             g_assert_not_reached();
10260         }
10261 
10262         write_fp_sreg(s, rd, tcg_rd);
10263     }
10264 
10265     if (is_fcvt) {
10266         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10267     }
10268 }
10269 
10270 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10271 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10272                                  int immh, int immb, int opcode, int rn, int rd)
10273 {
10274     int size = 32 - clz32(immh) - 1;
10275     int immhb = immh << 3 | immb;
10276     int shift = 2 * (8 << size) - immhb;
10277     GVecGen2iFn *gvec_fn;
10278 
10279     if (extract32(immh, 3, 1) && !is_q) {
10280         unallocated_encoding(s);
10281         return;
10282     }
10283     tcg_debug_assert(size <= 3);
10284 
10285     if (!fp_access_check(s)) {
10286         return;
10287     }
10288 
10289     switch (opcode) {
10290     case 0x02: /* SSRA / USRA (accumulate) */
10291         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10292         break;
10293 
10294     case 0x08: /* SRI */
10295         gvec_fn = gen_gvec_sri;
10296         break;
10297 
10298     case 0x00: /* SSHR / USHR */
10299         if (is_u) {
10300             if (shift == 8 << size) {
10301                 /* Shift count the same size as element size produces zero.  */
10302                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10303                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10304                 return;
10305             }
10306             gvec_fn = tcg_gen_gvec_shri;
10307         } else {
10308             /* Shift count the same size as element size produces all sign.  */
10309             if (shift == 8 << size) {
10310                 shift -= 1;
10311             }
10312             gvec_fn = tcg_gen_gvec_sari;
10313         }
10314         break;
10315 
10316     case 0x04: /* SRSHR / URSHR (rounding) */
10317         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10318         break;
10319 
10320     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10321         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10322         break;
10323 
10324     default:
10325         g_assert_not_reached();
10326     }
10327 
10328     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10329 }
10330 
10331 /* SHL/SLI - Vector shift left */
10332 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10333                                  int immh, int immb, int opcode, int rn, int rd)
10334 {
10335     int size = 32 - clz32(immh) - 1;
10336     int immhb = immh << 3 | immb;
10337     int shift = immhb - (8 << size);
10338 
10339     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10340     assert(size >= 0 && size <= 3);
10341 
10342     if (extract32(immh, 3, 1) && !is_q) {
10343         unallocated_encoding(s);
10344         return;
10345     }
10346 
10347     if (!fp_access_check(s)) {
10348         return;
10349     }
10350 
10351     if (insert) {
10352         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10353     } else {
10354         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10355     }
10356 }
10357 
10358 /* USHLL/SHLL - Vector shift left with widening */
10359 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10360                                  int immh, int immb, int opcode, int rn, int rd)
10361 {
10362     int size = 32 - clz32(immh) - 1;
10363     int immhb = immh << 3 | immb;
10364     int shift = immhb - (8 << size);
10365     int dsize = 64;
10366     int esize = 8 << size;
10367     int elements = dsize/esize;
10368     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10369     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10370     int i;
10371 
10372     if (size >= 3) {
10373         unallocated_encoding(s);
10374         return;
10375     }
10376 
10377     if (!fp_access_check(s)) {
10378         return;
10379     }
10380 
10381     /* For the LL variants the store is larger than the load,
10382      * so if rd == rn we would overwrite parts of our input.
10383      * So load everything right now and use shifts in the main loop.
10384      */
10385     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10386 
10387     for (i = 0; i < elements; i++) {
10388         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10389         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10390         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10391         write_vec_element(s, tcg_rd, rd, i, size + 1);
10392     }
10393 }
10394 
10395 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10396 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10397                                  int immh, int immb, int opcode, int rn, int rd)
10398 {
10399     int immhb = immh << 3 | immb;
10400     int size = 32 - clz32(immh) - 1;
10401     int dsize = 64;
10402     int esize = 8 << size;
10403     int elements = dsize/esize;
10404     int shift = (2 * esize) - immhb;
10405     bool round = extract32(opcode, 0, 1);
10406     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10407     TCGv_i64 tcg_round;
10408     int i;
10409 
10410     if (extract32(immh, 3, 1)) {
10411         unallocated_encoding(s);
10412         return;
10413     }
10414 
10415     if (!fp_access_check(s)) {
10416         return;
10417     }
10418 
10419     tcg_rn = tcg_temp_new_i64();
10420     tcg_rd = tcg_temp_new_i64();
10421     tcg_final = tcg_temp_new_i64();
10422     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10423 
10424     if (round) {
10425         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10426     } else {
10427         tcg_round = NULL;
10428     }
10429 
10430     for (i = 0; i < elements; i++) {
10431         read_vec_element(s, tcg_rn, rn, i, size+1);
10432         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10433                                 false, true, size+1, shift);
10434 
10435         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10436     }
10437 
10438     if (!is_q) {
10439         write_vec_element(s, tcg_final, rd, 0, MO_64);
10440     } else {
10441         write_vec_element(s, tcg_final, rd, 1, MO_64);
10442     }
10443 
10444     clear_vec_high(s, is_q, rd);
10445 }
10446 
10447 
10448 /* AdvSIMD shift by immediate
10449  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10450  * +---+---+---+-------------+------+------+--------+---+------+------+
10451  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10452  * +---+---+---+-------------+------+------+--------+---+------+------+
10453  */
10454 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10455 {
10456     int rd = extract32(insn, 0, 5);
10457     int rn = extract32(insn, 5, 5);
10458     int opcode = extract32(insn, 11, 5);
10459     int immb = extract32(insn, 16, 3);
10460     int immh = extract32(insn, 19, 4);
10461     bool is_u = extract32(insn, 29, 1);
10462     bool is_q = extract32(insn, 30, 1);
10463 
10464     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10465     assert(immh != 0);
10466 
10467     switch (opcode) {
10468     case 0x08: /* SRI */
10469         if (!is_u) {
10470             unallocated_encoding(s);
10471             return;
10472         }
10473         /* fall through */
10474     case 0x00: /* SSHR / USHR */
10475     case 0x02: /* SSRA / USRA (accumulate) */
10476     case 0x04: /* SRSHR / URSHR (rounding) */
10477     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10478         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10479         break;
10480     case 0x0a: /* SHL / SLI */
10481         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10482         break;
10483     case 0x10: /* SHRN */
10484     case 0x11: /* RSHRN / SQRSHRUN */
10485         if (is_u) {
10486             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10487                                    opcode, rn, rd);
10488         } else {
10489             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10490         }
10491         break;
10492     case 0x12: /* SQSHRN / UQSHRN */
10493     case 0x13: /* SQRSHRN / UQRSHRN */
10494         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10495                                opcode, rn, rd);
10496         break;
10497     case 0x14: /* SSHLL / USHLL */
10498         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10499         break;
10500     case 0x1c: /* SCVTF / UCVTF */
10501         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10502                                      opcode, rn, rd);
10503         break;
10504     case 0xc: /* SQSHLU */
10505         if (!is_u) {
10506             unallocated_encoding(s);
10507             return;
10508         }
10509         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10510         break;
10511     case 0xe: /* SQSHL, UQSHL */
10512         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10513         break;
10514     case 0x1f: /* FCVTZS/ FCVTZU */
10515         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10516         return;
10517     default:
10518         unallocated_encoding(s);
10519         return;
10520     }
10521 }
10522 
10523 /* Generate code to do a "long" addition or subtraction, ie one done in
10524  * TCGv_i64 on vector lanes twice the width specified by size.
10525  */
10526 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10527                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10528 {
10529     static NeonGenTwo64OpFn * const fns[3][2] = {
10530         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10531         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10532         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10533     };
10534     NeonGenTwo64OpFn *genfn;
10535     assert(size < 3);
10536 
10537     genfn = fns[size][is_sub];
10538     genfn(tcg_res, tcg_op1, tcg_op2);
10539 }
10540 
10541 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10542                                 int opcode, int rd, int rn, int rm)
10543 {
10544     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10545     TCGv_i64 tcg_res[2];
10546     int pass, accop;
10547 
10548     tcg_res[0] = tcg_temp_new_i64();
10549     tcg_res[1] = tcg_temp_new_i64();
10550 
10551     /* Does this op do an adding accumulate, a subtracting accumulate,
10552      * or no accumulate at all?
10553      */
10554     switch (opcode) {
10555     case 5:
10556     case 8:
10557     case 9:
10558         accop = 1;
10559         break;
10560     case 10:
10561     case 11:
10562         accop = -1;
10563         break;
10564     default:
10565         accop = 0;
10566         break;
10567     }
10568 
10569     if (accop != 0) {
10570         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10571         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10572     }
10573 
10574     /* size == 2 means two 32x32->64 operations; this is worth special
10575      * casing because we can generally handle it inline.
10576      */
10577     if (size == 2) {
10578         for (pass = 0; pass < 2; pass++) {
10579             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10580             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10581             TCGv_i64 tcg_passres;
10582             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10583 
10584             int elt = pass + is_q * 2;
10585 
10586             read_vec_element(s, tcg_op1, rn, elt, memop);
10587             read_vec_element(s, tcg_op2, rm, elt, memop);
10588 
10589             if (accop == 0) {
10590                 tcg_passres = tcg_res[pass];
10591             } else {
10592                 tcg_passres = tcg_temp_new_i64();
10593             }
10594 
10595             switch (opcode) {
10596             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10597                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10598                 break;
10599             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10600                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10601                 break;
10602             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10603             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10604             {
10605                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10606                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10607 
10608                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10609                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10610                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10611                                     tcg_passres,
10612                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10613                 break;
10614             }
10615             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10616             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10617             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10618                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10619                 break;
10620             case 9: /* SQDMLAL, SQDMLAL2 */
10621             case 11: /* SQDMLSL, SQDMLSL2 */
10622             case 13: /* SQDMULL, SQDMULL2 */
10623                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10624                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10625                                                   tcg_passres, tcg_passres);
10626                 break;
10627             default:
10628                 g_assert_not_reached();
10629             }
10630 
10631             if (opcode == 9 || opcode == 11) {
10632                 /* saturating accumulate ops */
10633                 if (accop < 0) {
10634                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10635                 }
10636                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10637                                                   tcg_res[pass], tcg_passres);
10638             } else if (accop > 0) {
10639                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10640             } else if (accop < 0) {
10641                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10642             }
10643         }
10644     } else {
10645         /* size 0 or 1, generally helper functions */
10646         for (pass = 0; pass < 2; pass++) {
10647             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10648             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10649             TCGv_i64 tcg_passres;
10650             int elt = pass + is_q * 2;
10651 
10652             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10653             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10654 
10655             if (accop == 0) {
10656                 tcg_passres = tcg_res[pass];
10657             } else {
10658                 tcg_passres = tcg_temp_new_i64();
10659             }
10660 
10661             switch (opcode) {
10662             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10663             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10664             {
10665                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10666                 static NeonGenWidenFn * const widenfns[2][2] = {
10667                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10668                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10669                 };
10670                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10671 
10672                 widenfn(tcg_op2_64, tcg_op2);
10673                 widenfn(tcg_passres, tcg_op1);
10674                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10675                               tcg_passres, tcg_op2_64);
10676                 break;
10677             }
10678             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10679             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10680                 if (size == 0) {
10681                     if (is_u) {
10682                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10683                     } else {
10684                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10685                     }
10686                 } else {
10687                     if (is_u) {
10688                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10689                     } else {
10690                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10691                     }
10692                 }
10693                 break;
10694             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10695             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10696             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10697                 if (size == 0) {
10698                     if (is_u) {
10699                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10700                     } else {
10701                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10702                     }
10703                 } else {
10704                     if (is_u) {
10705                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10706                     } else {
10707                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10708                     }
10709                 }
10710                 break;
10711             case 9: /* SQDMLAL, SQDMLAL2 */
10712             case 11: /* SQDMLSL, SQDMLSL2 */
10713             case 13: /* SQDMULL, SQDMULL2 */
10714                 assert(size == 1);
10715                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10716                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10717                                                   tcg_passres, tcg_passres);
10718                 break;
10719             default:
10720                 g_assert_not_reached();
10721             }
10722 
10723             if (accop != 0) {
10724                 if (opcode == 9 || opcode == 11) {
10725                     /* saturating accumulate ops */
10726                     if (accop < 0) {
10727                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10728                     }
10729                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10730                                                       tcg_res[pass],
10731                                                       tcg_passres);
10732                 } else {
10733                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10734                                   tcg_res[pass], tcg_passres);
10735                 }
10736             }
10737         }
10738     }
10739 
10740     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10741     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10742 }
10743 
10744 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10745                             int opcode, int rd, int rn, int rm)
10746 {
10747     TCGv_i64 tcg_res[2];
10748     int part = is_q ? 2 : 0;
10749     int pass;
10750 
10751     for (pass = 0; pass < 2; pass++) {
10752         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10753         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10754         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10755         static NeonGenWidenFn * const widenfns[3][2] = {
10756             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10757             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10758             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10759         };
10760         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10761 
10762         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10763         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10764         widenfn(tcg_op2_wide, tcg_op2);
10765         tcg_res[pass] = tcg_temp_new_i64();
10766         gen_neon_addl(size, (opcode == 3),
10767                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10768     }
10769 
10770     for (pass = 0; pass < 2; pass++) {
10771         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10772     }
10773 }
10774 
10775 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10776 {
10777     tcg_gen_addi_i64(in, in, 1U << 31);
10778     tcg_gen_extrh_i64_i32(res, in);
10779 }
10780 
10781 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10782                                  int opcode, int rd, int rn, int rm)
10783 {
10784     TCGv_i32 tcg_res[2];
10785     int part = is_q ? 2 : 0;
10786     int pass;
10787 
10788     for (pass = 0; pass < 2; pass++) {
10789         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10790         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10791         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10792         static NeonGenNarrowFn * const narrowfns[3][2] = {
10793             { gen_helper_neon_narrow_high_u8,
10794               gen_helper_neon_narrow_round_high_u8 },
10795             { gen_helper_neon_narrow_high_u16,
10796               gen_helper_neon_narrow_round_high_u16 },
10797             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10798         };
10799         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10800 
10801         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10802         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10803 
10804         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10805 
10806         tcg_res[pass] = tcg_temp_new_i32();
10807         gennarrow(tcg_res[pass], tcg_wideres);
10808     }
10809 
10810     for (pass = 0; pass < 2; pass++) {
10811         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10812     }
10813     clear_vec_high(s, is_q, rd);
10814 }
10815 
10816 /* AdvSIMD three different
10817  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10818  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10819  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10820  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10821  */
10822 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10823 {
10824     /* Instructions in this group fall into three basic classes
10825      * (in each case with the operation working on each element in
10826      * the input vectors):
10827      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10828      *     128 bit input)
10829      * (2) wide 64 x 128 -> 128
10830      * (3) narrowing 128 x 128 -> 64
10831      * Here we do initial decode, catch unallocated cases and
10832      * dispatch to separate functions for each class.
10833      */
10834     int is_q = extract32(insn, 30, 1);
10835     int is_u = extract32(insn, 29, 1);
10836     int size = extract32(insn, 22, 2);
10837     int opcode = extract32(insn, 12, 4);
10838     int rm = extract32(insn, 16, 5);
10839     int rn = extract32(insn, 5, 5);
10840     int rd = extract32(insn, 0, 5);
10841 
10842     switch (opcode) {
10843     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10844     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10845         /* 64 x 128 -> 128 */
10846         if (size == 3) {
10847             unallocated_encoding(s);
10848             return;
10849         }
10850         if (!fp_access_check(s)) {
10851             return;
10852         }
10853         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10854         break;
10855     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10856     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10857         /* 128 x 128 -> 64 */
10858         if (size == 3) {
10859             unallocated_encoding(s);
10860             return;
10861         }
10862         if (!fp_access_check(s)) {
10863             return;
10864         }
10865         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10866         break;
10867     case 14: /* PMULL, PMULL2 */
10868         if (is_u) {
10869             unallocated_encoding(s);
10870             return;
10871         }
10872         switch (size) {
10873         case 0: /* PMULL.P8 */
10874             if (!fp_access_check(s)) {
10875                 return;
10876             }
10877             /* The Q field specifies lo/hi half input for this insn.  */
10878             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10879                              gen_helper_neon_pmull_h);
10880             break;
10881 
10882         case 3: /* PMULL.P64 */
10883             if (!dc_isar_feature(aa64_pmull, s)) {
10884                 unallocated_encoding(s);
10885                 return;
10886             }
10887             if (!fp_access_check(s)) {
10888                 return;
10889             }
10890             /* The Q field specifies lo/hi half input for this insn.  */
10891             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10892                              gen_helper_gvec_pmull_q);
10893             break;
10894 
10895         default:
10896             unallocated_encoding(s);
10897             break;
10898         }
10899         return;
10900     case 9: /* SQDMLAL, SQDMLAL2 */
10901     case 11: /* SQDMLSL, SQDMLSL2 */
10902     case 13: /* SQDMULL, SQDMULL2 */
10903         if (is_u || size == 0) {
10904             unallocated_encoding(s);
10905             return;
10906         }
10907         /* fall through */
10908     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10909     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10910     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10911     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10912     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10913     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10914     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10915         /* 64 x 64 -> 128 */
10916         if (size == 3) {
10917             unallocated_encoding(s);
10918             return;
10919         }
10920         if (!fp_access_check(s)) {
10921             return;
10922         }
10923 
10924         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10925         break;
10926     default:
10927         /* opcode 15 not allocated */
10928         unallocated_encoding(s);
10929         break;
10930     }
10931 }
10932 
10933 /* AdvSIMD three same extra
10934  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
10935  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10936  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
10937  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10938  */
10939 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10940 {
10941     int rd = extract32(insn, 0, 5);
10942     int rn = extract32(insn, 5, 5);
10943     int opcode = extract32(insn, 11, 4);
10944     int rm = extract32(insn, 16, 5);
10945     int size = extract32(insn, 22, 2);
10946     bool u = extract32(insn, 29, 1);
10947     bool is_q = extract32(insn, 30, 1);
10948     bool feature;
10949     int rot;
10950 
10951     switch (u * 16 + opcode) {
10952     case 0x04: /* SMMLA */
10953     case 0x14: /* UMMLA */
10954     case 0x05: /* USMMLA */
10955         if (!is_q || size != MO_32) {
10956             unallocated_encoding(s);
10957             return;
10958         }
10959         feature = dc_isar_feature(aa64_i8mm, s);
10960         break;
10961     case 0x18: /* FCMLA, #0 */
10962     case 0x19: /* FCMLA, #90 */
10963     case 0x1a: /* FCMLA, #180 */
10964     case 0x1b: /* FCMLA, #270 */
10965     case 0x1c: /* FCADD, #90 */
10966     case 0x1e: /* FCADD, #270 */
10967         if (size == 0
10968             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
10969             || (size == 3 && !is_q)) {
10970             unallocated_encoding(s);
10971             return;
10972         }
10973         feature = dc_isar_feature(aa64_fcma, s);
10974         break;
10975     case 0x1d: /* BFMMLA */
10976         if (size != MO_16 || !is_q) {
10977             unallocated_encoding(s);
10978             return;
10979         }
10980         feature = dc_isar_feature(aa64_bf16, s);
10981         break;
10982     default:
10983     case 0x02: /* SDOT (vector) */
10984     case 0x03: /* USDOT */
10985     case 0x10: /* SQRDMLAH (vector) */
10986     case 0x11: /* SQRDMLSH (vector) */
10987     case 0x12: /* UDOT (vector) */
10988     case 0x1f: /* BFDOT / BFMLAL */
10989         unallocated_encoding(s);
10990         return;
10991     }
10992     if (!feature) {
10993         unallocated_encoding(s);
10994         return;
10995     }
10996     if (!fp_access_check(s)) {
10997         return;
10998     }
10999 
11000     switch (opcode) {
11001     case 0x04: /* SMMLA, UMMLA */
11002         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11003                          u ? gen_helper_gvec_ummla_b
11004                          : gen_helper_gvec_smmla_b);
11005         return;
11006     case 0x05: /* USMMLA */
11007         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11008         return;
11009 
11010     case 0x8: /* FCMLA, #0 */
11011     case 0x9: /* FCMLA, #90 */
11012     case 0xa: /* FCMLA, #180 */
11013     case 0xb: /* FCMLA, #270 */
11014         rot = extract32(opcode, 0, 2);
11015         switch (size) {
11016         case 1:
11017             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11018                               gen_helper_gvec_fcmlah);
11019             break;
11020         case 2:
11021             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11022                               gen_helper_gvec_fcmlas);
11023             break;
11024         case 3:
11025             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11026                               gen_helper_gvec_fcmlad);
11027             break;
11028         default:
11029             g_assert_not_reached();
11030         }
11031         return;
11032 
11033     case 0xc: /* FCADD, #90 */
11034     case 0xe: /* FCADD, #270 */
11035         rot = extract32(opcode, 1, 1);
11036         switch (size) {
11037         case 1:
11038             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11039                               gen_helper_gvec_fcaddh);
11040             break;
11041         case 2:
11042             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11043                               gen_helper_gvec_fcadds);
11044             break;
11045         case 3:
11046             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11047                               gen_helper_gvec_fcaddd);
11048             break;
11049         default:
11050             g_assert_not_reached();
11051         }
11052         return;
11053 
11054     case 0xd: /* BFMMLA */
11055         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11056         return;
11057     default:
11058         g_assert_not_reached();
11059     }
11060 }
11061 
11062 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11063                                   int size, int rn, int rd)
11064 {
11065     /* Handle 2-reg-misc ops which are widening (so each size element
11066      * in the source becomes a 2*size element in the destination.
11067      * The only instruction like this is FCVTL.
11068      */
11069     int pass;
11070 
11071     if (size == 3) {
11072         /* 32 -> 64 bit fp conversion */
11073         TCGv_i64 tcg_res[2];
11074         int srcelt = is_q ? 2 : 0;
11075 
11076         for (pass = 0; pass < 2; pass++) {
11077             TCGv_i32 tcg_op = tcg_temp_new_i32();
11078             tcg_res[pass] = tcg_temp_new_i64();
11079 
11080             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11081             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11082         }
11083         for (pass = 0; pass < 2; pass++) {
11084             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11085         }
11086     } else {
11087         /* 16 -> 32 bit fp conversion */
11088         int srcelt = is_q ? 4 : 0;
11089         TCGv_i32 tcg_res[4];
11090         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11091         TCGv_i32 ahp = get_ahp_flag();
11092 
11093         for (pass = 0; pass < 4; pass++) {
11094             tcg_res[pass] = tcg_temp_new_i32();
11095 
11096             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11097             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11098                                            fpst, ahp);
11099         }
11100         for (pass = 0; pass < 4; pass++) {
11101             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11102         }
11103     }
11104 }
11105 
11106 static void handle_rev(DisasContext *s, int opcode, bool u,
11107                        bool is_q, int size, int rn, int rd)
11108 {
11109     int op = (opcode << 1) | u;
11110     int opsz = op + size;
11111     int grp_size = 3 - opsz;
11112     int dsize = is_q ? 128 : 64;
11113     int i;
11114 
11115     if (opsz >= 3) {
11116         unallocated_encoding(s);
11117         return;
11118     }
11119 
11120     if (!fp_access_check(s)) {
11121         return;
11122     }
11123 
11124     if (size == 0) {
11125         /* Special case bytes, use bswap op on each group of elements */
11126         int groups = dsize / (8 << grp_size);
11127 
11128         for (i = 0; i < groups; i++) {
11129             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11130 
11131             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11132             switch (grp_size) {
11133             case MO_16:
11134                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11135                 break;
11136             case MO_32:
11137                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11138                 break;
11139             case MO_64:
11140                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11141                 break;
11142             default:
11143                 g_assert_not_reached();
11144             }
11145             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11146         }
11147         clear_vec_high(s, is_q, rd);
11148     } else {
11149         int revmask = (1 << grp_size) - 1;
11150         int esize = 8 << size;
11151         int elements = dsize / esize;
11152         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11153         TCGv_i64 tcg_rd[2];
11154 
11155         for (i = 0; i < 2; i++) {
11156             tcg_rd[i] = tcg_temp_new_i64();
11157             tcg_gen_movi_i64(tcg_rd[i], 0);
11158         }
11159 
11160         for (i = 0; i < elements; i++) {
11161             int e_rev = (i & 0xf) ^ revmask;
11162             int w = (e_rev * esize) / 64;
11163             int o = (e_rev * esize) % 64;
11164 
11165             read_vec_element(s, tcg_rn, rn, i, size);
11166             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11167         }
11168 
11169         for (i = 0; i < 2; i++) {
11170             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11171         }
11172         clear_vec_high(s, true, rd);
11173     }
11174 }
11175 
11176 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11177                                   bool is_q, int size, int rn, int rd)
11178 {
11179     /* Implement the pairwise operations from 2-misc:
11180      * SADDLP, UADDLP, SADALP, UADALP.
11181      * These all add pairs of elements in the input to produce a
11182      * double-width result element in the output (possibly accumulating).
11183      */
11184     bool accum = (opcode == 0x6);
11185     int maxpass = is_q ? 2 : 1;
11186     int pass;
11187     TCGv_i64 tcg_res[2];
11188 
11189     if (size == 2) {
11190         /* 32 + 32 -> 64 op */
11191         MemOp memop = size + (u ? 0 : MO_SIGN);
11192 
11193         for (pass = 0; pass < maxpass; pass++) {
11194             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11195             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11196 
11197             tcg_res[pass] = tcg_temp_new_i64();
11198 
11199             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11200             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11201             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11202             if (accum) {
11203                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11204                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11205             }
11206         }
11207     } else {
11208         for (pass = 0; pass < maxpass; pass++) {
11209             TCGv_i64 tcg_op = tcg_temp_new_i64();
11210             NeonGenOne64OpFn *genfn;
11211             static NeonGenOne64OpFn * const fns[2][2] = {
11212                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11213                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11214             };
11215 
11216             genfn = fns[size][u];
11217 
11218             tcg_res[pass] = tcg_temp_new_i64();
11219 
11220             read_vec_element(s, tcg_op, rn, pass, MO_64);
11221             genfn(tcg_res[pass], tcg_op);
11222 
11223             if (accum) {
11224                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11225                 if (size == 0) {
11226                     gen_helper_neon_addl_u16(tcg_res[pass],
11227                                              tcg_res[pass], tcg_op);
11228                 } else {
11229                     gen_helper_neon_addl_u32(tcg_res[pass],
11230                                              tcg_res[pass], tcg_op);
11231                 }
11232             }
11233         }
11234     }
11235     if (!is_q) {
11236         tcg_res[1] = tcg_constant_i64(0);
11237     }
11238     for (pass = 0; pass < 2; pass++) {
11239         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11240     }
11241 }
11242 
11243 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11244 {
11245     /* Implement SHLL and SHLL2 */
11246     int pass;
11247     int part = is_q ? 2 : 0;
11248     TCGv_i64 tcg_res[2];
11249 
11250     for (pass = 0; pass < 2; pass++) {
11251         static NeonGenWidenFn * const widenfns[3] = {
11252             gen_helper_neon_widen_u8,
11253             gen_helper_neon_widen_u16,
11254             tcg_gen_extu_i32_i64,
11255         };
11256         NeonGenWidenFn *widenfn = widenfns[size];
11257         TCGv_i32 tcg_op = tcg_temp_new_i32();
11258 
11259         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11260         tcg_res[pass] = tcg_temp_new_i64();
11261         widenfn(tcg_res[pass], tcg_op);
11262         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11263     }
11264 
11265     for (pass = 0; pass < 2; pass++) {
11266         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11267     }
11268 }
11269 
11270 /* AdvSIMD two reg misc
11271  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11272  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11273  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11274  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11275  */
11276 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11277 {
11278     int size = extract32(insn, 22, 2);
11279     int opcode = extract32(insn, 12, 5);
11280     bool u = extract32(insn, 29, 1);
11281     bool is_q = extract32(insn, 30, 1);
11282     int rn = extract32(insn, 5, 5);
11283     int rd = extract32(insn, 0, 5);
11284     bool need_fpstatus = false;
11285     int rmode = -1;
11286     TCGv_i32 tcg_rmode;
11287     TCGv_ptr tcg_fpstatus;
11288 
11289     switch (opcode) {
11290     case 0x0: /* REV64, REV32 */
11291     case 0x1: /* REV16 */
11292         handle_rev(s, opcode, u, is_q, size, rn, rd);
11293         return;
11294     case 0x5: /* CNT, NOT, RBIT */
11295         if (u && size == 0) {
11296             /* NOT */
11297             break;
11298         } else if (u && size == 1) {
11299             /* RBIT */
11300             break;
11301         } else if (!u && size == 0) {
11302             /* CNT */
11303             break;
11304         }
11305         unallocated_encoding(s);
11306         return;
11307     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11308     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11309         if (size == 3) {
11310             unallocated_encoding(s);
11311             return;
11312         }
11313         if (!fp_access_check(s)) {
11314             return;
11315         }
11316 
11317         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11318         return;
11319     case 0x4: /* CLS, CLZ */
11320         if (size == 3) {
11321             unallocated_encoding(s);
11322             return;
11323         }
11324         break;
11325     case 0x2: /* SADDLP, UADDLP */
11326     case 0x6: /* SADALP, UADALP */
11327         if (size == 3) {
11328             unallocated_encoding(s);
11329             return;
11330         }
11331         if (!fp_access_check(s)) {
11332             return;
11333         }
11334         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11335         return;
11336     case 0x13: /* SHLL, SHLL2 */
11337         if (u == 0 || size == 3) {
11338             unallocated_encoding(s);
11339             return;
11340         }
11341         if (!fp_access_check(s)) {
11342             return;
11343         }
11344         handle_shll(s, is_q, size, rn, rd);
11345         return;
11346     case 0xa: /* CMLT */
11347         if (u == 1) {
11348             unallocated_encoding(s);
11349             return;
11350         }
11351         /* fall through */
11352     case 0x8: /* CMGT, CMGE */
11353     case 0x9: /* CMEQ, CMLE */
11354     case 0xb: /* ABS, NEG */
11355         if (size == 3 && !is_q) {
11356             unallocated_encoding(s);
11357             return;
11358         }
11359         break;
11360     case 0x7: /* SQABS, SQNEG */
11361         if (size == 3 && !is_q) {
11362             unallocated_encoding(s);
11363             return;
11364         }
11365         break;
11366     case 0xc ... 0xf:
11367     case 0x16 ... 0x1f:
11368     {
11369         /* Floating point: U, size[1] and opcode indicate operation;
11370          * size[0] indicates single or double precision.
11371          */
11372         int is_double = extract32(size, 0, 1);
11373         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11374         size = is_double ? 3 : 2;
11375         switch (opcode) {
11376         case 0x2f: /* FABS */
11377         case 0x6f: /* FNEG */
11378             if (size == 3 && !is_q) {
11379                 unallocated_encoding(s);
11380                 return;
11381             }
11382             break;
11383         case 0x1d: /* SCVTF */
11384         case 0x5d: /* UCVTF */
11385         {
11386             bool is_signed = (opcode == 0x1d) ? true : false;
11387             int elements = is_double ? 2 : is_q ? 4 : 2;
11388             if (is_double && !is_q) {
11389                 unallocated_encoding(s);
11390                 return;
11391             }
11392             if (!fp_access_check(s)) {
11393                 return;
11394             }
11395             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11396             return;
11397         }
11398         case 0x2c: /* FCMGT (zero) */
11399         case 0x2d: /* FCMEQ (zero) */
11400         case 0x2e: /* FCMLT (zero) */
11401         case 0x6c: /* FCMGE (zero) */
11402         case 0x6d: /* FCMLE (zero) */
11403             if (size == 3 && !is_q) {
11404                 unallocated_encoding(s);
11405                 return;
11406             }
11407             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11408             return;
11409         case 0x7f: /* FSQRT */
11410             if (size == 3 && !is_q) {
11411                 unallocated_encoding(s);
11412                 return;
11413             }
11414             break;
11415         case 0x1a: /* FCVTNS */
11416         case 0x1b: /* FCVTMS */
11417         case 0x3a: /* FCVTPS */
11418         case 0x3b: /* FCVTZS */
11419         case 0x5a: /* FCVTNU */
11420         case 0x5b: /* FCVTMU */
11421         case 0x7a: /* FCVTPU */
11422         case 0x7b: /* FCVTZU */
11423             need_fpstatus = true;
11424             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11425             if (size == 3 && !is_q) {
11426                 unallocated_encoding(s);
11427                 return;
11428             }
11429             break;
11430         case 0x5c: /* FCVTAU */
11431         case 0x1c: /* FCVTAS */
11432             need_fpstatus = true;
11433             rmode = FPROUNDING_TIEAWAY;
11434             if (size == 3 && !is_q) {
11435                 unallocated_encoding(s);
11436                 return;
11437             }
11438             break;
11439         case 0x3c: /* URECPE */
11440             if (size == 3) {
11441                 unallocated_encoding(s);
11442                 return;
11443             }
11444             /* fall through */
11445         case 0x3d: /* FRECPE */
11446         case 0x7d: /* FRSQRTE */
11447             if (size == 3 && !is_q) {
11448                 unallocated_encoding(s);
11449                 return;
11450             }
11451             if (!fp_access_check(s)) {
11452                 return;
11453             }
11454             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11455             return;
11456         case 0x56: /* FCVTXN, FCVTXN2 */
11457             if (size == 2) {
11458                 unallocated_encoding(s);
11459                 return;
11460             }
11461             /* fall through */
11462         case 0x16: /* FCVTN, FCVTN2 */
11463             /* handle_2misc_narrow does a 2*size -> size operation, but these
11464              * instructions encode the source size rather than dest size.
11465              */
11466             if (!fp_access_check(s)) {
11467                 return;
11468             }
11469             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11470             return;
11471         case 0x36: /* BFCVTN, BFCVTN2 */
11472             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11473                 unallocated_encoding(s);
11474                 return;
11475             }
11476             if (!fp_access_check(s)) {
11477                 return;
11478             }
11479             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11480             return;
11481         case 0x17: /* FCVTL, FCVTL2 */
11482             if (!fp_access_check(s)) {
11483                 return;
11484             }
11485             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11486             return;
11487         case 0x18: /* FRINTN */
11488         case 0x19: /* FRINTM */
11489         case 0x38: /* FRINTP */
11490         case 0x39: /* FRINTZ */
11491             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11492             /* fall through */
11493         case 0x59: /* FRINTX */
11494         case 0x79: /* FRINTI */
11495             need_fpstatus = true;
11496             if (size == 3 && !is_q) {
11497                 unallocated_encoding(s);
11498                 return;
11499             }
11500             break;
11501         case 0x58: /* FRINTA */
11502             rmode = FPROUNDING_TIEAWAY;
11503             need_fpstatus = true;
11504             if (size == 3 && !is_q) {
11505                 unallocated_encoding(s);
11506                 return;
11507             }
11508             break;
11509         case 0x7c: /* URSQRTE */
11510             if (size == 3) {
11511                 unallocated_encoding(s);
11512                 return;
11513             }
11514             break;
11515         case 0x1e: /* FRINT32Z */
11516         case 0x1f: /* FRINT64Z */
11517             rmode = FPROUNDING_ZERO;
11518             /* fall through */
11519         case 0x5e: /* FRINT32X */
11520         case 0x5f: /* FRINT64X */
11521             need_fpstatus = true;
11522             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11523                 unallocated_encoding(s);
11524                 return;
11525             }
11526             break;
11527         default:
11528             unallocated_encoding(s);
11529             return;
11530         }
11531         break;
11532     }
11533     default:
11534     case 0x3: /* SUQADD, USQADD */
11535         unallocated_encoding(s);
11536         return;
11537     }
11538 
11539     if (!fp_access_check(s)) {
11540         return;
11541     }
11542 
11543     if (need_fpstatus || rmode >= 0) {
11544         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11545     } else {
11546         tcg_fpstatus = NULL;
11547     }
11548     if (rmode >= 0) {
11549         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11550     } else {
11551         tcg_rmode = NULL;
11552     }
11553 
11554     switch (opcode) {
11555     case 0x5:
11556         if (u && size == 0) { /* NOT */
11557             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11558             return;
11559         }
11560         break;
11561     case 0x8: /* CMGT, CMGE */
11562         if (u) {
11563             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11564         } else {
11565             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11566         }
11567         return;
11568     case 0x9: /* CMEQ, CMLE */
11569         if (u) {
11570             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11571         } else {
11572             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11573         }
11574         return;
11575     case 0xa: /* CMLT */
11576         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11577         return;
11578     case 0xb:
11579         if (u) { /* ABS, NEG */
11580             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11581         } else {
11582             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11583         }
11584         return;
11585     }
11586 
11587     if (size == 3) {
11588         /* All 64-bit element operations can be shared with scalar 2misc */
11589         int pass;
11590 
11591         /* Coverity claims (size == 3 && !is_q) has been eliminated
11592          * from all paths leading to here.
11593          */
11594         tcg_debug_assert(is_q);
11595         for (pass = 0; pass < 2; pass++) {
11596             TCGv_i64 tcg_op = tcg_temp_new_i64();
11597             TCGv_i64 tcg_res = tcg_temp_new_i64();
11598 
11599             read_vec_element(s, tcg_op, rn, pass, MO_64);
11600 
11601             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11602                             tcg_rmode, tcg_fpstatus);
11603 
11604             write_vec_element(s, tcg_res, rd, pass, MO_64);
11605         }
11606     } else {
11607         int pass;
11608 
11609         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11610             TCGv_i32 tcg_op = tcg_temp_new_i32();
11611             TCGv_i32 tcg_res = tcg_temp_new_i32();
11612 
11613             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11614 
11615             if (size == 2) {
11616                 /* Special cases for 32 bit elements */
11617                 switch (opcode) {
11618                 case 0x4: /* CLS */
11619                     if (u) {
11620                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11621                     } else {
11622                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11623                     }
11624                     break;
11625                 case 0x7: /* SQABS, SQNEG */
11626                     if (u) {
11627                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11628                     } else {
11629                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11630                     }
11631                     break;
11632                 case 0x2f: /* FABS */
11633                     gen_vfp_abss(tcg_res, tcg_op);
11634                     break;
11635                 case 0x6f: /* FNEG */
11636                     gen_vfp_negs(tcg_res, tcg_op);
11637                     break;
11638                 case 0x7f: /* FSQRT */
11639                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11640                     break;
11641                 case 0x1a: /* FCVTNS */
11642                 case 0x1b: /* FCVTMS */
11643                 case 0x1c: /* FCVTAS */
11644                 case 0x3a: /* FCVTPS */
11645                 case 0x3b: /* FCVTZS */
11646                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11647                                          tcg_constant_i32(0), tcg_fpstatus);
11648                     break;
11649                 case 0x5a: /* FCVTNU */
11650                 case 0x5b: /* FCVTMU */
11651                 case 0x5c: /* FCVTAU */
11652                 case 0x7a: /* FCVTPU */
11653                 case 0x7b: /* FCVTZU */
11654                     gen_helper_vfp_touls(tcg_res, tcg_op,
11655                                          tcg_constant_i32(0), tcg_fpstatus);
11656                     break;
11657                 case 0x18: /* FRINTN */
11658                 case 0x19: /* FRINTM */
11659                 case 0x38: /* FRINTP */
11660                 case 0x39: /* FRINTZ */
11661                 case 0x58: /* FRINTA */
11662                 case 0x79: /* FRINTI */
11663                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11664                     break;
11665                 case 0x59: /* FRINTX */
11666                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11667                     break;
11668                 case 0x7c: /* URSQRTE */
11669                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11670                     break;
11671                 case 0x1e: /* FRINT32Z */
11672                 case 0x5e: /* FRINT32X */
11673                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11674                     break;
11675                 case 0x1f: /* FRINT64Z */
11676                 case 0x5f: /* FRINT64X */
11677                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11678                     break;
11679                 default:
11680                     g_assert_not_reached();
11681                 }
11682             } else {
11683                 /* Use helpers for 8 and 16 bit elements */
11684                 switch (opcode) {
11685                 case 0x5: /* CNT, RBIT */
11686                     /* For these two insns size is part of the opcode specifier
11687                      * (handled earlier); they always operate on byte elements.
11688                      */
11689                     if (u) {
11690                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11691                     } else {
11692                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11693                     }
11694                     break;
11695                 case 0x7: /* SQABS, SQNEG */
11696                 {
11697                     NeonGenOneOpEnvFn *genfn;
11698                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11699                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11700                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11701                     };
11702                     genfn = fns[size][u];
11703                     genfn(tcg_res, tcg_env, tcg_op);
11704                     break;
11705                 }
11706                 case 0x4: /* CLS, CLZ */
11707                     if (u) {
11708                         if (size == 0) {
11709                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11710                         } else {
11711                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11712                         }
11713                     } else {
11714                         if (size == 0) {
11715                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11716                         } else {
11717                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11718                         }
11719                     }
11720                     break;
11721                 default:
11722                     g_assert_not_reached();
11723                 }
11724             }
11725 
11726             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11727         }
11728     }
11729     clear_vec_high(s, is_q, rd);
11730 
11731     if (tcg_rmode) {
11732         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11733     }
11734 }
11735 
11736 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11737  *
11738  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11739  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11740  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11741  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11742  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11743  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11744  *
11745  * This actually covers two groups where scalar access is governed by
11746  * bit 28. A bunch of the instructions (float to integral) only exist
11747  * in the vector form and are un-allocated for the scalar decode. Also
11748  * in the scalar decode Q is always 1.
11749  */
11750 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11751 {
11752     int fpop, opcode, a, u;
11753     int rn, rd;
11754     bool is_q;
11755     bool is_scalar;
11756     bool only_in_vector = false;
11757 
11758     int pass;
11759     TCGv_i32 tcg_rmode = NULL;
11760     TCGv_ptr tcg_fpstatus = NULL;
11761     bool need_fpst = true;
11762     int rmode = -1;
11763 
11764     if (!dc_isar_feature(aa64_fp16, s)) {
11765         unallocated_encoding(s);
11766         return;
11767     }
11768 
11769     rd = extract32(insn, 0, 5);
11770     rn = extract32(insn, 5, 5);
11771 
11772     a = extract32(insn, 23, 1);
11773     u = extract32(insn, 29, 1);
11774     is_scalar = extract32(insn, 28, 1);
11775     is_q = extract32(insn, 30, 1);
11776 
11777     opcode = extract32(insn, 12, 5);
11778     fpop = deposit32(opcode, 5, 1, a);
11779     fpop = deposit32(fpop, 6, 1, u);
11780 
11781     switch (fpop) {
11782     case 0x1d: /* SCVTF */
11783     case 0x5d: /* UCVTF */
11784     {
11785         int elements;
11786 
11787         if (is_scalar) {
11788             elements = 1;
11789         } else {
11790             elements = (is_q ? 8 : 4);
11791         }
11792 
11793         if (!fp_access_check(s)) {
11794             return;
11795         }
11796         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11797         return;
11798     }
11799     break;
11800     case 0x2c: /* FCMGT (zero) */
11801     case 0x2d: /* FCMEQ (zero) */
11802     case 0x2e: /* FCMLT (zero) */
11803     case 0x6c: /* FCMGE (zero) */
11804     case 0x6d: /* FCMLE (zero) */
11805         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11806         return;
11807     case 0x3d: /* FRECPE */
11808     case 0x3f: /* FRECPX */
11809         break;
11810     case 0x18: /* FRINTN */
11811         only_in_vector = true;
11812         rmode = FPROUNDING_TIEEVEN;
11813         break;
11814     case 0x19: /* FRINTM */
11815         only_in_vector = true;
11816         rmode = FPROUNDING_NEGINF;
11817         break;
11818     case 0x38: /* FRINTP */
11819         only_in_vector = true;
11820         rmode = FPROUNDING_POSINF;
11821         break;
11822     case 0x39: /* FRINTZ */
11823         only_in_vector = true;
11824         rmode = FPROUNDING_ZERO;
11825         break;
11826     case 0x58: /* FRINTA */
11827         only_in_vector = true;
11828         rmode = FPROUNDING_TIEAWAY;
11829         break;
11830     case 0x59: /* FRINTX */
11831     case 0x79: /* FRINTI */
11832         only_in_vector = true;
11833         /* current rounding mode */
11834         break;
11835     case 0x1a: /* FCVTNS */
11836         rmode = FPROUNDING_TIEEVEN;
11837         break;
11838     case 0x1b: /* FCVTMS */
11839         rmode = FPROUNDING_NEGINF;
11840         break;
11841     case 0x1c: /* FCVTAS */
11842         rmode = FPROUNDING_TIEAWAY;
11843         break;
11844     case 0x3a: /* FCVTPS */
11845         rmode = FPROUNDING_POSINF;
11846         break;
11847     case 0x3b: /* FCVTZS */
11848         rmode = FPROUNDING_ZERO;
11849         break;
11850     case 0x5a: /* FCVTNU */
11851         rmode = FPROUNDING_TIEEVEN;
11852         break;
11853     case 0x5b: /* FCVTMU */
11854         rmode = FPROUNDING_NEGINF;
11855         break;
11856     case 0x5c: /* FCVTAU */
11857         rmode = FPROUNDING_TIEAWAY;
11858         break;
11859     case 0x7a: /* FCVTPU */
11860         rmode = FPROUNDING_POSINF;
11861         break;
11862     case 0x7b: /* FCVTZU */
11863         rmode = FPROUNDING_ZERO;
11864         break;
11865     case 0x2f: /* FABS */
11866     case 0x6f: /* FNEG */
11867         need_fpst = false;
11868         break;
11869     case 0x7d: /* FRSQRTE */
11870     case 0x7f: /* FSQRT (vector) */
11871         break;
11872     default:
11873         unallocated_encoding(s);
11874         return;
11875     }
11876 
11877 
11878     /* Check additional constraints for the scalar encoding */
11879     if (is_scalar) {
11880         if (!is_q) {
11881             unallocated_encoding(s);
11882             return;
11883         }
11884         /* FRINTxx is only in the vector form */
11885         if (only_in_vector) {
11886             unallocated_encoding(s);
11887             return;
11888         }
11889     }
11890 
11891     if (!fp_access_check(s)) {
11892         return;
11893     }
11894 
11895     if (rmode >= 0 || need_fpst) {
11896         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11897     }
11898 
11899     if (rmode >= 0) {
11900         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11901     }
11902 
11903     if (is_scalar) {
11904         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11905         TCGv_i32 tcg_res = tcg_temp_new_i32();
11906 
11907         switch (fpop) {
11908         case 0x1a: /* FCVTNS */
11909         case 0x1b: /* FCVTMS */
11910         case 0x1c: /* FCVTAS */
11911         case 0x3a: /* FCVTPS */
11912         case 0x3b: /* FCVTZS */
11913             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11914             break;
11915         case 0x3d: /* FRECPE */
11916             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11917             break;
11918         case 0x3f: /* FRECPX */
11919             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11920             break;
11921         case 0x5a: /* FCVTNU */
11922         case 0x5b: /* FCVTMU */
11923         case 0x5c: /* FCVTAU */
11924         case 0x7a: /* FCVTPU */
11925         case 0x7b: /* FCVTZU */
11926             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11927             break;
11928         case 0x6f: /* FNEG */
11929             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11930             break;
11931         case 0x7d: /* FRSQRTE */
11932             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11933             break;
11934         default:
11935             g_assert_not_reached();
11936         }
11937 
11938         /* limit any sign extension going on */
11939         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11940         write_fp_sreg(s, rd, tcg_res);
11941     } else {
11942         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11943             TCGv_i32 tcg_op = tcg_temp_new_i32();
11944             TCGv_i32 tcg_res = tcg_temp_new_i32();
11945 
11946             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11947 
11948             switch (fpop) {
11949             case 0x1a: /* FCVTNS */
11950             case 0x1b: /* FCVTMS */
11951             case 0x1c: /* FCVTAS */
11952             case 0x3a: /* FCVTPS */
11953             case 0x3b: /* FCVTZS */
11954                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11955                 break;
11956             case 0x3d: /* FRECPE */
11957                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11958                 break;
11959             case 0x5a: /* FCVTNU */
11960             case 0x5b: /* FCVTMU */
11961             case 0x5c: /* FCVTAU */
11962             case 0x7a: /* FCVTPU */
11963             case 0x7b: /* FCVTZU */
11964                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11965                 break;
11966             case 0x18: /* FRINTN */
11967             case 0x19: /* FRINTM */
11968             case 0x38: /* FRINTP */
11969             case 0x39: /* FRINTZ */
11970             case 0x58: /* FRINTA */
11971             case 0x79: /* FRINTI */
11972                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11973                 break;
11974             case 0x59: /* FRINTX */
11975                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11976                 break;
11977             case 0x2f: /* FABS */
11978                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11979                 break;
11980             case 0x6f: /* FNEG */
11981                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11982                 break;
11983             case 0x7d: /* FRSQRTE */
11984                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11985                 break;
11986             case 0x7f: /* FSQRT */
11987                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11988                 break;
11989             default:
11990                 g_assert_not_reached();
11991             }
11992 
11993             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11994         }
11995 
11996         clear_vec_high(s, is_q, rd);
11997     }
11998 
11999     if (tcg_rmode) {
12000         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12001     }
12002 }
12003 
12004 /* AdvSIMD scalar x indexed element
12005  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12006  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12007  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12008  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12009  * AdvSIMD vector x indexed element
12010  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12011  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12012  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12013  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12014  */
12015 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12016 {
12017     /* This encoding has two kinds of instruction:
12018      *  normal, where we perform elt x idxelt => elt for each
12019      *     element in the vector
12020      *  long, where we perform elt x idxelt and generate a result of
12021      *     double the width of the input element
12022      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12023      */
12024     bool is_scalar = extract32(insn, 28, 1);
12025     bool is_q = extract32(insn, 30, 1);
12026     bool u = extract32(insn, 29, 1);
12027     int size = extract32(insn, 22, 2);
12028     int l = extract32(insn, 21, 1);
12029     int m = extract32(insn, 20, 1);
12030     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12031     int rm = extract32(insn, 16, 4);
12032     int opcode = extract32(insn, 12, 4);
12033     int h = extract32(insn, 11, 1);
12034     int rn = extract32(insn, 5, 5);
12035     int rd = extract32(insn, 0, 5);
12036     bool is_long = false;
12037     int is_fp = 0;
12038     bool is_fp16 = false;
12039     int index;
12040     TCGv_ptr fpst;
12041 
12042     switch (16 * u + opcode) {
12043     case 0x02: /* SMLAL, SMLAL2 */
12044     case 0x12: /* UMLAL, UMLAL2 */
12045     case 0x06: /* SMLSL, SMLSL2 */
12046     case 0x16: /* UMLSL, UMLSL2 */
12047     case 0x0a: /* SMULL, SMULL2 */
12048     case 0x1a: /* UMULL, UMULL2 */
12049         if (is_scalar) {
12050             unallocated_encoding(s);
12051             return;
12052         }
12053         is_long = true;
12054         break;
12055     case 0x03: /* SQDMLAL, SQDMLAL2 */
12056     case 0x07: /* SQDMLSL, SQDMLSL2 */
12057     case 0x0b: /* SQDMULL, SQDMULL2 */
12058         is_long = true;
12059         break;
12060     case 0x11: /* FCMLA #0 */
12061     case 0x13: /* FCMLA #90 */
12062     case 0x15: /* FCMLA #180 */
12063     case 0x17: /* FCMLA #270 */
12064         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12065             unallocated_encoding(s);
12066             return;
12067         }
12068         is_fp = 2;
12069         break;
12070     default:
12071     case 0x00: /* FMLAL */
12072     case 0x01: /* FMLA */
12073     case 0x04: /* FMLSL */
12074     case 0x05: /* FMLS */
12075     case 0x08: /* MUL */
12076     case 0x09: /* FMUL */
12077     case 0x0c: /* SQDMULH */
12078     case 0x0d: /* SQRDMULH */
12079     case 0x0e: /* SDOT */
12080     case 0x0f: /* SUDOT / BFDOT / USDOT / BFMLAL */
12081     case 0x10: /* MLA */
12082     case 0x14: /* MLS */
12083     case 0x18: /* FMLAL2 */
12084     case 0x19: /* FMULX */
12085     case 0x1c: /* FMLSL2 */
12086     case 0x1d: /* SQRDMLAH */
12087     case 0x1e: /* UDOT */
12088     case 0x1f: /* SQRDMLSH */
12089         unallocated_encoding(s);
12090         return;
12091     }
12092 
12093     switch (is_fp) {
12094     case 1: /* normal fp */
12095         unallocated_encoding(s); /* in decodetree */
12096         return;
12097 
12098     case 2: /* complex fp */
12099         /* Each indexable element is a complex pair.  */
12100         size += 1;
12101         switch (size) {
12102         case MO_32:
12103             if (h && !is_q) {
12104                 unallocated_encoding(s);
12105                 return;
12106             }
12107             is_fp16 = true;
12108             break;
12109         case MO_64:
12110             break;
12111         default:
12112             unallocated_encoding(s);
12113             return;
12114         }
12115         break;
12116 
12117     default: /* integer */
12118         switch (size) {
12119         case MO_8:
12120         case MO_64:
12121             unallocated_encoding(s);
12122             return;
12123         }
12124         break;
12125     }
12126     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12127         unallocated_encoding(s);
12128         return;
12129     }
12130 
12131     /* Given MemOp size, adjust register and indexing.  */
12132     switch (size) {
12133     case MO_16:
12134         index = h << 2 | l << 1 | m;
12135         break;
12136     case MO_32:
12137         index = h << 1 | l;
12138         rm |= m << 4;
12139         break;
12140     case MO_64:
12141         if (l || !is_q) {
12142             unallocated_encoding(s);
12143             return;
12144         }
12145         index = h;
12146         rm |= m << 4;
12147         break;
12148     default:
12149         g_assert_not_reached();
12150     }
12151 
12152     if (!fp_access_check(s)) {
12153         return;
12154     }
12155 
12156     if (is_fp) {
12157         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12158     } else {
12159         fpst = NULL;
12160     }
12161 
12162     switch (16 * u + opcode) {
12163     case 0x11: /* FCMLA #0 */
12164     case 0x13: /* FCMLA #90 */
12165     case 0x15: /* FCMLA #180 */
12166     case 0x17: /* FCMLA #270 */
12167         {
12168             int rot = extract32(insn, 13, 2);
12169             int data = (index << 2) | rot;
12170             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12171                                vec_full_reg_offset(s, rn),
12172                                vec_full_reg_offset(s, rm),
12173                                vec_full_reg_offset(s, rd), fpst,
12174                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12175                                size == MO_64
12176                                ? gen_helper_gvec_fcmlas_idx
12177                                : gen_helper_gvec_fcmlah_idx);
12178         }
12179         return;
12180     }
12181 
12182     if (size == 3) {
12183         g_assert_not_reached();
12184     } else if (!is_long) {
12185         /* 32 bit floating point, or 16 or 32 bit integer.
12186          * For the 16 bit scalar case we use the usual Neon helpers and
12187          * rely on the fact that 0 op 0 == 0 with no side effects.
12188          */
12189         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12190         int pass, maxpasses;
12191 
12192         if (is_scalar) {
12193             maxpasses = 1;
12194         } else {
12195             maxpasses = is_q ? 4 : 2;
12196         }
12197 
12198         read_vec_element_i32(s, tcg_idx, rm, index, size);
12199 
12200         if (size == 1 && !is_scalar) {
12201             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12202              * the index into both halves of the 32 bit tcg_idx and then use
12203              * the usual Neon helpers.
12204              */
12205             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12206         }
12207 
12208         for (pass = 0; pass < maxpasses; pass++) {
12209             TCGv_i32 tcg_op = tcg_temp_new_i32();
12210             TCGv_i32 tcg_res = tcg_temp_new_i32();
12211 
12212             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12213 
12214             switch (16 * u + opcode) {
12215             case 0x10: /* MLA */
12216             case 0x14: /* MLS */
12217             {
12218                 static NeonGenTwoOpFn * const fns[2][2] = {
12219                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12220                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12221                 };
12222                 NeonGenTwoOpFn *genfn;
12223                 bool is_sub = opcode == 0x4;
12224 
12225                 if (size == 1) {
12226                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12227                 } else {
12228                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12229                 }
12230                 if (opcode == 0x8) {
12231                     break;
12232                 }
12233                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12234                 genfn = fns[size - 1][is_sub];
12235                 genfn(tcg_res, tcg_op, tcg_res);
12236                 break;
12237             }
12238             case 0x0c: /* SQDMULH */
12239                 if (size == 1) {
12240                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12241                                                tcg_op, tcg_idx);
12242                 } else {
12243                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12244                                                tcg_op, tcg_idx);
12245                 }
12246                 break;
12247             case 0x0d: /* SQRDMULH */
12248                 if (size == 1) {
12249                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12250                                                 tcg_op, tcg_idx);
12251                 } else {
12252                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12253                                                 tcg_op, tcg_idx);
12254                 }
12255                 break;
12256             default:
12257             case 0x01: /* FMLA */
12258             case 0x05: /* FMLS */
12259             case 0x09: /* FMUL */
12260             case 0x19: /* FMULX */
12261             case 0x1d: /* SQRDMLAH */
12262             case 0x1f: /* SQRDMLSH */
12263                 g_assert_not_reached();
12264             }
12265 
12266             if (is_scalar) {
12267                 write_fp_sreg(s, rd, tcg_res);
12268             } else {
12269                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12270             }
12271         }
12272 
12273         clear_vec_high(s, is_q, rd);
12274     } else {
12275         /* long ops: 16x16->32 or 32x32->64 */
12276         TCGv_i64 tcg_res[2];
12277         int pass;
12278         bool satop = extract32(opcode, 0, 1);
12279         MemOp memop = MO_32;
12280 
12281         if (satop || !u) {
12282             memop |= MO_SIGN;
12283         }
12284 
12285         if (size == 2) {
12286             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12287 
12288             read_vec_element(s, tcg_idx, rm, index, memop);
12289 
12290             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12291                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12292                 TCGv_i64 tcg_passres;
12293                 int passelt;
12294 
12295                 if (is_scalar) {
12296                     passelt = 0;
12297                 } else {
12298                     passelt = pass + (is_q * 2);
12299                 }
12300 
12301                 read_vec_element(s, tcg_op, rn, passelt, memop);
12302 
12303                 tcg_res[pass] = tcg_temp_new_i64();
12304 
12305                 if (opcode == 0xa || opcode == 0xb) {
12306                     /* Non-accumulating ops */
12307                     tcg_passres = tcg_res[pass];
12308                 } else {
12309                     tcg_passres = tcg_temp_new_i64();
12310                 }
12311 
12312                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12313 
12314                 if (satop) {
12315                     /* saturating, doubling */
12316                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12317                                                       tcg_passres, tcg_passres);
12318                 }
12319 
12320                 if (opcode == 0xa || opcode == 0xb) {
12321                     continue;
12322                 }
12323 
12324                 /* Accumulating op: handle accumulate step */
12325                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12326 
12327                 switch (opcode) {
12328                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12329                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12330                     break;
12331                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12332                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12333                     break;
12334                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12335                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12336                     /* fall through */
12337                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12338                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12339                                                       tcg_res[pass],
12340                                                       tcg_passres);
12341                     break;
12342                 default:
12343                     g_assert_not_reached();
12344                 }
12345             }
12346 
12347             clear_vec_high(s, !is_scalar, rd);
12348         } else {
12349             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12350 
12351             assert(size == 1);
12352             read_vec_element_i32(s, tcg_idx, rm, index, size);
12353 
12354             if (!is_scalar) {
12355                 /* The simplest way to handle the 16x16 indexed ops is to
12356                  * duplicate the index into both halves of the 32 bit tcg_idx
12357                  * and then use the usual Neon helpers.
12358                  */
12359                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12360             }
12361 
12362             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12363                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12364                 TCGv_i64 tcg_passres;
12365 
12366                 if (is_scalar) {
12367                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12368                 } else {
12369                     read_vec_element_i32(s, tcg_op, rn,
12370                                          pass + (is_q * 2), MO_32);
12371                 }
12372 
12373                 tcg_res[pass] = tcg_temp_new_i64();
12374 
12375                 if (opcode == 0xa || opcode == 0xb) {
12376                     /* Non-accumulating ops */
12377                     tcg_passres = tcg_res[pass];
12378                 } else {
12379                     tcg_passres = tcg_temp_new_i64();
12380                 }
12381 
12382                 if (memop & MO_SIGN) {
12383                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12384                 } else {
12385                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12386                 }
12387                 if (satop) {
12388                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12389                                                       tcg_passres, tcg_passres);
12390                 }
12391 
12392                 if (opcode == 0xa || opcode == 0xb) {
12393                     continue;
12394                 }
12395 
12396                 /* Accumulating op: handle accumulate step */
12397                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12398 
12399                 switch (opcode) {
12400                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12401                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12402                                              tcg_passres);
12403                     break;
12404                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12405                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12406                                              tcg_passres);
12407                     break;
12408                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12409                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12410                     /* fall through */
12411                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12412                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12413                                                       tcg_res[pass],
12414                                                       tcg_passres);
12415                     break;
12416                 default:
12417                     g_assert_not_reached();
12418                 }
12419             }
12420 
12421             if (is_scalar) {
12422                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12423             }
12424         }
12425 
12426         if (is_scalar) {
12427             tcg_res[1] = tcg_constant_i64(0);
12428         }
12429 
12430         for (pass = 0; pass < 2; pass++) {
12431             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12432         }
12433     }
12434 }
12435 
12436 /* C3.6 Data processing - SIMD, inc Crypto
12437  *
12438  * As the decode gets a little complex we are using a table based
12439  * approach for this part of the decode.
12440  */
12441 static const AArch64DecodeTable data_proc_simd[] = {
12442     /* pattern  ,  mask     ,  fn                        */
12443     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12444     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12445     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12446     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12447     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12448     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12449     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12450     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12451     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12452     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12453     { 0x2e000000, 0xbf208400, disas_simd_ext },
12454     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12455     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12456     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12457     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12458     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12459     { 0x00000000, 0x00000000, NULL }
12460 };
12461 
12462 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12463 {
12464     /* Note that this is called with all non-FP cases from
12465      * table C3-6 so it must UNDEF for entries not specifically
12466      * allocated to instructions in that table.
12467      */
12468     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12469     if (fn) {
12470         fn(s, insn);
12471     } else {
12472         unallocated_encoding(s);
12473     }
12474 }
12475 
12476 /* C3.6 Data processing - SIMD and floating point */
12477 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12478 {
12479     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12480         disas_data_proc_fp(s, insn);
12481     } else {
12482         /* SIMD, including crypto */
12483         disas_data_proc_simd(s, insn);
12484     }
12485 }
12486 
12487 static bool trans_OK(DisasContext *s, arg_OK *a)
12488 {
12489     return true;
12490 }
12491 
12492 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12493 {
12494     s->is_nonstreaming = true;
12495     return true;
12496 }
12497 
12498 /**
12499  * is_guarded_page:
12500  * @env: The cpu environment
12501  * @s: The DisasContext
12502  *
12503  * Return true if the page is guarded.
12504  */
12505 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12506 {
12507     uint64_t addr = s->base.pc_first;
12508 #ifdef CONFIG_USER_ONLY
12509     return page_get_flags(addr) & PAGE_BTI;
12510 #else
12511     CPUTLBEntryFull *full;
12512     void *host;
12513     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12514     int flags;
12515 
12516     /*
12517      * We test this immediately after reading an insn, which means
12518      * that the TLB entry must be present and valid, and thus this
12519      * access will never raise an exception.
12520      */
12521     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12522                               false, &host, &full, 0);
12523     assert(!(flags & TLB_INVALID_MASK));
12524 
12525     return full->extra.arm.guarded;
12526 #endif
12527 }
12528 
12529 /**
12530  * btype_destination_ok:
12531  * @insn: The instruction at the branch destination
12532  * @bt: SCTLR_ELx.BT
12533  * @btype: PSTATE.BTYPE, and is non-zero
12534  *
12535  * On a guarded page, there are a limited number of insns
12536  * that may be present at the branch target:
12537  *   - branch target identifiers,
12538  *   - paciasp, pacibsp,
12539  *   - BRK insn
12540  *   - HLT insn
12541  * Anything else causes a Branch Target Exception.
12542  *
12543  * Return true if the branch is compatible, false to raise BTITRAP.
12544  */
12545 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12546 {
12547     if ((insn & 0xfffff01fu) == 0xd503201fu) {
12548         /* HINT space */
12549         switch (extract32(insn, 5, 7)) {
12550         case 0b011001: /* PACIASP */
12551         case 0b011011: /* PACIBSP */
12552             /*
12553              * If SCTLR_ELx.BT, then PACI*SP are not compatible
12554              * with btype == 3.  Otherwise all btype are ok.
12555              */
12556             return !bt || btype != 3;
12557         case 0b100000: /* BTI */
12558             /* Not compatible with any btype.  */
12559             return false;
12560         case 0b100010: /* BTI c */
12561             /* Not compatible with btype == 3 */
12562             return btype != 3;
12563         case 0b100100: /* BTI j */
12564             /* Not compatible with btype == 2 */
12565             return btype != 2;
12566         case 0b100110: /* BTI jc */
12567             /* Compatible with any btype.  */
12568             return true;
12569         }
12570     } else {
12571         switch (insn & 0xffe0001fu) {
12572         case 0xd4200000u: /* BRK */
12573         case 0xd4400000u: /* HLT */
12574             /* Give priority to the breakpoint exception.  */
12575             return true;
12576         }
12577     }
12578     return false;
12579 }
12580 
12581 /* C3.1 A64 instruction index by encoding */
12582 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12583 {
12584     switch (extract32(insn, 25, 4)) {
12585     case 0x5:
12586     case 0xd:      /* Data processing - register */
12587         disas_data_proc_reg(s, insn);
12588         break;
12589     case 0x7:
12590     case 0xf:      /* Data processing - SIMD and floating point */
12591         disas_data_proc_simd_fp(s, insn);
12592         break;
12593     default:
12594         unallocated_encoding(s);
12595         break;
12596     }
12597 }
12598 
12599 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12600                                           CPUState *cpu)
12601 {
12602     DisasContext *dc = container_of(dcbase, DisasContext, base);
12603     CPUARMState *env = cpu_env(cpu);
12604     ARMCPU *arm_cpu = env_archcpu(env);
12605     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12606     int bound, core_mmu_idx;
12607 
12608     dc->isar = &arm_cpu->isar;
12609     dc->condjmp = 0;
12610     dc->pc_save = dc->base.pc_first;
12611     dc->aarch64 = true;
12612     dc->thumb = false;
12613     dc->sctlr_b = 0;
12614     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12615     dc->condexec_mask = 0;
12616     dc->condexec_cond = 0;
12617     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12618     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12619     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12620     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12621     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12622     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12623 #if !defined(CONFIG_USER_ONLY)
12624     dc->user = (dc->current_el == 0);
12625 #endif
12626     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12627     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12628     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12629     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12630     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12631     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12632     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12633     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12634     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12635     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12636     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12637     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12638     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12639     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12640     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12641     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12642     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12643     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12644     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12645     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12646     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12647     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12648     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12649     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12650     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12651     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12652     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12653     dc->vec_len = 0;
12654     dc->vec_stride = 0;
12655     dc->cp_regs = arm_cpu->cp_regs;
12656     dc->features = env->features;
12657     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12658     dc->gm_blocksize = arm_cpu->gm_blocksize;
12659 
12660 #ifdef CONFIG_USER_ONLY
12661     /* In sve_probe_page, we assume TBI is enabled. */
12662     tcg_debug_assert(dc->tbid & 1);
12663 #endif
12664 
12665     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12666 
12667     /* Single step state. The code-generation logic here is:
12668      *  SS_ACTIVE == 0:
12669      *   generate code with no special handling for single-stepping (except
12670      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12671      *   this happens anyway because those changes are all system register or
12672      *   PSTATE writes).
12673      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12674      *   emit code for one insn
12675      *   emit code to clear PSTATE.SS
12676      *   emit code to generate software step exception for completed step
12677      *   end TB (as usual for having generated an exception)
12678      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12679      *   emit code to generate a software step exception
12680      *   end the TB
12681      */
12682     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12683     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12684     dc->is_ldex = false;
12685 
12686     /* Bound the number of insns to execute to those left on the page.  */
12687     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12688 
12689     /* If architectural single step active, limit to 1.  */
12690     if (dc->ss_active) {
12691         bound = 1;
12692     }
12693     dc->base.max_insns = MIN(dc->base.max_insns, bound);
12694 }
12695 
12696 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12697 {
12698 }
12699 
12700 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12701 {
12702     DisasContext *dc = container_of(dcbase, DisasContext, base);
12703     target_ulong pc_arg = dc->base.pc_next;
12704 
12705     if (tb_cflags(dcbase->tb) & CF_PCREL) {
12706         pc_arg &= ~TARGET_PAGE_MASK;
12707     }
12708     tcg_gen_insn_start(pc_arg, 0, 0);
12709     dc->insn_start_updated = false;
12710 }
12711 
12712 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12713 {
12714     DisasContext *s = container_of(dcbase, DisasContext, base);
12715     CPUARMState *env = cpu_env(cpu);
12716     uint64_t pc = s->base.pc_next;
12717     uint32_t insn;
12718 
12719     /* Singlestep exceptions have the highest priority. */
12720     if (s->ss_active && !s->pstate_ss) {
12721         /* Singlestep state is Active-pending.
12722          * If we're in this state at the start of a TB then either
12723          *  a) we just took an exception to an EL which is being debugged
12724          *     and this is the first insn in the exception handler
12725          *  b) debug exceptions were masked and we just unmasked them
12726          *     without changing EL (eg by clearing PSTATE.D)
12727          * In either case we're going to take a swstep exception in the
12728          * "did not step an insn" case, and so the syndrome ISV and EX
12729          * bits should be zero.
12730          */
12731         assert(s->base.num_insns == 1);
12732         gen_swstep_exception(s, 0, 0);
12733         s->base.is_jmp = DISAS_NORETURN;
12734         s->base.pc_next = pc + 4;
12735         return;
12736     }
12737 
12738     if (pc & 3) {
12739         /*
12740          * PC alignment fault.  This has priority over the instruction abort
12741          * that we would receive from a translation fault via arm_ldl_code.
12742          * This should only be possible after an indirect branch, at the
12743          * start of the TB.
12744          */
12745         assert(s->base.num_insns == 1);
12746         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12747         s->base.is_jmp = DISAS_NORETURN;
12748         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12749         return;
12750     }
12751 
12752     s->pc_curr = pc;
12753     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12754     s->insn = insn;
12755     s->base.pc_next = pc + 4;
12756 
12757     s->fp_access_checked = false;
12758     s->sve_access_checked = false;
12759 
12760     if (s->pstate_il) {
12761         /*
12762          * Illegal execution state. This has priority over BTI
12763          * exceptions, but comes after instruction abort exceptions.
12764          */
12765         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12766         return;
12767     }
12768 
12769     if (dc_isar_feature(aa64_bti, s)) {
12770         if (s->base.num_insns == 1) {
12771             /*
12772              * At the first insn of the TB, compute s->guarded_page.
12773              * We delayed computing this until successfully reading
12774              * the first insn of the TB, above.  This (mostly) ensures
12775              * that the softmmu tlb entry has been populated, and the
12776              * page table GP bit is available.
12777              *
12778              * Note that we need to compute this even if btype == 0,
12779              * because this value is used for BR instructions later
12780              * where ENV is not available.
12781              */
12782             s->guarded_page = is_guarded_page(env, s);
12783 
12784             /* First insn can have btype set to non-zero.  */
12785             tcg_debug_assert(s->btype >= 0);
12786 
12787             /*
12788              * Note that the Branch Target Exception has fairly high
12789              * priority -- below debugging exceptions but above most
12790              * everything else.  This allows us to handle this now
12791              * instead of waiting until the insn is otherwise decoded.
12792              */
12793             if (s->btype != 0
12794                 && s->guarded_page
12795                 && !btype_destination_ok(insn, s->bt, s->btype)) {
12796                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12797                 return;
12798             }
12799         } else {
12800             /* Not the first insn: btype must be 0.  */
12801             tcg_debug_assert(s->btype == 0);
12802         }
12803     }
12804 
12805     s->is_nonstreaming = false;
12806     if (s->sme_trap_nonstreaming) {
12807         disas_sme_fa64(s, insn);
12808     }
12809 
12810     if (!disas_a64(s, insn) &&
12811         !disas_sme(s, insn) &&
12812         !disas_sve(s, insn)) {
12813         disas_a64_legacy(s, insn);
12814     }
12815 
12816     /*
12817      * After execution of most insns, btype is reset to 0.
12818      * Note that we set btype == -1 when the insn sets btype.
12819      */
12820     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12821         reset_btype(s);
12822     }
12823 }
12824 
12825 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12826 {
12827     DisasContext *dc = container_of(dcbase, DisasContext, base);
12828 
12829     if (unlikely(dc->ss_active)) {
12830         /* Note that this means single stepping WFI doesn't halt the CPU.
12831          * For conditional branch insns this is harmless unreachable code as
12832          * gen_goto_tb() has already handled emitting the debug exception
12833          * (and thus a tb-jump is not possible when singlestepping).
12834          */
12835         switch (dc->base.is_jmp) {
12836         default:
12837             gen_a64_update_pc(dc, 4);
12838             /* fall through */
12839         case DISAS_EXIT:
12840         case DISAS_JUMP:
12841             gen_step_complete_exception(dc);
12842             break;
12843         case DISAS_NORETURN:
12844             break;
12845         }
12846     } else {
12847         switch (dc->base.is_jmp) {
12848         case DISAS_NEXT:
12849         case DISAS_TOO_MANY:
12850             gen_goto_tb(dc, 1, 4);
12851             break;
12852         default:
12853         case DISAS_UPDATE_EXIT:
12854             gen_a64_update_pc(dc, 4);
12855             /* fall through */
12856         case DISAS_EXIT:
12857             tcg_gen_exit_tb(NULL, 0);
12858             break;
12859         case DISAS_UPDATE_NOCHAIN:
12860             gen_a64_update_pc(dc, 4);
12861             /* fall through */
12862         case DISAS_JUMP:
12863             tcg_gen_lookup_and_goto_ptr();
12864             break;
12865         case DISAS_NORETURN:
12866         case DISAS_SWI:
12867             break;
12868         case DISAS_WFE:
12869             gen_a64_update_pc(dc, 4);
12870             gen_helper_wfe(tcg_env);
12871             break;
12872         case DISAS_YIELD:
12873             gen_a64_update_pc(dc, 4);
12874             gen_helper_yield(tcg_env);
12875             break;
12876         case DISAS_WFI:
12877             /*
12878              * This is a special case because we don't want to just halt
12879              * the CPU if trying to debug across a WFI.
12880              */
12881             gen_a64_update_pc(dc, 4);
12882             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12883             /*
12884              * The helper doesn't necessarily throw an exception, but we
12885              * must go back to the main loop to check for interrupts anyway.
12886              */
12887             tcg_gen_exit_tb(NULL, 0);
12888             break;
12889         }
12890     }
12891 }
12892 
12893 const TranslatorOps aarch64_translator_ops = {
12894     .init_disas_context = aarch64_tr_init_disas_context,
12895     .tb_start           = aarch64_tr_tb_start,
12896     .insn_start         = aarch64_tr_insn_start,
12897     .translate_insn     = aarch64_tr_translate_insn,
12898     .tb_stop            = aarch64_tr_tb_stop,
12899 };
12900